This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5498.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6698.02 699.90 299.95 397.33 13100.00 199.54 32100.00 1100.00 1
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6298.47 299.13 7299.92 1196.38 26100.00 199.74 24100.00 1100.00 1
MSP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4098.32 14797.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 87
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11297.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
DPE-MVS99.26 699.10 799.74 799.89 4499.24 1499.87 8798.44 10497.48 1599.64 3499.94 496.68 2299.99 3699.99 5100.00 199.99 20
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5899.98 898.86 4497.10 2599.80 1699.94 495.92 33100.00 199.51 33100.00 1100.00 1
DVP-MVS99.09 899.12 598.98 8099.93 2697.24 10299.95 4098.42 12397.50 1499.52 4799.88 2297.43 1299.71 12499.50 3499.98 33100.00 1
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4199.02 1999.95 4098.56 7697.56 1399.44 5199.85 3395.38 45100.00 199.31 4199.99 2099.87 90
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 6998.39 13297.20 2499.46 4999.85 3395.53 4299.79 10899.86 12100.00 199.99 20
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13297.71 8299.98 898.44 10496.85 2999.80 1699.91 1397.57 699.85 9499.44 3799.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10098.87 2798.46 27099.42 2097.03 2799.02 7699.09 13499.35 198.21 20999.73 2799.78 8499.77 101
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5699.95 4098.65 5995.78 5899.73 2699.76 7096.00 2999.80 10699.78 20100.00 199.99 20
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6398.79 3399.96 2397.52 22797.66 1099.81 1299.89 1994.70 6499.86 9099.84 1399.93 6299.96 67
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7398.67 4499.77 12598.38 13696.73 3599.88 399.74 7794.89 6199.59 13599.80 1899.98 3399.97 62
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS98.92 1698.70 1799.56 2199.70 8198.73 4199.94 5598.34 14496.38 4499.81 1299.76 7094.59 6699.98 4299.84 1399.96 4799.97 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 15799.44 1897.33 1799.00 7999.72 8094.03 8999.98 4298.73 70100.00 1100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5299.90 7398.55 8095.14 7799.72 2999.84 4695.46 43100.00 199.65 3199.99 2099.99 20
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11294.35 10099.71 3099.86 2995.94 3199.85 9499.69 3099.98 3399.99 20
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11294.63 9199.63 3599.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
DPM-MVS98.83 2198.46 3099.97 199.33 10299.92 199.96 2398.44 10497.96 799.55 4299.94 497.18 17100.00 193.81 18299.94 5699.98 51
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6198.46 10194.56 9299.84 899.92 1194.32 7999.86 9099.96 899.98 33100.00 1
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4198.85 2999.24 20998.47 9998.14 499.08 7399.91 1393.09 113100.00 199.04 5299.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-198.79 2498.60 2399.36 4599.85 5398.34 6199.87 8798.52 8796.05 5399.41 5499.79 6094.93 5999.76 11399.07 4799.90 6899.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5398.32 6299.87 8798.52 8796.04 5499.41 5499.79 6094.92 6099.76 11399.05 4899.90 6899.98 51
SMA-MVS98.76 2698.48 2999.62 1599.87 5098.87 2799.86 9898.38 13693.19 14499.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10197.18 10599.93 6199.90 196.81 3398.67 9199.77 6693.92 9199.89 7999.27 4399.94 5699.96 67
XVS98.70 2898.55 2599.15 6199.94 1497.50 9399.94 5598.42 12396.22 4999.41 5499.78 6494.34 7599.96 5398.92 5999.95 5099.99 20
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6198.57 5199.90 7398.37 13993.81 12699.81 1299.90 1794.34 7599.86 9099.84 1399.98 3399.97 62
SF-MVS98.67 3098.40 3599.50 2999.77 6998.67 4499.90 7398.21 16093.53 13599.81 1299.89 1994.70 6499.86 9099.84 1399.93 6299.96 67
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8798.33 14593.97 11899.76 2499.87 2694.99 5799.75 11698.55 80100.00 199.98 51
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4198.51 5599.87 8798.36 14194.08 11199.74 2599.73 7994.08 8799.74 12099.42 3899.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 7796.63 12199.97 1697.92 19198.07 598.76 8799.55 10295.00 5699.94 6899.91 1197.68 14499.99 20
PAPM98.60 3398.42 3199.14 6396.05 23798.96 2099.90 7399.35 2396.68 3798.35 10699.66 9396.45 2598.51 18199.45 3699.89 7099.96 67
#test#98.59 3598.41 3399.14 6399.96 897.43 9799.95 4098.61 6895.00 7999.31 6199.85 3394.22 82100.00 198.78 6899.98 3399.98 51
Regformer-398.58 3698.41 3399.10 6999.84 5897.57 8799.66 15098.52 8795.79 5799.01 7799.77 6694.40 7099.75 11698.82 6499.83 7799.98 51
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9799.95 4098.61 6894.77 8599.31 6199.85 3394.22 82100.00 198.70 7199.98 3399.98 51
Regformer-498.56 3798.39 3799.08 7199.84 5897.52 9099.66 15098.52 8795.76 6099.01 7799.77 6694.33 7899.75 11698.80 6799.83 7799.98 51
region2R98.54 3998.37 4099.05 7399.96 897.18 10599.96 2398.55 8094.87 8399.45 5099.85 3394.07 88100.00 198.67 73100.00 199.98 51
DELS-MVS98.54 3998.22 4799.50 2999.15 10798.65 48100.00 198.58 7297.70 998.21 11399.24 12892.58 12499.94 6898.63 7899.94 5699.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.52 4198.16 5199.58 2099.97 398.77 3699.95 4098.43 11295.35 7198.03 11699.75 7594.03 8999.98 4298.11 9499.83 7799.99 20
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10599.95 4098.60 7094.77 8599.31 6199.84 4693.73 97100.00 198.70 7199.98 3399.98 51
ACMMP_NAP98.49 4398.14 5299.54 2399.66 8398.62 5099.85 10198.37 13994.68 8999.53 4499.83 4992.87 116100.00 198.66 7699.84 7699.99 20
EPNet98.49 4398.40 3598.77 9099.62 8596.80 11899.90 7399.51 1597.60 1299.20 6899.36 11993.71 9899.91 7497.99 10198.71 12399.61 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS98.46 4598.30 4698.93 8499.88 4897.04 11099.84 10598.35 14294.92 8099.32 6099.80 5793.35 10499.78 11099.30 4299.95 5099.96 67
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12299.97 1698.39 13294.43 9798.90 8299.87 2694.30 80100.00 199.04 5299.99 2099.99 20
PS-MVSNAJ98.44 4798.20 4999.16 5998.80 12998.92 2399.54 17298.17 16697.34 1699.85 699.85 3391.20 14499.89 7999.41 3999.67 9198.69 196
MVS_111021_LR98.42 4898.38 3898.53 10999.39 9995.79 15199.87 8799.86 296.70 3698.78 8699.79 6092.03 13499.90 7599.17 4499.86 7599.88 89
DP-MVS Recon98.41 4998.02 5899.56 2199.97 398.70 4399.92 6598.44 10492.06 18698.40 10499.84 4695.68 38100.00 198.19 8999.71 8999.97 62
