thres200 | | | 88.92 128 | 87.65 137 | 92.73 98 | 96.30 104 | 85.62 43 | 97.85 52 | 98.86 1 | 84.38 142 | 84.82 150 | 93.99 176 | 75.12 153 | 98.01 140 | 70.86 268 | 86.67 181 | 94.56 202 |
|
thres100view900 | | | 88.30 146 | 86.95 157 | 92.33 114 | 96.10 110 | 84.90 62 | 97.14 110 | 98.85 2 | 82.69 184 | 83.41 168 | 93.66 182 | 75.43 143 | 97.93 142 | 69.04 274 | 86.24 187 | 94.17 204 |
|
tfpn200view9 | | | 88.48 141 | 87.15 152 | 92.47 107 | 96.21 106 | 85.30 49 | 97.44 85 | 98.85 2 | 83.37 169 | 83.99 160 | 93.82 179 | 75.36 146 | 97.93 142 | 69.04 274 | 86.24 187 | 94.17 204 |
|
thres600view7 | | | 88.06 150 | 86.70 160 | 92.15 120 | 96.10 110 | 85.17 55 | 97.14 110 | 98.85 2 | 82.70 183 | 83.41 168 | 93.66 182 | 75.43 143 | 97.82 149 | 67.13 283 | 85.88 191 | 93.45 217 |
|
thres400 | | | 88.42 144 | 87.15 152 | 92.23 117 | 96.21 106 | 85.30 49 | 97.44 85 | 98.85 2 | 83.37 169 | 83.99 160 | 93.82 179 | 75.36 146 | 97.93 142 | 69.04 274 | 86.24 187 | 93.45 217 |
|
MVS_111021_HR | | | 93.41 40 | 93.39 40 | 93.47 70 | 97.34 92 | 82.83 101 | 97.56 76 | 98.27 6 | 89.16 44 | 89.71 103 | 97.14 99 | 79.77 73 | 99.56 51 | 93.65 50 | 97.94 62 | 98.02 80 |
|
sss | | | 90.87 94 | 89.96 101 | 93.60 60 | 94.15 163 | 83.84 79 | 97.14 110 | 98.13 7 | 85.93 101 | 89.68 104 | 96.09 125 | 71.67 188 | 99.30 72 | 87.69 123 | 89.16 159 | 97.66 111 |
|
MG-MVS | | | 94.25 24 | 93.72 34 | 95.85 9 | 99.38 3 | 89.35 9 | 97.98 46 | 98.09 8 | 89.99 34 | 92.34 65 | 96.97 105 | 81.30 59 | 98.99 101 | 88.54 115 | 98.88 19 | 99.20 18 |
|
VNet | | | 92.11 67 | 91.22 79 | 94.79 21 | 96.91 98 | 86.98 24 | 97.91 49 | 97.96 9 | 86.38 92 | 93.65 50 | 95.74 130 | 70.16 204 | 98.95 106 | 93.39 54 | 88.87 163 | 98.43 49 |
|
test_yl | | | 91.46 81 | 90.53 89 | 94.24 36 | 97.41 86 | 85.18 51 | 98.08 40 | 97.72 10 | 80.94 206 | 89.85 100 | 96.14 123 | 75.61 136 | 98.81 114 | 90.42 96 | 88.56 168 | 98.74 31 |
|
DCV-MVSNet | | | 91.46 81 | 90.53 89 | 94.24 36 | 97.41 86 | 85.18 51 | 98.08 40 | 97.72 10 | 80.94 206 | 89.85 100 | 96.14 123 | 75.61 136 | 98.81 114 | 90.42 96 | 88.56 168 | 98.74 31 |
|
WTY-MVS | | | 92.65 59 | 91.68 73 | 95.56 11 | 96.00 112 | 88.90 10 | 98.23 32 | 97.65 12 | 88.57 55 | 89.82 102 | 97.22 96 | 79.29 77 | 99.06 97 | 89.57 106 | 88.73 165 | 98.73 35 |
|
EPNet | | | 94.06 30 | 94.15 28 | 93.76 50 | 97.27 94 | 84.35 68 | 98.29 30 | 97.64 13 | 94.57 4 | 95.36 23 | 96.88 108 | 79.96 72 | 99.12 94 | 91.30 80 | 96.11 100 | 97.82 99 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HY-MVS | | 84.06 6 | 91.63 77 | 90.37 92 | 95.39 14 | 96.12 109 | 88.25 12 | 90.22 301 | 97.58 14 | 88.33 61 | 90.50 94 | 91.96 198 | 79.26 79 | 99.06 97 | 90.29 98 | 89.07 160 | 98.88 27 |
|
baseline2 | | | 90.39 104 | 90.21 95 | 90.93 154 | 90.86 248 | 80.99 143 | 95.20 218 | 97.41 15 | 86.03 99 | 80.07 209 | 94.61 161 | 90.58 4 | 97.47 167 | 87.29 127 | 89.86 155 | 94.35 203 |
|
PVSNet | | 82.34 9 | 89.02 125 | 87.79 135 | 92.71 99 | 95.49 124 | 81.50 134 | 97.70 66 | 97.29 16 | 87.76 72 | 85.47 145 | 95.12 151 | 56.90 285 | 98.90 110 | 80.33 181 | 94.02 120 | 97.71 108 |
|
PGM-MVS | | | 91.93 70 | 91.80 71 | 92.32 115 | 98.27 51 | 79.74 175 | 95.28 213 | 97.27 17 | 83.83 160 | 90.89 90 | 97.78 66 | 76.12 128 | 99.56 51 | 88.82 113 | 97.93 64 | 97.66 111 |
|
IB-MVS | | 85.34 4 | 88.67 136 | 87.14 154 | 93.26 73 | 93.12 192 | 84.32 69 | 98.76 18 | 97.27 17 | 87.19 86 | 79.36 213 | 90.45 221 | 83.92 38 | 98.53 125 | 84.41 146 | 69.79 287 | 96.93 145 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MVS | | | 90.60 99 | 88.64 122 | 96.50 3 | 94.25 161 | 90.53 6 | 93.33 264 | 97.21 19 | 77.59 267 | 78.88 216 | 97.31 90 | 71.52 191 | 99.69 36 | 89.60 105 | 98.03 60 | 99.27 16 |
|
CSCG | | | 92.02 68 | 91.65 74 | 93.12 79 | 98.53 37 | 80.59 153 | 97.47 83 | 97.18 20 | 77.06 276 | 84.64 154 | 97.98 54 | 83.98 37 | 99.52 53 | 90.72 89 | 97.33 78 | 99.23 17 |
|
PHI-MVS | | | 93.59 38 | 93.63 35 | 93.48 67 | 98.05 63 | 81.76 127 | 98.64 22 | 97.13 21 | 82.60 186 | 94.09 47 | 98.49 23 | 80.35 65 | 99.85 10 | 94.74 40 | 98.62 31 | 98.83 28 |
|
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 12 | 99.31 5 | 87.69 19 | 99.06 9 | 97.12 22 | 94.66 3 | 96.79 9 | 98.78 11 | 86.42 24 | 99.95 3 | 97.59 9 | 99.18 5 | 99.00 23 |
|
hse-mvs3 | | | 89.30 121 | 88.95 119 | 90.36 169 | 95.07 137 | 76.04 257 | 96.96 130 | 97.11 23 | 90.39 30 | 92.22 66 | 95.10 152 | 74.70 157 | 98.86 111 | 93.14 61 | 65.89 320 | 96.16 170 |
|
MCST-MVS | | | 96.17 3 | 96.12 5 | 96.32 5 | 99.42 2 | 89.36 8 | 98.94 16 | 97.10 24 | 95.17 2 | 92.11 68 | 98.46 24 | 87.33 20 | 99.97 2 | 97.21 12 | 99.31 2 | 99.63 5 |
|
VPA-MVSNet | | | 85.32 190 | 83.83 195 | 89.77 191 | 90.25 257 | 82.63 103 | 96.36 167 | 97.07 25 | 83.03 176 | 81.21 194 | 89.02 238 | 61.58 255 | 96.31 219 | 85.02 144 | 70.95 275 | 90.36 233 |
|
Regformer-1 | | | 94.00 32 | 94.04 31 | 93.87 47 | 98.41 43 | 84.29 70 | 97.43 89 | 97.04 26 | 89.50 39 | 92.75 62 | 98.13 38 | 82.60 54 | 99.26 75 | 93.55 52 | 96.99 85 | 98.06 77 |
|
DELS-MVS | | | 94.98 11 | 94.49 19 | 96.44 4 | 96.42 103 | 90.59 5 | 99.21 2 | 97.02 27 | 94.40 5 | 91.46 77 | 97.08 102 | 83.32 43 | 99.69 36 | 92.83 65 | 98.70 29 | 99.04 21 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
GG-mvs-BLEND | | | | | 93.49 66 | 94.94 142 | 86.26 29 | 81.62 339 | 97.00 28 | | 88.32 124 | 94.30 167 | 91.23 3 | 96.21 223 | 88.49 117 | 97.43 75 | 98.00 85 |
|
Regformer-2 | | | 93.92 33 | 94.01 32 | 93.67 56 | 98.41 43 | 83.75 80 | 97.43 89 | 97.00 28 | 89.43 41 | 92.69 63 | 98.13 38 | 82.48 55 | 99.22 78 | 93.51 53 | 96.99 85 | 98.04 78 |
|
DPM-MVS | | | 96.21 2 | 95.53 9 | 98.26 1 | 96.26 105 | 95.09 1 | 99.15 4 | 96.98 30 | 93.39 9 | 96.45 14 | 98.79 10 | 90.17 7 | 99.99 1 | 89.33 110 | 99.25 4 | 99.70 3 |
|
Regformer-3 | | | 93.19 42 | 93.19 44 | 93.19 77 | 98.10 60 | 83.01 99 | 97.08 119 | 96.98 30 | 88.98 46 | 91.35 82 | 97.89 59 | 80.80 61 | 99.23 76 | 92.30 71 | 95.20 111 | 97.32 131 |
|
gg-mvs-nofinetune | | | 85.48 189 | 82.90 209 | 93.24 74 | 94.51 156 | 85.82 37 | 79.22 343 | 96.97 32 | 61.19 343 | 87.33 132 | 53.01 356 | 90.58 4 | 96.07 225 | 86.07 135 | 97.23 80 | 97.81 100 |
|
NCCC | | | 95.63 5 | 95.94 6 | 94.69 24 | 99.21 7 | 85.15 56 | 99.16 3 | 96.96 33 | 94.11 6 | 95.59 21 | 98.64 19 | 85.07 28 | 99.91 4 | 95.61 28 | 99.10 7 | 99.00 23 |
|
FIs | | | 86.73 172 | 86.10 164 | 88.61 210 | 90.05 262 | 80.21 164 | 96.14 181 | 96.95 34 | 85.56 110 | 78.37 222 | 92.30 193 | 76.73 117 | 95.28 269 | 79.51 190 | 79.27 233 | 90.35 234 |
|
PVSNet_0 | | 77.72 15 | 81.70 246 | 78.95 260 | 89.94 184 | 90.77 251 | 76.72 248 | 95.96 187 | 96.95 34 | 85.01 124 | 70.24 298 | 88.53 247 | 52.32 305 | 98.20 137 | 86.68 134 | 44.08 355 | 94.89 193 |
|
HPM-MVS++ |  | | 95.32 9 | 95.48 10 | 94.85 20 | 98.62 34 | 86.04 32 | 97.81 56 | 96.93 36 | 92.45 11 | 95.69 20 | 98.50 22 | 85.38 27 | 99.85 10 | 94.75 39 | 99.18 5 | 98.65 38 |
|
MSLP-MVS++ | | | 94.28 22 | 94.39 23 | 93.97 44 | 98.30 50 | 84.06 75 | 98.64 22 | 96.93 36 | 90.71 25 | 93.08 58 | 98.70 16 | 79.98 71 | 99.21 80 | 94.12 46 | 99.07 9 | 98.63 39 |
|
Regformer-4 | | | 93.06 46 | 93.12 45 | 92.89 91 | 98.10 60 | 82.20 113 | 97.08 119 | 96.92 38 | 88.87 48 | 91.23 84 | 97.89 59 | 80.57 64 | 99.19 85 | 92.21 73 | 95.20 111 | 97.29 135 |
|
UniMVSNet (Re) | | | 85.31 191 | 84.23 191 | 88.55 211 | 89.75 265 | 80.55 155 | 96.72 145 | 96.89 39 | 85.42 111 | 78.40 221 | 88.93 240 | 75.38 145 | 95.52 259 | 78.58 200 | 68.02 304 | 89.57 250 |
|
FC-MVSNet-test | | | 85.96 180 | 85.39 171 | 87.66 230 | 89.38 274 | 78.02 221 | 95.65 203 | 96.87 40 | 85.12 122 | 77.34 228 | 91.94 200 | 76.28 126 | 94.74 289 | 77.09 213 | 78.82 237 | 90.21 238 |
|
EI-MVSNet-Vis-set | | | 91.84 72 | 91.77 72 | 92.04 124 | 97.60 77 | 81.17 138 | 96.61 151 | 96.87 40 | 88.20 63 | 89.19 112 | 97.55 79 | 78.69 89 | 99.14 91 | 90.29 98 | 90.94 150 | 95.80 177 |
|
IU-MVS | | | | | | 99.03 13 | 85.34 47 | | 96.86 42 | 92.05 15 | 98.74 1 | | | | 98.15 2 | 98.97 15 | 99.42 9 |
|
EI-MVSNet-UG-set | | | 91.35 85 | 91.22 79 | 91.73 133 | 97.39 88 | 80.68 151 | 96.47 157 | 96.83 43 | 87.92 67 | 88.30 125 | 97.36 89 | 77.84 100 | 99.13 93 | 89.43 109 | 89.45 157 | 95.37 187 |
|
ETH3 D test6400 | | | 95.56 8 | 95.41 11 | 96.00 7 | 99.02 16 | 89.42 7 | 98.75 19 | 96.80 44 | 87.28 81 | 95.88 19 | 98.95 2 | 85.92 26 | 99.41 62 | 97.15 13 | 98.95 18 | 99.18 20 |
|
SED-MVS | | | 95.88 4 | 96.22 3 | 94.87 19 | 99.03 13 | 85.03 58 | 99.12 6 | 96.78 45 | 88.72 51 | 97.79 3 | 98.91 3 | 88.48 14 | 99.82 16 | 98.15 2 | 98.97 15 | 99.74 1 |
|
test_241102_TWO | | | | | | | | | 96.78 45 | 88.72 51 | 97.70 5 | 98.91 3 | 87.86 17 | 99.82 16 | 98.15 2 | 99.00 13 | 99.47 7 |
|
test_241102_ONE | | | | | | 99.03 13 | 85.03 58 | | 96.78 45 | 88.72 51 | 97.79 3 | 98.90 6 | 88.48 14 | 99.82 16 | | | |
|
test0726 | | | | | | 99.05 10 | 85.18 51 | 99.11 8 | 96.78 45 | 88.75 49 | 97.65 6 | 98.91 3 | 87.69 18 | | | | |
|
MSP-MVS | | | 95.62 6 | 96.54 1 | 92.86 92 | 98.31 49 | 80.10 167 | 97.42 91 | 96.78 45 | 92.20 13 | 97.11 8 | 98.29 28 | 93.46 1 | 99.10 95 | 96.01 20 | 99.30 3 | 99.38 10 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
无先验 | | | | | | | | 96.87 135 | 96.78 45 | 77.39 269 | | | | 99.52 53 | 79.95 186 | | 98.43 49 |
|
test_0728_SECOND | | | | | 95.14 15 | 99.04 12 | 86.14 31 | 99.06 9 | 96.77 51 | | | | | 99.84 12 | 97.90 5 | 98.85 20 | 99.45 8 |
|
