This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
thres20088.92 12387.65 13092.73 9896.30 10085.62 4397.85 5098.86 184.38 13784.82 14193.99 16675.12 14898.01 13570.86 25786.67 17494.56 193
thres100view90088.30 14186.95 15092.33 11296.10 10684.90 6297.14 10798.85 282.69 17783.41 15993.66 17275.43 13997.93 13769.04 26386.24 18094.17 195
tfpn200view988.48 13687.15 14592.47 10696.21 10285.30 4997.44 8298.85 283.37 16383.99 15193.82 16975.36 14297.93 13769.04 26386.24 18094.17 195
thres600view788.06 14486.70 15392.15 11996.10 10685.17 5597.14 10798.85 282.70 17683.41 15993.66 17275.43 13997.82 14467.13 27285.88 18493.45 208
thres40088.42 13987.15 14592.23 11696.21 10285.30 4997.44 8298.85 283.37 16383.99 15193.82 16975.36 14297.93 13769.04 26386.24 18093.45 208
MVS_111021_HR93.41 4093.39 3993.47 7097.34 8882.83 9897.56 7498.27 689.16 4289.71 9597.14 9379.77 7299.56 5193.65 4797.94 6198.02 80
sss90.87 9089.96 9693.60 6094.15 15883.84 7897.14 10798.13 785.93 9789.68 9696.09 11971.67 17799.30 7287.69 11589.16 15297.66 107
MG-MVS94.25 2493.72 3495.85 999.38 389.35 997.98 4498.09 889.99 3292.34 6296.97 9981.30 5898.99 10088.54 10798.88 1999.20 18
VNet92.11 6691.22 7594.79 2196.91 9486.98 2497.91 4797.96 986.38 8893.65 4895.74 12470.16 19398.95 10593.39 5188.87 15698.43 49
test_yl91.46 7890.53 8494.24 3697.41 8285.18 5198.08 3897.72 1080.94 19889.85 9296.14 11775.61 13298.81 11290.42 8888.56 16198.74 31
DCV-MVSNet91.46 7890.53 8494.24 3697.41 8285.18 5198.08 3897.72 1080.94 19889.85 9296.14 11775.61 13298.81 11290.42 8888.56 16198.74 31
WTY-MVS92.65 5891.68 7095.56 1196.00 10888.90 1098.23 3197.65 1288.57 5289.82 9497.22 9179.29 7599.06 9689.57 9888.73 15898.73 35
EPNet94.06 3094.15 2893.76 5097.27 9084.35 6798.29 2997.64 1394.57 495.36 2396.88 10279.96 7199.12 9391.30 7296.11 9497.82 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS84.06 691.63 7490.37 8795.39 1496.12 10588.25 1290.22 28897.58 1488.33 5890.50 8691.96 18879.26 7799.06 9690.29 9089.07 15398.88 27
baseline290.39 10090.21 9090.93 15190.86 23780.99 13895.20 20897.41 1586.03 9580.07 19994.61 15490.58 497.47 16387.29 11989.86 14994.35 194
PVSNet82.34 989.02 12087.79 12892.71 9995.49 11981.50 12997.70 6497.29 1687.76 6985.47 13795.12 14556.90 27098.90 10980.33 17294.02 11497.71 104
PGM-MVS91.93 6891.80 6892.32 11398.27 5079.74 17195.28 20397.27 1783.83 15490.89 8497.78 6276.12 12699.56 5188.82 10597.93 6397.66 107
IB-MVS85.34 488.67 13187.14 14793.26 7393.12 18184.32 6898.76 1797.27 1787.19 8279.36 20390.45 21183.92 3898.53 12184.41 13769.79 28096.93 139
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS90.60 9588.64 11696.50 394.25 15690.53 693.33 25297.21 1977.59 25678.88 20697.31 8571.52 18099.69 3689.60 9798.03 5999.27 16
CSCG92.02 6791.65 7193.12 7998.53 3680.59 14997.47 8097.18 2077.06 26484.64 14597.98 5283.98 3799.52 5390.72 8197.33 7599.23 17
PHI-MVS93.59 3893.63 3593.48 6798.05 6181.76 12298.64 2197.13 2182.60 17994.09 4598.49 2380.35 6499.85 1094.74 3898.62 3198.83 28
CNVR-MVS96.30 196.54 195.55 1299.31 587.69 1999.06 997.12 2294.66 396.79 998.78 1186.42 2499.95 397.59 999.18 599.00 23
MCST-MVS96.17 396.12 596.32 599.42 289.36 898.94 1597.10 2395.17 292.11 6398.46 2487.33 2099.97 297.21 1299.31 299.63 5
VPA-MVSNet85.32 18283.83 18689.77 18490.25 24482.63 10096.36 16197.07 2483.03 17081.21 18589.02 22761.58 24196.31 21085.02 13570.95 26890.36 224
Regformer-194.00 3294.04 3193.87 4798.41 4284.29 6997.43 8697.04 2589.50 3792.75 5898.13 3882.60 5399.26 7593.55 4996.99 8098.06 77
DELS-MVS94.98 1194.49 1996.44 496.42 9990.59 599.21 297.02 2694.40 591.46 7197.08 9683.32 4399.69 3692.83 5998.70 2999.04 21
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GG-mvs-BLEND93.49 6694.94 13786.26 2981.62 32497.00 2788.32 11694.30 16091.23 396.21 21488.49 10997.43 7298.00 85
Regformer-293.92 3394.01 3293.67 5698.41 4283.75 7997.43 8697.00 2789.43 3992.69 5998.13 3882.48 5499.22 7893.51 5096.99 8098.04 78
DPM-MVS96.21 295.53 998.26 196.26 10195.09 199.15 496.98 2993.39 996.45 1498.79 1090.17 799.99 189.33 10299.25 499.70 3
Regformer-393.19 4193.19 4293.19 7798.10 5883.01 9697.08 11696.98 2988.98 4391.35 7697.89 5780.80 6099.23 7692.30 6595.20 10597.32 127
gg-mvs-nofinetune85.48 18182.90 20093.24 7494.51 15185.82 3779.22 32896.97 3161.19 32787.33 12453.01 33990.58 496.07 21586.07 12697.23 7797.81 99
NCCC95.63 595.94 694.69 2499.21 785.15 5699.16 396.96 3294.11 695.59 2198.64 1985.07 2899.91 495.61 2799.10 799.00 23
FIs86.73 16686.10 15788.61 20290.05 24980.21 16096.14 17396.95 3385.56 10678.37 21192.30 18376.73 11595.28 25979.51 18179.27 22690.35 225
PVSNet_077.72 1581.70 23678.95 24989.94 17890.77 23876.72 24295.96 17996.95 3385.01 11970.24 28688.53 23552.32 29098.20 13286.68 12544.08 34094.89 186
HPM-MVS++copyleft95.32 995.48 1094.85 2098.62 3386.04 3297.81 5496.93 3592.45 1195.69 2098.50 2285.38 2799.85 1094.75 3799.18 598.65 38
MSLP-MVS++94.28 2294.39 2393.97 4498.30 4984.06 7498.64 2196.93 3590.71 2593.08 5498.70 1679.98 7099.21 8094.12 4499.07 998.63 39
Regformer-493.06 4493.12 4392.89 9198.10 5882.20 10997.08 11696.92 3788.87 4591.23 7897.89 5780.57 6399.19 8592.21 6795.20 10597.29 131
UniMVSNet (Re)85.31 18384.23 18288.55 20389.75 25280.55 15196.72 14096.89 3885.42 10778.40 21088.93 22875.38 14195.52 24978.58 19068.02 29689.57 240
FC-MVSNet-test85.96 17285.39 16387.66 22189.38 26178.02 21595.65 19596.87 3985.12 11777.34 21791.94 19076.28 12494.74 27877.09 20378.82 23090.21 228
EI-MVSNet-Vis-set91.84 7091.77 6992.04 12397.60 7381.17 13396.61 14696.87 3988.20 6089.19 10497.55 7578.69 8699.14 9190.29 9090.94 14495.80 170
IU-MVS99.03 1285.34 4796.86 4192.05 1598.74 198.15 298.97 1599.42 9
EI-MVSNet-UG-set91.35 8291.22 7591.73 13297.39 8480.68 14796.47 15296.83 4287.92 6488.30 11797.36 8477.84 9799.13 9289.43 10189.45 15195.37 180
ETH3 D test640095.56 895.41 1196.00 799.02 1589.42 798.75 1896.80 4387.28 7795.88 1998.95 285.92 2699.41 6297.15 1398.95 1899.18 20