PHI-MVS98.41 4998.21 4899.03 7599.86 5297.10 10999.98 898.80 4990.78 21999.62 3799.78 6495.30 46100.00 199.80 1899.93 6299.99 20
ETH3D cwj APD-0.1698.40 5198.07 5699.40 4199.59 8698.41 5999.86 9898.24 15692.18 18199.73 2699.87 2693.47 10299.85 9499.74 2499.95 5099.93 78
mPP-MVS98.39 5298.20 4998.97 8199.97 396.92 11599.95 4098.38 13695.04 7898.61 9599.80 5793.39 103100.00 198.64 77100.00 199.98 51
PGM-MVS98.34 5398.13 5398.99 7999.92 3597.00 11199.75 13199.50 1693.90 12399.37 5899.76 7093.24 110100.00 197.75 11299.96 4799.98 51
zzz-MVS98.33 5498.00 5999.30 4799.85 5397.93 7799.80 11998.28 15195.76 6097.18 13399.88 2292.74 120100.00 198.67 7399.88 7299.99 20
ZNCC-MVS98.31 5598.03 5799.17 5799.88 4897.59 8699.94 5598.44 10494.31 10398.50 9999.82 5293.06 11499.99 3698.30 8899.99 2099.93 78
MTAPA98.29 5697.96 6499.30 4799.85 5397.93 7799.39 19298.28 15195.76 6097.18 13399.88 2292.74 120100.00 198.67 7399.88 7299.99 20
GST-MVS98.27 5797.97 6199.17 5799.92 3597.57 8799.93 6198.39 13294.04 11698.80 8599.74 7792.98 115100.00 198.16 9199.76 8599.93 78
CANet98.27 5797.82 6799.63 1299.72 7999.10 1799.98 898.51 9397.00 2898.52 9799.71 8287.80 18399.95 6099.75 2299.38 10999.83 93
EI-MVSNet-Vis-set98.27 5798.11 5498.75 9199.83 6196.59 12499.40 18898.51 9395.29 7398.51 9899.76 7093.60 10199.71 12498.53 8199.52 10299.95 75
APD-MVS_3200maxsize98.25 6098.08 5598.78 8999.81 6696.60 12399.82 11298.30 14993.95 12099.37 5899.77 6692.84 11799.76 11398.95 5699.92 6699.97 62
xiu_mvs_v2_base98.23 6197.97 6199.02 7798.69 13398.66 4699.52 17498.08 17797.05 2699.86 499.86 2990.65 15499.71 12499.39 4098.63 12498.69 196
MP-MVScopyleft98.23 6197.97 6199.03 7599.94 1497.17 10899.95 4098.39 13294.70 8898.26 11199.81 5691.84 138100.00 198.85 6399.97 4499.93 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set98.14 6397.99 6098.60 10099.80 6796.27 13199.36 19798.50 9795.21 7698.30 10899.75 7593.29 10899.73 12398.37 8599.30 11199.81 95
PAPM_NR98.12 6497.93 6598.70 9299.94 1496.13 14199.82 11298.43 11294.56 9297.52 12699.70 8494.40 7099.98 4297.00 12799.98 3399.99 20
WTY-MVS98.10 6597.60 7499.60 1798.92 12199.28 1299.89 8199.52 1395.58 6798.24 11299.39 11693.33 10599.74 12097.98 10395.58 18699.78 100
MP-MVS-pluss98.07 6697.64 7299.38 4499.74 7398.41 5999.74 13498.18 16593.35 13996.45 15099.85 3392.64 12399.97 5198.91 6199.89 7099.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
112198.03 6797.57 7699.40 4199.74 7398.21 6598.31 27798.62 6692.78 15699.53 4499.83 4995.08 50100.00 194.36 16999.92 6699.99 20
HPM-MVScopyleft97.96 6897.72 6998.68 9399.84 5896.39 13099.90 7398.17 16692.61 16698.62 9499.57 10191.87 13799.67 13198.87 6299.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended97.94 6997.64 7298.83 8899.59 8696.99 112100.00 199.10 2895.38 7098.27 10999.08 13589.00 17499.95 6099.12 4599.25 11299.57 134
PLCcopyleft95.54 397.93 7097.89 6698.05 13399.82 6394.77 18299.92 6598.46 10193.93 12197.20 13299.27 12395.44 4499.97 5197.41 11799.51 10499.41 156
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS97.92 7197.80 6898.25 12598.14 15896.48 12599.98 897.63 20995.61 6699.29 6499.46 11092.55 12598.82 16199.02 5498.54 12599.46 149
API-MVS97.86 7297.66 7198.47 11299.52 9295.41 16399.47 18298.87 4391.68 19598.84 8399.85 3392.34 12899.99 3698.44 8399.96 47100.00 1
lupinMVS97.85 7397.60 7498.62 9897.28 20597.70 8499.99 497.55 22195.50 6999.43 5299.67 9190.92 15298.71 17198.40 8499.62 9499.45 151
CS-MVS97.84 7497.69 7098.31 12298.28 14796.27 131100.00 197.52 22795.29 7399.25 6799.65 9591.18 14798.94 15898.96 5599.04 11799.73 105
test_yl97.83 7597.37 8199.21 5199.18 10497.98 7499.64 15799.27 2591.43 20497.88 12098.99 14395.84 3599.84 10398.82 6495.32 19099.79 97
DCV-MVSNet97.83 7597.37 8199.21 5199.18 10497.98 7499.64 15799.27 2591.43 20497.88 12098.99 14395.84 3599.84 10398.82 6495.32 19099.79 97
alignmvs97.81 7797.33 8499.25 4998.77 13198.66 4699.99 498.44 10494.40 9998.41 10299.47 10893.65 9999.42 14698.57 7994.26 19999.67 114
HPM-MVS_fast97.80 7897.50 7798.68 9399.79 6896.42 12799.88 8498.16 16991.75 19498.94 8199.54 10491.82 13999.65 13397.62 11499.99 2099.99 20
HY-MVS92.50 797.79 7997.17 8999.63 1298.98 11499.32 697.49 29999.52 1395.69 6498.32 10797.41 20393.32 10699.77 11198.08 9795.75 18399.81 95
CNLPA97.76 8097.38 8098.92 8599.53 9196.84 11699.87 8798.14 17293.78 12896.55 14899.69 8792.28 12999.98 4297.13 12399.44 10799.93 78
ACMMPcopyleft97.74 8197.44 7998.66 9599.92 3596.13 14199.18 21399.45 1794.84 8496.41 15399.71 8291.40 14199.99 3697.99 10198.03 14099.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS95.94 297.71 8298.98 1093.92 25899.63 8481.76 32799.96 2398.56 7699.47 199.19 7099.99 194.16 86100.00 199.92 999.93 62100.00 1
abl_697.67 8397.34 8398.66 9599.68 8296.11 14499.68 14798.14 17293.80 12799.27 6599.70 8488.65 17999.98 4297.46 11699.72 8899.89 87
CPTT-MVS97.64 8497.32 8598.58 10399.97 395.77 15299.96 2398.35 14289.90 23298.36 10599.79 6091.18 14799.99 3698.37 8599.99 2099.99 20
sss97.57 8597.03 9499.18 5498.37 14398.04 7199.73 13999.38 2193.46 13798.76 8799.06 13691.21 14399.89 7996.33 13697.01 16099.62 122
EIA-MVS97.53 8697.46 7897.76 14398.04 16294.84 17899.98 897.61 21594.41 9897.90 11999.59 9992.40 12698.87 15998.04 9899.13 11599.59 127
xiu_mvs_v1_base_debu97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
xiu_mvs_v1_base97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
xiu_mvs_v1_base_debi97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
MAR-MVS97.43 8797.19 8798.15 13099.47 9694.79 18199.05 22998.76 5092.65 16498.66 9299.82 5288.52 18099.98 4298.12 9399.63 9399.67 114
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051597.41 9197.02 9598.59 10297.71 18797.52 9099.97 1698.54 8491.83 19197.45 12899.04 13797.50 899.10 15294.75 16096.37 17099.16 176
114514_t97.41 9196.83 9899.14 6399.51 9497.83 7999.89 8198.27 15488.48 25699.06 7499.66 9390.30 15899.64 13496.32 13799.97 4499.96 67
DWT-MVSNet_test97.31 9397.19 8797.66 14698.24 15194.67 18398.86 24898.20 16493.60 13498.09 11498.89 15497.51 798.78 16494.04 17697.28 15399.55 136
OMC-MVS97.28 9497.23 8697.41 15599.76 7093.36 20899.65 15397.95 18796.03 5597.41 12999.70 8489.61 16599.51 13896.73 13498.25 13499.38 158
PVSNet_Blended_VisFu97.27 9596.81 9998.66 9598.81 12896.67 12099.92 6598.64 6294.51 9496.38 15498.49 17989.05 17399.88 8597.10 12598.34 12999.43 154
jason97.24 9696.86 9798.38 12095.73 24997.32 10199.97 1697.40 24395.34 7298.60 9699.54 10487.70 18498.56 17897.94 10499.47 10599.25 171
jason: jason.
