CHOSEN 280x420 | | | 99.01 12 | 99.03 8 | 98.95 83 | 99.38 104 | 98.87 27 | 98.46 284 | 99.42 20 | 97.03 27 | 99.02 82 | 99.09 140 | 99.35 1 | 98.21 217 | 99.73 27 | 99.78 88 | 99.77 104 |
|
GG-mvs-BLEND | | | | | 98.54 109 | 98.21 160 | 98.01 73 | 93.87 343 | 98.52 90 | | 97.92 126 | 97.92 205 | 99.02 2 | 97.94 233 | 98.17 96 | 99.58 103 | 99.67 117 |
|
gg-mvs-nofinetune | | | 93.51 201 | 91.86 225 | 98.47 114 | 97.72 192 | 97.96 77 | 92.62 347 | 98.51 97 | 74.70 349 | 97.33 138 | 69.59 360 | 98.91 3 | 97.79 236 | 97.77 118 | 99.56 104 | 99.67 117 |
|
test_0728_THIRD | | | | | | | | | | 96.48 40 | 99.83 10 | 99.91 13 | 97.87 4 | 100.00 1 | 99.92 9 | 100.00 1 | 100.00 1 |
|
baseline2 | | | 96.71 121 | 96.49 114 | 97.37 162 | 95.63 269 | 95.96 153 | 99.74 140 | 98.88 43 | 92.94 156 | 91.61 216 | 98.97 153 | 97.72 5 | 98.62 180 | 94.83 164 | 98.08 145 | 97.53 220 |
|
SteuartSystems-ACMMP | | | 99.02 11 | 98.97 11 | 99.18 54 | 98.72 138 | 97.71 83 | 99.98 10 | 98.44 108 | 96.85 29 | 99.80 16 | 99.91 13 | 97.57 6 | 99.85 94 | 99.44 38 | 99.99 20 | 99.99 20 |
Skip Steuart: Steuart Systems R&D Blog. |
DWT-MVSNet_test | | | 97.31 97 | 97.19 92 | 97.66 150 | 98.24 158 | 94.67 191 | 98.86 260 | 98.20 172 | 93.60 141 | 98.09 122 | 98.89 161 | 97.51 7 | 98.78 168 | 94.04 185 | 97.28 159 | 99.55 140 |
|
thisisatest0515 | | | 97.41 95 | 97.02 100 | 98.59 104 | 97.71 194 | 97.52 91 | 99.97 18 | 98.54 87 | 91.83 200 | 97.45 136 | 99.04 143 | 97.50 8 | 99.10 157 | 94.75 168 | 96.37 177 | 99.16 182 |
|
thisisatest0530 | | | 97.10 104 | 96.72 107 | 98.22 128 | 97.60 197 | 96.70 122 | 99.92 68 | 98.54 87 | 91.11 221 | 97.07 144 | 98.97 153 | 97.47 9 | 99.03 158 | 93.73 196 | 96.09 180 | 98.92 192 |
|
tttt0517 | | | 96.85 112 | 96.49 114 | 97.92 140 | 97.48 205 | 95.89 156 | 99.85 104 | 98.54 87 | 90.72 230 | 96.63 153 | 98.93 160 | 97.47 9 | 99.02 159 | 93.03 209 | 95.76 189 | 98.85 196 |
|
OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 25 | | | | 99.80 58 | 97.44 11 | 100.00 1 | 100.00 1 | 99.98 33 | 100.00 1 |
|
MSP-MVS | | | 99.09 8 | 99.12 5 | 98.98 80 | 99.93 26 | 97.24 104 | 99.95 43 | 98.42 127 | 97.50 14 | 99.52 50 | 99.88 22 | 97.43 12 | 99.71 129 | 99.50 35 | 99.98 33 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
NCCC | | | 99.37 2 | 99.25 2 | 99.71 10 | 99.96 8 | 99.15 16 | 99.97 18 | 98.62 67 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 13 | 100.00 1 | 99.54 33 | 100.00 1 | 100.00 1 |
|
MVSTER | | | 95.53 153 | 95.22 152 | 96.45 188 | 98.56 141 | 97.72 82 | 99.91 72 | 97.67 215 | 92.38 185 | 91.39 218 | 97.14 220 | 97.24 14 | 97.30 255 | 94.80 165 | 87.85 247 | 94.34 250 |
|
DVP-MVS | | | 99.30 4 | 99.16 3 | 99.73 8 | 99.93 26 | 99.29 10 | 99.95 43 | 98.32 151 | 97.28 18 | 99.83 10 | 99.91 13 | 97.22 15 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 90 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.93 26 | 99.29 10 | 99.96 25 | 98.42 127 | 97.28 18 | 99.86 4 | 99.94 4 | 97.22 15 | | | | |
|
test_241102_TWO | | | | | | | | | 98.43 116 | 97.27 20 | 99.80 16 | 99.94 4 | 97.18 17 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 106 | 99.92 1 | 99.96 25 | 98.44 108 | 97.96 7 | 99.55 45 | 99.94 4 | 97.18 17 | 100.00 1 | 93.81 191 | 99.94 57 | 99.98 51 |
|
CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 4 | 99.98 2 | 99.51 4 | 99.98 10 | 98.69 55 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 19 | 100.00 1 | 99.75 22 | 100.00 1 | 99.99 20 |
|
SED-MVS | | | 99.28 5 | 99.11 6 | 99.77 6 | 99.93 26 | 99.30 8 | 99.96 25 | 98.43 116 | 97.27 20 | 99.80 16 | 99.94 4 | 96.71 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_ONE | | | | | | 99.93 26 | 99.30 8 | | 98.43 116 | 97.26 22 | 99.80 16 | 99.88 22 | 96.71 20 | 100.00 1 | | | |
|
DPE-MVS |  | | 99.26 6 | 99.10 7 | 99.74 7 | 99.89 45 | 99.24 14 | 99.87 90 | 98.44 108 | 97.48 15 | 99.64 36 | 99.94 4 | 96.68 22 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 20 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
segment_acmp | | | | | | | | | | | | | 96.68 22 | | | | |
|
RRT_test8_iter05 | | | 94.58 176 | 94.11 173 | 95.98 201 | 97.88 176 | 96.11 150 | 99.89 84 | 97.45 240 | 91.66 206 | 88.28 273 | 96.71 238 | 96.53 24 | 97.40 248 | 94.73 170 | 83.85 280 | 94.45 241 |
|
PAPM | | | 98.60 33 | 98.42 31 | 99.14 63 | 96.05 250 | 98.96 20 | 99.90 76 | 99.35 23 | 96.68 37 | 98.35 114 | 99.66 97 | 96.45 25 | 98.51 185 | 99.45 37 | 99.89 74 | 99.96 70 |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 3 | 99.97 3 | 99.59 3 | 99.97 18 | 98.64 63 | 98.47 2 | 99.13 78 | 99.92 11 | 96.38 26 | 100.00 1 | 99.74 24 | 100.00 1 | 100.00 1 |
|
ET-MVSNet_ETH3D | | | 94.37 183 | 93.28 198 | 97.64 151 | 98.30 151 | 97.99 74 | 99.99 5 | 97.61 222 | 94.35 107 | 71.57 351 | 99.45 114 | 96.23 27 | 95.34 326 | 96.91 140 | 85.14 268 | 99.59 131 |
|
EPP-MVSNet | | | 96.69 122 | 96.60 110 | 96.96 172 | 97.74 188 | 93.05 222 | 99.37 203 | 98.56 77 | 88.75 260 | 95.83 172 | 99.01 146 | 96.01 28 | 98.56 182 | 96.92 139 | 97.20 162 | 99.25 177 |
|
test_prior3 | | | 98.99 13 | 98.84 14 | 99.43 35 | 99.94 14 | 98.49 57 | 99.95 43 | 98.65 60 | 95.78 60 | 99.73 27 | 99.76 72 | 96.00 29 | 99.80 106 | 99.78 20 | 100.00 1 | 99.99 20 |
|
test_prior2 | | | | | | | | 99.95 43 | | 95.78 60 | 99.73 27 | 99.76 72 | 96.00 29 | | 99.78 20 | 100.00 1 | |
|
train_agg | | | 98.88 19 | 98.65 20 | 99.59 18 | 99.92 35 | 98.92 23 | 99.96 25 | 98.43 116 | 94.35 107 | 99.71 32 | 99.86 29 | 95.94 31 | 99.85 94 | 99.69 31 | 99.98 33 | 99.99 20 |
|
test_8 | | | | | | 99.92 35 | 98.88 26 | 99.96 25 | 98.43 116 | 94.35 107 | 99.69 34 | 99.85 33 | 95.94 31 | 99.85 94 | | | |
|
MSLP-MVS++ | | | 99.13 7 | 99.01 9 | 99.49 31 | 99.94 14 | 98.46 59 | 99.98 10 | 98.86 45 | 97.10 25 | 99.80 16 | 99.94 4 | 95.92 33 | 100.00 1 | 99.51 34 | 100.00 1 | 100.00 1 |
|
TEST9 | | | | | | 99.92 35 | 98.92 23 | 99.96 25 | 98.43 116 | 93.90 130 | 99.71 32 | 99.86 29 | 95.88 34 | 99.85 94 | | | |
|
test_yl | | | 97.83 77 | 97.37 85 | 99.21 51 | 99.18 108 | 97.98 75 | 99.64 163 | 99.27 25 | 91.43 214 | 97.88 128 | 98.99 149 | 95.84 35 | 99.84 103 | 98.82 69 | 95.32 197 | 99.79 100 |
|
DCV-MVSNet | | | 97.83 77 | 97.37 85 | 99.21 51 | 99.18 108 | 97.98 75 | 99.64 163 | 99.27 25 | 91.43 214 | 97.88 128 | 98.99 149 | 95.84 35 | 99.84 103 | 98.82 69 | 95.32 197 | 99.79 100 |
|
agg_prior1 | | | 98.88 19 | 98.66 19 | 99.54 23 | 99.93 26 | 98.77 36 | 99.96 25 | 98.43 116 | 94.63 96 | 99.63 38 | 99.85 33 | 95.79 37 | 99.85 94 | 99.72 28 | 99.99 20 | 99.99 20 |
|
DP-MVS Recon | | | 98.41 49 | 98.02 61 | 99.56 21 | 99.97 3 | 98.70 43 | 99.92 68 | 98.44 108 | 92.06 195 | 98.40 112 | 99.84 46 | 95.68 38 | 100.00 1 | 98.19 95 | 99.71 93 | 99.97 63 |
|
旧先验1 | | | | | | 99.76 74 | 97.52 91 | | 98.64 63 | | | 99.85 33 | 95.63 39 | | | 99.94 57 | 99.99 20 |
|
SMA-MVS |  | | 98.76 26 | 98.48 29 | 99.62 15 | 99.87 52 | 98.87 27 | 99.86 101 | 98.38 139 | 93.19 151 | 99.77 23 | 99.94 4 | 95.54 40 | 100.00 1 | 99.74 24 | 99.99 20 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
TESTMET0.1,1 | | | 96.74 119 | 96.26 119 | 98.16 129 | 97.36 209 | 96.48 130 | 99.96 25 | 98.29 157 | 91.93 197 | 95.77 173 | 98.07 199 | 95.54 40 | 98.29 208 | 90.55 240 | 98.89 124 | 99.70 112 |
|
APDe-MVS | | | 99.06 10 | 98.91 12 | 99.51 28 | 99.94 14 | 98.76 40 | 99.91 72 | 98.39 135 | 97.20 24 | 99.46 52 | 99.85 33 | 95.53 42 | 99.79 109 | 99.86 12 | 100.00 1 | 99.99 20 |
|
testtj | | | 98.89 18 | 98.69 18 | 99.52 26 | 99.94 14 | 98.56 53 | 99.90 76 | 98.55 83 | 95.14 78 | 99.72 31 | 99.84 46 | 95.46 43 | 100.00 1 | 99.65 32 | 99.99 20 | 99.99 20 |
|
PLC |  | 95.54 3 | 97.93 72 | 97.89 69 | 98.05 136 | 99.82 65 | 94.77 190 | 99.92 68 | 98.46 105 | 93.93 128 | 97.20 140 | 99.27 129 | 95.44 44 | 99.97 51 | 97.41 125 | 99.51 108 | 99.41 161 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
HPM-MVS++ |  | | 99.07 9 | 98.88 13 | 99.63 12 | 99.90 42 | 99.02 19 | 99.95 43 | 98.56 77 | 97.56 13 | 99.44 54 | 99.85 33 | 95.38 45 | 100.00 1 | 99.31 43 | 99.99 20 | 99.87 93 |
|
PHI-MVS | | | 98.41 49 | 98.21 49 | 99.03 75 | 99.86 54 | 97.10 111 | 99.98 10 | 98.80 50 | 90.78 229 | 99.62 40 | 99.78 66 | 95.30 46 | 100.00 1 | 99.80 18 | 99.93 63 | 99.99 20 |
|
test-mter | | | 96.39 132 | 95.93 134 | 97.78 144 | 97.02 224 | 95.44 168 | 99.96 25 | 98.21 168 | 91.81 202 | 95.55 175 | 96.38 247 | 95.17 47 | 98.27 212 | 90.42 243 | 98.83 126 | 99.64 124 |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 338 | 95.12 48 | 97.95 231 | | | |
|
MDTV_nov1_ep13 | | | | 95.69 141 | | 97.90 175 | 94.15 198 | 95.98 334 | 98.44 108 | 93.12 153 | 97.98 125 | 95.74 263 | 95.10 49 | 98.58 181 | 90.02 249 | 96.92 168 | |
|
1121 | | | 98.03 69 | 97.57 80 | 99.40 41 | 99.74 77 | 98.21 66 | 98.31 291 | 98.62 67 | 92.78 163 | 99.53 47 | 99.83 49 | 95.08 50 | 100.00 1 | 94.36 178 | 99.92 67 | 99.99 20 |
|
IB-MVS | | 92.85 6 | 94.99 164 | 93.94 178 | 98.16 129 | 97.72 192 | 95.69 165 | 99.99 5 | 98.81 48 | 94.28 112 | 92.70 211 | 96.90 230 | 95.08 50 | 99.17 156 | 96.07 147 | 73.88 337 | 99.60 130 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ZD-MVS | | | | | | 99.92 35 | 98.57 51 | | 98.52 90 | 92.34 186 | 99.31 66 | 99.83 49 | 95.06 52 | 99.80 106 | 99.70 30 | 99.97 44 | |
|
