This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5498.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6698.02 699.90 299.95 397.33 13100.00 199.54 32100.00 1100.00 1
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7398.67 4499.77 12598.38 13696.73 3599.88 399.74 7794.89 6199.59 13599.80 1899.98 3399.97 62
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test072699.93 2699.29 1099.96 2398.42 12397.28 1899.86 499.94 497.22 15
xiu_mvs_v2_base98.23 6197.97 6199.02 7798.69 13398.66 4699.52 17498.08 17797.05 2699.86 499.86 2990.65 15499.71 12499.39 4098.63 12498.69 196
PS-MVSNAJ98.44 4798.20 4999.16 5998.80 12998.92 2399.54 17298.17 16697.34 1699.85 699.85 3391.20 14499.89 7999.41 3999.67 9198.69 196
旧先验299.46 18494.21 10799.85 699.95 6096.96 129
IU-MVS99.93 2699.31 798.41 12797.71 899.84 8100.00 1100.00 1100.00 1
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6198.46 10194.56 9299.84 899.92 1194.32 7999.86 9099.96 899.98 33100.00 1
MSP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4098.32 14797.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 87
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6398.79 3399.96 2397.52 22797.66 1099.81 1299.89 1994.70 6499.86 9099.84 1399.93 6299.96 67
SF-MVS98.67 3098.40 3599.50 2999.77 6998.67 4499.90 7398.21 16093.53 13599.81 1299.89 1994.70 6499.86 9099.84 1399.93 6299.96 67
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6198.57 5199.90 7398.37 13993.81 12699.81 1299.90 1794.34 7599.86 9099.84 1399.98 3399.97 62
SD-MVS98.92 1698.70 1799.56 2199.70 8198.73 4199.94 5598.34 14496.38 4499.81 1299.76 7094.59 6699.98 4299.84 1399.96 4799.97 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11297.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 11297.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11297.26 2299.80 1699.88 2296.71 20100.00 1
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5899.98 898.86 4497.10 2599.80 1699.94 495.92 33100.00 199.51 33100.00 1100.00 1
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13297.71 8299.98 898.44 10496.85 2999.80 1699.91 1397.57 699.85 9499.44 3799.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
testdata98.42 11799.47 9695.33 16598.56 7693.78 12899.79 2199.85 3393.64 10099.94 6894.97 15199.94 56100.00 1
9.1498.38 3899.87 5099.91 6998.33 14593.22 14399.78 2299.89 1994.57 6799.85 9499.84 1399.97 44
SMA-MVS98.76 2698.48 2999.62 1599.87 5098.87 2799.86 9898.38 13693.19 14499.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8798.33 14593.97 11899.76 2499.87 2694.99 5799.75 11698.55 80100.00 199.98 51
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4198.51 5599.87 8798.36 14194.08 11199.74 2599.73 7994.08 8799.74 12099.42 3899.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1698.40 5198.07 5699.40 4199.59 8698.41 5999.86 9898.24 15692.18 18199.73 2699.87 2693.47 10299.85 9499.74 2499.95 5099.93 78
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5699.95 4098.65 5995.78 5899.73 2699.76 7096.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4095.78 5899.73 2699.76 7096.00 2999.78 20100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5299.90 7398.55 8095.14 7799.72 2999.84 4695.46 43100.00 199.65 3199.99 2099.99 20
TEST999.92 3598.92 2399.96 2398.43 11293.90 12399.71 3099.86 2995.88 3499.85 94
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11294.35 10099.71 3099.86 2995.94 3199.85 9499.69 3099.98 3399.99 20
test_899.92 3598.88 2699.96 2398.43 11294.35 10099.69 3299.85 3395.94 3199.85 94
test1299.43 3599.74 7398.56 5298.40 12999.65 3394.76 6299.75 11699.98 3399.99 20
DPE-MVS99.26 699.10 799.74 799.89 4499.24 1499.87 8798.44 10497.48 1599.64 3499.94 496.68 2299.99 3699.99 5100.00 199.99 20
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11294.63 9199.63 3599.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
agg_prior99.93 2698.77 3698.43 11299.63 3599.85 94
xiu_mvs_v1_base_debu97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
