This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5498.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6698.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12698.38 13796.73 3599.88 399.74 8194.89 6299.59 13999.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test072699.93 2699.29 1099.96 2398.42 12597.28 1899.86 499.94 497.22 15
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13898.66 4699.52 17798.08 18397.05 2699.86 499.86 2990.65 16099.71 12899.39 4198.63 12898.69 199
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13498.92 2399.54 17598.17 17297.34 1699.85 699.85 3391.20 15099.89 7999.41 4099.67 9598.69 199
旧先验299.46 18794.21 11099.85 699.95 6096.96 133
IU-MVS99.93 2699.31 798.41 12997.71 899.84 8100.00 1100.00 1100.00 1
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6198.46 10394.56 9399.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4098.32 14997.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2397.52 23297.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7398.21 16693.53 13899.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7398.37 14093.81 12999.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5598.34 14696.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11497.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 11497.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11497.26 2299.80 1699.88 2296.71 20100.00 1
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 898.86 4497.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13797.71 8399.98 898.44 10696.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
testdata98.42 11999.47 10095.33 17098.56 7693.78 13199.79 2199.85 3393.64 10199.94 6894.97 15599.94 57100.00 1
9.1498.38 3899.87 5299.91 6998.33 14793.22 14699.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 9898.38 13793.19 14799.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8798.33 14793.97 12199.76 2499.87 2694.99 5899.75 12098.55 84100.00 199.98 51
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 8798.36 14294.08 11499.74 2599.73 8394.08 8899.74 12499.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 9898.24 16292.18 18699.73 2699.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4098.65 5995.78 5899.73 2699.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4095.78 5899.73 2699.76 7296.00 2999.78 20100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7398.55 8195.14 7799.72 2999.84 4695.46 43100.00 199.65 3299.99 2099.99 20
TEST999.92 3598.92 2399.96 2398.43 11493.90 12699.71 3099.86 2995.88 3499.85 94
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11494.35 10399.71 3099.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
test_899.92 3598.88 2699.96 2398.43 11494.35 10399.69 3299.85 3395.94 3199.85 94
test1299.43 3599.74 7798.56 5398.40 13099.65 3394.76 6399.75 12099.98 3399.99 20
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 8798.44 10697.48 1599.64 3499.94 496.68 2299.99 3699.99 5100.00 199.99 20
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11494.63 9299.63 3599.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
agg_prior99.93 2698.77 3698.43 11499.63 3599.85 94
xiu_mvs_v1_base_debu97.43 8997.06 9398.55 10697.74 18798.14 6799.31 20697.86 20396.43 4199.62 3799.69 9185.56 21199.68 13299.05 5098.31 13597.83 208
xiu_mvs_v1_base97.43 8997.06 9398.55 10697.74 18798.14 6799.31 20697.86 20396.43 4199.62 3799.69 9185.56 21199.68 13299.05 5098.31 13597.83 208
xiu_mvs_v1_base_debi97.43 8997.06 9398.55 10697.74 18798.14 6799.31 20697.86 20396.43 4199.62 3799.69 9185.56 21199.68 13299.05 5098.31 13597.83 208
原ACMM198.96 8299.73 8196.99 11498.51 9594.06 11799.62 3799.85 3394.97 5999.96 5395.11 15399.95 5199.92 87
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 898.80 4990.78 22599.62 3799.78 6695.30 46100.00 199.80 1899.93 6399.99 20
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2398.44 10697.96 799.55 4299.94 497.18 17100.00 193.81 18799.94 5799.98 51
新几何199.42 3899.75 7698.27 6598.63 6592.69 16499.55 4299.82 5394.40 71100.00 191.21 22199.94 5799.99 20
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10198.37 14094.68 8999.53 4499.83 4992.87 120100.00 198.66 8099.84 8099.99 20
112198.03 6997.57 7999.40 4199.74 7798.21 6698.31 28498.62 6692.78 15999.53 4499.83 4995.08 50100.00 194.36 17499.92 6799.99 20
PMMVS96.76 11596.76 10496.76 17598.28 15392.10 24099.91 6997.98 19094.12 11299.53 4499.39 12086.93 20098.73 17396.95 13497.73 14699.45 154
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4098.42 12597.50 1499.52 4799.88 2297.43 1299.71 12899.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_part299.89 4599.25 1399.49 48
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 6998.39 13397.20 2499.46 4999.85 3395.53 4299.79 10999.86 12100.00 199.99 20
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2398.55 8194.87 8399.45 5099.85 3394.07 89100.00 198.67 77100.00 199.98 51
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4098.56 7697.56 1399.44 5199.85 3395.38 45100.00 199.31 4399.99 2099.87 93
MVSFormer96.94 10796.60 10897.95 13797.28 21197.70 8599.55 17397.27 25991.17 21499.43 5299.54 10890.92 15896.89 27794.67 16899.62 9899.25 174
lupinMVS97.85 7597.60 7798.62 10097.28 21197.70 8599.99 497.55 22695.50 6999.43 5299.67 9590.92 15898.71 17598.40 8899.62 9899.45 154
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 8798.52 8896.05 5399.41 5499.79 6294.93 6099.76 11799.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 8798.52 8896.04 5499.41 5499.79 6294.92 6199.76 11799.05 5099.90 7299.98 51
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5598.42 12596.22 4999.41 5499.78 6694.34 7699.96 5398.92 6199.95 5199.99 20
X-MVStestdata93.83 18692.06 21599.15 6199.94 1497.50 9499.94 5598.42 12596.22 4999.41 5441.37 36194.34 7699.96 5398.92 6199.95 5199.99 20
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13499.76 13198.31 15194.43 9899.40 5899.75 7793.28 11099.78 11198.90 6499.92 6799.97 63
RE-MVS-def98.13 5599.79 7096.37 13499.76 13198.31 15194.43 9899.40 5899.75 7792.95 11998.90 6499.92 6799.97 63
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12599.82 11298.30 15493.95 12399.37 6099.77 6892.84 12199.76 11798.95 5899.92 6799.97 63
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13499.50 1693.90 12699.37 6099.76 7293.24 113100.00 197.75 11699.96 4899.98 51
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10598.35 14494.92 8099.32 6299.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
