OPU-MVS | | | | | 97.30 2 | 99.19 8 | 92.31 3 | 99.12 6 | | | | 98.54 20 | 92.06 2 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
MCST-MVS | | | 96.17 3 | 96.12 5 | 96.32 5 | 99.42 2 | 89.36 8 | 98.94 15 | 97.10 23 | 95.17 2 | 92.11 64 | 98.46 24 | 87.33 20 | 99.97 2 | 97.21 12 | 99.31 2 | 99.63 5 |
|
MSP-MVS | | | 95.62 6 | 96.54 1 | 92.86 92 | 98.31 49 | 80.10 164 | 97.42 88 | 96.78 44 | 92.20 13 | 97.11 8 | 98.29 28 | 93.46 1 | 99.10 95 | 96.01 20 | 99.30 3 | 99.38 10 |
|
DPM-MVS | | | 96.21 2 | 95.53 9 | 98.26 1 | 96.26 105 | 95.09 1 | 99.15 4 | 96.98 29 | 93.39 9 | 96.45 14 | 98.79 10 | 90.17 7 | 99.99 1 | 89.33 106 | 99.25 4 | 99.70 3 |
|
HPM-MVS++ | | | 95.32 9 | 95.48 10 | 94.85 20 | 98.62 34 | 86.04 32 | 97.81 54 | 96.93 35 | 92.45 11 | 95.69 20 | 98.50 22 | 85.38 27 | 99.85 10 | 94.75 38 | 99.18 5 | 98.65 38 |
|
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 12 | 99.31 5 | 87.69 19 | 99.06 9 | 97.12 22 | 94.66 3 | 96.79 9 | 98.78 11 | 86.42 24 | 99.95 3 | 97.59 9 | 99.18 5 | 99.00 23 |
|
NCCC | | | 95.63 5 | 95.94 6 | 94.69 24 | 99.21 7 | 85.15 56 | 99.16 3 | 96.96 32 | 94.11 6 | 95.59 21 | 98.64 19 | 85.07 28 | 99.91 4 | 95.61 27 | 99.10 7 | 99.00 23 |
|
SMA-MVS | | | 94.70 15 | 94.68 15 | 94.76 22 | 98.02 64 | 85.94 35 | 97.47 80 | 96.77 50 | 85.32 109 | 97.92 2 | 98.70 16 | 83.09 47 | 99.84 12 | 95.79 24 | 99.08 8 | 98.49 46 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSLP-MVS++ | | | 94.28 22 | 94.39 23 | 93.97 44 | 98.30 50 | 84.06 74 | 98.64 21 | 96.93 35 | 90.71 25 | 93.08 55 | 98.70 16 | 79.98 71 | 99.21 80 | 94.12 45 | 99.07 9 | 98.63 39 |
|
DPE-MVS | | | 95.32 9 | 95.55 8 | 94.64 25 | 98.79 21 | 84.87 63 | 97.77 56 | 96.74 54 | 86.11 91 | 96.54 13 | 98.89 7 | 88.39 16 | 99.74 28 | 97.67 8 | 99.05 10 | 99.31 14 |
|
TSAR-MVS + MP. | | | 94.79 14 | 95.17 12 | 93.64 57 | 97.66 75 | 84.10 73 | 95.85 191 | 96.42 99 | 91.26 20 | 97.49 7 | 96.80 111 | 86.50 23 | 98.49 126 | 95.54 28 | 99.03 11 | 98.33 54 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
test9_res | | | | | | | | | | | | | | | 96.00 21 | 99.03 11 | 98.31 58 |
|
test_241102_TWO | | | | | | | | | 96.78 44 | 88.72 49 | 97.70 5 | 98.91 3 | 87.86 17 | 99.82 16 | 98.15 2 | 99.00 13 | 99.47 7 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 42 | 99.00 13 | 98.57 41 |
|
SED-MVS | | | 95.88 4 | 96.22 3 | 94.87 19 | 99.03 13 | 85.03 58 | 99.12 6 | 96.78 44 | 88.72 49 | 97.79 3 | 98.91 3 | 88.48 14 | 99.82 16 | 98.15 2 | 98.97 15 | 99.74 1 |
|
IU-MVS | | | | | | 99.03 13 | 85.34 47 | | 96.86 41 | 92.05 15 | 98.74 1 | | | | 98.15 2 | 98.97 15 | 99.42 9 |
|
train_agg | | | 94.28 22 | 94.45 20 | 93.74 51 | 98.64 31 | 83.71 80 | 97.82 52 | 96.65 67 | 84.50 133 | 95.16 25 | 98.09 43 | 84.33 32 | 99.36 70 | 95.91 23 | 98.96 17 | 98.16 69 |
|
ETH3 D test6400 | | | 95.56 8 | 95.41 11 | 96.00 7 | 99.02 16 | 89.42 7 | 98.75 18 | 96.80 43 | 87.28 77 | 95.88 19 | 98.95 2 | 85.92 26 | 99.41 62 | 97.15 13 | 98.95 18 | 99.18 20 |
|
MG-MVS | | | 94.25 24 | 93.72 34 | 95.85 9 | 99.38 3 | 89.35 9 | 97.98 44 | 98.09 8 | 89.99 32 | 92.34 63 | 96.97 103 | 81.30 59 | 98.99 101 | 88.54 111 | 98.88 19 | 99.20 18 |
|
DVP-MVS | | | 95.58 7 | 95.91 7 | 94.57 26 | 99.05 10 | 85.18 51 | 99.06 9 | 96.46 94 | 88.75 47 | 96.69 10 | 98.76 12 | 87.69 18 | 99.76 20 | 97.90 5 | 98.85 20 | 98.77 30 |
|
test_0728_SECOND | | | | | 95.14 15 | 99.04 12 | 86.14 31 | 99.06 9 | 96.77 50 | | | | | 99.84 12 | 97.90 5 | 98.85 20 | 99.45 8 |
|
test_0728_THIRD | | | | | | | | | | 88.38 56 | 96.69 10 | 98.76 12 | 89.64 10 | 99.76 20 | 97.47 10 | 98.84 22 | 99.38 10 |
|
test_prior3 | | | 94.03 31 | 94.34 24 | 93.09 81 | 98.68 25 | 81.91 115 | 98.37 27 | 96.40 103 | 86.08 93 | 94.57 38 | 98.02 49 | 83.14 44 | 99.06 97 | 95.05 35 | 98.79 23 | 98.29 60 |
|
test_prior2 | | | | | | | | 98.37 27 | | 86.08 93 | 94.57 38 | 98.02 49 | 83.14 44 | | 95.05 35 | 98.79 23 | |
|
APDe-MVS | | | 94.56 17 | 94.75 14 | 93.96 45 | 98.84 20 | 83.40 87 | 98.04 42 | 96.41 100 | 85.79 99 | 95.00 31 | 98.28 29 | 84.32 35 | 99.18 87 | 97.35 11 | 98.77 25 | 99.28 15 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 18 | 94.30 26 | 95.02 17 | 98.86 19 | 85.68 42 | 98.06 40 | 96.64 70 | 93.64 8 | 91.74 70 | 98.54 20 | 80.17 70 | 99.90 5 | 92.28 68 | 98.75 26 | 99.49 6 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
agg_prior1 | | | 94.10 28 | 94.31 25 | 93.48 67 | 98.59 35 | 83.13 93 | 97.77 56 | 96.56 81 | 84.38 137 | 94.19 41 | 98.13 38 | 84.66 30 | 99.16 89 | 95.74 25 | 98.74 27 | 98.15 71 |
|
CDPH-MVS | | | 93.12 43 | 92.91 47 | 93.74 51 | 98.65 30 | 83.88 75 | 97.67 66 | 96.26 116 | 83.00 171 | 93.22 53 | 98.24 30 | 81.31 58 | 99.21 80 | 89.12 107 | 98.74 27 | 98.14 72 |
|
DELS-MVS | | | 94.98 11 | 94.49 19 | 96.44 4 | 96.42 103 | 90.59 5 | 99.21 2 | 97.02 26 | 94.40 5 | 91.46 73 | 97.08 100 | 83.32 43 | 99.69 36 | 92.83 61 | 98.70 29 | 99.04 21 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DeepPCF-MVS | | 89.82 1 | 94.61 16 | 96.17 4 | 89.91 181 | 97.09 97 | 70.21 303 | 98.99 14 | 96.69 61 | 95.57 1 | 95.08 28 | 99.23 1 | 86.40 25 | 99.87 8 | 97.84 7 | 98.66 30 | 99.65 4 |
|
PHI-MVS | | | 93.59 38 | 93.63 35 | 93.48 67 | 98.05 63 | 81.76 123 | 98.64 21 | 97.13 21 | 82.60 180 | 94.09 45 | 98.49 23 | 80.35 65 | 99.85 10 | 94.74 39 | 98.62 31 | 98.83 28 |
|
ACMMP_NAP | | | 93.46 39 | 93.23 41 | 94.17 39 | 97.16 95 | 84.28 70 | 96.82 134 | 96.65 67 | 86.24 89 | 94.27 40 | 97.99 52 | 77.94 96 | 99.83 15 | 93.39 52 | 98.57 32 | 98.39 52 |
|
ETH3D-3000-0.1 | | | 94.43 19 | 94.42 22 | 94.45 28 | 97.78 71 | 85.78 38 | 97.98 44 | 96.53 86 | 85.29 112 | 95.45 22 | 98.81 8 | 83.36 42 | 99.38 64 | 96.07 19 | 98.53 33 | 98.19 66 |
|
xxxxxxxxxxxxxcwj | | | 94.38 20 | 94.62 17 | 93.68 55 | 98.24 52 | 83.34 88 | 98.61 23 | 92.69 283 | 91.32 18 | 95.07 29 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 30 | 98.51 34 | 98.32 55 |
|
SF-MVS | | | 94.17 25 | 94.05 30 | 94.55 27 | 97.56 80 | 85.95 33 | 97.73 62 | 96.43 98 | 84.02 147 | 95.07 29 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 30 | 98.51 34 | 98.32 55 |
|
原ACMM1 | | | | | 91.22 146 | 97.77 72 | 78.10 215 | | 96.61 73 | 81.05 199 | 91.28 79 | 97.42 86 | 77.92 97 | 98.98 102 | 79.85 184 | 98.51 34 | 96.59 155 |
|
SD-MVS | | | 94.84 13 | 95.02 13 | 94.29 34 | 97.87 70 | 84.61 66 | 97.76 60 | 96.19 122 | 89.59 36 | 96.66 12 | 98.17 36 | 84.33 32 | 99.60 46 | 96.09 18 | 98.50 37 | 98.66 37 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ZD-MVS | | | | | | 99.09 9 | 83.22 92 | | 96.60 76 | 82.88 174 | 93.61 49 | 98.06 48 | 82.93 48 | 99.14 91 | 95.51 29 | 98.49 38 | |
|
新几何1 | | | | | 93.12 79 | 97.44 84 | 81.60 129 | | 96.71 58 | 74.54 281 | 91.22 81 | 97.57 75 | 79.13 81 | 99.51 56 | 77.40 206 | 98.46 39 | 98.26 63 |
|
SteuartSystems-ACMMP | | | 94.13 27 | 94.44 21 | 93.20 76 | 95.41 125 | 81.35 132 | 99.02 13 | 96.59 77 | 89.50 37 | 94.18 43 | 98.36 27 | 83.68 40 | 99.45 60 | 94.77 37 | 98.45 40 | 98.81 29 |
Skip Steuart: Steuart Systems R&D Blog. |
1121 | | | 90.66 95 | 89.82 104 | 93.16 78 | 97.39 88 | 81.71 126 | 93.33 256 | 96.66 66 | 74.45 282 | 91.38 74 | 97.55 79 | 79.27 77 | 99.52 53 | 79.95 181 | 98.43 41 | 98.26 63 |
|
9.14 | | | | 94.26 27 | | 98.10 60 | | 98.14 34 | 96.52 87 | 84.74 124 | 94.83 34 | 98.80 9 | 82.80 51 | 99.37 68 | 95.95 22 | 98.42 42 | |
|
testtj | | | 94.09 29 | 94.08 29 | 94.09 42 | 99.28 6 | 83.32 90 | 97.59 71 | 96.61 73 | 83.60 161 | 94.77 36 | 98.46 24 | 82.72 52 | 99.64 42 | 95.29 33 | 98.42 42 | 99.32 13 |
|
HFP-MVS | | | 92.89 47 | 92.86 49 | 92.98 86 | 98.71 23 | 81.12 135 | 97.58 72 | 96.70 59 | 85.20 115 | 91.75 68 | 97.97 56 | 78.47 88 | 99.71 32 | 90.95 79 | 98.41 44 | 98.12 74 |
|
#test# | | | 92.99 45 | 92.99 45 | 92.98 86 | 98.71 23 | 81.12 135 | 97.77 56 | 96.70 59 | 85.75 100 | 91.75 68 | 97.97 56 | 78.47 88 | 99.71 32 | 91.36 75 | 98.41 44 | 98.12 74 |
|
ACMMPR | | | 92.69 56 | 92.67 53 | 92.75 96 | 98.66 28 | 80.57 151 | 97.58 72 | 96.69 61 | 85.20 115 | 91.57 72 | 97.92 58 | 77.01 111 | 99.67 40 | 90.95 79 | 98.41 44 | 98.00 86 |
|
ETH3D cwj APD-0.16 | | | 93.91 35 | 93.76 33 | 94.36 31 | 96.70 101 | 85.74 39 | 97.22 95 | 96.41 100 | 83.94 150 | 94.13 44 | 98.69 18 | 83.13 46 | 99.37 68 | 95.25 34 | 98.39 47 | 97.97 89 |
|
MP-MVS-pluss | | | 92.58 60 | 92.35 58 | 93.29 72 | 97.30 93 | 82.53 103 | 96.44 157 | 96.04 131 | 84.68 127 | 89.12 109 | 98.37 26 | 77.48 104 | 99.74 28 | 93.31 56 | 98.38 48 | 97.59 116 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
region2R | | | 92.72 54 | 92.70 52 | 92.79 95 | 98.68 25 | 80.53 154 | 97.53 76 | 96.51 88 | 85.22 113 | 91.94 66 | 97.98 54 | 77.26 106 | 99.67 40 | 90.83 83 | 98.37 49 | 98.18 67 |
|
APD-MVS | | | 93.61 37 | 93.59 36 | 93.69 54 | 98.76 22 | 83.26 91 | 97.21 97 | 96.09 127 | 82.41 182 | 94.65 37 | 98.21 31 | 81.96 57 | 98.81 113 | 94.65 40 | 98.36 50 | 99.01 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ZNCC-MVS | | | 92.75 50 | 92.60 55 | 93.23 75 | 98.24 52 | 81.82 121 | 97.63 67 | 96.50 90 | 85.00 120 | 91.05 83 | 97.74 67 | 78.38 90 | 99.80 19 | 90.48 88 | 98.34 51 | 98.07 77 |
|