xiu_mvs_v1_base97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
xiu_mvs_v1_base_debi97.43 8797.06 9098.55 10497.74 18198.14 6699.31 20297.86 19796.43 4199.62 3799.69 8785.56 20499.68 12899.05 4898.31 13197.83 205
原ACMM198.96 8299.73 7796.99 11298.51 9394.06 11499.62 3799.85 3394.97 5899.96 5395.11 14999.95 5099.92 84
PHI-MVS98.41 4998.21 4899.03 7599.86 5297.10 10999.98 898.80 4990.78 21999.62 3799.78 6495.30 46100.00 199.80 1899.93 6299.99 20
DPM-MVS98.83 2198.46 3099.97 199.33 10299.92 199.96 2398.44 10497.96 799.55 4299.94 497.18 17100.00 193.81 18299.94 5699.98 51
新几何199.42 3899.75 7298.27 6498.63 6592.69 16199.55 4299.82 5294.40 70100.00 191.21 21699.94 5699.99 20
ACMMP_NAP98.49 4398.14 5299.54 2399.66 8398.62 5099.85 10198.37 13994.68 8999.53 4499.83 4992.87 116100.00 198.66 7699.84 7699.99 20
112198.03 6797.57 7699.40 4199.74 7398.21 6598.31 27798.62 6692.78 15699.53 4499.83 4995.08 50100.00 194.36 16999.92 6699.99 20
PMMVS96.76 11396.76 10196.76 17298.28 14792.10 23399.91 6997.98 18494.12 10999.53 4499.39 11686.93 19398.73 16996.95 13097.73 14299.45 151
DVP-MVS99.09 899.12 598.98 8099.93 2697.24 10299.95 4098.42 12397.50 1499.52 4799.88 2297.43 1299.71 12499.50 3499.98 33100.00 1
test_part299.89 4499.25 1399.49 48
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 6998.39 13297.20 2499.46 4999.85 3395.53 4299.79 10899.86 12100.00 199.99 20
region2R98.54 3998.37 4099.05 7399.96 897.18 10599.96 2398.55 8094.87 8399.45 5099.85 3394.07 88100.00 198.67 73100.00 199.98 51
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4199.02 1999.95 4098.56 7697.56 1399.44 5199.85 3395.38 45100.00 199.31 4199.99 2099.87 90
MVSFormer96.94 10596.60 10597.95 13597.28 20597.70 8499.55 17097.27 25291.17 20899.43 5299.54 10490.92 15296.89 27294.67 16499.62 9499.25 171
lupinMVS97.85 7397.60 7498.62 9897.28 20597.70 8499.99 497.55 22195.50 6999.43 5299.67 9190.92 15298.71 17198.40 8499.62 9499.45 151
Regformer-198.79 2498.60 2399.36 4599.85 5398.34 6199.87 8798.52 8796.05 5399.41 5499.79 6094.93 5999.76 11399.07 4799.90 6899.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5398.32 6299.87 8798.52 8796.04 5499.41 5499.79 6094.92 6099.76 11399.05 4899.90 6899.98 51
XVS98.70 2898.55 2599.15 6199.94 1497.50 9399.94 5598.42 12396.22 4999.41 5499.78 6494.34 7599.96 5398.92 5999.95 5099.99 20
X-MVStestdata93.83 18492.06 21099.15 6199.94 1497.50 9399.94 5598.42 12396.22 4999.41 5441.37 35194.34 7599.96 5398.92 5999.95 5099.99 20
APD-MVS_3200maxsize98.25 6098.08 5598.78 8999.81 6696.60 12399.82 11298.30 14993.95 12099.37 5899.77 6692.84 11799.76 11398.95 5699.92 6699.97 62
PGM-MVS98.34 5398.13 5398.99 7999.92 3597.00 11199.75 13199.50 1693.90 12399.37 5899.76 7093.24 110100.00 197.75 11299.96 4799.98 51
SR-MVS98.46 4598.30 4698.93 8499.88 4897.04 11099.84 10598.35 14294.92 8099.32 6099.80 5793.35 10499.78 11099.30 4299.95 5099.96 67
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9799.95 4098.61 6894.77 8599.31 6199.85 3394.22 82100.00 198.70 7199.98 3399.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9799.95 4098.61 6895.00 7999.31 6199.85 3394.22 82100.00 198.78 6899.98 3399.98 51
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10599.95 4098.60 7094.77 8599.31 6199.84 4693.73 97100.00 198.70 7199.98 3399.98 51
ETV-MVS97.92 7197.80 6898.25 12598.14 15896.48 12599.98 897.63 20995.61 6699.29 6499.46 11092.55 12598.82 16199.02 5498.54 12599.46 149
test22299.55 9097.41 10099.34 19898.55 8091.86 19099.27 6599.83 4993.84 9599.95 5099.99 20
abl_697.67 8397.34 8398.66 9599.68 8296.11 14499.68 14798.14 17293.80 12799.27 6599.70 8488.65 17999.98 4297.46 11699.72 8899.89 87
CS-MVS97.84 7497.69 7098.31 12298.28 14796.27 131100.00 197.52 22795.29 7399.25 6799.65 9591.18 14798.94 15898.96 5599.04 11799.73 105
CANet_DTU96.76 11396.15 11698.60 10098.78 13097.53 8999.84 10597.63 20997.25 2399.20 6899.64 9681.36 23499.98 4292.77 20298.89 11898.28 199