ZD-MVS99.92 3598.57 5198.52 8892.34 18299.31 6399.83 4995.06 5299.80 10699.70 3099.97 44
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4098.61 6894.77 8599.31 6399.85 3394.22 83100.00 198.70 7599.98 3399.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4098.61 6895.00 7999.31 6399.85 3394.22 83100.00 198.78 7299.98 3399.98 51
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4098.60 7094.77 8599.31 6399.84 4693.73 98100.00 198.70 7599.98 3399.98 51
ETV-MVS97.92 7397.80 7198.25 12798.14 16496.48 12899.98 897.63 21595.61 6699.29 6799.46 11492.55 12998.82 16599.02 5698.54 12999.46 152
test22299.55 9497.41 10299.34 20298.55 8191.86 19599.27 6899.83 4993.84 9699.95 5199.99 20
abl_697.67 8597.34 8698.66 9799.68 8696.11 14999.68 15098.14 17893.80 13099.27 6899.70 8888.65 18699.98 4297.46 12099.72 9299.89 90
CS-MVS97.84 7697.69 7398.31 12498.28 15396.27 136100.00 197.52 23295.29 7399.25 7099.65 9991.18 15398.94 16298.96 5799.04 12199.73 108
test117298.38 5398.25 4798.77 9099.88 4996.56 12799.80 11998.36 14294.68 8999.20 7199.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
CANet_DTU96.76 11596.15 11998.60 10298.78 13597.53 9099.84 10597.63 21597.25 2399.20 7199.64 10081.36 24399.98 4292.77 20798.89 12298.28 202
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7399.51 1597.60 1299.20 7199.36 12393.71 9999.91 7497.99 10598.71 12799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS95.94 297.71 8498.98 1093.92 26299.63 8881.76 33699.96 2398.56 7699.47 199.19 7499.99 194.16 87100.00 199.92 999.93 63100.00 1
VNet97.21 10096.57 11099.13 6898.97 11997.82 8199.03 23699.21 2794.31 10699.18 7598.88 16086.26 20699.89 7998.93 6094.32 20299.69 114
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6298.47 299.13 7699.92 1196.38 26100.00 199.74 24100.00 1100.00 1
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21498.47 10198.14 499.08 7799.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t97.41 9396.83 10199.14 6399.51 9897.83 8099.89 8198.27 15988.48 26299.06 7899.66 9790.30 16499.64 13896.32 14199.97 4499.96 70
PVSNet91.05 1397.13 10196.69 10698.45 11699.52 9695.81 15599.95 4099.65 1094.73 8799.04 7999.21 13484.48 22199.95 6094.92 15698.74 12699.58 136
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 27799.42 2097.03 2799.02 8099.09 13899.35 198.21 21499.73 2799.78 8899.77 104
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15398.52 8895.79 5799.01 8199.77 6894.40 7199.75 12098.82 6899.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15398.52 8895.76 6099.01 8199.77 6894.33 7999.75 12098.80 7199.83 8199.98 51
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16099.44 1897.33 1799.00 8399.72 8494.03 9099.98 4298.73 74100.00 1100.00 1
diffmvs97.00 10596.64 10798.09 13397.64 19496.17 14599.81 11497.19 26394.67 9198.95 8499.28 12486.43 20498.76 17198.37 8997.42 15499.33 167
HPM-MVS_fast97.80 8097.50 8098.68 9599.79 7096.42 13099.88 8498.16 17591.75 20098.94 8599.54 10891.82 14599.65 13797.62 11899.99 2099.99 20
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12499.97 1698.39 13394.43 9898.90 8699.87 2694.30 81100.00 199.04 5499.99 2099.99 20
MVS_Test96.46 12795.74 13898.61 10198.18 16197.23 10599.31 20697.15 26991.07 21898.84 8797.05 22188.17 18998.97 16094.39 17397.50 15199.61 127
API-MVS97.86 7497.66 7498.47 11499.52 9695.41 16899.47 18598.87 4391.68 20198.84 8799.85 3392.34 13499.99 3698.44 8799.96 48100.00 1
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6198.39 13394.04 11998.80 8999.74 8192.98 118100.00 198.16 9599.76 8999.93 81
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15699.87 8799.86 296.70 3698.78 9099.79 6292.03 14099.90 7599.17 4699.86 7999.88 92
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12399.97 1697.92 19798.07 598.76 9199.55 10695.00 5799.94 6899.91 1197.68 14899.99 20
sss97.57 8797.03 9799.18 5498.37 14898.04 7299.73 14299.38 2193.46 14098.76 9199.06 14091.21 14999.89 7996.33 14097.01 16499.62 125
CostFormer96.10 13895.88 13596.78 17497.03 21892.55 23297.08 31397.83 20690.04 23798.72 9394.89 29895.01 5698.29 20796.54 13995.77 18599.50 149
tpmrst96.27 13795.98 12597.13 16697.96 17193.15 21696.34 32298.17 17292.07 18998.71 9495.12 28993.91 9398.73 17394.91 15896.62 16999.50 149
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6199.90 196.81 3398.67 9599.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
MAR-MVS97.43 8997.19 9098.15 13299.47 10094.79 18799.05 23498.76 5092.65 16798.66 9699.82 5388.52 18799.98 4298.12 9799.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+96.30 13495.69 13998.16 12997.85 17996.26 13897.41 30697.21 26290.37 23098.65 9798.58 17986.61 20398.70 17697.11 12897.37 15699.52 146
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13399.90 7398.17 17292.61 16998.62 9899.57 10591.87 14399.67 13598.87 6699.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4098.38 13795.04 7898.61 9999.80 5893.39 104100.00 198.64 81100.00 199.98 51
jason97.24 9896.86 10098.38 12295.73 25797.32 10399.97 1697.40 24895.34 7298.60 10099.54 10887.70 19198.56 18297.94 10899.47 10999.25 174
jason: jason.
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 898.51 9597.00 2898.52 10199.71 8687.80 19099.95 6099.75 2299.38 11399.83 96
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12699.40 19298.51 9595.29 7398.51 10299.76 7293.60 10299.71 12898.53 8599.52 10699.95 78
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5598.44 10694.31 10698.50 10399.82 5393.06 11799.99 3698.30 9299.99 2099.93 81
LFMVS94.75 16793.56 18498.30 12599.03 11495.70 16298.74 26197.98 19087.81 27098.47 10499.39 12067.43 32599.53 14098.01 10395.20 19699.67 117
tpm295.47 15395.18 15296.35 19096.91 22391.70 25496.96 31697.93 19588.04 26798.44 10595.40 27593.32 10797.97 22394.00 18295.61 18999.38 161
alignmvs97.81 7997.33 8799.25 4998.77 13698.66 4699.99 498.44 10694.40 10298.41 10699.47 11293.65 10099.42 15098.57 8394.26 20399.67 117
UA-Net96.54 12495.96 13098.27 12698.23 15895.71 16198.00 29898.45 10593.72 13498.41 10699.27 12788.71 18599.66 13691.19 22297.69 14799.44 156
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6598.44 10692.06 19198.40 10899.84 4695.68 38100.00 198.19 9399.71 9399.97 63
CPTT-MVS97.64 8697.32 8898.58 10599.97 395.77 15799.96 2398.35 14489.90 23898.36 10999.79 6291.18 15399.99 3698.37 8999.99 2099.99 20
PAPM98.60 3398.42 3199.14 6396.05 24598.96 2099.90 7399.35 2396.68 3798.35 11099.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
