This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6499.90 196.81 3398.67 9999.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15899.87 9099.86 296.70 3698.78 9299.79 6292.03 14199.90 7599.17 4699.86 7999.88 92
CHOSEN 1792x268896.81 11496.53 11397.64 15198.91 12793.07 22099.65 15999.80 395.64 6795.39 17898.86 16784.35 22799.90 7596.98 13699.16 12199.95 78
HyFIR lowres test96.66 12496.43 11697.36 16399.05 11393.91 20599.70 15099.80 390.54 23196.26 16498.08 19892.15 13898.23 21696.84 14195.46 19499.93 81
thres100view90096.74 11995.92 13599.18 5498.90 12898.77 3699.74 14099.71 592.59 17595.84 17098.86 16789.25 18199.50 14593.84 18894.57 20199.27 175
tfpn200view996.79 11595.99 12599.19 5398.94 12198.82 3199.78 12699.71 592.86 15796.02 16798.87 16589.33 17999.50 14593.84 18894.57 20199.27 175
thres600view796.69 12295.87 13899.14 6398.90 12898.78 3599.74 14099.71 592.59 17595.84 17098.86 16789.25 18199.50 14593.44 20194.50 20499.16 182
thres40096.78 11695.99 12599.16 5998.94 12198.82 3199.78 12699.71 592.86 15796.02 16798.87 16589.33 17999.50 14593.84 18894.57 20199.16 182
thres20096.96 10896.21 12099.22 5098.97 11998.84 3099.85 10499.71 593.17 15296.26 16498.88 16389.87 17299.51 14394.26 18294.91 20099.31 172
PVSNet91.05 1397.13 10396.69 10898.45 11699.52 9695.81 15799.95 4399.65 1094.73 9099.04 8199.21 13684.48 22599.95 6094.92 16098.74 12899.58 137
PVSNet_088.03 1991.80 23990.27 25196.38 19398.27 15690.46 27899.94 5899.61 1193.99 12486.26 30397.39 21571.13 31799.89 7998.77 7467.05 34998.79 200
MVS_030489.28 28788.31 28692.21 29897.05 22286.53 31797.76 31099.57 1285.58 30693.86 19892.71 33151.04 35896.30 30784.49 29892.72 21993.79 298
WTY-MVS98.10 6797.60 7899.60 1798.92 12599.28 1299.89 8499.52 1395.58 6998.24 12099.39 12193.33 10699.74 12597.98 10995.58 19399.78 103
HY-MVS92.50 797.79 8197.17 9499.63 1298.98 11899.32 697.49 31299.52 1395.69 6698.32 11597.41 21393.32 10799.77 11598.08 10395.75 19099.81 98
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7699.51 1597.60 1299.20 7399.36 12493.71 9999.91 7497.99 10798.71 12999.61 128
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13799.50 1693.90 13099.37 6399.76 7293.24 113100.00 197.75 12099.96 4899.98 51
ACMMPcopyleft97.74 8397.44 8398.66 9799.92 3596.13 14799.18 22399.45 1794.84 8796.41 16199.71 8691.40 14999.99 3697.99 10798.03 14699.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16399.44 1897.33 1799.00 8599.72 8494.03 9099.98 4298.73 76100.00 1100.00 1
EPMVS96.53 12796.01 12498.09 13498.43 14896.12 14996.36 32899.43 1993.53 14297.64 13295.04 29694.41 7098.38 20291.13 22798.11 14199.75 106
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28499.42 2097.03 2799.02 8299.09 14099.35 198.21 21799.73 2799.78 8899.77 104
D2MVS92.76 21692.59 21093.27 28395.13 27489.54 29499.69 15199.38 2192.26 18887.59 28194.61 31185.05 22297.79 23691.59 22288.01 24692.47 327
sss97.57 8897.03 9999.18 5498.37 14998.04 7299.73 14599.38 2193.46 14498.76 9599.06 14291.21 15199.89 7996.33 14497.01 16699.62 126
PAPM98.60 3398.42 3199.14 6396.05 25098.96 2099.90 7699.35 2396.68 3798.35 11499.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
UGNet95.33 15794.57 16597.62 15398.55 14294.85 18598.67 27599.32 2495.75 6596.80 15096.27 25272.18 31199.96 5394.58 17499.05 12398.04 210
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_yl97.83 7797.37 8599.21 5199.18 10897.98 7599.64 16399.27 2591.43 21497.88 12898.99 14995.84 3599.84 10398.82 6995.32 19799.79 100
DCV-MVSNet97.83 7797.37 8599.21 5199.18 10897.98 7599.64 16399.27 2591.43 21497.88 12898.99 14995.84 3599.84 10398.82 6995.32 19799.79 100
VNet97.21 10296.57 11299.13 6898.97 11997.82 8199.03 24199.21 2794.31 11099.18 7798.88 16386.26 21099.89 7998.93 6094.32 20599.69 114
PVSNet_BlendedMVS96.05 14195.82 13996.72 18099.59 9096.99 11499.95 4399.10 2894.06 12198.27 11795.80 26189.00 18599.95 6099.12 4787.53 25293.24 315
PVSNet_Blended97.94 7197.64 7598.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11799.08 14189.00 18599.95 6099.12 4799.25 11799.57 138
UniMVSNet_NR-MVSNet92.95 21392.11 21895.49 20894.61 28495.28 17499.83 11499.08 3091.49 21089.21 25596.86 23387.14 20196.73 29093.20 20377.52 32394.46 236
CSCG97.10 10497.04 9897.27 16699.89 4591.92 24899.90 7699.07 3188.67 26295.26 18199.82 5393.17 11599.98 4298.15 9899.47 10999.90 89
PatchMatch-RL96.04 14295.40 14697.95 13899.59 9095.22 17899.52 18099.07 3193.96 12696.49 15798.35 19382.28 23899.82 10590.15 24899.22 12098.81 199
VPA-MVSNet92.70 21891.55 23096.16 19795.09 27596.20 14498.88 25699.00 3391.02 22491.82 21595.29 29076.05 29397.96 23095.62 15481.19 29494.30 251
CVMVSNet94.68 17394.94 15893.89 26996.80 23686.92 31699.06 23598.98 3494.45 10094.23 19399.02 14485.60 21495.31 32790.91 23595.39 19699.43 159
UniMVSNet (Re)93.07 21092.13 21795.88 20394.84 27996.24 14399.88 8798.98 3492.49 18389.25 25395.40 28087.09 20297.14 26593.13 20778.16 31894.26 254
hse-mvs394.92 16594.36 16896.59 18598.85 13291.29 26498.93 25198.94 3695.90 5698.77 9398.42 19290.89 16199.77 11597.80 11370.76 33998.72 202
tfpnnormal89.29 28687.61 29394.34 25294.35 28794.13 19998.95 24998.94 3683.94 31884.47 31395.51 27574.84 30097.39 24977.05 33580.41 30491.48 337
MVS96.60 12595.56 14499.72 996.85 23399.22 1598.31 29198.94 3691.57 20890.90 22399.61 10186.66 20699.96 5397.36 12699.88 7699.99 20
WR-MVS_H91.30 24590.35 24894.15 25694.17 29092.62 23499.17 22498.94 3688.87 25886.48 29894.46 31684.36 22696.61 29688.19 26578.51 31693.21 316
FIs94.10 18893.43 19196.11 19894.70 28296.82 11999.58 17098.93 4092.54 17989.34 25197.31 21687.62 19697.10 26994.22 18486.58 25794.40 243
EPNet_dtu95.71 15095.39 14796.66 18298.92 12593.41 21699.57 17298.90 4196.19 5197.52 13498.56 18492.65 12697.36 25077.89 33098.33 13699.20 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FC-MVSNet-test93.81 19393.15 20095.80 20694.30 28896.20 14499.42 19598.89 4292.33 18789.03 26097.27 21887.39 19996.83 28693.20 20386.48 25894.36 246
baseline296.71 12196.49 11497.37 16295.63 26995.96 15399.74 14098.88 4392.94 15691.61 21698.97 15397.72 598.62 18094.83 16498.08 14597.53 220
API-MVS97.86 7497.66 7498.47 11499.52 9695.41 17099.47 18998.87 4491.68 20598.84 8999.85 3392.34 13499.99 3698.44 8999.96 48100.00 1
131496.84 11395.96 13299.48 3396.74 24098.52 5598.31 29198.86 4595.82 5889.91 23598.98 15187.49 19799.96 5397.80 11399.73 9199.96 70
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 1098.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