SED-MVS95.88 496.22 394.87 1999.03 1285.03 5899.12 696.78 4488.72 4997.79 398.91 388.48 1499.82 1698.15 298.97 1599.74 1
test_241102_TWO96.78 4488.72 4997.70 598.91 387.86 1799.82 1698.15 299.00 1399.47 7
test_241102_ONE99.03 1285.03 5896.78 4488.72 4997.79 398.90 688.48 1499.82 16
test072699.05 985.18 5199.11 896.78 4488.75 4797.65 698.91 387.69 18
DVP-MVS95.62 696.54 192.86 9298.31 4880.10 16397.42 8896.78 4492.20 1397.11 898.29 2893.46 199.10 9496.01 2099.30 399.38 10
无先验96.87 13196.78 4477.39 25899.52 5379.95 17798.43 49
test_0728_SECOND95.14 1599.04 1186.14 3199.06 996.77 5099.84 1297.90 598.85 2099.45 8
SMA-MVS94.70 1594.68 1594.76 2298.02 6285.94 3597.47 8096.77 5085.32 10997.92 298.70 1683.09 4799.84 1295.79 2499.08 898.49 45
test_part10.00 3370.00 3570.00 34896.77 500.00 3580.00 3540.00 3510.00 3510.00 350
MVS_111021_LR91.60 7691.64 7291.47 13995.74 11378.79 19496.15 17296.77 5088.49 5488.64 11197.07 9772.33 17399.19 8593.13 5796.48 9196.43 156
3Dnovator82.32 1089.33 11687.64 13194.42 3093.73 16985.70 4197.73 6296.75 5486.73 8776.21 23795.93 12162.17 23399.68 3881.67 16597.81 6497.88 92
DPE-MVS95.32 995.55 894.64 2598.79 2084.87 6397.77 5696.74 5586.11 9196.54 1398.89 788.39 1699.74 2897.67 899.05 1099.31 14
PVSNet_BlendedMVS90.05 10589.96 9690.33 16497.47 7883.86 7698.02 4396.73 5687.98 6389.53 10089.61 22276.42 12099.57 4994.29 4279.59 22387.57 289
PVSNet_Blended93.13 4292.98 4693.57 6197.47 7883.86 7699.32 196.73 5691.02 2389.53 10096.21 11676.42 12099.57 4994.29 4295.81 10197.29 131
ACMMPcopyleft90.39 10089.97 9591.64 13497.58 7578.21 21196.78 13796.72 5884.73 12584.72 14397.23 9071.22 18299.63 4488.37 11292.41 13397.08 136
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
新几何193.12 7997.44 8081.60 12896.71 5974.54 27791.22 7997.57 7179.13 8099.51 5677.40 20298.46 3898.26 62
HFP-MVS92.89 4792.86 4992.98 8698.71 2281.12 13497.58 7296.70 6085.20 11591.75 6797.97 5478.47 8799.71 3290.95 7598.41 4398.12 73
#test#92.99 4592.99 4592.98 8698.71 2281.12 13497.77 5696.70 6085.75 10091.75 6797.97 5478.47 8799.71 3291.36 7198.41 4398.12 73
ACMMPR92.69 5692.67 5392.75 9698.66 2780.57 15097.58 7296.69 6285.20 11591.57 7097.92 5677.01 11099.67 4090.95 7598.41 4398.00 85
DeepPCF-MVS89.82 194.61 1696.17 489.91 17997.09 9370.21 29898.99 1496.69 6295.57 195.08 2899.23 186.40 2599.87 897.84 798.66 3099.65 4
thisisatest053089.65 11189.02 11191.53 13793.46 17480.78 14496.52 14996.67 6481.69 19183.79 15694.90 15088.85 1297.68 14877.80 19387.49 17196.14 164
tttt051788.57 13588.19 12189.71 18593.00 18375.99 25195.67 19396.67 6480.78 20181.82 18194.40 15888.97 1197.58 15376.05 21786.31 17795.57 176
thisisatest051590.95 8890.26 8893.01 8594.03 16484.27 7197.91 4796.67 6483.18 16686.87 12995.51 13388.66 1397.85 14380.46 17189.01 15496.92 141
112190.66 9389.82 10193.16 7897.39 8481.71 12593.33 25296.66 6774.45 27891.38 7297.55 7579.27 7699.52 5379.95 17798.43 4098.26 62
ACMMP_NAP93.46 3993.23 4194.17 3997.16 9184.28 7096.82 13496.65 6886.24 8994.27 4097.99 5077.94 9599.83 1593.39 5198.57 3298.39 51
TEST998.64 3083.71 8097.82 5296.65 6884.29 14195.16 2598.09 4384.39 3199.36 70
train_agg94.28 2294.45 2093.74 5198.64 3083.71 8097.82 5296.65 6884.50 13395.16 2598.09 4384.33 3299.36 7095.91 2398.96 1798.16 68
131488.94 12287.20 14394.17 3993.21 17785.73 4093.33 25296.64 7182.89 17375.98 24096.36 11466.83 20999.39 6383.52 15296.02 9797.39 125
DeepC-MVS_fast89.06 294.48 1894.30 2695.02 1798.86 1885.68 4298.06 4096.64 7193.64 891.74 6998.54 2080.17 6999.90 592.28 6698.75 2699.49 6
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_898.63 3283.64 8397.81 5496.63 7384.50 13395.10 2798.11 4284.33 3299.23 76
testtj94.09 2994.08 2994.09 4299.28 683.32 9097.59 7196.61 7483.60 16194.77 3698.46 2482.72 5199.64 4295.29 3298.42 4199.32 13
原ACMM191.22 14597.77 7078.10 21496.61 7481.05 19791.28 7797.42 8277.92 9698.98 10179.85 18098.51 3496.59 152
MAR-MVS90.63 9490.22 8991.86 12898.47 4178.20 21297.18 10196.61 7483.87 15388.18 11898.18 3268.71 19899.75 2683.66 14897.15 7897.63 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SteuartSystems-ACMMP94.13 2794.44 2193.20 7695.41 12181.35 13199.02 1396.59 7789.50 3794.18 4398.36 2783.68 4099.45 6094.77 3698.45 3998.81 29
Skip Steuart: Steuart Systems R&D Blog.
D2MVS82.67 22381.55 21886.04 25387.77 27676.47 24395.21 20796.58 7882.66 17870.26 28585.46 28260.39 24495.80 23176.40 21279.18 22785.83 311
save fliter98.24 5183.34 8898.61 2396.57 7991.32 18
TESTMET0.1,189.83 10789.34 10891.31 14092.54 19580.19 16197.11 11096.57 7986.15 9086.85 13091.83 19279.32 7496.95 18681.30 16692.35 13496.77 147
agg_prior194.10 2894.31 2593.48 6798.59 3483.13 9297.77 5696.56 8184.38 13794.19 4198.13 3884.66 3099.16 8995.74 2598.74 2798.15 70
agg_prior98.59 3483.13 9296.56 8194.19 4199.16 89
DWT-MVSNet_test90.52 9989.80 10292.70 10095.73 11582.20 10993.69 24396.55 8388.34 5787.04 12895.34 13686.53 2297.55 15576.32 21488.66 15998.34 52
旧先验197.39 8479.58 17696.54 8498.08 4684.00 3697.42 7397.62 111
WR-MVS_H81.02 24480.09 23783.79 28188.08 27471.26 29394.46 22696.54 8480.08 21972.81 26986.82 25870.36 19192.65 30764.18 28667.50 30287.46 293
ETH3D-3000-0.194.43 1994.42 2294.45 2897.78 6985.78 3897.98 4496.53 8685.29 11295.45 2298.81 883.36 4299.38 6496.07 1998.53 3398.19 65
9.1494.26 2798.10 5898.14 3496.52 8784.74 12494.83 3498.80 982.80 5099.37 6895.95 2298.42 41
region2R92.72 5492.70 5292.79 9598.68 2480.53 15397.53 7696.51 8885.22 11391.94 6597.98 5277.26 10599.67 4090.83 7998.37 4898.18 66
EPP-MVSNet89.76 10989.72 10389.87 18093.78 16676.02 25097.22 9596.51 8879.35 23185.11 13895.01 14884.82 2997.10 18287.46 11888.21 16596.50 154
ZNCC-MVS92.75 5092.60 5593.23 7598.24 5181.82 12097.63 6796.50 9085.00 12091.05 8197.74 6378.38 8999.80 1990.48 8498.34 5098.07 76
test1196.50 90
EPNet_dtu87.65 15187.89 12586.93 23994.57 14571.37 29296.72 14096.50 9088.56 5387.12 12695.02 14775.91 13094.01 29166.62 27490.00 14895.42 179
