This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268897.12 11396.80 10898.08 12999.30 7894.56 22298.05 23099.71 193.57 21297.09 14798.91 10888.17 21599.89 3996.87 11199.56 8599.81 11
HyFIR lowres test96.90 12196.49 12698.14 12399.33 6895.56 17497.38 28099.65 292.34 25797.61 13598.20 18489.29 18599.10 19496.97 9797.60 18199.77 23
MVS_111021_LR98.34 5198.23 4598.67 8399.27 8696.90 11297.95 23999.58 397.14 4998.44 8299.01 9295.03 7899.62 13597.91 4799.75 4199.50 99
MVS_111021_HR98.47 3998.34 3198.88 7599.22 9797.32 9397.91 24399.58 397.20 4398.33 8999.00 9395.99 3999.64 13098.05 4299.76 3599.69 56
PGM-MVS98.49 3798.23 4599.27 4199.72 1398.08 6498.99 7299.49 595.43 11999.03 3899.32 3695.56 5299.94 496.80 11699.77 2999.78 16
ACMMPcopyleft98.23 5797.95 6099.09 6299.74 897.62 8499.03 6299.41 695.98 9597.60 13699.36 2994.45 9399.93 1997.14 9198.85 13299.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG97.85 7197.74 6798.20 11899.67 2795.16 18999.22 3199.32 793.04 23297.02 15398.92 10795.36 6399.91 3497.43 8299.64 6799.52 93
patch_mono-298.36 4798.87 396.82 20699.53 3890.68 31198.64 14699.29 897.88 599.19 2899.52 396.80 1599.97 199.11 199.86 199.82 10
PVSNet_BlendedMVS96.73 12696.60 12197.12 18699.25 8995.35 18498.26 20499.26 994.28 17397.94 11397.46 24692.74 11599.81 7596.88 10893.32 25796.20 323
PVSNet_Blended97.38 10097.12 9498.14 12399.25 8995.35 18497.28 29199.26 993.13 22997.94 11398.21 18392.74 11599.81 7596.88 10899.40 10799.27 133
UniMVSNet_NR-MVSNet95.71 16895.15 17897.40 17496.84 28196.97 10898.74 12299.24 1195.16 13593.88 25297.72 22691.68 13798.31 28895.81 15087.25 33296.92 248
WR-MVS_H95.05 20694.46 21096.81 20796.86 28095.82 16799.24 2699.24 1193.87 19192.53 29896.84 29990.37 16698.24 29793.24 23187.93 32496.38 316
FC-MVSNet-test96.42 13896.05 13997.53 16896.95 27397.27 9699.36 1299.23 1395.83 10093.93 24998.37 16492.00 13198.32 28696.02 14492.72 26597.00 242
VPA-MVSNet95.75 16695.11 18197.69 15697.24 25397.27 9698.94 8299.23 1395.13 13795.51 19897.32 25585.73 26298.91 22097.33 8789.55 30396.89 256
FIs96.51 13596.12 13797.67 15897.13 26497.54 8799.36 1299.22 1595.89 9794.03 24798.35 16691.98 13298.44 26896.40 13292.76 26497.01 241
tfpnnormal93.66 27792.70 28696.55 23396.94 27495.94 15898.97 7699.19 1691.04 30191.38 31797.34 25384.94 27598.61 24985.45 33889.02 31395.11 344
UniMVSNet (Re)95.78 16595.19 17797.58 16496.99 27297.47 8998.79 11799.18 1795.60 11093.92 25097.04 28091.68 13798.48 26195.80 15287.66 32796.79 266
PVSNet_Blended_VisFu97.70 7797.46 8198.44 10299.27 8695.91 16398.63 14899.16 1894.48 16997.67 12998.88 11092.80 11499.91 3497.11 9299.12 11899.50 99
CHOSEN 280x42097.18 11097.18 9397.20 18098.81 13793.27 26695.78 34399.15 1995.25 13196.79 16698.11 19092.29 12199.07 19798.56 1299.85 499.25 135
D2MVS95.18 19995.08 18295.48 28397.10 26692.07 28298.30 19899.13 2094.02 18292.90 28696.73 30289.48 18098.73 24094.48 19493.60 25195.65 336
PHI-MVS98.34 5198.06 5499.18 5099.15 10798.12 6399.04 5999.09 2193.32 22198.83 5699.10 7696.54 2099.83 6097.70 6699.76 3599.59 86
UA-Net97.96 6397.62 6998.98 6898.86 13297.47 8998.89 9199.08 2296.67 7098.72 6499.54 193.15 11199.81 7594.87 17898.83 13399.65 72
PatchMatch-RL96.59 13196.03 14198.27 11299.31 7396.51 12997.91 24399.06 2393.72 20096.92 15898.06 19388.50 20999.65 12891.77 27399.00 12498.66 190
3Dnovator94.51 597.46 9196.93 10499.07 6397.78 21397.64 8299.35 1499.06 2397.02 5593.75 25999.16 6789.25 18699.92 2597.22 8999.75 4199.64 75
MSLP-MVS++98.56 2998.57 1098.55 9099.26 8896.80 11598.71 13199.05 2597.28 3598.84 5499.28 4396.47 2299.40 16298.52 1999.70 5699.47 106
PS-CasMVS94.67 23093.99 23996.71 21296.68 29095.26 18799.13 4599.03 2693.68 20692.33 30597.95 20385.35 26998.10 30593.59 22288.16 32396.79 266
TranMVSNet+NR-MVSNet95.14 20194.48 20897.11 18796.45 30196.36 13699.03 6299.03 2695.04 14493.58 26297.93 20588.27 21298.03 31294.13 20586.90 33796.95 247
PEN-MVS94.42 24893.73 25996.49 23796.28 30794.84 20699.17 3999.00 2893.51 21392.23 30797.83 21886.10 25797.90 32192.55 25486.92 33696.74 272
Vis-MVSNetpermissive97.42 9797.11 9598.34 10998.66 15096.23 14399.22 3199.00 2896.63 7298.04 10099.21 5488.05 22099.35 16596.01 14599.21 11499.45 112
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DU-MVS95.42 18294.76 19597.40 17496.53 29696.97 10898.66 14498.99 3095.43 11993.88 25297.69 22788.57 20598.31 28895.81 15087.25 33296.92 248
VPNet94.99 20994.19 22497.40 17497.16 26296.57 12698.71 13198.97 3195.67 10794.84 20998.24 18280.36 32098.67 24596.46 12887.32 33196.96 245
OpenMVScopyleft93.04 1395.83 16395.00 18598.32 11097.18 26197.32 9399.21 3498.97 3189.96 31891.14 31999.05 8786.64 24799.92 2593.38 22699.47 9897.73 222
HFP-MVS98.63 1798.40 2199.32 3199.72 1398.29 5199.23 2798.96 3396.10 9398.94 4499.17 6296.06 3499.92 2597.62 7099.78 2699.75 31
#test#98.54 3398.27 3999.32 3199.72 1398.29 5198.98 7598.96 3395.65 10998.94 4499.17 6296.06 3499.92 2597.21 9099.78 2699.75 31
FOURS199.82 198.66 2699.69 198.95 3597.46 2399.39 15
ACMMPR98.59 2198.36 2599.29 3499.74 898.15 6199.23 2798.95 3596.10 9398.93 4899.19 6195.70 4999.94 497.62 7099.79 2299.78 16
CP-MVSNet94.94 21594.30 21996.83 20596.72 28895.56 17499.11 4898.95 3593.89 18992.42 30497.90 20787.19 23798.12 30494.32 19988.21 32196.82 265
NR-MVSNet94.98 21194.16 22797.44 17096.53 29697.22 10298.74 12298.95 3594.96 14889.25 33697.69 22789.32 18498.18 29994.59 19087.40 33096.92 248
region2R98.61 1898.38 2399.29 3499.74 898.16 6099.23 2798.93 3996.15 8898.94 4499.17 6295.91 4399.94 497.55 7799.79 2299.78 16
APDe-MVS99.02 498.84 499.55 999.57 3598.96 1699.39 998.93 3997.38 2999.41 1399.54 196.66 1799.84 5798.86 399.85 499.87 1
VNet97.79 7397.40 8598.96 7098.88 13097.55 8698.63 14898.93 3996.74 6799.02 3998.84 11590.33 16899.83 6098.53 1396.66 19799.50 99
UGNet96.78 12596.30 13198.19 12098.24 18195.89 16598.88 9498.93 3997.39 2896.81 16497.84 21582.60 30399.90 3796.53 12699.49 9498.79 180
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
sss97.39 9996.98 10398.61 8698.60 15696.61 12398.22 20698.93 3993.97 18698.01 10798.48 15291.98 13299.85 5496.45 12998.15 16199.39 117
QAPM96.29 14295.40 16298.96 7097.85 21097.60 8599.23 2798.93 3989.76 32293.11 28299.02 8889.11 19199.93 1991.99 26899.62 7199.34 120
DPE-MVScopyleft98.92 598.67 899.65 299.58 3499.20 998.42 18098.91 4597.58 1599.54 899.46 1297.10 1299.94 497.64 6999.84 999.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
114514_t96.93 11996.27 13298.92 7299.50 4497.63 8398.85 9998.90 4684.80 35297.77 12199.11 7492.84 11399.66 12794.85 17999.77 2999.47 106
LS3D97.16 11196.66 12098.68 8298.53 16097.19 10398.93 8498.90 4692.83 24295.99 19499.37 2592.12 12899.87 4893.67 22099.57 8098.97 169
DELS-MVS98.40 4498.20 4798.99 6699.00 12097.66 8197.75 25998.89 4897.71 998.33 8998.97 9594.97 7999.88 4798.42 2799.76 3599.42 116
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS Recon97.86 7097.46 8199.06 6499.53 3898.35 4898.33 19098.89 4892.62 24698.05 9898.94 10495.34 6499.65 12896.04 14399.42 10499.19 141