AdaColmapbinary97.23 10196.80 10598.51 11299.99 195.60 16699.09 22898.84 4793.32 14796.74 15199.72 8486.04 211100.00 198.01 10599.43 11299.94 80
IB-MVS92.85 694.99 16493.94 17898.16 12997.72 19295.69 16599.99 598.81 4894.28 11292.70 21196.90 23095.08 5099.17 15696.07 14773.88 33799.60 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
3Dnovator91.47 1296.28 13895.34 14999.08 7196.82 23597.47 9799.45 19298.81 4895.52 7089.39 24999.00 14881.97 24099.95 6097.27 12899.83 8199.84 95
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 1098.80 5090.78 22999.62 4099.78 6695.30 46100.00 199.80 1899.93 6399.99 20
MAR-MVS97.43 9197.19 9298.15 13299.47 10094.79 18999.05 23998.76 5192.65 17198.66 10099.82 5388.52 19199.98 4298.12 9999.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DU-MVS92.46 22491.45 23395.49 20894.05 29195.28 17499.81 11798.74 5292.25 18989.21 25596.64 24281.66 24496.73 29093.20 20377.52 32394.46 236
无先验99.49 18698.71 5393.46 144100.00 194.36 17899.99 20
NR-MVSNet91.56 24490.22 25295.60 20794.05 29195.76 16098.25 29498.70 5491.16 22080.78 33196.64 24283.23 23596.57 29791.41 22377.73 32294.46 236
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 1098.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
WR-MVS92.31 22791.25 23595.48 21194.45 28595.29 17399.60 16898.68 5690.10 23888.07 27696.89 23180.68 25696.80 28893.14 20679.67 31094.36 246
ab-mvs94.69 17193.42 19298.51 11298.07 16796.26 13996.49 32798.68 5690.31 23694.54 18697.00 22876.30 28999.71 12995.98 14993.38 21599.56 139
QAPM95.40 15694.17 17299.10 6996.92 22797.71 8399.40 19698.68 5689.31 24788.94 26198.89 16182.48 23799.96 5393.12 20899.83 8199.62 126
Anonymous2024052992.10 23290.65 24396.47 18698.82 13390.61 27498.72 27098.67 5975.54 34793.90 19798.58 18266.23 33399.90 7594.70 17190.67 22198.90 195
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4398.65 6095.78 6099.73 2799.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
TranMVSNet+NR-MVSNet91.68 24390.61 24494.87 22893.69 29893.98 20399.69 15198.65 6091.03 22388.44 26896.83 23780.05 26496.18 31190.26 24776.89 33194.45 241
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1898.64 6398.47 299.13 7899.92 1196.38 26100.00 199.74 24100.00 1100.00 1
PVSNet_Blended_VisFu97.27 9996.81 10498.66 9798.81 13496.67 12499.92 6898.64 6394.51 9996.38 16298.49 18689.05 18499.88 8597.10 13398.34 13599.43 159
新几何199.42 3899.75 7698.27 6598.63 6692.69 16899.55 4599.82 5394.40 71100.00 191.21 22599.94 5799.99 20
112198.03 6997.57 8099.40 4199.74 7798.21 6698.31 29198.62 6792.78 16399.53 4799.83 4995.08 50100.00 194.36 17899.92 6799.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1898.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4398.61 6994.77 8899.31 6699.85 3394.22 83100.00 198.70 7799.98 3399.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4398.61 6995.00 8199.31 6699.85 3394.22 83100.00 198.78 7399.98 3399.98 51
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4398.60 7194.77 8899.31 6699.84 4693.73 98100.00 198.70 7799.98 3399.98 51
VPNet91.81 23690.46 24595.85 20594.74 28195.54 16798.98 24598.59 7292.14 19190.77 22597.44 21268.73 32497.54 24494.89 16377.89 32094.46 236
test0.0.03 193.86 19093.61 18394.64 23695.02 27892.18 24299.93 6498.58 7394.07 11987.96 27798.50 18593.90 9494.96 33181.33 31693.17 21696.78 222
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 12199.24 13492.58 12899.94 6898.63 8499.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CP-MVSNet91.23 24890.22 25294.26 25393.96 29392.39 23899.09 22898.57 7588.95 25686.42 29996.57 24479.19 26996.37 30390.29 24678.95 31394.02 278
OpenMVScopyleft90.15 1594.77 16993.59 18698.33 12396.07 24997.48 9699.56 17498.57 7590.46 23286.51 29698.95 15778.57 27499.94 6893.86 18799.74 9097.57 219
hse-mvs294.38 18294.08 17595.31 21598.27 15690.02 28699.29 21598.56 7795.90 5698.77 9398.00 20190.89 16198.26 21497.80 11369.20 34597.64 217
AUN-MVS93.28 20592.60 20795.34 21398.29 15290.09 28599.31 21098.56 7791.80 20396.35 16398.00 20189.38 17898.28 21092.46 21269.22 34497.64 217
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4398.56 7797.56 1399.44 5499.85 3395.38 45100.00 199.31 4399.99 2099.87 93
testdata98.42 11999.47 10095.33 17298.56 7793.78 13599.79 2199.85 3393.64 10199.94 6894.97 15999.94 57100.00 1
EPP-MVSNet96.69 12296.60 11096.96 17297.74 18893.05 22299.37 20398.56 7788.75 26095.83 17299.01 14696.01 2898.56 18296.92 13997.20 16299.25 177
DeepPCF-MVS95.94 297.71 8598.98 1093.92 26799.63 8881.76 34299.96 2598.56 7799.47 199.19 7699.99 194.16 87100.00 199.92 999.93 63100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7698.55 8395.14 7899.72 3199.84 4695.46 43100.00 199.65 3299.99 2099.99 20
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2598.55 8394.87 8699.45 5399.85 3394.07 89100.00 198.67 79100.00 199.98 51
test22299.55 9497.41 10299.34 20698.55 8391.86 19999.27 7199.83 4993.84 9699.95 5199.99 20
tpmvs94.28 18793.57 18796.40 19198.55 14291.50 26295.70 33898.55 8387.47 27792.15 21394.26 31891.42 14898.95 16288.15 26695.85 18698.76 201
thisisatest053097.10 10496.72 10798.22 12897.60 19796.70 12299.92 6898.54 8791.11 22197.07 14498.97 15397.47 999.03 15893.73 19696.09 18098.92 192
tttt051796.85 11296.49 11497.92 14097.48 20595.89 15699.85 10498.54 8790.72 23096.63 15398.93 16097.47 999.02 15993.03 20995.76 18998.85 196
thisisatest051597.41 9597.02 10098.59 10497.71 19497.52 9199.97 1898.54 8791.83 20097.45 13699.04 14397.50 899.10 15794.75 16896.37 17799.16 182
ZD-MVS99.92 3598.57 5198.52 9092.34 18699.31 6699.83 4995.06 5299.80 10699.70 3099.97 44
GG-mvs-BLEND98.54 10998.21 16098.01 7393.87 34398.52 9097.92 12697.92 20599.02 297.94 23398.17 9699.58 10399.67 117
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15698.52 9095.79 5999.01 8399.77 6894.40 7199.75 12198.82 6999.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15698.52 9095.76 6299.01 8399.77 6894.33 7999.75 12198.80 7299.83 8199.98 51
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 9098.52 9096.05 5399.41 5799.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 9098.52 9096.04 5499.41 5799.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
PS-CasMVS90.63 26189.51 26693.99 26593.83 29591.70 25798.98 24598.52 9088.48 26686.15 30496.53 24675.46 29596.31 30688.83 25878.86 31593.95 286
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 1098.51 9797.00 2898.52 10599.71 8687.80 19499.95 6099.75 2299.38 11399.83 96
gg-mvs-nofinetune93.51 20191.86 22598.47 11497.72 19297.96 7792.62 34798.51 9774.70 34997.33 13869.59 36098.91 397.79 23697.77 11899.56 10499.67 117