CDS-MVSNet | | | 96.34 133 | 96.07 122 | 97.13 168 | 97.37 208 | 94.96 183 | 99.53 179 | 97.91 200 | 91.55 209 | 95.37 179 | 98.32 194 | 95.05 53 | 97.13 266 | 93.80 192 | 95.75 190 | 99.30 173 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Patchmatch-test | | | 92.65 221 | 91.50 231 | 96.10 199 | 96.85 233 | 90.49 277 | 91.50 352 | 97.19 264 | 82.76 327 | 90.23 229 | 95.59 270 | 95.02 54 | 98.00 227 | 77.41 332 | 96.98 167 | 99.82 97 |
|
RRT_MVS | | | 95.23 158 | 94.77 162 | 96.61 184 | 98.28 154 | 98.32 63 | 99.81 117 | 97.41 247 | 92.59 175 | 91.28 220 | 97.76 207 | 95.02 54 | 97.23 261 | 93.65 198 | 87.14 254 | 94.28 253 |
|
CostFormer | | | 96.10 140 | 95.88 137 | 96.78 177 | 97.03 223 | 92.55 235 | 97.08 320 | 97.83 208 | 90.04 241 | 98.72 97 | 94.89 303 | 95.01 56 | 98.29 208 | 96.54 143 | 95.77 188 | 99.50 151 |
|
TSAR-MVS + GP. | | | 98.60 33 | 98.51 28 | 98.86 87 | 99.73 81 | 96.63 125 | 99.97 18 | 97.92 199 | 98.07 5 | 98.76 95 | 99.55 105 | 95.00 57 | 99.94 68 | 99.91 11 | 97.68 150 | 99.99 20 |
|
CDPH-MVS | | | 98.65 31 | 98.36 42 | 99.49 31 | 99.94 14 | 98.73 41 | 99.87 90 | 98.33 149 | 93.97 125 | 99.76 24 | 99.87 26 | 94.99 58 | 99.75 121 | 98.55 86 | 100.00 1 | 99.98 51 |
|
原ACMM1 | | | | | 98.96 82 | 99.73 81 | 96.99 114 | | 98.51 97 | 94.06 121 | 99.62 40 | 99.85 33 | 94.97 59 | 99.96 53 | 95.11 157 | 99.95 51 | 99.92 87 |
|
Regformer-1 | | | 98.79 24 | 98.60 23 | 99.36 45 | 99.85 55 | 98.34 62 | 99.87 90 | 98.52 90 | 96.05 53 | 99.41 57 | 99.79 62 | 94.93 60 | 99.76 118 | 99.07 49 | 99.90 72 | 99.99 20 |
|
Regformer-2 | | | 98.78 25 | 98.59 24 | 99.36 45 | 99.85 55 | 98.32 63 | 99.87 90 | 98.52 90 | 96.04 54 | 99.41 57 | 99.79 62 | 94.92 61 | 99.76 118 | 99.05 50 | 99.90 72 | 99.98 51 |
|
TSAR-MVS + MP. | | | 98.93 15 | 98.77 16 | 99.41 39 | 99.74 77 | 98.67 44 | 99.77 129 | 98.38 139 | 96.73 35 | 99.88 3 | 99.74 81 | 94.89 62 | 99.59 140 | 99.80 18 | 99.98 33 | 99.97 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
test12 | | | | | 99.43 35 | 99.74 77 | 98.56 53 | | 98.40 132 | | 99.65 35 | | 94.76 63 | 99.75 121 | | 99.98 33 | 99.99 20 |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 64 | | | | 99.59 131 |
|
xxxxxxxxxxxxxcwj | | | 98.98 14 | 98.79 15 | 99.54 23 | 99.82 65 | 98.79 33 | 99.96 25 | 97.52 234 | 97.66 10 | 99.81 12 | 99.89 19 | 94.70 65 | 99.86 90 | 99.84 13 | 99.93 63 | 99.96 70 |
|
SF-MVS | | | 98.67 30 | 98.40 35 | 99.50 29 | 99.77 73 | 98.67 44 | 99.90 76 | 98.21 168 | 93.53 142 | 99.81 12 | 99.89 19 | 94.70 65 | 99.86 90 | 99.84 13 | 99.93 63 | 99.96 70 |
|
SD-MVS | | | 98.92 16 | 98.70 17 | 99.56 21 | 99.70 85 | 98.73 41 | 99.94 58 | 98.34 148 | 96.38 44 | 99.81 12 | 99.76 72 | 94.59 67 | 99.98 42 | 99.84 13 | 99.96 48 | 99.97 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
9.14 | | | | 98.38 38 | | 99.87 52 | | 99.91 72 | 98.33 149 | 93.22 150 | 99.78 22 | 99.89 19 | 94.57 68 | 99.85 94 | 99.84 13 | 99.97 44 | |
|
test_post | | | | | | | | | | | | 63.35 364 | 94.43 69 | 98.13 220 | | | |
|
EPMVS | | | 96.53 127 | 96.01 124 | 98.09 134 | 98.43 148 | 96.12 149 | 96.36 328 | 99.43 19 | 93.53 142 | 97.64 132 | 95.04 296 | 94.41 70 | 98.38 202 | 91.13 227 | 98.11 141 | 99.75 106 |
|
Regformer-3 | | | 98.58 36 | 98.41 33 | 99.10 69 | 99.84 60 | 97.57 88 | 99.66 156 | 98.52 90 | 95.79 59 | 99.01 83 | 99.77 68 | 94.40 71 | 99.75 121 | 98.82 69 | 99.83 81 | 99.98 51 |
|
新几何1 | | | | | 99.42 38 | 99.75 76 | 98.27 65 | | 98.63 66 | 92.69 168 | 99.55 45 | 99.82 53 | 94.40 71 | 100.00 1 | 91.21 225 | 99.94 57 | 99.99 20 |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 139 | 96.11 332 | | 91.89 198 | 98.06 123 | | 94.40 71 | | 94.30 181 | | 99.67 117 |
|
PAPM_NR | | | 98.12 66 | 97.93 68 | 98.70 94 | 99.94 14 | 96.13 147 | 99.82 115 | 98.43 116 | 94.56 97 | 97.52 134 | 99.70 88 | 94.40 71 | 99.98 42 | 97.00 135 | 99.98 33 | 99.99 20 |
|
miper_enhance_ethall | | | 94.36 185 | 93.98 177 | 95.49 208 | 98.68 140 | 95.24 176 | 99.73 145 | 97.29 258 | 93.28 149 | 89.86 237 | 95.97 259 | 94.37 75 | 97.05 272 | 92.20 215 | 84.45 272 | 94.19 260 |
|
ETH3D-3000-0.1 | | | 98.68 29 | 98.42 31 | 99.47 34 | 99.83 63 | 98.57 51 | 99.90 76 | 98.37 142 | 93.81 133 | 99.81 12 | 99.90 17 | 94.34 76 | 99.86 90 | 99.84 13 | 99.98 33 | 99.97 63 |
|
XVS | | | 98.70 28 | 98.55 25 | 99.15 61 | 99.94 14 | 97.50 94 | 99.94 58 | 98.42 127 | 96.22 49 | 99.41 57 | 99.78 66 | 94.34 76 | 99.96 53 | 98.92 61 | 99.95 51 | 99.99 20 |
|
X-MVStestdata | | | 93.83 191 | 92.06 220 | 99.15 61 | 99.94 14 | 97.50 94 | 99.94 58 | 98.42 127 | 96.22 49 | 99.41 57 | 41.37 368 | 94.34 76 | 99.96 53 | 98.92 61 | 99.95 51 | 99.99 20 |
|
Regformer-4 | | | 98.56 37 | 98.39 37 | 99.08 71 | 99.84 60 | 97.52 91 | 99.66 156 | 98.52 90 | 95.76 62 | 99.01 83 | 99.77 68 | 94.33 79 | 99.75 121 | 98.80 72 | 99.83 81 | 99.98 51 |
|
ETH3 D test6400 | | | 98.81 22 | 98.54 26 | 99.59 18 | 99.93 26 | 98.93 22 | 99.93 64 | 98.46 105 | 94.56 97 | 99.84 8 | 99.92 11 | 94.32 80 | 99.86 90 | 99.96 8 | 99.98 33 | 100.00 1 |
|
CP-MVS | | | 98.45 46 | 98.32 44 | 98.87 86 | 99.96 8 | 96.62 126 | 99.97 18 | 98.39 135 | 94.43 102 | 98.90 88 | 99.87 26 | 94.30 81 | 100.00 1 | 99.04 54 | 99.99 20 | 99.99 20 |
|
sam_mvs | | | | | | | | | | | | | 94.25 82 | | | | |
|
Patchmatch-RL test | | | 86.90 299 | 85.98 301 | 89.67 319 | 84.45 354 | 75.59 352 | 89.71 355 | 92.43 356 | 86.89 288 | 77.83 340 | 90.94 341 | 94.22 83 | 93.63 344 | 87.75 271 | 69.61 341 | 99.79 100 |
|
HFP-MVS | | | 98.56 37 | 98.37 40 | 99.14 63 | 99.96 8 | 97.43 99 | 99.95 43 | 98.61 69 | 94.77 88 | 99.31 66 | 99.85 33 | 94.22 83 | 100.00 1 | 98.70 77 | 99.98 33 | 99.98 51 |
|
#test# | | | 98.59 35 | 98.41 33 | 99.14 63 | 99.96 8 | 97.43 99 | 99.95 43 | 98.61 69 | 95.00 81 | 99.31 66 | 99.85 33 | 94.22 83 | 100.00 1 | 98.78 73 | 99.98 33 | 99.98 51 |
|
PatchmatchNet |  | | 95.94 144 | 95.45 145 | 97.39 161 | 97.83 181 | 94.41 195 | 96.05 333 | 98.40 132 | 92.86 157 | 97.09 143 | 95.28 291 | 94.21 86 | 98.07 224 | 89.26 255 | 98.11 141 | 99.70 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
DeepPCF-MVS | | 95.94 2 | 97.71 85 | 98.98 10 | 93.92 267 | 99.63 88 | 81.76 342 | 99.96 25 | 98.56 77 | 99.47 1 | 99.19 76 | 99.99 1 | 94.16 87 | 100.00 1 | 99.92 9 | 99.93 63 | 100.00 1 |
|
APD-MVS |  | | 98.62 32 | 98.35 43 | 99.41 39 | 99.90 42 | 98.51 56 | 99.87 90 | 98.36 144 | 94.08 118 | 99.74 26 | 99.73 83 | 94.08 88 | 99.74 125 | 99.42 39 | 99.99 20 | 99.99 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
region2R | | | 98.54 39 | 98.37 40 | 99.05 73 | 99.96 8 | 97.18 107 | 99.96 25 | 98.55 83 | 94.87 86 | 99.45 53 | 99.85 33 | 94.07 89 | 100.00 1 | 98.67 79 | 100.00 1 | 99.98 51 |
|
PAPR | | | 98.52 41 | 98.16 53 | 99.58 20 | 99.97 3 | 98.77 36 | 99.95 43 | 98.43 116 | 95.35 73 | 98.03 124 | 99.75 77 | 94.03 90 | 99.98 42 | 98.11 100 | 99.83 81 | 99.99 20 |
|
MG-MVS | | | 98.91 17 | 98.65 20 | 99.68 11 | 99.94 14 | 99.07 18 | 99.64 163 | 99.44 18 | 97.33 17 | 99.00 85 | 99.72 84 | 94.03 90 | 99.98 42 | 98.73 76 | 100.00 1 | 100.00 1 |
|
MVS_111021_HR | | | 98.72 27 | 98.62 22 | 99.01 78 | 99.36 105 | 97.18 107 | 99.93 64 | 99.90 1 | 96.81 33 | 98.67 99 | 99.77 68 | 93.92 92 | 99.89 79 | 99.27 45 | 99.94 57 | 99.96 70 |
|
tpmrst | | | 96.27 139 | 95.98 127 | 97.13 168 | 97.96 172 | 93.15 219 | 96.34 329 | 98.17 174 | 92.07 193 | 98.71 98 | 95.12 294 | 93.91 93 | 98.73 173 | 94.91 162 | 96.62 171 | 99.50 151 |
|
test-LLR | | | 96.47 128 | 96.04 123 | 97.78 144 | 97.02 224 | 95.44 168 | 99.96 25 | 98.21 168 | 94.07 119 | 95.55 175 | 96.38 247 | 93.90 94 | 98.27 212 | 90.42 243 | 98.83 126 | 99.64 124 |
|
test0.0.03 1 | | | 93.86 190 | 93.61 183 | 94.64 236 | 95.02 278 | 92.18 242 | 99.93 64 | 98.58 73 | 94.07 119 | 87.96 277 | 98.50 185 | 93.90 94 | 94.96 331 | 81.33 316 | 93.17 216 | 96.78 222 |
|
test222 | | | | | | 99.55 94 | 97.41 102 | 99.34 206 | 98.55 83 | 91.86 199 | 99.27 71 | 99.83 49 | 93.84 96 | | | 99.95 51 | 99.99 20 |
|
dp | | | 95.05 162 | 94.43 167 | 96.91 173 | 97.99 171 | 92.73 229 | 96.29 330 | 97.98 192 | 89.70 245 | 95.93 169 | 94.67 309 | 93.83 97 | 98.45 190 | 86.91 285 | 96.53 173 | 99.54 144 |
|
ACMMPR | | | 98.50 42 | 98.32 44 | 99.05 73 | 99.96 8 | 97.18 107 | 99.95 43 | 98.60 71 | 94.77 88 | 99.31 66 | 99.84 46 | 93.73 98 | 100.00 1 | 98.70 77 | 99.98 33 | 99.98 51 |
|
EPNet | | | 98.49 43 | 98.40 35 | 98.77 90 | 99.62 89 | 96.80 120 | 99.90 76 | 99.51 15 | 97.60 12 | 99.20 73 | 99.36 124 | 93.71 99 | 99.91 74 | 97.99 107 | 98.71 129 | 99.61 128 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
alignmvs | | | 97.81 79 | 97.33 88 | 99.25 49 | 98.77 137 | 98.66 46 | 99.99 5 | 98.44 108 | 94.40 106 | 98.41 110 | 99.47 111 | 93.65 100 | 99.42 151 | 98.57 85 | 94.26 206 | 99.67 117 |
|
testdata | | | | | 98.42 119 | 99.47 100 | 95.33 172 | | 98.56 77 | 93.78 135 | 99.79 21 | 99.85 33 | 93.64 101 | 99.94 68 | 94.97 159 | 99.94 57 | 100.00 1 |
|
EI-MVSNet-Vis-set | | | 98.27 59 | 98.11 57 | 98.75 92 | 99.83 63 | 96.59 128 | 99.40 196 | 98.51 97 | 95.29 75 | 98.51 106 | 99.76 72 | 93.60 102 | 99.71 129 | 98.53 87 | 99.52 106 | 99.95 78 |
|
ETH3D cwj APD-0.16 | | | 98.40 51 | 98.07 59 | 99.40 41 | 99.59 90 | 98.41 60 | 99.86 101 | 98.24 164 | 92.18 190 | 99.73 27 | 99.87 26 | 93.47 103 | 99.85 94 | 99.74 24 | 99.95 51 | 99.93 81 |
|
mPP-MVS | | | 98.39 52 | 98.20 50 | 98.97 81 | 99.97 3 | 96.92 117 | 99.95 43 | 98.38 139 | 95.04 80 | 98.61 103 | 99.80 58 | 93.39 104 | 100.00 1 | 98.64 83 | 100.00 1 | 99.98 51 |
|
SR-MVS | | | 98.46 45 | 98.30 46 | 98.93 84 | 99.88 49 | 97.04 112 | 99.84 108 | 98.35 146 | 94.92 83 | 99.32 65 | 99.80 58 | 93.35 105 | 99.78 111 | 99.30 44 | 99.95 51 | 99.96 70 |