EPNet98.49 4398.40 3598.77 9099.62 8596.80 11899.90 7399.51 1597.60 1299.20 6899.36 11993.71 9899.91 7497.99 10198.71 12399.61 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS95.94 297.71 8298.98 1093.92 25899.63 8481.76 32799.96 2398.56 7699.47 199.19 7099.99 194.16 86100.00 199.92 999.93 62100.00 1
VNet97.21 9896.57 10799.13 6898.97 11597.82 8099.03 23199.21 2794.31 10399.18 7198.88 15686.26 19999.89 7998.93 5894.32 19899.69 111
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6298.47 299.13 7299.92 1196.38 26100.00 199.74 24100.00 1100.00 1
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4198.85 2999.24 20998.47 9998.14 499.08 7399.91 1393.09 113100.00 199.04 5299.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t97.41 9196.83 9899.14 6399.51 9497.83 7999.89 8198.27 15488.48 25699.06 7499.66 9390.30 15899.64 13496.32 13799.97 4499.96 67
PVSNet91.05 1397.13 9996.69 10398.45 11499.52 9295.81 15099.95 4099.65 1094.73 8799.04 7599.21 13084.48 21399.95 6094.92 15298.74 12299.58 133
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10098.87 2798.46 27099.42 2097.03 2799.02 7699.09 13499.35 198.21 20999.73 2799.78 8499.77 101
Regformer-398.58 3698.41 3399.10 6999.84 5897.57 8799.66 15098.52 8795.79 5799.01 7799.77 6694.40 7099.75 11698.82 6499.83 7799.98 51
Regformer-498.56 3798.39 3799.08 7199.84 5897.52 9099.66 15098.52 8795.76 6099.01 7799.77 6694.33 7899.75 11698.80 6799.83 7799.98 51
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 15799.44 1897.33 1799.00 7999.72 8094.03 8999.98 4298.73 70100.00 1100.00 1
diffmvs97.00 10396.64 10498.09 13197.64 18896.17 14099.81 11497.19 25694.67 9098.95 8099.28 12086.43 19798.76 16798.37 8597.42 15099.33 164
HPM-MVS_fast97.80 7897.50 7798.68 9399.79 6896.42 12799.88 8498.16 16991.75 19498.94 8199.54 10491.82 13999.65 13397.62 11499.99 2099.99 20
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12299.97 1698.39 13294.43 9798.90 8299.87 2694.30 80100.00 199.04 5299.99 2099.99 20
MVS_Test96.46 12595.74 13598.61 9998.18 15597.23 10399.31 20297.15 26291.07 21298.84 8397.05 21688.17 18298.97 15694.39 16897.50 14799.61 124
API-MVS97.86 7297.66 7198.47 11299.52 9295.41 16399.47 18298.87 4391.68 19598.84 8399.85 3392.34 12899.99 3698.44 8399.96 47100.00 1
GST-MVS98.27 5797.97 6199.17 5799.92 3597.57 8799.93 6198.39 13294.04 11698.80 8599.74 7792.98 115100.00 198.16 9199.76 8599.93 78
MVS_111021_LR98.42 4898.38 3898.53 10999.39 9995.79 15199.87 8799.86 296.70 3698.78 8699.79 6092.03 13499.90 7599.17 4499.86 7599.88 89
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 7796.63 12199.97 1697.92 19198.07 598.76 8799.55 10295.00 5699.94 6899.91 1197.68 14499.99 20
sss97.57 8597.03 9499.18 5498.37 14398.04 7199.73 13999.38 2193.46 13798.76 8799.06 13691.21 14399.89 7996.33 13697.01 16099.62 122
CostFormer96.10 13695.88 13296.78 17197.03 21292.55 22597.08 30497.83 20090.04 23198.72 8994.89 29195.01 5598.29 20396.54 13595.77 18199.50 146
tpmrst96.27 13595.98 12297.13 16397.96 16593.15 20996.34 31398.17 16692.07 18498.71 9095.12 28293.91 9298.73 16994.91 15496.62 16599.50 146
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10197.18 10599.93 6199.90 196.81 3398.67 9199.77 6693.92 9199.89 7999.27 4399.94 5699.96 67
MAR-MVS97.43 8797.19 8798.15 13099.47 9694.79 18199.05 22998.76 5092.65 16498.66 9299.82 5288.52 18099.98 4298.12 9399.63 9399.67 114
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+96.30 13295.69 13698.16 12797.85 17396.26 13397.41 30097.21 25590.37 22498.65 9398.58 17586.61 19698.70 17297.11 12497.37 15299.52 143
HPM-MVScopyleft97.96 6897.72 6998.68 9399.84 5896.39 13099.90 7398.17 16692.61 16698.62 9499.57 10191.87 13799.67 13198.87 6299.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS98.39 5298.20 4998.97 8199.97 396.92 11599.95 4098.38 13695.04 7898.61 9599.80 5793.39 103100.00 198.64 77100.00 199.98 51
jason97.24 9696.86 9798.38 12095.73 24997.32 10199.97 1697.40 24395.34 7298.60 9699.54 10487.70 18498.56 17897.94 10499.47 10599.25 171
jason: jason.