SMA-MVS |  | | 94.70 15 | 94.68 15 | 94.76 22 | 98.02 64 | 85.94 35 | 97.47 83 | 96.77 51 | 85.32 114 | 97.92 2 | 98.70 16 | 83.09 47 | 99.84 12 | 95.79 24 | 99.08 8 | 98.49 46 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MVS_111021_LR | | | 91.60 79 | 91.64 75 | 91.47 141 | 95.74 117 | 78.79 200 | 96.15 180 | 96.77 51 | 88.49 57 | 88.64 119 | 97.07 103 | 72.33 182 | 99.19 85 | 93.13 63 | 96.48 97 | 96.43 162 |
|
3Dnovator | | 82.32 10 | 89.33 120 | 87.64 138 | 94.42 30 | 93.73 176 | 85.70 41 | 97.73 64 | 96.75 54 | 86.73 91 | 76.21 248 | 95.93 127 | 62.17 247 | 99.68 38 | 81.67 174 | 97.81 66 | 97.88 93 |
|
DPE-MVS |  | | 95.32 9 | 95.55 8 | 94.64 25 | 98.79 21 | 84.87 63 | 97.77 58 | 96.74 55 | 86.11 95 | 96.54 13 | 98.89 7 | 88.39 16 | 99.74 28 | 97.67 8 | 99.05 10 | 99.31 14 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
PVSNet_BlendedMVS | | | 90.05 109 | 89.96 101 | 90.33 171 | 97.47 82 | 83.86 77 | 98.02 45 | 96.73 56 | 87.98 66 | 89.53 108 | 89.61 232 | 76.42 122 | 99.57 49 | 94.29 44 | 79.59 230 | 87.57 299 |
|
PVSNet_Blended | | | 93.13 43 | 92.98 47 | 93.57 61 | 97.47 82 | 83.86 77 | 99.32 1 | 96.73 56 | 91.02 23 | 89.53 108 | 96.21 122 | 76.42 122 | 99.57 49 | 94.29 44 | 95.81 107 | 97.29 135 |
|
ACMMP |  | | 90.39 104 | 89.97 100 | 91.64 135 | 97.58 79 | 78.21 217 | 96.78 141 | 96.72 58 | 84.73 130 | 84.72 152 | 97.23 95 | 71.22 193 | 99.63 44 | 88.37 120 | 92.41 139 | 97.08 142 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
新几何1 | | | | | 93.12 79 | 97.44 84 | 81.60 133 | | 96.71 59 | 74.54 291 | 91.22 85 | 97.57 75 | 79.13 82 | 99.51 56 | 77.40 212 | 98.46 39 | 98.26 62 |
|
HFP-MVS | | | 92.89 49 | 92.86 50 | 92.98 86 | 98.71 23 | 81.12 139 | 97.58 74 | 96.70 60 | 85.20 120 | 91.75 72 | 97.97 56 | 78.47 90 | 99.71 32 | 90.95 83 | 98.41 44 | 98.12 73 |
|
#test# | | | 92.99 47 | 92.99 46 | 92.98 86 | 98.71 23 | 81.12 139 | 97.77 58 | 96.70 60 | 85.75 104 | 91.75 72 | 97.97 56 | 78.47 90 | 99.71 32 | 91.36 79 | 98.41 44 | 98.12 73 |
|
ACMMPR | | | 92.69 57 | 92.67 54 | 92.75 96 | 98.66 28 | 80.57 154 | 97.58 74 | 96.69 62 | 85.20 120 | 91.57 76 | 97.92 58 | 77.01 112 | 99.67 40 | 90.95 83 | 98.41 44 | 98.00 85 |
|
DeepPCF-MVS | | 89.82 1 | 94.61 16 | 96.17 4 | 89.91 185 | 97.09 97 | 70.21 311 | 98.99 15 | 96.69 62 | 95.57 1 | 95.08 28 | 99.23 1 | 86.40 25 | 99.87 8 | 97.84 7 | 98.66 30 | 99.65 4 |
|
thisisatest0530 | | | 89.65 115 | 89.02 116 | 91.53 139 | 93.46 184 | 80.78 149 | 96.52 154 | 96.67 64 | 81.69 199 | 83.79 165 | 94.90 157 | 88.85 12 | 97.68 153 | 77.80 203 | 87.49 178 | 96.14 171 |
|
tttt0517 | | | 88.57 140 | 88.19 128 | 89.71 192 | 93.00 194 | 75.99 261 | 95.67 201 | 96.67 64 | 80.78 209 | 81.82 190 | 94.40 165 | 88.97 11 | 97.58 157 | 76.05 227 | 86.31 184 | 95.57 183 |
|
thisisatest0515 | | | 90.95 92 | 90.26 93 | 93.01 85 | 94.03 170 | 84.27 72 | 97.91 49 | 96.67 64 | 83.18 172 | 86.87 137 | 95.51 139 | 88.66 13 | 97.85 148 | 80.46 180 | 89.01 161 | 96.92 147 |
|
1121 | | | 90.66 97 | 89.82 106 | 93.16 78 | 97.39 88 | 81.71 130 | 93.33 264 | 96.66 67 | 74.45 292 | 91.38 78 | 97.55 79 | 79.27 78 | 99.52 53 | 79.95 186 | 98.43 41 | 98.26 62 |
|
ACMMP_NAP | | | 93.46 39 | 93.23 43 | 94.17 39 | 97.16 95 | 84.28 71 | 96.82 138 | 96.65 68 | 86.24 93 | 94.27 41 | 97.99 52 | 77.94 98 | 99.83 15 | 93.39 54 | 98.57 32 | 98.39 51 |
|
TEST9 | | | | | | 98.64 31 | 83.71 81 | 97.82 54 | 96.65 68 | 84.29 146 | 95.16 25 | 98.09 43 | 84.39 31 | 99.36 70 | | | |
|
train_agg | | | 94.28 22 | 94.45 20 | 93.74 51 | 98.64 31 | 83.71 81 | 97.82 54 | 96.65 68 | 84.50 138 | 95.16 25 | 98.09 43 | 84.33 32 | 99.36 70 | 95.91 23 | 98.96 17 | 98.16 68 |
|
1314 | | | 88.94 127 | 87.20 150 | 94.17 39 | 93.21 187 | 85.73 40 | 93.33 264 | 96.64 71 | 82.89 179 | 75.98 251 | 96.36 120 | 66.83 221 | 99.39 63 | 83.52 162 | 96.02 103 | 97.39 129 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 18 | 94.30 26 | 95.02 17 | 98.86 19 | 85.68 42 | 98.06 42 | 96.64 71 | 93.64 8 | 91.74 74 | 98.54 20 | 80.17 70 | 99.90 5 | 92.28 72 | 98.75 26 | 99.49 6 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_8 | | | | | | 98.63 33 | 83.64 84 | 97.81 56 | 96.63 73 | 84.50 138 | 95.10 27 | 98.11 42 | 84.33 32 | 99.23 76 | | | |
|
testtj | | | 94.09 29 | 94.08 29 | 94.09 42 | 99.28 6 | 83.32 91 | 97.59 73 | 96.61 74 | 83.60 167 | 94.77 36 | 98.46 24 | 82.72 52 | 99.64 42 | 95.29 33 | 98.42 42 | 99.32 13 |
|
原ACMM1 | | | | | 91.22 147 | 97.77 72 | 78.10 220 | | 96.61 74 | 81.05 205 | 91.28 83 | 97.42 86 | 77.92 99 | 98.98 102 | 79.85 189 | 98.51 34 | 96.59 158 |
|
MAR-MVS | | | 90.63 98 | 90.22 94 | 91.86 129 | 98.47 42 | 78.20 218 | 97.18 104 | 96.61 74 | 83.87 159 | 88.18 126 | 98.18 32 | 68.71 209 | 99.75 26 | 83.66 157 | 97.15 82 | 97.63 114 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ZD-MVS | | | | | | 99.09 9 | 83.22 93 | | 96.60 77 | 82.88 180 | 93.61 51 | 98.06 48 | 82.93 48 | 99.14 91 | 95.51 30 | 98.49 38 | |
|
SteuartSystems-ACMMP | | | 94.13 27 | 94.44 21 | 93.20 76 | 95.41 126 | 81.35 136 | 99.02 13 | 96.59 78 | 89.50 39 | 94.18 45 | 98.36 27 | 83.68 40 | 99.45 60 | 94.77 38 | 98.45 40 | 98.81 29 |
Skip Steuart: Steuart Systems R&D Blog. |
D2MVS | | | 82.67 233 | 81.55 229 | 86.04 262 | 87.77 289 | 76.47 249 | 95.21 217 | 96.58 79 | 82.66 185 | 70.26 297 | 85.46 294 | 60.39 259 | 95.80 241 | 76.40 222 | 79.18 234 | 85.83 323 |
|
save fliter | | | | | | 98.24 52 | 83.34 89 | 98.61 24 | 96.57 80 | 91.32 18 | | | | | | | |
|
TESTMET0.1,1 | | | 89.83 111 | 89.34 113 | 91.31 142 | 92.54 206 | 80.19 165 | 97.11 113 | 96.57 80 | 86.15 94 | 86.85 138 | 91.83 202 | 79.32 76 | 96.95 192 | 81.30 175 | 92.35 140 | 96.77 153 |
|
agg_prior1 | | | 94.10 28 | 94.31 25 | 93.48 67 | 98.59 35 | 83.13 94 | 97.77 58 | 96.56 82 | 84.38 142 | 94.19 42 | 98.13 38 | 84.66 30 | 99.16 89 | 95.74 25 | 98.74 27 | 98.15 70 |
|
agg_prior | | | | | | 98.59 35 | 83.13 94 | | 96.56 82 | | 94.19 42 | | | 99.16 89 | | | |
|
DWT-MVSNet_test | | | 90.52 103 | 89.80 107 | 92.70 100 | 95.73 119 | 82.20 113 | 93.69 255 | 96.55 84 | 88.34 60 | 87.04 136 | 95.34 142 | 86.53 22 | 97.55 159 | 76.32 224 | 88.66 166 | 98.34 52 |
|
旧先验1 | | | | | | 97.39 88 | 79.58 179 | | 96.54 85 | | | 98.08 46 | 84.00 36 | | | 97.42 76 | 97.62 115 |
|
WR-MVS_H | | | 81.02 254 | 80.09 248 | 83.79 292 | 88.08 287 | 71.26 306 | 94.46 236 | 96.54 85 | 80.08 228 | 72.81 281 | 86.82 270 | 70.36 202 | 92.65 317 | 64.18 297 | 67.50 310 | 87.46 303 |
|
ETH3D-3000-0.1 | | | 94.43 19 | 94.42 22 | 94.45 28 | 97.78 71 | 85.78 38 | 97.98 46 | 96.53 87 | 85.29 117 | 95.45 22 | 98.81 8 | 83.36 42 | 99.38 64 | 96.07 19 | 98.53 33 | 98.19 65 |
|
9.14 | | | | 94.26 27 | | 98.10 60 | | 98.14 36 | 96.52 88 | 84.74 129 | 94.83 34 | 98.80 9 | 82.80 51 | 99.37 68 | 95.95 22 | 98.42 42 | |
|
region2R | | | 92.72 55 | 92.70 53 | 92.79 95 | 98.68 25 | 80.53 157 | 97.53 78 | 96.51 89 | 85.22 118 | 91.94 70 | 97.98 54 | 77.26 107 | 99.67 40 | 90.83 87 | 98.37 49 | 98.18 66 |
|
EPP-MVSNet | | | 89.76 113 | 89.72 108 | 89.87 186 | 93.78 173 | 76.02 260 | 97.22 98 | 96.51 89 | 79.35 241 | 85.11 147 | 95.01 155 | 84.82 29 | 97.10 186 | 87.46 126 | 88.21 172 | 96.50 160 |
|
ZNCC-MVS | | | 92.75 51 | 92.60 56 | 93.23 75 | 98.24 52 | 81.82 125 | 97.63 69 | 96.50 91 | 85.00 125 | 91.05 87 | 97.74 67 | 78.38 92 | 99.80 19 | 90.48 92 | 98.34 51 | 98.07 76 |
|
test11 | | | | | | | | | 96.50 91 | | | | | | | | |
|
EPNet_dtu | | | 87.65 157 | 87.89 132 | 86.93 248 | 94.57 150 | 71.37 305 | 96.72 145 | 96.50 91 | 88.56 56 | 87.12 134 | 95.02 154 | 75.91 132 | 94.01 302 | 66.62 285 | 90.00 154 | 95.42 186 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
testdata | | | | | 90.13 176 | 95.92 114 | 74.17 278 | | 96.49 94 | 73.49 300 | 94.82 35 | 97.99 52 | 78.80 87 | 97.93 142 | 83.53 161 | 97.52 71 | 98.29 59 |
|
DVP-MVS | | | 95.58 7 | 95.91 7 | 94.57 26 | 99.05 10 | 85.18 51 | 99.06 9 | 96.46 95 | 88.75 49 | 96.69 10 | 98.76 12 | 87.69 18 | 99.76 20 | 97.90 5 | 98.85 20 | 98.77 30 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test222 | | | | | | 96.15 108 | 78.41 208 | 95.87 194 | 96.46 95 | 71.97 311 | 89.66 105 | 97.45 82 | 76.33 125 | | | 98.24 54 | 98.30 58 |
|
XVS | | | 92.69 57 | 92.71 51 | 92.63 103 | 98.52 38 | 80.29 160 | 97.37 94 | 96.44 97 | 87.04 88 | 91.38 78 | 97.83 64 | 77.24 109 | 99.59 47 | 90.46 93 | 98.07 58 | 98.02 80 |
|
X-MVStestdata | | | 86.26 177 | 84.14 193 | 92.63 103 | 98.52 38 | 80.29 160 | 97.37 94 | 96.44 97 | 87.04 88 | 91.38 78 | 20.73 366 | 77.24 109 | 99.59 47 | 90.46 93 | 98.07 58 | 98.02 80 |
|
SF-MVS | | | 94.17 25 | 94.05 30 | 94.55 27 | 97.56 80 | 85.95 33 | 97.73 64 | 96.43 99 | 84.02 152 | 95.07 29 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 31 | 98.51 34 | 98.32 54 |
|
TSAR-MVS + MP. | | | 94.79 14 | 95.17 12 | 93.64 57 | 97.66 75 | 84.10 74 | 95.85 196 | 96.42 100 | 91.26 20 | 97.49 7 | 96.80 113 | 86.50 23 | 98.49 127 | 95.54 29 | 99.03 11 | 98.33 53 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ETH3D cwj APD-0.16 | | | 93.91 35 | 93.76 33 | 94.36 31 | 96.70 101 | 85.74 39 | 97.22 98 | 96.41 101 | 83.94 155 | 94.13 46 | 98.69 18 | 83.13 46 | 99.37 68 | 95.25 34 | 98.39 47 | 97.97 88 |
|
APDe-MVS | | | 94.56 17 | 94.75 14 | 93.96 45 | 98.84 20 | 83.40 88 | 98.04 44 | 96.41 101 | 85.79 103 | 95.00 31 | 98.28 29 | 84.32 35 | 99.18 87 | 97.35 11 | 98.77 25 | 99.28 15 |
|
UniMVSNet_NR-MVSNet | | | 85.49 188 | 84.59 184 | 88.21 221 | 89.44 273 | 79.36 182 | 96.71 147 | 96.41 101 | 85.22 118 | 78.11 224 | 90.98 213 | 76.97 113 | 95.14 276 | 79.14 196 | 68.30 301 | 90.12 240 |