|
WTY-MVS | | | 98.10 67 | 97.60 78 | 99.60 17 | 98.92 125 | 99.28 12 | 99.89 84 | 99.52 13 | 95.58 69 | 98.24 120 | 99.39 121 | 93.33 106 | 99.74 125 | 97.98 109 | 95.58 193 | 99.78 103 |
|
tpm2 | | | 95.47 155 | 95.18 154 | 96.35 194 | 96.91 228 | 91.70 257 | 96.96 323 | 97.93 197 | 88.04 272 | 98.44 109 | 95.40 280 | 93.32 107 | 97.97 228 | 94.00 186 | 95.61 192 | 99.38 163 |
|
HY-MVS | | 92.50 7 | 97.79 81 | 97.17 94 | 99.63 12 | 98.98 118 | 99.32 6 | 97.49 312 | 99.52 13 | 95.69 66 | 98.32 115 | 97.41 213 | 93.32 107 | 99.77 115 | 98.08 103 | 95.75 190 | 99.81 98 |
|
EI-MVSNet-UG-set | | | 98.14 65 | 97.99 63 | 98.60 102 | 99.80 69 | 96.27 138 | 99.36 205 | 98.50 101 | 95.21 77 | 98.30 116 | 99.75 77 | 93.29 109 | 99.73 128 | 98.37 91 | 99.30 115 | 99.81 98 |
|
test1172 | | | 98.38 53 | 98.25 47 | 98.77 90 | 99.88 49 | 96.56 129 | 99.80 122 | 98.36 144 | 94.68 92 | 99.20 73 | 99.80 58 | 93.28 110 | 99.78 111 | 99.34 42 | 99.92 67 | 99.98 51 |
|
SR-MVS-dyc-post | | | 98.31 56 | 98.17 52 | 98.71 93 | 99.79 70 | 96.37 136 | 99.76 134 | 98.31 153 | 94.43 102 | 99.40 61 | 99.75 77 | 93.28 110 | 99.78 111 | 98.90 64 | 99.92 67 | 99.97 63 |
|
baseline1 | | | 95.78 147 | 94.86 159 | 98.54 109 | 98.47 147 | 98.07 70 | 99.06 235 | 97.99 190 | 92.68 169 | 94.13 194 | 98.62 179 | 93.28 110 | 98.69 177 | 93.79 193 | 85.76 261 | 98.84 197 |
|
PGM-MVS | | | 98.34 54 | 98.13 55 | 98.99 79 | 99.92 35 | 97.00 113 | 99.75 137 | 99.50 16 | 93.90 130 | 99.37 63 | 99.76 72 | 93.24 113 | 100.00 1 | 97.75 120 | 99.96 48 | 99.98 51 |
|
test_post1 | | | | | | | | 95.78 337 | | | | 59.23 367 | 93.20 114 | 97.74 238 | 91.06 229 | | |
|
CSCG | | | 97.10 104 | 97.04 98 | 97.27 166 | 99.89 45 | 91.92 248 | 99.90 76 | 99.07 31 | 88.67 262 | 95.26 181 | 99.82 53 | 93.17 115 | 99.98 42 | 98.15 98 | 99.47 109 | 99.90 89 |
|
DeepC-MVS_fast | | 96.59 1 | 98.81 22 | 98.54 26 | 99.62 15 | 99.90 42 | 98.85 29 | 99.24 219 | 98.47 103 | 98.14 4 | 99.08 79 | 99.91 13 | 93.09 116 | 100.00 1 | 99.04 54 | 99.99 20 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ZNCC-MVS | | | 98.31 56 | 98.03 60 | 99.17 57 | 99.88 49 | 97.59 87 | 99.94 58 | 98.44 108 | 94.31 110 | 98.50 107 | 99.82 53 | 93.06 117 | 99.99 36 | 98.30 94 | 99.99 20 | 99.93 81 |
|
GST-MVS | | | 98.27 59 | 97.97 64 | 99.17 57 | 99.92 35 | 97.57 88 | 99.93 64 | 98.39 135 | 94.04 123 | 98.80 91 | 99.74 81 | 92.98 118 | 100.00 1 | 98.16 97 | 99.76 89 | 99.93 81 |
|
RE-MVS-def | | | | 98.13 55 | | 99.79 70 | 96.37 136 | 99.76 134 | 98.31 153 | 94.43 102 | 99.40 61 | 99.75 77 | 92.95 119 | | 98.90 64 | 99.92 67 | 99.97 63 |
|
ACMMP_NAP | | | 98.49 43 | 98.14 54 | 99.54 23 | 99.66 87 | 98.62 50 | 99.85 104 | 98.37 142 | 94.68 92 | 99.53 47 | 99.83 49 | 92.87 120 | 100.00 1 | 98.66 82 | 99.84 80 | 99.99 20 |
|
APD-MVS_3200maxsize | | | 98.25 62 | 98.08 58 | 98.78 89 | 99.81 68 | 96.60 127 | 99.82 115 | 98.30 156 | 93.95 127 | 99.37 63 | 99.77 68 | 92.84 121 | 99.76 118 | 98.95 58 | 99.92 67 | 99.97 63 |
|
JIA-IIPM | | | 91.76 242 | 90.70 242 | 94.94 226 | 96.11 248 | 87.51 313 | 93.16 346 | 98.13 182 | 75.79 346 | 97.58 133 | 77.68 357 | 92.84 121 | 97.97 228 | 88.47 263 | 96.54 172 | 99.33 170 |
|
Test By Simon | | | | | | | | | | | | | 92.82 123 | | | | |
|
zzz-MVS | | | 98.33 55 | 98.00 62 | 99.30 47 | 99.85 55 | 97.93 78 | 99.80 122 | 98.28 158 | 95.76 62 | 97.18 141 | 99.88 22 | 92.74 124 | 100.00 1 | 98.67 79 | 99.88 76 | 99.99 20 |
|
MTAPA | | | 98.29 58 | 97.96 67 | 99.30 47 | 99.85 55 | 97.93 78 | 99.39 200 | 98.28 158 | 95.76 62 | 97.18 141 | 99.88 22 | 92.74 124 | 100.00 1 | 98.67 79 | 99.88 76 | 99.99 20 |
|
EPNet_dtu | | | 95.71 150 | 95.39 147 | 96.66 182 | 98.92 125 | 93.41 216 | 99.57 172 | 98.90 41 | 96.19 51 | 97.52 134 | 98.56 184 | 92.65 126 | 97.36 250 | 77.89 330 | 98.33 136 | 99.20 180 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MP-MVS-pluss | | | 98.07 68 | 97.64 75 | 99.38 44 | 99.74 77 | 98.41 60 | 99.74 140 | 98.18 173 | 93.35 146 | 96.45 158 | 99.85 33 | 92.64 127 | 99.97 51 | 98.91 63 | 99.89 74 | 99.77 104 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DELS-MVS | | | 98.54 39 | 98.22 48 | 99.50 29 | 99.15 111 | 98.65 48 | 100.00 1 | 98.58 73 | 97.70 9 | 98.21 121 | 99.24 134 | 92.58 128 | 99.94 68 | 98.63 84 | 99.94 57 | 99.92 87 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ETV-MVS | | | 97.92 73 | 97.80 71 | 98.25 127 | 98.14 165 | 96.48 130 | 99.98 10 | 97.63 217 | 95.61 68 | 99.29 70 | 99.46 113 | 92.55 129 | 98.82 165 | 99.02 56 | 98.54 131 | 99.46 154 |
|
KD-MVS_2432*1600 | | | 88.00 295 | 86.10 299 | 93.70 275 | 96.91 228 | 94.04 200 | 97.17 318 | 97.12 272 | 84.93 312 | 81.96 323 | 92.41 334 | 92.48 130 | 94.51 336 | 79.23 323 | 52.68 357 | 92.56 324 |
|
miper_refine_blended | | | 88.00 295 | 86.10 299 | 93.70 275 | 96.91 228 | 94.04 200 | 97.17 318 | 97.12 272 | 84.93 312 | 81.96 323 | 92.41 334 | 92.48 130 | 94.51 336 | 79.23 323 | 52.68 357 | 92.56 324 |
|
EIA-MVS | | | 97.53 89 | 97.46 82 | 97.76 147 | 98.04 169 | 94.84 186 | 99.98 10 | 97.61 222 | 94.41 105 | 97.90 127 | 99.59 102 | 92.40 132 | 98.87 163 | 98.04 104 | 99.13 122 | 99.59 131 |
|
F-COLMAP | | | 96.93 110 | 96.95 101 | 96.87 175 | 99.71 84 | 91.74 253 | 99.85 104 | 97.95 195 | 93.11 154 | 95.72 174 | 99.16 138 | 92.35 133 | 99.94 68 | 95.32 155 | 99.35 114 | 98.92 192 |
|
API-MVS | | | 97.86 74 | 97.66 74 | 98.47 114 | 99.52 96 | 95.41 170 | 99.47 189 | 98.87 44 | 91.68 205 | 98.84 89 | 99.85 33 | 92.34 134 | 99.99 36 | 98.44 89 | 99.96 48 | 100.00 1 |
|
CNLPA | | | 97.76 82 | 97.38 84 | 98.92 85 | 99.53 95 | 96.84 118 | 99.87 90 | 98.14 180 | 93.78 135 | 96.55 156 | 99.69 91 | 92.28 135 | 99.98 42 | 97.13 131 | 99.44 111 | 99.93 81 |
|
TAMVS | | | 95.85 145 | 95.58 143 | 96.65 183 | 97.07 220 | 93.50 213 | 99.17 224 | 97.82 209 | 91.39 217 | 95.02 183 | 98.01 200 | 92.20 136 | 97.30 255 | 93.75 195 | 95.83 187 | 99.14 185 |
|
1112_ss | | | 96.01 143 | 95.20 153 | 98.42 119 | 97.80 183 | 96.41 133 | 99.65 159 | 96.66 313 | 92.71 166 | 92.88 209 | 99.40 119 | 92.16 137 | 99.30 152 | 91.92 218 | 93.66 211 | 99.55 140 |
|
Test_1112_low_res | | | 95.72 148 | 94.83 160 | 98.42 119 | 97.79 184 | 96.41 133 | 99.65 159 | 96.65 314 | 92.70 167 | 92.86 210 | 96.13 256 | 92.15 138 | 99.30 152 | 91.88 219 | 93.64 212 | 99.55 140 |
|
HyFIR lowres test | | | 96.66 124 | 96.43 116 | 97.36 163 | 99.05 113 | 93.91 205 | 99.70 150 | 99.80 3 | 90.54 231 | 96.26 164 | 98.08 198 | 92.15 138 | 98.23 216 | 96.84 141 | 95.46 194 | 99.93 81 |
|
CS-MVS-test | | | 97.85 75 | 97.70 73 | 98.30 124 | 97.57 198 | 96.72 121 | 100.00 1 | 97.11 274 | 95.06 79 | 99.76 24 | 99.45 114 | 92.12 140 | 98.44 191 | 98.97 57 | 99.28 116 | 99.75 106 |
|
MVS_111021_LR | | | 98.42 48 | 98.38 38 | 98.53 111 | 99.39 103 | 95.79 158 | 99.87 90 | 99.86 2 | 96.70 36 | 98.78 92 | 99.79 62 | 92.03 141 | 99.90 75 | 99.17 46 | 99.86 79 | 99.88 92 |
|
TAPA-MVS | | 92.12 8 | 94.42 181 | 93.60 185 | 96.90 174 | 99.33 106 | 91.78 252 | 99.78 126 | 98.00 189 | 89.89 243 | 94.52 187 | 99.47 111 | 91.97 142 | 99.18 155 | 69.90 346 | 99.52 106 | 99.73 109 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PatchT | | | 90.38 266 | 88.75 280 | 95.25 218 | 95.99 252 | 90.16 283 | 91.22 354 | 97.54 230 | 76.80 342 | 97.26 139 | 86.01 352 | 91.88 143 | 96.07 316 | 66.16 353 | 95.91 185 | 99.51 149 |
|
HPM-MVS |  | | 97.96 70 | 97.72 72 | 98.68 95 | 99.84 60 | 96.39 135 | 99.90 76 | 98.17 174 | 92.61 173 | 98.62 102 | 99.57 104 | 91.87 144 | 99.67 136 | 98.87 66 | 99.99 20 | 99.99 20 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MP-MVS |  | | 98.23 63 | 97.97 64 | 99.03 75 | 99.94 14 | 97.17 110 | 99.95 43 | 98.39 135 | 94.70 91 | 98.26 119 | 99.81 57 | 91.84 145 | 100.00 1 | 98.85 67 | 99.97 44 | 99.93 81 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
HPM-MVS_fast | | | 97.80 80 | 97.50 81 | 98.68 95 | 99.79 70 | 96.42 132 | 99.88 87 | 98.16 177 | 91.75 204 | 98.94 87 | 99.54 107 | 91.82 146 | 99.65 138 | 97.62 122 | 99.99 20 | 99.99 20 |
|
CS-MVS | | | 97.74 83 | 97.61 77 | 98.15 132 | 97.52 204 | 96.69 123 | 100.00 1 | 97.11 274 | 94.93 82 | 99.73 27 | 99.41 118 | 91.68 147 | 98.25 215 | 98.84 68 | 99.24 119 | 99.52 147 |
|
tpmvs | | | 94.28 187 | 93.57 187 | 96.40 191 | 98.55 142 | 91.50 262 | 95.70 338 | 98.55 83 | 87.47 277 | 92.15 213 | 94.26 318 | 91.42 148 | 98.95 162 | 88.15 266 | 95.85 186 | 98.76 201 |
|
ACMMP |  | | 97.74 83 | 97.44 83 | 98.66 97 | 99.92 35 | 96.13 147 | 99.18 223 | 99.45 17 | 94.84 87 | 96.41 161 | 99.71 86 | 91.40 149 | 99.99 36 | 97.99 107 | 98.03 146 | 99.87 93 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Vis-MVSNet (Re-imp) | | | 96.32 134 | 95.98 127 | 97.35 164 | 97.93 174 | 94.82 187 | 99.47 189 | 98.15 179 | 91.83 200 | 95.09 182 | 99.11 139 | 91.37 150 | 97.47 247 | 93.47 200 | 97.43 154 | 99.74 108 |
|
sss | | | 97.57 88 | 97.03 99 | 99.18 54 | 98.37 149 | 98.04 72 | 99.73 145 | 99.38 21 | 93.46 144 | 98.76 95 | 99.06 142 | 91.21 151 | 99.89 79 | 96.33 144 | 97.01 166 | 99.62 126 |
|
pcd_1.5k_mvsjas | | | 7.60 340 | 10.13 343 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 91.20 152 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
PS-MVSNAJss | | | 93.64 200 | 93.31 197 | 94.61 237 | 92.11 323 | 92.19 241 | 99.12 226 | 97.38 250 | 92.51 181 | 88.45 267 | 96.99 229 | 91.20 152 | 97.29 258 | 94.36 178 | 87.71 249 | 94.36 246 |
|