AdaColmapbinary97.15 11296.70 11698.48 9999.16 10596.69 12098.01 23498.89 4894.44 17196.83 16198.68 13290.69 16299.76 10794.36 19699.29 11398.98 168
DVP-MVS++99.08 298.89 299.64 399.17 10199.23 799.69 198.88 5197.32 3299.53 999.47 997.81 399.94 498.47 2199.72 5399.74 36
test_0728_SECOND99.71 199.72 1399.35 198.97 7698.88 5199.94 498.47 2199.81 1199.84 6
test072699.72 1399.25 299.06 5698.88 5197.62 1299.56 699.50 597.42 9
MSP-MVS98.74 998.55 1299.29 3499.75 498.23 5499.26 2498.88 5197.52 1799.41 1398.78 12296.00 3899.79 9697.79 5799.59 7699.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous2023121194.10 26893.26 27796.61 22399.11 11094.28 23199.01 6898.88 5186.43 34392.81 28897.57 23981.66 30998.68 24494.83 18089.02 31396.88 257
XVS98.70 1098.49 1899.34 2699.70 2498.35 4899.29 2098.88 5197.40 2698.46 7899.20 5895.90 4499.89 3997.85 5399.74 4499.78 16
X-MVStestdata94.06 27292.30 29299.34 2699.70 2498.35 4899.29 2098.88 5197.40 2698.46 7843.50 37295.90 4499.89 3997.85 5399.74 4499.78 16
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 6698.87 5897.65 1099.73 199.48 797.53 799.94 498.43 2599.81 1199.70 53
test_241102_TWO98.87 5897.65 1099.53 999.48 797.34 1199.94 498.43 2599.80 1899.83 7
test_241102_ONE99.71 2199.24 598.87 5897.62 1299.73 199.39 1797.53 799.74 111
CP-MVS98.57 2798.36 2599.19 4699.66 2897.86 7399.34 1698.87 5895.96 9698.60 7499.13 7196.05 3699.94 497.77 5899.86 199.77 23
SteuartSystems-ACMMP98.90 698.75 699.36 2499.22 9798.43 3899.10 5198.87 5897.38 2999.35 1799.40 1697.78 599.87 4897.77 5899.85 499.78 16
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS96.37 297.93 6898.48 2096.30 25399.00 12089.54 32697.43 27798.87 5898.16 299.26 2199.38 2496.12 3299.64 13098.30 3399.77 2999.72 45
test_one_060199.66 2899.25 298.86 6497.55 1699.20 2599.47 997.57 6
ZNCC-MVS98.49 3798.20 4799.35 2599.73 1298.39 3999.19 3798.86 6495.77 10298.31 9199.10 7695.46 5699.93 1997.57 7699.81 1199.74 36
testtj98.33 5397.95 6099.47 1499.49 4898.70 2398.83 10398.86 6495.48 11698.91 5299.17 6295.48 5599.93 1995.80 15299.53 9099.76 29
DTE-MVSNet93.98 27493.26 27796.14 25996.06 31694.39 22899.20 3598.86 6493.06 23191.78 31397.81 22085.87 26197.58 33290.53 29086.17 34196.46 313
SD-MVS98.64 1598.68 798.53 9499.33 6898.36 4798.90 8798.85 6897.28 3599.72 399.39 1796.63 1997.60 33198.17 3599.85 499.64 75
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.198.35 4998.00 5899.38 2099.47 5198.68 2598.67 14198.84 6994.66 16299.11 3399.25 4995.46 5699.81 7596.80 11699.73 4699.63 78
test_prior398.22 5897.90 6399.19 4699.31 7398.22 5597.80 25598.84 6996.12 9197.89 11898.69 13095.96 4099.70 11996.89 10599.60 7399.65 72
test_prior99.19 4699.31 7398.22 5598.84 6999.70 11999.65 72
test117298.56 2998.35 2799.16 5399.53 3897.94 7199.09 5298.83 7296.52 7699.05 3799.34 3495.34 6499.82 6897.86 5299.64 6799.73 41
Anonymous2024052995.10 20394.22 22297.75 15099.01 11994.26 23398.87 9698.83 7285.79 34996.64 16998.97 9578.73 32999.85 5496.27 13494.89 22799.12 152
9.1498.06 5499.47 5198.71 13198.82 7494.36 17299.16 3199.29 4296.05 3699.81 7597.00 9599.71 55
SR-MVS98.57 2798.35 2799.24 4399.53 3898.18 5899.09 5298.82 7496.58 7399.10 3499.32 3695.39 6099.82 6897.70 6699.63 6999.72 45
GST-MVS98.43 4198.12 5199.34 2699.72 1398.38 4099.09 5298.82 7495.71 10598.73 6399.06 8695.27 6999.93 1997.07 9499.63 6999.72 45
abl_698.30 5698.03 5699.13 5799.56 3697.76 8099.13 4598.82 7496.14 8999.26 2199.37 2593.33 10899.93 1996.96 9999.67 5999.69 56
HPM-MVS_fast98.38 4598.13 5099.12 6099.75 497.86 7399.44 898.82 7494.46 17098.94 4499.20 5895.16 7499.74 11197.58 7399.85 499.77 23
APD-MVScopyleft98.35 4998.00 5899.42 1899.51 4298.72 2198.80 11398.82 7494.52 16799.23 2399.25 4995.54 5499.80 8496.52 12799.77 2999.74 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2198.32 3699.41 1999.54 3798.71 2299.04 5998.81 8095.12 13899.32 1899.39 1796.22 2499.84 5797.72 6199.73 4699.67 66
ETH3 D test640097.59 8597.01 10099.34 2699.40 6298.56 3098.20 21098.81 8091.63 28098.44 8298.85 11393.98 10399.82 6894.11 20799.69 5799.64 75
test_part194.82 21993.82 25097.82 14498.84 13597.82 7799.03 6298.81 8092.31 26192.51 30097.89 20981.96 30698.67 24594.80 18388.24 32096.98 243
MVS_030492.81 29392.01 29595.23 29097.46 23891.33 29898.17 21998.81 8091.13 30093.80 25795.68 33766.08 36598.06 31090.79 28696.13 21996.32 320
ACMMP_NAP98.61 1898.30 3799.55 999.62 3298.95 1798.82 10698.81 8095.80 10199.16 3199.47 995.37 6299.92 2597.89 5099.75 4199.79 13
Regformer-298.69 1298.52 1499.19 4699.35 6398.01 6798.37 18498.81 8097.48 2099.21 2499.21 5496.13 3199.80 8498.40 2999.73 4699.75 31
APD-MVS_3200maxsize98.53 3598.33 3599.15 5699.50 4497.92 7299.15 4198.81 8096.24 8599.20 2599.37 2595.30 6799.80 8497.73 6099.67 5999.72 45
WR-MVS95.15 20094.46 21097.22 17996.67 29196.45 13198.21 20798.81 8094.15 17693.16 27897.69 22787.51 23198.30 29095.29 17088.62 31796.90 255
mPP-MVS98.51 3698.26 4099.25 4299.75 498.04 6599.28 2298.81 8096.24 8598.35 8899.23 5195.46 5699.94 497.42 8399.81 1199.77 23
CNVR-MVS98.78 798.56 1199.45 1799.32 7198.87 1998.47 17298.81 8097.72 798.76 6099.16 6797.05 1399.78 10098.06 4099.66 6299.69 56
CPTT-MVS97.72 7697.32 8898.92 7299.64 3097.10 10599.12 4798.81 8092.34 25798.09 9699.08 8493.01 11299.92 2596.06 14299.77 2999.75 31
SR-MVS-dyc-post98.54 3398.35 2799.13 5799.49 4897.86 7399.11 4898.80 9196.49 7799.17 2999.35 3195.34 6499.82 6897.72 6199.65 6399.71 49
RE-MVS-def98.34 3199.49 4897.86 7399.11 4898.80 9196.49 7799.17 2999.35 3195.29 6897.72 6199.65 6399.71 49
SMA-MVScopyleft98.58 2498.25 4199.56 899.51 4299.04 1598.95 8098.80 9193.67 20899.37 1699.52 396.52 2199.89 3998.06 4099.81 1199.76 29
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVScopyleft98.36 4798.10 5399.13 5799.74 897.82 7799.53 598.80 9194.63 16398.61 7398.97 9595.13 7599.77 10597.65 6899.83 1099.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPMNet92.81 29391.34 30197.24 17897.00 27093.43 25994.96 35098.80 9182.27 35696.93 15692.12 35986.98 24299.82 6876.32 36496.65 19898.46 199
ZD-MVS99.46 5498.70 2398.79 9693.21 22598.67 6698.97 9595.70 4999.83 6096.07 13999.58 79
Regformer-498.64 1598.53 1398.99 6699.43 6097.37 9298.40 18298.79 9697.46 2399.09 3599.31 3895.86 4699.80 8498.64 799.76 3599.79 13
MP-MVScopyleft98.33 5398.01 5799.28 3899.75 498.18 5899.22 3198.79 9696.13 9097.92 11699.23 5194.54 8899.94 496.74 12199.78 2699.73 41
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet98.05 6197.76 6698.90 7498.73 14197.27 9698.35 18798.78 9997.37 3197.72 12698.96 10191.53 14499.92 2598.79 499.65 6399.51 97
MP-MVS-pluss98.31 5597.92 6299.49 1299.72 1398.88 1898.43 17898.78 9994.10 17897.69 12899.42 1595.25 7199.92 2598.09 3999.80 1899.67 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepC-MVS_fast96.70 198.55 3198.34 3199.18 5099.25 8998.04 6598.50 16998.78 9997.72 798.92 5199.28 4395.27 6999.82 6897.55 7799.77 2999.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.81 7297.60 7098.44 10299.12 10995.97 15597.75 25998.78 9996.89 6198.46 7899.22 5393.90 10499.68 12594.81 18299.52 9299.67 66