|
test_prior3 | | | 94.03 31 | 94.34 24 | 93.09 81 | 98.68 25 | 81.91 119 | 98.37 28 | 96.40 104 | 86.08 97 | 94.57 39 | 98.02 49 | 83.14 44 | 99.06 97 | 95.05 35 | 98.79 23 | 98.29 59 |
|
test_prior | | | | | 93.09 81 | 98.68 25 | 81.91 119 | | 96.40 104 | | | | | 99.06 97 | | | 98.29 59 |
|
CP-MVS | | | 92.54 62 | 92.60 56 | 92.34 113 | 98.50 40 | 79.90 170 | 98.40 27 | 96.40 104 | 84.75 128 | 90.48 95 | 98.09 43 | 77.40 106 | 99.21 80 | 91.15 82 | 98.23 55 | 97.92 92 |
|
CANet | | | 94.89 12 | 94.64 16 | 95.63 10 | 97.55 81 | 88.12 13 | 99.06 9 | 96.39 107 | 94.07 7 | 95.34 24 | 97.80 65 | 76.83 115 | 99.87 8 | 97.08 14 | 97.64 70 | 98.89 26 |
|
GST-MVS | | | 92.43 64 | 92.22 65 | 93.04 84 | 98.17 57 | 81.64 132 | 97.40 93 | 96.38 108 | 84.71 131 | 90.90 89 | 97.40 88 | 77.55 104 | 99.76 20 | 89.75 104 | 97.74 68 | 97.72 106 |
|
alignmvs | | | 92.97 48 | 92.26 63 | 95.12 16 | 95.54 123 | 87.77 17 | 98.67 20 | 96.38 108 | 88.04 65 | 93.01 59 | 97.45 82 | 79.20 81 | 98.60 121 | 93.25 59 | 88.76 164 | 98.99 25 |
|
PAPM | | | 92.87 50 | 92.40 58 | 94.30 33 | 92.25 215 | 87.85 16 | 96.40 166 | 96.38 108 | 91.07 21 | 88.72 118 | 96.90 106 | 82.11 56 | 97.37 171 | 90.05 100 | 97.70 69 | 97.67 110 |
|
test12 | | | | | 94.25 35 | 98.34 47 | 85.55 44 | | 96.35 111 | | 92.36 64 | | 80.84 60 | 99.22 78 | | 98.31 52 | 97.98 87 |
|
zzz-MVS | | | 92.74 52 | 92.71 51 | 92.86 92 | 97.90 66 | 80.85 147 | 96.47 157 | 96.33 112 | 87.92 67 | 90.20 98 | 98.18 32 | 76.71 118 | 99.76 20 | 92.57 69 | 98.09 56 | 97.96 89 |
|
MTGPA |  | | | | | | | | 96.33 112 | | | | | | | | |
|
MTAPA | | | 92.45 63 | 92.31 61 | 92.86 92 | 97.90 66 | 80.85 147 | 92.88 277 | 96.33 112 | 87.92 67 | 90.20 98 | 98.18 32 | 76.71 118 | 99.76 20 | 92.57 69 | 98.09 56 | 97.96 89 |
|
ET-MVSNet_ETH3D | | | 90.01 110 | 89.03 115 | 92.95 88 | 94.38 159 | 86.77 26 | 98.14 36 | 96.31 115 | 89.30 42 | 63.33 327 | 96.72 116 | 90.09 8 | 93.63 309 | 90.70 90 | 82.29 220 | 98.46 47 |
|
EPMVS | | | 87.47 159 | 85.90 167 | 92.18 119 | 95.41 126 | 82.26 112 | 87.00 324 | 96.28 116 | 85.88 102 | 84.23 157 | 85.57 291 | 75.07 154 | 96.26 220 | 71.14 266 | 92.50 137 | 98.03 79 |
|
CDPH-MVS | | | 93.12 44 | 92.91 48 | 93.74 51 | 98.65 30 | 83.88 76 | 97.67 68 | 96.26 117 | 83.00 177 | 93.22 56 | 98.24 30 | 81.31 58 | 99.21 80 | 89.12 111 | 98.74 27 | 98.14 71 |
|
WR-MVS | | | 84.32 207 | 82.96 207 | 88.41 213 | 89.38 274 | 80.32 159 | 96.59 152 | 96.25 118 | 83.97 154 | 76.63 238 | 90.36 223 | 67.53 214 | 94.86 287 | 75.82 230 | 70.09 285 | 90.06 244 |
|
UGNet | | | 87.73 156 | 86.55 161 | 91.27 145 | 95.16 134 | 79.11 190 | 96.35 168 | 96.23 119 | 88.14 64 | 87.83 129 | 90.48 219 | 50.65 308 | 99.09 96 | 80.13 185 | 94.03 119 | 95.60 182 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tfpnnormal | | | 78.14 277 | 75.42 283 | 86.31 258 | 88.33 284 | 79.24 185 | 94.41 238 | 96.22 120 | 73.51 298 | 69.81 300 | 85.52 293 | 55.43 295 | 95.75 244 | 47.65 350 | 67.86 306 | 83.95 336 |
|
MP-MVS |  | | 92.61 60 | 92.67 54 | 92.42 111 | 98.13 59 | 79.73 176 | 97.33 96 | 96.20 121 | 85.63 106 | 90.53 93 | 97.66 69 | 78.14 96 | 99.70 35 | 92.12 74 | 98.30 53 | 97.85 96 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PAPR | | | 92.74 52 | 92.17 66 | 94.45 28 | 98.89 18 | 84.87 63 | 97.20 102 | 96.20 121 | 87.73 73 | 88.40 122 | 98.12 41 | 78.71 88 | 99.76 20 | 87.99 122 | 96.28 98 | 98.74 31 |
|
SD-MVS | | | 94.84 13 | 95.02 13 | 94.29 34 | 97.87 70 | 84.61 67 | 97.76 62 | 96.19 123 | 89.59 38 | 96.66 12 | 98.17 36 | 84.33 32 | 99.60 46 | 96.09 18 | 98.50 37 | 98.66 37 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CHOSEN 280x420 | | | 91.71 75 | 91.85 69 | 91.29 144 | 94.94 142 | 82.69 102 | 87.89 318 | 96.17 124 | 85.94 100 | 87.27 133 | 94.31 166 | 90.27 6 | 95.65 251 | 94.04 47 | 95.86 105 | 95.53 184 |
|
CHOSEN 1792x2688 | | | 91.07 90 | 90.21 95 | 93.64 57 | 95.18 133 | 83.53 85 | 96.26 174 | 96.13 125 | 88.92 47 | 84.90 149 | 93.10 188 | 72.86 177 | 99.62 45 | 88.86 112 | 95.67 108 | 97.79 101 |
|
PAPM_NR | | | 91.46 81 | 90.82 85 | 93.37 71 | 98.50 40 | 81.81 126 | 95.03 227 | 96.13 125 | 84.65 134 | 86.10 143 | 97.65 73 | 79.24 80 | 99.75 26 | 83.20 165 | 96.88 90 | 98.56 42 |
|
CostFormer | | | 89.08 124 | 88.39 126 | 91.15 148 | 93.13 191 | 79.15 189 | 88.61 312 | 96.11 127 | 83.14 173 | 89.58 107 | 86.93 269 | 83.83 39 | 96.87 199 | 88.22 121 | 85.92 190 | 97.42 126 |
|
mPP-MVS | | | 91.88 71 | 91.82 70 | 92.07 122 | 98.38 45 | 78.63 202 | 97.29 97 | 96.09 128 | 85.12 122 | 88.45 121 | 97.66 69 | 75.53 139 | 99.68 38 | 89.83 102 | 98.02 61 | 97.88 93 |
|
APD-MVS |  | | 93.61 37 | 93.59 37 | 93.69 54 | 98.76 22 | 83.26 92 | 97.21 100 | 96.09 128 | 82.41 188 | 94.65 38 | 98.21 31 | 81.96 57 | 98.81 114 | 94.65 41 | 98.36 50 | 99.01 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MDTV_nov1_ep13 | | | | 83.69 196 | | 94.09 165 | 81.01 142 | 86.78 326 | 96.09 128 | 83.81 161 | 84.75 151 | 84.32 308 | 74.44 161 | 96.54 210 | 63.88 299 | 85.07 199 | |
|
QAPM | | | 86.88 166 | 84.51 185 | 93.98 43 | 94.04 168 | 85.89 36 | 97.19 103 | 96.05 131 | 73.62 297 | 75.12 263 | 95.62 136 | 62.02 250 | 99.74 28 | 70.88 267 | 96.06 102 | 96.30 169 |
|
MP-MVS-pluss | | | 92.58 61 | 92.35 59 | 93.29 72 | 97.30 93 | 82.53 105 | 96.44 162 | 96.04 132 | 84.68 132 | 89.12 113 | 98.37 26 | 77.48 105 | 99.74 28 | 93.31 58 | 98.38 48 | 97.59 117 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
tpm2 | | | 87.35 160 | 86.26 163 | 90.62 163 | 92.93 197 | 78.67 201 | 88.06 317 | 95.99 133 | 79.33 242 | 87.40 130 | 86.43 280 | 80.28 67 | 96.40 214 | 80.23 183 | 85.73 194 | 96.79 151 |
|
DeepC-MVS | | 86.58 3 | 91.53 80 | 91.06 83 | 92.94 89 | 94.52 153 | 81.89 121 | 95.95 188 | 95.98 134 | 90.76 24 | 83.76 166 | 96.76 114 | 73.24 175 | 99.71 32 | 91.67 78 | 96.96 87 | 97.22 139 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test-LLR | | | 88.48 141 | 87.98 131 | 89.98 181 | 92.26 213 | 77.23 240 | 97.11 113 | 95.96 135 | 83.76 162 | 86.30 141 | 91.38 205 | 72.30 183 | 96.78 204 | 80.82 177 | 91.92 144 | 95.94 174 |
|
test-mter | | | 88.95 126 | 88.60 123 | 89.98 181 | 92.26 213 | 77.23 240 | 97.11 113 | 95.96 135 | 85.32 114 | 86.30 141 | 91.38 205 | 76.37 124 | 96.78 204 | 80.82 177 | 91.92 144 | 95.94 174 |
|
DP-MVS Recon | | | 91.72 74 | 90.85 84 | 94.34 32 | 99.50 1 | 85.00 60 | 98.51 26 | 95.96 135 | 80.57 214 | 88.08 127 | 97.63 74 | 76.84 114 | 99.89 7 | 85.67 137 | 94.88 115 | 98.13 72 |
|
cdsmvs_eth3d_5k | | | 21.43 335 | 28.57 338 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 95.93 138 | 0.00 369 | 0.00 370 | 97.66 69 | 63.57 239 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
hse-mvs2 | | | 88.22 149 | 88.21 127 | 88.25 219 | 93.54 181 | 73.41 281 | 95.41 211 | 95.89 139 | 90.39 30 | 92.22 66 | 94.22 169 | 74.70 157 | 96.66 209 | 93.14 61 | 64.37 325 | 94.69 201 |
|
AUN-MVS | | | 86.25 178 | 85.57 168 | 88.26 218 | 93.57 180 | 73.38 282 | 95.45 209 | 95.88 140 | 83.94 155 | 85.47 145 | 94.21 170 | 73.70 171 | 96.67 208 | 83.54 160 | 64.41 324 | 94.73 200 |
|
TAMVS | | | 88.48 141 | 87.79 135 | 90.56 164 | 91.09 243 | 79.18 187 | 96.45 160 | 95.88 140 | 83.64 165 | 83.12 172 | 93.33 184 | 75.94 131 | 95.74 247 | 82.40 170 | 88.27 171 | 96.75 155 |
|
PVSNet_Blended_VisFu | | | 91.24 87 | 90.77 86 | 92.66 101 | 95.09 135 | 82.40 108 | 97.77 58 | 95.87 142 | 88.26 62 | 86.39 139 | 93.94 177 | 76.77 116 | 99.27 73 | 88.80 114 | 94.00 122 | 96.31 168 |
|
OpenMVS |  | 79.58 14 | 86.09 179 | 83.62 200 | 93.50 65 | 90.95 245 | 86.71 28 | 97.44 85 | 95.83 143 | 75.35 283 | 72.64 282 | 95.72 131 | 57.42 284 | 99.64 42 | 71.41 261 | 95.85 106 | 94.13 207 |
|
CDS-MVSNet | | | 89.50 117 | 88.96 118 | 91.14 149 | 91.94 231 | 80.93 145 | 97.09 117 | 95.81 144 | 84.26 147 | 84.72 152 | 94.20 171 | 80.31 66 | 95.64 252 | 83.37 163 | 88.96 162 | 96.85 150 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PS-MVSNAJ | | | 94.17 25 | 93.52 39 | 96.10 6 | 95.65 121 | 92.35 2 | 98.21 34 | 95.79 145 | 92.42 12 | 96.24 15 | 98.18 32 | 71.04 196 | 99.17 88 | 96.77 15 | 97.39 77 | 96.79 151 |
|
SR-MVS | | | 92.16 66 | 92.27 62 | 91.83 132 | 98.37 46 | 78.41 208 | 96.67 150 | 95.76 146 | 82.19 192 | 91.97 69 | 98.07 47 | 76.44 121 | 98.64 118 | 93.71 49 | 97.27 79 | 98.45 48 |
|
3Dnovator+ | | 82.88 8 | 89.63 116 | 87.85 133 | 94.99 18 | 94.49 157 | 86.76 27 | 97.84 53 | 95.74 147 | 86.10 96 | 75.47 260 | 96.02 126 | 65.00 233 | 99.51 56 | 82.91 169 | 97.07 84 | 98.72 36 |
|
HPM-MVS |  | | 91.62 78 | 91.53 76 | 91.89 128 | 97.88 69 | 79.22 186 | 96.99 124 | 95.73 148 | 82.07 193 | 89.50 110 | 97.19 97 | 75.59 138 | 98.93 109 | 90.91 85 | 97.94 62 | 97.54 118 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ab-mvs | | | 87.08 162 | 84.94 181 | 93.48 67 | 93.34 186 | 83.67 83 | 88.82 309 | 95.70 149 | 81.18 203 | 84.55 155 | 90.14 228 | 62.72 243 | 98.94 108 | 85.49 139 | 82.54 219 | 97.85 96 |
|
xiu_mvs_v2_base | | | 93.92 33 | 93.26 42 | 95.91 8 | 95.07 137 | 92.02 4 | 98.19 35 | 95.68 150 | 92.06 14 | 96.01 18 | 98.14 37 | 70.83 199 | 98.96 103 | 96.74 16 | 96.57 96 | 96.76 154 |
|
test1172 | | | 91.64 76 | 92.00 68 | 90.54 165 | 98.20 56 | 74.48 275 | 96.45 160 | 95.65 151 | 81.97 196 | 91.63 75 | 98.02 49 | 75.76 134 | 98.61 119 | 93.16 60 | 97.17 81 | 98.52 45 |
|
CP-MVSNet | | | 81.01 255 | 80.08 249 | 83.79 292 | 87.91 288 | 70.51 308 | 94.29 246 | 95.65 151 | 80.83 208 | 72.54 284 | 88.84 241 | 63.71 238 | 92.32 320 | 68.58 279 | 68.36 300 | 88.55 277 |