PS-MVSNAJ | | | 98.44 47 | 98.20 50 | 99.16 59 | 98.80 135 | 98.92 23 | 99.54 178 | 98.17 174 | 97.34 16 | 99.85 6 | 99.85 33 | 91.20 152 | 99.89 79 | 99.41 40 | 99.67 95 | 98.69 203 |
|
CPTT-MVS | | | 97.64 87 | 97.32 89 | 98.58 105 | 99.97 3 | 95.77 159 | 99.96 25 | 98.35 146 | 89.90 242 | 98.36 113 | 99.79 62 | 91.18 155 | 99.99 36 | 98.37 91 | 99.99 20 | 99.99 20 |
|
CR-MVSNet | | | 93.45 204 | 92.62 206 | 95.94 202 | 96.29 245 | 92.66 231 | 92.01 350 | 96.23 322 | 92.62 172 | 96.94 145 | 93.31 327 | 91.04 156 | 96.03 317 | 79.23 323 | 95.96 183 | 99.13 186 |
|
Patchmtry | | | 89.70 281 | 88.49 283 | 93.33 281 | 96.24 247 | 89.94 290 | 91.37 353 | 96.23 322 | 78.22 340 | 87.69 279 | 93.31 327 | 91.04 156 | 96.03 317 | 80.18 322 | 82.10 287 | 94.02 278 |
|
miper_ehance_all_eth | | | 93.16 207 | 92.60 207 | 94.82 231 | 97.57 198 | 93.56 211 | 99.50 184 | 97.07 280 | 88.75 260 | 88.85 262 | 95.52 274 | 90.97 158 | 96.74 289 | 90.77 238 | 84.45 272 | 94.17 261 |
|
MVSFormer | | | 96.94 109 | 96.60 110 | 97.95 138 | 97.28 216 | 97.70 85 | 99.55 176 | 97.27 260 | 91.17 218 | 99.43 55 | 99.54 107 | 90.92 159 | 96.89 282 | 94.67 172 | 99.62 98 | 99.25 177 |
|
lupinMVS | | | 97.85 75 | 97.60 78 | 98.62 100 | 97.28 216 | 97.70 85 | 99.99 5 | 97.55 228 | 95.50 71 | 99.43 55 | 99.67 95 | 90.92 159 | 98.71 175 | 98.40 90 | 99.62 98 | 99.45 156 |
|
hse-mvs3 | | | 94.92 165 | 94.36 168 | 96.59 185 | 98.85 132 | 91.29 264 | 98.93 251 | 98.94 36 | 95.90 56 | 98.77 93 | 98.42 192 | 90.89 161 | 99.77 115 | 97.80 113 | 70.76 339 | 98.72 202 |
|
hse-mvs2 | | | 94.38 182 | 94.08 175 | 95.31 215 | 98.27 156 | 90.02 286 | 99.29 215 | 98.56 77 | 95.90 56 | 98.77 93 | 98.00 201 | 90.89 161 | 98.26 214 | 97.80 113 | 69.20 345 | 97.64 217 |
|
xiu_mvs_v2_base | | | 98.23 63 | 97.97 64 | 99.02 77 | 98.69 139 | 98.66 46 | 99.52 180 | 98.08 185 | 97.05 26 | 99.86 4 | 99.86 29 | 90.65 163 | 99.71 129 | 99.39 41 | 98.63 130 | 98.69 203 |
|
IS-MVSNet | | | 96.29 137 | 95.90 136 | 97.45 157 | 98.13 166 | 94.80 188 | 99.08 230 | 97.61 222 | 92.02 196 | 95.54 177 | 98.96 155 | 90.64 164 | 98.08 222 | 93.73 196 | 97.41 157 | 99.47 153 |
|
cl-mvsnet2 | | | 93.77 195 | 93.25 199 | 95.33 214 | 99.49 99 | 94.43 194 | 99.61 167 | 98.09 183 | 90.38 233 | 89.16 258 | 95.61 268 | 90.56 165 | 97.34 252 | 91.93 217 | 84.45 272 | 94.21 259 |
|
tpm | | | 93.70 199 | 93.41 194 | 94.58 239 | 95.36 273 | 87.41 314 | 97.01 321 | 96.90 298 | 90.85 227 | 96.72 152 | 94.14 319 | 90.40 166 | 96.84 285 | 90.75 239 | 88.54 241 | 99.51 149 |
|
114514_t | | | 97.41 95 | 96.83 103 | 99.14 63 | 99.51 98 | 97.83 80 | 99.89 84 | 98.27 161 | 88.48 266 | 99.06 80 | 99.66 97 | 90.30 167 | 99.64 139 | 96.32 145 | 99.97 44 | 99.96 70 |
|
ADS-MVSNet2 | | | 93.80 194 | 93.88 180 | 93.55 279 | 97.87 178 | 85.94 320 | 94.24 339 | 96.84 302 | 90.07 239 | 96.43 159 | 94.48 314 | 90.29 168 | 95.37 325 | 87.44 273 | 97.23 160 | 99.36 166 |
|
ADS-MVSNet | | | 94.79 167 | 94.02 176 | 97.11 170 | 97.87 178 | 93.79 206 | 94.24 339 | 98.16 177 | 90.07 239 | 96.43 159 | 94.48 314 | 90.29 168 | 98.19 218 | 87.44 273 | 97.23 160 | 99.36 166 |
|
miper_lstm_enhance | | | 91.81 236 | 91.39 234 | 93.06 289 | 97.34 210 | 89.18 297 | 99.38 201 | 96.79 307 | 86.70 290 | 87.47 284 | 95.22 292 | 90.00 170 | 95.86 321 | 88.26 264 | 81.37 293 | 94.15 268 |
|
cl_fuxian | | | 92.53 222 | 91.87 224 | 94.52 242 | 97.40 207 | 92.99 223 | 99.40 196 | 96.93 296 | 87.86 273 | 88.69 265 | 95.44 278 | 89.95 171 | 96.44 301 | 90.45 242 | 80.69 303 | 94.14 271 |
|
thres200 | | | 96.96 108 | 96.21 120 | 99.22 50 | 98.97 119 | 98.84 30 | 99.85 104 | 99.71 5 | 93.17 152 | 96.26 164 | 98.88 163 | 89.87 172 | 99.51 143 | 94.26 182 | 94.91 200 | 99.31 172 |
|
tpm cat1 | | | 93.51 201 | 92.52 212 | 96.47 186 | 97.77 185 | 91.47 263 | 96.13 331 | 98.06 186 | 80.98 333 | 92.91 208 | 93.78 322 | 89.66 173 | 98.87 163 | 87.03 281 | 96.39 176 | 99.09 188 |
|
OMC-MVS | | | 97.28 98 | 97.23 91 | 97.41 159 | 99.76 74 | 93.36 218 | 99.65 159 | 97.95 195 | 96.03 55 | 97.41 137 | 99.70 88 | 89.61 174 | 99.51 143 | 96.73 142 | 98.25 140 | 99.38 163 |
|
DROMVSNet | | | 97.45 90 | 97.30 90 | 97.90 142 | 97.43 206 | 95.90 154 | 99.99 5 | 97.08 278 | 94.64 95 | 99.64 36 | 99.33 125 | 89.56 175 | 98.15 219 | 98.76 75 | 99.25 117 | 99.65 123 |
|
cl-mvsnet1 | | | 92.32 226 | 91.60 227 | 94.47 246 | 97.31 213 | 92.74 227 | 99.58 170 | 96.75 309 | 86.99 286 | 87.64 280 | 95.54 272 | 89.55 176 | 96.50 299 | 88.58 260 | 82.44 285 | 94.17 261 |
|
cl-mvsnet____ | | | 92.31 227 | 91.58 228 | 94.52 242 | 97.33 212 | 92.77 225 | 99.57 172 | 96.78 308 | 86.97 287 | 87.56 282 | 95.51 275 | 89.43 177 | 96.62 295 | 88.60 259 | 82.44 285 | 94.16 266 |
|
AUN-MVS | | | 93.28 205 | 92.60 207 | 95.34 213 | 98.29 152 | 90.09 285 | 99.31 210 | 98.56 77 | 91.80 203 | 96.35 163 | 98.00 201 | 89.38 178 | 98.28 210 | 92.46 212 | 69.22 344 | 97.64 217 |
|
tfpn200view9 | | | 96.79 115 | 95.99 125 | 99.19 53 | 98.94 121 | 98.82 31 | 99.78 126 | 99.71 5 | 92.86 157 | 96.02 167 | 98.87 165 | 89.33 179 | 99.50 145 | 93.84 188 | 94.57 201 | 99.27 175 |
|
thres400 | | | 96.78 116 | 95.99 125 | 99.16 59 | 98.94 121 | 98.82 31 | 99.78 126 | 99.71 5 | 92.86 157 | 96.02 167 | 98.87 165 | 89.33 179 | 99.50 145 | 93.84 188 | 94.57 201 | 99.16 182 |
|
thres100view900 | | | 96.74 119 | 95.92 135 | 99.18 54 | 98.90 128 | 98.77 36 | 99.74 140 | 99.71 5 | 92.59 175 | 95.84 170 | 98.86 167 | 89.25 181 | 99.50 145 | 93.84 188 | 94.57 201 | 99.27 175 |
|
thres600view7 | | | 96.69 122 | 95.87 138 | 99.14 63 | 98.90 128 | 98.78 35 | 99.74 140 | 99.71 5 | 92.59 175 | 95.84 170 | 98.86 167 | 89.25 181 | 99.50 145 | 93.44 201 | 94.50 204 | 99.16 182 |
|
eth_miper_zixun_eth | | | 92.41 225 | 91.93 222 | 93.84 270 | 97.28 216 | 90.68 272 | 98.83 262 | 96.97 291 | 88.57 265 | 89.19 257 | 95.73 265 | 89.24 183 | 96.69 293 | 89.97 250 | 81.55 291 | 94.15 268 |
|
PVSNet_Blended_VisFu | | | 97.27 99 | 96.81 104 | 98.66 97 | 98.81 134 | 96.67 124 | 99.92 68 | 98.64 63 | 94.51 99 | 96.38 162 | 98.49 186 | 89.05 184 | 99.88 85 | 97.10 133 | 98.34 135 | 99.43 159 |
|
PVSNet_BlendedMVS | | | 96.05 141 | 95.82 139 | 96.72 180 | 99.59 90 | 96.99 114 | 99.95 43 | 99.10 28 | 94.06 121 | 98.27 117 | 95.80 261 | 89.00 185 | 99.95 60 | 99.12 47 | 87.53 252 | 93.24 315 |
|
PVSNet_Blended | | | 97.94 71 | 97.64 75 | 98.83 88 | 99.59 90 | 96.99 114 | 100.00 1 | 99.10 28 | 95.38 72 | 98.27 117 | 99.08 141 | 89.00 185 | 99.95 60 | 99.12 47 | 99.25 117 | 99.57 138 |
|
IterMVS-LS | | | 92.69 219 | 92.11 218 | 94.43 250 | 96.80 236 | 92.74 227 | 99.45 192 | 96.89 299 | 88.98 253 | 89.65 244 | 95.38 283 | 88.77 187 | 96.34 305 | 90.98 233 | 82.04 288 | 94.22 257 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 93.73 197 | 93.40 195 | 94.74 232 | 96.80 236 | 92.69 230 | 99.06 235 | 97.67 215 | 88.96 255 | 91.39 218 | 99.02 144 | 88.75 188 | 97.30 255 | 91.07 228 | 87.85 247 | 94.22 257 |
|
UA-Net | | | 96.54 126 | 95.96 132 | 98.27 126 | 98.23 159 | 95.71 163 | 98.00 305 | 98.45 107 | 93.72 138 | 98.41 110 | 99.27 129 | 88.71 189 | 99.66 137 | 91.19 226 | 97.69 149 | 99.44 158 |
|
abl_6 | | | 97.67 86 | 97.34 87 | 98.66 97 | 99.68 86 | 96.11 150 | 99.68 153 | 98.14 180 | 93.80 134 | 99.27 71 | 99.70 88 | 88.65 190 | 99.98 42 | 97.46 124 | 99.72 92 | 99.89 90 |
|
MAR-MVS | | | 97.43 91 | 97.19 92 | 98.15 132 | 99.47 100 | 94.79 189 | 99.05 239 | 98.76 51 | 92.65 171 | 98.66 100 | 99.82 53 | 88.52 191 | 99.98 42 | 98.12 99 | 99.63 97 | 99.67 117 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
mvs_anonymous | | | 95.65 152 | 95.03 157 | 97.53 154 | 98.19 161 | 95.74 161 | 99.33 207 | 97.49 238 | 90.87 226 | 90.47 228 | 97.10 222 | 88.23 192 | 97.16 263 | 95.92 150 | 97.66 151 | 99.68 115 |
|
MVS_Test | | | 96.46 129 | 95.74 140 | 98.61 101 | 98.18 162 | 97.23 105 | 99.31 210 | 97.15 270 | 91.07 222 | 98.84 89 | 97.05 226 | 88.17 193 | 98.97 161 | 94.39 177 | 97.50 153 | 99.61 128 |
|
CANet | | | 98.27 59 | 97.82 70 | 99.63 12 | 99.72 83 | 99.10 17 | 99.98 10 | 98.51 97 | 97.00 28 | 98.52 105 | 99.71 86 | 87.80 194 | 99.95 60 | 99.75 22 | 99.38 113 | 99.83 96 |
|
jason | | | 97.24 100 | 96.86 102 | 98.38 122 | 95.73 262 | 97.32 103 | 99.97 18 | 97.40 249 | 95.34 74 | 98.60 104 | 99.54 107 | 87.70 195 | 98.56 182 | 97.94 110 | 99.47 109 | 99.25 177 |
jason: jason. |
FIs | | | 94.10 188 | 93.43 191 | 96.11 198 | 94.70 282 | 96.82 119 | 99.58 170 | 98.93 40 | 92.54 179 | 89.34 251 | 97.31 216 | 87.62 196 | 97.10 269 | 94.22 184 | 86.58 257 | 94.40 243 |
|
1314 | | | 96.84 113 | 95.96 132 | 99.48 33 | 96.74 240 | 98.52 55 | 98.31 291 | 98.86 45 | 95.82 58 | 89.91 235 | 98.98 151 | 87.49 197 | 99.96 53 | 97.80 113 | 99.73 91 | 99.96 70 |
|
LS3D | | | 95.84 146 | 95.11 156 | 98.02 137 | 99.85 55 | 95.10 180 | 98.74 268 | 98.50 101 | 87.22 282 | 93.66 199 | 99.86 29 | 87.45 198 | 99.95 60 | 90.94 234 | 99.81 87 | 99.02 190 |
|
FC-MVSNet-test | | | 93.81 193 | 93.15 200 | 95.80 206 | 94.30 288 | 96.20 144 | 99.42 195 | 98.89 42 | 92.33 187 | 89.03 260 | 97.27 218 | 87.39 199 | 96.83 286 | 93.20 203 | 86.48 258 | 94.36 246 |
|
RPMNet | | | 89.76 280 | 87.28 295 | 97.19 167 | 96.29 245 | 92.66 231 | 92.01 350 | 98.31 153 | 70.19 354 | 96.94 145 | 85.87 353 | 87.25 200 | 99.78 111 | 62.69 356 | 95.96 183 | 99.13 186 |
|
UniMVSNet_NR-MVSNet | | | 92.95 213 | 92.11 218 | 95.49 208 | 94.61 284 | 95.28 174 | 99.83 114 | 99.08 30 | 91.49 210 | 89.21 255 | 96.86 233 | 87.14 201 | 96.73 290 | 93.20 203 | 77.52 323 | 94.46 236 |