HY-MVS92.50 797.79 8197.17 9299.63 1298.98 11899.32 697.49 30599.52 1395.69 6498.32 11197.41 20893.32 10799.77 11598.08 10195.75 18799.81 98
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13699.36 20198.50 9995.21 7698.30 11299.75 7793.29 10999.73 12798.37 8999.30 11599.81 98
PVSNet_BlendedMVS96.05 13995.82 13796.72 17799.59 9096.99 11499.95 4099.10 2894.06 11798.27 11395.80 25689.00 18199.95 6099.12 4787.53 24993.24 310
PVSNet_Blended97.94 7197.64 7598.83 8899.59 9096.99 114100.00 199.10 2895.38 7098.27 11399.08 13989.00 18199.95 6099.12 4799.25 11699.57 137
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4098.39 13394.70 8898.26 11599.81 5791.84 144100.00 198.85 6799.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
WTY-MVS98.10 6797.60 7799.60 1798.92 12599.28 1299.89 8199.52 1395.58 6798.24 11699.39 12093.33 10699.74 12497.98 10795.58 19099.78 103
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7297.70 998.21 11799.24 13292.58 12899.94 6898.63 8299.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DWT-MVSNet_test97.31 9597.19 9097.66 14898.24 15794.67 18998.86 25498.20 17093.60 13798.09 11898.89 15897.51 798.78 16894.04 18197.28 15799.55 139
MDTV_nov1_ep13_2view96.26 13896.11 32591.89 19498.06 11994.40 7194.30 17799.67 117
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4098.43 11495.35 7198.03 12099.75 7794.03 9099.98 4298.11 9899.83 8199.99 20
MDTV_nov1_ep1395.69 13997.90 17494.15 19695.98 32798.44 10693.12 14997.98 12195.74 25895.10 4998.58 18190.02 24596.92 166
GG-mvs-BLEND98.54 10998.21 15998.01 7393.87 33698.52 8897.92 12297.92 20099.02 297.94 22898.17 9499.58 10399.67 117
EIA-MVS97.53 8897.46 8197.76 14598.04 16894.84 18499.98 897.61 22094.41 10197.90 12399.59 10392.40 13298.87 16398.04 10299.13 11999.59 130
test_yl97.83 7797.37 8499.21 5199.18 10897.98 7599.64 16099.27 2591.43 21097.88 12498.99 14795.84 3599.84 10398.82 6895.32 19499.79 100
DCV-MVSNet97.83 7797.37 8499.21 5199.18 10897.98 7599.64 16099.27 2591.43 21097.88 12498.99 14795.84 3599.84 10398.82 6895.32 19499.79 100
canonicalmvs97.09 10496.32 11699.39 4398.93 12398.95 2199.72 14597.35 25194.45 9697.88 12499.42 11686.71 20199.52 14198.48 8693.97 20799.72 111
VDDNet93.12 20391.91 21896.76 17596.67 23892.65 23098.69 26698.21 16682.81 32197.75 12799.28 12461.57 34099.48 14898.09 10094.09 20598.15 204
EPMVS96.53 12596.01 12298.09 13398.43 14796.12 14896.36 32199.43 1993.53 13897.64 12895.04 29194.41 7098.38 20191.13 22398.11 13999.75 106
JIA-IIPM91.76 23790.70 23794.94 22196.11 24387.51 30893.16 33998.13 18075.79 34097.58 12977.68 35092.84 12197.97 22388.47 25996.54 17099.33 167
EPNet_dtu95.71 14895.39 14596.66 17998.92 12593.41 21399.57 16998.90 4096.19 5197.52 13098.56 18192.65 12697.36 24577.89 32498.33 13499.20 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14699.82 11298.43 11494.56 9397.52 13099.70 8894.40 7199.98 4297.00 13199.98 3399.99 20
thisisatest051597.41 9397.02 9898.59 10497.71 19397.52 9199.97 1698.54 8591.83 19697.45 13299.04 14197.50 899.10 15694.75 16496.37 17499.16 179
OMC-MVS97.28 9697.23 8997.41 15799.76 7493.36 21599.65 15697.95 19396.03 5597.41 13399.70 8889.61 17199.51 14296.73 13898.25 13899.38 161
gg-mvs-nofinetune93.51 19691.86 22098.47 11497.72 19197.96 7792.62 34098.51 9574.70 34397.33 13469.59 35398.91 397.79 23197.77 11499.56 10499.67 117
PatchT90.38 26188.75 27595.25 21395.99 24790.16 27991.22 34797.54 22876.80 33697.26 13586.01 34591.88 14296.07 31166.16 34695.91 18299.51 147
PLCcopyleft95.54 397.93 7297.89 6998.05 13599.82 6594.77 18899.92 6598.46 10393.93 12497.20 13699.27 12795.44 4499.97 5197.41 12199.51 10899.41 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 11998.28 15695.76 6097.18 13799.88 2292.74 124100.00 198.67 7799.88 7699.99 20
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 19698.28 15695.76 6097.18 13799.88 2292.74 124100.00 198.67 7799.88 7699.99 20
PatchmatchNetpermissive95.94 14295.45 14397.39 15997.83 18094.41 19396.05 32698.40 13092.86 15397.09 13995.28 28694.21 8698.07 22089.26 25198.11 13999.70 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053097.10 10296.72 10598.22 12897.60 19696.70 12199.92 6598.54 8591.11 21797.07 14098.97 15197.47 999.03 15793.73 19296.09 17798.92 189
CR-MVSNet93.45 19992.62 20195.94 19896.29 24092.66 22892.01 34396.23 31792.62 16896.94 14193.31 32191.04 15596.03 31279.23 31895.96 18099.13 183
RPMNet89.76 27587.28 29097.19 16596.29 24092.66 22892.01 34398.31 15170.19 34896.94 14185.87 34687.25 19699.78 11162.69 34995.96 18099.13 183
baseline96.43 12895.98 12597.76 14597.34 20695.17 17799.51 17997.17 26693.92 12596.90 14399.28 12485.37 21498.64 17997.50 11996.86 16899.46 152
Vis-MVSNetpermissive95.72 14695.15 15397.45 15597.62 19594.28 19599.28 21198.24 16294.27 10996.84 14498.94 15679.39 26298.76 17193.25 19898.49 13099.30 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VDD-MVS93.77 19092.94 19696.27 19198.55 14190.22 27898.77 26097.79 20890.85 22396.82 14599.42 11661.18 34299.77 11598.95 5894.13 20498.82 195
UGNet95.33 15594.57 16397.62 15198.55 14194.85 18398.67 26899.32 2495.75 6396.80 14696.27 24772.18 30699.96 5394.58 17099.05 12098.04 206
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary97.23 9996.80 10398.51 11299.99 195.60 16499.09 22398.84 4693.32 14396.74 14799.72 8486.04 207100.00 198.01 10399.43 11299.94 80
tpm93.70 19493.41 18994.58 23495.36 26887.41 30997.01 31496.90 29490.85 22396.72 14894.14 31490.40 16396.84 28090.75 23588.54 23899.51 147
tttt051796.85 11096.49 11297.92 13997.48 20295.89 15499.85 10198.54 8590.72 22696.63 14998.93 15797.47 999.02 15893.03 20595.76 18698.85 193
mvs-test195.53 15195.97 12894.20 25097.77 18485.44 31999.95 4097.06 27794.92 8096.58 15098.72 17085.81 20898.98 15994.80 16198.11 13998.18 203
casdiffmvs96.42 12995.97 12897.77 14497.30 21094.98 18099.84 10597.09 27493.75 13396.58 15099.26 13085.07 21798.78 16897.77 11497.04 16399.54 143
CNLPA97.76 8297.38 8398.92 8599.53 9596.84 11899.87 8798.14 17893.78 13196.55 15299.69 9192.28 13599.98 4297.13 12799.44 11199.93 81
PatchMatch-RL96.04 14095.40 14497.95 13799.59 9095.22 17699.52 17799.07 3193.96 12296.49 15398.35 18982.28 23499.82 10590.15 24499.22 11798.81 196
MP-MVS-pluss98.07 6897.64 7599.38 4499.74 7798.41 6099.74 13798.18 17193.35 14296.45 15499.85 3392.64 12799.97 5198.91 6399.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ADS-MVSNet293.80 18993.88 17693.55 27497.87 17785.94 31594.24 33296.84 29890.07 23596.43 15594.48 30990.29 16595.37 32087.44 26897.23 15899.36 163