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12899.40 19698.51 9795.29 7598.51 10699.76 7293.60 10299.71 12998.53 8799.52 10699.95 78
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 12199.62 4099.85 3394.97 5999.96 5395.11 15799.95 5199.92 87
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13899.36 20598.50 10195.21 7798.30 11699.75 7793.29 10999.73 12898.37 9199.30 11599.81 98
LS3D95.84 14695.11 15698.02 13799.85 5595.10 18098.74 26898.50 10187.22 28293.66 19999.86 2987.45 19899.95 6090.94 23499.81 8799.02 190
PEN-MVS90.19 27389.06 27493.57 27893.06 31090.90 26999.06 23598.47 10388.11 27085.91 30696.30 25176.67 28495.94 32087.07 27976.91 33093.89 291
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21998.47 10398.14 499.08 7999.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6498.46 10594.56 9799.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
PLCcopyleft95.54 397.93 7297.89 6998.05 13699.82 6594.77 19099.92 6898.46 10593.93 12897.20 14099.27 12995.44 4499.97 5197.41 12599.51 10899.41 161
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UA-Net96.54 12695.96 13298.27 12698.23 15995.71 16398.00 30598.45 10793.72 13898.41 11099.27 12988.71 18999.66 13791.19 22697.69 14999.44 158
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5898.44 10894.31 11098.50 10799.82 5393.06 11799.99 3698.30 9499.99 2099.93 81
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2598.44 10897.96 799.55 4599.94 497.18 17100.00 193.81 19199.94 5799.98 51
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 9098.44 10897.48 1599.64 3699.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
alignmvs97.81 7997.33 8899.25 4998.77 13798.66 4699.99 598.44 10894.40 10698.41 11099.47 11193.65 10099.42 15198.57 8594.26 20699.67 117
test1198.44 108
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 1098.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
MDTV_nov1_ep1395.69 14197.90 17594.15 19895.98 33498.44 10893.12 15397.98 12595.74 26395.10 4998.58 18190.02 24996.92 168
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6898.44 10892.06 19598.40 11299.84 4695.68 38100.00 198.19 9599.71 9399.97 63
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2598.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
test_0728_SECOND99.82 599.94 1499.47 599.95 4398.43 116100.00 199.99 5100.00 1100.00 1
TEST999.92 3598.92 2399.96 2598.43 11693.90 13099.71 3299.86 2995.88 3499.85 94
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2598.43 11694.35 10799.71 3299.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
test_899.92 3598.88 2699.96 2598.43 11694.35 10799.69 3499.85 3395.94 3199.85 94
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2598.43 11694.63 9699.63 3899.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
agg_prior99.93 2698.77 3698.43 11699.63 3899.85 94
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14799.82 11598.43 11694.56 9797.52 13499.70 8894.40 7199.98 4297.00 13599.98 3399.99 20
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4398.43 11695.35 7398.03 12499.75 7794.03 9099.98 4298.11 10099.83 8199.99 20
test072699.93 2699.29 1099.96 2598.42 12797.28 1899.86 499.94 497.22 15
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4398.42 12797.50 1499.52 5099.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5898.42 12796.22 4999.41 5799.78 6694.34 7699.96 5398.92 6199.95 5199.99 20
X-MVStestdata93.83 19192.06 22099.15 6199.94 1497.50 9499.94 5898.42 12796.22 4999.41 5741.37 36894.34 7699.96 5398.92 6199.95 5199.99 20
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
save fliter99.82 6598.79 3399.96 2598.40 13297.66 10
test1299.43 3599.74 7798.56 5398.40 13299.65 3594.76 6399.75 12199.98 3399.99 20
PatchmatchNetpermissive95.94 14495.45 14597.39 16197.83 18194.41 19596.05 33398.40 13292.86 15797.09 14395.28 29194.21 8698.07 22489.26 25598.11 14199.70 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6498.39 13594.04 12398.80 9199.74 8192.98 118100.00 198.16 9799.76 8999.93 81
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 7298.39 13597.20 2499.46 5299.85 3395.53 4299.79 10999.86 12100.00 199.99 20
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4398.39 13594.70 9198.26 11999.81 5791.84 145100.00 198.85 6799.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12699.97 1898.39 13594.43 10298.90 8899.87 2694.30 81100.00 199.04 5499.99 2099.99 20
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 10198.38 13993.19 15199.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12998.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4398.38 13995.04 8098.61 10399.80 5893.39 104100.00 198.64 83100.00 199.98 51
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7698.37 14293.81 13399.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10498.37 14294.68 9299.53 4799.83 4992.87 120100.00 198.66 8299.84 8099.99 20
test117298.38 5398.25 4798.77 9099.88 4996.56 12999.80 12298.36 14494.68 9299.20 7399.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 9098.36 14494.08 11899.74 2699.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10898.35 14694.92 8399.32 6599.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
CPTT-MVS97.64 8797.32 8998.58 10599.97 395.77 15999.96 2598.35 14689.90 24298.36 11399.79 6291.18 15599.99 3698.37 9199.99 2099.99 20
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5898.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1498.38 3899.87 5299.91 7298.33 14993.22 15099.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 9098.33 14993.97 12599.76 2499.87 2694.99 5899.75 12198.55 86100.00 199.98 51
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4398.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SCA94.69 17193.81 18297.33 16597.10 21994.44 19398.86 26098.32 15193.30 14896.17 16695.59 27076.48 28797.95 23191.06 22997.43 15499.59 131
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13699.76 13498.31 15394.43 10299.40 6199.75 7793.28 11099.78 11198.90 6499.92 6799.97 63
RE-MVS-def98.13 5599.79 7096.37 13699.76 13498.31 15394.43 10299.40 6199.75 7792.95 11998.90 6499.92 6799.97 63
RPMNet89.76 28087.28 29597.19 16796.29 24592.66 23192.01 35098.31 15370.19 35496.94 14585.87 35387.25 20099.78 11162.69 35695.96 18399.13 186
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12799.82 11598.30 15693.95 12799.37 6399.77 6892.84 12199.76 11898.95 5899.92 6799.97 63
TESTMET0.1,196.74 11996.26 11998.16 12997.36 20996.48 13099.96 2598.29 15791.93 19795.77 17398.07 19995.54 4098.29 20890.55 24098.89 12499.70 112