|
UniMVSNet (Re) | | | 93.07 210 | 92.13 217 | 95.88 203 | 94.84 279 | 96.24 143 | 99.88 87 | 98.98 34 | 92.49 183 | 89.25 253 | 95.40 280 | 87.09 202 | 97.14 265 | 93.13 207 | 78.16 318 | 94.26 254 |
|
DP-MVS | | | 94.54 177 | 93.42 192 | 97.91 141 | 99.46 102 | 94.04 200 | 98.93 251 | 97.48 239 | 81.15 332 | 90.04 232 | 99.55 105 | 87.02 203 | 99.95 60 | 88.97 257 | 98.11 141 | 99.73 109 |
|
PMMVS | | | 96.76 117 | 96.76 106 | 96.76 178 | 98.28 154 | 92.10 243 | 99.91 72 | 97.98 192 | 94.12 116 | 99.53 47 | 99.39 121 | 86.93 204 | 98.73 173 | 96.95 138 | 97.73 148 | 99.45 156 |
|
canonicalmvs | | | 97.09 106 | 96.32 118 | 99.39 43 | 98.93 123 | 98.95 21 | 99.72 148 | 97.35 252 | 94.45 100 | 97.88 128 | 99.42 116 | 86.71 205 | 99.52 142 | 98.48 88 | 93.97 210 | 99.72 111 |
|
MVS | | | 96.60 125 | 95.56 144 | 99.72 9 | 96.85 233 | 99.22 15 | 98.31 291 | 98.94 36 | 91.57 208 | 90.90 223 | 99.61 101 | 86.66 206 | 99.96 53 | 97.36 126 | 99.88 76 | 99.99 20 |
|
Effi-MVS+ | | | 96.30 136 | 95.69 141 | 98.16 129 | 97.85 180 | 96.26 139 | 97.41 313 | 97.21 263 | 90.37 234 | 98.65 101 | 98.58 182 | 86.61 207 | 98.70 176 | 97.11 132 | 97.37 158 | 99.52 147 |
|
diffmvs | | | 97.00 107 | 96.64 109 | 98.09 134 | 97.64 195 | 96.17 146 | 99.81 117 | 97.19 264 | 94.67 94 | 98.95 86 | 99.28 126 | 86.43 208 | 98.76 171 | 98.37 91 | 97.42 156 | 99.33 170 |
|
nrg030 | | | 93.51 201 | 92.53 211 | 96.45 188 | 94.36 286 | 97.20 106 | 99.81 117 | 97.16 269 | 91.60 207 | 89.86 237 | 97.46 211 | 86.37 209 | 97.68 239 | 95.88 151 | 80.31 306 | 94.46 236 |
|
VNet | | | 97.21 102 | 96.57 112 | 99.13 68 | 98.97 119 | 97.82 81 | 99.03 241 | 99.21 27 | 94.31 110 | 99.18 77 | 98.88 163 | 86.26 210 | 99.89 79 | 98.93 60 | 94.32 205 | 99.69 114 |
|
AdaColmap |  | | 97.23 101 | 96.80 105 | 98.51 112 | 99.99 1 | 95.60 166 | 99.09 228 | 98.84 47 | 93.32 147 | 96.74 151 | 99.72 84 | 86.04 211 | 100.00 1 | 98.01 105 | 99.43 112 | 99.94 80 |
|
Effi-MVS+-dtu | | | 94.53 179 | 95.30 150 | 92.22 297 | 97.77 185 | 82.54 335 | 99.59 169 | 97.06 281 | 94.92 83 | 95.29 180 | 95.37 284 | 85.81 212 | 97.89 234 | 94.80 165 | 97.07 164 | 96.23 227 |
|
mvs-test1 | | | 95.53 153 | 95.97 130 | 94.20 255 | 97.77 185 | 85.44 324 | 99.95 43 | 97.06 281 | 94.92 83 | 96.58 154 | 98.72 173 | 85.81 212 | 98.98 160 | 94.80 165 | 98.11 141 | 98.18 207 |
|
CVMVSNet | | | 94.68 173 | 94.94 158 | 93.89 269 | 96.80 236 | 86.92 316 | 99.06 235 | 98.98 34 | 94.45 100 | 94.23 193 | 99.02 144 | 85.60 214 | 95.31 327 | 90.91 235 | 95.39 196 | 99.43 159 |
|
xiu_mvs_v1_base_debu | | | 97.43 91 | 97.06 95 | 98.55 106 | 97.74 188 | 98.14 67 | 99.31 210 | 97.86 205 | 96.43 41 | 99.62 40 | 99.69 91 | 85.56 215 | 99.68 133 | 99.05 50 | 98.31 137 | 97.83 212 |
|
xiu_mvs_v1_base | | | 97.43 91 | 97.06 95 | 98.55 106 | 97.74 188 | 98.14 67 | 99.31 210 | 97.86 205 | 96.43 41 | 99.62 40 | 99.69 91 | 85.56 215 | 99.68 133 | 99.05 50 | 98.31 137 | 97.83 212 |
|
xiu_mvs_v1_base_debi | | | 97.43 91 | 97.06 95 | 98.55 106 | 97.74 188 | 98.14 67 | 99.31 210 | 97.86 205 | 96.43 41 | 99.62 40 | 99.69 91 | 85.56 215 | 99.68 133 | 99.05 50 | 98.31 137 | 97.83 212 |
|
baseline | | | 96.43 130 | 95.98 127 | 97.76 147 | 97.34 210 | 95.17 179 | 99.51 182 | 97.17 267 | 93.92 129 | 96.90 147 | 99.28 126 | 85.37 218 | 98.64 179 | 97.50 123 | 96.86 170 | 99.46 154 |
|
bset_n11_16_dypcd | | | 93.05 211 | 92.30 215 | 95.31 215 | 90.23 341 | 95.05 181 | 99.44 194 | 97.28 259 | 92.51 181 | 90.65 226 | 96.68 239 | 85.30 219 | 96.71 292 | 94.49 176 | 84.14 275 | 94.16 266 |
|
PCF-MVS | | 94.20 5 | 95.18 159 | 94.10 174 | 98.43 118 | 98.55 142 | 95.99 152 | 97.91 307 | 97.31 257 | 90.35 235 | 89.48 248 | 99.22 135 | 85.19 220 | 99.89 79 | 90.40 245 | 98.47 133 | 99.41 161 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
casdiffmvs | | | 96.42 131 | 95.97 130 | 97.77 146 | 97.30 214 | 94.98 182 | 99.84 108 | 97.09 277 | 93.75 137 | 96.58 154 | 99.26 132 | 85.07 221 | 98.78 168 | 97.77 118 | 97.04 165 | 99.54 144 |
|
D2MVS | | | 92.76 216 | 92.59 210 | 93.27 283 | 95.13 274 | 89.54 294 | 99.69 151 | 99.38 21 | 92.26 188 | 87.59 281 | 94.61 311 | 85.05 222 | 97.79 236 | 91.59 222 | 88.01 246 | 92.47 327 |
|
BH-w/o | | | 95.71 150 | 95.38 148 | 96.68 181 | 98.49 146 | 92.28 239 | 99.84 108 | 97.50 237 | 92.12 192 | 92.06 214 | 98.79 171 | 84.69 223 | 98.67 178 | 95.29 156 | 99.66 96 | 99.09 188 |
|
Fast-Effi-MVS+ | | | 95.02 163 | 94.19 171 | 97.52 155 | 97.88 176 | 94.55 192 | 99.97 18 | 97.08 278 | 88.85 259 | 94.47 189 | 97.96 204 | 84.59 224 | 98.41 194 | 89.84 251 | 97.10 163 | 99.59 131 |
|
PVSNet | | 91.05 13 | 97.13 103 | 96.69 108 | 98.45 116 | 99.52 96 | 95.81 157 | 99.95 43 | 99.65 10 | 94.73 90 | 99.04 81 | 99.21 136 | 84.48 225 | 99.95 60 | 94.92 160 | 98.74 128 | 99.58 137 |
|
WR-MVS_H | | | 91.30 245 | 90.35 248 | 94.15 256 | 94.17 290 | 92.62 234 | 99.17 224 | 98.94 36 | 88.87 258 | 86.48 298 | 94.46 316 | 84.36 226 | 96.61 296 | 88.19 265 | 78.51 316 | 93.21 316 |
|
CHOSEN 1792x2688 | | | 96.81 114 | 96.53 113 | 97.64 151 | 98.91 127 | 93.07 220 | 99.65 159 | 99.80 3 | 95.64 67 | 95.39 178 | 98.86 167 | 84.35 227 | 99.90 75 | 96.98 136 | 99.16 121 | 99.95 78 |
|
our_test_3 | | | 90.39 265 | 89.48 268 | 93.12 286 | 92.40 320 | 89.57 293 | 99.33 207 | 96.35 321 | 87.84 274 | 85.30 309 | 94.99 300 | 84.14 228 | 96.09 315 | 80.38 320 | 84.56 271 | 93.71 305 |
|
MSDG | | | 94.37 183 | 93.36 196 | 97.40 160 | 98.88 130 | 93.95 204 | 99.37 203 | 97.38 250 | 85.75 303 | 90.80 224 | 99.17 137 | 84.11 229 | 99.88 85 | 86.35 286 | 98.43 134 | 98.36 205 |
|
pmmvs4 | | | 92.10 232 | 91.07 238 | 95.18 219 | 92.82 316 | 94.96 183 | 99.48 188 | 96.83 303 | 87.45 278 | 88.66 266 | 96.56 245 | 83.78 230 | 96.83 286 | 89.29 254 | 84.77 270 | 93.75 300 |
|
BH-untuned | | | 95.18 159 | 94.83 160 | 96.22 196 | 98.36 150 | 91.22 265 | 99.80 122 | 97.32 256 | 90.91 225 | 91.08 221 | 98.67 175 | 83.51 231 | 98.54 184 | 94.23 183 | 99.61 101 | 98.92 192 |
|
LCM-MVSNet-Re | | | 92.31 227 | 92.60 207 | 91.43 305 | 97.53 200 | 79.27 351 | 99.02 242 | 91.83 358 | 92.07 193 | 80.31 332 | 94.38 317 | 83.50 232 | 95.48 323 | 97.22 130 | 97.58 152 | 99.54 144 |
|
cdsmvs_eth3d_5k | | | 23.43 337 | 31.24 340 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 98.09 183 | 0.00 369 | 0.00 370 | 99.67 95 | 83.37 233 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
DeepC-MVS | | 94.51 4 | 96.92 111 | 96.40 117 | 98.45 116 | 99.16 110 | 95.90 154 | 99.66 156 | 98.06 186 | 96.37 47 | 94.37 190 | 99.49 110 | 83.29 234 | 99.90 75 | 97.63 121 | 99.61 101 | 99.55 140 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
NR-MVSNet | | | 91.56 244 | 90.22 252 | 95.60 207 | 94.05 291 | 95.76 160 | 98.25 294 | 98.70 54 | 91.16 220 | 80.78 331 | 96.64 242 | 83.23 235 | 96.57 297 | 91.41 223 | 77.73 322 | 94.46 236 |
|
3Dnovator+ | | 91.53 11 | 96.31 135 | 95.24 151 | 99.52 26 | 96.88 232 | 98.64 49 | 99.72 148 | 98.24 164 | 95.27 76 | 88.42 272 | 98.98 151 | 82.76 236 | 99.94 68 | 97.10 133 | 99.83 81 | 99.96 70 |
|
QAPM | | | 95.40 156 | 94.17 172 | 99.10 69 | 96.92 227 | 97.71 83 | 99.40 196 | 98.68 56 | 89.31 247 | 88.94 261 | 98.89 161 | 82.48 237 | 99.96 53 | 93.12 208 | 99.83 81 | 99.62 126 |
|
PatchMatch-RL | | | 96.04 142 | 95.40 146 | 97.95 138 | 99.59 90 | 95.22 178 | 99.52 180 | 99.07 31 | 93.96 126 | 96.49 157 | 98.35 193 | 82.28 238 | 99.82 105 | 90.15 248 | 99.22 120 | 98.81 199 |
|
GeoE | | | 94.36 185 | 93.48 190 | 96.99 171 | 97.29 215 | 93.54 212 | 99.96 25 | 96.72 311 | 88.35 269 | 93.43 200 | 98.94 158 | 82.05 239 | 98.05 225 | 88.12 268 | 96.48 175 | 99.37 165 |
|
3Dnovator | | 91.47 12 | 96.28 138 | 95.34 149 | 99.08 71 | 96.82 235 | 97.47 97 | 99.45 192 | 98.81 48 | 95.52 70 | 89.39 249 | 99.00 148 | 81.97 240 | 99.95 60 | 97.27 128 | 99.83 81 | 99.84 95 |
|
v8 | | | 90.54 263 | 89.17 271 | 94.66 235 | 93.43 302 | 93.40 217 | 99.20 221 | 96.94 295 | 85.76 301 | 87.56 282 | 94.51 312 | 81.96 241 | 97.19 262 | 84.94 296 | 78.25 317 | 93.38 312 |
|
test_part1 | | | 92.15 231 | 90.72 241 | 96.44 190 | 98.87 131 | 97.46 98 | 98.99 244 | 98.26 162 | 85.89 298 | 86.34 301 | 96.34 250 | 81.71 242 | 97.48 246 | 91.06 229 | 78.99 312 | 94.37 245 |
|
v148 | | | 90.70 258 | 89.63 261 | 93.92 267 | 92.97 312 | 90.97 267 | 99.75 137 | 96.89 299 | 87.51 276 | 88.27 274 | 95.01 297 | 81.67 243 | 97.04 274 | 87.40 275 | 77.17 328 | 93.75 300 |
|
DU-MVS | | | 92.46 224 | 91.45 233 | 95.49 208 | 94.05 291 | 95.28 174 | 99.81 117 | 98.74 52 | 92.25 189 | 89.21 255 | 96.64 242 | 81.66 244 | 96.73 290 | 93.20 203 | 77.52 323 | 94.46 236 |
|
Baseline_NR-MVSNet | | | 90.33 268 | 89.51 266 | 92.81 292 | 92.84 314 | 89.95 288 | 99.77 129 | 93.94 354 | 84.69 316 | 89.04 259 | 95.66 267 | 81.66 244 | 96.52 298 | 90.99 232 | 76.98 329 | 91.97 333 |
|
FMVSNet3 | | | 92.69 219 | 91.58 228 | 95.99 200 | 98.29 152 | 97.42 101 | 99.26 218 | 97.62 219 | 89.80 244 | 89.68 241 | 95.32 286 | 81.62 246 | 96.27 308 | 87.01 282 | 85.65 262 | 94.29 252 |
|
Fast-Effi-MVS+-dtu | | | 93.72 198 | 93.86 181 | 93.29 282 | 97.06 221 | 86.16 318 | 99.80 122 | 96.83 303 | 92.66 170 | 92.58 212 | 97.83 206 | 81.39 247 | 97.67 240 | 89.75 252 | 96.87 169 | 96.05 229 |
|
CANet_DTU | | | 96.76 117 | 96.15 121 | 98.60 102 | 98.78 136 | 97.53 90 | 99.84 108 | 97.63 217 | 97.25 23 | 99.20 73 | 99.64 99 | 81.36 248 | 99.98 42 | 92.77 211 | 98.89 124 | 98.28 206 |
|