ADS-MVSNet94.79 16494.02 17297.11 16897.87 17793.79 20494.24 33298.16 17590.07 23596.43 15594.48 30990.29 16598.19 21587.44 26897.23 15899.36 163
ACMMPcopyleft97.74 8397.44 8298.66 9799.92 3596.13 14699.18 21899.45 1794.84 8496.41 15799.71 8691.40 14799.99 3697.99 10598.03 14499.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.27 9796.81 10298.66 9798.81 13396.67 12299.92 6598.64 6294.51 9596.38 15898.49 18389.05 18099.88 8597.10 12998.34 13399.43 157
AUN-MVS93.28 20092.60 20295.34 20998.29 15190.09 28199.31 20698.56 7691.80 19996.35 15998.00 19789.38 17498.28 20992.46 20869.22 33897.64 213
thres20096.96 10696.21 11899.22 5098.97 11998.84 3099.85 10199.71 593.17 14896.26 16098.88 16089.87 16999.51 14294.26 17894.91 19799.31 169
HyFIR lowres test96.66 12296.43 11497.36 16199.05 11393.91 20399.70 14799.80 390.54 22796.26 16098.08 19492.15 13898.23 21396.84 13795.46 19199.93 81
SCA94.69 16893.81 17897.33 16397.10 21494.44 19198.86 25498.32 14993.30 14496.17 16295.59 26576.48 28297.95 22691.06 22597.43 15299.59 130
tfpn200view996.79 11395.99 12399.19 5398.94 12198.82 3199.78 12399.71 592.86 15396.02 16398.87 16289.33 17599.50 14493.84 18494.57 19899.27 172
thres40096.78 11495.99 12399.16 5998.94 12198.82 3199.78 12399.71 592.86 15396.02 16398.87 16289.33 17599.50 14493.84 18494.57 19899.16 179
dp95.05 16094.43 16596.91 17097.99 17092.73 22696.29 32397.98 19089.70 24195.93 16594.67 30493.83 9798.45 19086.91 28096.53 17199.54 143
thres100view90096.74 11795.92 13399.18 5498.90 12898.77 3699.74 13799.71 592.59 17195.84 16698.86 16489.25 17799.50 14493.84 18494.57 19899.27 172
thres600view796.69 12095.87 13699.14 6398.90 12898.78 3599.74 13799.71 592.59 17195.84 16698.86 16489.25 17799.50 14493.44 19794.50 20199.16 179
EPP-MVSNet96.69 12096.60 10896.96 16997.74 18793.05 21999.37 19998.56 7688.75 25695.83 16899.01 14496.01 2898.56 18296.92 13597.20 16099.25 174
TESTMET0.1,196.74 11796.26 11798.16 12997.36 20596.48 12899.96 2398.29 15591.93 19395.77 16998.07 19595.54 4098.29 20790.55 23698.89 12299.70 112
F-COLMAP96.93 10896.95 9996.87 17299.71 8491.74 25099.85 10197.95 19393.11 15095.72 17099.16 13692.35 13399.94 6895.32 15199.35 11498.92 189
test-LLR96.47 12696.04 12197.78 14297.02 21995.44 16699.96 2398.21 16694.07 11595.55 17196.38 24293.90 9498.27 21190.42 23998.83 12499.64 123
test-mter96.39 13095.93 13297.78 14297.02 21995.44 16699.96 2398.21 16691.81 19895.55 17196.38 24295.17 4798.27 21190.42 23998.83 12499.64 123
IS-MVSNet96.29 13595.90 13497.45 15598.13 16594.80 18699.08 22597.61 22092.02 19295.54 17398.96 15390.64 16198.08 21893.73 19297.41 15599.47 151
CHOSEN 1792x268896.81 11296.53 11197.64 14998.91 12793.07 21799.65 15699.80 395.64 6595.39 17498.86 16484.35 22399.90 7596.98 13299.16 11899.95 78
CDS-MVSNet96.34 13196.07 12097.13 16697.37 20494.96 18199.53 17697.91 19891.55 20595.37 17598.32 19095.05 5397.13 26193.80 18895.75 18799.30 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu94.53 17695.30 14892.22 29297.77 18482.54 32999.59 16697.06 27794.92 8095.29 17695.37 27985.81 20897.89 22994.80 16197.07 16296.23 222
CSCG97.10 10297.04 9697.27 16499.89 4591.92 24599.90 7399.07 3188.67 25895.26 17799.82 5393.17 11599.98 4298.15 9699.47 10999.90 89
Vis-MVSNet (Re-imp)96.32 13295.98 12597.35 16297.93 17394.82 18599.47 18598.15 17791.83 19695.09 17899.11 13791.37 14897.47 24293.47 19697.43 15299.74 107
TAMVS95.85 14395.58 14196.65 18097.07 21593.50 21099.17 21997.82 20791.39 21395.02 17998.01 19692.20 13697.30 25093.75 19195.83 18499.14 182
XVG-OURS-SEG-HR94.79 16494.70 16295.08 21698.05 16789.19 29099.08 22597.54 22893.66 13594.87 18099.58 10478.78 26799.79 10997.31 12393.40 21196.25 220
XVG-OURS94.82 16394.74 16195.06 21798.00 16989.19 29099.08 22597.55 22694.10 11394.71 18199.62 10180.51 25499.74 12496.04 14493.06 21596.25 220
ab-mvs94.69 16893.42 18798.51 11298.07 16696.26 13896.49 32098.68 5590.31 23294.54 18297.00 22376.30 28499.71 12895.98 14593.38 21299.56 138
TAPA-MVS92.12 894.42 17893.60 18196.90 17199.33 10691.78 24999.78 12398.00 18789.89 23994.52 18399.47 11291.97 14199.18 15469.90 33999.52 10699.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS94.54 17493.56 18497.49 15497.96 17194.34 19498.71 26497.51 23590.30 23394.51 18498.69 17175.56 28998.77 17092.82 20695.99 17999.35 165
Fast-Effi-MVS+95.02 16194.19 16897.52 15397.88 17594.55 19099.97 1697.08 27588.85 25594.47 18597.96 19984.59 22098.41 19389.84 24797.10 16199.59 130
DeepC-MVS94.51 496.92 10996.40 11598.45 11699.16 11095.90 15399.66 15398.06 18496.37 4794.37 18699.49 11183.29 23099.90 7597.63 11799.61 10199.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF91.80 23492.79 19988.83 31898.15 16369.87 34998.11 29496.60 31083.93 31494.33 18799.27 12779.60 26199.46 14991.99 21293.16 21497.18 216
BH-RMVSNet95.18 15794.31 16797.80 14198.17 16295.23 17599.76 13197.53 23092.52 17694.27 18899.25 13176.84 27898.80 16690.89 23299.54 10599.35 165
CVMVSNet94.68 17094.94 15693.89 26496.80 23186.92 31199.06 23098.98 3494.45 9694.23 18999.02 14285.60 21095.31 32290.91 23195.39 19399.43 157
baseline195.78 14594.86 15798.54 10998.47 14698.07 7099.06 23097.99 18892.68 16594.13 19098.62 17693.28 11098.69 17793.79 18985.76 25898.84 194
Anonymous20240521193.10 20491.99 21696.40 18799.10 11289.65 28798.88 25097.93 19583.71 31694.00 19198.75 16968.79 31799.88 8595.08 15491.71 21799.68 115
cascas94.64 17193.61 17997.74 14797.82 18196.26 13899.96 2397.78 20985.76 29694.00 19197.54 20576.95 27799.21 15397.23 12595.43 19297.76 212
Anonymous2024052992.10 22790.65 23896.47 18298.82 13290.61 27098.72 26398.67 5875.54 34193.90 19398.58 17966.23 32899.90 7594.70 16790.67 21898.90 192
MVS_030489.28 28288.31 28192.21 29397.05 21786.53 31297.76 30399.57 1285.58 30193.86 19492.71 32551.04 35296.30 30284.49 29392.72 21693.79 293
LS3D95.84 14495.11 15498.02 13699.85 5595.10 17898.74 26198.50 9987.22 27793.66 19599.86 2987.45 19499.95 6090.94 23099.81 8799.02 187
HQP-NCC95.78 25199.87 8796.82 3093.37 196
ACMP_Plane95.78 25199.87 8796.82 3093.37 196
HQP4-MVS93.37 19698.39 19794.53 226
HQP-MVS94.61 17294.50 16494.92 22295.78 25191.85 24699.87 8797.89 19996.82 3093.37 19698.65 17380.65 25298.39 19797.92 10989.60 21994.53 226
HQP_MVS94.49 17794.36 16694.87 22395.71 26091.74 25099.84 10597.87 20196.38 4493.01 20098.59 17780.47 25698.37 20297.79 11289.55 22294.52 228
plane_prior391.64 25696.63 3893.01 200