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 12298.28 15895.76 6297.18 14199.88 2292.74 124100.00 198.67 7999.88 7699.99 20
MTGPAbinary98.28 158
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 20098.28 15895.76 6297.18 14199.88 2292.74 124100.00 198.67 7999.88 7699.99 20
114514_t97.41 9596.83 10399.14 6399.51 9897.83 8099.89 8498.27 16188.48 26699.06 8099.66 9790.30 16799.64 13996.32 14599.97 4499.96 70
test_part192.15 23190.72 24196.44 19098.87 13197.46 9898.99 24498.26 16285.89 29886.34 30196.34 25081.71 24297.48 24691.06 22978.99 31294.37 245
Anonymous2023121189.86 27888.44 28494.13 25898.93 12390.68 27298.54 28198.26 16276.28 34386.73 29295.54 27270.60 31897.56 24390.82 23780.27 30794.15 268
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 10198.24 16492.18 19099.73 2799.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
Vis-MVSNetpermissive95.72 14895.15 15597.45 15797.62 19694.28 19799.28 21698.24 16494.27 11396.84 14898.94 15879.39 26798.76 17193.25 20298.49 13299.30 173
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+91.53 1196.31 13595.24 15199.52 2696.88 23298.64 4999.72 14898.24 16495.27 7688.42 27298.98 15182.76 23699.94 6897.10 13399.83 8199.96 70
DTE-MVSNet89.40 28488.24 28892.88 29192.66 31889.95 28899.10 22798.22 16787.29 28085.12 31196.22 25376.27 29095.30 32883.56 30575.74 33493.41 309
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7698.21 16893.53 14299.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
VDDNet93.12 20891.91 22396.76 17896.67 24392.65 23398.69 27398.21 16882.81 32697.75 13199.28 12661.57 34699.48 14998.09 10294.09 20898.15 208
test-LLR96.47 12896.04 12397.78 14497.02 22495.44 16899.96 2598.21 16894.07 11995.55 17596.38 24793.90 9498.27 21290.42 24398.83 12699.64 124
test-mter96.39 13295.93 13497.78 14497.02 22495.44 16899.96 2598.21 16891.81 20295.55 17596.38 24795.17 4798.27 21290.42 24398.83 12699.64 124
DWT-MVSNet_test97.31 9797.19 9297.66 15098.24 15894.67 19198.86 26098.20 17293.60 14198.09 12298.89 16197.51 798.78 16894.04 18597.28 15999.55 140
MP-MVS-pluss98.07 6897.64 7599.38 4499.74 7798.41 6099.74 14098.18 17393.35 14696.45 15899.85 3392.64 12799.97 5198.91 6399.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17898.17 17497.34 1699.85 699.85 3391.20 15299.89 7999.41 4099.67 9598.69 203
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13599.90 7698.17 17492.61 17398.62 10299.57 10491.87 14499.67 13698.87 6699.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpmrst96.27 13995.98 12797.13 16897.96 17293.15 21996.34 32998.17 17492.07 19398.71 9895.12 29493.91 9398.73 17394.91 16296.62 17199.50 151
ADS-MVSNet94.79 16794.02 17697.11 17097.87 17893.79 20694.24 33998.16 17790.07 23996.43 15994.48 31490.29 16898.19 21887.44 27397.23 16099.36 166
HPM-MVS_fast97.80 8097.50 8198.68 9599.79 7096.42 13299.88 8798.16 17791.75 20498.94 8799.54 10791.82 14699.65 13897.62 12299.99 2099.99 20
Vis-MVSNet (Re-imp)96.32 13495.98 12797.35 16497.93 17494.82 18799.47 18998.15 17991.83 20095.09 18299.11 13991.37 15097.47 24793.47 20097.43 15499.74 108
abl_697.67 8697.34 8798.66 9799.68 8696.11 15099.68 15398.14 18093.80 13499.27 7199.70 8888.65 19099.98 4297.46 12499.72 9299.89 90
CNLPA97.76 8297.38 8498.92 8599.53 9596.84 11899.87 9098.14 18093.78 13596.55 15699.69 9192.28 13599.98 4297.13 13199.44 11199.93 81
JIA-IIPM91.76 24290.70 24294.94 22696.11 24887.51 31393.16 34698.13 18275.79 34697.58 13377.68 35792.84 12197.97 22888.47 26396.54 17299.33 170
cl-mvsnet293.77 19593.25 19995.33 21499.49 9994.43 19499.61 16798.09 18390.38 23389.16 25895.61 26890.56 16597.34 25291.93 21784.45 27294.21 259
cdsmvs_eth3d_5k23.43 33731.24 3400.00 3520.00 3730.00 3740.00 36498.09 1830.00 3690.00 37099.67 9583.37 2330.00 3700.00 3680.00 3680.00 366
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 18098.08 18597.05 2699.86 499.86 2990.65 16399.71 12999.39 4198.63 13098.69 203
tpm cat193.51 20192.52 21296.47 18697.77 18591.47 26396.13 33198.06 18680.98 33392.91 20893.78 32289.66 17398.87 16387.03 28196.39 17699.09 188
DeepC-MVS94.51 496.92 11196.40 11798.45 11699.16 11095.90 15499.66 15698.06 18696.37 4794.37 19099.49 11083.29 23499.90 7597.63 12199.61 10199.55 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EU-MVSNet90.14 27590.34 24989.54 32092.55 31981.06 34598.69 27398.04 18891.41 21686.59 29596.84 23680.83 25493.31 34786.20 28781.91 28994.26 254
TAPA-MVS92.12 894.42 18193.60 18596.90 17499.33 10691.78 25299.78 12698.00 18989.89 24394.52 18799.47 11191.97 14299.18 15569.90 34699.52 10699.73 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.78 14794.86 15998.54 10998.47 14798.07 7099.06 23597.99 19092.68 16994.13 19498.62 17993.28 11098.69 17793.79 19385.76 26198.84 197
UnsupCasMVSNet_eth85.52 30483.99 30590.10 31689.36 34583.51 33196.65 32597.99 19089.14 24875.89 34693.83 32163.25 34393.92 34081.92 31467.90 34892.88 321
LFMVS94.75 17093.56 18898.30 12499.03 11495.70 16498.74 26897.98 19287.81 27598.47 10899.39 12167.43 33099.53 14198.01 10595.20 19999.67 117
dp95.05 16294.43 16796.91 17397.99 17192.73 22996.29 33097.98 19289.70 24595.93 16994.67 30993.83 9798.45 19086.91 28596.53 17399.54 144
PMMVS96.76 11796.76 10696.76 17898.28 15492.10 24399.91 7297.98 19294.12 11699.53 4799.39 12186.93 20498.73 17396.95 13897.73 14899.45 156
F-COLMAP96.93 11096.95 10196.87 17599.71 8491.74 25399.85 10497.95 19593.11 15495.72 17499.16 13892.35 13399.94 6895.32 15599.35 11498.92 192
OMC-MVS97.28 9897.23 9197.41 15999.76 7493.36 21899.65 15997.95 19596.03 5597.41 13799.70 8889.61 17499.51 14396.73 14298.25 14099.38 163
Anonymous20240521193.10 20991.99 22196.40 19199.10 11289.65 29298.88 25697.93 19783.71 32194.00 19598.75 17268.79 32299.88 8595.08 15891.71 22099.68 115
tpm295.47 15595.18 15496.35 19496.91 22891.70 25796.96 32397.93 19788.04 27298.44 10995.40 28093.32 10797.97 22894.00 18695.61 19299.38 163
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12599.97 1897.92 19998.07 598.76 9599.55 10595.00 5799.94 6899.91 1197.68 15099.99 20
CDS-MVSNet96.34 13396.07 12297.13 16897.37 20894.96 18399.53 17997.91 20091.55 20995.37 17998.32 19495.05 5397.13 26693.80 19295.75 19099.30 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP3-MVS97.89 20189.60 222
HQP-MVS94.61 17594.50 16694.92 22795.78 25691.85 24999.87 9097.89 20196.82 3093.37 20198.65 17680.65 25798.39 19897.92 11189.60 22294.53 231
HQP_MVS94.49 18094.36 16894.87 22895.71 26591.74 25399.84 10897.87 20396.38 4493.01 20598.59 18080.47 26198.37 20397.79 11689.55 22594.52 233