V42 | | | 91.28 247 | 90.12 256 | 94.74 232 | 93.42 303 | 93.46 214 | 99.68 153 | 97.02 284 | 87.36 279 | 89.85 239 | 95.05 295 | 81.31 249 | 97.34 252 | 87.34 276 | 80.07 308 | 93.40 310 |
|
test_djsdf | | | 92.83 215 | 92.29 216 | 94.47 246 | 91.90 326 | 92.46 236 | 99.55 176 | 97.27 260 | 91.17 218 | 89.96 233 | 96.07 258 | 81.10 250 | 96.89 282 | 94.67 172 | 88.91 231 | 94.05 277 |
|
ppachtmachnet_test | | | 89.58 283 | 88.35 285 | 93.25 284 | 92.40 320 | 90.44 279 | 99.33 207 | 96.73 310 | 85.49 307 | 85.90 307 | 95.77 262 | 81.09 251 | 96.00 319 | 76.00 338 | 82.49 284 | 93.30 313 |
|
v1144 | | | 91.09 250 | 89.83 258 | 94.87 228 | 93.25 305 | 93.69 209 | 99.62 166 | 96.98 289 | 86.83 289 | 89.64 245 | 94.99 300 | 80.94 252 | 97.05 272 | 85.08 295 | 81.16 295 | 93.87 293 |
|
v10 | | | 90.25 271 | 88.82 278 | 94.57 240 | 93.53 300 | 93.43 215 | 99.08 230 | 96.87 301 | 85.00 311 | 87.34 288 | 94.51 312 | 80.93 253 | 97.02 278 | 82.85 308 | 79.23 311 | 93.26 314 |
|
EU-MVSNet | | | 90.14 275 | 90.34 249 | 89.54 320 | 92.55 319 | 81.06 345 | 98.69 273 | 98.04 188 | 91.41 216 | 86.59 295 | 96.84 236 | 80.83 254 | 93.31 347 | 86.20 287 | 81.91 289 | 94.26 254 |
|
v2v482 | | | 91.30 245 | 90.07 257 | 95.01 223 | 93.13 306 | 93.79 206 | 99.77 129 | 97.02 284 | 88.05 271 | 89.25 253 | 95.37 284 | 80.73 255 | 97.15 264 | 87.28 277 | 80.04 309 | 94.09 274 |
|
WR-MVS | | | 92.31 227 | 91.25 235 | 95.48 211 | 94.45 285 | 95.29 173 | 99.60 168 | 98.68 56 | 90.10 238 | 88.07 276 | 96.89 231 | 80.68 256 | 96.80 288 | 93.14 206 | 79.67 310 | 94.36 246 |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 257 | | | | |
|
HQP-MVS | | | 94.61 175 | 94.50 166 | 94.92 227 | 95.78 256 | 91.85 249 | 99.87 90 | 97.89 201 | 96.82 30 | 93.37 201 | 98.65 176 | 80.65 257 | 98.39 198 | 97.92 111 | 89.60 222 | 94.53 231 |
|
XVG-OURS | | | 94.82 166 | 94.74 163 | 95.06 222 | 98.00 170 | 89.19 295 | 99.08 230 | 97.55 228 | 94.10 117 | 94.71 185 | 99.62 100 | 80.51 259 | 99.74 125 | 96.04 148 | 93.06 218 | 96.25 225 |
|
v144192 | | | 90.79 257 | 89.52 265 | 94.59 238 | 93.11 309 | 92.77 225 | 99.56 174 | 96.99 287 | 86.38 293 | 89.82 240 | 94.95 302 | 80.50 260 | 97.10 269 | 83.98 301 | 80.41 304 | 93.90 290 |
|
HQP_MVS | | | 94.49 180 | 94.36 168 | 94.87 228 | 95.71 265 | 91.74 253 | 99.84 108 | 97.87 203 | 96.38 44 | 93.01 205 | 98.59 180 | 80.47 261 | 98.37 203 | 97.79 116 | 89.55 225 | 94.52 233 |
|
plane_prior6 | | | | | | 95.76 260 | 91.72 256 | | | | | | 80.47 261 | | | | |
|
v7n | | | 89.65 282 | 88.29 287 | 93.72 272 | 92.22 322 | 90.56 276 | 99.07 234 | 97.10 276 | 85.42 309 | 86.73 292 | 94.72 305 | 80.06 263 | 97.13 266 | 81.14 317 | 78.12 319 | 93.49 308 |
|
TranMVSNet+NR-MVSNet | | | 91.68 243 | 90.61 244 | 94.87 228 | 93.69 298 | 93.98 203 | 99.69 151 | 98.65 60 | 91.03 223 | 88.44 268 | 96.83 237 | 80.05 264 | 96.18 311 | 90.26 247 | 76.89 331 | 94.45 241 |
|
FMVSNet5 | | | 88.32 292 | 87.47 294 | 90.88 308 | 96.90 231 | 88.39 307 | 97.28 315 | 95.68 333 | 82.60 328 | 84.67 312 | 92.40 336 | 79.83 265 | 91.16 352 | 76.39 337 | 81.51 292 | 93.09 317 |
|
RPSCF | | | 91.80 239 | 92.79 204 | 88.83 324 | 98.15 164 | 69.87 355 | 98.11 301 | 96.60 315 | 83.93 319 | 94.33 191 | 99.27 129 | 79.60 266 | 99.46 150 | 91.99 216 | 93.16 217 | 97.18 221 |
|
Vis-MVSNet |  | | 95.72 148 | 95.15 155 | 97.45 157 | 97.62 196 | 94.28 197 | 99.28 216 | 98.24 164 | 94.27 113 | 96.84 148 | 98.94 158 | 79.39 267 | 98.76 171 | 93.25 202 | 98.49 132 | 99.30 173 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v1192 | | | 90.62 262 | 89.25 270 | 94.72 234 | 93.13 306 | 93.07 220 | 99.50 184 | 97.02 284 | 86.33 294 | 89.56 247 | 95.01 297 | 79.22 268 | 97.09 271 | 82.34 311 | 81.16 295 | 94.01 280 |
|
CP-MVSNet | | | 91.23 248 | 90.22 252 | 94.26 253 | 93.96 293 | 92.39 238 | 99.09 228 | 98.57 75 | 88.95 256 | 86.42 299 | 96.57 244 | 79.19 269 | 96.37 303 | 90.29 246 | 78.95 313 | 94.02 278 |
|
MDA-MVSNet_test_wron | | | 85.51 305 | 83.32 312 | 92.10 299 | 90.96 335 | 88.58 304 | 99.20 221 | 96.52 317 | 79.70 337 | 57.12 359 | 92.69 332 | 79.11 270 | 93.86 342 | 77.10 334 | 77.46 325 | 93.86 294 |
|
YYNet1 | | | 85.50 306 | 83.33 311 | 92.00 300 | 90.89 336 | 88.38 308 | 99.22 220 | 96.55 316 | 79.60 338 | 57.26 358 | 92.72 330 | 79.09 271 | 93.78 343 | 77.25 333 | 77.37 326 | 93.84 295 |
|
XVG-OURS-SEG-HR | | | 94.79 167 | 94.70 164 | 95.08 221 | 98.05 168 | 89.19 295 | 99.08 230 | 97.54 230 | 93.66 139 | 94.87 184 | 99.58 103 | 78.78 272 | 99.79 109 | 97.31 127 | 93.40 214 | 96.25 225 |
|
GA-MVS | | | 93.83 191 | 92.84 202 | 96.80 176 | 95.73 262 | 93.57 210 | 99.88 87 | 97.24 262 | 92.57 178 | 92.92 207 | 96.66 240 | 78.73 273 | 97.67 240 | 87.75 271 | 94.06 209 | 99.17 181 |
|
OpenMVS |  | 90.15 15 | 94.77 169 | 93.59 186 | 98.33 123 | 96.07 249 | 97.48 96 | 99.56 174 | 98.57 75 | 90.46 232 | 86.51 296 | 98.95 157 | 78.57 274 | 99.94 68 | 93.86 187 | 99.74 90 | 97.57 219 |
|
v1921920 | | | 90.46 264 | 89.12 272 | 94.50 244 | 92.96 313 | 92.46 236 | 99.49 186 | 96.98 289 | 86.10 296 | 89.61 246 | 95.30 287 | 78.55 275 | 97.03 276 | 82.17 312 | 80.89 302 | 94.01 280 |
|
MVP-Stereo | | | 90.93 252 | 90.45 247 | 92.37 296 | 91.25 334 | 88.76 299 | 98.05 304 | 96.17 324 | 87.27 281 | 84.04 314 | 95.30 287 | 78.46 276 | 97.27 260 | 83.78 303 | 99.70 94 | 91.09 338 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
anonymousdsp | | | 91.79 241 | 90.92 239 | 94.41 251 | 90.76 337 | 92.93 224 | 98.93 251 | 97.17 267 | 89.08 249 | 87.46 285 | 95.30 287 | 78.43 277 | 96.92 281 | 92.38 213 | 88.73 236 | 93.39 311 |
|
v1240 | | | 90.20 272 | 88.79 279 | 94.44 248 | 93.05 311 | 92.27 240 | 99.38 201 | 96.92 297 | 85.89 298 | 89.36 250 | 94.87 304 | 77.89 278 | 97.03 276 | 80.66 319 | 81.08 298 | 94.01 280 |
|
CLD-MVS | | | 94.06 189 | 93.90 179 | 94.55 241 | 96.02 251 | 90.69 271 | 99.98 10 | 97.72 212 | 96.62 39 | 91.05 222 | 98.85 170 | 77.21 279 | 98.47 186 | 98.11 100 | 89.51 227 | 94.48 235 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
N_pmnet | | | 80.06 323 | 80.78 321 | 77.89 338 | 91.94 325 | 45.28 367 | 98.80 265 | 56.82 370 | 78.10 341 | 80.08 334 | 93.33 325 | 77.03 280 | 95.76 322 | 68.14 350 | 82.81 283 | 92.64 323 |
|
COLMAP_ROB |  | 90.47 14 | 92.18 230 | 91.49 232 | 94.25 254 | 99.00 117 | 88.04 311 | 98.42 289 | 96.70 312 | 82.30 329 | 88.43 270 | 99.01 146 | 76.97 281 | 99.85 94 | 86.11 289 | 96.50 174 | 94.86 230 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
cascas | | | 94.64 174 | 93.61 183 | 97.74 149 | 97.82 182 | 96.26 139 | 99.96 25 | 97.78 211 | 85.76 301 | 94.00 195 | 97.54 210 | 76.95 282 | 99.21 154 | 97.23 129 | 95.43 195 | 97.76 216 |
|
BH-RMVSNet | | | 95.18 159 | 94.31 170 | 97.80 143 | 98.17 163 | 95.23 177 | 99.76 134 | 97.53 232 | 92.52 180 | 94.27 192 | 99.25 133 | 76.84 283 | 98.80 166 | 90.89 236 | 99.54 105 | 99.35 168 |
|
PEN-MVS | | | 90.19 273 | 89.06 274 | 93.57 278 | 93.06 310 | 90.90 269 | 99.06 235 | 98.47 103 | 88.11 270 | 85.91 306 | 96.30 251 | 76.67 284 | 95.94 320 | 87.07 279 | 76.91 330 | 93.89 291 |
|
CL-MVSNet_2432*1600 | | | 84.50 312 | 83.15 314 | 88.53 327 | 86.00 352 | 81.79 341 | 98.82 263 | 97.35 252 | 85.12 310 | 83.62 318 | 90.91 342 | 76.66 285 | 91.40 351 | 69.53 347 | 60.36 354 | 92.40 328 |
|
IterMVS | | | 90.91 253 | 90.17 254 | 93.12 286 | 96.78 239 | 90.42 280 | 98.89 254 | 97.05 283 | 89.03 251 | 86.49 297 | 95.42 279 | 76.59 286 | 95.02 329 | 87.22 278 | 84.09 276 | 93.93 288 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 90.85 256 | 90.16 255 | 92.93 290 | 96.72 241 | 89.96 287 | 98.89 254 | 96.99 287 | 88.95 256 | 86.63 294 | 95.67 266 | 76.48 287 | 95.00 330 | 87.04 280 | 84.04 279 | 93.84 295 |
|
SCA | | | 94.69 171 | 93.81 182 | 97.33 165 | 97.10 219 | 94.44 193 | 98.86 260 | 98.32 151 | 93.30 148 | 96.17 166 | 95.59 270 | 76.48 287 | 97.95 231 | 91.06 229 | 97.43 154 | 99.59 131 |
|
ab-mvs | | | 94.69 171 | 93.42 192 | 98.51 112 | 98.07 167 | 96.26 139 | 96.49 327 | 98.68 56 | 90.31 236 | 94.54 186 | 97.00 228 | 76.30 289 | 99.71 129 | 95.98 149 | 93.38 215 | 99.56 139 |
|
DTE-MVSNet | | | 89.40 284 | 88.24 288 | 92.88 291 | 92.66 318 | 89.95 288 | 99.10 227 | 98.22 167 | 87.29 280 | 85.12 311 | 96.22 253 | 76.27 290 | 95.30 328 | 83.56 305 | 75.74 334 | 93.41 309 |
|
ACMM | | 91.95 10 | 92.88 214 | 92.52 212 | 93.98 266 | 95.75 261 | 89.08 298 | 99.77 129 | 97.52 234 | 93.00 155 | 89.95 234 | 97.99 203 | 76.17 291 | 98.46 189 | 93.63 199 | 88.87 233 | 94.39 244 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DSMNet-mixed | | | 88.28 293 | 88.24 288 | 88.42 328 | 89.64 344 | 75.38 353 | 98.06 303 | 89.86 361 | 85.59 305 | 88.20 275 | 92.14 337 | 76.15 292 | 91.95 350 | 78.46 328 | 96.05 181 | 97.92 211 |
|
VPA-MVSNet | | | 92.70 218 | 91.55 230 | 96.16 197 | 95.09 275 | 96.20 144 | 98.88 256 | 99.00 33 | 91.02 224 | 91.82 215 | 95.29 290 | 76.05 293 | 97.96 230 | 95.62 154 | 81.19 294 | 94.30 251 |
|
TR-MVS | | | 94.54 177 | 93.56 188 | 97.49 156 | 97.96 172 | 94.34 196 | 98.71 271 | 97.51 236 | 90.30 237 | 94.51 188 | 98.69 174 | 75.56 294 | 98.77 170 | 92.82 210 | 95.99 182 | 99.35 168 |
|
PS-CasMVS | | | 90.63 261 | 89.51 266 | 93.99 265 | 93.83 295 | 91.70 257 | 98.98 245 | 98.52 90 | 88.48 266 | 86.15 304 | 96.53 246 | 75.46 295 | 96.31 306 | 88.83 258 | 78.86 315 | 93.95 286 |
|