Regformer-198.66 1398.51 1599.12 6099.35 6397.81 7998.37 18498.76 10397.49 1999.20 2599.21 5496.08 3399.79 9698.42 2799.73 4699.75 31
NCCC98.61 1898.35 2799.38 2099.28 8598.61 2998.45 17398.76 10397.82 698.45 8198.93 10596.65 1899.83 6097.38 8599.41 10599.71 49
PLCcopyleft95.07 497.20 10996.78 11198.44 10299.29 8196.31 14298.14 22198.76 10392.41 25596.39 18498.31 17394.92 8199.78 10094.06 20998.77 13699.23 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
h-mvs3396.17 14795.62 15897.81 14599.03 11694.45 22498.64 14698.75 10697.48 2098.67 6698.72 12989.76 17599.86 5397.95 4481.59 35199.11 153
DeepC-MVS95.98 397.88 6997.58 7198.77 7899.25 8996.93 11098.83 10398.75 10696.96 5896.89 16099.50 590.46 16599.87 4897.84 5599.76 3599.52 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS98.55 3198.25 4199.46 1599.76 298.64 2798.55 16298.74 10897.27 3998.02 10399.39 1794.81 8299.96 297.91 4799.79 2299.77 23
MTGPAbinary98.74 108
MTAPA98.58 2498.29 3899.46 1599.76 298.64 2798.90 8798.74 10897.27 3998.02 10399.39 1794.81 8299.96 297.91 4799.79 2299.77 23
ab-mvs96.42 13895.71 15298.55 9098.63 15396.75 11897.88 24898.74 10893.84 19296.54 17798.18 18685.34 27099.75 10995.93 14696.35 20799.15 148
TEST999.31 7398.50 3497.92 24198.73 11292.63 24597.74 12498.68 13296.20 2799.80 84
train_agg97.97 6297.52 7699.33 3099.31 7398.50 3497.92 24198.73 11292.98 23497.74 12498.68 13296.20 2799.80 8496.59 12399.57 8099.68 62
test_899.29 8198.44 3697.89 24798.72 11492.98 23497.70 12798.66 13596.20 2799.80 84
agg_prior197.95 6697.51 7899.28 3899.30 7898.38 4097.81 25498.72 11493.16 22897.57 13798.66 13596.14 3099.81 7596.63 12299.56 8599.66 70
agg_prior99.30 7898.38 4098.72 11497.57 13799.81 75
无先验97.58 27198.72 11491.38 28699.87 4893.36 22899.60 84
save fliter99.46 5498.38 4098.21 20798.71 11897.95 3
WTY-MVS97.37 10196.92 10598.72 8098.86 13296.89 11498.31 19698.71 11895.26 13097.67 12998.56 14692.21 12599.78 10095.89 14796.85 19299.48 104
3Dnovator+94.38 697.43 9696.78 11199.38 2097.83 21198.52 3299.37 1198.71 11897.09 5392.99 28599.13 7189.36 18399.89 3996.97 9799.57 8099.71 49
旧先验199.29 8197.48 8898.70 12199.09 8295.56 5299.47 9899.61 81
EI-MVSNet-Vis-set98.47 3998.39 2298.69 8199.46 5496.49 13098.30 19898.69 12297.21 4298.84 5499.36 2995.41 5999.78 10098.62 999.65 6399.80 12
新几何199.16 5399.34 6598.01 6798.69 12290.06 31798.13 9398.95 10394.60 8799.89 3991.97 26999.47 9899.59 86
API-MVS97.41 9897.25 9097.91 13898.70 14696.80 11598.82 10698.69 12294.53 16598.11 9498.28 17694.50 9299.57 13994.12 20699.49 9497.37 232
ETH3D cwj APD-0.1697.96 6397.52 7699.29 3499.05 11398.52 3298.33 19098.68 12593.18 22698.68 6599.13 7194.62 8699.83 6096.45 12999.55 8899.52 93
EI-MVSNet-UG-set98.41 4298.34 3198.61 8699.45 5896.32 14098.28 20198.68 12597.17 4598.74 6199.37 2595.25 7199.79 9698.57 1199.54 8999.73 41
Regformer-398.59 2198.50 1698.86 7699.43 6097.05 10698.40 18298.68 12597.43 2599.06 3699.31 3895.80 4799.77 10598.62 999.76 3599.78 16
testdata98.26 11499.20 10095.36 18298.68 12591.89 27298.60 7499.10 7694.44 9499.82 6894.27 20199.44 10399.58 90
112197.37 10196.77 11599.16 5399.34 6597.99 7098.19 21498.68 12590.14 31698.01 10798.97 9594.80 8499.87 4893.36 22899.46 10199.61 81
MCST-MVS98.65 1498.37 2499.48 1399.60 3398.87 1998.41 18198.68 12597.04 5498.52 7798.80 12096.78 1699.83 6097.93 4699.61 7299.74 36
PVSNet91.96 1896.35 14096.15 13696.96 19699.17 10192.05 28396.08 33698.68 12593.69 20497.75 12397.80 22188.86 20099.69 12494.26 20299.01 12399.15 148
MAR-MVS96.91 12096.40 12898.45 10198.69 14896.90 11298.66 14498.68 12592.40 25697.07 15097.96 20291.54 14399.75 10993.68 21898.92 12698.69 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM198.65 8499.32 7196.62 12198.67 13393.27 22497.81 12098.97 9595.18 7399.83 6093.84 21499.46 10199.50 99
CDPH-MVS97.94 6797.49 7999.28 3899.47 5198.44 3697.91 24398.67 13392.57 24998.77 5998.85 11395.93 4299.72 11395.56 16299.69 5799.68 62
UnsupCasMVSNet_eth90.99 30989.92 31294.19 32194.08 35189.83 32097.13 30298.67 13393.69 20485.83 35296.19 32475.15 35096.74 34689.14 31479.41 35696.00 328
TSAR-MVS + MP.98.78 798.62 999.24 4399.69 2698.28 5399.14 4298.66 13696.84 6299.56 699.31 3896.34 2399.70 11998.32 3299.73 4699.73 41
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft98.58 2498.25 4199.55 999.50 4499.08 1198.72 13098.66 13697.51 1898.15 9298.83 11795.70 4999.92 2597.53 7999.67 5999.66 70
test22299.23 9697.17 10497.40 27898.66 13688.68 33398.05 9898.96 10194.14 9999.53 9099.61 81
test1198.66 136
XXY-MVS95.20 19894.45 21297.46 16996.75 28696.56 12798.86 9898.65 14093.30 22393.27 27598.27 17984.85 27798.87 22794.82 18191.26 28296.96 245
IU-MVS99.71 2199.23 798.64 14195.28 12999.63 498.35 3199.81 1199.83 7
TAPA-MVS93.98 795.35 18994.56 20497.74 15199.13 10894.83 20898.33 19098.64 14186.62 34196.29 18698.61 13894.00 10299.29 16980.00 35699.41 10599.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MSC_two_6792asdad99.62 699.17 10199.08 1198.63 14399.94 498.53 1399.80 1899.86 2
No_MVS99.62 699.17 10199.08 1198.63 14399.94 498.53 1399.80 1899.86 2
F-COLMAP97.09 11596.80 10897.97 13599.45 5894.95 20398.55 16298.62 14593.02 23396.17 18998.58 14394.01 10199.81 7593.95 21198.90 12799.14 150
EIA-MVS97.75 7497.58 7198.27 11298.38 16796.44 13299.01 6898.60 14695.88 9897.26 14297.53 24294.97 7999.33 16797.38 8599.20 11599.05 162
PAPM_NR97.46 9197.11 9598.50 9699.50 4496.41 13498.63 14898.60 14695.18 13497.06 15198.06 19394.26 9899.57 13993.80 21698.87 13199.52 93
cdsmvs_eth3d_5k23.98 34231.98 3440.00 3600.00 3830.00 3840.00 37198.59 1480.00 3780.00 37998.61 13890.60 1630.00 3790.00 3770.00 3770.00 375
131496.25 14695.73 14897.79 14697.13 26495.55 17698.19 21498.59 14893.47 21592.03 31197.82 21991.33 14899.49 15294.62 18798.44 15198.32 206
CVMVSNet95.43 18196.04 14093.57 32597.93 20583.62 36098.12 22498.59 14895.68 10696.56 17399.02 8887.51 23197.51 33593.56 22497.44 18399.60 84
OMC-MVS97.55 8997.34 8798.20 11899.33 6895.92 16298.28 20198.59 14895.52 11597.97 11099.10 7693.28 11099.49 15295.09 17598.88 12999.19 141
LTVRE_ROB92.95 1594.60 23393.90 24596.68 21697.41 24694.42 22698.52 16498.59 14891.69 27891.21 31898.35 16684.87 27699.04 20191.06 28293.44 25596.60 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVScopyleft99.03 398.83 599.63 499.72 1399.25 298.97 7698.58 15397.62 1299.45 1199.46 1297.42 999.94 498.47 2199.81 1199.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_ETH3D94.24 25893.33 27496.97 19597.19 26093.38 26398.74 12298.57 15491.21 29893.81 25698.58 14372.85 35898.77 23895.05 17693.93 24498.77 182
PAPR96.84 12396.24 13498.65 8498.72 14596.92 11197.36 28498.57 15493.33 22096.67 16897.57 23994.30 9799.56 14191.05 28498.59 14399.47 106
HQP_MVS96.14 14895.90 14496.85 20497.42 24394.60 22098.80 11398.56 15697.28 3595.34 19998.28 17687.09 23999.03 20296.07 13994.27 23096.92 248
plane_prior598.56 15699.03 20296.07 13994.27 23096.92 248
ETV-MVS97.96 6397.81 6498.40 10698.42 16597.27 9698.73 12698.55 15896.84 6298.38 8597.44 24995.39 6099.35 16597.62 7098.89 12898.58 196