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata90.13 16995.92 11074.17 26796.49 9373.49 28694.82 3597.99 5078.80 8497.93 13783.53 15197.52 6898.29 59
MSP-MVS95.58 795.91 794.57 2699.05 985.18 5199.06 996.46 9488.75 4796.69 1098.76 1287.69 1899.76 2097.90 598.85 2098.77 30
test22296.15 10478.41 20295.87 18696.46 9471.97 29789.66 9797.45 7876.33 12398.24 5398.30 58
XVS92.69 5692.71 5092.63 10298.52 3780.29 15697.37 9196.44 9687.04 8491.38 7297.83 6077.24 10799.59 4790.46 8598.07 5798.02 80
X-MVStestdata86.26 17084.14 18492.63 10298.52 3780.29 15697.37 9196.44 9687.04 8491.38 7220.73 34977.24 10799.59 4790.46 8598.07 5798.02 80
SF-MVS94.17 2594.05 3094.55 2797.56 7685.95 3397.73 6296.43 9884.02 14795.07 2998.74 1482.93 4899.38 6495.42 2998.51 3498.32 54
TSAR-MVS + MP.94.79 1495.17 1293.64 5797.66 7184.10 7395.85 18896.42 9991.26 2097.49 796.80 10786.50 2398.49 12395.54 2899.03 1198.33 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ETH3D cwj APD-0.1693.91 3593.76 3394.36 3196.70 9785.74 3997.22 9596.41 10083.94 15094.13 4498.69 1883.13 4699.37 6895.25 3398.39 4697.97 88
APDe-MVS94.56 1794.75 1493.96 4598.84 1983.40 8798.04 4296.41 10085.79 9995.00 3198.28 2984.32 3599.18 8797.35 1198.77 2599.28 15
UniMVSNet_NR-MVSNet85.49 18084.59 17588.21 21289.44 26079.36 17796.71 14296.41 10085.22 11378.11 21390.98 20376.97 11195.14 26679.14 18668.30 29390.12 230
test_prior394.03 3194.34 2493.09 8198.68 2481.91 11498.37 2796.40 10386.08 9394.57 3898.02 4883.14 4499.06 9695.05 3498.79 2398.29 59
test_prior93.09 8198.68 2481.91 11496.40 10399.06 9698.29 59
CP-MVS92.54 6192.60 5592.34 11198.50 3979.90 16698.40 2696.40 10384.75 12390.48 8798.09 4377.40 10499.21 8091.15 7498.23 5497.92 91
CANet94.89 1294.64 1695.63 1097.55 7788.12 1399.06 996.39 10694.07 795.34 2497.80 6176.83 11399.87 897.08 1497.64 6798.89 26
GST-MVS92.43 6392.22 6393.04 8498.17 5581.64 12797.40 9096.38 10784.71 12690.90 8397.40 8377.55 10199.76 2089.75 9697.74 6597.72 102
alignmvs92.97 4692.26 6195.12 1695.54 11887.77 1798.67 1996.38 10788.04 6293.01 5597.45 7879.20 7998.60 11793.25 5688.76 15798.99 25
PAPM92.87 4992.40 5794.30 3392.25 20487.85 1696.40 16096.38 10791.07 2188.72 11096.90 10082.11 5597.37 16790.05 9297.70 6697.67 106
test1294.25 3598.34 4685.55 4496.35 11092.36 6180.84 5999.22 7898.31 5197.98 87
zzz-MVS92.74 5192.71 5092.86 9297.90 6480.85 14296.47 15296.33 11187.92 6490.20 9098.18 3276.71 11699.76 2092.57 6398.09 5597.96 89
MTGPAbinary96.33 111
MTAPA92.45 6292.31 5992.86 9297.90 6480.85 14292.88 26596.33 11187.92 6490.20 9098.18 3276.71 11699.76 2092.57 6398.09 5597.96 89
ET-MVSNet_ETH3D90.01 10689.03 11092.95 8894.38 15486.77 2698.14 3496.31 11489.30 4063.33 31296.72 11090.09 893.63 29990.70 8282.29 21398.46 46
EPMVS87.47 15385.90 16092.18 11895.41 12182.26 10887.00 30996.28 11585.88 9884.23 14885.57 27975.07 14996.26 21171.14 25592.50 13198.03 79
CDPH-MVS93.12 4392.91 4793.74 5198.65 2983.88 7597.67 6696.26 11683.00 17193.22 5298.24 3081.31 5799.21 8089.12 10398.74 2798.14 71
WR-MVS84.32 19782.96 19888.41 20589.38 26180.32 15596.59 14796.25 11783.97 14976.63 22790.36 21367.53 20294.86 27675.82 22070.09 27890.06 234
UGNet87.73 15086.55 15491.27 14395.16 13079.11 18596.35 16296.23 11888.14 6187.83 12190.48 20950.65 29399.09 9580.13 17694.03 11395.60 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpnnormal78.14 26775.42 27286.31 24988.33 27179.24 18094.41 22896.22 11973.51 28469.81 28785.52 28155.43 28095.75 23447.65 33367.86 29883.95 321
MP-MVScopyleft92.61 5992.67 5392.42 10998.13 5779.73 17297.33 9396.20 12085.63 10290.53 8597.66 6578.14 9399.70 3592.12 6898.30 5297.85 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR92.74 5192.17 6494.45 2898.89 1784.87 6397.20 9996.20 12087.73 7088.40 11498.12 4178.71 8599.76 2087.99 11496.28 9298.74 31
SD-MVS94.84 1395.02 1394.29 3497.87 6884.61 6697.76 6096.19 12289.59 3696.66 1298.17 3684.33 3299.60 4696.09 1898.50 3798.66 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CHOSEN 280x42091.71 7391.85 6691.29 14294.94 13782.69 9987.89 30496.17 12385.94 9687.27 12594.31 15990.27 695.65 24194.04 4595.86 9995.53 177
CHOSEN 1792x268891.07 8690.21 9093.64 5795.18 12983.53 8496.26 16896.13 12488.92 4484.90 14093.10 17872.86 16899.62 4588.86 10495.67 10297.79 100
PAPM_NR91.46 7890.82 8093.37 7198.50 3981.81 12195.03 21796.13 12484.65 12986.10 13597.65 6979.24 7899.75 2683.20 15596.88 8598.56 42
CostFormer89.08 11988.39 12091.15 14693.13 18079.15 18488.61 30096.11 12683.14 16789.58 9986.93 25783.83 3996.87 19288.22 11385.92 18397.42 122
mPP-MVS91.88 6991.82 6792.07 12198.38 4478.63 19697.29 9496.09 12785.12 11788.45 11397.66 6575.53 13599.68 3889.83 9498.02 6097.88 92
APD-MVScopyleft93.61 3793.59 3693.69 5498.76 2183.26 9197.21 9796.09 12782.41 18194.65 3798.21 3181.96 5698.81 11294.65 3998.36 4999.01 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MDTV_nov1_ep1383.69 18794.09 16081.01 13786.78 31196.09 12783.81 15584.75 14284.32 29674.44 15496.54 20163.88 28885.07 192
QAPM86.88 16084.51 17693.98 4394.04 16285.89 3697.19 10096.05 13073.62 28375.12 25195.62 13062.02 23699.74 2870.88 25696.06 9696.30 163
MP-MVS-pluss92.58 6092.35 5893.29 7297.30 8982.53 10296.44 15696.04 13184.68 12789.12 10598.37 2677.48 10399.74 2893.31 5598.38 4797.59 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
tpm287.35 15486.26 15690.62 15992.93 18678.67 19588.06 30395.99 13279.33 23287.40 12286.43 26880.28 6696.40 20580.23 17485.73 18796.79 145
DeepC-MVS86.58 391.53 7791.06 7892.94 8994.52 14881.89 11695.95 18095.98 13390.76 2483.76 15796.76 10873.24 16699.71 3291.67 7096.96 8297.22 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test-LLR88.48 13687.98 12489.98 17592.26 20277.23 23497.11 11095.96 13483.76 15686.30 13391.38 19572.30 17496.78 19780.82 16891.92 13895.94 167