AdaColmapbinary97.23 9796.80 10098.51 11099.99 195.60 15999.09 21898.84 4693.32 14096.74 14399.72 8086.04 200100.00 198.01 9999.43 10899.94 77
VNet97.21 9896.57 10799.13 6898.97 11597.82 8099.03 23199.21 2794.31 10399.18 7198.88 15686.26 19999.89 7998.93 5894.32 19899.69 111
PVSNet91.05 1397.13 9996.69 10398.45 11499.52 9295.81 15099.95 4099.65 1094.73 8799.04 7599.21 13084.48 21399.95 6094.92 15298.74 12299.58 133
thisisatest053097.10 10096.72 10298.22 12697.60 19096.70 11999.92 6598.54 8491.11 21197.07 13698.97 14797.47 999.03 15393.73 18796.09 17398.92 186
CSCG97.10 10097.04 9397.27 16299.89 4491.92 23899.90 7399.07 3188.67 25295.26 17299.82 5293.17 11299.98 4298.15 9299.47 10599.90 86
canonicalmvs97.09 10296.32 11399.39 4398.93 11998.95 2199.72 14297.35 24694.45 9597.88 12099.42 11286.71 19499.52 13798.48 8293.97 20399.72 108
diffmvs97.00 10396.64 10498.09 13197.64 18896.17 14099.81 11497.19 25694.67 9098.95 8099.28 12086.43 19798.76 16798.37 8597.42 15099.33 164
thres20096.96 10496.21 11599.22 5098.97 11598.84 3099.85 10199.71 593.17 14596.26 15598.88 15689.87 16399.51 13894.26 17394.91 19399.31 166
MVSFormer96.94 10596.60 10597.95 13597.28 20597.70 8499.55 17097.27 25291.17 20899.43 5299.54 10490.92 15296.89 27294.67 16499.62 9499.25 171
F-COLMAP96.93 10696.95 9696.87 16999.71 8091.74 24399.85 10197.95 18793.11 14795.72 16599.16 13292.35 12799.94 6895.32 14799.35 11098.92 186
DeepC-MVS94.51 496.92 10796.40 11298.45 11499.16 10695.90 14899.66 15098.06 17896.37 4794.37 18199.49 10783.29 22299.90 7597.63 11399.61 9799.55 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 10896.49 10997.92 13797.48 19695.89 14999.85 10198.54 8490.72 22096.63 14598.93 15397.47 999.02 15493.03 20095.76 18298.85 190
131496.84 10995.96 12799.48 3396.74 22798.52 5498.31 27798.86 4495.82 5689.91 22498.98 14587.49 18699.96 5397.80 10799.73 8799.96 67
CHOSEN 1792x268896.81 11096.53 10897.64 14798.91 12393.07 21099.65 15399.80 395.64 6595.39 16998.86 16084.35 21599.90 7596.98 12899.16 11499.95 75
tfpn200view996.79 11195.99 12099.19 5398.94 11798.82 3199.78 12299.71 592.86 15096.02 15898.87 15889.33 16899.50 14093.84 17994.57 19499.27 169
thres40096.78 11295.99 12099.16 5998.94 11798.82 3199.78 12299.71 592.86 15096.02 15898.87 15889.33 16899.50 14093.84 17994.57 19499.16 176
CANet_DTU96.76 11396.15 11698.60 10098.78 13097.53 8999.84 10597.63 20997.25 2399.20 6899.64 9681.36 23499.98 4292.77 20298.89 11898.28 199
PMMVS96.76 11396.76 10196.76 17298.28 14792.10 23399.91 6997.98 18494.12 10999.53 4499.39 11686.93 19398.73 16996.95 13097.73 14299.45 151
thres100view90096.74 11595.92 13099.18 5498.90 12498.77 3699.74 13499.71 592.59 16895.84 16198.86 16089.25 17099.50 14093.84 17994.57 19499.27 169
TESTMET0.1,196.74 11596.26 11498.16 12797.36 19996.48 12599.96 2398.29 15091.93 18895.77 16498.07 19195.54 4098.29 20390.55 23098.89 11899.70 109
baseline296.71 11796.49 10997.37 15895.63 25695.96 14799.74 13498.88 4292.94 14991.61 20698.97 14797.72 598.62 17694.83 15698.08 13997.53 211
thres600view796.69 11895.87 13399.14 6398.90 12498.78 3599.74 13499.71 592.59 16895.84 16198.86 16089.25 17099.50 14093.44 19294.50 19799.16 176
EPP-MVSNet96.69 11896.60 10596.96 16697.74 18193.05 21299.37 19598.56 7688.75 25095.83 16399.01 14096.01 2898.56 17896.92 13197.20 15699.25 171
HyFIR lowres test96.66 12096.43 11197.36 15999.05 10993.91 19699.70 14499.80 390.54 22196.26 15598.08 19092.15 13298.23 20896.84 13395.46 18799.93 78
MVS96.60 12195.56 13999.72 996.85 22099.22 1598.31 27798.94 3691.57 19890.90 21399.61 9886.66 19599.96 5397.36 11899.88 7299.99 20
UA-Net96.54 12295.96 12798.27 12498.23 15295.71 15698.00 29198.45 10393.72 13198.41 10299.27 12388.71 17899.66 13291.19 21797.69 14399.44 153
EPMVS96.53 12396.01 11998.09 13198.43 14296.12 14396.36 31299.43 1993.53 13597.64 12495.04 28494.41 6998.38 19791.13 21898.11 13599.75 103
test-LLR96.47 12496.04 11897.78 14097.02 21395.44 16199.96 2398.21 16094.07 11295.55 16696.38 23693.90 9398.27 20690.42 23398.83 12099.64 120
MVS_Test96.46 12595.74 13598.61 9998.18 15597.23 10399.31 20297.15 26291.07 21298.84 8397.05 21688.17 18298.97 15694.39 16897.50 14799.61 124
baseline96.43 12695.98 12297.76 14397.34 20095.17 17299.51 17697.17 25993.92 12296.90 13999.28 12085.37 20798.64 17597.50 11596.86 16499.46 149
casdiffmvs96.42 12795.97 12597.77 14297.30 20494.98 17499.84 10597.09 26593.75 13096.58 14699.26 12685.07 20998.78 16497.77 11097.04 15999.54 140
test-mter96.39 12895.93 12997.78 14097.02 21395.44 16199.96 2398.21 16091.81 19395.55 16696.38 23695.17 4798.27 20690.42 23398.83 12099.64 120
CDS-MVSNet96.34 12996.07 11797.13 16397.37 19894.96 17599.53 17397.91 19291.55 19995.37 17098.32 18695.05 5297.13 25693.80 18395.75 18399.30 167
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNet (Re-imp)96.32 13095.98 12297.35 16097.93 16794.82 17999.47 18298.15 17191.83 19195.09 17399.11 13391.37 14297.47 23693.47 19197.43 14899.74 104
3Dnovator+91.53 1196.31 13195.24 14699.52 2696.88 21998.64 4999.72 14298.24 15695.27 7588.42 26198.98 14582.76 22499.94 6897.10 12599.83 7799.96 67
Effi-MVS+96.30 13295.69 13698.16 12797.85 17396.26 13397.41 30097.21 25590.37 22498.65 9398.58 17586.61 19698.70 17297.11 12497.37 15299.52 143
IS-MVSNet96.29 13395.90 13197.45 15398.13 15994.80 18099.08 22097.61 21592.02 18795.54 16898.96 14990.64 15598.08 21393.73 18797.41 15199.47 148
3Dnovator91.47 1296.28 13495.34 14499.08 7196.82 22297.47 9699.45 18598.81 4795.52 6889.39 23899.00 14281.97 22799.95 6097.27 12099.83 7799.84 92
tpmrst96.27 13595.98 12297.13 16397.96 16593.15 20996.34 31398.17 16692.07 18498.71 9095.12 28293.91 9298.73 16994.91 15496.62 16599.50 146
CostFormer96.10 13695.88 13296.78 17197.03 21292.55 22597.08 30497.83 20090.04 23198.72 8994.89 29195.01 5598.29 20396.54 13595.77 18199.50 146
PVSNet_BlendedMVS96.05 13795.82 13496.72 17499.59 8696.99 11299.95 4099.10 2894.06 11498.27 10995.80 24989.00 17499.95 6099.12 4587.53 24593.24 305
PatchMatch-RL96.04 13895.40 14197.95 13599.59 8695.22 17199.52 17499.07 3193.96 11996.49 14998.35 18582.28 22699.82 10590.15 23899.22 11398.81 193
1112_ss96.01 13995.20 14898.42 11797.80 17696.41 12899.65 15396.66 30092.71 15992.88 19999.40 11492.16 13199.30 14791.92 20993.66 20499.55 136