test12 | | | | | 94.25 35 | 98.34 47 | 85.55 44 | | 96.35 110 | | 92.36 62 | | 80.84 60 | 99.22 78 | | 98.31 52 | 97.98 88 |
|
MP-MVS | | | 92.61 59 | 92.67 53 | 92.42 109 | 98.13 59 | 79.73 173 | 97.33 93 | 96.20 120 | 85.63 102 | 90.53 89 | 97.66 69 | 78.14 94 | 99.70 35 | 92.12 70 | 98.30 53 | 97.85 96 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
test222 | | | | | | 96.15 108 | 78.41 203 | 95.87 189 | 96.46 94 | 71.97 301 | 89.66 101 | 97.45 82 | 76.33 124 | | | 98.24 54 | 98.30 59 |
|
CP-MVS | | | 92.54 61 | 92.60 55 | 92.34 111 | 98.50 40 | 79.90 167 | 98.40 26 | 96.40 103 | 84.75 123 | 90.48 91 | 98.09 43 | 77.40 105 | 99.21 80 | 91.15 78 | 98.23 55 | 97.92 92 |
|
zzz-MVS | | | 92.74 51 | 92.71 50 | 92.86 92 | 97.90 66 | 80.85 143 | 96.47 152 | 96.33 111 | 87.92 64 | 90.20 94 | 98.18 32 | 76.71 117 | 99.76 20 | 92.57 65 | 98.09 56 | 97.96 90 |
|
MTAPA | | | 92.45 62 | 92.31 59 | 92.86 92 | 97.90 66 | 80.85 143 | 92.88 269 | 96.33 111 | 87.92 64 | 90.20 94 | 98.18 32 | 76.71 117 | 99.76 20 | 92.57 65 | 98.09 56 | 97.96 90 |
|
XVS | | | 92.69 56 | 92.71 50 | 92.63 102 | 98.52 38 | 80.29 157 | 97.37 91 | 96.44 96 | 87.04 84 | 91.38 74 | 97.83 64 | 77.24 108 | 99.59 47 | 90.46 89 | 98.07 58 | 98.02 81 |
|
X-MVStestdata | | | 86.26 172 | 84.14 187 | 92.63 102 | 98.52 38 | 80.29 157 | 97.37 91 | 96.44 96 | 87.04 84 | 91.38 74 | 20.73 354 | 77.24 108 | 99.59 47 | 90.46 89 | 98.07 58 | 98.02 81 |
|
MVS | | | 90.60 97 | 88.64 119 | 96.50 3 | 94.25 160 | 90.53 6 | 93.33 256 | 97.21 19 | 77.59 260 | 78.88 210 | 97.31 89 | 71.52 184 | 99.69 36 | 89.60 101 | 98.03 60 | 99.27 16 |
|
mPP-MVS | | | 91.88 69 | 91.82 68 | 92.07 121 | 98.38 45 | 78.63 197 | 97.29 94 | 96.09 127 | 85.12 117 | 88.45 117 | 97.66 69 | 75.53 138 | 99.68 38 | 89.83 98 | 98.02 61 | 97.88 93 |
|
HPM-MVS | | | 91.62 76 | 91.53 74 | 91.89 127 | 97.88 69 | 79.22 182 | 96.99 121 | 95.73 145 | 82.07 187 | 89.50 106 | 97.19 96 | 75.59 137 | 98.93 109 | 90.91 81 | 97.94 62 | 97.54 117 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_HR | | | 93.41 40 | 93.39 39 | 93.47 70 | 97.34 92 | 82.83 99 | 97.56 74 | 98.27 6 | 89.16 42 | 89.71 99 | 97.14 97 | 79.77 73 | 99.56 51 | 93.65 48 | 97.94 62 | 98.02 81 |
|
PGM-MVS | | | 91.93 68 | 91.80 69 | 92.32 113 | 98.27 51 | 79.74 172 | 95.28 206 | 97.27 17 | 83.83 154 | 90.89 86 | 97.78 66 | 76.12 127 | 99.56 51 | 88.82 109 | 97.93 64 | 97.66 110 |
|
3Dnovator | | 82.32 10 | 89.33 118 | 87.64 134 | 94.42 30 | 93.73 173 | 85.70 41 | 97.73 62 | 96.75 53 | 86.73 87 | 76.21 241 | 95.93 125 | 62.17 237 | 99.68 38 | 81.67 169 | 97.81 65 | 97.88 93 |
|
GST-MVS | | | 92.43 63 | 92.22 63 | 93.04 84 | 98.17 57 | 81.64 128 | 97.40 90 | 96.38 107 | 84.71 126 | 90.90 85 | 97.40 87 | 77.55 102 | 99.76 20 | 89.75 100 | 97.74 66 | 97.72 105 |
|
PAPM | | | 92.87 49 | 92.40 57 | 94.30 33 | 92.25 208 | 87.85 16 | 96.40 161 | 96.38 107 | 91.07 21 | 88.72 114 | 96.90 104 | 82.11 56 | 97.37 171 | 90.05 96 | 97.70 67 | 97.67 109 |
|
CANet | | | 94.89 12 | 94.64 16 | 95.63 10 | 97.55 81 | 88.12 13 | 99.06 9 | 96.39 106 | 94.07 7 | 95.34 24 | 97.80 65 | 76.83 114 | 99.87 8 | 97.08 14 | 97.64 68 | 98.89 26 |
|
testdata | | | | | 90.13 172 | 95.92 114 | 74.17 272 | | 96.49 93 | 73.49 290 | 94.82 35 | 97.99 52 | 78.80 85 | 97.93 141 | 83.53 155 | 97.52 69 | 98.29 60 |
|
MVSFormer | | | 91.36 82 | 90.57 86 | 93.73 53 | 93.00 187 | 88.08 14 | 94.80 225 | 94.48 213 | 80.74 204 | 94.90 32 | 97.13 98 | 78.84 83 | 95.10 274 | 83.77 147 | 97.46 70 | 98.02 81 |
|
lupinMVS | | | 93.87 36 | 93.58 37 | 94.75 23 | 93.00 187 | 88.08 14 | 99.15 4 | 95.50 157 | 91.03 22 | 94.90 32 | 97.66 69 | 78.84 83 | 97.56 158 | 94.64 41 | 97.46 70 | 98.62 40 |
|
HPM-MVS_fast | | | 90.38 104 | 90.17 95 | 91.03 150 | 97.61 76 | 77.35 233 | 97.15 106 | 95.48 158 | 79.51 233 | 88.79 113 | 96.90 104 | 71.64 183 | 98.81 113 | 87.01 127 | 97.44 72 | 96.94 141 |
|
GG-mvs-BLEND | | | | | 93.49 66 | 94.94 141 | 86.26 29 | 81.62 328 | 97.00 27 | | 88.32 120 | 94.30 164 | 91.23 3 | 96.21 218 | 88.49 113 | 97.43 73 | 98.00 86 |
|
旧先验1 | | | | | | 97.39 88 | 79.58 177 | | 96.54 84 | | | 98.08 46 | 84.00 36 | | | 97.42 74 | 97.62 114 |
|
PS-MVSNAJ | | | 94.17 25 | 93.52 38 | 96.10 6 | 95.65 120 | 92.35 2 | 98.21 32 | 95.79 142 | 92.42 12 | 96.24 15 | 98.18 32 | 71.04 189 | 99.17 88 | 96.77 15 | 97.39 75 | 96.79 148 |
|
CSCG | | | 92.02 67 | 91.65 72 | 93.12 79 | 98.53 37 | 80.59 150 | 97.47 80 | 97.18 20 | 77.06 268 | 84.64 149 | 97.98 54 | 83.98 37 | 99.52 53 | 90.72 85 | 97.33 76 | 99.23 17 |
|
SR-MVS | | | 92.16 65 | 92.27 60 | 91.83 131 | 98.37 46 | 78.41 203 | 96.67 145 | 95.76 143 | 82.19 186 | 91.97 65 | 98.07 47 | 76.44 120 | 98.64 117 | 93.71 47 | 97.27 77 | 98.45 49 |
|
gg-mvs-nofinetune | | | 85.48 183 | 82.90 203 | 93.24 74 | 94.51 155 | 85.82 37 | 79.22 332 | 96.97 31 | 61.19 331 | 87.33 128 | 53.01 344 | 90.58 4 | 96.07 219 | 86.07 130 | 97.23 78 | 97.81 100 |
|
test1172 | | | 91.64 74 | 92.00 66 | 90.54 163 | 98.20 56 | 74.48 269 | 96.45 155 | 95.65 148 | 81.97 190 | 91.63 71 | 98.02 49 | 75.76 133 | 98.61 118 | 93.16 58 | 97.17 79 | 98.52 45 |
|
MAR-MVS | | | 90.63 96 | 90.22 92 | 91.86 128 | 98.47 42 | 78.20 213 | 97.18 101 | 96.61 73 | 83.87 153 | 88.18 122 | 98.18 32 | 68.71 202 | 99.75 26 | 83.66 152 | 97.15 80 | 97.63 113 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
3Dnovator+ | | 82.88 8 | 89.63 114 | 87.85 129 | 94.99 18 | 94.49 156 | 86.76 27 | 97.84 51 | 95.74 144 | 86.10 92 | 75.47 252 | 96.02 124 | 65.00 224 | 99.51 56 | 82.91 163 | 97.07 81 | 98.72 36 |
|
Regformer-1 | | | 94.00 32 | 94.04 31 | 93.87 47 | 98.41 43 | 84.29 69 | 97.43 86 | 97.04 25 | 89.50 37 | 92.75 59 | 98.13 38 | 82.60 54 | 99.26 75 | 93.55 50 | 96.99 82 | 98.06 78 |
|
Regformer-2 | | | 93.92 33 | 94.01 32 | 93.67 56 | 98.41 43 | 83.75 79 | 97.43 86 | 97.00 27 | 89.43 39 | 92.69 60 | 98.13 38 | 82.48 55 | 99.22 78 | 93.51 51 | 96.99 82 | 98.04 79 |
|
DeepC-MVS | | 86.58 3 | 91.53 78 | 91.06 81 | 92.94 89 | 94.52 152 | 81.89 117 | 95.95 183 | 95.98 133 | 90.76 24 | 83.76 161 | 96.76 112 | 73.24 170 | 99.71 32 | 91.67 74 | 96.96 84 | 97.22 137 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CPTT-MVS | | | 89.72 112 | 89.87 103 | 89.29 192 | 98.33 48 | 73.30 276 | 97.70 64 | 95.35 168 | 75.68 272 | 87.40 126 | 97.44 85 | 70.43 194 | 98.25 134 | 89.56 103 | 96.90 85 | 96.33 164 |
|
APD-MVS_3200maxsize | | | 91.23 86 | 91.35 76 | 90.89 154 | 97.89 68 | 76.35 248 | 96.30 167 | 95.52 156 | 79.82 228 | 91.03 84 | 97.88 61 | 74.70 155 | 98.54 123 | 92.11 71 | 96.89 86 | 97.77 102 |
|
CS-MVS | | | 92.88 48 | 93.09 44 | 92.26 115 | 95.21 131 | 80.70 147 | 98.84 16 | 95.26 174 | 88.83 46 | 92.50 61 | 97.48 81 | 77.49 103 | 97.63 154 | 95.34 32 | 96.88 87 | 98.46 47 |
|
MVP-Stereo | | | 82.65 226 | 81.67 220 | 85.59 261 | 86.10 298 | 78.29 206 | 93.33 256 | 92.82 280 | 77.75 258 | 69.17 296 | 87.98 246 | 59.28 257 | 95.76 237 | 71.77 252 | 96.88 87 | 82.73 329 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PAPM_NR | | | 91.46 79 | 90.82 83 | 93.37 71 | 98.50 40 | 81.81 122 | 95.03 220 | 96.13 124 | 84.65 129 | 86.10 139 | 97.65 73 | 79.24 79 | 99.75 26 | 83.20 159 | 96.88 87 | 98.56 42 |
|
EIA-MVS | | | 91.73 71 | 92.05 65 | 90.78 158 | 94.52 152 | 76.40 247 | 98.06 40 | 95.34 169 | 89.19 41 | 88.90 112 | 97.28 93 | 77.56 101 | 97.73 151 | 90.77 84 | 96.86 90 | 98.20 65 |
|
SR-MVS-dyc-post | | | 91.29 84 | 91.45 75 | 90.80 156 | 97.76 73 | 76.03 252 | 96.20 173 | 95.44 161 | 80.56 209 | 90.72 87 | 97.84 62 | 75.76 133 | 98.61 118 | 91.99 72 | 96.79 91 | 97.75 103 |
|
RE-MVS-def | | | | 91.18 80 | | 97.76 73 | 76.03 252 | 96.20 173 | 95.44 161 | 80.56 209 | 90.72 87 | 97.84 62 | 73.36 169 | | 91.99 72 | 96.79 91 | 97.75 103 |
|
jason | | | 92.73 53 | 92.23 62 | 94.21 38 | 90.50 245 | 87.30 23 | 98.65 20 | 95.09 179 | 90.61 26 | 92.76 58 | 97.13 98 | 75.28 148 | 97.30 174 | 93.32 55 | 96.75 93 | 98.02 81 |
jason: jason. |
xiu_mvs_v2_base | | | 93.92 33 | 93.26 40 | 95.91 8 | 95.07 137 | 92.02 4 | 98.19 33 | 95.68 147 | 92.06 14 | 96.01 18 | 98.14 37 | 70.83 192 | 98.96 103 | 96.74 16 | 96.57 94 | 96.76 151 |
|
MVS_111021_LR | | | 91.60 77 | 91.64 73 | 91.47 140 | 95.74 117 | 78.79 195 | 96.15 175 | 96.77 50 | 88.49 54 | 88.64 115 | 97.07 101 | 72.33 177 | 99.19 85 | 93.13 59 | 96.48 95 | 96.43 159 |
|
PAPR | | | 92.74 51 | 92.17 64 | 94.45 28 | 98.89 18 | 84.87 63 | 97.20 99 | 96.20 120 | 87.73 70 | 88.40 118 | 98.12 41 | 78.71 86 | 99.76 20 | 87.99 118 | 96.28 96 | 98.74 31 |
|
Vis-MVSNet | | | 88.67 133 | 87.82 130 | 91.24 145 | 92.68 193 | 78.82 192 | 96.95 127 | 93.85 240 | 87.55 73 | 87.07 131 | 95.13 148 | 63.43 231 | 97.21 179 | 77.58 203 | 96.15 97 | 97.70 108 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPNet | | | 94.06 30 | 94.15 28 | 93.76 50 | 97.27 94 | 84.35 67 | 98.29 29 | 97.64 13 | 94.57 4 | 95.36 23 | 96.88 106 | 79.96 72 | 99.12 94 | 91.30 76 | 96.11 98 | 97.82 99 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
API-MVS | | | 90.18 106 | 88.97 115 | 93.80 49 | 98.66 28 | 82.95 98 | 97.50 79 | 95.63 151 | 75.16 276 | 86.31 136 | 97.69 68 | 72.49 175 | 99.90 5 | 81.26 171 | 96.07 99 | 98.56 42 |