test-mter88.95 12188.60 11789.98 17592.26 20277.23 23497.11 11095.96 13485.32 10986.30 13391.38 19576.37 12296.78 19780.82 16891.92 13895.94 167
DP-MVS Recon91.72 7290.85 7994.34 3299.50 185.00 6098.51 2595.96 13480.57 20688.08 11997.63 7076.84 11299.89 785.67 12894.88 10998.13 72
cdsmvs_eth3d_5k21.43 32028.57 3220.00 3370.00 3560.00 3570.00 34895.93 1370.00 3520.00 35397.66 6563.57 2260.00 3540.00 3510.00 3510.00 350
TAMVS88.48 13687.79 12890.56 16091.09 23279.18 18296.45 15595.88 13883.64 15983.12 16393.33 17475.94 12995.74 23782.40 16088.27 16496.75 149
PVSNet_Blended_VisFu91.24 8390.77 8192.66 10195.09 13182.40 10597.77 5695.87 13988.26 5986.39 13193.94 16776.77 11499.27 7388.80 10694.00 11696.31 162
OpenMVScopyleft79.58 1486.09 17183.62 19193.50 6590.95 23486.71 2897.44 8295.83 14075.35 26972.64 27095.72 12557.42 26999.64 4271.41 25095.85 10094.13 198
CDS-MVSNet89.50 11388.96 11391.14 14791.94 22080.93 14097.09 11495.81 14184.26 14284.72 14394.20 16280.31 6595.64 24283.37 15388.96 15596.85 144
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ94.17 2593.52 3896.10 695.65 11692.35 298.21 3295.79 14292.42 1296.24 1598.18 3271.04 18599.17 8896.77 1597.39 7496.79 145
SR-MVS92.16 6592.27 6091.83 13198.37 4578.41 20296.67 14595.76 14382.19 18591.97 6498.07 4776.44 11998.64 11693.71 4697.27 7698.45 48
3Dnovator+82.88 889.63 11287.85 12694.99 1894.49 15286.76 2797.84 5195.74 14486.10 9275.47 24896.02 12065.00 22099.51 5682.91 15997.07 7998.72 36
HPM-MVScopyleft91.62 7591.53 7391.89 12797.88 6779.22 18196.99 12195.73 14582.07 18689.50 10297.19 9275.59 13498.93 10890.91 7797.94 6197.54 114
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs87.08 15684.94 17293.48 6793.34 17683.67 8288.82 29795.70 14681.18 19584.55 14690.14 21862.72 23098.94 10785.49 13082.54 21297.85 95
xiu_mvs_v2_base93.92 3393.26 4095.91 895.07 13392.02 498.19 3395.68 14792.06 1496.01 1898.14 3770.83 18898.96 10296.74 1696.57 9096.76 148
CP-MVSNet81.01 24580.08 23883.79 28187.91 27570.51 29594.29 23695.65 14880.83 20072.54 27288.84 22963.71 22592.32 31068.58 26868.36 29288.55 267
PatchmatchNetpermissive86.83 16285.12 16991.95 12594.12 15982.27 10786.55 31395.64 14984.59 13182.98 16684.99 29177.26 10595.96 22268.61 26791.34 14297.64 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
API-MVS90.18 10488.97 11293.80 4998.66 2782.95 9797.50 7995.63 15075.16 27286.31 13297.69 6472.49 17199.90 581.26 16796.07 9598.56 42
AdaColmapbinary88.81 12787.61 13492.39 11099.33 479.95 16496.70 14495.58 15177.51 25783.05 16596.69 11161.90 24099.72 3184.29 13893.47 12297.50 119
SCA85.63 17883.64 19091.60 13692.30 20081.86 11892.88 26595.56 15284.85 12182.52 16785.12 28958.04 26195.39 25273.89 23687.58 17097.54 114
dp84.30 19882.31 20890.28 16594.24 15777.97 21686.57 31295.53 15379.94 22380.75 18885.16 28771.49 18196.39 20663.73 28983.36 20196.48 155
HyFIR lowres test89.36 11588.60 11791.63 13594.91 13980.76 14595.60 19695.53 15382.56 18084.03 15091.24 19878.03 9496.81 19587.07 12288.41 16397.32 127
APD-MVS_3200maxsize91.23 8491.35 7490.89 15397.89 6676.35 24796.30 16695.52 15579.82 22491.03 8297.88 5974.70 15298.54 12092.11 6996.89 8497.77 101
lupinMVS93.87 3693.58 3794.75 2393.00 18388.08 1499.15 495.50 15691.03 2294.90 3297.66 6578.84 8297.56 15494.64 4097.46 6998.62 40
HPM-MVS_fast90.38 10290.17 9291.03 14997.61 7277.35 23297.15 10695.48 15779.51 22988.79 10996.90 10071.64 17998.81 11287.01 12397.44 7196.94 138
VPNet84.69 19182.92 19990.01 17389.01 26383.45 8696.71 14295.46 15885.71 10179.65 20192.18 18556.66 27396.01 21883.05 15867.84 29990.56 221
114514_t88.79 12987.57 13592.45 10798.21 5481.74 12396.99 12195.45 15975.16 27282.48 16895.69 12768.59 19998.50 12280.33 17295.18 10797.10 135
JIA-IIPM79.00 26277.20 25984.40 27689.74 25464.06 32175.30 33695.44 16062.15 32281.90 17959.08 33778.92 8195.59 24666.51 27785.78 18693.54 205
DU-MVS84.57 19383.33 19688.28 21088.76 26479.36 17796.43 15895.41 16185.42 10778.11 21390.82 20467.61 20095.14 26679.14 18668.30 29390.33 226
EI-MVSNet85.80 17585.20 16687.59 22391.55 22577.41 23095.13 21195.36 16280.43 21080.33 19494.71 15273.72 16295.97 21976.96 20678.64 23289.39 242
MVSTER89.25 11888.92 11490.24 16695.98 10984.66 6596.79 13695.36 16287.19 8280.33 19490.61 20890.02 995.97 21985.38 13178.64 23290.09 232
CPTT-MVS89.72 11089.87 10089.29 19098.33 4773.30 27197.70 6495.35 16475.68 26887.40 12297.44 8170.43 19098.25 13089.56 9996.90 8396.33 161
EIA-MVS91.73 7192.05 6590.78 15694.52 14876.40 24698.06 4095.34 16589.19 4188.90 10897.28 8977.56 10097.73 14790.77 8096.86 8898.20 64
RRT_test8_iter0587.14 15586.41 15589.32 18994.41 15381.10 13697.06 11895.33 16684.67 12876.27 23590.48 20983.60 4196.33 20885.10 13270.78 26990.53 222
tpmvs83.04 21780.77 22789.84 18195.43 12077.96 21785.59 31895.32 16775.31 27176.27 23583.70 30173.89 15997.41 16559.53 30081.93 21494.14 197
PS-CasMVS80.27 25179.18 24683.52 28887.56 27969.88 30094.08 23895.29 16880.27 21572.08 27488.51 23659.22 25492.23 31267.49 27068.15 29588.45 271
TSAR-MVS + GP.94.35 2194.50 1893.89 4697.38 8783.04 9598.10 3795.29 16891.57 1693.81 4697.45 7886.64 2199.43 6196.28 1794.01 11599.20 18
CS-MVS92.88 4893.09 4492.26 11595.21 12780.70 14698.84 1695.26 17088.83 4692.50 6097.48 7777.49 10297.63 15095.34 3196.88 8598.46 46
tpmrst88.36 14087.38 14191.31 14094.36 15579.92 16587.32 30795.26 17085.32 10988.34 11586.13 27380.60 6296.70 19983.78 14285.34 19197.30 130
ETV-MVS92.72 5492.87 4892.28 11494.54 14781.89 11697.98 4495.21 17289.77 3593.11 5396.83 10477.23 10997.50 16195.74 2595.38 10397.44 121
NR-MVSNet83.35 20981.52 22088.84 19788.76 26481.31 13294.45 22795.16 17384.65 12967.81 29390.82 20470.36 19194.87 27574.75 22766.89 30890.33 226
MVS_030478.43 26476.70 26483.60 28688.22 27269.81 30192.91 26495.10 17472.32 29678.71 20880.29 31733.78 33593.37 30368.77 26680.23 21987.63 286
jason92.73 5392.23 6294.21 3890.50 24187.30 2398.65 2095.09 17590.61 2692.76 5797.13 9475.28 14597.30 17093.32 5496.75 8998.02 80
jason: jason.