plane_prior597.87 20398.37 20397.79 11689.55 22594.52 233
xiu_mvs_v1_base_debu97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
xiu_mvs_v1_base97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
xiu_mvs_v1_base_debi97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
CostFormer96.10 14095.88 13796.78 17797.03 22392.55 23597.08 32097.83 20890.04 24198.72 9794.89 30395.01 5698.29 20896.54 14395.77 18899.50 151
TAMVS95.85 14595.58 14396.65 18397.07 22093.50 21399.17 22497.82 20991.39 21795.02 18398.01 20092.20 13697.30 25593.75 19595.83 18799.14 185
VDD-MVS93.77 19592.94 20196.27 19598.55 14290.22 28298.77 26797.79 21090.85 22796.82 14999.42 11661.18 34899.77 11598.95 5894.13 20798.82 198
cascas94.64 17493.61 18397.74 14997.82 18296.26 13999.96 2597.78 21185.76 30194.00 19597.54 21076.95 28299.21 15497.23 12995.43 19597.76 216
CLD-MVS94.06 18993.90 17994.55 24196.02 25190.69 27199.98 1097.72 21296.62 3991.05 22298.85 17077.21 27998.47 18698.11 10089.51 22794.48 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MS-PatchMatch90.65 25990.30 25091.71 30494.22 28985.50 32398.24 29597.70 21388.67 26286.42 29996.37 24967.82 32898.03 22683.62 30499.62 9891.60 335
XXY-MVS91.82 23590.46 24595.88 20393.91 29495.40 17198.87 25997.69 21488.63 26487.87 27897.08 22374.38 30497.89 23491.66 22184.07 27794.35 249
EI-MVSNet93.73 19793.40 19594.74 23296.80 23692.69 23099.06 23597.67 21588.96 25591.39 21899.02 14488.75 18897.30 25591.07 22887.85 24794.22 257
MVSTER95.53 15395.22 15296.45 18898.56 14197.72 8299.91 7297.67 21592.38 18591.39 21897.14 22097.24 1497.30 25594.80 16587.85 24794.34 250
ETV-MVS97.92 7397.80 7198.25 12798.14 16596.48 13099.98 1097.63 21795.61 6899.29 7099.46 11392.55 12998.82 16599.02 5698.54 13199.46 154
CANet_DTU96.76 11796.15 12198.60 10298.78 13697.53 9099.84 10897.63 21797.25 2399.20 7399.64 9981.36 24899.98 4292.77 21198.89 12498.28 206
LPG-MVS_test92.96 21292.71 20593.71 27395.43 27188.67 30199.75 13797.62 21992.81 16090.05 23098.49 18675.24 29798.40 19695.84 15289.12 22994.07 275
LGP-MVS_train93.71 27395.43 27188.67 30197.62 21992.81 16090.05 23098.49 18675.24 29798.40 19695.84 15289.12 22994.07 275
FMVSNet392.69 21991.58 22895.99 20098.29 15297.42 10199.26 21897.62 21989.80 24489.68 24195.32 28681.62 24696.27 30887.01 28285.65 26294.29 252
ET-MVSNet_ETH3D94.37 18393.28 19897.64 15198.30 15197.99 7499.99 597.61 22294.35 10771.57 35199.45 11496.23 2795.34 32696.91 14085.14 26899.59 131
EIA-MVS97.53 8997.46 8297.76 14798.04 16994.84 18699.98 1097.61 22294.41 10597.90 12799.59 10292.40 13298.87 16398.04 10499.13 12299.59 131
OPM-MVS93.21 20692.80 20394.44 24893.12 30890.85 27099.77 12997.61 22296.19 5191.56 21798.65 17675.16 29998.47 18693.78 19489.39 22893.99 283
IS-MVSNet96.29 13795.90 13697.45 15798.13 16694.80 18899.08 23097.61 22292.02 19695.54 17798.96 15590.64 16498.08 22293.73 19697.41 15799.47 153
CMPMVSbinary61.59 2184.75 31085.14 30483.57 33590.32 34062.54 35996.98 32297.59 22674.33 35069.95 35396.66 24064.17 34098.32 20687.88 27088.41 24389.84 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D90.06 27688.58 28294.49 24594.67 28388.09 31097.81 30997.57 22783.91 32088.44 26897.41 21357.44 35297.62 24291.41 22388.59 24097.77 215
lupinMVS97.85 7597.60 7898.62 10097.28 21697.70 8599.99 597.55 22895.50 7199.43 5599.67 9590.92 15998.71 17598.40 9099.62 9899.45 156
XVG-OURS94.82 16694.74 16395.06 22298.00 17089.19 29599.08 23097.55 22894.10 11794.71 18599.62 10080.51 25999.74 12596.04 14893.06 21896.25 225
XVG-OURS-SEG-HR94.79 16794.70 16495.08 22198.05 16889.19 29599.08 23097.54 23093.66 13994.87 18499.58 10378.78 27299.79 10997.31 12793.40 21496.25 225
PatchT90.38 26688.75 28095.25 21895.99 25290.16 28391.22 35497.54 23076.80 34297.26 13986.01 35291.88 14396.07 31666.16 35395.91 18599.51 149
BH-RMVSNet95.18 15994.31 17097.80 14398.17 16395.23 17799.76 13497.53 23292.52 18094.27 19299.25 13376.84 28398.80 16690.89 23699.54 10599.35 168
ACMP92.05 992.74 21792.42 21493.73 27195.91 25588.72 30099.81 11797.53 23294.13 11587.00 29098.23 19574.07 30598.47 18696.22 14688.86 23493.99 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2597.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
ACMM91.95 1092.88 21492.52 21293.98 26695.75 26189.08 29899.77 12997.52 23493.00 15589.95 23497.99 20376.17 29198.46 18993.63 19988.87 23394.39 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TR-MVS94.54 17793.56 18897.49 15697.96 17294.34 19698.71 27197.51 23690.30 23794.51 18898.69 17475.56 29498.77 17092.82 21095.99 18299.35 168
BH-w/o95.71 15095.38 14896.68 18198.49 14692.28 23999.84 10897.50 23792.12 19292.06 21498.79 17184.69 22398.67 17895.29 15699.66 9699.09 188
mvs_anonymous95.65 15295.03 15797.53 15498.19 16195.74 16199.33 20797.49 23890.87 22690.47 22897.10 22288.23 19297.16 26395.92 15097.66 15199.68 115
DP-MVS94.54 17793.42 19297.91 14199.46 10294.04 20098.93 25197.48 23981.15 33290.04 23299.55 10587.02 20399.95 6088.97 25798.11 14199.73 109
RRT_test8_iter0594.58 17694.11 17395.98 20197.88 17696.11 15099.89 8497.45 24091.66 20688.28 27396.71 23896.53 2497.40 24894.73 17083.85 28094.45 241
ACMH89.72 1790.64 26089.63 26193.66 27795.64 26888.64 30398.55 27997.45 24089.03 25181.62 32697.61 20969.75 32098.41 19489.37 25387.62 25193.92 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-ACMP-BASELINE91.22 24990.75 24092.63 29493.73 29785.61 32198.52 28397.44 24292.77 16489.90 23696.85 23466.64 33298.39 19892.29 21488.61 23893.89 291
mvs_tets91.81 23691.08 23794.00 26491.63 33090.58 27598.67 27597.43 24392.43 18487.37 28797.05 22671.76 31297.32 25494.75 16888.68 23794.11 273
LTVRE_ROB88.28 1890.29 27089.05 27594.02 26295.08 27690.15 28497.19 31797.43 24384.91 31483.99 31597.06 22574.00 30698.28 21084.08 29987.71 24993.62 306
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
jajsoiax91.92 23491.18 23694.15 25691.35 33290.95 26899.00 24397.42 24592.61 17387.38 28697.08 22372.46 31097.36 25094.53 17588.77 23594.13 272
K. test v388.05 29487.24 29690.47 31391.82 32882.23 33898.96 24897.42 24589.05 25076.93 34295.60 26968.49 32595.42 32485.87 29181.01 30093.75 300
RRT_MVS95.23 15894.77 16296.61 18498.28 15498.32 6399.81 11797.41 24792.59 17591.28 22097.76 20795.02 5497.23 26193.65 19887.14 25494.28 253
FMVSNet291.02 25189.56 26395.41 21297.53 20095.74 16198.98 24597.41 24787.05 28388.43 27095.00 29971.34 31496.24 31085.12 29485.21 26794.25 256
jason97.24 10096.86 10298.38 12295.73 26297.32 10399.97 1897.40 24995.34 7498.60 10499.54 10787.70 19598.56 18297.94 11099.47 10999.25 177
jason: jason.