mvs_tets95.41 18495.00 18596.65 21795.58 33094.42 22699.00 7098.55 15895.73 10493.21 27798.38 16383.45 30198.63 24897.09 9394.00 24196.91 253
LPG-MVS_test95.62 17495.34 16896.47 23997.46 23893.54 25498.99 7298.54 16094.67 16094.36 22998.77 12485.39 26799.11 19195.71 15794.15 23696.76 270
LGP-MVS_train96.47 23997.46 23893.54 25498.54 16094.67 16094.36 22998.77 12485.39 26799.11 19195.71 15794.15 23696.76 270
test1299.18 5099.16 10598.19 5798.53 16298.07 9795.13 7599.72 11399.56 8599.63 78
CNLPA97.45 9497.03 9998.73 7999.05 11397.44 9198.07 22898.53 16295.32 12796.80 16598.53 14793.32 10999.72 11394.31 20099.31 11299.02 164
xxxxxxxxxxxxxcwj98.70 1098.50 1699.30 3399.46 5498.38 4098.21 20798.52 16497.95 399.32 1899.39 1796.22 2499.84 5797.72 6199.73 4699.67 66
jajsoiax95.45 18095.03 18496.73 21195.42 33794.63 21599.14 4298.52 16495.74 10393.22 27698.36 16583.87 29798.65 24796.95 10094.04 23996.91 253
XVG-OURS96.55 13496.41 12796.99 19298.75 14093.76 24597.50 27498.52 16495.67 10796.83 16199.30 4188.95 19999.53 14795.88 14896.26 21497.69 224
xiu_mvs_v1_base_debu97.60 8297.56 7397.72 15298.35 16995.98 15097.86 25098.51 16797.13 5099.01 4098.40 16091.56 14099.80 8498.53 1398.68 13797.37 232
xiu_mvs_v1_base97.60 8297.56 7397.72 15298.35 16995.98 15097.86 25098.51 16797.13 5099.01 4098.40 16091.56 14099.80 8498.53 1398.68 13797.37 232
xiu_mvs_v1_base_debi97.60 8297.56 7397.72 15298.35 16995.98 15097.86 25098.51 16797.13 5099.01 4098.40 16091.56 14099.80 8498.53 1398.68 13797.37 232
PS-MVSNAJ97.73 7597.77 6597.62 16298.68 14995.58 17397.34 28698.51 16797.29 3498.66 7097.88 21094.51 8999.90 3797.87 5199.17 11797.39 230
cascas94.63 23293.86 24896.93 19896.91 27794.27 23296.00 34098.51 16785.55 35094.54 21896.23 32184.20 29098.87 22795.80 15296.98 19197.66 225
PS-MVSNAJss96.43 13796.26 13396.92 20195.84 32495.08 19599.16 4098.50 17295.87 9993.84 25598.34 17094.51 8998.61 24996.88 10893.45 25497.06 239
MVS94.67 23093.54 26898.08 12996.88 27996.56 12798.19 21498.50 17278.05 36192.69 29398.02 19591.07 15599.63 13390.09 29598.36 15698.04 213
XVG-OURS-SEG-HR96.51 13596.34 12997.02 19198.77 13993.76 24597.79 25798.50 17295.45 11896.94 15599.09 8287.87 22599.55 14696.76 12095.83 22397.74 221
PVSNet_088.72 1991.28 30590.03 31195.00 29897.99 20287.29 35494.84 35398.50 17292.06 26889.86 33095.19 34079.81 32399.39 16392.27 26069.79 36598.33 205
CS-MVS98.41 4298.49 1898.18 12299.08 11296.33 13999.67 398.49 17697.17 4598.93 4899.10 7695.79 4899.12 18698.67 699.48 9699.10 155
ACMH92.88 1694.55 23893.95 24196.34 25197.63 22393.26 26798.81 11298.49 17693.43 21789.74 33198.53 14781.91 30799.08 19693.69 21793.30 25896.70 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v2_base97.66 7997.70 6897.56 16698.61 15595.46 17997.44 27598.46 17897.15 4898.65 7198.15 18794.33 9699.80 8497.84 5598.66 14197.41 228
HQP3-MVS98.46 17894.18 234
HQP-MVS95.72 16795.40 16296.69 21597.20 25794.25 23498.05 23098.46 17896.43 7994.45 22297.73 22486.75 24598.96 21395.30 16894.18 23496.86 261
CLD-MVS95.62 17495.34 16896.46 24297.52 23593.75 24797.27 29298.46 17895.53 11394.42 22798.00 19886.21 25598.97 20996.25 13694.37 22896.66 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-ACMP-BASELINE94.54 23994.14 22995.75 27796.55 29591.65 29298.11 22698.44 18294.96 14894.22 23797.90 20779.18 32799.11 19194.05 21093.85 24596.48 311
ACMP93.49 1095.34 19094.98 18796.43 24497.67 22093.48 25898.73 12698.44 18294.94 15192.53 29898.53 14784.50 28499.14 18495.48 16594.00 24196.66 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 17195.38 16696.61 22397.61 22493.84 24398.91 8698.44 18295.25 13194.28 23398.47 15386.04 26099.12 18695.50 16493.95 24396.87 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+97.12 11396.69 11798.39 10798.19 18796.72 11997.37 28298.43 18593.71 20197.65 13298.02 19592.20 12699.25 17196.87 11197.79 17399.19 141
DROMVSNet98.21 5998.11 5298.49 9898.34 17497.26 10099.61 498.43 18596.78 6498.87 5398.84 11593.72 10599.01 20798.91 299.50 9399.19 141
RRT_test8_iter0594.56 23794.19 22495.67 27997.60 22591.34 29698.93 8498.42 18794.75 15593.39 27197.87 21179.00 32898.61 24996.78 11890.99 28697.07 238
anonymousdsp95.42 18294.91 19096.94 19795.10 33995.90 16499.14 4298.41 18893.75 19693.16 27897.46 24687.50 23398.41 27795.63 16194.03 24096.50 309
PMMVS96.60 12996.33 13097.41 17297.90 20793.93 24097.35 28598.41 18892.84 24197.76 12297.45 24891.10 15499.20 17796.26 13597.91 16899.11 153
CS-MVS-test98.20 6098.20 4798.19 12099.09 11196.34 13899.35 1498.40 19097.17 4598.93 4898.31 17394.42 9599.12 18698.68 599.48 9699.10 155
MVSFormer97.57 8797.49 7997.84 14198.07 19695.76 16999.47 698.40 19094.98 14698.79 5798.83 11792.34 11998.41 27796.91 10199.59 7699.34 120
test_djsdf96.00 15395.69 15596.93 19895.72 32695.49 17899.47 698.40 19094.98 14694.58 21797.86 21289.16 18998.41 27796.91 10194.12 23896.88 257
OPM-MVS95.69 17195.33 17096.76 20996.16 31394.63 21598.43 17898.39 19396.64 7195.02 20598.78 12285.15 27299.05 19895.21 17494.20 23396.60 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
canonicalmvs97.67 7897.23 9198.98 6898.70 14698.38 4099.34 1698.39 19396.76 6697.67 12997.40 25292.26 12299.49 15298.28 3496.28 21399.08 160
DP-MVS96.59 13195.93 14398.57 8899.34 6596.19 14698.70 13598.39 19389.45 32794.52 21999.35 3191.85 13499.85 5492.89 24598.88 12999.68 62
diffmvs97.58 8697.40 8598.13 12598.32 17895.81 16898.06 22998.37 19696.20 8798.74 6198.89 10991.31 14999.25 17198.16 3698.52 14699.34 120
ACMH+92.99 1494.30 25493.77 25595.88 27297.81 21292.04 28498.71 13198.37 19693.99 18590.60 32598.47 15380.86 31799.05 19892.75 24792.40 26796.55 298
MSDG95.93 15895.30 17397.83 14298.90 12895.36 18296.83 32398.37 19691.32 29194.43 22698.73 12890.27 16999.60 13690.05 29898.82 13498.52 197
DPM-MVS97.55 8996.99 10299.23 4599.04 11598.55 3197.17 29998.35 19994.85 15397.93 11598.58 14395.07 7799.71 11892.60 24999.34 11099.43 114
CMPMVSbinary66.06 2189.70 31889.67 31489.78 34293.19 35776.56 36797.00 30798.35 19980.97 35881.57 35997.75 22374.75 35298.61 24989.85 30193.63 24994.17 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n94.19 26193.43 27296.47 23995.90 32194.38 22999.26 2498.34 20191.99 26992.76 29097.13 26688.31 21198.52 25989.48 31087.70 32696.52 304
CDS-MVSNet96.99 11796.69 11797.90 13998.05 19995.98 15098.20 21098.33 20293.67 20896.95 15498.49 15193.54 10698.42 27095.24 17397.74 17699.31 126
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
casdiffmvs97.63 8197.41 8498.28 11198.33 17696.14 14798.82 10698.32 20396.38 8297.95 11199.21 5491.23 15199.23 17498.12 3798.37 15499.48 104
baseline97.64 8097.44 8398.25 11598.35 16996.20 14499.00 7098.32 20396.33 8498.03 10199.17 6291.35 14799.16 18098.10 3898.29 15999.39 117
cl2294.68 22794.19 22496.13 26098.11 19493.60 25296.94 31098.31 20592.43 25493.32 27496.87 29786.51 24898.28 29594.10 20891.16 28396.51 307
test_yl97.22 10696.78 11198.54 9298.73 14196.60 12498.45 17398.31 20594.70 15698.02 10398.42 15890.80 15999.70 11996.81 11496.79 19499.34 120