|
QAPM | | | 86.88 162 | 84.51 179 | 93.98 43 | 94.04 166 | 85.89 36 | 97.19 100 | 96.05 130 | 73.62 287 | 75.12 255 | 95.62 134 | 62.02 240 | 99.74 28 | 70.88 261 | 96.06 100 | 96.30 166 |
|
1314 | | | 88.94 124 | 87.20 146 | 94.17 39 | 93.21 181 | 85.73 40 | 93.33 256 | 96.64 70 | 82.89 173 | 75.98 244 | 96.36 118 | 66.83 213 | 99.39 63 | 83.52 156 | 96.02 101 | 97.39 128 |
|
MS-PatchMatch | | | 83.05 218 | 81.82 218 | 86.72 247 | 89.64 259 | 79.10 187 | 94.88 223 | 94.59 210 | 79.70 231 | 70.67 286 | 89.65 225 | 50.43 299 | 96.82 198 | 70.82 264 | 95.99 102 | 84.25 323 |
|
CHOSEN 280x420 | | | 91.71 73 | 91.85 67 | 91.29 143 | 94.94 141 | 82.69 100 | 87.89 308 | 96.17 123 | 85.94 96 | 87.27 129 | 94.31 163 | 90.27 6 | 95.65 245 | 94.04 46 | 95.86 103 | 95.53 180 |
|
OpenMVS | | 79.58 14 | 86.09 173 | 83.62 194 | 93.50 65 | 90.95 238 | 86.71 28 | 97.44 82 | 95.83 140 | 75.35 273 | 72.64 274 | 95.72 129 | 57.42 273 | 99.64 42 | 71.41 255 | 95.85 104 | 94.13 201 |
|
PVSNet_Blended | | | 93.13 42 | 92.98 46 | 93.57 61 | 97.47 82 | 83.86 76 | 99.32 1 | 96.73 55 | 91.02 23 | 89.53 104 | 96.21 120 | 76.42 121 | 99.57 49 | 94.29 43 | 95.81 105 | 97.29 134 |
|
CHOSEN 1792x2688 | | | 91.07 88 | 90.21 93 | 93.64 57 | 95.18 133 | 83.53 84 | 96.26 169 | 96.13 124 | 88.92 44 | 84.90 144 | 93.10 182 | 72.86 172 | 99.62 45 | 88.86 108 | 95.67 106 | 97.79 101 |
|
ETV-MVS | | | 92.72 54 | 92.87 48 | 92.28 114 | 94.54 151 | 81.89 117 | 97.98 44 | 95.21 176 | 89.77 35 | 93.11 54 | 96.83 108 | 77.23 110 | 97.50 165 | 95.74 25 | 95.38 107 | 97.44 124 |
|
abl_6 | | | 89.80 110 | 89.71 107 | 90.07 173 | 96.53 102 | 75.52 260 | 94.48 228 | 95.04 182 | 81.12 198 | 89.22 107 | 97.00 102 | 68.83 201 | 98.96 103 | 89.86 97 | 95.27 108 | 95.73 175 |
|
Regformer-3 | | | 93.19 41 | 93.19 42 | 93.19 77 | 98.10 60 | 83.01 97 | 97.08 116 | 96.98 29 | 88.98 43 | 91.35 78 | 97.89 59 | 80.80 61 | 99.23 76 | 92.30 67 | 95.20 109 | 97.32 130 |
|
Regformer-4 | | | 93.06 44 | 93.12 43 | 92.89 91 | 98.10 60 | 82.20 110 | 97.08 116 | 96.92 37 | 88.87 45 | 91.23 80 | 97.89 59 | 80.57 64 | 99.19 85 | 92.21 69 | 95.20 109 | 97.29 134 |
|
114514_t | | | 88.79 131 | 87.57 138 | 92.45 107 | 98.21 55 | 81.74 124 | 96.99 121 | 95.45 160 | 75.16 276 | 82.48 172 | 95.69 131 | 68.59 203 | 98.50 125 | 80.33 176 | 95.18 111 | 97.10 138 |
|
CANet_DTU | | | 90.98 89 | 90.04 97 | 93.83 48 | 94.76 146 | 86.23 30 | 96.32 166 | 93.12 275 | 93.11 10 | 93.71 47 | 96.82 110 | 63.08 233 | 99.48 58 | 84.29 142 | 95.12 112 | 95.77 174 |
|
DP-MVS Recon | | | 91.72 72 | 90.85 82 | 94.34 32 | 99.50 1 | 85.00 60 | 98.51 25 | 95.96 134 | 80.57 208 | 88.08 123 | 97.63 74 | 76.84 113 | 99.89 7 | 85.67 132 | 94.88 113 | 98.13 73 |
|
BH-w/o | | | 88.24 145 | 87.47 142 | 90.54 163 | 95.03 139 | 78.54 198 | 97.41 89 | 93.82 241 | 84.08 145 | 78.23 216 | 94.51 161 | 69.34 200 | 97.21 179 | 80.21 179 | 94.58 114 | 95.87 172 |
|
MVS_Test | | | 90.29 105 | 89.18 112 | 93.62 59 | 95.23 129 | 84.93 61 | 94.41 231 | 94.66 203 | 84.31 139 | 90.37 93 | 91.02 205 | 75.13 150 | 97.82 148 | 83.11 161 | 94.42 115 | 98.12 74 |
|
Vis-MVSNet (Re-imp) | | | 88.88 127 | 88.87 118 | 88.91 198 | 93.89 169 | 74.43 270 | 96.93 129 | 94.19 226 | 84.39 136 | 83.22 166 | 95.67 132 | 78.24 92 | 94.70 284 | 78.88 193 | 94.40 116 | 97.61 115 |
|
UGNet | | | 87.73 152 | 86.55 157 | 91.27 144 | 95.16 134 | 79.11 186 | 96.35 163 | 96.23 118 | 88.14 61 | 87.83 125 | 90.48 213 | 50.65 297 | 99.09 96 | 80.13 180 | 94.03 117 | 95.60 178 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet | | 82.34 9 | 89.02 122 | 87.79 131 | 92.71 99 | 95.49 123 | 81.50 130 | 97.70 64 | 97.29 16 | 87.76 69 | 85.47 141 | 95.12 149 | 56.90 274 | 98.90 110 | 80.33 176 | 94.02 118 | 97.71 107 |
|
TSAR-MVS + GP. | | | 94.35 21 | 94.50 18 | 93.89 46 | 97.38 91 | 83.04 96 | 98.10 37 | 95.29 172 | 91.57 16 | 93.81 46 | 97.45 82 | 86.64 21 | 99.43 61 | 96.28 17 | 94.01 119 | 99.20 18 |
|
PVSNet_Blended_VisFu | | | 91.24 85 | 90.77 84 | 92.66 101 | 95.09 135 | 82.40 106 | 97.77 56 | 95.87 139 | 88.26 59 | 86.39 135 | 93.94 171 | 76.77 115 | 99.27 73 | 88.80 110 | 94.00 120 | 96.31 165 |
|
PMMVS | | | 89.46 116 | 89.92 101 | 88.06 216 | 94.64 147 | 69.57 310 | 96.22 171 | 94.95 186 | 87.27 78 | 91.37 77 | 96.54 117 | 65.88 216 | 97.39 170 | 88.54 111 | 93.89 121 | 97.23 136 |
|
BH-untuned | | | 86.95 160 | 85.94 162 | 89.99 176 | 94.52 152 | 77.46 230 | 96.78 137 | 93.37 265 | 81.80 191 | 76.62 232 | 93.81 175 | 66.64 214 | 97.02 188 | 76.06 220 | 93.88 122 | 95.48 181 |
|
BH-RMVSNet | | | 86.84 163 | 85.28 168 | 91.49 139 | 95.35 127 | 80.26 160 | 96.95 127 | 92.21 287 | 82.86 175 | 81.77 186 | 95.46 138 | 59.34 256 | 97.64 153 | 69.79 266 | 93.81 123 | 96.57 156 |
|
Effi-MVS+ | | | 90.70 94 | 89.90 102 | 93.09 81 | 93.61 174 | 83.48 85 | 95.20 211 | 92.79 281 | 83.22 165 | 91.82 67 | 95.70 130 | 71.82 180 | 97.48 166 | 91.25 77 | 93.67 124 | 98.32 55 |
|
IS-MVSNet | | | 88.67 133 | 88.16 125 | 90.20 171 | 93.61 174 | 76.86 240 | 96.77 139 | 93.07 276 | 84.02 147 | 83.62 162 | 95.60 135 | 74.69 156 | 96.24 217 | 78.43 196 | 93.66 125 | 97.49 123 |
|
AdaColmap | | | 88.81 129 | 87.61 137 | 92.39 110 | 99.33 4 | 79.95 165 | 96.70 144 | 95.58 152 | 77.51 261 | 83.05 169 | 96.69 115 | 61.90 244 | 99.72 31 | 84.29 142 | 93.47 126 | 97.50 122 |
|
xiu_mvs_v1_base_debu | | | 90.54 98 | 89.54 108 | 93.55 62 | 92.31 201 | 87.58 20 | 96.99 121 | 94.87 190 | 87.23 79 | 93.27 50 | 97.56 76 | 57.43 270 | 98.32 131 | 92.72 62 | 93.46 127 | 94.74 193 |
|
xiu_mvs_v1_base | | | 90.54 98 | 89.54 108 | 93.55 62 | 92.31 201 | 87.58 20 | 96.99 121 | 94.87 190 | 87.23 79 | 93.27 50 | 97.56 76 | 57.43 270 | 98.32 131 | 92.72 62 | 93.46 127 | 94.74 193 |
|
xiu_mvs_v1_base_debi | | | 90.54 98 | 89.54 108 | 93.55 62 | 92.31 201 | 87.58 20 | 96.99 121 | 94.87 190 | 87.23 79 | 93.27 50 | 97.56 76 | 57.43 270 | 98.32 131 | 92.72 62 | 93.46 127 | 94.74 193 |
|
mvs_anonymous | | | 88.68 132 | 87.62 136 | 91.86 128 | 94.80 145 | 81.69 127 | 93.53 252 | 94.92 187 | 82.03 188 | 78.87 211 | 90.43 216 | 75.77 132 | 95.34 259 | 85.04 138 | 93.16 130 | 98.55 44 |
|
LCM-MVSNet-Re | | | 83.75 206 | 83.54 196 | 84.39 280 | 93.54 176 | 64.14 325 | 92.51 272 | 84.03 339 | 83.90 152 | 66.14 306 | 86.59 266 | 67.36 208 | 92.68 310 | 84.89 140 | 92.87 131 | 96.35 161 |
|
casdiffmvs | | | 90.95 90 | 90.39 89 | 92.63 102 | 92.82 192 | 82.53 103 | 96.83 133 | 94.47 215 | 87.69 71 | 88.47 116 | 95.56 136 | 74.04 161 | 97.54 162 | 90.90 82 | 92.74 132 | 97.83 98 |
|
TAPA-MVS | | 81.61 12 | 85.02 188 | 83.67 191 | 89.06 194 | 96.79 99 | 73.27 278 | 95.92 185 | 94.79 197 | 74.81 279 | 80.47 195 | 96.83 108 | 71.07 188 | 98.19 137 | 49.82 334 | 92.57 133 | 95.71 176 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
diffmvs | | | 91.17 87 | 90.74 85 | 92.44 108 | 93.11 186 | 82.50 105 | 96.25 170 | 93.62 254 | 87.79 68 | 90.40 92 | 95.93 125 | 73.44 168 | 97.42 168 | 93.62 49 | 92.55 134 | 97.41 126 |
|
EPMVS | | | 87.47 155 | 85.90 163 | 92.18 118 | 95.41 125 | 82.26 109 | 87.00 313 | 96.28 115 | 85.88 98 | 84.23 152 | 85.57 283 | 75.07 152 | 96.26 215 | 71.14 260 | 92.50 135 | 98.03 80 |
|
LS3D | | | 82.22 233 | 79.94 245 | 89.06 194 | 97.43 85 | 74.06 274 | 93.20 263 | 92.05 288 | 61.90 327 | 73.33 267 | 95.21 142 | 59.35 255 | 99.21 80 | 54.54 322 | 92.48 136 | 93.90 205 |
|
ACMMP | | | 90.39 102 | 89.97 98 | 91.64 134 | 97.58 79 | 78.21 212 | 96.78 137 | 96.72 57 | 84.73 125 | 84.72 147 | 97.23 94 | 71.22 186 | 99.63 44 | 88.37 116 | 92.41 137 | 97.08 139 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
TESTMET0.1,1 | | | 89.83 109 | 89.34 111 | 91.31 141 | 92.54 199 | 80.19 162 | 97.11 110 | 96.57 79 | 86.15 90 | 86.85 134 | 91.83 196 | 79.32 75 | 96.95 190 | 81.30 170 | 92.35 138 | 96.77 150 |
|
PLC | | 83.97 7 | 88.00 148 | 87.38 144 | 89.83 184 | 98.02 64 | 76.46 245 | 97.16 105 | 94.43 218 | 79.26 240 | 81.98 182 | 96.28 119 | 69.36 199 | 99.27 73 | 77.71 201 | 92.25 139 | 93.77 206 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
baseline | | | 90.76 93 | 90.10 96 | 92.74 97 | 92.90 191 | 82.56 102 | 94.60 227 | 94.56 211 | 87.69 71 | 89.06 111 | 95.67 132 | 73.76 164 | 97.51 164 | 90.43 91 | 92.23 140 | 98.16 69 |
|
PatchMatch-RL | | | 85.00 189 | 83.66 192 | 89.02 196 | 95.86 115 | 74.55 268 | 92.49 273 | 93.60 255 | 79.30 238 | 79.29 208 | 91.47 197 | 58.53 262 | 98.45 128 | 70.22 265 | 92.17 141 | 94.07 202 |
|
test-LLR | | | 88.48 138 | 87.98 127 | 89.98 177 | 92.26 206 | 77.23 235 | 97.11 110 | 95.96 134 | 83.76 156 | 86.30 137 | 91.38 199 | 72.30 178 | 96.78 201 | 80.82 172 | 91.92 142 | 95.94 170 |
|
test-mter | | | 88.95 123 | 88.60 120 | 89.98 177 | 92.26 206 | 77.23 235 | 97.11 110 | 95.96 134 | 85.32 109 | 86.30 137 | 91.38 199 | 76.37 123 | 96.78 201 | 80.82 172 | 91.92 142 | 95.94 170 |
|
Fast-Effi-MVS+ | | | 87.93 150 | 86.94 154 | 90.92 153 | 94.04 166 | 79.16 184 | 98.26 30 | 93.72 250 | 81.29 196 | 83.94 158 | 92.90 183 | 69.83 198 | 96.68 204 | 76.70 212 | 91.74 144 | 96.93 142 |
|