PS-MVSNAJss93.64 20093.31 19794.61 23792.11 32392.19 24199.12 22697.38 25092.51 18188.45 26796.99 22991.20 15297.29 25894.36 17887.71 24994.36 246
MSDG94.37 18393.36 19697.40 16098.88 13093.95 20499.37 20397.38 25085.75 30390.80 22499.17 13784.11 22999.88 8586.35 28698.43 13498.36 205
CL-MVSNet_2432*160084.50 31283.15 31488.53 32786.00 35281.79 34198.82 26397.35 25285.12 31083.62 31890.91 34276.66 28591.40 35169.53 34760.36 35492.40 328
canonicalmvs97.09 10696.32 11899.39 4398.93 12398.95 2199.72 14897.35 25294.45 10097.88 12899.42 11686.71 20599.52 14298.48 8893.97 21099.72 111
UnsupCasMVSNet_bld79.97 32477.03 32788.78 32585.62 35381.98 33993.66 34497.35 25275.51 34870.79 35283.05 35448.70 35994.91 33278.31 32960.29 35589.46 351
MVS-HIRNet86.22 30183.19 31395.31 21596.71 24290.29 28192.12 34997.33 25562.85 35586.82 29170.37 35969.37 32197.49 24575.12 33997.99 14798.15 208
BH-untuned95.18 15994.83 16096.22 19698.36 15091.22 26599.80 12297.32 25690.91 22591.08 22198.67 17583.51 23198.54 18494.23 18399.61 10198.92 192
PCF-MVS94.20 595.18 15994.10 17498.43 11898.55 14295.99 15297.91 30797.31 25790.35 23589.48 24899.22 13585.19 22099.89 7990.40 24598.47 13399.41 161
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
miper_enhance_ethall94.36 18593.98 17795.49 20898.68 14095.24 17699.73 14597.29 25893.28 14989.86 23795.97 25994.37 7597.05 27292.20 21584.45 27294.19 260
bset_n11_16_dypcd93.05 21192.30 21595.31 21590.23 34195.05 18199.44 19497.28 25992.51 18190.65 22696.68 23985.30 21996.71 29294.49 17684.14 27594.16 266
MVSFormer96.94 10996.60 11097.95 13897.28 21697.70 8599.55 17697.27 26091.17 21899.43 5599.54 10790.92 15996.89 28294.67 17299.62 9899.25 177
test_djsdf92.83 21592.29 21694.47 24691.90 32692.46 23699.55 17697.27 26091.17 21889.96 23396.07 25881.10 25096.89 28294.67 17288.91 23194.05 277
GA-MVS93.83 19192.84 20296.80 17695.73 26293.57 21099.88 8797.24 26292.57 17892.92 20796.66 24078.73 27397.67 24087.75 27194.06 20999.17 181
Effi-MVS+96.30 13695.69 14198.16 12997.85 18096.26 13997.41 31397.21 26390.37 23498.65 10198.58 18286.61 20798.70 17697.11 13297.37 15899.52 147
Patchmatch-test92.65 22191.50 23196.10 19996.85 23390.49 27791.50 35297.19 26482.76 32790.23 22995.59 27095.02 5498.00 22777.41 33296.98 16799.82 97
diffmvs97.00 10796.64 10998.09 13497.64 19596.17 14699.81 11797.19 26494.67 9498.95 8699.28 12686.43 20898.76 17198.37 9197.42 15699.33 170
ACMH+89.98 1690.35 26789.54 26492.78 29395.99 25286.12 31998.81 26497.18 26689.38 24683.14 31997.76 20768.42 32698.43 19289.11 25686.05 26093.78 299
anonymousdsp91.79 24190.92 23994.41 25190.76 33792.93 22498.93 25197.17 26789.08 24987.46 28595.30 28778.43 27796.92 28192.38 21388.73 23693.39 311
baseline96.43 13095.98 12797.76 14797.34 21095.17 17999.51 18297.17 26793.92 12996.90 14799.28 12685.37 21898.64 17997.50 12396.86 17099.46 154
nrg03093.51 20192.53 21196.45 18894.36 28697.20 10699.81 11797.16 26991.60 20789.86 23797.46 21186.37 20997.68 23995.88 15180.31 30694.46 236
MVS_Test96.46 12995.74 14098.61 10198.18 16297.23 10599.31 21097.15 27091.07 22298.84 8997.05 22688.17 19398.97 16194.39 17797.50 15399.61 128
MIMVSNet90.30 26988.67 28195.17 22096.45 24491.64 25992.39 34897.15 27085.99 29790.50 22793.19 32966.95 33194.86 33382.01 31393.43 21399.01 191
KD-MVS_2432*160088.00 29586.10 29993.70 27596.91 22894.04 20097.17 31897.12 27284.93 31281.96 32392.41 33492.48 13094.51 33679.23 32352.68 35792.56 324
miper_refine_blended88.00 29586.10 29993.70 27596.91 22894.04 20097.17 31897.12 27284.93 31281.96 32392.41 33492.48 13094.51 33679.23 32352.68 35792.56 324
CS-MVS97.74 8397.61 7798.15 13297.52 20496.69 123100.00 197.11 27494.93 8299.73 2799.41 11891.68 14798.25 21598.84 6899.24 11999.52 147
CS-MVS-test97.85 7597.70 7398.30 12497.57 19896.72 121100.00 197.11 27495.06 7999.76 2499.45 11492.12 14098.44 19198.97 5799.28 11699.75 106
v7n89.65 28288.29 28793.72 27292.22 32290.56 27699.07 23497.10 27685.42 30986.73 29294.72 30580.06 26397.13 26681.14 31778.12 31993.49 308
casdiffmvs96.42 13195.97 13097.77 14697.30 21494.98 18299.84 10897.09 27793.75 13796.58 15499.26 13285.07 22198.78 16897.77 11897.04 16599.54 144
Fast-Effi-MVS+95.02 16394.19 17197.52 15597.88 17694.55 19299.97 1897.08 27888.85 25994.47 18997.96 20484.59 22498.41 19489.84 25197.10 16399.59 131
DROMVSNet97.45 9097.30 9097.90 14297.43 20695.90 15499.99 597.08 27894.64 9599.64 3699.33 12589.56 17598.15 21998.76 7599.25 11799.65 123
miper_ehance_all_eth93.16 20792.60 20794.82 23197.57 19893.56 21199.50 18497.07 28088.75 26088.85 26295.52 27490.97 15896.74 28990.77 23884.45 27294.17 261
Effi-MVS+-dtu94.53 17995.30 15092.22 29797.77 18582.54 33599.59 16997.06 28194.92 8395.29 18095.37 28485.81 21297.89 23494.80 16597.07 16496.23 227
mvs-test195.53 15395.97 13094.20 25597.77 18585.44 32499.95 4397.06 28194.92 8396.58 15498.72 17385.81 21298.98 16094.80 16598.11 14198.18 207
IterMVS90.91 25390.17 25493.12 28696.78 23990.42 28098.89 25497.05 28389.03 25186.49 29795.42 27976.59 28695.02 32987.22 27884.09 27693.93 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119290.62 26289.25 27094.72 23493.13 30693.07 22099.50 18497.02 28486.33 29489.56 24795.01 29779.22 26897.09 27182.34 31181.16 29594.01 280
v2v48291.30 24590.07 25795.01 22393.13 30693.79 20699.77 12997.02 28488.05 27189.25 25395.37 28480.73 25597.15 26487.28 27780.04 30994.09 274
V4291.28 24790.12 25694.74 23293.42 30393.46 21499.68 15397.02 28487.36 27989.85 23995.05 29581.31 24997.34 25287.34 27680.07 30893.40 310
IterMVS-SCA-FT90.85 25690.16 25592.93 29096.72 24189.96 28798.89 25496.99 28788.95 25686.63 29495.67 26676.48 28795.00 33087.04 28084.04 27993.84 295
v14419290.79 25789.52 26594.59 23893.11 30992.77 22599.56 17496.99 28786.38 29389.82 24094.95 30280.50 26097.10 26983.98 30180.41 30493.90 290
v192192090.46 26489.12 27294.50 24492.96 31392.46 23699.49 18696.98 28986.10 29689.61 24695.30 28778.55 27597.03 27682.17 31280.89 30294.01 280
v114491.09 25089.83 25894.87 22893.25 30593.69 20999.62 16696.98 28986.83 28989.64 24594.99 30080.94 25297.05 27285.08 29581.16 29593.87 293
eth_miper_zixun_eth92.41 22591.93 22293.84 27097.28 21690.68 27298.83 26296.97 29188.57 26589.19 25795.73 26589.24 18396.69 29389.97 25081.55 29194.15 268
GBi-Net90.88 25489.82 25994.08 25997.53 20091.97 24498.43 28696.95 29287.05 28389.68 24194.72 30571.34 31496.11 31287.01 28285.65 26294.17 261
test190.88 25489.82 25994.08 25997.53 20091.97 24498.43 28696.95 29287.05 28389.68 24194.72 30571.34 31496.11 31287.01 28285.65 26294.17 261