|
PatchmatchNet |  | | 86.83 168 | 85.12 178 | 91.95 126 | 94.12 164 | 82.27 111 | 86.55 328 | 95.64 153 | 84.59 136 | 82.98 175 | 84.99 303 | 77.26 107 | 95.96 232 | 68.61 278 | 91.34 148 | 97.64 113 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
API-MVS | | | 90.18 108 | 88.97 117 | 93.80 49 | 98.66 28 | 82.95 100 | 97.50 82 | 95.63 154 | 75.16 286 | 86.31 140 | 97.69 68 | 72.49 180 | 99.90 5 | 81.26 176 | 96.07 101 | 98.56 42 |
|
AdaColmap |  | | 88.81 132 | 87.61 141 | 92.39 112 | 99.33 4 | 79.95 168 | 96.70 149 | 95.58 155 | 77.51 268 | 83.05 174 | 96.69 117 | 61.90 254 | 99.72 31 | 84.29 147 | 93.47 128 | 97.50 123 |
|
SCA | | | 85.63 186 | 83.64 199 | 91.60 138 | 92.30 211 | 81.86 123 | 92.88 277 | 95.56 156 | 84.85 126 | 82.52 176 | 85.12 301 | 58.04 276 | 95.39 262 | 73.89 246 | 87.58 177 | 97.54 118 |
|
dp | | | 84.30 208 | 82.31 219 | 90.28 172 | 94.24 162 | 77.97 222 | 86.57 327 | 95.53 157 | 79.94 232 | 80.75 198 | 85.16 299 | 71.49 192 | 96.39 215 | 63.73 300 | 83.36 208 | 96.48 161 |
|
HyFIR lowres test | | | 89.36 119 | 88.60 123 | 91.63 137 | 94.91 144 | 80.76 150 | 95.60 204 | 95.53 157 | 82.56 187 | 84.03 159 | 91.24 208 | 78.03 97 | 96.81 202 | 87.07 130 | 88.41 170 | 97.32 131 |
|
APD-MVS_3200maxsize | | | 91.23 88 | 91.35 78 | 90.89 156 | 97.89 68 | 76.35 253 | 96.30 172 | 95.52 159 | 79.82 233 | 91.03 88 | 97.88 61 | 74.70 157 | 98.54 124 | 92.11 75 | 96.89 89 | 97.77 103 |
|
lupinMVS | | | 93.87 36 | 93.58 38 | 94.75 23 | 93.00 194 | 88.08 14 | 99.15 4 | 95.50 160 | 91.03 22 | 94.90 32 | 97.66 69 | 78.84 85 | 97.56 158 | 94.64 42 | 97.46 72 | 98.62 40 |
|
HPM-MVS_fast | | | 90.38 106 | 90.17 97 | 91.03 151 | 97.61 76 | 77.35 238 | 97.15 109 | 95.48 161 | 79.51 239 | 88.79 117 | 96.90 106 | 71.64 190 | 98.81 114 | 87.01 131 | 97.44 74 | 96.94 144 |
|
VPNet | | | 84.69 200 | 82.92 208 | 90.01 179 | 89.01 276 | 83.45 87 | 96.71 147 | 95.46 162 | 85.71 105 | 79.65 211 | 92.18 195 | 56.66 288 | 96.01 228 | 83.05 168 | 67.84 307 | 90.56 230 |
|
114514_t | | | 88.79 134 | 87.57 142 | 92.45 109 | 98.21 55 | 81.74 128 | 96.99 124 | 95.45 163 | 75.16 286 | 82.48 177 | 95.69 133 | 68.59 210 | 98.50 126 | 80.33 181 | 95.18 113 | 97.10 141 |
|
SR-MVS-dyc-post | | | 91.29 86 | 91.45 77 | 90.80 158 | 97.76 73 | 76.03 258 | 96.20 178 | 95.44 164 | 80.56 215 | 90.72 91 | 97.84 62 | 75.76 134 | 98.61 119 | 91.99 76 | 96.79 93 | 97.75 104 |
|
RE-MVS-def | | | | 91.18 82 | | 97.76 73 | 76.03 258 | 96.20 178 | 95.44 164 | 80.56 215 | 90.72 91 | 97.84 62 | 73.36 174 | | 91.99 76 | 96.79 93 | 97.75 104 |
|
JIA-IIPM | | | 79.00 272 | 77.20 270 | 84.40 287 | 89.74 267 | 64.06 335 | 75.30 352 | 95.44 164 | 62.15 338 | 81.90 188 | 59.08 354 | 78.92 84 | 95.59 256 | 66.51 288 | 85.78 193 | 93.54 214 |
|
RPMNet | | | 79.85 263 | 75.92 281 | 91.64 135 | 90.16 260 | 79.75 173 | 79.02 345 | 95.44 164 | 58.43 352 | 82.27 184 | 72.55 348 | 73.03 176 | 98.41 131 | 46.10 352 | 86.25 185 | 96.75 155 |
|
DU-MVS | | | 84.57 202 | 83.33 205 | 88.28 217 | 88.76 277 | 79.36 182 | 96.43 164 | 95.41 168 | 85.42 111 | 78.11 224 | 90.82 214 | 67.61 212 | 95.14 276 | 79.14 196 | 68.30 301 | 90.33 235 |
|
EI-MVSNet | | | 85.80 183 | 85.20 174 | 87.59 232 | 91.55 236 | 77.41 236 | 95.13 221 | 95.36 169 | 80.43 220 | 80.33 204 | 94.71 159 | 73.72 169 | 95.97 229 | 76.96 216 | 78.64 239 | 89.39 252 |
|
MVSTER | | | 89.25 123 | 88.92 120 | 90.24 173 | 95.98 113 | 84.66 66 | 96.79 140 | 95.36 169 | 87.19 86 | 80.33 204 | 90.61 218 | 90.02 9 | 95.97 229 | 85.38 140 | 78.64 239 | 90.09 242 |
|
CPTT-MVS | | | 89.72 114 | 89.87 105 | 89.29 197 | 98.33 48 | 73.30 284 | 97.70 66 | 95.35 171 | 75.68 282 | 87.40 130 | 97.44 85 | 70.43 201 | 98.25 135 | 89.56 107 | 96.90 88 | 96.33 167 |
|
EIA-MVS | | | 91.73 73 | 92.05 67 | 90.78 160 | 94.52 153 | 76.40 252 | 98.06 42 | 95.34 172 | 89.19 43 | 88.90 116 | 97.28 94 | 77.56 103 | 97.73 152 | 90.77 88 | 96.86 92 | 98.20 64 |
|
RRT_test8_iter05 | | | 87.14 161 | 86.41 162 | 89.32 196 | 94.41 158 | 81.10 141 | 97.06 121 | 95.33 173 | 84.67 133 | 76.27 246 | 90.48 219 | 83.60 41 | 96.33 217 | 85.10 141 | 70.78 276 | 90.53 231 |
|
tpmvs | | | 83.04 227 | 80.77 238 | 89.84 187 | 95.43 125 | 77.96 223 | 85.59 333 | 95.32 174 | 75.31 285 | 76.27 246 | 83.70 313 | 73.89 166 | 97.41 169 | 59.53 314 | 81.93 221 | 94.14 206 |
|
PS-CasMVS | | | 80.27 261 | 79.18 257 | 83.52 299 | 87.56 292 | 69.88 313 | 94.08 250 | 95.29 175 | 80.27 225 | 72.08 286 | 88.51 248 | 59.22 269 | 92.23 322 | 67.49 281 | 68.15 303 | 88.45 281 |
|
TSAR-MVS + GP. | | | 94.35 21 | 94.50 18 | 93.89 46 | 97.38 91 | 83.04 98 | 98.10 39 | 95.29 175 | 91.57 16 | 93.81 48 | 97.45 82 | 86.64 21 | 99.43 61 | 96.28 17 | 94.01 121 | 99.20 18 |
|
tpmrst | | | 88.36 145 | 87.38 148 | 91.31 142 | 94.36 160 | 79.92 169 | 87.32 322 | 95.26 177 | 85.32 114 | 88.34 123 | 86.13 285 | 80.60 63 | 96.70 206 | 83.78 151 | 85.34 198 | 97.30 134 |
|
ETV-MVS | | | 92.72 55 | 92.87 49 | 92.28 116 | 94.54 152 | 81.89 121 | 97.98 46 | 95.21 178 | 89.77 37 | 93.11 57 | 96.83 110 | 77.23 111 | 97.50 165 | 95.74 25 | 95.38 109 | 97.44 125 |
|
NR-MVSNet | | | 83.35 219 | 81.52 231 | 88.84 205 | 88.76 277 | 81.31 137 | 94.45 237 | 95.16 179 | 84.65 134 | 67.81 306 | 90.82 214 | 70.36 202 | 94.87 286 | 74.75 237 | 66.89 317 | 90.33 235 |
|
MVS_0304 | | | 78.43 274 | 76.70 275 | 83.60 297 | 88.22 285 | 69.81 314 | 92.91 276 | 95.10 180 | 72.32 310 | 78.71 218 | 80.29 332 | 33.78 351 | 93.37 313 | 68.77 277 | 80.23 226 | 87.63 296 |
|
jason | | | 92.73 54 | 92.23 64 | 94.21 38 | 90.50 254 | 87.30 23 | 98.65 21 | 95.09 181 | 90.61 26 | 92.76 61 | 97.13 100 | 75.28 150 | 97.30 174 | 93.32 57 | 96.75 95 | 98.02 80 |
jason: jason. |
tpm cat1 | | | 83.63 216 | 81.38 232 | 90.39 168 | 93.53 183 | 78.19 219 | 85.56 334 | 95.09 181 | 70.78 316 | 78.51 220 | 83.28 316 | 74.80 156 | 97.03 188 | 66.77 284 | 84.05 203 | 95.95 173 |
|
cascas | | | 86.50 173 | 84.48 187 | 92.55 106 | 92.64 204 | 85.95 33 | 97.04 123 | 95.07 183 | 75.32 284 | 80.50 200 | 91.02 211 | 54.33 303 | 97.98 141 | 86.79 132 | 87.62 175 | 93.71 213 |
|
abl_6 | | | 89.80 112 | 89.71 109 | 90.07 177 | 96.53 102 | 75.52 266 | 94.48 235 | 95.04 184 | 81.12 204 | 89.22 111 | 97.00 104 | 68.83 208 | 98.96 103 | 89.86 101 | 95.27 110 | 95.73 179 |
|
CVMVSNet | | | 84.83 197 | 85.57 168 | 82.63 306 | 91.55 236 | 60.38 345 | 95.13 221 | 95.03 185 | 80.60 213 | 82.10 186 | 94.71 159 | 66.40 224 | 90.19 341 | 74.30 243 | 90.32 153 | 97.31 133 |
|
test0.0.03 1 | | | 82.79 231 | 82.48 217 | 83.74 294 | 86.81 296 | 72.22 291 | 96.52 154 | 95.03 185 | 83.76 162 | 73.00 278 | 93.20 185 | 72.30 183 | 88.88 344 | 64.15 298 | 77.52 247 | 90.12 240 |
|
RRT_MVS | | | 86.89 165 | 85.96 165 | 89.68 193 | 95.01 141 | 84.13 73 | 96.33 170 | 94.98 187 | 84.20 149 | 80.10 208 | 92.07 196 | 70.52 200 | 95.01 284 | 83.30 164 | 77.14 248 | 89.91 246 |
|
PMMVS | | | 89.46 118 | 89.92 103 | 88.06 223 | 94.64 148 | 69.57 318 | 96.22 176 | 94.95 188 | 87.27 82 | 91.37 81 | 96.54 119 | 65.88 225 | 97.39 170 | 88.54 115 | 93.89 123 | 97.23 138 |
|
Anonymous20240529 | | | 83.15 224 | 80.60 242 | 90.80 158 | 95.74 117 | 78.27 212 | 96.81 139 | 94.92 189 | 60.10 348 | 81.89 189 | 92.54 192 | 45.82 325 | 98.82 113 | 79.25 195 | 78.32 244 | 95.31 189 |
|
CS-MVS-test | | | 93.32 41 | 93.61 36 | 92.46 108 | 94.06 166 | 82.39 109 | 99.02 13 | 94.92 189 | 89.03 45 | 94.70 37 | 97.52 81 | 79.57 74 | 97.07 187 | 95.74 25 | 97.88 65 | 97.93 91 |
|
mvs_anonymous | | | 88.68 135 | 87.62 140 | 91.86 129 | 94.80 146 | 81.69 131 | 93.53 260 | 94.92 189 | 82.03 194 | 78.87 217 | 90.43 222 | 75.77 133 | 95.34 265 | 85.04 143 | 93.16 132 | 98.55 44 |
|
CLD-MVS | | | 87.97 153 | 87.48 145 | 89.44 194 | 92.16 220 | 80.54 156 | 98.14 36 | 94.92 189 | 91.41 17 | 79.43 212 | 95.40 141 | 62.34 245 | 97.27 177 | 90.60 91 | 82.90 214 | 90.50 232 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
xiu_mvs_v1_base_debu | | | 90.54 100 | 89.54 110 | 93.55 62 | 92.31 208 | 87.58 20 | 96.99 124 | 94.87 193 | 87.23 83 | 93.27 52 | 97.56 76 | 57.43 281 | 98.32 132 | 92.72 66 | 93.46 129 | 94.74 197 |
|
xiu_mvs_v1_base | | | 90.54 100 | 89.54 110 | 93.55 62 | 92.31 208 | 87.58 20 | 96.99 124 | 94.87 193 | 87.23 83 | 93.27 52 | 97.56 76 | 57.43 281 | 98.32 132 | 92.72 66 | 93.46 129 | 94.74 197 |
|
xiu_mvs_v1_base_debi | | | 90.54 100 | 89.54 110 | 93.55 62 | 92.31 208 | 87.58 20 | 96.99 124 | 94.87 193 | 87.23 83 | 93.27 52 | 97.56 76 | 57.43 281 | 98.32 132 | 92.72 66 | 93.46 129 | 94.74 197 |
|
CS-MVS | | | 93.12 44 | 93.27 41 | 92.64 102 | 93.86 172 | 83.12 96 | 98.85 17 | 94.85 196 | 88.61 54 | 94.19 42 | 97.42 86 | 79.02 83 | 97.02 189 | 94.89 37 | 97.77 67 | 97.78 102 |
|
GA-MVS | | | 85.79 184 | 84.04 194 | 91.02 153 | 89.47 272 | 80.27 162 | 96.90 134 | 94.84 197 | 85.57 107 | 80.88 196 | 89.08 236 | 56.56 289 | 96.47 213 | 77.72 206 | 85.35 197 | 96.34 165 |
|
TranMVSNet+NR-MVSNet | | | 83.24 223 | 81.71 227 | 87.83 226 | 87.71 290 | 78.81 199 | 96.13 183 | 94.82 198 | 84.52 137 | 76.18 249 | 90.78 216 | 64.07 237 | 94.60 292 | 74.60 241 | 66.59 319 | 90.09 242 |
|
HQP3-MVS | | | | | | | | | 94.80 199 | | | | | | | 83.01 211 | |
|
HQP-MVS | | | 87.91 155 | 87.55 143 | 88.98 202 | 92.08 222 | 78.48 204 | 97.63 69 | 94.80 199 | 90.52 27 | 82.30 180 | 94.56 162 | 65.40 229 | 97.32 172 | 87.67 124 | 83.01 211 | 91.13 224 |
|