UA-Net | | | 88.92 125 | 88.48 122 | 90.24 169 | 94.06 165 | 77.18 237 | 93.04 265 | 94.66 203 | 87.39 75 | 91.09 82 | 93.89 172 | 74.92 153 | 98.18 138 | 75.83 223 | 91.43 145 | 95.35 184 |
|
PatchmatchNet | | | 86.83 164 | 85.12 172 | 91.95 125 | 94.12 163 | 82.27 108 | 86.55 317 | 95.64 150 | 84.59 131 | 82.98 170 | 84.99 295 | 77.26 106 | 95.96 226 | 68.61 272 | 91.34 146 | 97.64 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PCF-MVS | | 84.09 5 | 86.77 167 | 85.00 174 | 92.08 120 | 92.06 218 | 83.07 95 | 92.14 277 | 94.47 215 | 79.63 232 | 76.90 228 | 94.78 155 | 71.15 187 | 99.20 84 | 72.87 246 | 91.05 147 | 93.98 203 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EI-MVSNet-Vis-set | | | 91.84 70 | 91.77 70 | 92.04 123 | 97.60 77 | 81.17 134 | 96.61 146 | 96.87 39 | 88.20 60 | 89.19 108 | 97.55 79 | 78.69 87 | 99.14 91 | 90.29 94 | 90.94 148 | 95.80 173 |
|
CNLPA | | | 86.96 159 | 85.37 167 | 91.72 133 | 97.59 78 | 79.34 180 | 97.21 97 | 91.05 304 | 74.22 283 | 78.90 209 | 96.75 113 | 67.21 210 | 98.95 106 | 74.68 233 | 90.77 149 | 96.88 146 |
|
mvs-test1 | | | 86.83 164 | 87.17 147 | 85.81 258 | 91.96 221 | 65.24 322 | 97.90 49 | 93.34 266 | 85.57 103 | 84.51 151 | 95.14 147 | 61.99 241 | 97.19 181 | 83.55 153 | 90.55 150 | 95.00 188 |
|
CVMVSNet | | | 84.83 191 | 85.57 164 | 82.63 298 | 91.55 229 | 60.38 335 | 95.13 214 | 95.03 183 | 80.60 207 | 82.10 181 | 94.71 156 | 66.40 215 | 90.19 332 | 74.30 238 | 90.32 151 | 97.31 132 |
|
EPNet_dtu | | | 87.65 153 | 87.89 128 | 86.93 241 | 94.57 149 | 71.37 297 | 96.72 140 | 96.50 90 | 88.56 53 | 87.12 130 | 95.02 151 | 75.91 131 | 94.01 296 | 66.62 279 | 90.00 152 | 95.42 182 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline2 | | | 90.39 102 | 90.21 93 | 90.93 152 | 90.86 241 | 80.99 139 | 95.20 211 | 97.41 15 | 86.03 95 | 80.07 203 | 94.61 158 | 90.58 4 | 97.47 167 | 87.29 123 | 89.86 153 | 94.35 197 |
|
LFMVS | | | 89.27 119 | 87.64 134 | 94.16 41 | 97.16 95 | 85.52 45 | 97.18 101 | 94.66 203 | 79.17 241 | 89.63 102 | 96.57 116 | 55.35 285 | 98.22 135 | 89.52 104 | 89.54 154 | 98.74 31 |
|
EI-MVSNet-UG-set | | | 91.35 83 | 91.22 77 | 91.73 132 | 97.39 88 | 80.68 148 | 96.47 152 | 96.83 42 | 87.92 64 | 88.30 121 | 97.36 88 | 77.84 98 | 99.13 93 | 89.43 105 | 89.45 155 | 95.37 183 |
|
sss | | | 90.87 92 | 89.96 99 | 93.60 60 | 94.15 162 | 83.84 78 | 97.14 107 | 98.13 7 | 85.93 97 | 89.68 100 | 96.09 123 | 71.67 181 | 99.30 72 | 87.69 119 | 89.16 156 | 97.66 110 |
|
HY-MVS | | 84.06 6 | 91.63 75 | 90.37 90 | 95.39 14 | 96.12 109 | 88.25 12 | 90.22 292 | 97.58 14 | 88.33 58 | 90.50 90 | 91.96 192 | 79.26 78 | 99.06 97 | 90.29 94 | 89.07 157 | 98.88 27 |
|
thisisatest0515 | | | 90.95 90 | 90.26 91 | 93.01 85 | 94.03 168 | 84.27 71 | 97.91 47 | 96.67 63 | 83.18 166 | 86.87 133 | 95.51 137 | 88.66 13 | 97.85 147 | 80.46 175 | 89.01 158 | 96.92 144 |
|
CDS-MVSNet | | | 89.50 115 | 88.96 116 | 91.14 148 | 91.94 224 | 80.93 141 | 97.09 114 | 95.81 141 | 84.26 142 | 84.72 147 | 94.20 166 | 80.31 66 | 95.64 246 | 83.37 157 | 88.96 159 | 96.85 147 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
VNet | | | 92.11 66 | 91.22 77 | 94.79 21 | 96.91 98 | 86.98 24 | 97.91 47 | 97.96 9 | 86.38 88 | 93.65 48 | 95.74 128 | 70.16 197 | 98.95 106 | 93.39 52 | 88.87 160 | 98.43 50 |
|
alignmvs | | | 92.97 46 | 92.26 61 | 95.12 16 | 95.54 122 | 87.77 17 | 98.67 19 | 96.38 107 | 88.04 62 | 93.01 56 | 97.45 82 | 79.20 80 | 98.60 120 | 93.25 57 | 88.76 161 | 98.99 25 |
|
WTY-MVS | | | 92.65 58 | 91.68 71 | 95.56 11 | 96.00 112 | 88.90 10 | 98.23 31 | 97.65 12 | 88.57 52 | 89.82 98 | 97.22 95 | 79.29 76 | 99.06 97 | 89.57 102 | 88.73 162 | 98.73 35 |
|
DWT-MVSNet_test | | | 90.52 101 | 89.80 105 | 92.70 100 | 95.73 119 | 82.20 110 | 93.69 247 | 96.55 83 | 88.34 57 | 87.04 132 | 95.34 140 | 86.53 22 | 97.55 159 | 76.32 218 | 88.66 163 | 98.34 53 |
|
canonicalmvs | | | 92.27 64 | 91.22 77 | 95.41 13 | 95.80 116 | 88.31 11 | 97.09 114 | 94.64 206 | 88.49 54 | 92.99 57 | 97.31 89 | 72.68 174 | 98.57 122 | 93.38 54 | 88.58 164 | 99.36 12 |
|
test_yl | | | 91.46 79 | 90.53 87 | 94.24 36 | 97.41 86 | 85.18 51 | 98.08 38 | 97.72 10 | 80.94 200 | 89.85 96 | 96.14 121 | 75.61 135 | 98.81 113 | 90.42 92 | 88.56 165 | 98.74 31 |
|
DCV-MVSNet | | | 91.46 79 | 90.53 87 | 94.24 36 | 97.41 86 | 85.18 51 | 98.08 38 | 97.72 10 | 80.94 200 | 89.85 96 | 96.14 121 | 75.61 135 | 98.81 113 | 90.42 92 | 88.56 165 | 98.74 31 |
|
HyFIR lowres test | | | 89.36 117 | 88.60 120 | 91.63 136 | 94.91 143 | 80.76 146 | 95.60 199 | 95.53 154 | 82.56 181 | 84.03 154 | 91.24 202 | 78.03 95 | 96.81 199 | 87.07 126 | 88.41 167 | 97.32 130 |
|
TAMVS | | | 88.48 138 | 87.79 131 | 90.56 162 | 91.09 236 | 79.18 183 | 96.45 155 | 95.88 138 | 83.64 159 | 83.12 167 | 93.33 178 | 75.94 130 | 95.74 241 | 82.40 164 | 88.27 168 | 96.75 152 |
|
EPP-MVSNet | | | 89.76 111 | 89.72 106 | 89.87 182 | 93.78 170 | 76.02 254 | 97.22 95 | 96.51 88 | 79.35 235 | 85.11 142 | 95.01 152 | 84.82 29 | 97.10 186 | 87.46 122 | 88.21 169 | 96.50 157 |
|
MVS-HIRNet | | | 71.36 304 | 67.00 307 | 84.46 278 | 90.58 244 | 69.74 308 | 79.15 333 | 87.74 326 | 46.09 344 | 61.96 322 | 50.50 345 | 45.14 316 | 95.64 246 | 53.74 324 | 88.11 170 | 88.00 284 |
|
TR-MVS | | | 86.30 171 | 84.93 176 | 90.42 165 | 94.63 148 | 77.58 228 | 96.57 148 | 93.82 241 | 80.30 217 | 82.42 174 | 95.16 145 | 58.74 260 | 97.55 159 | 74.88 231 | 87.82 171 | 96.13 168 |
|
cascas | | | 86.50 169 | 84.48 181 | 92.55 105 | 92.64 197 | 85.95 33 | 97.04 120 | 95.07 181 | 75.32 274 | 80.50 194 | 91.02 205 | 54.33 292 | 97.98 140 | 86.79 128 | 87.62 172 | 93.71 207 |
|
OMC-MVS | | | 88.80 130 | 88.16 125 | 90.72 159 | 95.30 128 | 77.92 221 | 94.81 224 | 94.51 212 | 86.80 86 | 84.97 143 | 96.85 107 | 67.53 206 | 98.60 120 | 85.08 137 | 87.62 172 | 95.63 177 |
|
SCA | | | 85.63 180 | 83.64 193 | 91.60 137 | 92.30 204 | 81.86 119 | 92.88 269 | 95.56 153 | 84.85 121 | 82.52 171 | 85.12 293 | 58.04 265 | 95.39 256 | 73.89 241 | 87.58 174 | 97.54 117 |
|
thisisatest0530 | | | 89.65 113 | 89.02 114 | 91.53 138 | 93.46 178 | 80.78 145 | 96.52 149 | 96.67 63 | 81.69 193 | 83.79 160 | 94.90 154 | 88.85 12 | 97.68 152 | 77.80 197 | 87.49 175 | 96.14 167 |
|
VDDNet | | | 86.44 170 | 84.51 179 | 92.22 117 | 91.56 228 | 81.83 120 | 97.10 113 | 94.64 206 | 69.50 311 | 87.84 124 | 95.19 143 | 48.01 306 | 97.92 146 | 89.82 99 | 86.92 176 | 96.89 145 |
|
VDD-MVS | | | 88.28 144 | 87.02 152 | 92.06 122 | 95.09 135 | 80.18 163 | 97.55 75 | 94.45 217 | 83.09 168 | 89.10 110 | 95.92 127 | 47.97 307 | 98.49 126 | 93.08 60 | 86.91 177 | 97.52 121 |
|
thres200 | | | 88.92 125 | 87.65 133 | 92.73 98 | 96.30 104 | 85.62 43 | 97.85 50 | 98.86 1 | 84.38 137 | 84.82 145 | 93.99 170 | 75.12 151 | 98.01 139 | 70.86 262 | 86.67 178 | 94.56 196 |
|
DP-MVS | | | 81.47 241 | 78.28 255 | 91.04 149 | 98.14 58 | 78.48 199 | 95.09 219 | 86.97 327 | 61.14 332 | 71.12 283 | 92.78 185 | 59.59 252 | 99.38 64 | 53.11 326 | 86.61 179 | 95.27 186 |
|
F-COLMAP | | | 84.50 197 | 83.44 198 | 87.67 222 | 95.22 130 | 72.22 283 | 95.95 183 | 93.78 246 | 75.74 271 | 76.30 238 | 95.18 144 | 59.50 254 | 98.45 128 | 72.67 248 | 86.59 180 | 92.35 215 |
|
tttt0517 | | | 88.57 137 | 88.19 124 | 89.71 187 | 93.00 187 | 75.99 255 | 95.67 196 | 96.67 63 | 80.78 203 | 81.82 185 | 94.40 162 | 88.97 11 | 97.58 157 | 76.05 221 | 86.31 181 | 95.57 179 |
|
CR-MVSNet | | | 83.53 209 | 81.36 225 | 90.06 174 | 90.16 251 | 79.75 170 | 79.02 334 | 91.12 301 | 84.24 143 | 82.27 179 | 80.35 320 | 75.45 140 | 93.67 302 | 63.37 297 | 86.25 182 | 96.75 152 |
|
RPMNet | | | 79.85 255 | 75.92 273 | 91.64 134 | 90.16 251 | 79.75 170 | 79.02 334 | 95.44 161 | 58.43 340 | 82.27 179 | 72.55 337 | 73.03 171 | 98.41 130 | 46.10 340 | 86.25 182 | 96.75 152 |
|
thres100view900 | | | 88.30 143 | 86.95 153 | 92.33 112 | 96.10 110 | 84.90 62 | 97.14 107 | 98.85 2 | 82.69 178 | 83.41 163 | 93.66 176 | 75.43 142 | 97.93 141 | 69.04 268 | 86.24 184 | 94.17 198 |
|
tfpn200view9 | | | 88.48 138 | 87.15 148 | 92.47 106 | 96.21 106 | 85.30 49 | 97.44 82 | 98.85 2 | 83.37 163 | 83.99 155 | 93.82 173 | 75.36 145 | 97.93 141 | 69.04 268 | 86.24 184 | 94.17 198 |
|
thres400 | | | 88.42 141 | 87.15 148 | 92.23 116 | 96.21 106 | 85.30 49 | 97.44 82 | 98.85 2 | 83.37 163 | 83.99 155 | 93.82 173 | 75.36 145 | 97.93 141 | 69.04 268 | 86.24 184 | 93.45 211 |
|
CostFormer | | | 89.08 121 | 88.39 123 | 91.15 147 | 93.13 184 | 79.15 185 | 88.61 304 | 96.11 126 | 83.14 167 | 89.58 103 | 86.93 261 | 83.83 39 | 96.87 196 | 88.22 117 | 85.92 187 | 97.42 125 |
|
thres600view7 | | | 88.06 146 | 86.70 156 | 92.15 119 | 96.10 110 | 85.17 55 | 97.14 107 | 98.85 2 | 82.70 177 | 83.41 163 | 93.66 176 | 75.43 142 | 97.82 148 | 67.13 277 | 85.88 188 | 93.45 211 |
|
Effi-MVS+-dtu | | | 84.61 194 | 84.90 177 | 83.72 287 | 91.96 221 | 63.14 329 | 94.95 221 | 93.34 266 | 85.57 103 | 79.79 204 | 87.12 258 | 61.99 241 | 95.61 249 | 83.55 153 | 85.83 189 | 92.41 214 |
|
JIA-IIPM | | | 79.00 264 | 77.20 262 | 84.40 279 | 89.74 258 | 64.06 326 | 75.30 340 | 95.44 161 | 62.15 326 | 81.90 183 | 59.08 342 | 78.92 82 | 95.59 250 | 66.51 282 | 85.78 190 | 93.54 208 |
|