CANet98.27 5797.82 6799.63 1299.72 7999.10 1799.98 898.51 9397.00 2898.52 9799.71 8287.80 18399.95 6099.75 2299.38 10999.83 93
EI-MVSNet-Vis-set98.27 5798.11 5498.75 9199.83 6196.59 12499.40 18898.51 9395.29 7398.51 9899.76 7093.60 10199.71 12498.53 8199.52 10299.95 75
ZNCC-MVS98.31 5598.03 5799.17 5799.88 4897.59 8699.94 5598.44 10494.31 10398.50 9999.82 5293.06 11499.99 3698.30 8899.99 2099.93 78
LFMVS94.75 16593.56 18198.30 12399.03 11095.70 15798.74 25497.98 18487.81 26598.47 10099.39 11667.43 31499.53 13698.01 9995.20 19299.67 114
tpm295.47 15195.18 14996.35 18696.91 21791.70 24796.96 30797.93 18988.04 26298.44 10195.40 26893.32 10697.97 21894.00 17795.61 18599.38 158
alignmvs97.81 7797.33 8499.25 4998.77 13198.66 4699.99 498.44 10494.40 9998.41 10299.47 10893.65 9999.42 14698.57 7994.26 19999.67 114
UA-Net96.54 12295.96 12798.27 12498.23 15295.71 15698.00 29198.45 10393.72 13198.41 10299.27 12388.71 17899.66 13291.19 21797.69 14399.44 153
DP-MVS Recon98.41 4998.02 5899.56 2199.97 398.70 4399.92 6598.44 10492.06 18698.40 10499.84 4695.68 38100.00 198.19 8999.71 8999.97 62
CPTT-MVS97.64 8497.32 8598.58 10399.97 395.77 15299.96 2398.35 14289.90 23298.36 10599.79 6091.18 14799.99 3698.37 8599.99 2099.99 20
PAPM98.60 3398.42 3199.14 6396.05 23798.96 2099.90 7399.35 2396.68 3798.35 10699.66 9396.45 2598.51 18199.45 3699.89 7099.96 67
HY-MVS92.50 797.79 7997.17 8999.63 1298.98 11499.32 697.49 29999.52 1395.69 6498.32 10797.41 20393.32 10699.77 11198.08 9795.75 18399.81 95
EI-MVSNet-UG-set98.14 6397.99 6098.60 10099.80 6796.27 13199.36 19798.50 9795.21 7698.30 10899.75 7593.29 10899.73 12398.37 8599.30 11199.81 95
PVSNet_BlendedMVS96.05 13795.82 13496.72 17499.59 8696.99 11299.95 4099.10 2894.06 11498.27 10995.80 24989.00 17499.95 6099.12 4587.53 24593.24 305
PVSNet_Blended97.94 6997.64 7298.83 8899.59 8696.99 112100.00 199.10 2895.38 7098.27 10999.08 13589.00 17499.95 6099.12 4599.25 11299.57 134
MP-MVScopyleft98.23 6197.97 6199.03 7599.94 1497.17 10899.95 4098.39 13294.70 8898.26 11199.81 5691.84 138100.00 198.85 6399.97 4499.93 78
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
WTY-MVS98.10 6597.60 7499.60 1798.92 12199.28 1299.89 8199.52 1395.58 6798.24 11299.39 11693.33 10599.74 12097.98 10395.58 18699.78 100
DELS-MVS98.54 3998.22 4799.50 2999.15 10798.65 48100.00 198.58 7297.70 998.21 11399.24 12892.58 12499.94 6898.63 7899.94 5699.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DWT-MVSNet_test97.31 9397.19 8797.66 14698.24 15194.67 18398.86 24898.20 16493.60 13498.09 11498.89 15497.51 798.78 16494.04 17697.28 15399.55 136
MDTV_nov1_ep13_2view96.26 13396.11 31691.89 18998.06 11594.40 7094.30 17299.67 114
PAPR98.52 4198.16 5199.58 2099.97 398.77 3699.95 4098.43 11295.35 7198.03 11699.75 7594.03 8999.98 4298.11 9499.83 7799.99 20
MDTV_nov1_ep1395.69 13697.90 16894.15 19195.98 31898.44 10493.12 14697.98 11795.74 25195.10 4998.58 17790.02 23996.92 162
GG-mvs-BLEND98.54 10798.21 15398.01 7293.87 32798.52 8797.92 11897.92 19599.02 297.94 22398.17 9099.58 9999.67 114
EIA-MVS97.53 8697.46 7897.76 14398.04 16294.84 17899.98 897.61 21594.41 9897.90 11999.59 9992.40 12698.87 15998.04 9899.13 11599.59 127
test_yl97.83 7597.37 8199.21 5199.18 10497.98 7499.64 15799.27 2591.43 20497.88 12098.99 14395.84 3599.84 10398.82 6495.32 19099.79 97