DCV-MVSNet97.22 10696.78 11198.54 9298.73 14196.60 12498.45 17398.31 20594.70 15698.02 10398.42 15890.80 15999.70 11996.81 11496.79 19499.34 120
nrg03096.28 14495.72 14997.96 13796.90 27898.15 6199.39 998.31 20595.47 11794.42 22798.35 16692.09 12998.69 24197.50 8189.05 31197.04 240
TAMVS97.02 11696.79 11097.70 15598.06 19895.31 18698.52 16498.31 20593.95 18797.05 15298.61 13893.49 10798.52 25995.33 16797.81 17299.29 131
EPP-MVSNet97.46 9197.28 8997.99 13498.64 15295.38 18199.33 1998.31 20593.61 21197.19 14499.07 8594.05 10099.23 17496.89 10598.43 15399.37 119
UnsupCasMVSNet_bld87.17 32685.12 33093.31 33091.94 36188.77 33894.92 35298.30 21184.30 35482.30 35890.04 36063.96 36797.25 33885.85 33574.47 36493.93 358
Vis-MVSNet (Re-imp)96.87 12296.55 12397.83 14298.73 14195.46 17999.20 3598.30 21194.96 14896.60 17298.87 11190.05 17198.59 25393.67 22098.60 14299.46 110
TSAR-MVS + GP.98.38 4598.24 4498.81 7799.22 9797.25 10198.11 22698.29 21397.19 4498.99 4399.02 8896.22 2499.67 12698.52 1998.56 14599.51 97
MS-PatchMatch93.84 27693.63 26494.46 31796.18 31089.45 32797.76 25898.27 21492.23 26392.13 30997.49 24479.50 32498.69 24189.75 30399.38 10895.25 340
EI-MVSNet95.96 15495.83 14696.36 24997.93 20593.70 25198.12 22498.27 21493.70 20395.07 20399.02 8892.23 12498.54 25794.68 18493.46 25296.84 262
MVSTER96.06 15095.72 14997.08 18998.23 18295.93 16198.73 12698.27 21494.86 15295.07 20398.09 19188.21 21398.54 25796.59 12393.46 25296.79 266
FMVSNet294.47 24593.61 26597.04 19098.21 18496.43 13398.79 11798.27 21492.46 25093.50 26897.09 27181.16 31298.00 31591.09 28091.93 27196.70 279
FMVSNet394.97 21294.26 22197.11 18798.18 18996.62 12198.56 16098.26 21893.67 20894.09 24397.10 26784.25 28798.01 31392.08 26392.14 26896.70 279
Fast-Effi-MVS+96.28 14495.70 15498.03 13298.29 18095.97 15598.58 15498.25 21991.74 27595.29 20297.23 26191.03 15699.15 18392.90 24397.96 16798.97 169
PAPM94.95 21394.00 23797.78 14797.04 26995.65 17196.03 33998.25 21991.23 29694.19 23997.80 22191.27 15098.86 22982.61 35097.61 18098.84 178
CANet_DTU96.96 11896.55 12398.21 11798.17 19196.07 14997.98 23798.21 22197.24 4197.13 14698.93 10586.88 24499.91 3495.00 17799.37 10998.66 190
HY-MVS93.96 896.82 12496.23 13598.57 8898.46 16497.00 10798.14 22198.21 22193.95 18796.72 16797.99 19991.58 13999.76 10794.51 19396.54 20298.95 172
PCF-MVS93.45 1194.68 22793.43 27298.42 10598.62 15496.77 11795.48 34898.20 22384.63 35393.34 27398.32 17288.55 20799.81 7584.80 34398.96 12598.68 187
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v894.47 24593.77 25596.57 22996.36 30494.83 20899.05 5898.19 22491.92 27193.16 27896.97 28788.82 20298.48 26191.69 27587.79 32596.39 315
v1094.29 25593.55 26796.51 23696.39 30394.80 21098.99 7298.19 22491.35 28993.02 28496.99 28588.09 21898.41 27790.50 29188.41 31996.33 319
mvs_anonymous96.70 12796.53 12597.18 18298.19 18793.78 24498.31 19698.19 22494.01 18394.47 22198.27 17992.08 13098.46 26597.39 8497.91 16899.31 126
AllTest95.24 19594.65 20096.99 19299.25 8993.21 26998.59 15298.18 22791.36 28793.52 26598.77 12484.67 28099.72 11389.70 30597.87 17098.02 214
TestCases96.99 19299.25 8993.21 26998.18 22791.36 28793.52 26598.77 12484.67 28099.72 11389.70 30597.87 17098.02 214
GBi-Net94.49 24393.80 25296.56 23098.21 18495.00 19798.82 10698.18 22792.46 25094.09 24397.07 27481.16 31297.95 31792.08 26392.14 26896.72 275
test194.49 24393.80 25296.56 23098.21 18495.00 19798.82 10698.18 22792.46 25094.09 24397.07 27481.16 31297.95 31792.08 26392.14 26896.72 275
FMVSNet193.19 28992.07 29496.56 23097.54 23295.00 19798.82 10698.18 22790.38 31192.27 30697.07 27473.68 35697.95 31789.36 31291.30 28096.72 275
v119294.32 25393.58 26696.53 23496.10 31494.45 22498.50 16998.17 23291.54 28294.19 23997.06 27786.95 24398.43 26990.14 29489.57 30196.70 279
v124094.06 27293.29 27696.34 25196.03 31893.90 24198.44 17698.17 23291.18 29994.13 24297.01 28486.05 25898.42 27089.13 31589.50 30596.70 279
v14419294.39 25093.70 26196.48 23896.06 31694.35 23098.58 15498.16 23491.45 28494.33 23197.02 28287.50 23398.45 26691.08 28189.11 31096.63 287
Fast-Effi-MVS+-dtu95.87 16095.85 14595.91 26997.74 21791.74 29098.69 13798.15 23595.56 11294.92 20797.68 23088.98 19798.79 23693.19 23397.78 17497.20 236
v192192094.20 26093.47 27196.40 24795.98 31994.08 23798.52 16498.15 23591.33 29094.25 23597.20 26486.41 25298.42 27090.04 29989.39 30796.69 284
v114494.59 23593.92 24296.60 22596.21 30894.78 21298.59 15298.14 23791.86 27494.21 23897.02 28287.97 22198.41 27791.72 27489.57 30196.61 289
IterMVS-LS95.46 17895.21 17696.22 25698.12 19393.72 25098.32 19598.13 23893.71 20194.26 23497.31 25692.24 12398.10 30594.63 18590.12 29496.84 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GeoE96.58 13396.07 13898.10 12898.35 16995.89 16599.34 1698.12 23993.12 23096.09 19098.87 11189.71 17798.97 20992.95 24198.08 16499.43 114
EU-MVSNet93.66 27794.14 22992.25 33895.96 32083.38 36198.52 16498.12 23994.69 15892.61 29598.13 18987.36 23696.39 35491.82 27190.00 29696.98 243
IterMVS94.09 26993.85 24994.80 30697.99 20290.35 31697.18 29798.12 23993.68 20692.46 30397.34 25384.05 29297.41 33692.51 25691.33 27996.62 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 26793.87 24794.85 30397.98 20490.56 31497.18 29798.11 24293.75 19692.58 29697.48 24583.97 29497.41 33692.48 25891.30 28096.58 292
COLMAP_ROBcopyleft93.27 1295.33 19194.87 19296.71 21299.29 8193.24 26898.58 15498.11 24289.92 31993.57 26399.10 7686.37 25399.79 9690.78 28798.10 16397.09 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
hse-mvs295.71 16895.30 17396.93 19898.50 16193.53 25698.36 18698.10 24497.48 2098.67 6697.99 19989.76 17599.02 20597.95 4480.91 35598.22 208
AUN-MVS94.53 24093.73 25996.92 20198.50 16193.52 25798.34 18898.10 24493.83 19495.94 19697.98 20185.59 26599.03 20294.35 19780.94 35498.22 208
Effi-MVS+-dtu96.29 14296.56 12295.51 28297.89 20890.22 31798.80 11398.10 24496.57 7496.45 18396.66 30590.81 15798.91 22095.72 15597.99 16697.40 229
mvs-test196.60 12996.68 11996.37 24897.89 20891.81 28698.56 16098.10 24496.57 7496.52 17997.94 20490.81 15799.45 16095.72 15598.01 16597.86 218
1112_ss96.63 12896.00 14298.50 9698.56 15796.37 13598.18 21898.10 24492.92 23794.84 20998.43 15692.14 12799.58 13894.35 19796.51 20399.56 92
RRT_MVS96.04 15195.53 15997.56 16697.07 26897.32 9398.57 15998.09 24995.15 13695.02 20598.44 15588.20 21498.58 25596.17 13893.09 26196.79 266
V4294.78 22394.14 22996.70 21496.33 30695.22 18898.97 7698.09 24992.32 25994.31 23297.06 27788.39 21098.55 25692.90 24388.87 31596.34 317
miper_enhance_ethall95.10 20394.75 19696.12 26197.53 23493.73 24996.61 33098.08 25192.20 26693.89 25196.65 30792.44 11898.30 29094.21 20391.16 28396.34 317
v2v48294.69 22594.03 23396.65 21796.17 31194.79 21198.67 14198.08 25192.72 24394.00 24897.16 26587.69 23098.45 26692.91 24288.87 31596.72 275
CL-MVSNet_self_test90.11 31589.14 31893.02 33391.86 36288.23 34796.51 33398.07 25390.49 30690.49 32694.41 34684.75 27995.34 35980.79 35474.95 36295.50 337