tpm2 | | | 87.35 156 | 86.26 159 | 90.62 161 | 92.93 190 | 78.67 196 | 88.06 307 | 95.99 132 | 79.33 236 | 87.40 126 | 86.43 272 | 80.28 67 | 96.40 209 | 80.23 178 | 85.73 191 | 96.79 148 |
|
1112_ss | | | 88.60 136 | 87.47 142 | 92.00 124 | 93.21 181 | 80.97 140 | 96.47 152 | 92.46 285 | 83.64 159 | 80.86 191 | 97.30 91 | 80.24 68 | 97.62 155 | 77.60 202 | 85.49 192 | 97.40 127 |
|
Test_1112_low_res | | | 88.03 147 | 86.73 155 | 91.94 126 | 93.15 183 | 80.88 142 | 96.44 157 | 92.41 286 | 83.59 162 | 80.74 193 | 91.16 203 | 80.18 69 | 97.59 156 | 77.48 205 | 85.40 193 | 97.36 129 |
|
GA-MVS | | | 85.79 178 | 84.04 188 | 91.02 151 | 89.47 263 | 80.27 159 | 96.90 130 | 94.84 193 | 85.57 103 | 80.88 190 | 89.08 229 | 56.56 278 | 96.47 208 | 77.72 200 | 85.35 194 | 96.34 162 |
|
tpmrst | | | 88.36 142 | 87.38 144 | 91.31 141 | 94.36 159 | 79.92 166 | 87.32 311 | 95.26 174 | 85.32 109 | 88.34 119 | 86.13 277 | 80.60 63 | 96.70 203 | 83.78 146 | 85.34 195 | 97.30 133 |
|
MDTV_nov1_ep13 | | | | 83.69 190 | | 94.09 164 | 81.01 138 | 86.78 315 | 96.09 127 | 83.81 155 | 84.75 146 | 84.32 301 | 74.44 157 | 96.54 205 | 63.88 293 | 85.07 196 | |
|
Fast-Effi-MVS+-dtu | | | 83.33 212 | 82.60 208 | 85.50 262 | 89.55 261 | 69.38 311 | 96.09 179 | 91.38 296 | 82.30 183 | 75.96 245 | 91.41 198 | 56.71 275 | 95.58 251 | 75.13 230 | 84.90 197 | 91.54 216 |
|
PatchT | | | 79.75 256 | 76.85 266 | 88.42 206 | 89.55 261 | 75.49 261 | 77.37 338 | 94.61 208 | 63.07 323 | 82.46 173 | 73.32 336 | 75.52 139 | 93.41 306 | 51.36 329 | 84.43 198 | 96.36 160 |
|
XVG-OURS-SEG-HR | | | 85.74 179 | 85.16 171 | 87.49 230 | 90.22 249 | 71.45 296 | 91.29 286 | 94.09 232 | 81.37 195 | 83.90 159 | 95.22 141 | 60.30 249 | 97.53 163 | 85.58 133 | 84.42 199 | 93.50 209 |
|
tpm cat1 | | | 83.63 208 | 81.38 224 | 90.39 166 | 93.53 177 | 78.19 214 | 85.56 323 | 95.09 179 | 70.78 306 | 78.51 213 | 83.28 309 | 74.80 154 | 97.03 187 | 66.77 278 | 84.05 200 | 95.95 169 |
|
DSMNet-mixed | | | 73.13 297 | 72.45 293 | 75.19 323 | 77.51 337 | 46.82 347 | 85.09 324 | 82.01 344 | 67.61 318 | 69.27 295 | 81.33 315 | 50.89 296 | 86.28 340 | 54.54 322 | 83.80 201 | 92.46 213 |
|
ADS-MVSNet2 | | | 79.57 258 | 77.53 260 | 85.71 259 | 93.78 170 | 72.13 285 | 79.48 330 | 86.11 332 | 73.09 293 | 80.14 200 | 79.99 323 | 62.15 238 | 90.14 333 | 59.49 306 | 83.52 202 | 94.85 190 |
|
ADS-MVSNet | | | 81.26 244 | 78.36 254 | 89.96 179 | 93.78 170 | 79.78 168 | 79.48 330 | 93.60 255 | 73.09 293 | 80.14 200 | 79.99 323 | 62.15 238 | 95.24 266 | 59.49 306 | 83.52 202 | 94.85 190 |
|
XVG-OURS | | | 85.18 186 | 84.38 183 | 87.59 225 | 90.42 247 | 71.73 293 | 91.06 289 | 94.07 233 | 82.00 189 | 83.29 165 | 95.08 150 | 56.42 279 | 97.55 159 | 83.70 151 | 83.42 204 | 93.49 210 |
|
dp | | | 84.30 200 | 82.31 211 | 90.28 168 | 94.24 161 | 77.97 217 | 86.57 316 | 95.53 154 | 79.94 227 | 80.75 192 | 85.16 291 | 71.49 185 | 96.39 210 | 63.73 294 | 83.36 205 | 96.48 158 |
|
MSDG | | | 80.62 251 | 77.77 259 | 89.14 193 | 93.43 179 | 77.24 234 | 91.89 280 | 90.18 309 | 69.86 310 | 68.02 297 | 91.94 194 | 52.21 295 | 98.84 111 | 59.32 308 | 83.12 206 | 91.35 217 |
|
MIMVSNet | | | 79.18 263 | 75.99 272 | 88.72 203 | 87.37 284 | 80.66 149 | 79.96 329 | 91.82 291 | 77.38 263 | 74.33 260 | 81.87 313 | 41.78 326 | 90.74 328 | 66.36 284 | 83.10 207 | 94.76 192 |
|
HQP3-MVS | | | | | | | | | 94.80 195 | | | | | | | 83.01 208 | |
|
HQP-MVS | | | 87.91 151 | 87.55 139 | 88.98 197 | 92.08 215 | 78.48 199 | 97.63 67 | 94.80 195 | 90.52 27 | 82.30 175 | 94.56 159 | 65.40 220 | 97.32 172 | 87.67 120 | 83.01 208 | 91.13 218 |
|
plane_prior | | | | | | | 77.96 218 | 97.52 78 | | 90.36 30 | | | | | | 82.96 210 | |
|
CLD-MVS | | | 87.97 149 | 87.48 141 | 89.44 189 | 92.16 213 | 80.54 153 | 98.14 34 | 94.92 187 | 91.41 17 | 79.43 206 | 95.40 139 | 62.34 236 | 97.27 177 | 90.60 87 | 82.90 211 | 90.50 226 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HQP_MVS | | | 87.50 154 | 87.09 151 | 88.74 202 | 91.86 225 | 77.96 218 | 97.18 101 | 94.69 199 | 89.89 33 | 81.33 187 | 94.15 167 | 64.77 225 | 97.30 174 | 87.08 124 | 82.82 212 | 90.96 220 |
|
plane_prior5 | | | | | | | | | 94.69 199 | | | | | 97.30 174 | 87.08 124 | 82.82 212 | 90.96 220 |
|
OPM-MVS | | | 85.84 176 | 85.10 173 | 88.06 216 | 88.34 274 | 77.83 224 | 95.72 194 | 94.20 225 | 87.89 67 | 80.45 196 | 94.05 169 | 58.57 261 | 97.26 178 | 83.88 145 | 82.76 214 | 89.09 256 |
|
Anonymous202405211 | | | 84.41 198 | 81.93 216 | 91.85 130 | 96.78 100 | 78.41 203 | 97.44 82 | 91.34 299 | 70.29 308 | 84.06 153 | 94.26 165 | 41.09 329 | 98.96 103 | 79.46 186 | 82.65 215 | 98.17 68 |
|
ab-mvs | | | 87.08 158 | 84.94 175 | 93.48 67 | 93.34 180 | 83.67 82 | 88.82 301 | 95.70 146 | 81.18 197 | 84.55 150 | 90.14 222 | 62.72 234 | 98.94 108 | 85.49 134 | 82.54 216 | 97.85 96 |
|
ET-MVSNet_ETH3D | | | 90.01 108 | 89.03 113 | 92.95 88 | 94.38 158 | 86.77 26 | 98.14 34 | 96.31 114 | 89.30 40 | 63.33 317 | 96.72 114 | 90.09 8 | 93.63 303 | 90.70 86 | 82.29 217 | 98.46 47 |
|
tpmvs | | | 83.04 219 | 80.77 230 | 89.84 183 | 95.43 124 | 77.96 218 | 85.59 322 | 95.32 171 | 75.31 275 | 76.27 239 | 83.70 306 | 73.89 162 | 97.41 169 | 59.53 305 | 81.93 218 | 94.14 200 |
|
CMPMVS | | 54.94 21 | 75.71 287 | 74.56 282 | 79.17 314 | 79.69 331 | 55.98 341 | 89.59 295 | 93.30 268 | 60.28 334 | 53.85 338 | 89.07 230 | 47.68 310 | 96.33 212 | 76.55 213 | 81.02 219 | 85.22 317 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
LPG-MVS_test | | | 84.20 201 | 83.49 197 | 86.33 249 | 90.88 239 | 73.06 279 | 95.28 206 | 94.13 229 | 82.20 184 | 76.31 236 | 93.20 179 | 54.83 290 | 96.95 190 | 83.72 149 | 80.83 220 | 88.98 263 |
|
LGP-MVS_train | | | | | 86.33 249 | 90.88 239 | 73.06 279 | | 94.13 229 | 82.20 184 | 76.31 236 | 93.20 179 | 54.83 290 | 96.95 190 | 83.72 149 | 80.83 220 | 88.98 263 |
|
ACMM | | 80.70 13 | 83.72 207 | 82.85 204 | 86.31 252 | 91.19 234 | 72.12 286 | 95.88 188 | 94.29 221 | 80.44 212 | 77.02 226 | 91.96 192 | 55.24 286 | 97.14 185 | 79.30 188 | 80.38 222 | 89.67 242 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MVS_0304 | | | 78.43 266 | 76.70 267 | 83.60 289 | 88.22 276 | 69.81 306 | 92.91 268 | 95.10 178 | 72.32 300 | 78.71 212 | 80.29 322 | 33.78 340 | 93.37 307 | 68.77 271 | 80.23 223 | 87.63 290 |
|
jajsoiax | | | 82.12 234 | 81.15 227 | 85.03 267 | 84.19 318 | 70.70 299 | 94.22 241 | 93.95 236 | 83.07 169 | 73.48 264 | 89.75 224 | 49.66 302 | 95.37 258 | 82.24 167 | 79.76 224 | 89.02 261 |
|
test_djsdf | | | 83.00 221 | 82.45 210 | 84.64 273 | 84.07 320 | 69.78 307 | 94.80 225 | 94.48 213 | 80.74 204 | 75.41 253 | 87.70 249 | 61.32 246 | 95.10 274 | 83.77 147 | 79.76 224 | 89.04 260 |
|
ACMP | | 81.66 11 | 84.00 202 | 83.22 200 | 86.33 249 | 91.53 231 | 72.95 281 | 95.91 187 | 93.79 245 | 83.70 158 | 73.79 262 | 92.22 188 | 54.31 293 | 96.89 194 | 83.98 144 | 79.74 226 | 89.16 254 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PVSNet_BlendedMVS | | | 90.05 107 | 89.96 99 | 90.33 167 | 97.47 82 | 83.86 76 | 98.02 43 | 96.73 55 | 87.98 63 | 89.53 104 | 89.61 226 | 76.42 121 | 99.57 49 | 94.29 43 | 79.59 227 | 87.57 293 |
|
Patchmatch-test | | | 78.25 268 | 74.72 280 | 88.83 200 | 91.20 233 | 74.10 273 | 73.91 343 | 88.70 323 | 59.89 337 | 66.82 302 | 85.12 293 | 78.38 90 | 94.54 287 | 48.84 336 | 79.58 228 | 97.86 95 |
|
mvs_tets | | | 81.74 237 | 80.71 232 | 84.84 268 | 84.22 317 | 70.29 302 | 93.91 244 | 93.78 246 | 82.77 176 | 73.37 265 | 89.46 227 | 47.36 311 | 95.31 262 | 81.99 168 | 79.55 229 | 88.92 267 |
|
FIs | | | 86.73 168 | 86.10 160 | 88.61 204 | 90.05 253 | 80.21 161 | 96.14 176 | 96.95 33 | 85.56 106 | 78.37 215 | 92.30 187 | 76.73 116 | 95.28 263 | 79.51 185 | 79.27 230 | 90.35 228 |
|
D2MVS | | | 82.67 225 | 81.55 221 | 86.04 256 | 87.77 280 | 76.47 244 | 95.21 210 | 96.58 78 | 82.66 179 | 70.26 289 | 85.46 286 | 60.39 248 | 95.80 235 | 76.40 216 | 79.18 231 | 85.83 315 |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 232 | |
|
PS-MVSNAJss | | | 84.91 190 | 84.30 184 | 86.74 243 | 85.89 301 | 74.40 271 | 94.95 221 | 94.16 228 | 83.93 151 | 76.45 234 | 90.11 223 | 71.04 189 | 95.77 236 | 83.16 160 | 79.02 233 | 90.06 237 |
|
FC-MVSNet-test | | | 85.96 174 | 85.39 166 | 87.66 223 | 89.38 265 | 78.02 216 | 95.65 198 | 96.87 39 | 85.12 117 | 77.34 221 | 91.94 194 | 76.28 125 | 94.74 283 | 77.09 207 | 78.82 234 | 90.21 231 |
|
EG-PatchMatch MVS | | | 74.92 289 | 72.02 294 | 83.62 288 | 83.76 323 | 73.28 277 | 93.62 249 | 92.04 289 | 68.57 313 | 58.88 329 | 83.80 305 | 31.87 344 | 95.57 252 | 56.97 315 | 78.67 235 | 82.00 335 |
|
EI-MVSNet | | | 85.80 177 | 85.20 169 | 87.59 225 | 91.55 229 | 77.41 231 | 95.13 214 | 95.36 166 | 80.43 214 | 80.33 198 | 94.71 156 | 73.72 165 | 95.97 223 | 76.96 210 | 78.64 236 | 89.39 245 |
|
MVSTER | | | 89.25 120 | 88.92 117 | 90.24 169 | 95.98 113 | 84.66 65 | 96.79 136 | 95.36 166 | 87.19 82 | 80.33 198 | 90.61 212 | 90.02 9 | 95.97 223 | 85.38 135 | 78.64 236 | 90.09 235 |
|
anonymousdsp | | | 80.98 248 | 79.97 244 | 84.01 281 | 81.73 325 | 70.44 301 | 92.49 273 | 93.58 257 | 77.10 267 | 72.98 271 | 86.31 274 | 57.58 269 | 94.90 279 | 79.32 187 | 78.63 238 | 86.69 305 |