TAPA-MVS | | 81.61 12 | 85.02 194 | 83.67 197 | 89.06 199 | 96.79 99 | 73.27 286 | 95.92 190 | 94.79 201 | 74.81 289 | 80.47 201 | 96.83 110 | 71.07 195 | 98.19 138 | 49.82 346 | 92.57 135 | 95.71 180 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PEN-MVS | | | 79.47 268 | 78.26 264 | 83.08 302 | 86.36 299 | 68.58 321 | 93.85 253 | 94.77 202 | 79.76 234 | 71.37 288 | 88.55 245 | 59.79 261 | 92.46 318 | 64.50 296 | 65.40 321 | 88.19 286 |
|
HQP_MVS | | | 87.50 158 | 87.09 155 | 88.74 208 | 91.86 232 | 77.96 223 | 97.18 104 | 94.69 203 | 89.89 35 | 81.33 192 | 94.15 172 | 64.77 234 | 97.30 174 | 87.08 128 | 82.82 215 | 90.96 226 |
|
plane_prior5 | | | | | | | | | 94.69 203 | | | | | 97.30 174 | 87.08 128 | 82.82 215 | 90.96 226 |
|
tpm | | | 85.55 187 | 84.47 188 | 88.80 207 | 90.19 259 | 75.39 268 | 88.79 310 | 94.69 203 | 84.83 127 | 83.96 162 | 85.21 297 | 78.22 95 | 94.68 291 | 76.32 224 | 78.02 246 | 96.34 165 |
|
FMVSNet3 | | | 84.71 199 | 82.71 214 | 90.70 162 | 94.55 151 | 87.71 18 | 95.92 190 | 94.67 206 | 81.73 198 | 75.82 255 | 88.08 253 | 66.99 219 | 94.47 294 | 71.23 263 | 75.38 254 | 89.91 246 |
|
UA-Net | | | 88.92 128 | 88.48 125 | 90.24 173 | 94.06 166 | 77.18 242 | 93.04 273 | 94.66 207 | 87.39 79 | 91.09 86 | 93.89 178 | 74.92 155 | 98.18 139 | 75.83 229 | 91.43 147 | 95.35 188 |
|
LFMVS | | | 89.27 122 | 87.64 138 | 94.16 41 | 97.16 95 | 85.52 45 | 97.18 104 | 94.66 207 | 79.17 247 | 89.63 106 | 96.57 118 | 55.35 296 | 98.22 136 | 89.52 108 | 89.54 156 | 98.74 31 |
|
MVS_Test | | | 90.29 107 | 89.18 114 | 93.62 59 | 95.23 130 | 84.93 61 | 94.41 238 | 94.66 207 | 84.31 144 | 90.37 97 | 91.02 211 | 75.13 152 | 97.82 149 | 83.11 167 | 94.42 117 | 98.12 73 |
|
canonicalmvs | | | 92.27 65 | 91.22 79 | 95.41 13 | 95.80 116 | 88.31 11 | 97.09 117 | 94.64 210 | 88.49 57 | 92.99 60 | 97.31 90 | 72.68 179 | 98.57 123 | 93.38 56 | 88.58 167 | 99.36 12 |
|
VDDNet | | | 86.44 174 | 84.51 185 | 92.22 118 | 91.56 235 | 81.83 124 | 97.10 116 | 94.64 210 | 69.50 322 | 87.84 128 | 95.19 145 | 48.01 317 | 97.92 147 | 89.82 103 | 86.92 179 | 96.89 148 |
|
baseline1 | | | 88.85 131 | 87.49 144 | 92.93 90 | 95.21 132 | 86.85 25 | 95.47 208 | 94.61 212 | 87.29 80 | 83.11 173 | 94.99 156 | 80.70 62 | 96.89 197 | 82.28 171 | 73.72 260 | 95.05 191 |
|
PatchT | | | 79.75 264 | 76.85 274 | 88.42 212 | 89.55 270 | 75.49 267 | 77.37 349 | 94.61 212 | 63.07 335 | 82.46 178 | 73.32 347 | 75.52 140 | 93.41 312 | 51.36 341 | 84.43 201 | 96.36 163 |
|
MS-PatchMatch | | | 83.05 226 | 81.82 226 | 86.72 253 | 89.64 268 | 79.10 191 | 94.88 230 | 94.59 214 | 79.70 236 | 70.67 294 | 89.65 231 | 50.43 310 | 96.82 201 | 70.82 270 | 95.99 104 | 84.25 333 |
|
baseline | | | 90.76 95 | 90.10 98 | 92.74 97 | 92.90 198 | 82.56 104 | 94.60 234 | 94.56 215 | 87.69 74 | 89.06 115 | 95.67 134 | 73.76 168 | 97.51 164 | 90.43 95 | 92.23 142 | 98.16 68 |
|
OMC-MVS | | | 88.80 133 | 88.16 129 | 90.72 161 | 95.30 129 | 77.92 226 | 94.81 231 | 94.51 216 | 86.80 90 | 84.97 148 | 96.85 109 | 67.53 214 | 98.60 121 | 85.08 142 | 87.62 175 | 95.63 181 |
|
MVSFormer | | | 91.36 84 | 90.57 88 | 93.73 53 | 93.00 194 | 88.08 14 | 94.80 232 | 94.48 217 | 80.74 210 | 94.90 32 | 97.13 100 | 78.84 85 | 95.10 280 | 83.77 152 | 97.46 72 | 98.02 80 |
|
test_djsdf | | | 83.00 229 | 82.45 218 | 84.64 281 | 84.07 328 | 69.78 315 | 94.80 232 | 94.48 217 | 80.74 210 | 75.41 261 | 87.70 257 | 61.32 257 | 95.10 280 | 83.77 152 | 79.76 227 | 89.04 266 |
|
casdiffmvs | | | 90.95 92 | 90.39 91 | 92.63 103 | 92.82 199 | 82.53 105 | 96.83 137 | 94.47 219 | 87.69 74 | 88.47 120 | 95.56 138 | 74.04 165 | 97.54 162 | 90.90 86 | 92.74 134 | 97.83 98 |
|
DROMVSNet | | | 92.00 69 | 92.32 60 | 91.03 151 | 93.66 177 | 78.95 195 | 98.22 33 | 94.47 219 | 87.62 76 | 93.27 52 | 97.17 98 | 75.32 149 | 96.91 196 | 94.02 48 | 97.11 83 | 97.24 137 |
|
PCF-MVS | | 84.09 5 | 86.77 171 | 85.00 180 | 92.08 121 | 92.06 225 | 83.07 97 | 92.14 285 | 94.47 219 | 79.63 237 | 76.90 235 | 94.78 158 | 71.15 194 | 99.20 84 | 72.87 252 | 91.05 149 | 93.98 209 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
VDD-MVS | | | 88.28 147 | 87.02 156 | 92.06 123 | 95.09 135 | 80.18 166 | 97.55 77 | 94.45 222 | 83.09 174 | 89.10 114 | 95.92 129 | 47.97 318 | 98.49 127 | 93.08 64 | 86.91 180 | 97.52 122 |
|
PLC |  | 83.97 7 | 88.00 152 | 87.38 148 | 89.83 188 | 98.02 64 | 76.46 250 | 97.16 108 | 94.43 223 | 79.26 246 | 81.98 187 | 96.28 121 | 69.36 206 | 99.27 73 | 77.71 207 | 92.25 141 | 93.77 212 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
FMVSNet2 | | | 82.79 231 | 80.44 244 | 89.83 188 | 92.66 201 | 85.43 46 | 95.42 210 | 94.35 224 | 79.06 250 | 74.46 267 | 87.28 261 | 56.38 291 | 94.31 297 | 69.72 273 | 74.68 257 | 89.76 248 |
|
nrg030 | | | 86.79 170 | 85.43 170 | 90.87 157 | 88.76 277 | 85.34 47 | 97.06 121 | 94.33 225 | 84.31 144 | 80.45 202 | 91.98 197 | 72.36 181 | 96.36 216 | 88.48 118 | 71.13 273 | 90.93 228 |
|
ACMM | | 80.70 13 | 83.72 215 | 82.85 210 | 86.31 258 | 91.19 241 | 72.12 294 | 95.88 193 | 94.29 226 | 80.44 218 | 77.02 233 | 91.96 198 | 55.24 297 | 97.14 185 | 79.30 194 | 80.38 225 | 89.67 249 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XXY-MVS | | | 83.84 212 | 82.00 223 | 89.35 195 | 87.13 294 | 81.38 135 | 95.72 199 | 94.26 227 | 80.15 227 | 75.92 254 | 90.63 217 | 61.96 253 | 96.52 211 | 78.98 198 | 73.28 266 | 90.14 239 |
|
cl-mvsnet2 | | | 85.11 193 | 84.17 192 | 87.92 225 | 95.06 139 | 78.82 197 | 95.51 206 | 94.22 228 | 79.74 235 | 76.77 236 | 87.92 255 | 75.96 130 | 95.68 248 | 79.93 188 | 72.42 268 | 89.27 258 |
|
OPM-MVS | | | 85.84 182 | 85.10 179 | 88.06 223 | 88.34 283 | 77.83 229 | 95.72 199 | 94.20 229 | 87.89 70 | 80.45 202 | 94.05 174 | 58.57 272 | 97.26 178 | 83.88 150 | 82.76 217 | 89.09 263 |
|
Vis-MVSNet (Re-imp) | | | 88.88 130 | 88.87 121 | 88.91 203 | 93.89 171 | 74.43 276 | 96.93 133 | 94.19 230 | 84.39 141 | 83.22 171 | 95.67 134 | 78.24 94 | 94.70 290 | 78.88 199 | 94.40 118 | 97.61 116 |
|
Anonymous20231211 | | | 79.72 265 | 77.19 271 | 87.33 239 | 95.59 122 | 77.16 243 | 95.18 220 | 94.18 231 | 59.31 350 | 72.57 283 | 86.20 284 | 47.89 319 | 95.66 249 | 74.53 242 | 69.24 293 | 89.18 260 |
|
PS-MVSNAJss | | | 84.91 196 | 84.30 190 | 86.74 249 | 85.89 309 | 74.40 277 | 94.95 228 | 94.16 232 | 83.93 157 | 76.45 241 | 90.11 229 | 71.04 196 | 95.77 242 | 83.16 166 | 79.02 236 | 90.06 244 |
|
LPG-MVS_test | | | 84.20 209 | 83.49 203 | 86.33 255 | 90.88 246 | 73.06 287 | 95.28 213 | 94.13 233 | 82.20 190 | 76.31 243 | 93.20 185 | 54.83 301 | 96.95 192 | 83.72 154 | 80.83 223 | 88.98 269 |
|
LGP-MVS_train | | | | | 86.33 255 | 90.88 246 | 73.06 287 | | 94.13 233 | 82.20 190 | 76.31 243 | 93.20 185 | 54.83 301 | 96.95 192 | 83.72 154 | 80.83 223 | 88.98 269 |
|
V42 | | | 83.04 227 | 81.53 230 | 87.57 234 | 86.27 302 | 79.09 192 | 95.87 194 | 94.11 235 | 80.35 222 | 77.22 231 | 86.79 272 | 65.32 231 | 96.02 227 | 77.74 205 | 70.14 281 | 87.61 298 |
|
test_part1 | | | 84.72 198 | 82.85 210 | 90.34 170 | 95.73 119 | 84.79 65 | 96.75 144 | 94.10 236 | 79.05 253 | 75.97 252 | 89.51 233 | 67.69 211 | 95.94 233 | 79.34 192 | 67.50 310 | 90.30 237 |
|
XVG-OURS-SEG-HR | | | 85.74 185 | 85.16 177 | 87.49 237 | 90.22 258 | 71.45 304 | 91.29 295 | 94.09 237 | 81.37 201 | 83.90 164 | 95.22 143 | 60.30 260 | 97.53 163 | 85.58 138 | 84.42 202 | 93.50 215 |
|
XVG-OURS | | | 85.18 192 | 84.38 189 | 87.59 232 | 90.42 256 | 71.73 301 | 91.06 298 | 94.07 238 | 82.00 195 | 83.29 170 | 95.08 153 | 56.42 290 | 97.55 159 | 83.70 156 | 83.42 207 | 93.49 216 |
|
miper_enhance_ethall | | | 85.95 181 | 85.20 174 | 88.19 222 | 94.85 145 | 79.76 172 | 96.00 185 | 94.06 239 | 82.98 178 | 77.74 226 | 88.76 242 | 79.42 75 | 95.46 261 | 80.58 179 | 72.42 268 | 89.36 257 |
|
v2v482 | | | 83.46 218 | 81.86 225 | 88.25 219 | 86.19 303 | 79.65 177 | 96.34 169 | 94.02 240 | 81.56 200 | 77.32 229 | 88.23 250 | 65.62 226 | 96.03 226 | 77.77 204 | 69.72 289 | 89.09 263 |
|
jajsoiax | | | 82.12 242 | 81.15 235 | 85.03 275 | 84.19 326 | 70.70 307 | 94.22 247 | 93.95 241 | 83.07 175 | 73.48 272 | 89.75 230 | 49.66 313 | 95.37 264 | 82.24 172 | 79.76 227 | 89.02 267 |
|
v1144 | | | 82.90 230 | 81.27 234 | 87.78 228 | 86.29 301 | 79.07 193 | 96.14 181 | 93.93 242 | 80.05 229 | 77.38 227 | 86.80 271 | 65.50 227 | 95.93 235 | 75.21 234 | 70.13 282 | 88.33 284 |
|
KD-MVS_2432*1600 | | | 77.63 282 | 74.92 287 | 85.77 265 | 90.86 248 | 79.44 180 | 88.08 315 | 93.92 243 | 76.26 278 | 67.05 310 | 82.78 318 | 72.15 185 | 91.92 325 | 61.53 307 | 41.62 356 | 85.94 321 |
|
miper_refine_blended | | | 77.63 282 | 74.92 287 | 85.77 265 | 90.86 248 | 79.44 180 | 88.08 315 | 93.92 243 | 76.26 278 | 67.05 310 | 82.78 318 | 72.15 185 | 91.92 325 | 61.53 307 | 41.62 356 | 85.94 321 |
|
UnsupCasMVSNet_eth | | | 73.25 305 | 70.57 309 | 81.30 312 | 77.53 346 | 66.33 329 | 87.24 323 | 93.89 245 | 80.38 221 | 57.90 345 | 81.59 323 | 42.91 335 | 90.56 338 | 65.18 294 | 48.51 349 | 87.01 308 |
|
v7n | | | 79.32 270 | 77.34 269 | 85.28 272 | 84.05 329 | 72.89 290 | 93.38 262 | 93.87 246 | 75.02 288 | 70.68 293 | 84.37 307 | 59.58 264 | 95.62 254 | 67.60 280 | 67.50 310 | 87.32 305 |
|
Vis-MVSNet |  | | 88.67 136 | 87.82 134 | 91.24 146 | 92.68 200 | 78.82 197 | 96.95 131 | 93.85 247 | 87.55 77 | 87.07 135 | 95.13 150 | 63.43 240 | 97.21 179 | 77.58 209 | 96.15 99 | 97.70 109 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v148 | | | 82.41 239 | 80.89 236 | 86.99 247 | 86.18 304 | 76.81 246 | 96.27 173 | 93.82 248 | 80.49 217 | 75.28 262 | 86.11 286 | 67.32 217 | 95.75 244 | 75.48 232 | 67.03 316 | 88.42 282 |