PatchmatchNetpermissive95.94 14095.45 14097.39 15797.83 17494.41 18796.05 31798.40 12992.86 15097.09 13595.28 27994.21 8598.07 21589.26 24598.11 13599.70 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TAMVS95.85 14195.58 13896.65 17797.07 20993.50 20399.17 21497.82 20191.39 20795.02 17498.01 19292.20 13097.30 24493.75 18695.83 18099.14 179
LS3D95.84 14295.11 15198.02 13499.85 5395.10 17398.74 25498.50 9787.22 27293.66 19099.86 2987.45 18799.95 6090.94 22499.81 8399.02 184
baseline195.78 14394.86 15498.54 10798.47 14198.07 6999.06 22597.99 18292.68 16294.13 18598.62 17293.28 10998.69 17393.79 18485.76 25498.84 191
Test_1112_low_res95.72 14494.83 15598.42 11797.79 17796.41 12899.65 15396.65 30192.70 16092.86 20096.13 24492.15 13299.30 14791.88 21093.64 20599.55 136
Vis-MVSNetpermissive95.72 14495.15 15097.45 15397.62 18994.28 18999.28 20698.24 15694.27 10696.84 14098.94 15279.39 25398.76 16793.25 19398.49 12699.30 167
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet_dtu95.71 14695.39 14296.66 17698.92 12193.41 20699.57 16698.90 4096.19 5197.52 12698.56 17792.65 12297.36 23977.89 31698.33 13099.20 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-w/o95.71 14695.38 14396.68 17598.49 14092.28 22999.84 10597.50 23192.12 18392.06 20498.79 16484.69 21198.67 17495.29 14899.66 9299.09 182
mvs_anonymous95.65 14895.03 15297.53 15098.19 15495.74 15499.33 19997.49 23290.87 21690.47 21797.10 21288.23 18197.16 25395.92 14297.66 14599.68 112
mvs-test195.53 14995.97 12594.20 24697.77 17885.44 31199.95 4097.06 26894.92 8096.58 14698.72 16685.81 20198.98 15594.80 15798.11 13598.18 200
MVSTER95.53 14995.22 14796.45 18198.56 13597.72 8199.91 6997.67 20792.38 17791.39 20897.14 21097.24 1497.30 24494.80 15787.85 24094.34 240
tpm295.47 15195.18 14996.35 18696.91 21791.70 24796.96 30797.93 18988.04 26298.44 10195.40 26893.32 10697.97 21894.00 17795.61 18599.38 158
QAPM95.40 15294.17 16699.10 6996.92 21697.71 8299.40 18898.68 5589.31 23788.94 25098.89 15482.48 22599.96 5393.12 19999.83 7799.62 122
UGNet95.33 15394.57 16097.62 14998.55 13694.85 17798.67 26199.32 2495.75 6396.80 14296.27 24072.18 29699.96 5394.58 16699.05 11698.04 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RRT_MVS95.23 15494.77 15796.61 17898.28 14798.32 6299.81 11497.41 24192.59 16891.28 21097.76 19795.02 5397.23 25093.65 18987.14 24794.28 244
BH-untuned95.18 15594.83 15596.22 18898.36 14491.22 25499.80 11997.32 24990.91 21591.08 21198.67 16883.51 21998.54 18094.23 17499.61 9798.92 186
BH-RMVSNet95.18 15594.31 16497.80 13998.17 15695.23 17099.76 13097.53 22592.52 17394.27 18399.25 12776.84 26998.80 16290.89 22699.54 10199.35 162
PCF-MVS94.20 595.18 15594.10 16898.43 11698.55 13695.99 14697.91 29397.31 25090.35 22589.48 23799.22 12985.19 20899.89 7990.40 23598.47 12799.41 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
dp95.05 15894.43 16296.91 16797.99 16492.73 21996.29 31497.98 18489.70 23595.93 16094.67 29793.83 9698.45 18686.91 27496.53 16799.54 140
Fast-Effi-MVS+95.02 15994.19 16597.52 15197.88 16994.55 18499.97 1697.08 26688.85 24994.47 18097.96 19484.59 21298.41 18989.84 24197.10 15799.59 127
IB-MVS92.85 694.99 16093.94 17198.16 12797.72 18595.69 15899.99 498.81 4794.28 10592.70 20196.90 22095.08 5099.17 15196.07 13973.88 32799.60 126
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
XVG-OURS94.82 16194.74 15895.06 21398.00 16389.19 28299.08 22097.55 22194.10 11094.71 17699.62 9780.51 24599.74 12096.04 14093.06 21196.25 216
ADS-MVSNet94.79 16294.02 16997.11 16597.87 17193.79 19794.24 32398.16 16990.07 22996.43 15194.48 30290.29 15998.19 21087.44 26297.23 15499.36 160
XVG-OURS-SEG-HR94.79 16294.70 15995.08 21298.05 16189.19 28299.08 22097.54 22393.66 13294.87 17599.58 10078.78 25899.79 10897.31 11993.40 20796.25 216
OpenMVScopyleft90.15 1594.77 16493.59 17998.33 12196.07 23697.48 9599.56 16898.57 7490.46 22286.51 28598.95 15178.57 26099.94 6893.86 17899.74 8697.57 210
LFMVS94.75 16593.56 18198.30 12399.03 11095.70 15798.74 25497.98 18487.81 26598.47 10099.39 11667.43 31499.53 13698.01 9995.20 19299.67 114
SCA94.69 16693.81 17597.33 16197.10 20894.44 18598.86 24898.32 14793.30 14196.17 15795.59 25876.48 27297.95 22191.06 22097.43 14899.59 127
ab-mvs94.69 16693.42 18498.51 11098.07 16096.26 13396.49 31198.68 5590.31 22694.54 17797.00 21876.30 27499.71 12495.98 14193.38 20899.56 135
CVMVSNet94.68 16894.94 15393.89 26096.80 22386.92 30399.06 22598.98 3494.45 9594.23 18499.02 13885.60 20395.31 31790.91 22595.39 18999.43 154
cascas94.64 16993.61 17697.74 14597.82 17596.26 13399.96 2397.78 20385.76 29094.00 18697.54 20076.95 26899.21 14997.23 12195.43 18897.76 209
HQP-MVS94.61 17094.50 16194.92 21895.78 24391.85 23999.87 8797.89 19396.82 3093.37 19198.65 16980.65 24398.39 19397.92 10589.60 21594.53 222
RRT_test8_iter0594.58 17194.11 16795.98 19397.88 16996.11 14499.89 8197.45 23491.66 19688.28 26296.71 22896.53 2497.40 23794.73 16283.85 27394.45 232
TR-MVS94.54 17293.56 18197.49 15297.96 16594.34 18898.71 25797.51 23090.30 22794.51 17998.69 16775.56 27998.77 16692.82 20195.99 17599.35 162
DP-MVS94.54 17293.42 18497.91 13899.46 9894.04 19398.93 24097.48 23381.15 31790.04 22199.55 10287.02 19299.95 6088.97 24798.11 13599.73 105
Effi-MVS+-dtu94.53 17495.30 14592.22 28697.77 17882.54 32199.59 16397.06 26894.92 8095.29 17195.37 27285.81 20197.89 22494.80 15797.07 15896.23 218
HQP_MVS94.49 17594.36 16394.87 21995.71 25291.74 24399.84 10597.87 19596.38 4493.01 19598.59 17380.47 24798.37 19897.79 10889.55 21894.52 224
TAPA-MVS92.12 894.42 17693.60 17896.90 16899.33 10291.78 24299.78 12298.00 18189.89 23394.52 17899.47 10891.97 13599.18 15069.90 33099.52 10299.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ET-MVSNet_ETH3D94.37 17793.28 19097.64 14798.30 14597.99 7399.99 497.61 21594.35 10071.57 33399.45 11196.23 2795.34 31696.91 13285.14 26299.59 127
MSDG94.37 17793.36 18897.40 15698.88 12693.95 19599.37 19597.38 24485.75 29290.80 21499.17 13184.11 21799.88 8586.35 27598.43 12898.36 198
miper_enhance_ethall94.36 17993.98 17095.49 20198.68 13495.24 16999.73 13997.29 25193.28 14289.86 22695.97 24794.37 7497.05 26292.20 20684.45 26694.19 251
tpmvs94.28 18093.57 18096.40 18398.55 13691.50 25295.70 32298.55 8087.47 26792.15 20394.26 30691.42 14098.95 15788.15 25695.85 17998.76 195
FIs94.10 18193.43 18396.11 19094.70 26996.82 11799.58 16498.93 3992.54 17289.34 24097.31 20687.62 18597.10 25994.22 17586.58 25094.40 234
CLD-MVS94.06 18293.90 17294.55 23296.02 23890.69 26099.98 897.72 20496.62 3991.05 21298.85 16377.21 26598.47 18298.11 9489.51 22094.48 226