GA-MVS93.83 18692.84 19796.80 17395.73 25793.57 20899.88 8497.24 26192.57 17492.92 20296.66 23578.73 26897.67 23587.75 26694.06 20699.17 178
tpm cat193.51 19692.52 20796.47 18297.77 18491.47 26096.13 32498.06 18480.98 32892.91 20393.78 31789.66 17098.87 16387.03 27696.39 17399.09 185
1112_ss96.01 14195.20 15198.42 11997.80 18296.41 13199.65 15696.66 30892.71 16292.88 20499.40 11892.16 13799.30 15191.92 21493.66 20899.55 139
Test_1112_low_res95.72 14694.83 15898.42 11997.79 18396.41 13199.65 15696.65 30992.70 16392.86 20596.13 25192.15 13899.30 15191.88 21593.64 20999.55 139
IB-MVS92.85 694.99 16293.94 17498.16 12997.72 19195.69 16399.99 498.81 4794.28 10892.70 20696.90 22595.08 5099.17 15596.07 14373.88 33299.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+-dtu93.72 19393.86 17793.29 27797.06 21686.16 31399.80 11996.83 29992.66 16692.58 20797.83 20181.39 24297.67 23589.75 24896.87 16796.05 224
tpmvs94.28 18293.57 18396.40 18798.55 14191.50 25995.70 33198.55 8187.47 27292.15 20894.26 31391.42 14698.95 16188.15 26295.85 18398.76 198
BH-w/o95.71 14895.38 14696.68 17898.49 14592.28 23699.84 10597.50 23692.12 18892.06 20998.79 16884.69 21998.67 17895.29 15299.66 9699.09 185
VPA-MVSNet92.70 21391.55 22596.16 19395.09 27096.20 14398.88 25099.00 3391.02 22091.82 21095.29 28576.05 28897.96 22595.62 15081.19 29194.30 246
baseline296.71 11996.49 11297.37 16095.63 26495.96 15299.74 13798.88 4292.94 15291.61 21198.97 15197.72 598.62 18094.83 16098.08 14397.53 215
OPM-MVS93.21 20192.80 19894.44 24393.12 30390.85 26699.77 12697.61 22096.19 5191.56 21298.65 17375.16 29498.47 18693.78 19089.39 22593.99 278
EI-MVSNet93.73 19293.40 19094.74 22796.80 23192.69 22799.06 23097.67 21388.96 25191.39 21399.02 14288.75 18497.30 25091.07 22487.85 24494.22 252
MVSTER95.53 15195.22 15096.45 18498.56 14097.72 8299.91 6997.67 21392.38 18191.39 21397.14 21597.24 1497.30 25094.80 16187.85 24494.34 245
RRT_MVS95.23 15694.77 16096.61 18198.28 15398.32 6399.81 11497.41 24692.59 17191.28 21597.76 20295.02 5497.23 25693.65 19487.14 25194.28 248
BH-untuned95.18 15794.83 15896.22 19298.36 14991.22 26199.80 11997.32 25590.91 22191.08 21698.67 17283.51 22798.54 18494.23 17999.61 10198.92 189
CLD-MVS94.06 18493.90 17594.55 23696.02 24690.69 26799.98 897.72 21096.62 3991.05 21798.85 16777.21 27498.47 18698.11 9889.51 22494.48 230
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS96.60 12395.56 14299.72 996.85 22899.22 1598.31 28498.94 3691.57 20490.90 21899.61 10286.66 20299.96 5397.36 12299.88 7699.99 20
MSDG94.37 17993.36 19197.40 15898.88 13093.95 20299.37 19997.38 24985.75 29890.80 21999.17 13584.11 22599.88 8586.35 28198.43 13298.36 201
VPNet91.81 23190.46 24095.85 20194.74 27695.54 16598.98 24098.59 7192.14 18790.77 22097.44 20768.73 31997.54 23994.89 15977.89 31694.46 231
bset_n11_16_dypcd93.05 20692.30 21095.31 21190.23 33595.05 17999.44 19097.28 25892.51 17790.65 22196.68 23485.30 21596.71 28794.49 17284.14 27294.16 261
MIMVSNet90.30 26488.67 27695.17 21596.45 23991.64 25692.39 34197.15 26985.99 29290.50 22293.19 32366.95 32694.86 32882.01 30893.43 21099.01 188
mvs_anonymous95.65 15095.03 15597.53 15298.19 16095.74 15999.33 20397.49 23790.87 22290.47 22397.10 21788.23 18897.16 25895.92 14697.66 14999.68 115
Patchmatch-test92.65 21691.50 22696.10 19596.85 22890.49 27391.50 34597.19 26382.76 32290.23 22495.59 26595.02 5498.00 22277.41 32696.98 16599.82 97
LPG-MVS_test92.96 20792.71 20093.71 26895.43 26688.67 29699.75 13497.62 21792.81 15690.05 22598.49 18375.24 29298.40 19595.84 14889.12 22694.07 270
LGP-MVS_train93.71 26895.43 26688.67 29697.62 21792.81 15690.05 22598.49 18375.24 29298.40 19595.84 14889.12 22694.07 270
DP-MVS94.54 17493.42 18797.91 14099.46 10294.04 19898.93 24697.48 23881.15 32790.04 22799.55 10687.02 19999.95 6088.97 25398.11 13999.73 108
test_djsdf92.83 21092.29 21194.47 24191.90 32092.46 23399.55 17397.27 25991.17 21489.96 22896.07 25381.10 24596.89 27794.67 16888.91 22894.05 272
ACMM91.95 1092.88 20992.52 20793.98 26195.75 25689.08 29399.77 12697.52 23293.00 15189.95 22997.99 19876.17 28698.46 18993.63 19588.87 23094.39 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
131496.84 11195.96 13099.48 3396.74 23598.52 5598.31 28498.86 4495.82 5689.91 23098.98 14987.49 19399.96 5397.80 11199.73 9199.96 70
XVG-ACMP-BASELINE91.22 24490.75 23592.63 28993.73 29285.61 31698.52 27697.44 24192.77 16089.90 23196.85 22966.64 32798.39 19792.29 21088.61 23593.89 286
miper_enhance_ethall94.36 18193.98 17395.49 20498.68 13995.24 17499.73 14297.29 25793.28 14589.86 23295.97 25494.37 7597.05 26792.20 21184.45 26994.19 255
nrg03093.51 19692.53 20696.45 18494.36 28197.20 10699.81 11497.16 26891.60 20389.86 23297.46 20686.37 20597.68 23495.88 14780.31 30294.46 231
V4291.28 24290.12 25194.74 22793.42 29893.46 21199.68 15097.02 28087.36 27489.85 23495.05 29081.31 24497.34 24787.34 27180.07 30493.40 305
v14419290.79 25289.52 26094.59 23393.11 30492.77 22299.56 17196.99 28386.38 28889.82 23594.95 29780.50 25597.10 26483.98 29680.41 30093.90 285
GBi-Net90.88 24989.82 25494.08 25497.53 19891.97 24198.43 27996.95 28887.05 27889.68 23694.72 30071.34 30996.11 30787.01 27785.65 25994.17 256
test190.88 24989.82 25494.08 25497.53 19891.97 24198.43 27996.95 28887.05 27889.68 23694.72 30071.34 30996.11 30787.01 27785.65 25994.17 256
FMVSNet392.69 21491.58 22395.99 19698.29 15197.42 10199.26 21397.62 21789.80 24089.68 23695.32 28181.62 24196.27 30387.01 27785.65 25994.29 247
IterMVS-LS92.69 21492.11 21394.43 24596.80 23192.74 22499.45 18896.89 29588.98 24989.65 23995.38 27888.77 18396.34 30090.98 22982.04 28594.22 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114491.09 24589.83 25394.87 22393.25 30093.69 20799.62 16396.98 28586.83 28489.64 24094.99 29580.94 24797.05 26785.08 29081.16 29293.87 288
v192192090.46 25989.12 26794.50 23992.96 30892.46 23399.49 18296.98 28586.10 29189.61 24195.30 28278.55 27097.03 27182.17 30780.89 29894.01 275
v119290.62 25789.25 26594.72 22993.13 30193.07 21799.50 18097.02 28086.33 28989.56 24295.01 29279.22 26397.09 26682.34 30681.16 29294.01 275
PCF-MVS94.20 595.18 15794.10 17198.43 11898.55 14195.99 15197.91 30097.31 25690.35 23189.48 24399.22 13385.19 21699.89 7990.40 24198.47 13199.41 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator91.47 1296.28 13695.34 14799.08 7196.82 23097.47 9799.45 18898.81 4795.52 6889.39 24499.00 14681.97 23599.95 6097.27 12499.83 8199.84 95
v124090.20 26788.79 27494.44 24393.05 30692.27 23799.38 19796.92 29385.89 29389.36 24594.87 29977.89 27397.03 27180.66 31481.08 29494.01 275