TransMVSNet (Re) | | | 87.25 298 | 85.28 303 | 93.16 285 | 93.56 299 | 91.03 266 | 98.54 281 | 94.05 353 | 83.69 322 | 81.09 329 | 96.16 254 | 75.32 296 | 96.40 302 | 76.69 336 | 68.41 346 | 92.06 331 |
|
LPG-MVS_test | | | 92.96 212 | 92.71 205 | 93.71 273 | 95.43 271 | 88.67 301 | 99.75 137 | 97.62 219 | 92.81 160 | 90.05 230 | 98.49 186 | 75.24 297 | 98.40 196 | 95.84 152 | 89.12 229 | 94.07 275 |
|
LGP-MVS_train | | | | | 93.71 273 | 95.43 271 | 88.67 301 | | 97.62 219 | 92.81 160 | 90.05 230 | 98.49 186 | 75.24 297 | 98.40 196 | 95.84 152 | 89.12 229 | 94.07 275 |
|
OPM-MVS | | | 93.21 206 | 92.80 203 | 94.44 248 | 93.12 308 | 90.85 270 | 99.77 129 | 97.61 222 | 96.19 51 | 91.56 217 | 98.65 176 | 75.16 299 | 98.47 186 | 93.78 194 | 89.39 228 | 93.99 283 |
|
tfpnnormal | | | 89.29 286 | 87.61 293 | 94.34 252 | 94.35 287 | 94.13 199 | 98.95 249 | 98.94 36 | 83.94 318 | 84.47 313 | 95.51 275 | 74.84 300 | 97.39 249 | 77.05 335 | 80.41 304 | 91.48 337 |
|
AllTest | | | 92.48 223 | 91.64 226 | 95.00 224 | 99.01 115 | 88.43 305 | 98.94 250 | 96.82 305 | 86.50 291 | 88.71 263 | 98.47 190 | 74.73 301 | 99.88 85 | 85.39 292 | 96.18 178 | 96.71 223 |
|
TestCases | | | | | 95.00 224 | 99.01 115 | 88.43 305 | | 96.82 305 | 86.50 291 | 88.71 263 | 98.47 190 | 74.73 301 | 99.88 85 | 85.39 292 | 96.18 178 | 96.71 223 |
|
Anonymous20231206 | | | 86.32 300 | 85.42 302 | 89.02 323 | 89.11 346 | 80.53 349 | 99.05 239 | 95.28 341 | 85.43 308 | 82.82 320 | 93.92 320 | 74.40 303 | 93.44 346 | 66.99 351 | 81.83 290 | 93.08 318 |
|
XXY-MVS | | | 91.82 235 | 90.46 245 | 95.88 203 | 93.91 294 | 95.40 171 | 98.87 259 | 97.69 214 | 88.63 264 | 87.87 278 | 97.08 223 | 74.38 304 | 97.89 234 | 91.66 221 | 84.07 277 | 94.35 249 |
|
ACMP | | 92.05 9 | 92.74 217 | 92.42 214 | 93.73 271 | 95.91 255 | 88.72 300 | 99.81 117 | 97.53 232 | 94.13 115 | 87.00 290 | 98.23 195 | 74.07 305 | 98.47 186 | 96.22 146 | 88.86 234 | 93.99 283 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LTVRE_ROB | | 88.28 18 | 90.29 270 | 89.05 275 | 94.02 262 | 95.08 276 | 90.15 284 | 97.19 317 | 97.43 243 | 84.91 314 | 83.99 315 | 97.06 225 | 74.00 306 | 98.28 210 | 84.08 299 | 87.71 249 | 93.62 306 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pm-mvs1 | | | 89.36 285 | 87.81 292 | 94.01 263 | 93.40 304 | 91.93 247 | 98.62 278 | 96.48 319 | 86.25 295 | 83.86 316 | 96.14 255 | 73.68 307 | 97.04 274 | 86.16 288 | 75.73 335 | 93.04 319 |
|
pmmvs5 | | | 90.17 274 | 89.09 273 | 93.40 280 | 92.10 324 | 89.77 291 | 99.74 140 | 95.58 336 | 85.88 300 | 87.24 289 | 95.74 263 | 73.41 308 | 96.48 300 | 88.54 261 | 83.56 281 | 93.95 286 |
|
OurMVSNet-221017-0 | | | 89.81 279 | 89.48 268 | 90.83 310 | 91.64 329 | 81.21 343 | 98.17 299 | 95.38 340 | 91.48 211 | 85.65 308 | 97.31 216 | 72.66 309 | 97.29 258 | 88.15 266 | 84.83 269 | 93.97 285 |
|
jajsoiax | | | 91.92 234 | 91.18 236 | 94.15 256 | 91.35 332 | 90.95 268 | 99.00 243 | 97.42 245 | 92.61 173 | 87.38 286 | 97.08 223 | 72.46 310 | 97.36 250 | 94.53 175 | 88.77 235 | 94.13 272 |
|
UGNet | | | 95.33 157 | 94.57 165 | 97.62 153 | 98.55 142 | 94.85 185 | 98.67 275 | 99.32 24 | 95.75 65 | 96.80 150 | 96.27 252 | 72.18 311 | 99.96 53 | 94.58 174 | 99.05 123 | 98.04 210 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
mvs_tets | | | 91.81 236 | 91.08 237 | 94.00 264 | 91.63 330 | 90.58 275 | 98.67 275 | 97.43 243 | 92.43 184 | 87.37 287 | 97.05 226 | 71.76 312 | 97.32 254 | 94.75 168 | 88.68 237 | 94.11 273 |
|
SixPastTwentyTwo | | | 88.73 290 | 88.01 291 | 90.88 308 | 91.85 327 | 82.24 337 | 98.22 297 | 95.18 345 | 88.97 254 | 82.26 322 | 96.89 231 | 71.75 313 | 96.67 294 | 84.00 300 | 82.98 282 | 93.72 304 |
|
GBi-Net | | | 90.88 254 | 89.82 259 | 94.08 259 | 97.53 200 | 91.97 244 | 98.43 286 | 96.95 292 | 87.05 283 | 89.68 241 | 94.72 305 | 71.34 314 | 96.11 312 | 87.01 282 | 85.65 262 | 94.17 261 |
|
test1 | | | 90.88 254 | 89.82 259 | 94.08 259 | 97.53 200 | 91.97 244 | 98.43 286 | 96.95 292 | 87.05 283 | 89.68 241 | 94.72 305 | 71.34 314 | 96.11 312 | 87.01 282 | 85.65 262 | 94.17 261 |
|
FMVSNet2 | | | 91.02 251 | 89.56 263 | 95.41 212 | 97.53 200 | 95.74 161 | 98.98 245 | 97.41 247 | 87.05 283 | 88.43 270 | 95.00 299 | 71.34 314 | 96.24 310 | 85.12 294 | 85.21 267 | 94.25 256 |
|
PVSNet_0 | | 88.03 19 | 91.80 239 | 90.27 251 | 96.38 193 | 98.27 156 | 90.46 278 | 99.94 58 | 99.61 11 | 93.99 124 | 86.26 303 | 97.39 215 | 71.13 317 | 99.89 79 | 98.77 74 | 67.05 349 | 98.79 200 |
|
Anonymous20231211 | | | 89.86 278 | 88.44 284 | 94.13 258 | 98.93 123 | 90.68 272 | 98.54 281 | 98.26 162 | 76.28 343 | 86.73 292 | 95.54 272 | 70.60 318 | 97.56 243 | 90.82 237 | 80.27 307 | 94.15 268 |
|
ITE_SJBPF | | | | | 92.38 295 | 95.69 267 | 85.14 325 | | 95.71 332 | 92.81 160 | 89.33 252 | 98.11 197 | 70.23 319 | 98.42 193 | 85.91 290 | 88.16 245 | 93.59 307 |
|
ACMH | | 89.72 17 | 90.64 260 | 89.63 261 | 93.66 277 | 95.64 268 | 88.64 303 | 98.55 279 | 97.45 240 | 89.03 251 | 81.62 326 | 97.61 209 | 69.75 320 | 98.41 194 | 89.37 253 | 87.62 251 | 93.92 289 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MVS-HIRNet | | | 86.22 301 | 83.19 313 | 95.31 215 | 96.71 242 | 90.29 281 | 92.12 349 | 97.33 255 | 62.85 355 | 86.82 291 | 70.37 359 | 69.37 321 | 97.49 245 | 75.12 339 | 97.99 147 | 98.15 208 |
|
Anonymous202405211 | | | 93.10 209 | 91.99 221 | 96.40 191 | 99.10 112 | 89.65 292 | 98.88 256 | 97.93 197 | 83.71 321 | 94.00 195 | 98.75 172 | 68.79 322 | 99.88 85 | 95.08 158 | 91.71 220 | 99.68 115 |
|
test20.03 | | | 84.72 311 | 83.99 305 | 86.91 331 | 88.19 349 | 80.62 348 | 98.88 256 | 95.94 328 | 88.36 268 | 78.87 336 | 94.62 310 | 68.75 323 | 89.11 356 | 66.52 352 | 75.82 333 | 91.00 339 |
|
VPNet | | | 91.81 236 | 90.46 245 | 95.85 205 | 94.74 281 | 95.54 167 | 98.98 245 | 98.59 72 | 92.14 191 | 90.77 225 | 97.44 212 | 68.73 324 | 97.54 244 | 94.89 163 | 77.89 320 | 94.46 236 |
|
K. test v3 | | | 88.05 294 | 87.24 296 | 90.47 313 | 91.82 328 | 82.23 338 | 98.96 248 | 97.42 245 | 89.05 250 | 76.93 342 | 95.60 269 | 68.49 325 | 95.42 324 | 85.87 291 | 81.01 300 | 93.75 300 |
|
ACMH+ | | 89.98 16 | 90.35 267 | 89.54 264 | 92.78 293 | 95.99 252 | 86.12 319 | 98.81 264 | 97.18 266 | 89.38 246 | 83.14 319 | 97.76 207 | 68.42 326 | 98.43 192 | 89.11 256 | 86.05 260 | 93.78 299 |
|
MDA-MVSNet-bldmvs | | | 84.09 314 | 81.52 320 | 91.81 303 | 91.32 333 | 88.00 312 | 98.67 275 | 95.92 329 | 80.22 335 | 55.60 360 | 93.32 326 | 68.29 327 | 93.60 345 | 73.76 340 | 76.61 332 | 93.82 297 |
|
MS-PatchMatch | | | 90.65 259 | 90.30 250 | 91.71 304 | 94.22 289 | 85.50 323 | 98.24 295 | 97.70 213 | 88.67 262 | 86.42 299 | 96.37 249 | 67.82 328 | 98.03 226 | 83.62 304 | 99.62 98 | 91.60 335 |
|
DIV-MVS_2432*1600 | | | 83.59 317 | 82.06 317 | 88.20 329 | 86.93 350 | 80.70 347 | 97.21 316 | 96.38 320 | 82.87 325 | 82.49 321 | 88.97 345 | 67.63 329 | 92.32 348 | 73.75 341 | 62.30 353 | 91.58 336 |
|
LFMVS | | | 94.75 170 | 93.56 188 | 98.30 124 | 99.03 114 | 95.70 164 | 98.74 268 | 97.98 192 | 87.81 275 | 98.47 108 | 99.39 121 | 67.43 330 | 99.53 141 | 98.01 105 | 95.20 199 | 99.67 117 |
|
MIMVSNet | | | 90.30 269 | 88.67 281 | 95.17 220 | 96.45 244 | 91.64 259 | 92.39 348 | 97.15 270 | 85.99 297 | 90.50 227 | 93.19 329 | 66.95 331 | 94.86 333 | 82.01 313 | 93.43 213 | 99.01 191 |
|
XVG-ACMP-BASELINE | | | 91.22 249 | 90.75 240 | 92.63 294 | 93.73 297 | 85.61 321 | 98.52 283 | 97.44 242 | 92.77 164 | 89.90 236 | 96.85 234 | 66.64 332 | 98.39 198 | 92.29 214 | 88.61 238 | 93.89 291 |
|
Anonymous20240529 | | | 92.10 232 | 90.65 243 | 96.47 186 | 98.82 133 | 90.61 274 | 98.72 270 | 98.67 59 | 75.54 347 | 93.90 197 | 98.58 182 | 66.23 333 | 99.90 75 | 94.70 171 | 90.67 221 | 98.90 195 |
|
lessismore_v0 | | | | | 90.53 311 | 90.58 338 | 80.90 346 | | 95.80 330 | | 77.01 341 | 95.84 260 | 66.15 334 | 96.95 279 | 83.03 307 | 75.05 336 | 93.74 303 |
|
USDC | | | 90.00 277 | 88.96 276 | 93.10 288 | 94.81 280 | 88.16 309 | 98.71 271 | 95.54 337 | 93.66 139 | 83.75 317 | 97.20 219 | 65.58 335 | 98.31 207 | 83.96 302 | 87.49 253 | 92.85 322 |
|
pmmvs-eth3d | | | 84.03 315 | 81.97 318 | 90.20 315 | 84.15 355 | 87.09 315 | 98.10 302 | 94.73 349 | 83.05 323 | 74.10 349 | 87.77 348 | 65.56 336 | 94.01 339 | 81.08 318 | 69.24 343 | 89.49 350 |
|
Anonymous20240521 | | | 85.15 308 | 83.81 309 | 89.16 322 | 88.32 347 | 82.69 333 | 98.80 265 | 95.74 331 | 79.72 336 | 81.53 327 | 90.99 340 | 65.38 337 | 94.16 338 | 72.69 342 | 81.11 297 | 90.63 343 |
|
LF4IMVS | | | 89.25 288 | 88.85 277 | 90.45 314 | 92.81 317 | 81.19 344 | 98.12 300 | 94.79 347 | 91.44 213 | 86.29 302 | 97.11 221 | 65.30 338 | 98.11 221 | 88.53 262 | 85.25 266 | 92.07 330 |
|
new_pmnet | | | 84.49 313 | 82.92 315 | 89.21 321 | 90.03 342 | 82.60 334 | 96.89 324 | 95.62 335 | 80.59 334 | 75.77 347 | 89.17 344 | 65.04 339 | 94.79 334 | 72.12 343 | 81.02 299 | 90.23 345 |
|
CMPMVS |  | 61.59 21 | 84.75 310 | 85.14 304 | 83.57 335 | 90.32 340 | 62.54 359 | 96.98 322 | 97.59 226 | 74.33 350 | 69.95 353 | 96.66 240 | 64.17 340 | 98.32 206 | 87.88 270 | 88.41 243 | 89.84 348 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_0402 | | | 85.58 303 | 83.94 307 | 90.50 312 | 93.81 296 | 85.04 326 | 98.55 279 | 95.20 344 | 76.01 344 | 79.72 335 | 95.13 293 | 64.15 341 | 96.26 309 | 66.04 354 | 86.88 256 | 90.21 346 |
|
TDRefinement | | | 84.76 309 | 82.56 316 | 91.38 306 | 74.58 360 | 84.80 328 | 97.36 314 | 94.56 350 | 84.73 315 | 80.21 333 | 96.12 257 | 63.56 342 | 98.39 198 | 87.92 269 | 63.97 350 | 90.95 341 |
|