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 193.86 18393.61 17694.64 22795.02 26592.18 23299.93 6198.58 7294.07 11287.96 26698.50 17893.90 9394.96 32181.33 30593.17 20996.78 213
X-MVStestdata93.83 18492.06 21099.15 6199.94 1497.50 9399.94 5598.42 12396.22 4999.41 5441.37 35194.34 7599.96 5398.92 5999.95 5099.99 20
GA-MVS93.83 18492.84 19496.80 17095.73 24993.57 20199.88 8497.24 25492.57 17192.92 19796.66 22978.73 25997.67 23087.75 26094.06 20299.17 175
FC-MVSNet-test93.81 18693.15 19295.80 19994.30 27596.20 13899.42 18798.89 4192.33 17889.03 24997.27 20887.39 18896.83 27693.20 19486.48 25194.36 236
ADS-MVSNet293.80 18793.88 17393.55 26897.87 17185.94 30794.24 32396.84 29090.07 22996.43 15194.48 30290.29 15995.37 31587.44 26297.23 15499.36 160
cl-mvsnet293.77 18893.25 19195.33 20699.49 9594.43 18699.61 16198.09 17590.38 22389.16 24795.61 25690.56 15697.34 24191.93 20884.45 26694.21 250
VDD-MVS93.77 18892.94 19396.27 18798.55 13690.22 27198.77 25397.79 20290.85 21796.82 14199.42 11261.18 33199.77 11198.95 5694.13 20098.82 192
EI-MVSNet93.73 19093.40 18794.74 22396.80 22392.69 22099.06 22597.67 20788.96 24591.39 20899.02 13888.75 17797.30 24491.07 21987.85 24094.22 248
Fast-Effi-MVS+-dtu93.72 19193.86 17493.29 27197.06 21086.16 30599.80 11996.83 29192.66 16392.58 20297.83 19681.39 23397.67 23089.75 24296.87 16396.05 220
tpm93.70 19293.41 18694.58 23095.36 26087.41 30197.01 30596.90 28690.85 21796.72 14494.14 30790.40 15796.84 27590.75 22988.54 23499.51 144
PS-MVSNAJss93.64 19393.31 18994.61 22892.11 30992.19 23199.12 21697.38 24492.51 17488.45 25696.99 21991.20 14497.29 24794.36 16987.71 24294.36 236
gg-mvs-nofinetune93.51 19491.86 21598.47 11297.72 18597.96 7692.62 33198.51 9374.70 33397.33 13069.59 34398.91 397.79 22697.77 11099.56 10099.67 114
nrg03093.51 19492.53 20296.45 18194.36 27397.20 10499.81 11497.16 26191.60 19789.86 22697.46 20186.37 19897.68 22995.88 14380.31 29894.46 227
tpm cat193.51 19492.52 20396.47 17997.77 17891.47 25396.13 31598.06 17880.98 31892.91 19893.78 31089.66 16498.87 15987.03 27096.39 16999.09 182
CR-MVSNet93.45 19792.62 19895.94 19496.29 23292.66 22192.01 33496.23 30892.62 16596.94 13793.31 31491.04 14996.03 30679.23 31295.96 17699.13 180
OPM-MVS93.21 19892.80 19594.44 23993.12 29590.85 25999.77 12597.61 21596.19 5191.56 20798.65 16975.16 28498.47 18293.78 18589.39 22193.99 273
miper_ehance_all_eth93.16 19992.60 19994.82 22297.57 19193.56 20299.50 17797.07 26788.75 25088.85 25195.52 26290.97 15196.74 27990.77 22884.45 26694.17 252
VDDNet93.12 20091.91 21396.76 17296.67 23092.65 22398.69 25998.21 16082.81 31197.75 12399.28 12061.57 32999.48 14498.09 9694.09 20198.15 201
Anonymous20240521193.10 20191.99 21196.40 18399.10 10889.65 27998.88 24497.93 18983.71 30794.00 18698.75 16568.79 30799.88 8595.08 15091.71 21399.68 112
UniMVSNet (Re)93.07 20292.13 20795.88 19694.84 26696.24 13799.88 8498.98 3492.49 17589.25 24295.40 26887.09 19197.14 25593.13 19878.16 30994.26 245
LPG-MVS_test92.96 20392.71 19793.71 26495.43 25888.67 28899.75 13197.62 21292.81 15390.05 21998.49 17975.24 28298.40 19195.84 14489.12 22294.07 265
UniMVSNet_NR-MVSNet92.95 20492.11 20895.49 20194.61 27195.28 16799.83 11199.08 3091.49 20089.21 24496.86 22387.14 19096.73 28093.20 19477.52 31494.46 227
ACMM91.95 1092.88 20592.52 20393.98 25795.75 24889.08 28599.77 12597.52 22793.00 14889.95 22397.99 19376.17 27698.46 18593.63 19088.87 22694.39 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf92.83 20692.29 20694.47 23791.90 31292.46 22699.55 17097.27 25291.17 20889.96 22296.07 24681.10 23696.89 27294.67 16488.91 22494.05 267
D2MVS92.76 20792.59 20193.27 27295.13 26189.54 28199.69 14599.38 2192.26 17987.59 27094.61 29985.05 21097.79 22691.59 21388.01 23992.47 314
ACMP92.05 992.74 20892.42 20593.73 26295.91 24288.72 28799.81 11497.53 22594.13 10887.00 27998.23 18774.07 29098.47 18296.22 13888.86 22793.99 273
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet92.70 20991.55 22096.16 18995.09 26296.20 13898.88 24499.00 3391.02 21491.82 20595.29 27876.05 27897.96 22095.62 14681.19 28794.30 242
FMVSNet392.69 21091.58 21895.99 19298.29 14697.42 9999.26 20897.62 21289.80 23489.68 23095.32 27481.62 23296.27 29787.01 27185.65 25594.29 243
IterMVS-LS92.69 21092.11 20894.43 24196.80 22392.74 21799.45 18596.89 28788.98 24389.65 23395.38 27188.77 17696.34 29490.98 22382.04 28194.22 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmatch-test92.65 21291.50 22196.10 19196.85 22090.49 26691.50 33697.19 25682.76 31290.23 21895.59 25895.02 5398.00 21777.41 31896.98 16199.82 94
cl_fuxian92.53 21391.87 21494.52 23397.40 19792.99 21399.40 18896.93 28487.86 26388.69 25495.44 26689.95 16296.44 29090.45 23280.69 29594.14 261
AllTest92.48 21491.64 21695.00 21599.01 11188.43 29298.94 23996.82 29386.50 28188.71 25298.47 18374.73 28699.88 8585.39 28196.18 17196.71 214
DU-MVS92.46 21591.45 22395.49 20194.05 27895.28 16799.81 11498.74 5192.25 18089.21 24496.64 23181.66 23096.73 28093.20 19477.52 31494.46 227
eth_miper_zixun_eth92.41 21691.93 21293.84 26197.28 20590.68 26198.83 25096.97 27988.57 25589.19 24695.73 25389.24 17296.69 28289.97 24081.55 28494.15 258
cl-mvsnet192.32 21791.60 21794.47 23797.31 20392.74 21799.58 16496.75 29786.99 27687.64 26995.54 26089.55 16696.50 28888.58 25082.44 27894.17 252
cl-mvsnet_92.31 21891.58 21894.52 23397.33 20292.77 21599.57 16696.78 29686.97 27787.56 27195.51 26389.43 16796.62 28488.60 24982.44 27894.16 257
LCM-MVSNet-Re92.31 21892.60 19991.43 29497.53 19279.27 33599.02 23291.83 34292.07 18480.31 31494.38 30583.50 22095.48 31397.22 12297.58 14699.54 140
WR-MVS92.31 21891.25 22595.48 20494.45 27295.29 16699.60 16298.68 5590.10 22888.07 26596.89 22180.68 24296.80 27893.14 19779.67 30294.36 236
COLMAP_ROBcopyleft90.47 1492.18 22191.49 22294.25 24599.00 11388.04 29898.42 27596.70 29982.30 31488.43 25999.01 14076.97 26799.85 9486.11 27896.50 16894.86 221
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052992.10 22290.65 23296.47 17998.82 12790.61 26398.72 25698.67 5875.54 33193.90 18898.58 17566.23 31799.90 7594.70 16390.67 21498.90 189
pmmvs492.10 22291.07 22895.18 21092.82 30294.96 17599.48 18196.83 29187.45 26888.66 25596.56 23483.78 21896.83 27689.29 24484.77 26493.75 290
jajsoiax91.92 22491.18 22694.15 24791.35 31890.95 25799.00 23397.42 23992.61 16687.38 27597.08 21372.46 29597.36 23994.53 16788.77 22894.13 262