DCV-MVSNet97.83 7597.37 8199.21 5199.18 10497.98 7499.64 15799.27 2591.43 20497.88 12098.99 14395.84 3599.84 10398.82 6495.32 19099.79 97
canonicalmvs97.09 10296.32 11399.39 4398.93 11998.95 2199.72 14297.35 24694.45 9597.88 12099.42 11286.71 19499.52 13798.48 8293.97 20399.72 108
VDDNet93.12 20091.91 21396.76 17296.67 23092.65 22398.69 25998.21 16082.81 31197.75 12399.28 12061.57 32999.48 14498.09 9694.09 20198.15 201
EPMVS96.53 12396.01 11998.09 13198.43 14296.12 14396.36 31299.43 1993.53 13597.64 12495.04 28494.41 6998.38 19791.13 21898.11 13599.75 103
JIA-IIPM91.76 23290.70 23194.94 21796.11 23587.51 30093.16 33098.13 17475.79 33097.58 12577.68 34092.84 11797.97 21888.47 25396.54 16699.33 164
EPNet_dtu95.71 14695.39 14296.66 17698.92 12193.41 20699.57 16698.90 4096.19 5197.52 12698.56 17792.65 12297.36 23977.89 31698.33 13099.20 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR98.12 6497.93 6598.70 9299.94 1496.13 14199.82 11298.43 11294.56 9297.52 12699.70 8494.40 7099.98 4297.00 12799.98 3399.99 20
thisisatest051597.41 9197.02 9598.59 10297.71 18797.52 9099.97 1698.54 8491.83 19197.45 12899.04 13797.50 899.10 15294.75 16096.37 17099.16 176
OMC-MVS97.28 9497.23 8697.41 15599.76 7093.36 20899.65 15397.95 18796.03 5597.41 12999.70 8489.61 16599.51 13896.73 13498.25 13499.38 158
gg-mvs-nofinetune93.51 19491.86 21598.47 11297.72 18597.96 7692.62 33198.51 9374.70 33397.33 13069.59 34398.91 397.79 22697.77 11099.56 10099.67 114
PatchT90.38 25688.75 26995.25 20895.99 23990.16 27291.22 33897.54 22376.80 32697.26 13186.01 33591.88 13696.07 30566.16 33695.91 17899.51 144
PLCcopyleft95.54 397.93 7097.89 6698.05 13399.82 6394.77 18299.92 6598.46 10193.93 12197.20 13299.27 12395.44 4499.97 5197.41 11799.51 10499.41 156
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
zzz-MVS98.33 5498.00 5999.30 4799.85 5397.93 7799.80 11998.28 15195.76 6097.18 13399.88 2292.74 120100.00 198.67 7399.88 7299.99 20
MTAPA98.29 5697.96 6499.30 4799.85 5397.93 7799.39 19298.28 15195.76 6097.18 13399.88 2292.74 120100.00 198.67 7399.88 7299.99 20
PatchmatchNetpermissive95.94 14095.45 14097.39 15797.83 17494.41 18796.05 31798.40 12992.86 15097.09 13595.28 27994.21 8598.07 21589.26 24598.11 13599.70 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053097.10 10096.72 10298.22 12697.60 19096.70 11999.92 6598.54 8491.11 21197.07 13698.97 14797.47 999.03 15393.73 18796.09 17398.92 186
CR-MVSNet93.45 19792.62 19895.94 19496.29 23292.66 22192.01 33496.23 30892.62 16596.94 13793.31 31491.04 14996.03 30679.23 31295.96 17699.13 180
RPMNet89.39 27487.20 28595.94 19496.29 23292.66 22192.01 33497.63 20970.19 33896.94 13785.87 33687.25 18996.03 30662.69 33995.96 17699.13 180
baseline96.43 12695.98 12297.76 14397.34 20095.17 17299.51 17697.17 25993.92 12296.90 13999.28 12085.37 20798.64 17597.50 11596.86 16499.46 149
Vis-MVSNetpermissive95.72 14495.15 15097.45 15397.62 18994.28 18999.28 20698.24 15694.27 10696.84 14098.94 15279.39 25398.76 16793.25 19398.49 12699.30 167
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VDD-MVS93.77 18892.94 19396.27 18798.55 13690.22 27198.77 25397.79 20290.85 21796.82 14199.42 11261.18 33199.77 11198.95 5694.13 20098.82 192
UGNet95.33 15394.57 16097.62 14998.55 13694.85 17798.67 26199.32 2495.75 6396.80 14296.27 24072.18 29699.96 5394.58 16699.05 11698.04 203