|
BH-w/o | | | 88.24 148 | 87.47 146 | 90.54 165 | 95.03 140 | 78.54 203 | 97.41 92 | 93.82 248 | 84.08 150 | 78.23 223 | 94.51 164 | 69.34 207 | 97.21 179 | 80.21 184 | 94.58 116 | 95.87 176 |
|
TR-MVS | | | 86.30 176 | 84.93 182 | 90.42 167 | 94.63 149 | 77.58 233 | 96.57 153 | 93.82 248 | 80.30 223 | 82.42 179 | 95.16 147 | 58.74 271 | 97.55 159 | 74.88 236 | 87.82 174 | 96.13 172 |
|
v1192 | | | 82.31 240 | 80.55 243 | 87.60 231 | 85.94 307 | 78.47 207 | 95.85 196 | 93.80 251 | 79.33 242 | 76.97 234 | 86.51 275 | 63.33 241 | 95.87 237 | 73.11 251 | 70.13 282 | 88.46 280 |
|
ACMP | | 81.66 11 | 84.00 210 | 83.22 206 | 86.33 255 | 91.53 238 | 72.95 289 | 95.91 192 | 93.79 252 | 83.70 164 | 73.79 270 | 92.22 194 | 54.31 304 | 96.89 197 | 83.98 149 | 79.74 229 | 89.16 261 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
v144192 | | | 82.43 236 | 80.73 239 | 87.54 235 | 85.81 310 | 78.22 214 | 95.98 186 | 93.78 253 | 79.09 249 | 77.11 232 | 86.49 276 | 64.66 236 | 95.91 236 | 74.20 244 | 69.42 290 | 88.49 278 |
|
mvs_tets | | | 81.74 245 | 80.71 240 | 84.84 276 | 84.22 325 | 70.29 310 | 93.91 252 | 93.78 253 | 82.77 182 | 73.37 273 | 89.46 234 | 47.36 322 | 95.31 268 | 81.99 173 | 79.55 232 | 88.92 273 |
|
F-COLMAP | | | 84.50 204 | 83.44 204 | 87.67 229 | 95.22 131 | 72.22 291 | 95.95 188 | 93.78 253 | 75.74 281 | 76.30 245 | 95.18 146 | 59.50 265 | 98.45 129 | 72.67 254 | 86.59 183 | 92.35 221 |
|
UniMVSNet_ETH3D | | | 80.86 257 | 78.75 261 | 87.22 244 | 86.31 300 | 72.02 295 | 91.95 286 | 93.76 256 | 73.51 298 | 75.06 264 | 90.16 227 | 43.04 334 | 95.66 249 | 76.37 223 | 78.55 242 | 93.98 209 |
|
Fast-Effi-MVS+ | | | 87.93 154 | 86.94 158 | 90.92 155 | 94.04 168 | 79.16 188 | 98.26 31 | 93.72 257 | 81.29 202 | 83.94 163 | 92.90 189 | 69.83 205 | 96.68 207 | 76.70 218 | 91.74 146 | 96.93 145 |
|
v1921920 | | | 82.02 243 | 80.23 247 | 87.41 238 | 85.62 311 | 77.92 226 | 95.79 198 | 93.69 258 | 78.86 254 | 76.67 237 | 86.44 278 | 62.50 244 | 95.83 239 | 72.69 253 | 69.77 288 | 88.47 279 |
|
DTE-MVSNet | | | 78.37 275 | 77.06 272 | 82.32 309 | 85.22 318 | 67.17 327 | 93.40 261 | 93.66 259 | 78.71 256 | 70.53 295 | 88.29 249 | 59.06 270 | 92.23 322 | 61.38 310 | 63.28 330 | 87.56 300 |
|
v8 | | | 81.88 244 | 80.06 251 | 87.32 240 | 86.63 297 | 79.04 194 | 94.41 238 | 93.65 260 | 78.77 255 | 73.19 277 | 85.57 291 | 66.87 220 | 95.81 240 | 73.84 248 | 67.61 309 | 87.11 306 |
|
diffmvs | | | 91.17 89 | 90.74 87 | 92.44 110 | 93.11 193 | 82.50 107 | 96.25 175 | 93.62 261 | 87.79 71 | 90.40 96 | 95.93 127 | 73.44 173 | 97.42 168 | 93.62 51 | 92.55 136 | 97.41 127 |
|
ADS-MVSNet | | | 81.26 252 | 78.36 262 | 89.96 183 | 93.78 173 | 79.78 171 | 79.48 341 | 93.60 262 | 73.09 303 | 80.14 206 | 79.99 333 | 62.15 248 | 95.24 271 | 59.49 315 | 83.52 205 | 94.85 194 |
|
PatchMatch-RL | | | 85.00 195 | 83.66 198 | 89.02 201 | 95.86 115 | 74.55 274 | 92.49 281 | 93.60 262 | 79.30 244 | 79.29 214 | 91.47 203 | 58.53 273 | 98.45 129 | 70.22 271 | 92.17 143 | 94.07 208 |
|
anonymousdsp | | | 80.98 256 | 79.97 252 | 84.01 289 | 81.73 334 | 70.44 309 | 92.49 281 | 93.58 264 | 77.10 275 | 72.98 279 | 86.31 282 | 57.58 280 | 94.90 285 | 79.32 193 | 78.63 241 | 86.69 311 |
|
CL-MVSNet_2432*1600 | | | 75.81 294 | 74.14 296 | 80.83 316 | 78.33 344 | 67.79 324 | 94.22 247 | 93.52 265 | 77.28 272 | 69.82 299 | 81.54 324 | 61.47 256 | 89.22 343 | 57.59 323 | 53.51 342 | 85.48 325 |
|
miper_ehance_all_eth | | | 84.57 202 | 83.60 201 | 87.50 236 | 92.64 204 | 78.25 213 | 95.40 212 | 93.47 266 | 79.28 245 | 76.41 242 | 87.64 258 | 76.53 120 | 95.24 271 | 78.58 200 | 72.42 268 | 89.01 268 |
|
bset_n11_16_dypcd | | | 84.35 206 | 82.83 212 | 88.91 203 | 82.54 333 | 82.07 115 | 94.12 249 | 93.47 266 | 85.39 113 | 78.55 219 | 88.98 239 | 62.23 246 | 95.11 278 | 86.75 133 | 73.42 262 | 89.55 251 |
|
v1240 | | | 81.70 246 | 79.83 254 | 87.30 242 | 85.50 312 | 77.70 232 | 95.48 207 | 93.44 268 | 78.46 259 | 76.53 240 | 86.44 278 | 60.85 258 | 95.84 238 | 71.59 260 | 70.17 280 | 88.35 283 |
|
v10 | | | 81.43 250 | 79.53 256 | 87.11 245 | 86.38 298 | 78.87 196 | 94.31 242 | 93.43 269 | 77.88 263 | 73.24 276 | 85.26 295 | 65.44 228 | 95.75 244 | 72.14 257 | 67.71 308 | 86.72 310 |
|
IterMVS-LS | | | 83.93 211 | 82.80 213 | 87.31 241 | 91.46 239 | 77.39 237 | 95.66 202 | 93.43 269 | 80.44 218 | 75.51 259 | 87.26 263 | 73.72 169 | 95.16 275 | 76.99 214 | 70.72 278 | 89.39 252 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
GBi-Net | | | 82.42 237 | 80.43 245 | 88.39 214 | 92.66 201 | 81.95 116 | 94.30 243 | 93.38 271 | 79.06 250 | 75.82 255 | 85.66 287 | 56.38 291 | 93.84 304 | 71.23 263 | 75.38 254 | 89.38 254 |
|
test1 | | | 82.42 237 | 80.43 245 | 88.39 214 | 92.66 201 | 81.95 116 | 94.30 243 | 93.38 271 | 79.06 250 | 75.82 255 | 85.66 287 | 56.38 291 | 93.84 304 | 71.23 263 | 75.38 254 | 89.38 254 |
|
FMVSNet1 | | | 79.50 267 | 76.54 277 | 88.39 214 | 88.47 282 | 81.95 116 | 94.30 243 | 93.38 271 | 73.14 302 | 72.04 287 | 85.66 287 | 43.86 328 | 93.84 304 | 65.48 292 | 72.53 267 | 89.38 254 |
|
BH-untuned | | | 86.95 164 | 85.94 166 | 89.99 180 | 94.52 153 | 77.46 235 | 96.78 141 | 93.37 274 | 81.80 197 | 76.62 239 | 93.81 181 | 66.64 222 | 97.02 189 | 76.06 226 | 93.88 124 | 95.48 185 |
|
Effi-MVS+-dtu | | | 84.61 201 | 84.90 183 | 83.72 295 | 91.96 228 | 63.14 338 | 94.95 228 | 93.34 275 | 85.57 107 | 79.79 210 | 87.12 266 | 61.99 251 | 95.61 255 | 83.55 158 | 85.83 192 | 92.41 220 |
|
mvs-test1 | | | 86.83 168 | 87.17 151 | 85.81 264 | 91.96 228 | 65.24 331 | 97.90 51 | 93.34 275 | 85.57 107 | 84.51 156 | 95.14 149 | 61.99 251 | 97.19 181 | 83.55 158 | 90.55 152 | 95.00 192 |
|
CMPMVS |  | 54.94 21 | 75.71 296 | 74.56 291 | 79.17 323 | 79.69 340 | 55.98 351 | 89.59 303 | 93.30 277 | 60.28 346 | 53.85 350 | 89.07 237 | 47.68 321 | 96.33 217 | 76.55 219 | 81.02 222 | 85.22 326 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
cl-mvsnet____ | | | 83.27 221 | 82.12 220 | 86.74 249 | 92.20 216 | 75.95 262 | 95.11 223 | 93.27 278 | 78.44 260 | 74.82 265 | 87.02 268 | 74.19 163 | 95.19 273 | 74.67 239 | 69.32 291 | 89.09 263 |
|
cl-mvsnet1 | | | 83.27 221 | 82.12 220 | 86.74 249 | 92.19 217 | 75.92 263 | 95.11 223 | 93.26 279 | 78.44 260 | 74.81 266 | 87.08 267 | 74.19 163 | 95.19 273 | 74.66 240 | 69.30 292 | 89.11 262 |
|
miper_lstm_enhance | | | 81.66 248 | 80.66 241 | 84.67 280 | 91.19 241 | 71.97 297 | 91.94 287 | 93.19 280 | 77.86 264 | 72.27 285 | 85.26 295 | 73.46 172 | 93.42 311 | 73.71 249 | 67.05 315 | 88.61 276 |
|
eth_miper_zixun_eth | | | 83.12 225 | 82.01 222 | 86.47 254 | 91.85 234 | 74.80 271 | 94.33 241 | 93.18 281 | 79.11 248 | 75.74 258 | 87.25 264 | 72.71 178 | 95.32 267 | 76.78 217 | 67.13 314 | 89.27 258 |
|
pmmvs4 | | | 82.54 235 | 80.79 237 | 87.79 227 | 86.11 305 | 80.49 158 | 93.55 259 | 93.18 281 | 77.29 271 | 73.35 274 | 89.40 235 | 65.26 232 | 95.05 283 | 75.32 233 | 73.61 261 | 87.83 292 |
|
XVG-ACMP-BASELINE | | | 79.38 269 | 77.90 266 | 83.81 291 | 84.98 320 | 67.14 328 | 89.03 308 | 93.18 281 | 80.26 226 | 72.87 280 | 88.15 252 | 38.55 343 | 96.26 220 | 76.05 227 | 78.05 245 | 88.02 289 |
|
CANet_DTU | | | 90.98 91 | 90.04 99 | 93.83 48 | 94.76 147 | 86.23 30 | 96.32 171 | 93.12 284 | 93.11 10 | 93.71 49 | 96.82 112 | 63.08 242 | 99.48 58 | 84.29 147 | 95.12 114 | 95.77 178 |
|
IS-MVSNet | | | 88.67 136 | 88.16 129 | 90.20 175 | 93.61 178 | 76.86 245 | 96.77 143 | 93.07 285 | 84.02 152 | 83.62 167 | 95.60 137 | 74.69 160 | 96.24 222 | 78.43 202 | 93.66 127 | 97.49 124 |
|
cl_fuxian | | | 83.80 213 | 82.65 215 | 87.25 243 | 92.10 221 | 77.74 231 | 95.25 216 | 93.04 286 | 78.58 257 | 76.01 250 | 87.21 265 | 75.25 151 | 95.11 278 | 77.54 210 | 68.89 295 | 88.91 274 |
|
UnsupCasMVSNet_bld | | | 68.60 320 | 64.50 323 | 80.92 315 | 74.63 355 | 67.80 323 | 83.97 336 | 92.94 287 | 65.12 333 | 54.63 349 | 68.23 352 | 35.97 347 | 92.17 324 | 60.13 313 | 44.83 353 | 82.78 340 |
|
MVP-Stereo | | | 82.65 234 | 81.67 228 | 85.59 269 | 86.10 306 | 78.29 211 | 93.33 264 | 92.82 288 | 77.75 265 | 69.17 304 | 87.98 254 | 59.28 268 | 95.76 243 | 71.77 258 | 96.88 90 | 82.73 341 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Effi-MVS+ | | | 90.70 96 | 89.90 104 | 93.09 81 | 93.61 178 | 83.48 86 | 95.20 218 | 92.79 289 | 83.22 171 | 91.82 71 | 95.70 132 | 71.82 187 | 97.48 166 | 91.25 81 | 93.67 126 | 98.32 54 |
|
EU-MVSNet | | | 76.92 289 | 76.95 273 | 76.83 328 | 84.10 327 | 54.73 355 | 91.77 290 | 92.71 290 | 72.74 306 | 69.57 301 | 88.69 243 | 58.03 278 | 87.43 349 | 64.91 295 | 70.00 286 | 88.33 284 |
|
xxxxxxxxxxxxxcwj | | | 94.38 20 | 94.62 17 | 93.68 55 | 98.24 52 | 83.34 89 | 98.61 24 | 92.69 291 | 91.32 18 | 95.07 29 | 98.74 14 | 82.93 48 | 99.38 64 | 95.42 31 | 98.51 34 | 98.32 54 |
|
pm-mvs1 | | | 80.05 262 | 78.02 265 | 86.15 260 | 85.42 313 | 75.81 264 | 95.11 223 | 92.69 291 | 77.13 273 | 70.36 296 | 87.43 260 | 58.44 274 | 95.27 270 | 71.36 262 | 64.25 326 | 87.36 304 |
|
1112_ss | | | 88.60 139 | 87.47 146 | 92.00 125 | 93.21 187 | 80.97 144 | 96.47 157 | 92.46 293 | 83.64 165 | 80.86 197 | 97.30 92 | 80.24 68 | 97.62 155 | 77.60 208 | 85.49 195 | 97.40 128 |
|
Test_1112_low_res | | | 88.03 151 | 86.73 159 | 91.94 127 | 93.15 190 | 80.88 146 | 96.44 162 | 92.41 294 | 83.59 168 | 80.74 199 | 91.16 209 | 80.18 69 | 97.59 156 | 77.48 211 | 85.40 196 | 97.36 130 |