XXY-MVS91.82 22590.46 23495.88 19693.91 28195.40 16498.87 24797.69 20688.63 25487.87 26797.08 21374.38 28997.89 22491.66 21284.07 27094.35 239
miper_lstm_enhance91.81 22691.39 22493.06 27897.34 20089.18 28499.38 19396.79 29586.70 28087.47 27395.22 28090.00 16195.86 31188.26 25481.37 28694.15 258
mvs_tets91.81 22691.08 22794.00 25591.63 31690.58 26498.67 26197.43 23792.43 17687.37 27697.05 21671.76 29797.32 24394.75 16088.68 23094.11 263
VPNet91.81 22690.46 23495.85 19894.74 26895.54 16098.98 23498.59 7192.14 18290.77 21597.44 20268.73 30997.54 23494.89 15577.89 31194.46 227
RPSCF91.80 22992.79 19688.83 31298.15 15769.87 33998.11 28796.60 30283.93 30594.33 18299.27 12379.60 25299.46 14591.99 20793.16 21097.18 212
PVSNet_088.03 1991.80 22990.27 24096.38 18598.27 15090.46 26799.94 5599.61 1193.99 11786.26 29197.39 20571.13 30299.89 7998.77 6967.05 33698.79 194
anonymousdsp91.79 23190.92 22994.41 24290.76 32392.93 21498.93 24097.17 25989.08 23987.46 27495.30 27578.43 26396.92 27192.38 20388.73 22993.39 301
JIA-IIPM91.76 23290.70 23194.94 21796.11 23587.51 30093.16 33098.13 17475.79 33097.58 12577.68 34092.84 11797.97 21888.47 25396.54 16699.33 164
TranMVSNet+NR-MVSNet91.68 23390.61 23394.87 21993.69 28593.98 19499.69 14598.65 5991.03 21388.44 25796.83 22780.05 25096.18 30090.26 23776.89 32194.45 232
NR-MVSNet91.56 23490.22 24195.60 20094.05 27895.76 15398.25 28098.70 5391.16 21080.78 31396.64 23183.23 22396.57 28691.41 21477.73 31394.46 227
v2v48291.30 23590.07 24695.01 21493.13 29393.79 19799.77 12597.02 27188.05 26189.25 24295.37 27280.73 24197.15 25487.28 26680.04 30194.09 264
WR-MVS_H91.30 23590.35 23794.15 24794.17 27792.62 22499.17 21498.94 3688.87 24886.48 28794.46 30484.36 21496.61 28588.19 25578.51 30793.21 306
V4291.28 23790.12 24594.74 22393.42 29093.46 20499.68 14797.02 27187.36 26989.85 22895.05 28381.31 23597.34 24187.34 26580.07 30093.40 300
CP-MVSNet91.23 23890.22 24194.26 24493.96 28092.39 22899.09 21898.57 7488.95 24686.42 28896.57 23379.19 25596.37 29290.29 23678.95 30494.02 268
XVG-ACMP-BASELINE91.22 23990.75 23092.63 28393.73 28485.61 30898.52 26997.44 23692.77 15789.90 22596.85 22466.64 31698.39 19392.29 20488.61 23193.89 281
v114491.09 24089.83 24794.87 21993.25 29293.69 20099.62 16096.98 27786.83 27989.64 23494.99 28880.94 23897.05 26285.08 28481.16 28893.87 283
FMVSNet291.02 24189.56 25295.41 20597.53 19295.74 15498.98 23497.41 24187.05 27388.43 25995.00 28771.34 29996.24 29985.12 28385.21 26094.25 247
MVP-Stereo90.93 24290.45 23692.37 28591.25 32088.76 28698.05 29096.17 31087.27 27184.04 30295.30 27578.46 26297.27 24983.78 29299.70 9091.09 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS90.91 24390.17 24393.12 27596.78 22690.42 26998.89 24297.05 27089.03 24186.49 28695.42 26776.59 27195.02 31987.22 26784.09 26993.93 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net90.88 24489.82 24894.08 25097.53 19291.97 23498.43 27296.95 28087.05 27389.68 23094.72 29371.34 29996.11 30187.01 27185.65 25594.17 252
test190.88 24489.82 24894.08 25097.53 19291.97 23498.43 27296.95 28087.05 27389.68 23094.72 29371.34 29996.11 30187.01 27185.65 25594.17 252
IterMVS-SCA-FT90.85 24690.16 24492.93 27996.72 22889.96 27498.89 24296.99 27588.95 24686.63 28395.67 25476.48 27295.00 32087.04 26984.04 27293.84 285
v14419290.79 24789.52 25494.59 22993.11 29692.77 21599.56 16896.99 27586.38 28389.82 22994.95 29080.50 24697.10 25983.98 29080.41 29693.90 280
v14890.70 24889.63 25093.92 25892.97 29990.97 25699.75 13196.89 28787.51 26688.27 26395.01 28581.67 22997.04 26487.40 26477.17 31893.75 290
MS-PatchMatch90.65 24990.30 23991.71 29394.22 27685.50 31098.24 28197.70 20588.67 25286.42 28896.37 23867.82 31398.03 21683.62 29399.62 9491.60 321
ACMH89.72 1790.64 25089.63 25093.66 26695.64 25588.64 29098.55 26597.45 23489.03 24181.62 31097.61 19969.75 30598.41 18989.37 24387.62 24493.92 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS90.63 25189.51 25593.99 25693.83 28291.70 24798.98 23498.52 8788.48 25686.15 29296.53 23575.46 28096.31 29588.83 24878.86 30693.95 276
v119290.62 25289.25 25994.72 22593.13 29393.07 21099.50 17797.02 27186.33 28489.56 23695.01 28579.22 25497.09 26182.34 30081.16 28894.01 270
v890.54 25389.17 26094.66 22693.43 28993.40 20799.20 21196.94 28385.76 29087.56 27194.51 30081.96 22897.19 25184.94 28578.25 30893.38 302
v192192090.46 25489.12 26194.50 23592.96 30092.46 22699.49 17996.98 27786.10 28689.61 23595.30 27578.55 26197.03 26682.17 30180.89 29494.01 270
our_test_390.39 25589.48 25793.12 27592.40 30689.57 28099.33 19996.35 30787.84 26485.30 29794.99 28884.14 21696.09 30480.38 30984.56 26593.71 295
PatchT90.38 25688.75 26995.25 20895.99 23990.16 27291.22 33897.54 22376.80 32697.26 13186.01 33591.88 13696.07 30566.16 33695.91 17899.51 144
ACMH+89.98 1690.35 25789.54 25392.78 28295.99 23986.12 30698.81 25197.18 25889.38 23683.14 30697.76 19768.42 31198.43 18789.11 24686.05 25393.78 289
Baseline_NR-MVSNet90.33 25889.51 25592.81 28192.84 30189.95 27599.77 12593.94 33884.69 30289.04 24895.66 25581.66 23096.52 28790.99 22276.98 31991.97 319
MIMVSNet90.30 25988.67 27095.17 21196.45 23191.64 24992.39 33297.15 26285.99 28790.50 21693.19 31666.95 31594.86 32382.01 30293.43 20699.01 185
LTVRE_ROB88.28 1890.29 26089.05 26494.02 25395.08 26390.15 27397.19 30397.43 23784.91 30083.99 30397.06 21574.00 29198.28 20584.08 28887.71 24293.62 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v1090.25 26188.82 26794.57 23193.53 28793.43 20599.08 22096.87 28985.00 29987.34 27794.51 30080.93 23997.02 26882.85 29779.23 30393.26 304
v124090.20 26288.79 26894.44 23993.05 29892.27 23099.38 19396.92 28585.89 28889.36 23994.87 29277.89 26497.03 26680.66 30881.08 29094.01 270
PEN-MVS90.19 26389.06 26393.57 26793.06 29790.90 25899.06 22598.47 9988.11 26085.91 29496.30 23976.67 27095.94 31087.07 26876.91 32093.89 281
pmmvs590.17 26489.09 26293.40 26992.10 31089.77 27899.74 13495.58 32185.88 28987.24 27895.74 25173.41 29396.48 28988.54 25183.56 27493.95 276
EU-MVSNet90.14 26590.34 23889.54 30992.55 30581.06 33098.69 25998.04 18091.41 20686.59 28496.84 22680.83 24093.31 33486.20 27681.91 28294.26 245
UniMVSNet_ETH3D90.06 26688.58 27194.49 23694.67 27088.09 29797.81 29597.57 22083.91 30688.44 25797.41 20357.44 33597.62 23291.41 21488.59 23397.77 208