tpm cat183.63 20681.38 22190.39 16393.53 17378.19 21385.56 31995.09 17570.78 30278.51 20983.28 30474.80 15197.03 18366.77 27384.05 19695.95 166
cascas86.50 16784.48 17892.55 10592.64 19385.95 3397.04 12095.07 17775.32 27080.50 19091.02 20154.33 28897.98 13686.79 12487.62 16893.71 204
abl_689.80 10889.71 10490.07 17096.53 9875.52 25694.48 22595.04 17881.12 19689.22 10397.00 9868.83 19798.96 10289.86 9395.27 10495.73 172
CVMVSNet84.83 18985.57 16182.63 29591.55 22560.38 33095.13 21195.03 17980.60 20582.10 17794.71 15266.40 21190.19 32874.30 23390.32 14797.31 129
test0.0.03 182.79 22182.48 20683.74 28386.81 28372.22 27896.52 14995.03 17983.76 15673.00 26693.20 17572.30 17488.88 33064.15 28777.52 24090.12 230
RRT_MVS86.89 15985.96 15889.68 18695.01 13684.13 7296.33 16494.98 18184.20 14480.10 19892.07 18670.52 18995.01 27383.30 15477.14 24189.91 236
PMMVS89.46 11489.92 9888.06 21494.64 14369.57 30596.22 17094.95 18287.27 7891.37 7596.54 11365.88 21297.39 16688.54 10793.89 11797.23 133
Anonymous2024052983.15 21480.60 23190.80 15595.74 11378.27 20696.81 13594.92 18360.10 33281.89 18092.54 18245.82 31098.82 11179.25 18578.32 23795.31 182
mvs_anonymous88.68 13087.62 13391.86 12894.80 14181.69 12693.53 24894.92 18382.03 18778.87 20790.43 21275.77 13195.34 25585.04 13493.16 12698.55 44
CLD-MVS87.97 14787.48 13889.44 18792.16 20980.54 15298.14 3494.92 18391.41 1779.43 20295.40 13562.34 23297.27 17390.60 8382.90 20790.50 223
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
xiu_mvs_v1_base_debu90.54 9689.54 10593.55 6292.31 19787.58 2096.99 12194.87 18687.23 7993.27 4997.56 7257.43 26698.32 12792.72 6093.46 12394.74 190
xiu_mvs_v1_base90.54 9689.54 10593.55 6292.31 19787.58 2096.99 12194.87 18687.23 7993.27 4997.56 7257.43 26698.32 12792.72 6093.46 12394.74 190
xiu_mvs_v1_base_debi90.54 9689.54 10593.55 6292.31 19787.58 2096.99 12194.87 18687.23 7993.27 4997.56 7257.43 26698.32 12792.72 6093.46 12394.74 190
GA-MVS85.79 17684.04 18591.02 15089.47 25980.27 15896.90 13094.84 18985.57 10380.88 18689.08 22556.56 27496.47 20477.72 19685.35 19096.34 159
TranMVSNet+NR-MVSNet83.24 21381.71 21687.83 21787.71 27778.81 19396.13 17594.82 19084.52 13276.18 23890.78 20664.07 22494.60 28174.60 23166.59 31090.09 232
HQP3-MVS94.80 19183.01 204
HQP-MVS87.91 14987.55 13688.98 19592.08 21178.48 19897.63 6794.80 19190.52 2782.30 17194.56 15565.40 21697.32 16887.67 11683.01 20491.13 215
TAPA-MVS81.61 1285.02 18683.67 18889.06 19296.79 9573.27 27395.92 18294.79 19374.81 27580.47 19196.83 10471.07 18498.19 13349.82 32992.57 12995.71 173
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PEN-MVS79.47 25778.26 25383.08 29186.36 28668.58 30893.85 24194.77 19479.76 22571.37 27688.55 23359.79 24692.46 30864.50 28565.40 31188.19 276
HQP_MVS87.50 15287.09 14888.74 20091.86 22177.96 21797.18 10194.69 19589.89 3381.33 18394.15 16364.77 22197.30 17087.08 12082.82 20890.96 217
plane_prior594.69 19597.30 17087.08 12082.82 20890.96 217
tpm85.55 17984.47 17988.80 19990.19 24675.39 25888.79 29894.69 19584.83 12283.96 15385.21 28578.22 9294.68 28076.32 21478.02 23996.34 159
FMVSNet384.71 19082.71 20390.70 15894.55 14687.71 1895.92 18294.67 19881.73 19075.82 24388.08 24166.99 20794.47 28371.23 25275.38 24789.91 236
UA-Net88.92 12388.48 11990.24 16694.06 16177.18 23693.04 26194.66 19987.39 7591.09 8093.89 16874.92 15098.18 13475.83 21991.43 14195.35 181
LFMVS89.27 11787.64 13194.16 4197.16 9185.52 4597.18 10194.66 19979.17 23789.63 9896.57 11255.35 28198.22 13189.52 10089.54 15098.74 31
MVS_Test90.29 10389.18 10993.62 5995.23 12584.93 6194.41 22894.66 19984.31 13990.37 8991.02 20175.13 14797.82 14483.11 15794.42 11198.12 73
canonicalmvs92.27 6491.22 7595.41 1395.80 11288.31 1197.09 11494.64 20288.49 5492.99 5697.31 8572.68 17098.57 11993.38 5388.58 16099.36 12
VDDNet86.44 16884.51 17692.22 11791.56 22481.83 11997.10 11394.64 20269.50 30787.84 12095.19 13948.01 30297.92 14289.82 9586.92 17296.89 142
baseline188.85 12687.49 13792.93 9095.21 12786.85 2595.47 20094.61 20487.29 7683.11 16494.99 14980.70 6196.89 19082.28 16173.72 25495.05 184
PatchT79.75 25376.85 26388.42 20489.55 25775.49 25777.37 33494.61 20463.07 31982.46 16973.32 33175.52 13693.41 30251.36 32484.43 19496.36 157
MS-PatchMatch83.05 21681.82 21586.72 24489.64 25579.10 18694.88 22094.59 20679.70 22770.67 28289.65 22150.43 29596.82 19470.82 25995.99 9884.25 319
baseline90.76 9190.10 9392.74 9792.90 18782.56 10194.60 22494.56 20787.69 7189.06 10795.67 12873.76 16197.51 16090.43 8792.23 13698.16 68
OMC-MVS88.80 12888.16 12290.72 15795.30 12477.92 22094.81 22194.51 20886.80 8684.97 13996.85 10367.53 20298.60 11785.08 13387.62 16895.63 174
MVSFormer91.36 8190.57 8393.73 5393.00 18388.08 1494.80 22294.48 20980.74 20294.90 3297.13 9478.84 8295.10 26983.77 14397.46 6998.02 80
test_djsdf83.00 21982.45 20784.64 27084.07 31569.78 30294.80 22294.48 20980.74 20275.41 24987.70 24561.32 24295.10 26983.77 14379.76 22089.04 256
casdiffmvs90.95 8890.39 8692.63 10292.82 18882.53 10296.83 13394.47 21187.69 7188.47 11295.56 13274.04 15897.54 15890.90 7892.74 12897.83 97
PCF-MVS84.09 586.77 16585.00 17192.08 12092.06 21483.07 9492.14 27394.47 21179.63 22876.90 22494.78 15171.15 18399.20 8472.87 24191.05 14393.98 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDD-MVS88.28 14287.02 14992.06 12295.09 13180.18 16297.55 7594.45 21383.09 16889.10 10695.92 12347.97 30398.49 12393.08 5886.91 17397.52 118
PLCcopyleft83.97 788.00 14687.38 14189.83 18298.02 6276.46 24497.16 10594.43 21479.26 23681.98 17896.28 11569.36 19599.27 7377.71 19792.25 13593.77 203
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FMVSNet282.79 22180.44 23389.83 18292.66 19085.43 4695.42 20194.35 21579.06 24074.46 25587.28 24956.38 27694.31 28669.72 26274.68 25189.76 238
nrg03086.79 16485.43 16290.87 15488.76 26485.34 4797.06 11894.33 21684.31 13980.45 19291.98 18772.36 17296.36 20788.48 11071.13 26690.93 219
ACMM80.70 1383.72 20582.85 20186.31 24991.19 23072.12 28195.88 18594.29 21780.44 20877.02 22291.96 18855.24 28297.14 18179.30 18480.38 21889.67 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS83.84 20282.00 21289.35 18887.13 28181.38 13095.72 19194.26 21880.15 21875.92 24290.63 20761.96 23996.52 20278.98 18873.28 25990.14 229
cl-mvsnet285.11 18584.17 18387.92 21695.06 13478.82 19195.51 19894.22 21979.74 22676.77 22587.92 24375.96 12895.68 23879.93 17972.42 26189.27 248
testing_276.96 27673.18 28688.30 20975.87 33779.64 17489.92 29094.21 22080.16 21751.23 33575.94 32633.94 33495.81 22982.28 16175.12 25089.46 241
OPM-MVS85.84 17485.10 17088.06 21488.34 27077.83 22395.72 19194.20 22187.89 6780.45 19294.05 16558.57 25797.26 17483.88 14182.76 21089.09 253
Vis-MVSNet (Re-imp)88.88 12588.87 11588.91 19693.89 16574.43 26596.93 12994.19 22284.39 13683.22 16295.67 12878.24 9194.70 27978.88 18994.40 11297.61 112
Anonymous2023121179.72 25477.19 26087.33 23095.59 11777.16 23795.18 21094.18 22359.31 33472.57 27186.20 27247.89 30495.66 23974.53 23269.24 28689.18 250
PS-MVSNAJss84.91 18884.30 18186.74 24085.89 29674.40 26694.95 21894.16 22483.93 15176.45 23090.11 21971.04 18595.77 23283.16 15679.02 22990.06 234