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary97.23 9796.80 10098.51 11099.99 195.60 15999.09 21898.84 4693.32 14096.74 14399.72 8086.04 200100.00 198.01 9999.43 10899.94 77
tpm93.70 19293.41 18694.58 23095.36 26087.41 30197.01 30596.90 28690.85 21796.72 14494.14 30790.40 15796.84 27590.75 22988.54 23499.51 144
tttt051796.85 10896.49 10997.92 13797.48 19695.89 14999.85 10198.54 8490.72 22096.63 14598.93 15397.47 999.02 15493.03 20095.76 18298.85 190
mvs-test195.53 14995.97 12594.20 24697.77 17885.44 31199.95 4097.06 26894.92 8096.58 14698.72 16685.81 20198.98 15594.80 15798.11 13598.18 200
casdiffmvs96.42 12795.97 12597.77 14297.30 20494.98 17499.84 10597.09 26593.75 13096.58 14699.26 12685.07 20998.78 16497.77 11097.04 15999.54 140
CNLPA97.76 8097.38 8098.92 8599.53 9196.84 11699.87 8798.14 17293.78 12896.55 14899.69 8792.28 12999.98 4297.13 12399.44 10799.93 78
PatchMatch-RL96.04 13895.40 14197.95 13599.59 8695.22 17199.52 17499.07 3193.96 11996.49 14998.35 18582.28 22699.82 10590.15 23899.22 11398.81 193
MP-MVS-pluss98.07 6697.64 7299.38 4499.74 7398.41 5999.74 13498.18 16593.35 13996.45 15099.85 3392.64 12399.97 5198.91 6199.89 7099.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ADS-MVSNet293.80 18793.88 17393.55 26897.87 17185.94 30794.24 32396.84 29090.07 22996.43 15194.48 30290.29 15995.37 31587.44 26297.23 15499.36 160
ADS-MVSNet94.79 16294.02 16997.11 16597.87 17193.79 19794.24 32398.16 16990.07 22996.43 15194.48 30290.29 15998.19 21087.44 26297.23 15499.36 160
ACMMPcopyleft97.74 8197.44 7998.66 9599.92 3596.13 14199.18 21399.45 1794.84 8496.41 15399.71 8291.40 14199.99 3697.99 10198.03 14099.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.27 9596.81 9998.66 9598.81 12896.67 12099.92 6598.64 6294.51 9496.38 15498.49 17989.05 17399.88 8597.10 12598.34 12999.43 154
thres20096.96 10496.21 11599.22 5098.97 11598.84 3099.85 10199.71 593.17 14596.26 15598.88 15689.87 16399.51 13894.26 17394.91 19399.31 166
HyFIR lowres test96.66 12096.43 11197.36 15999.05 10993.91 19699.70 14499.80 390.54 22196.26 15598.08 19092.15 13298.23 20896.84 13395.46 18799.93 78
SCA94.69 16693.81 17597.33 16197.10 20894.44 18598.86 24898.32 14793.30 14196.17 15795.59 25876.48 27297.95 22191.06 22097.43 14899.59 127
tfpn200view996.79 11195.99 12099.19 5398.94 11798.82 3199.78 12299.71 592.86 15096.02 15898.87 15889.33 16899.50 14093.84 17994.57 19499.27 169
thres40096.78 11295.99 12099.16 5998.94 11798.82 3199.78 12299.71 592.86 15096.02 15898.87 15889.33 16899.50 14093.84 17994.57 19499.16 176
dp95.05 15894.43 16296.91 16797.99 16492.73 21996.29 31497.98 18489.70 23595.93 16094.67 29793.83 9698.45 18686.91 27496.53 16799.54 140
thres100view90096.74 11595.92 13099.18 5498.90 12498.77 3699.74 13499.71 592.59 16895.84 16198.86 16089.25 17099.50 14093.84 17994.57 19499.27 169
thres600view796.69 11895.87 13399.14 6398.90 12498.78 3599.74 13499.71 592.59 16895.84 16198.86 16089.25 17099.50 14093.44 19294.50 19799.16 176
EPP-MVSNet96.69 11896.60 10596.96 16697.74 18193.05 21299.37 19598.56 7688.75 25095.83 16399.01 14096.01 2898.56 17896.92 13197.20 15699.25 171
TESTMET0.1,196.74 11596.26 11498.16 12797.36 19996.48 12599.96 2398.29 15091.93 18895.77 16498.07 19195.54 4098.29 20390.55 23098.89 11899.70 109