|
BH-RMVSNet | | | 86.84 167 | 85.28 173 | 91.49 140 | 95.35 128 | 80.26 163 | 96.95 131 | 92.21 295 | 82.86 181 | 81.77 191 | 95.46 140 | 59.34 267 | 97.64 154 | 69.79 272 | 93.81 125 | 96.57 159 |
|
GeoE | | | 86.36 175 | 85.20 174 | 89.83 188 | 93.17 189 | 76.13 255 | 97.53 78 | 92.11 296 | 79.58 238 | 80.99 195 | 94.01 175 | 66.60 223 | 96.17 224 | 73.48 250 | 89.30 158 | 97.20 140 |
|
LS3D | | | 82.22 241 | 79.94 253 | 89.06 199 | 97.43 85 | 74.06 280 | 93.20 271 | 92.05 297 | 61.90 339 | 73.33 275 | 95.21 144 | 59.35 266 | 99.21 80 | 54.54 334 | 92.48 138 | 93.90 211 |
|
EG-PatchMatch MVS | | | 74.92 298 | 72.02 303 | 83.62 296 | 83.76 331 | 73.28 285 | 93.62 257 | 92.04 298 | 68.57 324 | 58.88 341 | 83.80 312 | 31.87 355 | 95.57 258 | 56.97 327 | 78.67 238 | 82.00 347 |
|
IterMVS | | | 80.67 258 | 79.16 258 | 85.20 273 | 89.79 264 | 76.08 256 | 92.97 275 | 91.86 299 | 80.28 224 | 71.20 290 | 85.14 300 | 57.93 279 | 91.34 331 | 72.52 255 | 70.74 277 | 88.18 287 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MIMVSNet | | | 79.18 271 | 75.99 280 | 88.72 209 | 87.37 293 | 80.66 152 | 79.96 340 | 91.82 300 | 77.38 270 | 74.33 268 | 81.87 322 | 41.78 337 | 90.74 337 | 66.36 290 | 83.10 210 | 94.76 196 |
|
IterMVS-SCA-FT | | | 80.51 260 | 79.10 259 | 84.73 278 | 89.63 269 | 74.66 272 | 92.98 274 | 91.81 301 | 80.05 229 | 71.06 292 | 85.18 298 | 58.04 276 | 91.40 330 | 72.48 256 | 70.70 279 | 88.12 288 |
|
our_test_3 | | | 77.90 280 | 75.37 284 | 85.48 271 | 85.39 314 | 76.74 247 | 93.63 256 | 91.67 302 | 73.39 301 | 65.72 318 | 84.65 306 | 58.20 275 | 93.13 315 | 57.82 321 | 67.87 305 | 86.57 312 |
|
pmmvs5 | | | 81.34 251 | 79.54 255 | 86.73 252 | 85.02 319 | 76.91 244 | 96.22 176 | 91.65 303 | 77.65 266 | 73.55 271 | 88.61 244 | 55.70 294 | 94.43 295 | 74.12 245 | 73.35 265 | 88.86 275 |
|
ACMH | | 75.40 17 | 77.99 278 | 74.96 285 | 87.10 246 | 90.67 252 | 76.41 251 | 93.19 272 | 91.64 304 | 72.47 309 | 63.44 326 | 87.61 259 | 43.34 331 | 97.16 182 | 58.34 319 | 73.94 259 | 87.72 293 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Fast-Effi-MVS+-dtu | | | 83.33 220 | 82.60 216 | 85.50 270 | 89.55 270 | 69.38 319 | 96.09 184 | 91.38 305 | 82.30 189 | 75.96 253 | 91.41 204 | 56.71 286 | 95.58 257 | 75.13 235 | 84.90 200 | 91.54 222 |
|
YYNet1 | | | 73.53 304 | 70.43 310 | 82.85 304 | 84.52 323 | 71.73 301 | 91.69 292 | 91.37 306 | 67.63 325 | 46.79 353 | 81.21 326 | 55.04 299 | 90.43 339 | 55.93 330 | 59.70 335 | 86.38 314 |
|
ppachtmachnet_test | | | 77.19 286 | 74.22 294 | 86.13 261 | 85.39 314 | 78.22 214 | 93.98 251 | 91.36 307 | 71.74 313 | 67.11 309 | 84.87 304 | 56.67 287 | 93.37 313 | 52.21 339 | 64.59 323 | 86.80 309 |
|
Anonymous202405211 | | | 84.41 205 | 81.93 224 | 91.85 131 | 96.78 100 | 78.41 208 | 97.44 85 | 91.34 308 | 70.29 318 | 84.06 158 | 94.26 168 | 41.09 340 | 98.96 103 | 79.46 191 | 82.65 218 | 98.17 67 |
|
MDA-MVSNet_test_wron | | | 73.54 303 | 70.43 310 | 82.86 303 | 84.55 321 | 71.85 298 | 91.74 291 | 91.32 309 | 67.63 325 | 46.73 354 | 81.09 327 | 55.11 298 | 90.42 340 | 55.91 331 | 59.76 334 | 86.31 315 |
|
CR-MVSNet | | | 83.53 217 | 81.36 233 | 90.06 178 | 90.16 260 | 79.75 173 | 79.02 345 | 91.12 310 | 84.24 148 | 82.27 184 | 80.35 330 | 75.45 141 | 93.67 308 | 63.37 303 | 86.25 185 | 96.75 155 |
|
Patchmtry | | | 77.36 285 | 74.59 290 | 85.67 268 | 89.75 265 | 75.75 265 | 77.85 348 | 91.12 310 | 60.28 346 | 71.23 289 | 80.35 330 | 75.45 141 | 93.56 310 | 57.94 320 | 67.34 313 | 87.68 295 |
|
LTVRE_ROB | | 73.68 18 | 77.99 278 | 75.74 282 | 84.74 277 | 90.45 255 | 72.02 295 | 86.41 329 | 91.12 310 | 72.57 308 | 66.63 313 | 87.27 262 | 54.95 300 | 96.98 191 | 56.29 329 | 75.98 250 | 85.21 327 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OurMVSNet-221017-0 | | | 77.18 287 | 76.06 279 | 80.55 317 | 83.78 330 | 60.00 346 | 90.35 300 | 91.05 313 | 77.01 277 | 66.62 314 | 87.92 255 | 47.73 320 | 94.03 301 | 71.63 259 | 68.44 299 | 87.62 297 |
|
CNLPA | | | 86.96 163 | 85.37 172 | 91.72 134 | 97.59 78 | 79.34 184 | 97.21 100 | 91.05 313 | 74.22 293 | 78.90 215 | 96.75 115 | 67.21 218 | 98.95 106 | 74.68 238 | 90.77 151 | 96.88 149 |
|
Anonymous20240521 | | | 72.06 312 | 69.91 312 | 78.50 324 | 77.11 349 | 61.67 343 | 91.62 294 | 90.97 315 | 65.52 332 | 62.37 331 | 79.05 336 | 36.32 346 | 90.96 335 | 57.75 322 | 68.52 298 | 82.87 338 |
|
DIV-MVS_2432*1600 | | | 70.97 315 | 69.31 315 | 75.95 333 | 76.24 354 | 55.39 354 | 87.45 320 | 90.94 316 | 70.20 319 | 62.96 330 | 77.48 340 | 44.01 327 | 88.09 346 | 61.25 311 | 53.26 343 | 84.37 332 |
|
pmmvs6 | | | 74.65 300 | 71.67 304 | 83.60 297 | 79.13 342 | 69.94 312 | 93.31 268 | 90.88 317 | 61.05 345 | 65.83 317 | 84.15 310 | 43.43 330 | 94.83 288 | 66.62 285 | 60.63 333 | 86.02 320 |
|
Anonymous20231206 | | | 75.29 297 | 73.64 298 | 80.22 318 | 80.75 335 | 63.38 337 | 93.36 263 | 90.71 318 | 73.09 303 | 67.12 308 | 83.70 313 | 50.33 311 | 90.85 336 | 53.63 337 | 70.10 284 | 86.44 313 |
|
USDC | | | 78.65 273 | 76.25 278 | 85.85 263 | 87.58 291 | 74.60 273 | 89.58 304 | 90.58 319 | 84.05 151 | 63.13 328 | 88.23 250 | 40.69 342 | 96.86 200 | 66.57 287 | 75.81 252 | 86.09 319 |
|
MSDG | | | 80.62 259 | 77.77 267 | 89.14 198 | 93.43 185 | 77.24 239 | 91.89 288 | 90.18 320 | 69.86 321 | 68.02 305 | 91.94 200 | 52.21 306 | 98.84 112 | 59.32 317 | 83.12 209 | 91.35 223 |
|
ACMH+ | | 76.62 16 | 77.47 284 | 74.94 286 | 85.05 274 | 91.07 244 | 71.58 303 | 93.26 269 | 90.01 321 | 71.80 312 | 64.76 321 | 88.55 245 | 41.62 338 | 96.48 212 | 62.35 306 | 71.00 274 | 87.09 307 |
|
FMVSNet5 | | | 76.46 291 | 74.16 295 | 83.35 301 | 90.05 262 | 76.17 254 | 89.58 304 | 89.85 322 | 71.39 315 | 65.29 320 | 80.42 329 | 50.61 309 | 87.70 348 | 61.05 312 | 69.24 293 | 86.18 317 |
|
ambc | | | | | 76.02 331 | 68.11 358 | 51.43 356 | 64.97 358 | 89.59 323 | | 60.49 338 | 74.49 343 | 17.17 362 | 92.46 318 | 61.50 309 | 52.85 345 | 84.17 334 |
|
ITE_SJBPF | | | | | 82.38 307 | 87.00 295 | 65.59 330 | | 89.55 324 | 79.99 231 | 69.37 302 | 91.30 207 | 41.60 339 | 95.33 266 | 62.86 305 | 74.63 258 | 86.24 316 |
|
pmmvs-eth3d | | | 73.59 302 | 70.66 308 | 82.38 307 | 76.40 352 | 73.38 282 | 89.39 307 | 89.43 325 | 72.69 307 | 60.34 339 | 77.79 339 | 46.43 324 | 91.26 333 | 66.42 289 | 57.06 337 | 82.51 342 |
|
test20.03 | | | 72.36 310 | 71.15 306 | 75.98 332 | 77.79 345 | 59.16 348 | 92.40 283 | 89.35 326 | 74.09 294 | 61.50 335 | 84.32 308 | 48.09 316 | 85.54 354 | 50.63 344 | 62.15 332 | 83.24 337 |
|
SixPastTwentyTwo | | | 76.04 292 | 74.32 293 | 81.22 313 | 84.54 322 | 61.43 344 | 91.16 296 | 89.30 327 | 77.89 262 | 64.04 323 | 86.31 282 | 48.23 315 | 94.29 298 | 63.54 302 | 63.84 328 | 87.93 291 |
|
TransMVSNet (Re) | | | 76.94 288 | 74.38 292 | 84.62 282 | 85.92 308 | 75.25 269 | 95.28 213 | 89.18 328 | 73.88 296 | 67.22 307 | 86.46 277 | 59.64 262 | 94.10 300 | 59.24 318 | 52.57 346 | 84.50 331 |
|
MIMVSNet1 | | | 69.44 316 | 66.65 320 | 77.84 325 | 76.48 351 | 62.84 339 | 87.42 321 | 88.97 329 | 66.96 330 | 57.75 346 | 79.72 335 | 32.77 354 | 85.83 353 | 46.32 351 | 63.42 329 | 84.85 329 |
|
K. test v3 | | | 73.62 301 | 71.59 305 | 79.69 320 | 82.98 332 | 59.85 347 | 90.85 299 | 88.83 330 | 77.13 273 | 58.90 340 | 82.11 320 | 43.62 329 | 91.72 328 | 65.83 291 | 54.10 341 | 87.50 302 |
|
Baseline_NR-MVSNet | | | 81.22 253 | 80.07 250 | 84.68 279 | 85.32 317 | 75.12 270 | 96.48 156 | 88.80 331 | 76.24 280 | 77.28 230 | 86.40 281 | 67.61 212 | 94.39 296 | 75.73 231 | 66.73 318 | 84.54 330 |
|
MDA-MVSNet-bldmvs | | | 71.45 313 | 67.94 317 | 81.98 311 | 85.33 316 | 68.50 322 | 92.35 284 | 88.76 332 | 70.40 317 | 42.99 355 | 81.96 321 | 46.57 323 | 91.31 332 | 48.75 349 | 54.39 340 | 86.11 318 |
|
new-patchmatchnet | | | 68.85 319 | 65.93 321 | 77.61 326 | 73.57 357 | 63.94 336 | 90.11 302 | 88.73 333 | 71.62 314 | 55.08 348 | 73.60 345 | 40.84 341 | 87.22 350 | 51.35 342 | 48.49 350 | 81.67 348 |
|
Patchmatch-test | | | 78.25 276 | 74.72 289 | 88.83 206 | 91.20 240 | 74.10 279 | 73.91 355 | 88.70 334 | 59.89 349 | 66.82 312 | 85.12 301 | 78.38 92 | 94.54 293 | 48.84 348 | 79.58 231 | 97.86 95 |
|
OpenMVS_ROB |  | 68.52 20 | 73.02 307 | 69.57 313 | 83.37 300 | 80.54 338 | 71.82 299 | 93.60 258 | 88.22 335 | 62.37 337 | 61.98 333 | 83.15 317 | 35.31 350 | 95.47 260 | 45.08 353 | 75.88 251 | 82.82 339 |
|
RPSCF | | | 77.73 281 | 76.63 276 | 81.06 314 | 88.66 281 | 55.76 353 | 87.77 319 | 87.88 336 | 64.82 334 | 74.14 269 | 92.79 190 | 49.22 314 | 96.81 202 | 67.47 282 | 76.88 249 | 90.62 229 |
|
MVS-HIRNet | | | 71.36 314 | 67.00 318 | 84.46 286 | 90.58 253 | 69.74 316 | 79.15 344 | 87.74 337 | 46.09 355 | 61.96 334 | 50.50 357 | 45.14 326 | 95.64 252 | 53.74 336 | 88.11 173 | 88.00 290 |
|
DP-MVS | | | 81.47 249 | 78.28 263 | 91.04 150 | 98.14 58 | 78.48 204 | 95.09 226 | 86.97 338 | 61.14 344 | 71.12 291 | 92.78 191 | 59.59 263 | 99.38 64 | 53.11 338 | 86.61 182 | 95.27 190 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 295 | 73.00 301 | 83.94 290 | 92.38 207 | 69.08 320 | 91.85 289 | 86.93 339 | 61.48 342 | 65.32 319 | 90.27 224 | 42.27 336 | 96.93 195 | 50.91 343 | 75.63 253 | 85.80 324 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test_0402 | | | 72.68 308 | 69.54 314 | 82.09 310 | 88.67 280 | 71.81 300 | 92.72 279 | 86.77 340 | 61.52 341 | 62.21 332 | 83.91 311 | 43.22 332 | 93.76 307 | 34.60 357 | 72.23 271 | 80.72 349 |