LPG-MVS_test84.20 19983.49 19486.33 24690.88 23573.06 27495.28 20394.13 22582.20 18376.31 23293.20 17554.83 28696.95 18683.72 14580.83 21688.98 259
LGP-MVS_train86.33 24690.88 23573.06 27494.13 22582.20 18376.31 23293.20 17554.83 28696.95 18683.72 14580.83 21688.98 259
V4283.04 21781.53 21987.57 22586.27 28979.09 18795.87 18694.11 22780.35 21277.22 22086.79 26065.32 21896.02 21777.74 19570.14 27487.61 288
XVG-OURS-SEG-HR85.74 17785.16 16887.49 22890.22 24571.45 29191.29 28294.09 22881.37 19383.90 15595.22 13760.30 24597.53 15985.58 12984.42 19593.50 206
XVG-OURS85.18 18484.38 18087.59 22390.42 24371.73 28891.06 28594.07 22982.00 18883.29 16195.08 14656.42 27597.55 15583.70 14783.42 20093.49 207
miper_enhance_ethall85.95 17385.20 16688.19 21394.85 14079.76 16896.00 17794.06 23082.98 17277.74 21588.76 23079.42 7395.46 25180.58 17072.42 26189.36 247
v2v48283.46 20881.86 21488.25 21186.19 29079.65 17396.34 16394.02 23181.56 19277.32 21888.23 23865.62 21396.03 21677.77 19469.72 28289.09 253
jajsoiax82.12 23281.15 22485.03 26484.19 31370.70 29494.22 23793.95 23283.07 16973.48 26089.75 22049.66 29895.37 25482.24 16379.76 22089.02 257
v114482.90 22081.27 22387.78 21986.29 28879.07 18896.14 17393.93 23380.05 22077.38 21686.80 25965.50 21495.93 22475.21 22470.13 27588.33 274
RPMNet79.32 25975.75 27090.06 17190.16 24779.75 16979.02 33093.92 23458.43 33682.27 17572.55 33273.03 16793.67 29746.10 33586.25 17896.75 149
UnsupCasMVSNet_eth73.25 29370.57 29681.30 30177.53 33166.33 31587.24 30893.89 23580.38 21157.90 32881.59 30942.91 31990.56 32565.18 28348.51 33587.01 298
v7n79.32 25977.34 25885.28 26184.05 31672.89 27793.38 25093.87 23675.02 27470.68 28184.37 29559.58 24995.62 24467.60 26967.50 30287.32 295
Vis-MVSNetpermissive88.67 13187.82 12791.24 14492.68 18978.82 19196.95 12793.85 23787.55 7387.07 12795.13 14463.43 22797.21 17577.58 19996.15 9397.70 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v14882.41 22980.89 22586.99 23886.18 29176.81 24096.27 16793.82 23880.49 20775.28 25086.11 27467.32 20595.75 23475.48 22267.03 30788.42 272
BH-w/o88.24 14387.47 13990.54 16195.03 13578.54 19797.41 8993.82 23884.08 14578.23 21294.51 15769.34 19697.21 17580.21 17594.58 11095.87 169
TR-MVS86.30 16984.93 17390.42 16294.63 14477.58 22796.57 14893.82 23880.30 21382.42 17095.16 14158.74 25697.55 15574.88 22687.82 16796.13 165
v119282.31 23080.55 23287.60 22285.94 29478.47 20195.85 18893.80 24179.33 23276.97 22386.51 26363.33 22895.87 22673.11 24070.13 27588.46 270
ACMP81.66 1184.00 20083.22 19786.33 24691.53 22772.95 27695.91 18493.79 24283.70 15873.79 25892.22 18454.31 28996.89 19083.98 14079.74 22289.16 251
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v14419282.43 22680.73 22887.54 22685.81 29778.22 20895.98 17893.78 24379.09 23977.11 22186.49 26464.66 22395.91 22574.20 23469.42 28388.49 268
mvs_tets81.74 23580.71 22984.84 26584.22 31270.29 29793.91 24093.78 24382.77 17573.37 26189.46 22347.36 30795.31 25881.99 16479.55 22588.92 263
F-COLMAP84.50 19583.44 19587.67 22095.22 12672.22 27895.95 18093.78 24375.74 26776.30 23495.18 14059.50 25098.45 12572.67 24386.59 17692.35 212
UniMVSNet_ETH3D80.86 24778.75 25087.22 23586.31 28772.02 28291.95 27493.76 24673.51 28475.06 25290.16 21743.04 31895.66 23976.37 21378.55 23593.98 200
Fast-Effi-MVS+87.93 14886.94 15190.92 15294.04 16279.16 18398.26 3093.72 24781.29 19483.94 15492.90 17969.83 19496.68 20076.70 20891.74 14096.93 139
v192192082.02 23380.23 23687.41 22985.62 29877.92 22095.79 19093.69 24878.86 24376.67 22686.44 26662.50 23195.83 22872.69 24269.77 28188.47 269
DTE-MVSNet78.37 26577.06 26182.32 29885.22 30567.17 31393.40 24993.66 24978.71 24570.53 28388.29 23759.06 25592.23 31261.38 29763.28 31887.56 290
v881.88 23480.06 24087.32 23186.63 28479.04 18994.41 22893.65 25078.77 24473.19 26585.57 27966.87 20895.81 22973.84 23867.61 30187.11 296
diffmvs91.17 8590.74 8292.44 10893.11 18282.50 10496.25 16993.62 25187.79 6890.40 8895.93 12173.44 16597.42 16493.62 4892.55 13097.41 123
ADS-MVSNet81.26 24278.36 25189.96 17793.78 16679.78 16779.48 32693.60 25273.09 28980.14 19679.99 31862.15 23495.24 26159.49 30183.52 19894.85 187
PatchMatch-RL85.00 18783.66 18989.02 19495.86 11174.55 26492.49 26993.60 25279.30 23479.29 20491.47 19358.53 25898.45 12570.22 26092.17 13794.07 199
anonymousdsp80.98 24679.97 24184.01 27881.73 32070.44 29692.49 26993.58 25477.10 26372.98 26786.31 27057.58 26594.90 27479.32 18378.63 23486.69 301
miper_ehance_all_eth84.57 19383.60 19287.50 22792.64 19378.25 20795.40 20293.47 25579.28 23576.41 23187.64 24676.53 11895.24 26178.58 19072.42 26189.01 258
v124081.70 23679.83 24387.30 23385.50 29977.70 22695.48 19993.44 25678.46 24876.53 22986.44 26660.85 24395.84 22771.59 24970.17 27388.35 273
v1081.43 24079.53 24587.11 23686.38 28578.87 19094.31 23293.43 25777.88 25273.24 26485.26 28365.44 21595.75 23472.14 24667.71 30086.72 300
IterMVS-LS83.93 20182.80 20287.31 23291.46 22877.39 23195.66 19493.43 25780.44 20875.51 24787.26 25173.72 16295.16 26576.99 20470.72 27189.39 242
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net82.42 22780.43 23488.39 20692.66 19081.95 11194.30 23393.38 25979.06 24075.82 24385.66 27556.38 27693.84 29371.23 25275.38 24789.38 244
test182.42 22780.43 23488.39 20692.66 19081.95 11194.30 23393.38 25979.06 24075.82 24385.66 27556.38 27693.84 29371.23 25275.38 24789.38 244
FMVSNet179.50 25676.54 26688.39 20688.47 26981.95 11194.30 23393.38 25973.14 28872.04 27585.66 27543.86 31293.84 29365.48 28172.53 26089.38 244
BH-untuned86.95 15885.94 15989.99 17494.52 14877.46 22996.78 13793.37 26281.80 18976.62 22893.81 17166.64 21097.02 18476.06 21693.88 11895.48 178
Effi-MVS+-dtu84.61 19284.90 17483.72 28491.96 21763.14 32494.95 21893.34 26385.57 10379.79 20087.12 25461.99 23795.61 24583.55 14985.83 18592.41 211
mvs-test186.83 16287.17 14485.81 25591.96 21765.24 31797.90 4993.34 26385.57 10384.51 14795.14 14361.99 23797.19 17783.55 14990.55 14695.00 185
CMPMVSbinary54.94 2175.71 28474.56 27879.17 31179.69 32655.98 33689.59 29193.30 26560.28 33053.85 33389.07 22647.68 30696.33 20876.55 20981.02 21585.22 313
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cl-mvsnet_83.27 21182.12 20986.74 24092.20 20575.95 25295.11 21393.27 26678.44 24974.82 25387.02 25674.19 15695.19 26374.67 22969.32 28489.09 253
cl-mvsnet183.27 21182.12 20986.74 24092.19 20675.92 25395.11 21393.26 26778.44 24974.81 25487.08 25574.19 15695.19 26374.66 23069.30 28589.11 252
miper_lstm_enhance81.66 23880.66 23084.67 26991.19 23071.97 28491.94 27593.19 26877.86 25372.27 27385.26 28373.46 16493.42 30173.71 23967.05 30688.61 266
eth_miper_zixun_eth83.12 21582.01 21186.47 24591.85 22374.80 26194.33 23193.18 26979.11 23875.74 24687.25 25272.71 16995.32 25776.78 20767.13 30589.27 248
pmmvs482.54 22580.79 22687.79 21886.11 29280.49 15493.55 24793.18 26977.29 26073.35 26289.40 22465.26 21995.05 27275.32 22373.61 25587.83 282
XVG-ACMP-BASELINE79.38 25877.90 25583.81 28084.98 30767.14 31489.03 29693.18 26980.26 21672.87 26888.15 24038.55 32796.26 21176.05 21778.05 23888.02 279