|
UniMVSNet_ETH3D | | | 80.86 249 | 78.75 253 | 87.22 237 | 86.31 292 | 72.02 287 | 91.95 278 | 93.76 249 | 73.51 288 | 75.06 256 | 90.16 221 | 43.04 323 | 95.66 243 | 76.37 217 | 78.55 239 | 93.98 203 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 240 | |
|
Anonymous20240529 | | | 83.15 216 | 80.60 234 | 90.80 156 | 95.74 117 | 78.27 207 | 96.81 135 | 94.92 187 | 60.10 336 | 81.89 184 | 92.54 186 | 45.82 315 | 98.82 112 | 79.25 189 | 78.32 241 | 95.31 185 |
|
XVG-ACMP-BASELINE | | | 79.38 261 | 77.90 258 | 83.81 283 | 84.98 312 | 67.14 319 | 89.03 300 | 93.18 272 | 80.26 220 | 72.87 272 | 88.15 244 | 38.55 332 | 96.26 215 | 76.05 221 | 78.05 242 | 88.02 283 |
|
tpm | | | 85.55 181 | 84.47 182 | 88.80 201 | 90.19 250 | 75.39 262 | 88.79 302 | 94.69 199 | 84.83 122 | 83.96 157 | 85.21 289 | 78.22 93 | 94.68 285 | 76.32 218 | 78.02 243 | 96.34 162 |
|
test0.0.03 1 | | | 82.79 223 | 82.48 209 | 83.74 286 | 86.81 288 | 72.22 283 | 96.52 149 | 95.03 183 | 83.76 156 | 73.00 270 | 93.20 179 | 72.30 178 | 88.88 334 | 64.15 292 | 77.52 244 | 90.12 233 |
|
RRT_MVS | | | 86.89 161 | 85.96 161 | 89.68 188 | 95.01 140 | 84.13 72 | 96.33 165 | 94.98 185 | 84.20 144 | 80.10 202 | 92.07 190 | 70.52 193 | 95.01 278 | 83.30 158 | 77.14 245 | 89.91 239 |
|
RPSCF | | | 77.73 274 | 76.63 268 | 81.06 306 | 88.66 272 | 55.76 343 | 87.77 309 | 87.88 325 | 64.82 322 | 74.14 261 | 92.79 184 | 49.22 303 | 96.81 199 | 67.47 276 | 76.88 246 | 90.62 223 |
|
LTVRE_ROB | | 73.68 18 | 77.99 270 | 75.74 274 | 84.74 269 | 90.45 246 | 72.02 287 | 86.41 318 | 91.12 301 | 72.57 298 | 66.63 303 | 87.27 254 | 54.95 289 | 96.98 189 | 56.29 317 | 75.98 247 | 85.21 318 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OpenMVS_ROB | | 68.52 20 | 73.02 298 | 69.57 303 | 83.37 292 | 80.54 329 | 71.82 291 | 93.60 250 | 88.22 324 | 62.37 325 | 61.98 321 | 83.15 310 | 35.31 338 | 95.47 254 | 45.08 341 | 75.88 248 | 82.82 327 |
|
USDC | | | 78.65 265 | 76.25 270 | 85.85 257 | 87.58 282 | 74.60 267 | 89.58 296 | 90.58 308 | 84.05 146 | 63.13 318 | 88.23 242 | 40.69 331 | 96.86 197 | 66.57 281 | 75.81 249 | 86.09 313 |
|
COLMAP_ROB | | 73.24 19 | 75.74 286 | 73.00 292 | 83.94 282 | 92.38 200 | 69.08 312 | 91.85 281 | 86.93 328 | 61.48 330 | 65.32 309 | 90.27 218 | 42.27 325 | 96.93 193 | 50.91 331 | 75.63 250 | 85.80 316 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
GBi-Net | | | 82.42 229 | 80.43 237 | 88.39 208 | 92.66 194 | 81.95 112 | 94.30 237 | 93.38 262 | 79.06 244 | 75.82 247 | 85.66 279 | 56.38 280 | 93.84 298 | 71.23 257 | 75.38 251 | 89.38 247 |
|
test1 | | | 82.42 229 | 80.43 237 | 88.39 208 | 92.66 194 | 81.95 112 | 94.30 237 | 93.38 262 | 79.06 244 | 75.82 247 | 85.66 279 | 56.38 280 | 93.84 298 | 71.23 257 | 75.38 251 | 89.38 247 |
|
FMVSNet3 | | | 84.71 192 | 82.71 206 | 90.70 160 | 94.55 150 | 87.71 18 | 95.92 185 | 94.67 202 | 81.73 192 | 75.82 247 | 88.08 245 | 66.99 211 | 94.47 288 | 71.23 257 | 75.38 251 | 89.91 239 |
|
testing_2 | | | 76.96 279 | 73.18 290 | 88.30 211 | 75.87 342 | 79.64 175 | 89.92 294 | 94.21 224 | 80.16 221 | 51.23 340 | 75.94 331 | 33.94 339 | 95.81 233 | 82.28 165 | 75.12 254 | 89.46 244 |
|
FMVSNet2 | | | 82.79 223 | 80.44 236 | 89.83 184 | 92.66 194 | 85.43 46 | 95.42 204 | 94.35 219 | 79.06 244 | 74.46 259 | 87.28 253 | 56.38 280 | 94.31 291 | 69.72 267 | 74.68 255 | 89.76 241 |
|
ITE_SJBPF | | | | | 82.38 299 | 87.00 286 | 65.59 321 | | 89.55 313 | 79.99 226 | 69.37 294 | 91.30 201 | 41.60 328 | 95.33 260 | 62.86 299 | 74.63 256 | 86.24 310 |
|
ACMH | | 75.40 17 | 77.99 270 | 74.96 278 | 87.10 239 | 90.67 243 | 76.41 246 | 93.19 264 | 91.64 295 | 72.47 299 | 63.44 316 | 87.61 251 | 43.34 320 | 97.16 182 | 58.34 310 | 73.94 257 | 87.72 287 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
baseline1 | | | 88.85 128 | 87.49 140 | 92.93 90 | 95.21 131 | 86.85 25 | 95.47 203 | 94.61 208 | 87.29 76 | 83.11 168 | 94.99 153 | 80.70 62 | 96.89 194 | 82.28 165 | 73.72 258 | 95.05 187 |
|
pmmvs4 | | | 82.54 227 | 80.79 229 | 87.79 220 | 86.11 297 | 80.49 155 | 93.55 251 | 93.18 272 | 77.29 264 | 73.35 266 | 89.40 228 | 65.26 223 | 95.05 277 | 75.32 227 | 73.61 259 | 87.83 286 |
|
AllTest | | | 75.92 285 | 73.06 291 | 84.47 276 | 92.18 211 | 67.29 316 | 91.07 288 | 84.43 337 | 67.63 314 | 63.48 314 | 90.18 219 | 38.20 333 | 97.16 182 | 57.04 313 | 73.37 260 | 88.97 265 |
|
TestCases | | | | | 84.47 276 | 92.18 211 | 67.29 316 | | 84.43 337 | 67.63 314 | 63.48 314 | 90.18 219 | 38.20 333 | 97.16 182 | 57.04 313 | 73.37 260 | 88.97 265 |
|
pmmvs5 | | | 81.34 243 | 79.54 247 | 86.73 246 | 85.02 311 | 76.91 239 | 96.22 171 | 91.65 294 | 77.65 259 | 73.55 263 | 88.61 236 | 55.70 283 | 94.43 289 | 74.12 240 | 73.35 262 | 88.86 269 |
|
XXY-MVS | | | 83.84 204 | 82.00 215 | 89.35 190 | 87.13 285 | 81.38 131 | 95.72 194 | 94.26 222 | 80.15 222 | 75.92 246 | 90.63 211 | 61.96 243 | 96.52 206 | 78.98 192 | 73.28 263 | 90.14 232 |
|
FMVSNet1 | | | 79.50 259 | 76.54 269 | 88.39 208 | 88.47 273 | 81.95 112 | 94.30 237 | 93.38 262 | 73.14 292 | 72.04 279 | 85.66 279 | 43.86 317 | 93.84 298 | 65.48 286 | 72.53 264 | 89.38 247 |
|
cl-mvsnet2 | | | 85.11 187 | 84.17 186 | 87.92 218 | 95.06 138 | 78.82 192 | 95.51 201 | 94.22 223 | 79.74 230 | 76.77 229 | 87.92 247 | 75.96 129 | 95.68 242 | 79.93 183 | 72.42 265 | 89.27 251 |
|
miper_ehance_all_eth | | | 84.57 195 | 83.60 195 | 87.50 229 | 92.64 197 | 78.25 208 | 95.40 205 | 93.47 258 | 79.28 239 | 76.41 235 | 87.64 250 | 76.53 119 | 95.24 266 | 78.58 194 | 72.42 265 | 89.01 262 |
|
miper_enhance_ethall | | | 85.95 175 | 85.20 169 | 88.19 215 | 94.85 144 | 79.76 169 | 96.00 180 | 94.06 234 | 82.98 172 | 77.74 219 | 88.76 234 | 79.42 74 | 95.46 255 | 80.58 174 | 72.42 265 | 89.36 250 |
|
test_0402 | | | 72.68 299 | 69.54 304 | 82.09 302 | 88.67 271 | 71.81 292 | 92.72 271 | 86.77 329 | 61.52 329 | 62.21 320 | 83.91 304 | 43.22 321 | 93.76 301 | 34.60 345 | 72.23 268 | 80.72 337 |
|
testgi | | | 74.88 290 | 73.40 289 | 79.32 313 | 80.13 330 | 61.75 332 | 93.21 262 | 86.64 330 | 79.49 234 | 66.56 305 | 91.06 204 | 35.51 337 | 88.67 335 | 56.79 316 | 71.25 269 | 87.56 294 |
|
nrg030 | | | 86.79 166 | 85.43 165 | 90.87 155 | 88.76 268 | 85.34 47 | 97.06 118 | 94.33 220 | 84.31 139 | 80.45 196 | 91.98 191 | 72.36 176 | 96.36 211 | 88.48 114 | 71.13 270 | 90.93 222 |
|
ACMH+ | | 76.62 16 | 77.47 275 | 74.94 279 | 85.05 266 | 91.07 237 | 71.58 295 | 93.26 261 | 90.01 310 | 71.80 302 | 64.76 311 | 88.55 237 | 41.62 327 | 96.48 207 | 62.35 300 | 71.00 271 | 87.09 301 |
|
VPA-MVSNet | | | 85.32 184 | 83.83 189 | 89.77 186 | 90.25 248 | 82.63 101 | 96.36 162 | 97.07 24 | 83.03 170 | 81.21 189 | 89.02 231 | 61.58 245 | 96.31 214 | 85.02 139 | 70.95 272 | 90.36 227 |
|
RRT_test8_iter05 | | | 87.14 157 | 86.41 158 | 89.32 191 | 94.41 157 | 81.10 137 | 97.06 118 | 95.33 170 | 84.67 128 | 76.27 239 | 90.48 213 | 83.60 41 | 96.33 212 | 85.10 136 | 70.78 273 | 90.53 225 |
|
IterMVS | | | 80.67 250 | 79.16 250 | 85.20 265 | 89.79 255 | 76.08 251 | 92.97 267 | 91.86 290 | 80.28 218 | 71.20 282 | 85.14 292 | 57.93 268 | 91.34 323 | 72.52 249 | 70.74 274 | 88.18 281 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-LS | | | 83.93 203 | 82.80 205 | 87.31 234 | 91.46 232 | 77.39 232 | 95.66 197 | 93.43 260 | 80.44 212 | 75.51 251 | 87.26 255 | 73.72 165 | 95.16 270 | 76.99 208 | 70.72 275 | 89.39 245 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 80.51 252 | 79.10 251 | 84.73 270 | 89.63 260 | 74.66 266 | 92.98 266 | 91.81 292 | 80.05 224 | 71.06 284 | 85.18 290 | 58.04 265 | 91.40 322 | 72.48 250 | 70.70 276 | 88.12 282 |
|
v1240 | | | 81.70 238 | 79.83 246 | 87.30 235 | 85.50 304 | 77.70 227 | 95.48 202 | 93.44 259 | 78.46 252 | 76.53 233 | 86.44 270 | 60.85 247 | 95.84 231 | 71.59 254 | 70.17 277 | 88.35 277 |
|
V42 | | | 83.04 219 | 81.53 222 | 87.57 227 | 86.27 294 | 79.09 188 | 95.87 189 | 94.11 231 | 80.35 216 | 77.22 224 | 86.79 264 | 65.32 222 | 96.02 221 | 77.74 199 | 70.14 278 | 87.61 292 |
|
v1192 | | | 82.31 232 | 80.55 235 | 87.60 224 | 85.94 299 | 78.47 202 | 95.85 191 | 93.80 244 | 79.33 236 | 76.97 227 | 86.51 267 | 63.33 232 | 95.87 230 | 73.11 245 | 70.13 279 | 88.46 274 |
|
v1144 | | | 82.90 222 | 81.27 226 | 87.78 221 | 86.29 293 | 79.07 189 | 96.14 176 | 93.93 237 | 80.05 224 | 77.38 220 | 86.80 263 | 65.50 218 | 95.93 228 | 75.21 229 | 70.13 279 | 88.33 278 |
|
Anonymous20231206 | | | 75.29 288 | 73.64 288 | 80.22 309 | 80.75 326 | 63.38 328 | 93.36 255 | 90.71 307 | 73.09 293 | 67.12 300 | 83.70 306 | 50.33 300 | 90.85 327 | 53.63 325 | 70.10 281 | 86.44 307 |
|
WR-MVS | | | 84.32 199 | 82.96 201 | 88.41 207 | 89.38 265 | 80.32 156 | 96.59 147 | 96.25 117 | 83.97 149 | 76.63 231 | 90.36 217 | 67.53 206 | 94.86 281 | 75.82 224 | 70.09 282 | 90.06 237 |
|
EU-MVSNet | | | 76.92 281 | 76.95 265 | 76.83 318 | 84.10 319 | 54.73 344 | 91.77 282 | 92.71 282 | 72.74 296 | 69.57 293 | 88.69 235 | 58.03 267 | 87.43 338 | 64.91 289 | 70.00 283 | 88.33 278 |
|