F-COLMAP96.93 10696.95 9696.87 16999.71 8091.74 24399.85 10197.95 18793.11 14795.72 16599.16 13292.35 12799.94 6895.32 14799.35 11098.92 186
test-LLR96.47 12496.04 11897.78 14097.02 21395.44 16199.96 2398.21 16094.07 11295.55 16696.38 23693.90 9398.27 20690.42 23398.83 12099.64 120
test-mter96.39 12895.93 12997.78 14097.02 21395.44 16199.96 2398.21 16091.81 19395.55 16696.38 23695.17 4798.27 20690.42 23398.83 12099.64 120
IS-MVSNet96.29 13395.90 13197.45 15398.13 15994.80 18099.08 22097.61 21592.02 18795.54 16898.96 14990.64 15598.08 21393.73 18797.41 15199.47 148
CHOSEN 1792x268896.81 11096.53 10897.64 14798.91 12393.07 21099.65 15399.80 395.64 6595.39 16998.86 16084.35 21599.90 7596.98 12899.16 11499.95 75
CDS-MVSNet96.34 12996.07 11797.13 16397.37 19894.96 17599.53 17397.91 19291.55 19995.37 17098.32 18695.05 5297.13 25693.80 18395.75 18399.30 167
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu94.53 17495.30 14592.22 28697.77 17882.54 32199.59 16397.06 26894.92 8095.29 17195.37 27285.81 20197.89 22494.80 15797.07 15896.23 218
CSCG97.10 10097.04 9397.27 16299.89 4491.92 23899.90 7399.07 3188.67 25295.26 17299.82 5293.17 11299.98 4298.15 9299.47 10599.90 86
Vis-MVSNet (Re-imp)96.32 13095.98 12297.35 16097.93 16794.82 17999.47 18298.15 17191.83 19195.09 17399.11 13391.37 14297.47 23693.47 19197.43 14899.74 104
TAMVS95.85 14195.58 13896.65 17797.07 20993.50 20399.17 21497.82 20191.39 20795.02 17498.01 19292.20 13097.30 24493.75 18695.83 18099.14 179
XVG-OURS-SEG-HR94.79 16294.70 15995.08 21298.05 16189.19 28299.08 22097.54 22393.66 13294.87 17599.58 10078.78 25899.79 10897.31 11993.40 20796.25 216
XVG-OURS94.82 16194.74 15895.06 21398.00 16389.19 28299.08 22097.55 22194.10 11094.71 17699.62 9780.51 24599.74 12096.04 14093.06 21196.25 216
ab-mvs94.69 16693.42 18498.51 11098.07 16096.26 13396.49 31198.68 5590.31 22694.54 17797.00 21876.30 27499.71 12495.98 14193.38 20899.56 135
TAPA-MVS92.12 894.42 17693.60 17896.90 16899.33 10291.78 24299.78 12298.00 18189.89 23394.52 17899.47 10891.97 13599.18 15069.90 33099.52 10299.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS94.54 17293.56 18197.49 15297.96 16594.34 18898.71 25797.51 23090.30 22794.51 17998.69 16775.56 27998.77 16692.82 20195.99 17599.35 162
Fast-Effi-MVS+95.02 15994.19 16597.52 15197.88 16994.55 18499.97 1697.08 26688.85 24994.47 18097.96 19484.59 21298.41 18989.84 24197.10 15799.59 127
DeepC-MVS94.51 496.92 10796.40 11298.45 11499.16 10695.90 14899.66 15098.06 17896.37 4794.37 18199.49 10783.29 22299.90 7597.63 11399.61 9799.55 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF91.80 22992.79 19688.83 31298.15 15769.87 33998.11 28796.60 30283.93 30594.33 18299.27 12379.60 25299.46 14591.99 20793.16 21097.18 212
BH-RMVSNet95.18 15594.31 16497.80 13998.17 15695.23 17099.76 13097.53 22592.52 17394.27 18399.25 12776.84 26998.80 16290.89 22699.54 10199.35 162
CVMVSNet94.68 16894.94 15393.89 26096.80 22386.92 30399.06 22598.98 3494.45 9594.23 18499.02 13885.60 20395.31 31790.91 22595.39 18999.43 154
baseline195.78 14394.86 15498.54 10798.47 14198.07 6999.06 22597.99 18292.68 16294.13 18598.62 17293.28 10998.69 17393.79 18485.76 25498.84 191