FIs94.10 18393.43 18696.11 19494.70 27796.82 11999.58 16798.93 3992.54 17589.34 24697.31 21187.62 19297.10 26494.22 18086.58 25494.40 238
ITE_SJBPF92.38 29095.69 26285.14 32095.71 32692.81 15689.33 24798.11 19370.23 31498.42 19285.91 28588.16 24293.59 302
v2v48291.30 24090.07 25295.01 21893.13 30193.79 20499.77 12697.02 28088.05 26689.25 24895.37 27980.73 25097.15 25987.28 27280.04 30594.09 269
UniMVSNet (Re)93.07 20592.13 21295.88 19994.84 27496.24 14299.88 8498.98 3492.49 17989.25 24895.40 27587.09 19897.14 26093.13 20378.16 31494.26 249
UniMVSNet_NR-MVSNet92.95 20892.11 21395.49 20494.61 27995.28 17299.83 11199.08 3091.49 20689.21 25096.86 22887.14 19796.73 28593.20 19977.52 31994.46 231
DU-MVS92.46 21991.45 22895.49 20494.05 28695.28 17299.81 11498.74 5192.25 18589.21 25096.64 23781.66 23996.73 28593.20 19977.52 31994.46 231
eth_miper_zixun_eth92.41 22091.93 21793.84 26597.28 21190.68 26898.83 25696.97 28788.57 26189.19 25295.73 26089.24 17996.69 28889.97 24681.55 28894.15 263
cl-mvsnet293.77 19093.25 19495.33 21099.49 9994.43 19299.61 16498.09 18190.38 22989.16 25395.61 26390.56 16297.34 24791.93 21384.45 26994.21 254
Baseline_NR-MVSNet90.33 26389.51 26192.81 28792.84 30989.95 28399.77 12693.94 34784.69 31189.04 25495.66 26281.66 23996.52 29390.99 22876.98 32491.97 327
FC-MVSNet-test93.81 18893.15 19595.80 20294.30 28396.20 14399.42 19198.89 4192.33 18389.03 25597.27 21387.39 19596.83 28193.20 19986.48 25594.36 241
QAPM95.40 15494.17 16999.10 6996.92 22297.71 8399.40 19298.68 5589.31 24388.94 25698.89 15882.48 23399.96 5393.12 20499.83 8199.62 125
miper_ehance_all_eth93.16 20292.60 20294.82 22697.57 19793.56 20999.50 18097.07 27688.75 25688.85 25795.52 26990.97 15796.74 28490.77 23484.45 26994.17 256
AllTest92.48 21891.64 22195.00 21999.01 11588.43 30098.94 24596.82 30186.50 28688.71 25898.47 18774.73 29699.88 8585.39 28796.18 17596.71 218
TestCases95.00 21999.01 11588.43 30096.82 30186.50 28688.71 25898.47 18774.73 29699.88 8585.39 28796.18 17596.71 218
cl_fuxian92.53 21791.87 21994.52 23797.40 20392.99 22099.40 19296.93 29287.86 26888.69 26095.44 27389.95 16896.44 29690.45 23880.69 29994.14 266
pmmvs492.10 22791.07 23395.18 21492.82 31094.96 18199.48 18496.83 29987.45 27388.66 26196.56 24083.78 22696.83 28189.29 25084.77 26793.75 295
PS-MVSNAJss93.64 19593.31 19294.61 23292.11 31792.19 23899.12 22197.38 24992.51 17788.45 26296.99 22491.20 15097.29 25394.36 17487.71 24694.36 241
UniMVSNet_ETH3D90.06 27188.58 27794.49 24094.67 27888.09 30597.81 30297.57 22583.91 31588.44 26397.41 20857.44 34697.62 23791.41 21988.59 23797.77 211
TranMVSNet+NR-MVSNet91.68 23890.61 23994.87 22393.69 29393.98 20199.69 14898.65 5991.03 21988.44 26396.83 23280.05 25996.18 30690.26 24376.89 32694.45 236
FMVSNet291.02 24689.56 25895.41 20897.53 19895.74 15998.98 24097.41 24687.05 27888.43 26595.00 29471.34 30996.24 30585.12 28985.21 26494.25 251
COLMAP_ROBcopyleft90.47 1492.18 22591.49 22794.25 24999.00 11788.04 30698.42 28296.70 30782.30 32488.43 26599.01 14476.97 27699.85 9486.11 28496.50 17294.86 225
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator+91.53 1196.31 13395.24 14999.52 2696.88 22798.64 4999.72 14598.24 16295.27 7588.42 26798.98 14982.76 23299.94 6897.10 12999.83 8199.96 70
RRT_test8_iter0594.58 17394.11 17095.98 19797.88 17596.11 14999.89 8197.45 23991.66 20288.28 26896.71 23396.53 2497.40 24394.73 16683.85 27794.45 236
v14890.70 25389.63 25693.92 26292.97 30790.97 26399.75 13496.89 29587.51 27188.27 26995.01 29281.67 23897.04 26987.40 27077.17 32393.75 295
DSMNet-mixed88.28 28888.24 28388.42 32289.64 33875.38 34798.06 29689.86 35485.59 30088.20 27092.14 33176.15 28791.95 34378.46 32296.05 17897.92 207
WR-MVS92.31 22291.25 23095.48 20794.45 28095.29 17199.60 16598.68 5590.10 23488.07 27196.89 22680.68 25196.80 28393.14 20279.67 30694.36 241
test0.0.03 193.86 18593.61 17994.64 23195.02 27392.18 23999.93 6198.58 7294.07 11587.96 27298.50 18293.90 9494.96 32681.33 31193.17 21396.78 217
XXY-MVS91.82 23090.46 24095.88 19993.91 28995.40 16998.87 25397.69 21288.63 26087.87 27397.08 21874.38 29997.89 22991.66 21784.07 27494.35 244
Patchmtry89.70 27688.49 27893.33 27696.24 24289.94 28591.37 34696.23 31778.22 33487.69 27493.31 32191.04 15596.03 31280.18 31782.10 28494.02 273
cl-mvsnet192.32 22191.60 22294.47 24197.31 20992.74 22499.58 16796.75 30586.99 28187.64 27595.54 26789.55 17296.50 29488.58 25682.44 28294.17 256
D2MVS92.76 21192.59 20593.27 27895.13 26989.54 28999.69 14899.38 2192.26 18487.59 27694.61 30685.05 21897.79 23191.59 21888.01 24392.47 321
cl-mvsnet_92.31 22291.58 22394.52 23797.33 20892.77 22299.57 16996.78 30486.97 28287.56 27795.51 27089.43 17396.62 29088.60 25582.44 28294.16 261
v890.54 25889.17 26694.66 23093.43 29793.40 21499.20 21696.94 29185.76 29687.56 27794.51 30781.96 23697.19 25784.94 29178.25 31393.38 307
miper_lstm_enhance91.81 23191.39 22993.06 28497.34 20689.18 29299.38 19796.79 30386.70 28587.47 27995.22 28790.00 16795.86 31688.26 26081.37 29094.15 263
anonymousdsp91.79 23690.92 23494.41 24690.76 33192.93 22198.93 24697.17 26689.08 24587.46 28095.30 28278.43 27296.92 27692.38 20988.73 23393.39 306
jajsoiax91.92 22991.18 23194.15 25191.35 32690.95 26499.00 23897.42 24492.61 16987.38 28197.08 21872.46 30597.36 24594.53 17188.77 23294.13 267
mvs_tets91.81 23191.08 23294.00 25991.63 32490.58 27198.67 26897.43 24292.43 18087.37 28297.05 22171.76 30797.32 24994.75 16488.68 23494.11 268
v1090.25 26688.82 27394.57 23593.53 29593.43 21299.08 22596.87 29785.00 30687.34 28394.51 30780.93 24897.02 27382.85 30379.23 30793.26 309
pmmvs590.17 26989.09 26893.40 27592.10 31889.77 28699.74 13795.58 33085.88 29587.24 28495.74 25873.41 30396.48 29588.54 25783.56 27893.95 281
ACMP92.05 992.74 21292.42 20993.73 26695.91 25088.72 29599.81 11497.53 23094.13 11187.00 28598.23 19174.07 30098.47 18696.22 14288.86 23193.99 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS-HIRNet86.22 29683.19 30795.31 21196.71 23790.29 27792.12 34297.33 25462.85 34986.82 28670.37 35269.37 31697.49 24075.12 33397.99 14598.15 204
Anonymous2023121189.86 27388.44 27994.13 25398.93 12390.68 26898.54 27498.26 16076.28 33786.73 28795.54 26770.60 31397.56 23890.82 23380.27 30394.15 263
v7n89.65 27788.29 28293.72 26792.22 31690.56 27299.07 22997.10 27385.42 30486.73 28794.72 30080.06 25897.13 26181.14 31278.12 31593.49 303
IterMVS-SCA-FT90.85 25190.16 25092.93 28596.72 23689.96 28298.89 24896.99 28388.95 25286.63 28995.67 26176.48 28295.00 32587.04 27584.04 27693.84 290