FMVSNet188.50 29186.64 29794.08 25995.62 27091.97 24498.43 28696.95 29283.00 32486.08 30594.72 30559.09 35096.11 31281.82 31584.07 27794.17 261
v890.54 26389.17 27194.66 23593.43 30293.40 21799.20 22196.94 29585.76 30187.56 28294.51 31281.96 24197.19 26284.94 29678.25 31793.38 312
cl_fuxian92.53 22291.87 22494.52 24297.40 20792.99 22399.40 19696.93 29687.86 27388.69 26595.44 27889.95 17196.44 30190.45 24280.69 30394.14 271
v124090.20 27288.79 27994.44 24893.05 31192.27 24099.38 20196.92 29785.89 29889.36 25094.87 30477.89 27897.03 27680.66 31981.08 29894.01 280
tpm93.70 19993.41 19494.58 23995.36 27387.41 31497.01 32196.90 29890.85 22796.72 15294.14 31990.40 16696.84 28590.75 23988.54 24199.51 149
v14890.70 25889.63 26193.92 26792.97 31290.97 26799.75 13796.89 29987.51 27688.27 27495.01 29781.67 24397.04 27487.40 27577.17 32893.75 300
IterMVS-LS92.69 21992.11 21894.43 25096.80 23692.74 22799.45 19296.89 29988.98 25389.65 24495.38 28388.77 18796.34 30590.98 23382.04 28894.22 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1090.25 27188.82 27894.57 24093.53 30093.43 21599.08 23096.87 30185.00 31187.34 28894.51 31280.93 25397.02 27882.85 30879.23 31193.26 314
ADS-MVSNet293.80 19493.88 18093.55 27997.87 17885.94 32094.24 33996.84 30290.07 23996.43 15994.48 31490.29 16895.37 32587.44 27397.23 16099.36 166
Fast-Effi-MVS+-dtu93.72 19893.86 18193.29 28297.06 22186.16 31899.80 12296.83 30392.66 17092.58 21297.83 20681.39 24797.67 24089.75 25296.87 16996.05 229
pmmvs492.10 23291.07 23895.18 21992.82 31694.96 18399.48 18896.83 30387.45 27888.66 26696.56 24583.78 23096.83 28689.29 25484.77 27093.75 300
AllTest92.48 22391.64 22695.00 22499.01 11588.43 30598.94 25096.82 30586.50 29188.71 26398.47 19074.73 30199.88 8585.39 29296.18 17896.71 223
TestCases95.00 22499.01 11588.43 30596.82 30586.50 29188.71 26398.47 19074.73 30199.88 8585.39 29296.18 17896.71 223
miper_lstm_enhance91.81 23691.39 23493.06 28997.34 21089.18 29799.38 20196.79 30786.70 29087.47 28495.22 29290.00 17095.86 32188.26 26481.37 29394.15 268
cl-mvsnet____92.31 22791.58 22894.52 24297.33 21292.77 22599.57 17296.78 30886.97 28787.56 28295.51 27589.43 17796.62 29588.60 25982.44 28594.16 266
cl-mvsnet192.32 22691.60 22794.47 24697.31 21392.74 22799.58 17096.75 30986.99 28687.64 28095.54 27289.55 17696.50 29988.58 26082.44 28594.17 261
ppachtmachnet_test89.58 28388.35 28593.25 28492.40 32090.44 27999.33 20796.73 31085.49 30785.90 30795.77 26281.09 25196.00 31976.00 33882.49 28493.30 313
GeoE94.36 18593.48 19096.99 17197.29 21593.54 21299.96 2596.72 31188.35 26993.43 20098.94 15882.05 23998.05 22588.12 26896.48 17599.37 165
COLMAP_ROBcopyleft90.47 1492.18 23091.49 23294.25 25499.00 11788.04 31198.42 28996.70 31282.30 32988.43 27099.01 14676.97 28199.85 9486.11 28996.50 17494.86 230
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
1112_ss96.01 14395.20 15398.42 11997.80 18396.41 13399.65 15996.66 31392.71 16692.88 20999.40 11992.16 13799.30 15291.92 21893.66 21199.55 140
Test_1112_low_res95.72 14894.83 16098.42 11997.79 18496.41 13399.65 15996.65 31492.70 16792.86 21096.13 25692.15 13899.30 15291.88 21993.64 21299.55 140
RPSCF91.80 23992.79 20488.83 32498.15 16469.87 35598.11 30196.60 31583.93 31994.33 19199.27 12979.60 26699.46 15091.99 21693.16 21797.18 221
YYNet185.50 30683.33 31192.00 30090.89 33688.38 30899.22 22096.55 31679.60 33857.26 35892.72 33079.09 27193.78 34377.25 33377.37 32693.84 295
MDA-MVSNet_test_wron85.51 30583.32 31292.10 29990.96 33588.58 30499.20 22196.52 31779.70 33757.12 35992.69 33279.11 27093.86 34277.10 33477.46 32593.86 294
MTMP99.87 9096.49 318
pm-mvs189.36 28587.81 29294.01 26393.40 30491.93 24798.62 27896.48 31986.25 29583.86 31696.14 25573.68 30797.04 27486.16 28875.73 33593.04 319
DIV-MVS_2432*160083.59 31782.06 31788.20 32986.93 35080.70 34797.21 31696.38 32082.87 32582.49 32188.97 34567.63 32992.32 34873.75 34162.30 35391.58 336
our_test_390.39 26589.48 26893.12 28692.40 32089.57 29399.33 20796.35 32187.84 27485.30 30994.99 30084.14 22896.09 31580.38 32084.56 27193.71 305
CR-MVSNet93.45 20492.62 20695.94 20296.29 24592.66 23192.01 35096.23 32292.62 17296.94 14593.31 32791.04 15696.03 31779.23 32395.96 18399.13 186
Patchmtry89.70 28188.49 28393.33 28196.24 24789.94 29091.37 35396.23 32278.22 34087.69 27993.31 32791.04 15696.03 31780.18 32282.10 28794.02 278
MVP-Stereo90.93 25290.45 24792.37 29691.25 33488.76 29998.05 30496.17 32487.27 28184.04 31495.30 28778.46 27697.27 26083.78 30399.70 9491.09 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs685.69 30283.84 30891.26 30790.00 34384.41 32997.82 30896.15 32575.86 34581.29 32895.39 28261.21 34796.87 28483.52 30673.29 33892.50 326
EG-PatchMatch MVS85.35 30783.81 30989.99 31890.39 33981.89 34098.21 29896.09 32681.78 33174.73 34893.72 32351.56 35797.12 26879.16 32688.61 23890.96 340
DeepMVS_CXcopyleft82.92 33795.98 25458.66 36196.01 32792.72 16578.34 33995.51 27558.29 35198.08 22282.57 30985.29 26592.03 332
test20.0384.72 31183.99 30586.91 33188.19 34980.62 34898.88 25695.94 32888.36 26878.87 33694.62 31068.75 32389.11 35666.52 35275.82 33391.00 339
MDA-MVSNet-bldmvs84.09 31481.52 32091.81 30391.32 33388.00 31298.67 27595.92 32980.22 33555.60 36093.32 32668.29 32793.60 34573.76 34076.61 33293.82 297
lessismore_v090.53 31190.58 33880.90 34695.80 33077.01 34195.84 26066.15 33496.95 27983.03 30775.05 33693.74 303
Anonymous2024052185.15 30883.81 30989.16 32288.32 34782.69 33398.80 26595.74 33179.72 33681.53 32790.99 34065.38 33794.16 33872.69 34281.11 29790.63 343
ITE_SJBPF92.38 29595.69 26785.14 32595.71 33292.81 16089.33 25298.11 19770.23 31998.42 19385.91 29088.16 24593.59 307
FMVSNet588.32 29287.47 29490.88 30896.90 23188.39 30797.28 31595.68 33382.60 32884.67 31292.40 33679.83 26591.16 35276.39 33781.51 29293.09 317
testgi89.01 28988.04 29091.90 30293.49 30184.89 32799.73 14595.66 33493.89 13285.14 31098.17 19659.68 34994.66 33577.73 33188.88 23296.16 228
new_pmnet84.49 31382.92 31589.21 32190.03 34282.60 33496.89 32495.62 33580.59 33475.77 34789.17 34465.04 33994.79 33472.12 34381.02 29990.23 345
pmmvs590.17 27489.09 27393.40 28092.10 32489.77 29199.74 14095.58 33685.88 30087.24 28995.74 26373.41 30896.48 30088.54 26183.56 28193.95 286
USDC90.00 27788.96 27693.10 28894.81 28088.16 30998.71 27195.54 33793.66 13983.75 31797.20 21965.58 33598.31 20783.96 30287.49 25392.85 322
test_method80.79 32079.70 32384.08 33492.83 31567.06 35799.51 18295.42 33854.34 35781.07 33093.53 32444.48 36092.22 34978.90 32777.23 32792.94 320
MIMVSNet182.58 31880.51 32288.78 32586.68 35184.20 33096.65 32595.41 33978.75 33978.59 33892.44 33351.88 35689.76 35565.26 35578.95 31392.38 329