|
testgi | | | 74.88 299 | 73.40 299 | 79.32 322 | 80.13 339 | 61.75 341 | 93.21 270 | 86.64 341 | 79.49 240 | 66.56 315 | 91.06 210 | 35.51 349 | 88.67 345 | 56.79 328 | 71.25 272 | 87.56 300 |
|
TDRefinement | | | 69.20 318 | 65.78 322 | 79.48 321 | 66.04 360 | 62.21 340 | 88.21 314 | 86.12 342 | 62.92 336 | 61.03 337 | 85.61 290 | 33.23 352 | 94.16 299 | 55.82 332 | 53.02 344 | 82.08 346 |
|
ADS-MVSNet2 | | | 79.57 266 | 77.53 268 | 85.71 267 | 93.78 173 | 72.13 293 | 79.48 341 | 86.11 343 | 73.09 303 | 80.14 206 | 79.99 333 | 62.15 248 | 90.14 342 | 59.49 315 | 83.52 205 | 94.85 194 |
|
LF4IMVS | | | 72.36 310 | 70.82 307 | 76.95 327 | 79.18 341 | 56.33 350 | 86.12 330 | 86.11 343 | 69.30 323 | 63.06 329 | 86.66 273 | 33.03 353 | 92.25 321 | 65.33 293 | 68.64 297 | 82.28 345 |
|
TinyColmap | | | 72.41 309 | 68.99 316 | 82.68 305 | 88.11 286 | 69.59 317 | 88.41 313 | 85.20 345 | 65.55 331 | 57.91 344 | 84.82 305 | 30.80 357 | 95.94 233 | 51.38 340 | 68.70 296 | 82.49 344 |
|
pmmvs3 | | | 65.75 322 | 62.18 325 | 76.45 330 | 67.12 359 | 64.54 332 | 88.68 311 | 85.05 346 | 54.77 354 | 57.54 347 | 73.79 344 | 29.40 358 | 86.21 352 | 55.49 333 | 47.77 351 | 78.62 350 |
|
new_pmnet | | | 66.18 321 | 63.18 324 | 75.18 335 | 76.27 353 | 61.74 342 | 83.79 337 | 84.66 347 | 56.64 353 | 51.57 351 | 71.85 351 | 31.29 356 | 87.93 347 | 49.98 345 | 62.55 331 | 75.86 352 |
|
AllTest | | | 75.92 293 | 73.06 300 | 84.47 284 | 92.18 218 | 67.29 325 | 91.07 297 | 84.43 348 | 67.63 325 | 63.48 324 | 90.18 225 | 38.20 344 | 97.16 182 | 57.04 325 | 73.37 263 | 88.97 271 |
|
TestCases | | | | | 84.47 284 | 92.18 218 | 67.29 325 | | 84.43 348 | 67.63 325 | 63.48 324 | 90.18 225 | 38.20 344 | 97.16 182 | 57.04 325 | 73.37 263 | 88.97 271 |
|
LCM-MVSNet-Re | | | 83.75 214 | 83.54 202 | 84.39 288 | 93.54 181 | 64.14 334 | 92.51 280 | 84.03 350 | 83.90 158 | 66.14 316 | 86.59 274 | 67.36 216 | 92.68 316 | 84.89 145 | 92.87 133 | 96.35 164 |
|
Gipuma |  | | 45.11 329 | 42.05 331 | 54.30 343 | 80.69 336 | 51.30 357 | 35.80 362 | 83.81 351 | 28.13 359 | 27.94 361 | 34.53 361 | 11.41 367 | 76.70 358 | 21.45 360 | 54.65 339 | 34.90 360 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LCM-MVSNet | | | 52.52 326 | 48.24 329 | 65.35 336 | 47.63 366 | 41.45 362 | 72.55 356 | 83.62 352 | 31.75 358 | 37.66 357 | 57.92 355 | 9.19 369 | 76.76 357 | 49.26 347 | 44.60 354 | 77.84 351 |
|
FPMVS | | | 55.09 325 | 52.93 328 | 61.57 341 | 55.98 361 | 40.51 364 | 83.11 338 | 83.41 353 | 37.61 357 | 34.95 358 | 71.95 349 | 14.40 363 | 76.95 356 | 29.81 358 | 65.16 322 | 67.25 356 |
|
Patchmatch-RL test | | | 76.65 290 | 74.01 297 | 84.55 283 | 77.37 348 | 64.23 333 | 78.49 347 | 82.84 354 | 78.48 258 | 64.63 322 | 73.40 346 | 76.05 129 | 91.70 329 | 76.99 214 | 57.84 336 | 97.72 106 |
|
DSMNet-mixed | | | 73.13 306 | 72.45 302 | 75.19 334 | 77.51 347 | 46.82 358 | 85.09 335 | 82.01 355 | 67.61 329 | 69.27 303 | 81.33 325 | 50.89 307 | 86.28 351 | 54.54 334 | 83.80 204 | 92.46 219 |
|
lessismore_v0 | | | | | 79.98 319 | 80.59 337 | 58.34 349 | | 80.87 356 | | 58.49 342 | 83.46 315 | 43.10 333 | 93.89 303 | 63.11 304 | 48.68 348 | 87.72 293 |
|
door | | | | | | | | | 80.13 357 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 358 | | | | | | | | |
|
PM-MVS | | | 69.32 317 | 66.93 319 | 76.49 329 | 73.60 356 | 55.84 352 | 85.91 331 | 79.32 359 | 74.72 290 | 61.09 336 | 78.18 338 | 21.76 359 | 91.10 334 | 70.86 268 | 56.90 338 | 82.51 342 |
|
ANet_high | | | 46.22 328 | 41.28 333 | 61.04 342 | 39.91 368 | 46.25 360 | 70.59 357 | 76.18 360 | 58.87 351 | 23.09 362 | 48.00 359 | 12.58 365 | 66.54 361 | 28.65 359 | 13.62 362 | 70.35 354 |
|
test_method | | | 56.77 324 | 54.53 327 | 63.49 340 | 76.49 350 | 40.70 363 | 75.68 351 | 74.24 361 | 19.47 363 | 48.73 352 | 71.89 350 | 19.31 360 | 65.80 362 | 57.46 324 | 47.51 352 | 83.97 335 |
|
PMMVS2 | | | 50.90 327 | 46.31 330 | 64.67 337 | 55.53 362 | 46.67 359 | 77.30 350 | 71.02 362 | 40.89 356 | 34.16 359 | 59.32 353 | 9.83 368 | 76.14 359 | 40.09 356 | 28.63 359 | 71.21 353 |
|
MTMP | | | | | | | | 97.53 78 | 68.16 363 | | | | | | | | |
|
DeepMVS_CX |  | | | | 64.06 339 | 78.53 343 | 43.26 361 | | 68.11 364 | 69.94 320 | 38.55 356 | 76.14 342 | 18.53 361 | 79.34 355 | 43.72 354 | 41.62 356 | 69.57 355 |
|
PMVS |  | 34.80 23 | 39.19 331 | 35.53 334 | 50.18 344 | 29.72 369 | 30.30 366 | 59.60 360 | 66.20 365 | 26.06 360 | 17.91 364 | 49.53 358 | 3.12 370 | 74.09 360 | 18.19 362 | 49.40 347 | 46.14 357 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 41.54 330 | 41.93 332 | 40.38 346 | 20.10 370 | 26.84 367 | 61.93 359 | 59.09 366 | 14.81 365 | 28.51 360 | 80.58 328 | 35.53 348 | 48.33 366 | 63.70 301 | 13.11 363 | 45.96 359 |
|
MVE |  | 35.65 22 | 33.85 332 | 29.49 337 | 46.92 345 | 41.86 367 | 36.28 365 | 50.45 361 | 56.52 367 | 18.75 364 | 18.28 363 | 37.84 360 | 2.41 371 | 58.41 363 | 18.71 361 | 20.62 360 | 46.06 358 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 32.70 333 | 32.39 335 | 33.65 347 | 53.35 364 | 25.70 368 | 74.07 354 | 53.33 368 | 21.08 361 | 17.17 365 | 33.63 363 | 11.85 366 | 54.84 364 | 12.98 363 | 14.04 361 | 20.42 361 |
|
EMVS | | | 31.70 334 | 31.45 336 | 32.48 348 | 50.72 365 | 23.95 369 | 74.78 353 | 52.30 369 | 20.36 362 | 16.08 366 | 31.48 364 | 12.80 364 | 53.60 365 | 11.39 364 | 13.10 364 | 19.88 362 |
|
N_pmnet | | | 61.30 323 | 60.20 326 | 64.60 338 | 84.32 324 | 17.00 371 | 91.67 293 | 10.98 370 | 61.77 340 | 58.45 343 | 78.55 337 | 49.89 312 | 91.83 327 | 42.27 355 | 63.94 327 | 84.97 328 |
|
wuyk23d | | | 14.10 336 | 13.89 339 | 14.72 349 | 55.23 363 | 22.91 370 | 33.83 363 | 3.56 371 | 4.94 366 | 4.11 367 | 2.28 369 | 2.06 372 | 19.66 367 | 10.23 365 | 8.74 365 | 1.59 365 |
|
testmvs | | | 9.92 337 | 12.94 340 | 0.84 351 | 0.65 371 | 0.29 373 | 93.78 254 | 0.39 372 | 0.42 367 | 2.85 368 | 15.84 367 | 0.17 374 | 0.30 369 | 2.18 366 | 0.21 366 | 1.91 364 |
|
test123 | | | 9.07 338 | 11.73 341 | 1.11 350 | 0.50 372 | 0.77 372 | 89.44 306 | 0.20 373 | 0.34 368 | 2.15 369 | 10.72 368 | 0.34 373 | 0.32 368 | 1.79 367 | 0.08 367 | 2.23 363 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
pcd_1.5k_mvsjas | | | 5.92 340 | 7.89 343 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 71.04 196 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
ab-mvs-re | | | 8.11 339 | 10.81 342 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 97.30 92 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
OPU-MVS | | | | | 97.30 2 | 99.19 8 | 92.31 3 | 99.12 6 | | | | 98.54 20 | 92.06 2 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
test_0728_THIRD | | | | | | | | | | 88.38 59 | 96.69 10 | 98.76 12 | 89.64 10 | 99.76 20 | 97.47 10 | 98.84 22 | 99.38 10 |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 118 |
|
test_part2 | | | | | | 98.90 17 | 85.14 57 | | | | 96.07 17 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 102 | | | | 97.54 118 |
|
sam_mvs | | | | | | | | | | | | | 75.35 148 | | | | |
|
test_post1 | | | | | | | | 85.88 332 | | | | 30.24 365 | 73.77 167 | 95.07 282 | 73.89 246 | | |
|
test_post | | | | | | | | | | | | 33.80 362 | 76.17 127 | 95.97 229 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 341 | 77.78 101 | 95.39 262 | | | |
|
gm-plane-assit | | | | | | 92.27 212 | 79.64 178 | | | 84.47 140 | | 95.15 148 | | 97.93 142 | 85.81 136 | | |
|
test9_res | | | | | | | | | | | | | | | 96.00 21 | 99.03 11 | 98.31 57 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 43 | 99.00 13 | 98.57 41 |
|
test_prior4 | | | | | | | 82.34 110 | 97.75 63 | | | | | | | | | |
|
test_prior2 | | | | | | | | 98.37 28 | | 86.08 97 | 94.57 39 | 98.02 49 | 83.14 44 | | 95.05 35 | 98.79 23 | |
|
旧先验2 | | | | | | | | 96.97 129 | | 74.06 295 | 96.10 16 | | | 97.76 151 | 88.38 119 | | |
|
新几何2 | | | | | | | | 96.42 165 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 96.84 136 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.48 58 | 76.45 221 | | |
|
segment_acmp | | | | | | | | | | | | | 82.69 53 | | | | |
|
testdata1 | | | | | | | | 95.57 205 | | 87.44 78 | | | | | | | |
|
plane_prior7 | | | | | | 91.86 232 | 77.55 234 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 227 | 77.92 226 | | | | | | 64.77 234 | | | | |
|
plane_prior4 | | | | | | | | | | | | 94.15 172 | | | | | |
|
plane_prior3 | | | | | | | 77.75 230 | | | 90.17 33 | 81.33 192 | | | | | | |
|
plane_prior2 | | | | | | | | 97.18 104 | | 89.89 35 | | | | | | | |
|
plane_prior1 | | | | | | 91.95 230 | | | | | | | | | | | |
|
plane_prior | | | | | | | 77.96 223 | 97.52 81 | | 90.36 32 | | | | | | 82.96 213 | |
|
HQP5-MVS | | | | | | | 78.48 204 | | | | | | | | | | |
|
HQP-NCC | | | | | | 92.08 222 | | 97.63 69 | | 90.52 27 | 82.30 180 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 222 | | 97.63 69 | | 90.52 27 | 82.30 180 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 124 | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 180 | | | 97.32 172 | | | 91.13 224 |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 229 | | | | |
|
NP-MVS | | | | | | 92.04 226 | 78.22 214 | | | | | 94.56 162 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 128 | 86.80 325 | | 80.65 212 | 85.65 144 | | 74.26 162 | | 76.52 220 | | 96.98 143 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 243 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 235 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 189 | | | | |
|