IB-MVS | | 85.34 4 | 88.67 133 | 87.14 150 | 93.26 73 | 93.12 185 | 84.32 68 | 98.76 17 | 97.27 17 | 87.19 82 | 79.36 207 | 90.45 215 | 83.92 38 | 98.53 124 | 84.41 141 | 69.79 284 | 96.93 142 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
v1921920 | | | 82.02 235 | 80.23 239 | 87.41 231 | 85.62 303 | 77.92 221 | 95.79 193 | 93.69 251 | 78.86 247 | 76.67 230 | 86.44 270 | 62.50 235 | 95.83 232 | 72.69 247 | 69.77 285 | 88.47 273 |
|
v2v482 | | | 83.46 210 | 81.86 217 | 88.25 213 | 86.19 295 | 79.65 174 | 96.34 164 | 94.02 235 | 81.56 194 | 77.32 222 | 88.23 242 | 65.62 217 | 96.03 220 | 77.77 198 | 69.72 286 | 89.09 256 |
|
v144192 | | | 82.43 228 | 80.73 231 | 87.54 228 | 85.81 302 | 78.22 209 | 95.98 181 | 93.78 246 | 79.09 243 | 77.11 225 | 86.49 268 | 64.66 227 | 95.91 229 | 74.20 239 | 69.42 287 | 88.49 272 |
|
cl-mvsnet_ | | | 83.27 213 | 82.12 212 | 86.74 243 | 92.20 209 | 75.95 256 | 95.11 216 | 93.27 269 | 78.44 253 | 74.82 257 | 87.02 260 | 74.19 159 | 95.19 268 | 74.67 234 | 69.32 288 | 89.09 256 |
|
cl-mvsnet1 | | | 83.27 213 | 82.12 212 | 86.74 243 | 92.19 210 | 75.92 257 | 95.11 216 | 93.26 270 | 78.44 253 | 74.81 258 | 87.08 259 | 74.19 159 | 95.19 268 | 74.66 235 | 69.30 289 | 89.11 255 |
|
Anonymous20231211 | | | 79.72 257 | 77.19 263 | 87.33 232 | 95.59 121 | 77.16 238 | 95.18 213 | 94.18 227 | 59.31 338 | 72.57 275 | 86.20 276 | 47.89 308 | 95.66 243 | 74.53 237 | 69.24 290 | 89.18 253 |
|
FMVSNet5 | | | 76.46 283 | 74.16 286 | 83.35 293 | 90.05 253 | 76.17 249 | 89.58 296 | 89.85 311 | 71.39 305 | 65.29 310 | 80.42 319 | 50.61 298 | 87.70 337 | 61.05 303 | 69.24 290 | 86.18 311 |
|
cl_fuxian | | | 83.80 205 | 82.65 207 | 87.25 236 | 92.10 214 | 77.74 226 | 95.25 209 | 93.04 277 | 78.58 250 | 76.01 243 | 87.21 257 | 75.25 149 | 95.11 273 | 77.54 204 | 68.89 292 | 88.91 268 |
|
TinyColmap | | | 72.41 300 | 68.99 305 | 82.68 297 | 88.11 277 | 69.59 309 | 88.41 305 | 85.20 334 | 65.55 320 | 57.91 332 | 84.82 297 | 30.80 346 | 95.94 227 | 51.38 328 | 68.70 293 | 82.49 332 |
|
LF4IMVS | | | 72.36 301 | 70.82 298 | 76.95 317 | 79.18 332 | 56.33 340 | 86.12 319 | 86.11 332 | 69.30 312 | 63.06 319 | 86.66 265 | 33.03 342 | 92.25 315 | 65.33 287 | 68.64 294 | 82.28 333 |
|
OurMVSNet-221017-0 | | | 77.18 278 | 76.06 271 | 80.55 308 | 83.78 322 | 60.00 336 | 90.35 291 | 91.05 304 | 77.01 269 | 66.62 304 | 87.92 247 | 47.73 309 | 94.03 295 | 71.63 253 | 68.44 295 | 87.62 291 |
|
CP-MVSNet | | | 81.01 247 | 80.08 241 | 83.79 284 | 87.91 279 | 70.51 300 | 94.29 240 | 95.65 148 | 80.83 202 | 72.54 276 | 88.84 233 | 63.71 229 | 92.32 314 | 68.58 273 | 68.36 296 | 88.55 271 |
|
UniMVSNet_NR-MVSNet | | | 85.49 182 | 84.59 178 | 88.21 214 | 89.44 264 | 79.36 178 | 96.71 142 | 96.41 100 | 85.22 113 | 78.11 217 | 90.98 207 | 76.97 112 | 95.14 271 | 79.14 190 | 68.30 297 | 90.12 233 |
|
DU-MVS | | | 84.57 195 | 83.33 199 | 88.28 212 | 88.76 268 | 79.36 178 | 96.43 159 | 95.41 165 | 85.42 107 | 78.11 217 | 90.82 208 | 67.61 204 | 95.14 271 | 79.14 190 | 68.30 297 | 90.33 229 |
|
PS-CasMVS | | | 80.27 253 | 79.18 249 | 83.52 291 | 87.56 283 | 69.88 305 | 94.08 242 | 95.29 172 | 80.27 219 | 72.08 278 | 88.51 240 | 59.22 258 | 92.23 316 | 67.49 275 | 68.15 299 | 88.45 275 |
|
UniMVSNet (Re) | | | 85.31 185 | 84.23 185 | 88.55 205 | 89.75 256 | 80.55 152 | 96.72 140 | 96.89 38 | 85.42 107 | 78.40 214 | 88.93 232 | 75.38 144 | 95.52 253 | 78.58 194 | 68.02 300 | 89.57 243 |
|
our_test_3 | | | 77.90 273 | 75.37 276 | 85.48 263 | 85.39 306 | 76.74 242 | 93.63 248 | 91.67 293 | 73.39 291 | 65.72 308 | 84.65 298 | 58.20 264 | 93.13 309 | 57.82 312 | 67.87 301 | 86.57 306 |
|
tfpnnormal | | | 78.14 269 | 75.42 275 | 86.31 252 | 88.33 275 | 79.24 181 | 94.41 231 | 96.22 119 | 73.51 288 | 69.81 291 | 85.52 285 | 55.43 284 | 95.75 238 | 47.65 338 | 67.86 302 | 83.95 325 |
|
VPNet | | | 84.69 193 | 82.92 202 | 90.01 175 | 89.01 267 | 83.45 86 | 96.71 142 | 95.46 159 | 85.71 101 | 79.65 205 | 92.18 189 | 56.66 277 | 96.01 222 | 83.05 162 | 67.84 303 | 90.56 224 |
|
v10 | | | 81.43 242 | 79.53 248 | 87.11 238 | 86.38 290 | 78.87 191 | 94.31 235 | 93.43 260 | 77.88 256 | 73.24 268 | 85.26 287 | 65.44 219 | 95.75 238 | 72.14 251 | 67.71 304 | 86.72 304 |
|
v8 | | | 81.88 236 | 80.06 243 | 87.32 233 | 86.63 289 | 79.04 190 | 94.41 231 | 93.65 253 | 78.77 248 | 73.19 269 | 85.57 283 | 66.87 212 | 95.81 233 | 73.84 243 | 67.61 305 | 87.11 300 |
|
v7n | | | 79.32 262 | 77.34 261 | 85.28 264 | 84.05 321 | 72.89 282 | 93.38 254 | 93.87 239 | 75.02 278 | 70.68 285 | 84.37 300 | 59.58 253 | 95.62 248 | 67.60 274 | 67.50 306 | 87.32 299 |
|
WR-MVS_H | | | 81.02 246 | 80.09 240 | 83.79 284 | 88.08 278 | 71.26 298 | 94.46 229 | 96.54 84 | 80.08 223 | 72.81 273 | 86.82 262 | 70.36 195 | 92.65 311 | 64.18 291 | 67.50 306 | 87.46 297 |
|
Patchmtry | | | 77.36 276 | 74.59 281 | 85.67 260 | 89.75 256 | 75.75 259 | 77.85 337 | 91.12 301 | 60.28 334 | 71.23 281 | 80.35 320 | 75.45 140 | 93.56 304 | 57.94 311 | 67.34 308 | 87.68 289 |
|
eth_miper_zixun_eth | | | 83.12 217 | 82.01 214 | 86.47 248 | 91.85 227 | 74.80 265 | 94.33 234 | 93.18 272 | 79.11 242 | 75.74 250 | 87.25 256 | 72.71 173 | 95.32 261 | 76.78 211 | 67.13 309 | 89.27 251 |
|
miper_lstm_enhance | | | 81.66 240 | 80.66 233 | 84.67 272 | 91.19 234 | 71.97 289 | 91.94 279 | 93.19 271 | 77.86 257 | 72.27 277 | 85.26 287 | 73.46 167 | 93.42 305 | 73.71 244 | 67.05 310 | 88.61 270 |
|
v148 | | | 82.41 231 | 80.89 228 | 86.99 240 | 86.18 296 | 76.81 241 | 96.27 168 | 93.82 241 | 80.49 211 | 75.28 254 | 86.11 278 | 67.32 209 | 95.75 238 | 75.48 226 | 67.03 311 | 88.42 276 |
|
NR-MVSNet | | | 83.35 211 | 81.52 223 | 88.84 199 | 88.76 268 | 81.31 133 | 94.45 230 | 95.16 177 | 84.65 129 | 67.81 298 | 90.82 208 | 70.36 195 | 94.87 280 | 74.75 232 | 66.89 312 | 90.33 229 |
|
Baseline_NR-MVSNet | | | 81.22 245 | 80.07 242 | 84.68 271 | 85.32 309 | 75.12 264 | 96.48 151 | 88.80 320 | 76.24 270 | 77.28 223 | 86.40 273 | 67.61 204 | 94.39 290 | 75.73 225 | 66.73 313 | 84.54 321 |
|
TranMVSNet+NR-MVSNet | | | 83.24 215 | 81.71 219 | 87.83 219 | 87.71 281 | 78.81 194 | 96.13 178 | 94.82 194 | 84.52 132 | 76.18 242 | 90.78 210 | 64.07 228 | 94.60 286 | 74.60 236 | 66.59 314 | 90.09 235 |
|
test_part1 | | | 77.94 272 | 74.98 277 | 86.83 242 | 86.85 287 | 76.14 250 | 94.31 235 | 93.03 278 | 58.41 341 | 69.77 292 | 84.53 299 | 47.22 312 | 95.27 264 | 75.23 228 | 65.46 315 | 89.06 259 |
|
PEN-MVS | | | 79.47 260 | 78.26 256 | 83.08 294 | 86.36 291 | 68.58 313 | 93.85 245 | 94.77 198 | 79.76 229 | 71.37 280 | 88.55 237 | 59.79 250 | 92.46 312 | 64.50 290 | 65.40 316 | 88.19 280 |
|
FPMVS | | | 55.09 313 | 52.93 316 | 61.57 329 | 55.98 349 | 40.51 352 | 83.11 327 | 83.41 342 | 37.61 346 | 34.95 346 | 71.95 338 | 14.40 351 | 76.95 345 | 29.81 346 | 65.16 317 | 67.25 344 |
|
ppachtmachnet_test | | | 77.19 277 | 74.22 285 | 86.13 255 | 85.39 306 | 78.22 209 | 93.98 243 | 91.36 298 | 71.74 303 | 67.11 301 | 84.87 296 | 56.67 276 | 93.37 307 | 52.21 327 | 64.59 318 | 86.80 303 |
|
pm-mvs1 | | | 80.05 254 | 78.02 257 | 86.15 254 | 85.42 305 | 75.81 258 | 95.11 216 | 92.69 283 | 77.13 265 | 70.36 288 | 87.43 252 | 58.44 263 | 95.27 264 | 71.36 256 | 64.25 319 | 87.36 298 |
|
N_pmnet | | | 61.30 312 | 60.20 315 | 64.60 327 | 84.32 316 | 17.00 359 | 91.67 285 | 10.98 358 | 61.77 328 | 58.45 331 | 78.55 326 | 49.89 301 | 91.83 319 | 42.27 343 | 63.94 320 | 84.97 319 |
|
SixPastTwentyTwo | | | 76.04 284 | 74.32 284 | 81.22 305 | 84.54 314 | 61.43 334 | 91.16 287 | 89.30 316 | 77.89 255 | 64.04 313 | 86.31 274 | 48.23 304 | 94.29 292 | 63.54 296 | 63.84 321 | 87.93 285 |
|
MIMVSNet1 | | | 69.44 305 | 66.65 309 | 77.84 315 | 76.48 339 | 62.84 330 | 87.42 310 | 88.97 318 | 66.96 319 | 57.75 334 | 79.72 325 | 32.77 343 | 85.83 342 | 46.32 339 | 63.42 322 | 84.85 320 |
|
DTE-MVSNet | | | 78.37 267 | 77.06 264 | 82.32 301 | 85.22 310 | 67.17 318 | 93.40 253 | 93.66 252 | 78.71 249 | 70.53 287 | 88.29 241 | 59.06 259 | 92.23 316 | 61.38 302 | 63.28 323 | 87.56 294 |
|
new_pmnet | | | 66.18 310 | 63.18 313 | 75.18 324 | 76.27 341 | 61.74 333 | 83.79 326 | 84.66 336 | 56.64 342 | 51.57 339 | 71.85 339 | 31.29 345 | 87.93 336 | 49.98 333 | 62.55 324 | 75.86 340 |
|
test20.03 | | | 72.36 301 | 71.15 297 | 75.98 322 | 77.79 335 | 59.16 338 | 92.40 275 | 89.35 315 | 74.09 284 | 61.50 323 | 84.32 301 | 48.09 305 | 85.54 343 | 50.63 332 | 62.15 325 | 83.24 326 |
|
pmmvs6 | | | 74.65 291 | 71.67 295 | 83.60 289 | 79.13 333 | 69.94 304 | 93.31 260 | 90.88 306 | 61.05 333 | 65.83 307 | 84.15 303 | 43.43 319 | 94.83 282 | 66.62 279 | 60.63 326 | 86.02 314 |
|
MDA-MVSNet_test_wron | | | 73.54 294 | 70.43 301 | 82.86 295 | 84.55 313 | 71.85 290 | 91.74 283 | 91.32 300 | 67.63 314 | 46.73 342 | 81.09 317 | 55.11 287 | 90.42 331 | 55.91 319 | 59.76 327 | 86.31 309 |
|
YYNet1 | | | 73.53 295 | 70.43 301 | 82.85 296 | 84.52 315 | 71.73 293 | 91.69 284 | 91.37 297 | 67.63 314 | 46.79 341 | 81.21 316 | 55.04 288 | 90.43 330 | 55.93 318 | 59.70 328 | 86.38 308 |
|
Patchmatch-RL test | | | 76.65 282 | 74.01 287 | 84.55 275 | 77.37 338 | 64.23 324 | 78.49 336 | 82.84 343 | 78.48 251 | 64.63 312 | 73.40 335 | 76.05 128 | 91.70 321 | 76.99 208 | 57.84 329 | 97.72 105 |
|