OurMVSNet-221017-089.81 27989.48 26890.83 31091.64 32981.21 34398.17 29995.38 34091.48 21185.65 30897.31 21672.66 30997.29 25888.15 26684.83 26993.97 285
Anonymous2023120686.32 30085.42 30289.02 32389.11 34680.53 34999.05 23995.28 34185.43 30882.82 32093.92 32074.40 30393.44 34666.99 35181.83 29093.08 318
new-patchmatchnet81.19 31979.34 32486.76 33282.86 35780.36 35097.92 30695.27 34282.09 33072.02 35086.87 35062.81 34490.74 35471.10 34463.08 35189.19 352
OpenMVS_ROBcopyleft79.82 2083.77 31681.68 31990.03 31788.30 34882.82 33298.46 28495.22 34373.92 35176.00 34591.29 33955.00 35496.94 28068.40 34988.51 24290.34 344
test_040285.58 30383.94 30790.50 31293.81 29685.04 32698.55 27995.20 34476.01 34479.72 33595.13 29364.15 34196.26 30966.04 35486.88 25690.21 346
SixPastTwentyTwo88.73 29088.01 29190.88 30891.85 32782.24 33798.22 29795.18 34588.97 25482.26 32296.89 23171.75 31396.67 29484.00 30082.98 28293.72 304
Gipumacopyleft66.95 32865.00 32972.79 34191.52 33167.96 35666.16 36295.15 34647.89 35958.54 35767.99 36129.74 36387.54 35750.20 36077.83 32162.87 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LF4IMVS89.25 28888.85 27790.45 31492.81 31781.19 34498.12 30094.79 34791.44 21386.29 30297.11 22165.30 33898.11 22188.53 26285.25 26692.07 330
FPMVS68.72 32568.72 32868.71 34365.95 36444.27 36995.97 33594.74 34851.13 35853.26 36190.50 34325.11 36683.00 36060.80 35780.97 30178.87 356
pmmvs-eth3d84.03 31581.97 31890.20 31584.15 35587.09 31598.10 30294.73 34983.05 32374.10 34987.77 34865.56 33694.01 33981.08 31869.24 34389.49 350
TDRefinement84.76 30982.56 31691.38 30674.58 36084.80 32897.36 31494.56 35084.73 31580.21 33396.12 25763.56 34298.39 19887.92 26963.97 35090.95 341
ambc83.23 33677.17 35962.61 35887.38 35794.55 35176.72 34386.65 35130.16 36296.36 30484.85 29769.86 34090.73 342
TinyColmap87.87 29786.51 29891.94 30195.05 27785.57 32297.65 31194.08 35284.40 31781.82 32596.85 23462.14 34598.33 20580.25 32186.37 25991.91 334
TransMVSNet (Re)87.25 29885.28 30393.16 28593.56 29991.03 26698.54 28194.05 35383.69 32281.09 32996.16 25475.32 29696.40 30276.69 33668.41 34692.06 331
Baseline_NR-MVSNet90.33 26889.51 26692.81 29292.84 31489.95 28899.77 12993.94 35484.69 31689.04 25995.66 26781.66 24496.52 29890.99 23276.98 32991.97 333
LCM-MVSNet67.77 32664.73 33076.87 33962.95 36656.25 36389.37 35693.74 35544.53 36061.99 35580.74 35520.42 36886.53 35869.37 34859.50 35687.84 353
Patchmatch-RL test86.90 29985.98 30189.67 31984.45 35475.59 35289.71 35592.43 35686.89 28877.83 34090.94 34194.22 8393.63 34487.75 27169.61 34199.79 100
pmmvs380.27 32277.77 32687.76 33080.32 35882.43 33698.23 29691.97 35772.74 35278.75 33787.97 34757.30 35390.99 35370.31 34562.37 35289.87 347
LCM-MVSNet-Re92.31 22792.60 20791.43 30597.53 20079.27 35199.02 24291.83 35892.07 19380.31 33294.38 31783.50 23295.48 32397.22 13097.58 15299.54 144
PM-MVS80.47 32178.88 32585.26 33383.79 35672.22 35495.89 33691.08 35985.71 30476.56 34488.30 34636.64 36193.90 34182.39 31069.57 34289.66 349
door90.31 360
DSMNet-mixed88.28 29388.24 28888.42 32889.64 34475.38 35398.06 30389.86 36185.59 30588.20 27592.14 33776.15 29291.95 35078.46 32896.05 18197.92 211
door-mid89.69 362
PMVScopyleft49.05 2353.75 33151.34 33560.97 34640.80 37034.68 37074.82 36189.62 36337.55 36228.67 36872.12 3587.09 37281.63 36143.17 36368.21 34766.59 359
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt65.23 32962.94 33272.13 34244.90 36950.03 36581.05 35989.42 36438.45 36148.51 36399.90 1754.09 35578.70 36291.84 22018.26 36487.64 354
PMMVS267.15 32764.15 33176.14 34070.56 36362.07 36093.89 34287.52 36558.09 35660.02 35678.32 35622.38 36784.54 35959.56 35847.03 35981.80 355
ANet_high56.10 33052.24 33367.66 34449.27 36856.82 36283.94 35882.02 36670.47 35333.28 36764.54 36217.23 37069.16 36445.59 36223.85 36377.02 357
MVEpermissive53.74 2251.54 33347.86 33762.60 34559.56 36750.93 36479.41 36077.69 36735.69 36436.27 36661.76 3655.79 37469.63 36337.97 36436.61 36067.24 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 33252.18 33452.67 34771.51 36145.40 36693.62 34576.60 36836.01 36343.50 36464.13 36327.11 36567.31 36531.06 36526.06 36145.30 364
EMVS51.44 33451.22 33652.11 34870.71 36244.97 36894.04 34175.66 36935.34 36542.40 36561.56 36628.93 36465.87 36627.64 36624.73 36245.49 363
N_pmnet80.06 32380.78 32177.89 33891.94 32545.28 36798.80 26556.82 37078.10 34180.08 33493.33 32577.03 28095.76 32268.14 35082.81 28392.64 323
testmvs40.60 33544.45 33829.05 35019.49 37214.11 37399.68 15318.47 37120.74 36664.59 35498.48 18910.95 37117.09 36956.66 35911.01 36555.94 362
test12337.68 33639.14 33933.31 34919.94 37124.83 37298.36 2909.75 37215.53 36751.31 36287.14 34919.62 36917.74 36847.10 3613.47 36757.36 361
wuyk23d20.37 33820.84 34118.99 35165.34 36527.73 37150.43 3637.67 3739.50 3688.01 3696.34 3696.13 37326.24 36723.40 36710.69 3662.99 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.60 34010.13 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37091.20 1520.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
n20.00 374
nn0.00 374
ab-mvs-re8.28 33911.04 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.40 1190.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS99.93 299.89 4599.80 299.96 2599.80 5897.44 11100.00 1100.00 199.98 33100.00 1
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
GSMVS99.59 131
test_part299.89 4599.25 1399.49 51
sam_mvs194.72 6499.59 131
sam_mvs94.25 82
test_post195.78 33759.23 36793.20 11497.74 23891.06 229
test_post63.35 36494.43 6998.13 220
patchmatchnet-post91.70 33895.12 4897.95 231
gm-plane-assit96.97 22693.76 20891.47 21298.96 15598.79 16794.92 160
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 36100.00 1100.00 1
test_prior498.05 7199.94 58
test_prior299.95 4395.78 6099.73 2799.76 7296.00 2999.78 20100.00 1
旧先验299.46 19194.21 11499.85 699.95 6096.96 137
新几何299.40 196
原ACMM299.90 76
testdata299.99 3690.54 241
segment_acmp96.68 22
testdata199.28 21696.35 48
plane_prior795.71 26591.59 261
plane_prior695.76 26091.72 25680.47 261
plane_prior498.59 180
plane_prior391.64 25996.63 3893.01 205
plane_prior299.84 10896.38 44
plane_prior195.73 262
plane_prior91.74 25399.86 10196.76 3489.59 224
HQP5-MVS91.85 249
HQP-NCC95.78 25699.87 9096.82 3093.37 201
ACMP_Plane95.78 25699.87 9096.82 3093.37 201
BP-MVS97.92 111
HQP4-MVS93.37 20198.39 19894.53 231
HQP2-MVS80.65 257
NP-MVS95.77 25991.79 25198.65 176
MDTV_nov1_ep13_2view96.26 13996.11 33291.89 19898.06 12394.40 7194.30 18199.67 117
ACMMP++_ref87.04 255
ACMMP++88.23 244
Test By Simon92.82 123