CANet_DTU90.98 8790.04 9493.83 4894.76 14286.23 3096.32 16593.12 27293.11 1093.71 4796.82 10663.08 22999.48 5884.29 13895.12 10895.77 171
IS-MVSNet88.67 13188.16 12290.20 16893.61 17076.86 23996.77 13993.07 27384.02 14783.62 15895.60 13174.69 15396.24 21378.43 19293.66 12197.49 120
cl_fuxian83.80 20382.65 20487.25 23492.10 21077.74 22595.25 20693.04 27478.58 24676.01 23987.21 25375.25 14695.11 26877.54 20068.89 28888.91 264
UnsupCasMVSNet_bld68.60 30664.50 30880.92 30474.63 33867.80 31083.97 32192.94 27565.12 31754.63 33268.23 33535.97 33092.17 31460.13 29944.83 33882.78 324
MVP-Stereo82.65 22481.67 21785.59 25886.10 29378.29 20593.33 25292.82 27677.75 25469.17 29187.98 24259.28 25395.76 23371.77 24796.88 8582.73 325
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+90.70 9289.90 9993.09 8193.61 17083.48 8595.20 20892.79 27783.22 16591.82 6695.70 12671.82 17697.48 16291.25 7393.67 12098.32 54
EU-MVSNet76.92 27876.95 26276.83 31584.10 31454.73 33991.77 27892.71 27872.74 29269.57 28888.69 23158.03 26387.43 33464.91 28470.00 27988.33 274
xxxxxxxxxxxxxcwj94.38 2094.62 1793.68 5598.24 5183.34 8898.61 2392.69 27991.32 1895.07 2998.74 1482.93 4899.38 6495.42 2998.51 3498.32 54
pm-mvs180.05 25278.02 25486.15 25185.42 30075.81 25495.11 21392.69 27977.13 26170.36 28487.43 24858.44 25995.27 26071.36 25164.25 31487.36 294
1112_ss88.60 13487.47 13992.00 12493.21 17780.97 13996.47 15292.46 28183.64 15980.86 18797.30 8780.24 6797.62 15177.60 19885.49 18897.40 124
Test_1112_low_res88.03 14586.73 15291.94 12693.15 17980.88 14196.44 15692.41 28283.59 16280.74 18991.16 19980.18 6897.59 15277.48 20185.40 18997.36 126
BH-RMVSNet86.84 16185.28 16591.49 13895.35 12380.26 15996.95 12792.21 28382.86 17481.77 18295.46 13459.34 25297.64 14969.79 26193.81 11996.57 153
LS3D82.22 23179.94 24289.06 19297.43 8174.06 26993.20 25992.05 28461.90 32373.33 26395.21 13859.35 25199.21 8054.54 31792.48 13293.90 202
EG-PatchMatch MVS74.92 28672.02 29083.62 28583.76 31873.28 27293.62 24592.04 28568.57 30958.88 32483.80 30031.87 33995.57 24856.97 31078.67 23182.00 331
IterMVS80.67 24879.16 24785.20 26289.79 25176.08 24992.97 26391.86 28680.28 21471.20 27885.14 28857.93 26491.34 31972.52 24470.74 27088.18 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet79.18 26175.99 26988.72 20187.37 28080.66 14879.96 32591.82 28777.38 25974.33 25681.87 30841.78 32190.74 32466.36 27983.10 20394.76 189
IterMVS-SCA-FT80.51 25079.10 24884.73 26789.63 25674.66 26292.98 26291.81 28880.05 22071.06 28085.18 28658.04 26191.40 31872.48 24570.70 27288.12 278
our_test_377.90 27075.37 27385.48 26085.39 30176.74 24193.63 24491.67 28973.39 28765.72 30384.65 29458.20 26093.13 30557.82 30767.87 29786.57 302
pmmvs581.34 24179.54 24486.73 24385.02 30676.91 23896.22 17091.65 29077.65 25573.55 25988.61 23255.70 27994.43 28474.12 23573.35 25888.86 265
ACMH75.40 1777.99 26874.96 27487.10 23790.67 23976.41 24593.19 26091.64 29172.47 29563.44 31187.61 24743.34 31597.16 17858.34 30573.94 25387.72 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+-dtu83.33 21082.60 20585.50 25989.55 25769.38 30696.09 17691.38 29282.30 18275.96 24191.41 19456.71 27195.58 24775.13 22584.90 19391.54 213
YYNet173.53 29270.43 29782.85 29384.52 31071.73 28891.69 28091.37 29367.63 31046.79 33681.21 31155.04 28490.43 32655.93 31359.70 32386.38 304
ppachtmachnet_test77.19 27474.22 28186.13 25285.39 30178.22 20893.98 23991.36 29471.74 29967.11 29684.87 29256.67 27293.37 30352.21 32264.59 31386.80 299
Anonymous20240521184.41 19681.93 21391.85 13096.78 9678.41 20297.44 8291.34 29570.29 30484.06 14994.26 16141.09 32498.96 10279.46 18282.65 21198.17 67
MDA-MVSNet_test_wron73.54 29170.43 29782.86 29284.55 30871.85 28591.74 27991.32 29667.63 31046.73 33781.09 31255.11 28390.42 32755.91 31459.76 32286.31 305
CR-MVSNet83.53 20781.36 22290.06 17190.16 24779.75 16979.02 33091.12 29784.24 14382.27 17580.35 31575.45 13793.67 29763.37 29286.25 17896.75 149
Patchmtry77.36 27374.59 27785.67 25789.75 25275.75 25577.85 33391.12 29760.28 33071.23 27780.35 31575.45 13793.56 30057.94 30667.34 30487.68 285
LTVRE_ROB73.68 1877.99 26875.74 27184.74 26690.45 24272.02 28286.41 31491.12 29772.57 29466.63 29887.27 25054.95 28596.98 18556.29 31275.98 24385.21 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 27576.06 26880.55 30583.78 31760.00 33190.35 28791.05 30077.01 26566.62 29987.92 24347.73 30594.03 29071.63 24868.44 29187.62 287
CNLPA86.96 15785.37 16491.72 13397.59 7479.34 17997.21 9791.05 30074.22 27978.90 20596.75 10967.21 20698.95 10574.68 22890.77 14596.88 143
pmmvs674.65 28871.67 29183.60 28679.13 32869.94 29993.31 25690.88 30261.05 32965.83 30284.15 29843.43 31494.83 27766.62 27460.63 32186.02 310
Anonymous2023120675.29 28573.64 28480.22 30680.75 32163.38 32393.36 25190.71 30373.09 28967.12 29583.70 30150.33 29690.85 32353.63 32070.10 27786.44 303
USDC78.65 26376.25 26785.85 25487.58 27874.60 26389.58 29290.58 30484.05 14663.13 31388.23 23840.69 32696.86 19366.57 27675.81 24586.09 309
MSDG80.62 24977.77 25689.14 19193.43 17577.24 23391.89 27690.18 30569.86 30668.02 29291.94 19052.21 29198.84 11059.32 30383.12 20291.35 214
ACMH+76.62 1677.47 27274.94 27585.05 26391.07 23371.58 29093.26 25790.01 30671.80 29864.76 30688.55 23341.62 32296.48 20362.35 29571.00 26787.09 297
FMVSNet576.46 28074.16 28283.35 29090.05 24976.17 24889.58 29289.85 30771.39 30165.29 30580.42 31450.61 29487.70 33361.05 29869.24 28686.18 307
ambc76.02 31868.11 34151.43 34064.97 34289.59 30860.49 32174.49 32717.17 34592.46 30861.50 29652.85 33184.17 320
ITE_SJBPF82.38 29687.00 28265.59 31689.55 30979.99 22269.37 28991.30 19741.60 32395.33 25662.86 29474.63 25286.24 306
pmmvs-eth3d73.59 29070.66 29582.38 29676.40 33573.38 27089.39 29589.43 31072.69 29360.34 32277.79 32346.43 30991.26 32166.42 27857.06 32582.51 326
test20.0372.36 29871.15 29375.98 31977.79 33059.16 33392.40 27189.35 31174.09 28061.50 31884.32 29648.09 30185.54 33950.63 32762.15 32083.24 322
SixPastTwentyTwo76.04 28174.32 28081.22 30284.54 30961.43 32991.16 28389.30 31277.89 25164.04 30886.31 27048.23 30094.29 28763.54 29163.84 31687.93 281
TransMVSNet (Re)76.94 27774.38 27984.62 27185.92 29575.25 25995.28 20389.18 31373.88 28267.22 29486.46 26559.64 24794.10 28959.24 30452.57 33284.50 318
MIMVSNet169.44 30266.65 30577.84 31276.48 33462.84 32587.42 30688.97 31466.96 31557.75 32979.72 32032.77 33885.83 33846.32 33463.42 31784.85 316
K. test v373.62 28971.59 29279.69 30882.98 31959.85 33290.85 28688.83 31577.13 26158.90 32382.11 30643.62 31391.72 31665.83 28054.10 32987.50 292
Baseline_NR-MVSNet81.22 24380.07 23984.68 26885.32 30475.12 26096.48 15188.80 31676.24 26677.28 21986.40 26967.61 20094.39 28575.73 22166.73 30984.54 317
MDA-MVSNet-bldmvs71.45 30067.94 30281.98 30085.33 30368.50 30992.35 27288.76 31770.40 30342.99 33881.96 30746.57 30891.31 32048.75 33254.39 32886.11 308
new-patchmatchnet68.85 30565.93 30677.61 31373.57 34063.94 32290.11 28988.73 31871.62 30055.08 33173.60 32940.84 32587.22 33551.35 32548.49 33681.67 332