pmmvs-eth3d | | | 73.59 293 | 70.66 299 | 82.38 299 | 76.40 340 | 73.38 275 | 89.39 299 | 89.43 314 | 72.69 297 | 60.34 327 | 77.79 328 | 46.43 314 | 91.26 325 | 66.42 283 | 57.06 330 | 82.51 330 |
|
PM-MVS | | | 69.32 306 | 66.93 308 | 76.49 319 | 73.60 344 | 55.84 342 | 85.91 320 | 79.32 348 | 74.72 280 | 61.09 324 | 78.18 327 | 21.76 348 | 91.10 326 | 70.86 262 | 56.90 331 | 82.51 330 |
|
Gipuma | | | 45.11 317 | 42.05 319 | 54.30 331 | 80.69 327 | 51.30 346 | 35.80 350 | 83.81 340 | 28.13 348 | 27.94 349 | 34.53 349 | 11.41 355 | 76.70 347 | 21.45 348 | 54.65 332 | 34.90 348 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet-bldmvs | | | 71.45 303 | 67.94 306 | 81.98 303 | 85.33 308 | 68.50 314 | 92.35 276 | 88.76 321 | 70.40 307 | 42.99 343 | 81.96 312 | 46.57 313 | 91.31 324 | 48.75 337 | 54.39 333 | 86.11 312 |
|
K. test v3 | | | 73.62 292 | 71.59 296 | 79.69 311 | 82.98 324 | 59.85 337 | 90.85 290 | 88.83 319 | 77.13 265 | 58.90 328 | 82.11 311 | 43.62 318 | 91.72 320 | 65.83 285 | 54.10 334 | 87.50 296 |
|
TDRefinement | | | 69.20 307 | 65.78 311 | 79.48 312 | 66.04 348 | 62.21 331 | 88.21 306 | 86.12 331 | 62.92 324 | 61.03 325 | 85.61 282 | 33.23 341 | 94.16 293 | 55.82 320 | 53.02 335 | 82.08 334 |
|
ambc | | | | | 76.02 321 | 68.11 346 | 51.43 345 | 64.97 346 | 89.59 312 | | 60.49 326 | 74.49 332 | 17.17 350 | 92.46 312 | 61.50 301 | 52.85 336 | 84.17 324 |
|
TransMVSNet (Re) | | | 76.94 280 | 74.38 283 | 84.62 274 | 85.92 300 | 75.25 263 | 95.28 206 | 89.18 317 | 73.88 286 | 67.22 299 | 86.46 269 | 59.64 251 | 94.10 294 | 59.24 309 | 52.57 337 | 84.50 322 |
|
PMVS | | 34.80 23 | 39.19 319 | 35.53 322 | 50.18 332 | 29.72 357 | 30.30 354 | 59.60 348 | 66.20 353 | 26.06 349 | 17.91 352 | 49.53 346 | 3.12 358 | 74.09 349 | 18.19 350 | 49.40 338 | 46.14 345 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
lessismore_v0 | | | | | 79.98 310 | 80.59 328 | 58.34 339 | | 80.87 345 | | 58.49 330 | 83.46 308 | 43.10 322 | 93.89 297 | 63.11 298 | 48.68 339 | 87.72 287 |
|
UnsupCasMVSNet_eth | | | 73.25 296 | 70.57 300 | 81.30 304 | 77.53 336 | 66.33 320 | 87.24 312 | 93.89 238 | 80.38 215 | 57.90 333 | 81.59 314 | 42.91 324 | 90.56 329 | 65.18 288 | 48.51 340 | 87.01 302 |
|
new-patchmatchnet | | | 68.85 308 | 65.93 310 | 77.61 316 | 73.57 345 | 63.94 327 | 90.11 293 | 88.73 322 | 71.62 304 | 55.08 336 | 73.60 334 | 40.84 330 | 87.22 339 | 51.35 330 | 48.49 341 | 81.67 336 |
|
pmmvs3 | | | 65.75 311 | 62.18 314 | 76.45 320 | 67.12 347 | 64.54 323 | 88.68 303 | 85.05 335 | 54.77 343 | 57.54 335 | 73.79 333 | 29.40 347 | 86.21 341 | 55.49 321 | 47.77 342 | 78.62 338 |
|
UnsupCasMVSNet_bld | | | 68.60 309 | 64.50 312 | 80.92 307 | 74.63 343 | 67.80 315 | 83.97 325 | 92.94 279 | 65.12 321 | 54.63 337 | 68.23 340 | 35.97 335 | 92.17 318 | 60.13 304 | 44.83 343 | 82.78 328 |
|
LCM-MVSNet | | | 52.52 314 | 48.24 317 | 65.35 325 | 47.63 354 | 41.45 351 | 72.55 344 | 83.62 341 | 31.75 347 | 37.66 345 | 57.92 343 | 9.19 357 | 76.76 346 | 49.26 335 | 44.60 344 | 77.84 339 |
|
PVSNet_0 | | 77.72 15 | 81.70 238 | 78.95 252 | 89.94 180 | 90.77 242 | 76.72 243 | 95.96 182 | 96.95 33 | 85.01 119 | 70.24 290 | 88.53 239 | 52.32 294 | 98.20 136 | 86.68 129 | 44.08 345 | 94.89 189 |
|
DeepMVS_CX | | | | | 64.06 328 | 78.53 334 | 43.26 350 | | 68.11 352 | 69.94 309 | 38.55 344 | 76.14 330 | 18.53 349 | 79.34 344 | 43.72 342 | 41.62 346 | 69.57 343 |
|
PMMVS2 | | | 50.90 315 | 46.31 318 | 64.67 326 | 55.53 350 | 46.67 348 | 77.30 339 | 71.02 350 | 40.89 345 | 34.16 347 | 59.32 341 | 9.83 356 | 76.14 348 | 40.09 344 | 28.63 347 | 71.21 341 |
|
MVE | | 35.65 22 | 33.85 320 | 29.49 325 | 46.92 333 | 41.86 355 | 36.28 353 | 50.45 349 | 56.52 355 | 18.75 352 | 18.28 351 | 37.84 348 | 2.41 359 | 58.41 351 | 18.71 349 | 20.62 348 | 46.06 346 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 32.70 321 | 32.39 323 | 33.65 335 | 53.35 352 | 25.70 356 | 74.07 342 | 53.33 356 | 21.08 350 | 17.17 353 | 33.63 351 | 11.85 354 | 54.84 352 | 12.98 351 | 14.04 349 | 20.42 349 |
|
ANet_high | | | 46.22 316 | 41.28 321 | 61.04 330 | 39.91 356 | 46.25 349 | 70.59 345 | 76.18 349 | 58.87 339 | 23.09 350 | 48.00 347 | 12.58 353 | 66.54 350 | 28.65 347 | 13.62 350 | 70.35 342 |
|
tmp_tt | | | 41.54 318 | 41.93 320 | 40.38 334 | 20.10 358 | 26.84 355 | 61.93 347 | 59.09 354 | 14.81 353 | 28.51 348 | 80.58 318 | 35.53 336 | 48.33 354 | 63.70 295 | 13.11 351 | 45.96 347 |
|
EMVS | | | 31.70 322 | 31.45 324 | 32.48 336 | 50.72 353 | 23.95 357 | 74.78 341 | 52.30 357 | 20.36 351 | 16.08 354 | 31.48 352 | 12.80 352 | 53.60 353 | 11.39 352 | 13.10 352 | 19.88 350 |
|
wuyk23d | | | 14.10 324 | 13.89 327 | 14.72 337 | 55.23 351 | 22.91 358 | 33.83 351 | 3.56 359 | 4.94 354 | 4.11 355 | 2.28 357 | 2.06 360 | 19.66 355 | 10.23 353 | 8.74 353 | 1.59 353 |
|
testmvs | | | 9.92 325 | 12.94 328 | 0.84 339 | 0.65 359 | 0.29 361 | 93.78 246 | 0.39 360 | 0.42 355 | 2.85 356 | 15.84 355 | 0.17 362 | 0.30 357 | 2.18 354 | 0.21 354 | 1.91 352 |
|
test123 | | | 9.07 326 | 11.73 329 | 1.11 338 | 0.50 360 | 0.77 360 | 89.44 298 | 0.20 361 | 0.34 356 | 2.15 357 | 10.72 356 | 0.34 361 | 0.32 356 | 1.79 355 | 0.08 355 | 2.23 351 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
cdsmvs_eth3d_5k | | | 21.43 323 | 28.57 326 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 95.93 137 | 0.00 357 | 0.00 358 | 97.66 69 | 63.57 230 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
pcd_1.5k_mvsjas | | | 5.92 328 | 7.89 331 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 71.04 189 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
ab-mvs-re | | | 8.11 327 | 10.81 330 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 97.30 91 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
test_241102_ONE | | | | | | 99.03 13 | 85.03 58 | | 96.78 44 | 88.72 49 | 97.79 3 | 98.90 6 | 88.48 14 | 99.82 16 | | | |
|
save fliter | | | | | | 98.24 52 | 83.34 88 | 98.61 23 | 96.57 79 | 91.32 18 | | | | | | | |
|
test0726 | | | | | | 99.05 10 | 85.18 51 | 99.11 8 | 96.78 44 | 88.75 47 | 97.65 6 | 98.91 3 | 87.69 18 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 117 |
|
test_part2 | | | | | | 98.90 17 | 85.14 57 | | | | 96.07 17 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 100 | | | | 97.54 117 |
|
sam_mvs | | | | | | | | | | | | | 75.35 147 | | | | |
|
MTGPA | | | | | | | | | 96.33 111 | | | | | | | | |
|
test_post1 | | | | | | | | 85.88 321 | | | | 30.24 353 | 73.77 163 | 95.07 276 | 73.89 241 | | |
|
test_post | | | | | | | | | | | | 33.80 350 | 76.17 126 | 95.97 223 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 329 | 77.78 99 | 95.39 256 | | | |
|
MTMP | | | | | | | | 97.53 76 | 68.16 351 | | | | | | | | |
|
gm-plane-assit | | | | | | 92.27 205 | 79.64 175 | | | 84.47 135 | | 95.15 146 | | 97.93 141 | 85.81 131 | | |
|
TEST9 | | | | | | 98.64 31 | 83.71 80 | 97.82 52 | 96.65 67 | 84.29 141 | 95.16 25 | 98.09 43 | 84.39 31 | 99.36 70 | | | |
|
test_8 | | | | | | 98.63 33 | 83.64 83 | 97.81 54 | 96.63 72 | 84.50 133 | 95.10 27 | 98.11 42 | 84.33 32 | 99.23 76 | | | |
|
agg_prior | | | | | | 98.59 35 | 83.13 93 | | 96.56 81 | | 94.19 41 | | | 99.16 89 | | | |
|
test_prior4 | | | | | | | 82.34 107 | 97.75 61 | | | | | | | | | |
|
test_prior | | | | | 93.09 81 | 98.68 25 | 81.91 115 | | 96.40 103 | | | | | 99.06 97 | | | 98.29 60 |
|
旧先验2 | | | | | | | | 96.97 126 | | 74.06 285 | 96.10 16 | | | 97.76 150 | 88.38 115 | | |
|
新几何2 | | | | | | | | 96.42 160 | | | | | | | | | |
|
无先验 | | | | | | | | 96.87 131 | 96.78 44 | 77.39 262 | | | | 99.52 53 | 79.95 181 | | 98.43 50 |
|
原ACMM2 | | | | | | | | 96.84 132 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.48 58 | 76.45 215 | | |
|
segment_acmp | | | | | | | | | | | | | 82.69 53 | | | | |
|
testdata1 | | | | | | | | 95.57 200 | | 87.44 74 | | | | | | | |
|
plane_prior7 | | | | | | 91.86 225 | 77.55 229 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 220 | 77.92 221 | | | | | | 64.77 225 | | | | |
|
plane_prior4 | | | | | | | | | | | | 94.15 167 | | | | | |
|
plane_prior3 | | | | | | | 77.75 225 | | | 90.17 31 | 81.33 187 | | | | | | |
|
plane_prior2 | | | | | | | | 97.18 101 | | 89.89 33 | | | | | | | |
|
plane_prior1 | | | | | | 91.95 223 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 347 | | | | | | | | |
|
test11 | | | | | | | | | 96.50 90 | | | | | | | | |
|
door | | | | | | | | | 80.13 346 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 199 | | | | | | | | | | |
|
HQP-NCC | | | | | | 92.08 215 | | 97.63 67 | | 90.52 27 | 82.30 175 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 215 | | 97.63 67 | | 90.52 27 | 82.30 175 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 120 | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 175 | | | 97.32 172 | | | 91.13 218 |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 220 | | | | |
|
NP-MVS | | | | | | 92.04 219 | 78.22 209 | | | | | 94.56 159 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 124 | 86.80 314 | | 80.65 206 | 85.65 140 | | 74.26 158 | | 76.52 214 | | 96.98 140 |
|
Test By Simon | | | | | | | | | | | | | 71.65 182 | | | | |
|