USDC90.00 26788.96 26593.10 27794.81 26788.16 29698.71 25795.54 32293.66 13283.75 30597.20 20965.58 31998.31 20283.96 29187.49 24692.85 311
Anonymous2023121189.86 26888.44 27394.13 24998.93 11990.68 26198.54 26798.26 15576.28 32786.73 28195.54 26070.60 30397.56 23390.82 22780.27 29994.15 258
OurMVSNet-221017-089.81 26989.48 25790.83 29991.64 31581.21 32898.17 28595.38 32491.48 20185.65 29697.31 20672.66 29497.29 24788.15 25684.83 26393.97 275
Patchmtry89.70 27088.49 27293.33 27096.24 23489.94 27791.37 33796.23 30878.22 32487.69 26893.31 31491.04 14996.03 30680.18 31182.10 28094.02 268
v7n89.65 27188.29 27693.72 26392.22 30890.56 26599.07 22497.10 26485.42 29886.73 28194.72 29380.06 24997.13 25681.14 30678.12 31093.49 298
ppachtmachnet_test89.58 27288.35 27493.25 27392.40 30690.44 26899.33 19996.73 29885.49 29685.90 29595.77 25081.09 23796.00 30976.00 32482.49 27793.30 303
DTE-MVSNet89.40 27388.24 27792.88 28092.66 30489.95 27599.10 21798.22 15987.29 27085.12 29996.22 24176.27 27595.30 31883.56 29475.74 32493.41 299
RPMNet89.39 27487.20 28595.94 19496.29 23292.66 22192.01 33497.63 20970.19 33896.94 13785.87 33687.25 18996.03 30662.69 33995.96 17699.13 180
pm-mvs189.36 27587.81 28194.01 25493.40 29191.93 23798.62 26496.48 30686.25 28583.86 30496.14 24373.68 29297.04 26486.16 27775.73 32593.04 309
tfpnnormal89.29 27687.61 28294.34 24394.35 27494.13 19298.95 23898.94 3683.94 30484.47 30195.51 26374.84 28597.39 23877.05 32180.41 29691.48 322
MVS_030489.28 27788.31 27592.21 28797.05 21186.53 30497.76 29699.57 1285.58 29593.86 18992.71 31851.04 34196.30 29684.49 28792.72 21293.79 288
LF4IMVS89.25 27888.85 26690.45 30392.81 30381.19 32998.12 28694.79 33191.44 20386.29 29097.11 21165.30 32198.11 21288.53 25285.25 25992.07 316
testgi89.01 27988.04 27991.90 29193.49 28884.89 31499.73 13995.66 31993.89 12585.14 29898.17 18859.68 33294.66 32577.73 31788.88 22596.16 219
SixPastTwentyTwo88.73 28088.01 28090.88 29791.85 31382.24 32398.22 28395.18 32988.97 24482.26 30896.89 22171.75 29896.67 28384.00 28982.98 27593.72 294
FMVSNet188.50 28186.64 28694.08 25095.62 25791.97 23498.43 27296.95 28083.00 31086.08 29394.72 29359.09 33396.11 30181.82 30484.07 27094.17 252
FMVSNet588.32 28287.47 28390.88 29796.90 21888.39 29497.28 30295.68 31882.60 31384.67 30092.40 32179.83 25191.16 33676.39 32381.51 28593.09 307
DSMNet-mixed88.28 28388.24 27788.42 31589.64 32975.38 33798.06 28989.86 34585.59 29488.20 26492.14 32276.15 27791.95 33578.46 31496.05 17497.92 204
K. test v388.05 28487.24 28490.47 30291.82 31482.23 32498.96 23797.42 23989.05 24076.93 32495.60 25768.49 31095.42 31485.87 28081.01 29293.75 290
TinyColmap87.87 28586.51 28791.94 29095.05 26485.57 30997.65 29794.08 33684.40 30381.82 30996.85 22462.14 32898.33 20080.25 31086.37 25291.91 320
TransMVSNet (Re)87.25 28685.28 29093.16 27493.56 28691.03 25598.54 26794.05 33783.69 30881.09 31296.16 24275.32 28196.40 29176.69 32268.41 33392.06 317
Patchmatch-RL test86.90 28785.98 28889.67 30884.45 33675.59 33689.71 33992.43 34086.89 27877.83 32290.94 32594.22 8293.63 33187.75 26069.61 33099.79 97
Anonymous2023120686.32 28885.42 28989.02 31189.11 33180.53 33399.05 22995.28 32585.43 29782.82 30793.92 30874.40 28893.44 33366.99 33481.83 28393.08 308
MVS-HIRNet86.22 28983.19 29995.31 20796.71 22990.29 27092.12 33397.33 24862.85 33986.82 28070.37 34269.37 30697.49 23575.12 32597.99 14198.15 201
pmmvs685.69 29083.84 29591.26 29690.00 32884.41 31697.82 29496.15 31175.86 32981.29 31195.39 27061.21 33096.87 27483.52 29573.29 32892.50 313
test_040285.58 29183.94 29490.50 30193.81 28385.04 31398.55 26595.20 32876.01 32879.72 31795.13 28164.15 32496.26 29866.04 33786.88 24990.21 330
UnsupCasMVSNet_eth85.52 29283.99 29290.10 30589.36 33083.51 31896.65 30997.99 18289.14 23875.89 32893.83 30963.25 32693.92 32781.92 30367.90 33592.88 310
MDA-MVSNet_test_wron85.51 29383.32 29892.10 28890.96 32188.58 29199.20 21196.52 30479.70 32157.12 34292.69 31979.11 25693.86 32977.10 32077.46 31693.86 284
YYNet185.50 29483.33 29792.00 28990.89 32288.38 29599.22 21096.55 30379.60 32257.26 34192.72 31779.09 25793.78 33077.25 31977.37 31793.84 285
EG-PatchMatch MVS85.35 29583.81 29689.99 30790.39 32581.89 32698.21 28496.09 31281.78 31674.73 33093.72 31151.56 34097.12 25879.16 31388.61 23190.96 325
testing_285.10 29681.72 30395.22 20982.25 34094.16 19097.54 29897.01 27488.15 25962.23 33786.43 33444.43 34397.18 25292.28 20585.20 26194.31 241
TDRefinement84.76 29782.56 30191.38 29574.58 34384.80 31597.36 30194.56 33484.73 30180.21 31596.12 24563.56 32598.39 19387.92 25863.97 33790.95 326
CMPMVSbinary61.59 2184.75 29885.14 29183.57 32090.32 32662.54 34296.98 30697.59 21974.33 33469.95 33596.66 22964.17 32398.32 20187.88 25988.41 23689.84 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0384.72 29983.99 29286.91 31788.19 33380.62 33298.88 24495.94 31488.36 25878.87 31894.62 29868.75 30889.11 34066.52 33575.82 32391.00 324
new_pmnet84.49 30082.92 30089.21 31090.03 32782.60 32096.89 30895.62 32080.59 31975.77 32989.17 32765.04 32294.79 32472.12 32781.02 29190.23 329
MDA-MVSNet-bldmvs84.09 30181.52 30591.81 29291.32 31988.00 29998.67 26195.92 31580.22 32055.60 34393.32 31368.29 31293.60 33273.76 32676.61 32293.82 287
pmmvs-eth3d84.03 30281.97 30290.20 30484.15 33787.09 30298.10 28894.73 33383.05 30974.10 33187.77 33065.56 32094.01 32681.08 30769.24 33289.49 334
OpenMVS_ROBcopyleft79.82 2083.77 30381.68 30490.03 30688.30 33282.82 31998.46 27095.22 32773.92 33576.00 32791.29 32455.00 33796.94 27068.40 33288.51 23590.34 328
MIMVSNet182.58 30480.51 30788.78 31386.68 33484.20 31796.65 30995.41 32378.75 32378.59 32092.44 32051.88 33989.76 33965.26 33878.95 30492.38 315
new-patchmatchnet81.19 30579.34 30886.76 31882.86 33980.36 33497.92 29295.27 32682.09 31572.02 33286.87 33262.81 32790.74 33871.10 32863.08 33889.19 336
PM-MVS80.47 30678.88 30985.26 31983.79 33872.22 33895.89 32091.08 34385.71 29376.56 32688.30 32836.64 34493.90 32882.39 29969.57 33189.66 333
pmmvs380.27 30777.77 31087.76 31680.32 34182.43 32298.23 28291.97 34172.74 33678.75 31987.97 32957.30 33690.99 33770.31 32962.37 33989.87 331
N_pmnet80.06 30880.78 30677.89 32391.94 31145.28 35098.80 25256.82 35478.10 32580.08 31693.33 31277.03 26695.76 31268.14 33382.81 27692.64 312
UnsupCasMVSNet_bld79.97 30977.03 31188.78 31385.62 33581.98 32593.66 32897.35 24675.51 33270.79 33483.05 33748.70 34294.91 32278.31 31560.29 34089.46 335