Patchmatch-test78.25 26674.72 27688.83 19891.20 22974.10 26873.91 33988.70 31959.89 33366.82 29785.12 28978.38 8994.54 28248.84 33179.58 22497.86 94
OpenMVS_ROBcopyleft68.52 2073.02 29569.57 29983.37 28980.54 32471.82 28693.60 24688.22 32062.37 32161.98 31683.15 30535.31 33395.47 25045.08 33675.88 24482.82 323
RPSCF77.73 27176.63 26581.06 30388.66 26855.76 33887.77 30587.88 32164.82 31874.14 25792.79 18049.22 29996.81 19567.47 27176.88 24290.62 220
MVS-HIRNet71.36 30167.00 30384.46 27590.58 24069.74 30379.15 32987.74 32246.09 33961.96 31750.50 34045.14 31195.64 24253.74 31988.11 16688.00 280
DP-MVS81.47 23978.28 25291.04 14898.14 5678.48 19895.09 21686.97 32361.14 32871.12 27992.78 18159.59 24899.38 6453.11 32186.61 17595.27 183
COLMAP_ROBcopyleft73.24 1975.74 28373.00 28883.94 27992.38 19669.08 30791.85 27786.93 32461.48 32665.32 30490.27 21442.27 32096.93 18950.91 32675.63 24685.80 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_040272.68 29669.54 30082.09 29988.67 26771.81 28792.72 26786.77 32561.52 32562.21 31583.91 29943.22 31693.76 29634.60 34072.23 26480.72 333
testgi74.88 28773.40 28579.32 31080.13 32561.75 32793.21 25886.64 32679.49 23066.56 30091.06 20035.51 33288.67 33156.79 31171.25 26587.56 290
TDRefinement69.20 30465.78 30779.48 30966.04 34362.21 32688.21 30286.12 32762.92 32061.03 32085.61 27833.23 33694.16 28855.82 31553.02 33082.08 330
ADS-MVSNet279.57 25577.53 25785.71 25693.78 16672.13 28079.48 32686.11 32873.09 28980.14 19679.99 31862.15 23490.14 32959.49 30183.52 19894.85 187
LF4IMVS72.36 29870.82 29476.95 31479.18 32756.33 33586.12 31586.11 32869.30 30863.06 31486.66 26133.03 33792.25 31165.33 28268.64 29082.28 329
TinyColmap72.41 29768.99 30182.68 29488.11 27369.59 30488.41 30185.20 33065.55 31657.91 32784.82 29330.80 34195.94 22351.38 32368.70 28982.49 328
pmmvs365.75 30862.18 31076.45 31767.12 34264.54 31888.68 29985.05 33154.77 33857.54 33073.79 32829.40 34286.21 33755.49 31647.77 33778.62 334
new_pmnet66.18 30763.18 30975.18 32176.27 33661.74 32883.79 32284.66 33256.64 33751.57 33471.85 33431.29 34087.93 33249.98 32862.55 31975.86 336
AllTest75.92 28273.06 28784.47 27392.18 20767.29 31191.07 28484.43 33367.63 31063.48 30990.18 21538.20 32897.16 17857.04 30873.37 25688.97 261
TestCases84.47 27392.18 20767.29 31184.43 33367.63 31063.48 30990.18 21538.20 32897.16 17857.04 30873.37 25688.97 261
LCM-MVSNet-Re83.75 20483.54 19384.39 27793.54 17264.14 32092.51 26884.03 33583.90 15266.14 30186.59 26267.36 20492.68 30684.89 13692.87 12796.35 158
Gipumacopyleft45.11 31442.05 31554.30 32880.69 32251.30 34135.80 34683.81 33628.13 34327.94 34434.53 34411.41 35076.70 34321.45 34354.65 32734.90 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet52.52 31148.24 31365.35 32247.63 34941.45 34672.55 34083.62 33731.75 34237.66 34057.92 3389.19 35276.76 34249.26 33044.60 33977.84 335
FPMVS55.09 31052.93 31261.57 32655.98 34440.51 34783.11 32383.41 33837.61 34134.95 34171.95 33314.40 34676.95 34129.81 34165.16 31267.25 340
Patchmatch-RL test76.65 27974.01 28384.55 27277.37 33364.23 31978.49 33282.84 33978.48 24764.63 30773.40 33076.05 12791.70 31776.99 20457.84 32497.72 102
DSMNet-mixed73.13 29472.45 28975.19 32077.51 33246.82 34285.09 32082.01 34067.61 31469.27 29081.33 31050.89 29286.28 33654.54 31783.80 19792.46 210
lessismore_v079.98 30780.59 32358.34 33480.87 34158.49 32583.46 30343.10 31793.89 29263.11 29348.68 33487.72 283
door80.13 342
door-mid79.75 343
PM-MVS69.32 30366.93 30476.49 31673.60 33955.84 33785.91 31679.32 34474.72 27661.09 31978.18 32221.76 34391.10 32270.86 25756.90 32682.51 326
ANet_high46.22 31341.28 31761.04 32739.91 35146.25 34470.59 34176.18 34558.87 33523.09 34548.00 34212.58 34866.54 34628.65 34213.62 34570.35 338
PMMVS250.90 31246.31 31464.67 32355.53 34546.67 34377.30 33571.02 34640.89 34034.16 34259.32 3369.83 35176.14 34440.09 33928.63 34271.21 337
MTMP97.53 7668.16 347
DeepMVS_CXcopyleft64.06 32578.53 32943.26 34568.11 34869.94 30538.55 33976.14 32518.53 34479.34 34043.72 33741.62 34169.57 339
PMVScopyleft34.80 2339.19 31635.53 31850.18 32929.72 35230.30 34959.60 34466.20 34926.06 34417.91 34749.53 3413.12 35374.09 34518.19 34549.40 33346.14 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt41.54 31541.93 31640.38 33120.10 35326.84 35061.93 34359.09 35014.81 34828.51 34380.58 31335.53 33148.33 35063.70 29013.11 34645.96 343
MVEpermissive35.65 2233.85 31729.49 32146.92 33041.86 35036.28 34850.45 34556.52 35118.75 34718.28 34637.84 3432.41 35458.41 34718.71 34420.62 34346.06 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN32.70 31832.39 31933.65 33253.35 34725.70 35174.07 33853.33 35221.08 34517.17 34833.63 34611.85 34954.84 34812.98 34614.04 34420.42 345
EMVS31.70 31931.45 32032.48 33350.72 34823.95 35274.78 33752.30 35320.36 34616.08 34931.48 34712.80 34753.60 34911.39 34713.10 34719.88 346
N_pmnet61.30 30960.20 31164.60 32484.32 31117.00 35491.67 28110.98 35461.77 32458.45 32678.55 32149.89 29791.83 31542.27 33863.94 31584.97 315
wuyk23d14.10 32113.89 32314.72 33455.23 34622.91 35333.83 3473.56 3554.94 3494.11 3502.28 3522.06 35519.66 35110.23 3488.74 3481.59 349
testmvs9.92 32212.94 3240.84 3360.65 3540.29 35693.78 2420.39 3560.42 3502.85 35115.84 3500.17 3570.30 3532.18 3490.21 3491.91 348
test1239.07 32311.73 3251.11 3350.50 3550.77 35589.44 2940.20 3570.34 3512.15 35210.72 3510.34 3560.32 3521.79 3500.08 3502.23 347
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas5.92 3257.89 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35371.04 1850.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
n20.00 358
nn0.00 358
ab-mvs-re8.11 32410.81 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35397.30 870.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS97.30 299.19 892.31 399.12 698.54 2092.06 299.84 1299.11 199.37 199.74 1
test_0728_THIRD88.38 5696.69 1098.76 1289.64 1099.76 2097.47 1098.84 2299.38 10
GSMVS97.54 114
test_part298.90 1685.14 5796.07 17
sam_mvs177.59 9997.54 114
sam_mvs75.35 144
test_post185.88 31730.24 34873.77 16095.07 27173.89 236
test_post33.80 34576.17 12595.97 219
patchmatchnet-post77.09 32477.78 9895.39 252
gm-plane-assit92.27 20179.64 17484.47 13595.15 14297.93 13785.81 127
test9_res96.00 2199.03 1198.31 57
agg_prior294.30 4199.00 1398.57 41
test_prior482.34 10697.75 61
test_prior298.37 2786.08 9394.57 3898.02 4883.14 4495.05 3498.79 23
旧先验296.97 12674.06 28196.10 1697.76 14688.38 111
新几何296.42 159
原ACMM296.84 132
testdata299.48 5876.45 211
segment_acmp82.69 52
testdata195.57 19787.44 74
plane_prior791.86 22177.55 228
plane_prior691.98 21677.92 22064.77 221
plane_prior494.15 163
plane_prior377.75 22490.17 3181.33 183
plane_prior297.18 10189.89 33
plane_prior191.95 219
plane_prior77.96 21797.52 7890.36 3082.96 206
HQP5-MVS78.48 198
HQP-NCC92.08 21197.63 6790.52 2782.30 171
ACMP_Plane92.08 21197.63 6790.52 2782.30 171
BP-MVS87.67 116
HQP4-MVS82.30 17197.32 16891.13 215
HQP2-MVS65.40 216
NP-MVS92.04 21578.22 20894.56 155
MDTV_nov1_ep13_2view81.74 12386.80 31080.65 20485.65 13674.26 15576.52 21096.98 137
ACMMP++_ref78.45 236
ACMMP++79.05 228
Test By Simon71.65 178