UnsupCasMVSNet_eth | | | 85.52 304 | 83.99 305 | 90.10 316 | 89.36 345 | 83.51 331 | 96.65 325 | 97.99 190 | 89.14 248 | 75.89 346 | 93.83 321 | 63.25 343 | 93.92 340 | 81.92 314 | 67.90 348 | 92.88 321 |
|
new-patchmatchnet | | | 81.19 319 | 79.34 324 | 86.76 332 | 82.86 357 | 80.36 350 | 97.92 306 | 95.27 342 | 82.09 330 | 72.02 350 | 86.87 350 | 62.81 344 | 90.74 354 | 71.10 344 | 63.08 351 | 89.19 352 |
|
TinyColmap | | | 87.87 297 | 86.51 298 | 91.94 301 | 95.05 277 | 85.57 322 | 97.65 311 | 94.08 352 | 84.40 317 | 81.82 325 | 96.85 234 | 62.14 345 | 98.33 205 | 80.25 321 | 86.37 259 | 91.91 334 |
|
VDDNet | | | 93.12 208 | 91.91 223 | 96.76 178 | 96.67 243 | 92.65 233 | 98.69 273 | 98.21 168 | 82.81 326 | 97.75 131 | 99.28 126 | 61.57 346 | 99.48 149 | 98.09 102 | 94.09 208 | 98.15 208 |
|
pmmvs6 | | | 85.69 302 | 83.84 308 | 91.26 307 | 90.00 343 | 84.41 329 | 97.82 308 | 96.15 325 | 75.86 345 | 81.29 328 | 95.39 282 | 61.21 347 | 96.87 284 | 83.52 306 | 73.29 338 | 92.50 326 |
|
VDD-MVS | | | 93.77 195 | 92.94 201 | 96.27 195 | 98.55 142 | 90.22 282 | 98.77 267 | 97.79 210 | 90.85 227 | 96.82 149 | 99.42 116 | 61.18 348 | 99.77 115 | 98.95 58 | 94.13 207 | 98.82 198 |
|
testgi | | | 89.01 289 | 88.04 290 | 91.90 302 | 93.49 301 | 84.89 327 | 99.73 145 | 95.66 334 | 93.89 132 | 85.14 310 | 98.17 196 | 59.68 349 | 94.66 335 | 77.73 331 | 88.88 232 | 96.16 228 |
|
FMVSNet1 | | | 88.50 291 | 86.64 297 | 94.08 259 | 95.62 270 | 91.97 244 | 98.43 286 | 96.95 292 | 83.00 324 | 86.08 305 | 94.72 305 | 59.09 350 | 96.11 312 | 81.82 315 | 84.07 277 | 94.17 261 |
|
DeepMVS_CX |  | | | | 82.92 337 | 95.98 254 | 58.66 361 | | 96.01 327 | 92.72 165 | 78.34 339 | 95.51 275 | 58.29 351 | 98.08 222 | 82.57 309 | 85.29 265 | 92.03 332 |
|
UniMVSNet_ETH3D | | | 90.06 276 | 88.58 282 | 94.49 245 | 94.67 283 | 88.09 310 | 97.81 309 | 97.57 227 | 83.91 320 | 88.44 268 | 97.41 213 | 57.44 352 | 97.62 242 | 91.41 223 | 88.59 240 | 97.77 215 |
|
pmmvs3 | | | 80.27 322 | 77.77 326 | 87.76 330 | 80.32 358 | 82.43 336 | 98.23 296 | 91.97 357 | 72.74 352 | 78.75 337 | 87.97 347 | 57.30 353 | 90.99 353 | 70.31 345 | 62.37 352 | 89.87 347 |
|
OpenMVS_ROB |  | 79.82 20 | 83.77 316 | 81.68 319 | 90.03 317 | 88.30 348 | 82.82 332 | 98.46 284 | 95.22 343 | 73.92 351 | 76.00 345 | 91.29 339 | 55.00 354 | 96.94 280 | 68.40 349 | 88.51 242 | 90.34 344 |
|
tmp_tt | | | 65.23 329 | 62.94 332 | 72.13 342 | 44.90 369 | 50.03 365 | 81.05 359 | 89.42 364 | 38.45 361 | 48.51 363 | 99.90 17 | 54.09 355 | 78.70 362 | 91.84 220 | 18.26 364 | 87.64 354 |
|
MIMVSNet1 | | | 82.58 318 | 80.51 322 | 88.78 325 | 86.68 351 | 84.20 330 | 96.65 325 | 95.41 339 | 78.75 339 | 78.59 338 | 92.44 333 | 51.88 356 | 89.76 355 | 65.26 355 | 78.95 313 | 92.38 329 |
|
EG-PatchMatch MVS | | | 85.35 307 | 83.81 309 | 89.99 318 | 90.39 339 | 81.89 340 | 98.21 298 | 96.09 326 | 81.78 331 | 74.73 348 | 93.72 323 | 51.56 357 | 97.12 268 | 79.16 326 | 88.61 238 | 90.96 340 |
|
MVS_0304 | | | 89.28 287 | 88.31 286 | 92.21 298 | 97.05 222 | 86.53 317 | 97.76 310 | 99.57 12 | 85.58 306 | 93.86 198 | 92.71 331 | 51.04 358 | 96.30 307 | 84.49 298 | 92.72 219 | 93.79 298 |
|
UnsupCasMVSNet_bld | | | 79.97 324 | 77.03 327 | 88.78 325 | 85.62 353 | 81.98 339 | 93.66 344 | 97.35 252 | 75.51 348 | 70.79 352 | 83.05 354 | 48.70 359 | 94.91 332 | 78.31 329 | 60.29 355 | 89.46 351 |
|
test_method | | | 80.79 320 | 79.70 323 | 84.08 334 | 92.83 315 | 67.06 357 | 99.51 182 | 95.42 338 | 54.34 357 | 81.07 330 | 93.53 324 | 44.48 360 | 92.22 349 | 78.90 327 | 77.23 327 | 92.94 320 |
|
PM-MVS | | | 80.47 321 | 78.88 325 | 85.26 333 | 83.79 356 | 72.22 354 | 95.89 336 | 91.08 359 | 85.71 304 | 76.56 344 | 88.30 346 | 36.64 361 | 93.90 341 | 82.39 310 | 69.57 342 | 89.66 349 |
|
ambc | | | | | 83.23 336 | 77.17 359 | 62.61 358 | 87.38 357 | 94.55 351 | | 76.72 343 | 86.65 351 | 30.16 362 | 96.36 304 | 84.85 297 | 69.86 340 | 90.73 342 |
|
Gipuma |  | | 66.95 328 | 65.00 329 | 72.79 341 | 91.52 331 | 67.96 356 | 66.16 362 | 95.15 346 | 47.89 359 | 58.54 357 | 67.99 361 | 29.74 363 | 87.54 357 | 50.20 360 | 77.83 321 | 62.87 360 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EMVS | | | 51.44 334 | 51.22 336 | 52.11 348 | 70.71 362 | 44.97 368 | 94.04 341 | 75.66 369 | 35.34 365 | 42.40 365 | 61.56 366 | 28.93 364 | 65.87 366 | 27.64 366 | 24.73 362 | 45.49 363 |
|
E-PMN | | | 52.30 332 | 52.18 334 | 52.67 347 | 71.51 361 | 45.40 366 | 93.62 345 | 76.60 368 | 36.01 363 | 43.50 364 | 64.13 363 | 27.11 365 | 67.31 365 | 31.06 365 | 26.06 361 | 45.30 364 |
|
FPMVS | | | 68.72 325 | 68.72 328 | 68.71 343 | 65.95 364 | 44.27 369 | 95.97 335 | 94.74 348 | 51.13 358 | 53.26 361 | 90.50 343 | 25.11 366 | 83.00 360 | 60.80 357 | 80.97 301 | 78.87 356 |
|
PMMVS2 | | | 67.15 327 | 64.15 331 | 76.14 340 | 70.56 363 | 62.07 360 | 93.89 342 | 87.52 365 | 58.09 356 | 60.02 356 | 78.32 356 | 22.38 367 | 84.54 359 | 59.56 358 | 47.03 359 | 81.80 355 |
|
LCM-MVSNet | | | 67.77 326 | 64.73 330 | 76.87 339 | 62.95 366 | 56.25 363 | 89.37 356 | 93.74 355 | 44.53 360 | 61.99 355 | 80.74 355 | 20.42 368 | 86.53 358 | 69.37 348 | 59.50 356 | 87.84 353 |
|
test123 | | | 37.68 336 | 39.14 339 | 33.31 349 | 19.94 371 | 24.83 372 | 98.36 290 | 9.75 372 | 15.53 367 | 51.31 362 | 87.14 349 | 19.62 369 | 17.74 368 | 47.10 361 | 3.47 367 | 57.36 361 |
|
ANet_high | | | 56.10 330 | 52.24 333 | 67.66 344 | 49.27 368 | 56.82 362 | 83.94 358 | 82.02 366 | 70.47 353 | 33.28 367 | 64.54 362 | 17.23 370 | 69.16 364 | 45.59 362 | 23.85 363 | 77.02 357 |
|
testmvs | | | 40.60 335 | 44.45 338 | 29.05 350 | 19.49 372 | 14.11 373 | 99.68 153 | 18.47 371 | 20.74 366 | 64.59 354 | 98.48 189 | 10.95 371 | 17.09 369 | 56.66 359 | 11.01 365 | 55.94 362 |
|
PMVS |  | 49.05 23 | 53.75 331 | 51.34 335 | 60.97 346 | 40.80 370 | 34.68 370 | 74.82 361 | 89.62 363 | 37.55 362 | 28.67 368 | 72.12 358 | 7.09 372 | 81.63 361 | 43.17 363 | 68.21 347 | 66.59 359 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 20.37 338 | 20.84 341 | 18.99 351 | 65.34 365 | 27.73 371 | 50.43 363 | 7.67 373 | 9.50 368 | 8.01 369 | 6.34 369 | 6.13 373 | 26.24 367 | 23.40 367 | 10.69 366 | 2.99 365 |
|
MVE |  | 53.74 22 | 51.54 333 | 47.86 337 | 62.60 345 | 59.56 367 | 50.93 364 | 79.41 360 | 77.69 367 | 35.69 364 | 36.27 366 | 61.76 365 | 5.79 374 | 69.63 363 | 37.97 364 | 36.61 360 | 67.24 358 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
ab-mvs-re | | | 8.28 339 | 11.04 342 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 99.40 119 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
IU-MVS | | | | | | 99.93 26 | 99.31 7 | | 98.41 131 | 97.71 8 | 99.84 8 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
save fliter | | | | | | 99.82 65 | 98.79 33 | 99.96 25 | 98.40 132 | 97.66 10 | | | | | | | |
|
test_0728_SECOND | | | | | 99.82 5 | 99.94 14 | 99.47 5 | 99.95 43 | 98.43 116 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 131 |
|
test_part2 | | | | | | 99.89 45 | 99.25 13 | | | | 99.49 51 | | | | | | |
|
MTGPA |  | | | | | | | | 98.28 158 | | | | | | | | |
|
MTMP | | | | | | | | 99.87 90 | 96.49 318 | | | | | | | | |
|
gm-plane-assit | | | | | | 96.97 226 | 93.76 208 | | | 91.47 212 | | 98.96 155 | | 98.79 167 | 94.92 160 | | |
|
test9_res | | | | | | | | | | | | | | | 99.71 29 | 99.99 20 | 100.00 1 |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 36 | 100.00 1 | 100.00 1 |
|
agg_prior | | | | | | 99.93 26 | 98.77 36 | | 98.43 116 | | 99.63 38 | | | 99.85 94 | | | |
|
test_prior4 | | | | | | | 98.05 71 | 99.94 58 | | | | | | | | | |
|
test_prior | | | | | 99.43 35 | 99.94 14 | 98.49 57 | | 98.65 60 | | | | | 99.80 106 | | | 99.99 20 |
|
旧先验2 | | | | | | | | 99.46 191 | | 94.21 114 | 99.85 6 | | | 99.95 60 | 96.96 137 | | |
|
新几何2 | | | | | | | | 99.40 196 | | | | | | | | | |
|
无先验 | | | | | | | | 99.49 186 | 98.71 53 | 93.46 144 | | | | 100.00 1 | 94.36 178 | | 99.99 20 |
|
原ACMM2 | | | | | | | | 99.90 76 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 241 | | |
|
testdata1 | | | | | | | | 99.28 216 | | 96.35 48 | | | | | | | |
|
plane_prior7 | | | | | | 95.71 265 | 91.59 261 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.87 203 | | | | | 98.37 203 | 97.79 116 | 89.55 225 | 94.52 233 |
|
plane_prior4 | | | | | | | | | | | | 98.59 180 | | | | | |
|
plane_prior3 | | | | | | | 91.64 259 | | | 96.63 38 | 93.01 205 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 108 | | 96.38 44 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 262 | | | | | | | | | | | |
|
plane_prior | | | | | | | 91.74 253 | 99.86 101 | | 96.76 34 | | | | | | 89.59 224 | |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 362 | | | | | | | | |
|
test11 | | | | | | | | | 98.44 108 | | | | | | | | |
|
door | | | | | | | | | 90.31 360 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 249 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 256 | | 99.87 90 | | 96.82 30 | 93.37 201 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 256 | | 99.87 90 | | 96.82 30 | 93.37 201 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 111 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 201 | | | 98.39 198 | | | 94.53 231 |
|
HQP3-MVS | | | | | | | | | 97.89 201 | | | | | | | 89.60 222 | |
|
NP-MVS | | | | | | 95.77 259 | 91.79 251 | | | | | 98.65 176 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 255 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.23 244 | |
|