EU-MVSNet90.14 27090.34 24489.54 31592.55 31381.06 33998.69 26698.04 18691.41 21286.59 29096.84 23180.83 24993.31 34186.20 28281.91 28694.26 249
OpenMVScopyleft90.15 1594.77 16693.59 18298.33 12396.07 24497.48 9699.56 17198.57 7490.46 22886.51 29198.95 15578.57 26999.94 6893.86 18399.74 9097.57 214
IterMVS90.91 24890.17 24993.12 28196.78 23490.42 27698.89 24897.05 27989.03 24786.49 29295.42 27476.59 28195.02 32487.22 27384.09 27393.93 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H91.30 24090.35 24394.15 25194.17 28592.62 23199.17 21998.94 3688.87 25486.48 29394.46 31184.36 22296.61 29188.19 26178.51 31293.21 311
MS-PatchMatch90.65 25490.30 24591.71 29994.22 28485.50 31898.24 28897.70 21188.67 25886.42 29496.37 24467.82 32398.03 22183.62 29999.62 9891.60 329
CP-MVSNet91.23 24390.22 24794.26 24893.96 28892.39 23599.09 22398.57 7488.95 25286.42 29496.57 23979.19 26496.37 29890.29 24278.95 30994.02 273
test_part192.15 22690.72 23696.44 18698.87 13197.46 9898.99 23998.26 16085.89 29386.34 29696.34 24581.71 23797.48 24191.06 22578.99 30894.37 240
LF4IMVS89.25 28388.85 27290.45 30992.81 31181.19 33898.12 29394.79 34091.44 20986.29 29797.11 21665.30 33298.11 21788.53 25885.25 26392.07 324
PVSNet_088.03 1991.80 23490.27 24696.38 18998.27 15690.46 27499.94 5599.61 1193.99 12086.26 29897.39 21071.13 31299.89 7998.77 7367.05 34298.79 197
PS-CasMVS90.63 25689.51 26193.99 26093.83 29091.70 25498.98 24098.52 8888.48 26286.15 29996.53 24175.46 29096.31 30188.83 25478.86 31193.95 281
FMVSNet188.50 28686.64 29294.08 25495.62 26591.97 24198.43 27996.95 28883.00 31986.08 30094.72 30059.09 34496.11 30781.82 31084.07 27494.17 256
PEN-MVS90.19 26889.06 26993.57 27393.06 30590.90 26599.06 23098.47 10188.11 26585.91 30196.30 24676.67 27995.94 31587.07 27476.91 32593.89 286
ppachtmachnet_test89.58 27888.35 28093.25 27992.40 31490.44 27599.33 20396.73 30685.49 30285.90 30295.77 25781.09 24696.00 31476.00 33282.49 28193.30 308
OurMVSNet-221017-089.81 27489.48 26390.83 30591.64 32381.21 33798.17 29295.38 33391.48 20785.65 30397.31 21172.66 30497.29 25388.15 26284.83 26693.97 280
our_test_390.39 26089.48 26393.12 28192.40 31489.57 28899.33 20396.35 31687.84 26985.30 30494.99 29584.14 22496.09 31080.38 31584.56 26893.71 300
testgi89.01 28488.04 28591.90 29793.49 29684.89 32299.73 14295.66 32893.89 12885.14 30598.17 19259.68 34394.66 33077.73 32588.88 22996.16 223
DTE-MVSNet89.40 27988.24 28392.88 28692.66 31289.95 28399.10 22298.22 16587.29 27585.12 30696.22 24876.27 28595.30 32383.56 30075.74 32993.41 304
FMVSNet588.32 28787.47 28990.88 30396.90 22688.39 30297.28 30895.68 32782.60 32384.67 30792.40 33079.83 26091.16 34576.39 33181.51 28993.09 312
tfpnnormal89.29 28187.61 28894.34 24794.35 28294.13 19798.95 24498.94 3683.94 31384.47 30895.51 27074.84 29597.39 24477.05 32980.41 30091.48 331
MVP-Stereo90.93 24790.45 24292.37 29191.25 32888.76 29498.05 29796.17 31987.27 27684.04 30995.30 28278.46 27197.27 25583.78 29899.70 9491.09 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LTVRE_ROB88.28 1890.29 26589.05 27094.02 25795.08 27190.15 28097.19 31097.43 24284.91 30983.99 31097.06 22074.00 30198.28 20984.08 29487.71 24693.62 301
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 28087.81 28794.01 25893.40 29991.93 24498.62 27196.48 31486.25 29083.86 31196.14 25073.68 30297.04 26986.16 28375.73 33093.04 314
USDC90.00 27288.96 27193.10 28394.81 27588.16 30498.71 26495.54 33193.66 13583.75 31297.20 21465.58 33098.31 20683.96 29787.49 25092.85 316
CL-MVSNet_2432*160084.50 30683.15 30888.53 32186.00 34581.79 33598.82 25797.35 25185.12 30583.62 31390.91 33576.66 28091.40 34469.53 34060.36 34792.40 322
ACMH+89.98 1690.35 26289.54 25992.78 28895.99 24786.12 31498.81 25897.18 26589.38 24283.14 31497.76 20268.42 32198.43 19189.11 25286.05 25793.78 294
Anonymous2023120686.32 29585.42 29789.02 31789.11 34080.53 34399.05 23495.28 33485.43 30382.82 31593.92 31574.40 29893.44 34066.99 34481.83 28793.08 313
DIV-MVS_2432*160083.59 31182.06 31188.20 32386.93 34380.70 34197.21 30996.38 31582.87 32082.49 31688.97 33867.63 32492.32 34273.75 33562.30 34691.58 330
SixPastTwentyTwo88.73 28588.01 28690.88 30391.85 32182.24 33198.22 29095.18 33888.97 25082.26 31796.89 22671.75 30896.67 28984.00 29582.98 27993.72 299
KD-MVS_2432*160088.00 29086.10 29493.70 27096.91 22394.04 19897.17 31197.12 27184.93 30781.96 31892.41 32892.48 13094.51 33179.23 31852.68 35092.56 318
miper_refine_blended88.00 29086.10 29493.70 27096.91 22394.04 19897.17 31197.12 27184.93 30781.96 31892.41 32892.48 13094.51 33179.23 31852.68 35092.56 318
TinyColmap87.87 29286.51 29391.94 29695.05 27285.57 31797.65 30494.08 34584.40 31281.82 32096.85 22962.14 33998.33 20480.25 31686.37 25691.91 328
ACMH89.72 1790.64 25589.63 25693.66 27295.64 26388.64 29898.55 27297.45 23989.03 24781.62 32197.61 20469.75 31598.41 19389.37 24987.62 24893.92 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs685.69 29783.84 30391.26 30290.00 33784.41 32497.82 30196.15 32075.86 33981.29 32295.39 27761.21 34196.87 27983.52 30173.29 33392.50 320
TransMVSNet (Re)87.25 29385.28 29893.16 28093.56 29491.03 26298.54 27494.05 34683.69 31781.09 32396.16 24975.32 29196.40 29776.69 33068.41 33992.06 325
NR-MVSNet91.56 23990.22 24795.60 20394.05 28695.76 15898.25 28798.70 5391.16 21680.78 32496.64 23783.23 23196.57 29291.41 21977.73 31894.46 231
LCM-MVSNet-Re92.31 22292.60 20291.43 30097.53 19879.27 34599.02 23791.83 35192.07 18980.31 32594.38 31283.50 22895.48 31897.22 12697.58 15099.54 143
TDRefinement84.76 30382.56 31091.38 30174.58 35384.80 32397.36 30794.56 34384.73 31080.21 32696.12 25263.56 33698.39 19787.92 26463.97 34390.95 335
N_pmnet80.06 31680.78 31577.89 33191.94 31945.28 36098.80 25956.82 36378.10 33580.08 32793.33 31977.03 27595.76 31768.14 34382.81 28092.64 317
test_040285.58 29883.94 30290.50 30793.81 29185.04 32198.55 27295.20 33776.01 33879.72 32895.13 28864.15 33596.26 30466.04 34786.88 25390.21 339
test20.0384.72 30583.99 30086.91 32588.19 34280.62 34298.88 25095.94 32388.36 26478.87 32994.62 30568.75 31889.11 34966.52 34575.82 32891.00 333
pmmvs380.27 31577.77 31987.76 32480.32 35182.43 33098.23 28991.97 35072.74 34678.75 33087.97 34057.30 34790.99 34670.31 33862.37 34589.87 340
MIMVSNet182.58 31280.51 31688.78 31986.68 34484.20 32596.65 31895.41 33278.75 33378.59 33192.44 32751.88 35089.76 34865.26 34878.95 30992.38 323