miper_ehance_all_eth95.01 20794.69 19995.97 26697.70 21993.31 26597.02 30698.07 25392.23 26393.51 26796.96 28991.85 13498.15 30193.68 21891.16 28396.44 314
eth_miper_zixun_eth94.68 22794.41 21595.47 28497.64 22291.71 29196.73 32798.07 25392.71 24493.64 26097.21 26390.54 16498.17 30093.38 22689.76 29896.54 299
MVS_Test97.28 10497.00 10198.13 12598.33 17695.97 15598.74 12298.07 25394.27 17498.44 8298.07 19292.48 11799.26 17096.43 13198.19 16099.16 147
Test_1112_low_res96.34 14195.66 15798.36 10898.56 15795.94 15897.71 26198.07 25392.10 26794.79 21397.29 25791.75 13699.56 14194.17 20496.50 20499.58 90
alignmvs97.56 8897.07 9899.01 6598.66 15098.37 4698.83 10398.06 25896.74 6798.00 10997.65 23190.80 15999.48 15698.37 3096.56 20199.19 141
RPSCF94.87 21895.40 16293.26 33198.89 12982.06 36598.33 19098.06 25890.30 31396.56 17399.26 4687.09 23999.49 15293.82 21596.32 20998.24 207
miper_lstm_enhance94.33 25294.07 23295.11 29597.75 21490.97 30497.22 29498.03 26091.67 27992.76 29096.97 28790.03 17297.78 32792.51 25689.64 30096.56 296
c3_l94.79 22294.43 21495.89 27197.75 21493.12 27297.16 30098.03 26092.23 26393.46 27097.05 27991.39 14598.01 31393.58 22389.21 30996.53 301
pm-mvs193.94 27593.06 27996.59 22696.49 29995.16 18998.95 8098.03 26092.32 25991.08 32097.84 21584.54 28398.41 27792.16 26186.13 34396.19 324
v14894.29 25593.76 25795.91 26996.10 31492.93 27498.58 15497.97 26392.59 24893.47 26996.95 29188.53 20898.32 28692.56 25387.06 33496.49 310
IS-MVSNet97.22 10696.88 10698.25 11598.85 13496.36 13699.19 3797.97 26395.39 12197.23 14398.99 9491.11 15398.93 21894.60 18898.59 14399.47 106
cl____94.51 24294.01 23696.02 26397.58 22793.40 26297.05 30497.96 26591.73 27792.76 29097.08 27389.06 19398.13 30392.61 24890.29 29396.52 304
KD-MVS_self_test90.38 31389.38 31693.40 32892.85 35988.94 33797.95 23997.94 26690.35 31290.25 32793.96 35179.82 32295.94 35684.62 34576.69 36095.33 339
DIV-MVS_self_test94.52 24194.03 23395.99 26497.57 23193.38 26397.05 30497.94 26691.74 27592.81 28897.10 26789.12 19098.07 30992.60 24990.30 29296.53 301
pmmvs691.77 30190.63 30595.17 29394.69 34791.24 30198.67 14197.92 26886.14 34589.62 33297.56 24175.79 34898.34 28490.75 28884.56 34595.94 330
jason97.32 10397.08 9798.06 13197.45 24295.59 17297.87 24997.91 26994.79 15498.55 7698.83 11791.12 15299.23 17497.58 7399.60 7399.34 120
jason: jason.
ppachtmachnet_test93.22 28792.63 28794.97 29995.45 33590.84 30696.88 31997.88 27090.60 30592.08 31097.26 25888.08 21997.86 32685.12 34090.33 29196.22 322
tpm cat193.36 28192.80 28395.07 29797.58 22787.97 34996.76 32597.86 27182.17 35793.53 26496.04 32786.13 25699.13 18589.24 31395.87 22298.10 212
EG-PatchMatch MVS91.13 30790.12 31094.17 32294.73 34689.00 33598.13 22397.81 27289.22 33085.32 35496.46 31367.71 36298.42 27087.89 32493.82 24695.08 345
BH-untuned95.95 15595.72 14996.65 21798.55 15992.26 27998.23 20597.79 27393.73 19994.62 21698.01 19788.97 19899.00 20893.04 23898.51 14798.68 187
lupinMVS97.44 9597.22 9298.12 12798.07 19695.76 16997.68 26397.76 27494.50 16898.79 5798.61 13892.34 11999.30 16897.58 7399.59 7699.31 126
VDDNet95.36 18894.53 20597.86 14098.10 19595.13 19398.85 9997.75 27590.46 30898.36 8699.39 1773.27 35799.64 13097.98 4396.58 20098.81 179
ADS-MVSNet95.00 20894.45 21296.63 22198.00 20091.91 28596.04 33797.74 27690.15 31496.47 18196.64 30887.89 22398.96 21390.08 29697.06 18899.02 164
tpmvs94.60 23394.36 21795.33 28997.46 23888.60 34196.88 31997.68 27791.29 29393.80 25796.42 31688.58 20499.24 17391.06 28296.04 22198.17 210
pmmvs494.69 22593.99 23996.81 20795.74 32595.94 15897.40 27897.67 27890.42 31093.37 27297.59 23789.08 19298.20 29892.97 24091.67 27596.30 321
our_test_393.65 27993.30 27594.69 30895.45 33589.68 32496.91 31397.65 27991.97 27091.66 31596.88 29589.67 17897.93 32088.02 32291.49 27796.48 311
MVP-Stereo94.28 25793.92 24295.35 28894.95 34192.60 27797.97 23897.65 27991.61 28190.68 32497.09 27186.32 25498.42 27089.70 30599.34 11095.02 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
KD-MVS_2432*160089.61 32087.96 32494.54 31294.06 35291.59 29395.59 34697.63 28189.87 32088.95 33894.38 34878.28 33296.82 34484.83 34168.05 36695.21 341
miper_refine_blended89.61 32087.96 32494.54 31294.06 35291.59 29395.59 34697.63 28189.87 32088.95 33894.38 34878.28 33296.82 34484.83 34168.05 36695.21 341
SCA95.46 17895.13 17996.46 24297.67 22091.29 30097.33 28797.60 28394.68 15996.92 15897.10 26783.97 29498.89 22492.59 25198.32 15899.20 138
GA-MVS94.81 22194.03 23397.14 18497.15 26393.86 24296.76 32597.58 28494.00 18494.76 21497.04 28080.91 31598.48 26191.79 27296.25 21599.09 157
Anonymous2024052191.18 30690.44 30793.42 32693.70 35588.47 34398.94 8297.56 28588.46 33489.56 33495.08 34377.15 34496.97 34283.92 34689.55 30394.82 349
test20.0390.89 31090.38 30892.43 33593.48 35688.14 34898.33 19097.56 28593.40 21887.96 34396.71 30480.69 31994.13 36579.15 35986.17 34195.01 348
CR-MVSNet94.76 22494.15 22896.59 22697.00 27093.43 25994.96 35097.56 28592.46 25096.93 15696.24 31988.15 21697.88 32587.38 32596.65 19898.46 199
Patchmtry93.22 28792.35 29195.84 27396.77 28393.09 27394.66 35597.56 28587.37 33992.90 28696.24 31988.15 21697.90 32187.37 32690.10 29596.53 301
tpmrst95.63 17395.69 15595.44 28697.54 23288.54 34296.97 30897.56 28593.50 21497.52 13996.93 29389.49 17999.16 18095.25 17296.42 20698.64 192
FMVSNet591.81 30090.92 30394.49 31497.21 25692.09 28198.00 23697.55 29089.31 32990.86 32295.61 33874.48 35395.32 36085.57 33689.70 29996.07 327
testgi93.06 29192.45 29094.88 30296.43 30289.90 31998.75 11997.54 29195.60 11091.63 31697.91 20674.46 35497.02 34186.10 33293.67 24797.72 223
PatchmatchNetpermissive95.71 16895.52 16096.29 25497.58 22790.72 31096.84 32297.52 29294.06 17997.08 14896.96 28989.24 18798.90 22392.03 26798.37 15499.26 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs89.97 31788.35 32294.83 30595.21 33891.34 29697.64 26697.51 29388.36 33571.17 36796.13 32579.22 32696.63 35183.65 34786.27 34096.52 304
USDC93.33 28492.71 28595.21 29196.83 28290.83 30796.91 31397.50 29493.84 19290.72 32398.14 18877.69 33798.82 23389.51 30993.21 26095.97 329
ITE_SJBPF95.44 28697.42 24391.32 29997.50 29495.09 14293.59 26198.35 16681.70 30898.88 22689.71 30493.39 25696.12 325
Patchmatch-test94.42 24893.68 26396.63 22197.60 22591.76 28894.83 35497.49 29689.45 32794.14 24197.10 26788.99 19498.83 23285.37 33998.13 16299.29 131
YYNet190.70 31289.39 31594.62 31194.79 34590.65 31297.20 29597.46 29787.54 33872.54 36595.74 33086.51 24896.66 35086.00 33386.76 33996.54 299
MDA-MVSNet_test_wron90.71 31189.38 31694.68 30994.83 34390.78 30997.19 29697.46 29787.60 33772.41 36695.72 33486.51 24896.71 34985.92 33486.80 33896.56 296
BH-RMVSNet95.92 15995.32 17197.69 15698.32 17894.64 21498.19 21497.45 29994.56 16496.03 19298.61 13885.02 27399.12 18690.68 28999.06 11999.30 129
MIMVSNet189.67 31988.28 32393.82 32392.81 36091.08 30398.01 23497.45 29987.95 33687.90 34495.87 32967.63 36394.56 36478.73 36188.18 32295.83 332