FPMVS68.72 31068.72 31268.71 32865.95 34744.27 35295.97 31994.74 33251.13 34153.26 34490.50 32625.11 34983.00 34460.80 34080.97 29378.87 340
LCM-MVSNet67.77 31164.73 31476.87 32462.95 34956.25 34689.37 34093.74 33944.53 34361.99 33880.74 33820.42 35186.53 34269.37 33159.50 34187.84 337
PMMVS267.15 31264.15 31576.14 32570.56 34662.07 34393.89 32687.52 34958.09 34060.02 33978.32 33922.38 35084.54 34359.56 34147.03 34281.80 339
Gipumacopyleft66.95 31365.00 31372.79 32691.52 31767.96 34066.16 34695.15 33047.89 34258.54 34067.99 34429.74 34687.54 34150.20 34377.83 31262.87 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 31462.94 31672.13 32744.90 35250.03 34881.05 34389.42 34838.45 34448.51 34699.90 1754.09 33878.70 34691.84 21118.26 34787.64 338
ANet_high56.10 31552.24 31767.66 32949.27 35156.82 34583.94 34282.02 35070.47 33733.28 35064.54 34517.23 35369.16 34845.59 34523.85 34677.02 341
PMVScopyleft49.05 2353.75 31651.34 31960.97 33140.80 35334.68 35374.82 34589.62 34737.55 34528.67 35172.12 3417.09 35581.63 34543.17 34668.21 33466.59 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 31752.18 31852.67 33271.51 34445.40 34993.62 32976.60 35236.01 34643.50 34764.13 34627.11 34867.31 34931.06 34826.06 34445.30 348
MVEpermissive53.74 2251.54 31847.86 32162.60 33059.56 35050.93 34779.41 34477.69 35135.69 34736.27 34961.76 3485.79 35769.63 34737.97 34736.61 34367.24 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 31951.22 32052.11 33370.71 34544.97 35194.04 32575.66 35335.34 34842.40 34861.56 34928.93 34765.87 35027.64 34924.73 34545.49 347
testmvs40.60 32044.45 32229.05 33519.49 35514.11 35699.68 14718.47 35520.74 34964.59 33698.48 18210.95 35417.09 35356.66 34211.01 34855.94 346
test12337.68 32139.14 32333.31 33419.94 35424.83 35598.36 2769.75 35615.53 35051.31 34587.14 33119.62 35217.74 35247.10 3443.47 35057.36 345
cdsmvs_eth3d_5k23.43 32231.24 3240.00 3370.00 3560.00 3570.00 34898.09 1750.00 3520.00 35399.67 9183.37 2210.00 3540.00 3510.00 3510.00 350
wuyk23d20.37 32320.84 32518.99 33665.34 34827.73 35450.43 3477.67 3579.50 3518.01 3526.34 3526.13 35626.24 35123.40 35010.69 3492.99 349
ab-mvs-re8.28 32411.04 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.40 1140.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.60 32510.13 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35391.20 1440.00 3540.00 3510.00 3510.00 350
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.93 2699.31 798.41 12797.71 899.84 8100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4499.80 299.96 2399.80 5797.44 11100.00 1100.00 199.98 33100.00 1
test_241102_TWO98.43 11297.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11297.26 2299.80 1699.88 2296.71 20100.00 1
9.1498.38 3899.87 5099.91 6998.33 14593.22 14399.78 2299.89 1994.57 6799.85 9499.84 1399.97 44
save fliter99.82 6398.79 3399.96 2398.40 12997.66 10
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
test_0728_SECOND99.82 599.94 1499.47 599.95 4098.43 112100.00 199.99 5100.00 1100.00 1
test072699.93 2699.29 1099.96 2398.42 12397.28 1899.86 499.94 497.22 15
GSMVS99.59 127
test_part299.89 4499.25 1399.49 48
test_part10.00 3370.00 3570.00 34898.41 1270.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs194.72 6399.59 127
sam_mvs94.25 81
ambc83.23 32177.17 34262.61 34187.38 34194.55 33576.72 32586.65 33330.16 34596.36 29384.85 28669.86 32990.73 327
MTGPAbinary98.28 151
test_post195.78 32159.23 35093.20 11197.74 22891.06 220
test_post63.35 34794.43 6898.13 211
patchmatchnet-post91.70 32395.12 4897.95 221
GG-mvs-BLEND98.54 10798.21 15398.01 7293.87 32798.52 8797.92 11897.92 19599.02 297.94 22398.17 9099.58 9999.67 114
MTMP99.87 8796.49 305
gm-plane-assit96.97 21593.76 19991.47 20298.96 14998.79 16394.92 152
test9_res99.71 2999.99 20100.00 1
TEST999.92 3598.92 2399.96 2398.43 11293.90 12399.71 3099.86 2995.88 3499.85 94
test_899.92 3598.88 2699.96 2398.43 11294.35 10099.69 3299.85 3395.94 3199.85 94
agg_prior299.48 35100.00 1100.00 1
agg_prior99.93 2698.77 3698.43 11299.63 3599.85 94
TestCases95.00 21599.01 11188.43 29296.82 29386.50 28188.71 25298.47 18374.73 28699.88 8585.39 28196.18 17196.71 214
test_prior498.05 7099.94 55
test_prior299.95 4095.78 5899.73 2699.76 7096.00 2999.78 20100.00 1
test_prior99.43 3599.94 1498.49 5698.65 5999.80 10699.99 20
旧先验299.46 18494.21 10799.85 699.95 6096.96 129
新几何299.40 188
新几何199.42 3899.75 7298.27 6498.63 6592.69 16199.55 4299.82 5294.40 70100.00 191.21 21699.94 5699.99 20
旧先验199.76 7097.52 9098.64 6299.85 3395.63 3999.94 5699.99 20
无先验99.49 17998.71 5293.46 137100.00 194.36 16999.99 20
原ACMM299.90 73
原ACMM198.96 8299.73 7796.99 11298.51 9394.06 11499.62 3799.85 3394.97 5899.96 5395.11 14999.95 5099.92 84
test22299.55 9097.41 10099.34 19898.55 8091.86 19099.27 6599.83 4993.84 9599.95 5099.99 20
testdata299.99 3690.54 231
segment_acmp96.68 22
testdata98.42 11799.47 9695.33 16598.56 7693.78 12899.79 2199.85 3393.64 10099.94 6894.97 15199.94 56100.00 1
testdata199.28 20696.35 48
test1299.43 3599.74 7398.56 5298.40 12999.65 3394.76 6299.75 11699.98 3399.99 20
plane_prior795.71 25291.59 251
plane_prior695.76 24791.72 24680.47 247
plane_prior597.87 19598.37 19897.79 10889.55 21894.52 224
plane_prior498.59 173
plane_prior391.64 24996.63 3893.01 195
plane_prior299.84 10596.38 44
plane_prior195.73 249
plane_prior91.74 24399.86 9896.76 3489.59 217
n20.00 358
nn0.00 358
door-mid89.69 346
lessismore_v090.53 30090.58 32480.90 33195.80 31677.01 32395.84 24866.15 31896.95 26983.03 29675.05 32693.74 293
LGP-MVS_train93.71 26495.43 25888.67 28897.62 21292.81 15390.05 21998.49 17975.24 28298.40 19195.84 14489.12 22294.07 265
test1198.44 104
door90.31 344
HQP5-MVS91.85 239
HQP-NCC95.78 24399.87 8796.82 3093.37 191
ACMP_Plane95.78 24399.87 8796.82 3093.37 191
BP-MVS97.92 105
HQP4-MVS93.37 19198.39 19394.53 222
HQP3-MVS97.89 19389.60 215
HQP2-MVS80.65 243
NP-MVS95.77 24691.79 24198.65 169
MDTV_nov1_ep13_2view96.26 13396.11 31691.89 18998.06 11594.40 7094.30 17299.67 114
MDTV_nov1_ep1395.69 13697.90 16894.15 19195.98 31898.44 10493.12 14697.98 11795.74 25195.10 4998.58 17790.02 23996.92 162
ACMMP++_ref87.04 248
ACMMP++88.23 237
Test By Simon92.82 119
ITE_SJBPF92.38 28495.69 25485.14 31295.71 31792.81 15389.33 24198.11 18970.23 30498.42 18885.91 27988.16 23893.59 297
DeepMVS_CXcopyleft82.92 32295.98 24158.66 34496.01 31392.72 15878.34 32195.51 26358.29 33498.08 21382.57 29885.29 25892.03 318