DeepMVS_CXcopyleft82.92 33095.98 24958.66 35496.01 32292.72 16178.34 33295.51 27058.29 34598.08 21882.57 30485.29 26292.03 326
Patchmatch-RL test86.90 29485.98 29689.67 31484.45 34775.59 34689.71 34892.43 34986.89 28377.83 33390.94 33494.22 8393.63 33887.75 26669.61 33599.79 100
lessismore_v090.53 30690.58 33280.90 34095.80 32577.01 33495.84 25566.15 32996.95 27483.03 30275.05 33193.74 298
K. test v388.05 28987.24 29190.47 30891.82 32282.23 33298.96 24397.42 24489.05 24676.93 33595.60 26468.49 32095.42 31985.87 28681.01 29693.75 295
ambc83.23 32977.17 35262.61 35187.38 35094.55 34476.72 33686.65 34430.16 35596.36 29984.85 29269.86 33490.73 336
PM-MVS80.47 31478.88 31885.26 32783.79 34972.22 34895.89 32991.08 35285.71 29976.56 33788.30 33936.64 35493.90 33582.39 30569.57 33689.66 342
OpenMVS_ROBcopyleft79.82 2083.77 31081.68 31390.03 31288.30 34182.82 32798.46 27795.22 33673.92 34576.00 33891.29 33355.00 34896.94 27568.40 34288.51 23990.34 337
UnsupCasMVSNet_eth85.52 29983.99 30090.10 31189.36 33983.51 32696.65 31897.99 18889.14 24475.89 33993.83 31663.25 33793.92 33481.92 30967.90 34192.88 315
new_pmnet84.49 30782.92 30989.21 31690.03 33682.60 32896.89 31795.62 32980.59 32975.77 34089.17 33765.04 33394.79 32972.12 33681.02 29590.23 338
EG-PatchMatch MVS85.35 30283.81 30489.99 31390.39 33381.89 33498.21 29196.09 32181.78 32674.73 34193.72 31851.56 35197.12 26379.16 32188.61 23590.96 334
pmmvs-eth3d84.03 30981.97 31290.20 31084.15 34887.09 31098.10 29594.73 34283.05 31874.10 34287.77 34165.56 33194.01 33381.08 31369.24 33789.49 343
new-patchmatchnet81.19 31379.34 31786.76 32682.86 35080.36 34497.92 29995.27 33582.09 32572.02 34386.87 34362.81 33890.74 34771.10 33763.08 34489.19 345
ET-MVSNet_ETH3D94.37 17993.28 19397.64 14998.30 15097.99 7499.99 497.61 22094.35 10371.57 34499.45 11596.23 2795.34 32196.91 13685.14 26599.59 130
UnsupCasMVSNet_bld79.97 31777.03 32088.78 31985.62 34681.98 33393.66 33797.35 25175.51 34270.79 34583.05 34748.70 35394.91 32778.31 32360.29 34889.46 344
CMPMVSbinary61.59 2184.75 30485.14 29983.57 32890.32 33462.54 35296.98 31597.59 22474.33 34469.95 34696.66 23564.17 33498.32 20587.88 26588.41 24089.84 341
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testmvs40.60 32844.45 33129.05 34319.49 36514.11 36699.68 15018.47 36420.74 35964.59 34798.48 18610.95 36417.09 36256.66 35211.01 35855.94 355
LCM-MVSNet67.77 31964.73 32376.87 33262.95 35956.25 35689.37 34993.74 34844.53 35361.99 34880.74 34820.42 36186.53 35169.37 34159.50 34987.84 346
PMMVS267.15 32064.15 32476.14 33370.56 35662.07 35393.89 33587.52 35858.09 35060.02 34978.32 34922.38 36084.54 35259.56 35147.03 35281.80 348
Gipumacopyleft66.95 32165.00 32272.79 33491.52 32567.96 35066.16 35595.15 33947.89 35258.54 35067.99 35429.74 35687.54 35050.20 35377.83 31762.87 353
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet185.50 30183.33 30592.00 29590.89 33088.38 30399.22 21596.55 31179.60 33257.26 35192.72 32479.09 26693.78 33777.25 32777.37 32293.84 290
MDA-MVSNet_test_wron85.51 30083.32 30692.10 29490.96 32988.58 29999.20 21696.52 31279.70 33157.12 35292.69 32679.11 26593.86 33677.10 32877.46 32193.86 289
MDA-MVSNet-bldmvs84.09 30881.52 31491.81 29891.32 32788.00 30798.67 26895.92 32480.22 33055.60 35393.32 32068.29 32293.60 33973.76 33476.61 32793.82 292
FPMVS68.72 31868.72 32168.71 33665.95 35744.27 36295.97 32894.74 34151.13 35153.26 35490.50 33625.11 35983.00 35360.80 35080.97 29778.87 349
test12337.68 32939.14 33233.31 34219.94 36424.83 36598.36 2839.75 36515.53 36051.31 35587.14 34219.62 36217.74 36147.10 3543.47 36057.36 354
tmp_tt65.23 32262.94 32572.13 33544.90 36250.03 35881.05 35289.42 35738.45 35448.51 35699.90 1754.09 34978.70 35591.84 21618.26 35787.64 347
E-PMN52.30 32552.18 32752.67 34071.51 35445.40 35993.62 33876.60 36136.01 35643.50 35764.13 35627.11 35867.31 35831.06 35826.06 35445.30 357
EMVS51.44 32751.22 32952.11 34170.71 35544.97 36194.04 33475.66 36235.34 35842.40 35861.56 35928.93 35765.87 35927.64 35924.73 35545.49 356
MVEpermissive53.74 2251.54 32647.86 33062.60 33859.56 36050.93 35779.41 35377.69 36035.69 35736.27 35961.76 3585.79 36769.63 35637.97 35736.61 35367.24 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 32352.24 32667.66 33749.27 36156.82 35583.94 35182.02 35970.47 34733.28 36064.54 35517.23 36369.16 35745.59 35523.85 35677.02 350
PMVScopyleft49.05 2353.75 32451.34 32860.97 33940.80 36334.68 36374.82 35489.62 35637.55 35528.67 36172.12 3517.09 36581.63 35443.17 35668.21 34066.59 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 33120.84 33418.99 34465.34 35827.73 36450.43 3567.67 3669.50 3618.01 3626.34 3626.13 36626.24 36023.40 36010.69 3592.99 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.43 33031.24 3330.00 3450.00 3660.00 3670.00 35798.09 1810.00 3620.00 36399.67 9583.37 2290.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.60 33310.13 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36391.20 1500.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.28 33211.04 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.40 1180.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS99.93 299.89 4599.80 299.96 2399.80 5897.44 11100.00 1100.00 199.98 33100.00 1
save fliter99.82 6598.79 3399.96 2398.40 13097.66 10
test_0728_SECOND99.82 599.94 1499.47 599.95 4098.43 114100.00 199.99 5100.00 1100.00 1
GSMVS99.59 130
sam_mvs194.72 6499.59 130
sam_mvs94.25 82
MTGPAbinary98.28 156
test_post195.78 33059.23 36093.20 11497.74 23391.06 225
test_post63.35 35794.43 6998.13 216
patchmatchnet-post91.70 33295.12 4897.95 226
MTMP99.87 8796.49 313
gm-plane-assit96.97 22193.76 20691.47 20898.96 15398.79 16794.92 156
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 36100.00 1100.00 1
test_prior498.05 7199.94 55
test_prior99.43 3599.94 1498.49 5798.65 5999.80 10699.99 20
新几何299.40 192
旧先验199.76 7497.52 9198.64 6299.85 3395.63 3999.94 5799.99 20
无先验99.49 18298.71 5293.46 140100.00 194.36 17499.99 20
原ACMM299.90 73
testdata299.99 3690.54 237
segment_acmp96.68 22
testdata199.28 21196.35 48
plane_prior795.71 26091.59 258
plane_prior695.76 25591.72 25380.47 256
plane_prior597.87 20198.37 20297.79 11289.55 22294.52 228
plane_prior498.59 177
plane_prior299.84 10596.38 44
plane_prior195.73 257
plane_prior91.74 25099.86 9896.76 3489.59 221
n20.00 367
nn0.00 367
door-mid89.69 355
test1198.44 106
door90.31 353
HQP5-MVS91.85 246
BP-MVS97.92 109
HQP3-MVS97.89 19989.60 219
HQP2-MVS80.65 252
NP-MVS95.77 25491.79 24898.65 173
ACMMP++_ref87.04 252
ACMMP++88.23 241
Test By Simon92.82 123