OurMVSNet-221017-094.21 25994.00 23794.85 30395.60 32989.22 33198.89 9197.43 30195.29 12892.18 30898.52 15082.86 30298.59 25393.46 22591.76 27396.74 272
BH-w/o95.38 18595.08 18296.26 25598.34 17491.79 28797.70 26297.43 30192.87 24094.24 23697.22 26288.66 20398.84 23091.55 27797.70 17898.16 211
VDD-MVS95.82 16495.23 17597.61 16398.84 13593.98 23998.68 13897.40 30395.02 14597.95 11199.34 3474.37 35599.78 10098.64 796.80 19399.08 160
Gipumacopyleft78.40 33176.75 33483.38 34895.54 33180.43 36679.42 36997.40 30364.67 36673.46 36480.82 36745.65 37193.14 36666.32 36887.43 32976.56 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet88.50 32487.45 32791.67 34090.31 36685.89 35797.16 30097.33 30589.47 32683.63 35792.77 35576.38 34595.06 36282.70 34977.29 35994.06 356
ADS-MVSNet294.58 23694.40 21695.11 29598.00 20088.74 33996.04 33797.30 30690.15 31496.47 18196.64 30887.89 22397.56 33390.08 29697.06 18899.02 164
MDTV_nov1_ep1395.40 16297.48 23688.34 34596.85 32197.29 30793.74 19897.48 14097.26 25889.18 18899.05 19891.92 27097.43 184
pmmvs593.65 27992.97 28195.68 27895.49 33392.37 27898.20 21097.28 30889.66 32492.58 29697.26 25882.14 30498.09 30793.18 23490.95 28796.58 292
EPNet_dtu95.21 19794.95 18995.99 26496.17 31190.45 31598.16 22097.27 30996.77 6593.14 28198.33 17190.34 16798.42 27085.57 33698.81 13599.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120691.66 30291.10 30293.33 32994.02 35487.35 35398.58 15497.26 31090.48 30790.16 32896.31 31783.83 29896.53 35279.36 35889.90 29796.12 325
test_040291.32 30490.27 30994.48 31596.60 29391.12 30298.50 16997.22 31186.10 34688.30 34296.98 28677.65 33997.99 31678.13 36292.94 26394.34 351
dp94.15 26493.90 24594.90 30197.31 25086.82 35696.97 30897.19 31291.22 29796.02 19396.61 31085.51 26699.02 20590.00 30094.30 22998.85 176
thres20095.25 19494.57 20397.28 17798.81 13794.92 20498.20 21097.11 31395.24 13396.54 17796.22 32384.58 28299.53 14787.93 32396.50 20497.39 230
PatchT93.06 29191.97 29696.35 25096.69 28992.67 27694.48 35697.08 31486.62 34197.08 14892.23 35887.94 22297.90 32178.89 36096.69 19698.49 198
TDRefinement91.06 30889.68 31395.21 29185.35 37091.49 29598.51 16897.07 31591.47 28388.83 34097.84 21577.31 34199.09 19592.79 24677.98 35895.04 346
LF4IMVS93.14 29092.79 28494.20 32095.88 32288.67 34097.66 26597.07 31593.81 19591.71 31497.65 23177.96 33698.81 23491.47 27891.92 27295.12 343
Anonymous20240521195.28 19394.49 20797.67 15899.00 12093.75 24798.70 13597.04 31790.66 30496.49 18098.80 12078.13 33499.83 6096.21 13795.36 22699.44 113
baseline195.84 16295.12 18098.01 13398.49 16395.98 15098.73 12697.03 31895.37 12496.22 18798.19 18589.96 17399.16 18094.60 18887.48 32898.90 175
MIMVSNet93.26 28692.21 29396.41 24597.73 21893.13 27195.65 34597.03 31891.27 29594.04 24696.06 32675.33 34997.19 33986.56 32996.23 21698.92 174
EPNet97.28 10496.87 10798.51 9594.98 34096.14 14798.90 8797.02 32098.28 195.99 19499.11 7491.36 14699.89 3996.98 9699.19 11699.50 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TR-MVS94.94 21594.20 22397.17 18397.75 21494.14 23697.59 27097.02 32092.28 26295.75 19797.64 23383.88 29698.96 21389.77 30296.15 21898.40 201
JIA-IIPM93.35 28292.49 28995.92 26896.48 30090.65 31295.01 34996.96 32285.93 34796.08 19187.33 36387.70 22998.78 23791.35 27995.58 22598.34 204
pmmvs-eth3d90.36 31489.05 31994.32 31991.10 36492.12 28097.63 26996.95 32388.86 33284.91 35593.13 35478.32 33196.74 34688.70 31781.81 35094.09 355
tfpn200view995.32 19294.62 20197.43 17198.94 12694.98 20098.68 13896.93 32495.33 12596.55 17596.53 31184.23 28899.56 14188.11 31996.29 21097.76 219
thres40095.38 18594.62 20197.65 16198.94 12694.98 20098.68 13896.93 32495.33 12596.55 17596.53 31184.23 28899.56 14188.11 31996.29 21098.40 201
thres100view90095.38 18594.70 19897.41 17298.98 12494.92 20498.87 9696.90 32695.38 12296.61 17196.88 29584.29 28599.56 14188.11 31996.29 21097.76 219
thres600view795.49 17794.77 19497.67 15898.98 12495.02 19698.85 9996.90 32695.38 12296.63 17096.90 29484.29 28599.59 13788.65 31896.33 20898.40 201
test_method79.03 32978.17 33281.63 34986.06 36954.40 37982.75 36896.89 32839.54 37280.98 36095.57 33958.37 36894.73 36384.74 34478.61 35795.75 333
CostFormer94.95 21394.73 19795.60 28197.28 25189.06 33397.53 27396.89 32889.66 32496.82 16396.72 30386.05 25898.95 21795.53 16396.13 21998.79 180
new_pmnet90.06 31689.00 32093.22 33294.18 34988.32 34696.42 33596.89 32886.19 34485.67 35393.62 35277.18 34397.10 34081.61 35289.29 30894.23 352
OpenMVS_ROBcopyleft86.42 2089.00 32387.43 32893.69 32493.08 35889.42 32897.91 24396.89 32878.58 36085.86 35194.69 34569.48 36098.29 29377.13 36393.29 25993.36 360
tpm294.19 26193.76 25795.46 28597.23 25489.04 33497.31 28996.85 33287.08 34096.21 18896.79 30183.75 30098.74 23992.43 25996.23 21698.59 194
TransMVSNet (Re)92.67 29591.51 30096.15 25896.58 29494.65 21398.90 8796.73 33390.86 30389.46 33597.86 21285.62 26498.09 30786.45 33081.12 35295.71 334
ambc89.49 34386.66 36875.78 36892.66 36196.72 33486.55 34992.50 35746.01 37097.90 32190.32 29282.09 34794.80 350
LCM-MVSNet78.70 33076.24 33586.08 34577.26 37671.99 37194.34 35796.72 33461.62 36776.53 36289.33 36133.91 37692.78 36781.85 35174.60 36393.46 359
TinyColmap92.31 29891.53 29994.65 31096.92 27589.75 32196.92 31196.68 33690.45 30989.62 33297.85 21476.06 34798.81 23486.74 32892.51 26695.41 338
Baseline_NR-MVSNet94.35 25193.81 25195.96 26796.20 30994.05 23898.61 15196.67 33791.44 28593.85 25497.60 23688.57 20598.14 30294.39 19586.93 33595.68 335
SixPastTwentyTwo93.34 28392.86 28294.75 30795.67 32789.41 32998.75 11996.67 33793.89 18990.15 32998.25 18180.87 31698.27 29690.90 28590.64 28996.57 294
DWT-MVSNet_test94.82 21994.36 21796.20 25797.35 24890.79 30898.34 18896.57 33992.91 23895.33 20196.44 31582.00 30599.12 18694.52 19295.78 22498.70 185
EGC-MVSNET75.22 33469.54 33792.28 33794.81 34489.58 32597.64 26696.50 3401.82 3775.57 37895.74 33068.21 36196.26 35573.80 36691.71 27490.99 362
LFMVS95.86 16194.98 18798.47 10098.87 13196.32 14098.84 10296.02 34193.40 21898.62 7299.20 5874.99 35199.63 13397.72 6197.20 18799.46 110
IB-MVS91.98 1793.27 28591.97 29697.19 18197.47 23793.41 26197.09 30395.99 34293.32 22192.47 30295.73 33278.06 33599.53 14794.59 19082.98 34698.62 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 194.08 27093.51 26995.80 27495.53 33292.89 27597.38 28095.97 34395.11 13992.51 30096.66 30587.71 22796.94 34387.03 32793.67 24797.57 226
FPMVS77.62 33377.14 33379.05 35179.25 37460.97 37595.79 34295.94 34465.96 36567.93 36894.40 34737.73 37488.88 37068.83 36788.46 31887.29 364
Patchmatch-RL test91.49 30390.85 30493.41 32791.37 36384.40 35892.81 36095.93 34591.87 27387.25 34594.87 34488.99 19496.53 35292.54 25582.00 34899.30 129
tpm94.13 26593.80 25295.12 29496.50 29887.91 35097.44 27595.89 34692.62 24696.37 18596.30 31884.13 29198.30 29093.24 23191.66 27699.14 150
LCM-MVSNet-Re95.22 19695.32 17194.91 30098.18 18987.85 35198.75 11995.66 34795.11 13988.96 33796.85 29890.26 17097.65 32995.65 16098.44 15199.22 137
bset_n11_16_dypcd94.89 21794.27 22096.76 20994.41 34895.15 19195.67 34495.64 34895.53 11394.65 21597.52 24387.10 23898.29 29396.58 12591.35 27896.83 264
ET-MVSNet_ETH3D94.13 26592.98 28097.58 16498.22 18396.20 14497.31 28995.37 34994.53 16579.56 36197.63 23586.51 24897.53 33496.91 10190.74 28899.02 164
test-LLR95.10 20394.87 19295.80 27496.77 28389.70 32296.91 31395.21 35095.11 13994.83 21195.72 33487.71 22798.97 20993.06 23698.50 14898.72 183
test-mter94.08 27093.51 26995.80 27496.77 28389.70 32296.91 31395.21 35092.89 23994.83 21195.72 33477.69 33798.97 20993.06 23698.50 14898.72 183
PM-MVS87.77 32586.55 32991.40 34191.03 36583.36 36296.92 31195.18 35291.28 29486.48 35093.42 35353.27 36996.74 34689.43 31181.97 34994.11 354
DeepMVS_CXcopyleft86.78 34497.09 26772.30 37095.17 35375.92 36284.34 35695.19 34070.58 35995.35 35879.98 35789.04 31292.68 361
K. test v392.55 29691.91 29894.48 31595.64 32889.24 33099.07 5594.88 35494.04 18086.78 34797.59 23777.64 34097.64 33092.08 26389.43 30696.57 294
TESTMET0.1,194.18 26393.69 26295.63 28096.92 27589.12 33296.91 31394.78 35593.17 22794.88 20896.45 31478.52 33098.92 21993.09 23598.50 14898.85 176
pmmvs386.67 32884.86 33192.11 33988.16 36787.19 35596.63 32994.75 35679.88 35987.22 34692.75 35666.56 36495.20 36181.24 35376.56 36193.96 357
door94.64 357
thisisatest051595.61 17694.89 19197.76 14998.15 19295.15 19196.77 32494.41 35892.95 23697.18 14597.43 25084.78 27899.45 16094.63 18597.73 17798.68 187
door-mid94.37 359
tttt051796.07 14995.51 16197.78 14798.41 16694.84 20699.28 2294.33 36094.26 17597.64 13398.64 13784.05 29299.47 15895.34 16697.60 18199.03 163
DSMNet-mixed92.52 29792.58 28892.33 33694.15 35082.65 36398.30 19894.26 36189.08 33192.65 29495.73 33285.01 27495.76 35786.24 33197.76 17598.59 194
thisisatest053096.01 15295.36 16797.97 13598.38 16795.52 17798.88 9494.19 36294.04 18097.64 13398.31 17383.82 29999.46 15995.29 17097.70 17898.93 173
MTMP98.89 9194.14 363
baseline295.11 20294.52 20696.87 20396.65 29293.56 25398.27 20394.10 36493.45 21692.02 31297.43 25087.45 23599.19 17893.88 21397.41 18597.87 217
PMVScopyleft61.03 2365.95 33763.57 34173.09 35457.90 37951.22 38085.05 36793.93 36554.45 36844.32 37483.57 36413.22 37889.15 36958.68 37081.00 35378.91 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS277.95 33275.44 33685.46 34682.54 37174.95 36994.23 35893.08 36672.80 36474.68 36387.38 36236.36 37591.56 36873.95 36563.94 36889.87 363
MVS-HIRNet89.46 32288.40 32192.64 33497.58 22782.15 36494.16 35993.05 36775.73 36390.90 32182.52 36579.42 32598.33 28583.53 34898.68 13797.43 227
test111195.94 15795.78 14796.41 24598.99 12390.12 31899.04 5992.45 36896.99 5798.03 10199.27 4581.40 31099.48 15696.87 11199.04 12099.63 78
ECVR-MVScopyleft95.95 15595.71 15296.65 21799.02 11790.86 30599.03 6291.80 36996.96 5898.10 9599.26 4681.31 31199.51 15196.90 10499.04 12099.59 86
EPMVS94.99 20994.48 20896.52 23597.22 25591.75 28997.23 29391.66 37094.11 17797.28 14196.81 30085.70 26398.84 23093.04 23897.28 18698.97 169
lessismore_v094.45 31894.93 34288.44 34491.03 37186.77 34897.64 23376.23 34698.42 27090.31 29385.64 34496.51 307
ANet_high69.08 33565.37 33980.22 35065.99 37871.96 37290.91 36490.09 37282.62 35549.93 37378.39 36829.36 37781.75 37162.49 36938.52 37286.95 366
gg-mvs-nofinetune92.21 29990.58 30697.13 18596.75 28695.09 19495.85 34189.40 37385.43 35194.50 22081.98 36680.80 31898.40 28392.16 26198.33 15797.88 216
GG-mvs-BLEND96.59 22696.34 30594.98 20096.51 33388.58 37493.10 28394.34 35080.34 32198.05 31189.53 30896.99 19096.74 272
E-PMN64.94 33864.25 34067.02 35582.28 37259.36 37791.83 36385.63 37552.69 36960.22 37077.28 36941.06 37380.12 37346.15 37241.14 37061.57 371
EMVS64.07 33963.26 34266.53 35681.73 37358.81 37891.85 36284.75 37651.93 37159.09 37175.13 37043.32 37279.09 37442.03 37339.47 37161.69 370
tmp_tt68.90 33666.97 33874.68 35350.78 38059.95 37687.13 36583.47 37738.80 37362.21 36996.23 32164.70 36676.91 37588.91 31630.49 37387.19 365
MVEpermissive62.14 2263.28 34059.38 34374.99 35274.33 37765.47 37385.55 36680.50 37852.02 37051.10 37275.00 37110.91 38180.50 37251.60 37153.40 36978.99 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250694.44 24793.91 24496.04 26299.02 11788.99 33699.06 5679.47 37996.96 5898.36 8699.26 4677.21 34299.52 15096.78 11899.04 12099.59 86
N_pmnet87.12 32787.77 32685.17 34795.46 33461.92 37497.37 28270.66 38085.83 34888.73 34196.04 32785.33 27197.76 32880.02 35590.48 29095.84 331
wuyk23d30.17 34130.18 34530.16 35778.61 37543.29 38166.79 37014.21 38117.31 37414.82 37711.93 37711.55 38041.43 37637.08 37419.30 3745.76 374
testmvs21.48 34324.95 34611.09 35914.89 3816.47 38396.56 3319.87 3827.55 37517.93 37539.02 3739.43 3825.90 37816.56 37612.72 37520.91 373
test12320.95 34423.72 34712.64 35813.54 3828.19 38296.55 3326.13 3837.48 37616.74 37637.98 37412.97 3796.05 37716.69 3755.43 37623.68 372
test_blank0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
uanet_test0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
pcd_1.5k_mvsjas7.88 34610.50 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 37894.51 890.00 3790.00 3770.00 3770.00 375
sosnet-low-res0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
sosnet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
uncertanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
Regformer0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
n20.00 384
nn0.00 384
ab-mvs-re8.20 34510.94 3480.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 37998.43 1560.00 3830.00 3790.00 3770.00 3770.00 375
uanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
PC_three_145295.08 14399.60 599.16 6797.86 298.47 26497.52 8099.72 5399.74 36
eth-test20.00 383
eth-test0.00 383
OPU-MVS99.37 2399.24 9599.05 1499.02 6699.16 6797.81 399.37 16497.24 8899.73 4699.70 53
test_0728_THIRD97.32 3299.45 1199.46 1297.88 199.94 498.47 2199.86 199.85 4
GSMVS99.20 138
test_part299.63 3199.18 1099.27 20
sam_mvs189.45 18199.20 138
sam_mvs88.99 194
test_post196.68 32830.43 37687.85 22698.69 24192.59 251
test_post31.83 37588.83 20198.91 220
patchmatchnet-post95.10 34289.42 18298.89 224
gm-plane-assit95.88 32287.47 35289.74 32396.94 29299.19 17893.32 230
test9_res96.39 13399.57 8099.69 56
agg_prior295.87 14999.57 8099.68 62
test_prior498.01 6797.86 250
test_prior297.80 25596.12 9197.89 11898.69 13095.96 4096.89 10599.60 73
旧先验297.57 27291.30 29298.67 6699.80 8495.70 159
新几何297.64 266
原ACMM297.67 264
testdata299.89 3991.65 276
segment_acmp96.85 14
testdata197.32 28896.34 83
plane_prior797.42 24394.63 215
plane_prior697.35 24894.61 21887.09 239
plane_prior498.28 176
plane_prior394.61 21897.02 5595.34 199
plane_prior298.80 11397.28 35
plane_prior197.37 247
plane_prior94.60 22098.44 17696.74 6794.22 232
HQP5-MVS94.25 234
HQP-NCC97.20 25798.05 23096.43 7994.45 222
ACMP_Plane97.20 25798.05 23096.43 7994.45 222
BP-MVS95.30 168
HQP4-MVS94.45 22298.96 21396.87 259
HQP2-MVS86.75 245
NP-MVS97.28 25194.51 22397.73 224
MDTV_nov1_ep13_2view84.26 35996.89 31890.97 30297.90 11789.89 17493.91 21299.18 146
ACMMP++_ref92.97 262
ACMMP++93.61 250
Test By Simon94.64 85