Anonymous20240521193.10 20191.99 21196.40 18399.10 10889.65 27998.88 24497.93 18983.71 30794.00 18698.75 16568.79 30799.88 8595.08 15091.71 21399.68 112
cascas94.64 16993.61 17697.74 14597.82 17596.26 13399.96 2397.78 20385.76 29094.00 18697.54 20076.95 26899.21 14997.23 12195.43 18897.76 209
Anonymous2024052992.10 22290.65 23296.47 17998.82 12790.61 26398.72 25698.67 5875.54 33193.90 18898.58 17566.23 31799.90 7594.70 16390.67 21498.90 189
MVS_030489.28 27788.31 27592.21 28797.05 21186.53 30497.76 29699.57 1285.58 29593.86 18992.71 31851.04 34196.30 29684.49 28792.72 21293.79 288
LS3D95.84 14295.11 15198.02 13499.85 5395.10 17398.74 25498.50 9787.22 27293.66 19099.86 2987.45 18799.95 6090.94 22499.81 8399.02 184
HQP-NCC95.78 24399.87 8796.82 3093.37 191
ACMP_Plane95.78 24399.87 8796.82 3093.37 191
HQP4-MVS93.37 19198.39 19394.53 222
HQP-MVS94.61 17094.50 16194.92 21895.78 24391.85 23999.87 8797.89 19396.82 3093.37 19198.65 16980.65 24398.39 19397.92 10589.60 21594.53 222
HQP_MVS94.49 17594.36 16394.87 21995.71 25291.74 24399.84 10597.87 19596.38 4493.01 19598.59 17380.47 24798.37 19897.79 10889.55 21894.52 224
plane_prior391.64 24996.63 3893.01 195
GA-MVS93.83 18492.84 19496.80 17095.73 24993.57 20199.88 8497.24 25492.57 17192.92 19796.66 22978.73 25997.67 23087.75 26094.06 20299.17 175
tpm cat193.51 19492.52 20396.47 17997.77 17891.47 25396.13 31598.06 17880.98 31892.91 19893.78 31089.66 16498.87 15987.03 27096.39 16999.09 182
1112_ss96.01 13995.20 14898.42 11797.80 17696.41 12899.65 15396.66 30092.71 15992.88 19999.40 11492.16 13199.30 14791.92 20993.66 20499.55 136
Test_1112_low_res95.72 14494.83 15598.42 11797.79 17796.41 12899.65 15396.65 30192.70 16092.86 20096.13 24492.15 13299.30 14791.88 21093.64 20599.55 136
IB-MVS92.85 694.99 16093.94 17198.16 12797.72 18595.69 15899.99 498.81 4794.28 10592.70 20196.90 22095.08 5099.17 15196.07 13973.88 32799.60 126
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+-dtu93.72 19193.86 17493.29 27197.06 21086.16 30599.80 11996.83 29192.66 16392.58 20297.83 19681.39 23397.67 23089.75 24296.87 16396.05 220
tpmvs94.28 18093.57 18096.40 18398.55 13691.50 25295.70 32298.55 8087.47 26792.15 20394.26 30691.42 14098.95 15788.15 25695.85 17998.76 195
BH-w/o95.71 14695.38 14396.68 17598.49 14092.28 22999.84 10597.50 23192.12 18392.06 20498.79 16484.69 21198.67 17495.29 14899.66 9299.09 182
VPA-MVSNet92.70 20991.55 22096.16 18995.09 26296.20 13898.88 24499.00 3391.02 21491.82 20595.29 27876.05 27897.96 22095.62 14681.19 28794.30 242
baseline296.71 11796.49 10997.37 15895.63 25695.96 14799.74 13498.88 4292.94 14991.61 20698.97 14797.72 598.62 17694.83 15698.08 13997.53 211
OPM-MVS93.21 19892.80 19594.44 23993.12 29590.85 25999.77 12597.61 21596.19 5191.56 20798.65 16975.16 28498.47 18293.78 18589.39 22193.99 273
EI-MVSNet93.73 19093.40 18794.74 22396.80 22392.69 22099.06 22597.67 20788.96 24591.39 20899.02 13888.75 17797.30 24491.07 21987.85 24094.22 248
MVSTER95.53 14995.22 14796.45 18198.56 13597.72 8199.91 6997.67 20792.38 17791.39 20897.14 21097.24 1497.30 24494.80 15787.85 24094.34 240
RRT_MVS95.23 15494.77 15796.61 17898.28 14798.32 6299.81 11497.41 24192.59 16891.28 21097.76 19795.02 5397.23 25093.65 18987.14 24794.28 244
BH-untuned95.18 15594.83 15596.22 18898.36 14491.22 25499.80 11997.32 24990.91 21591.08 21198.67 16883.51 21998.54 18094.23 17499.61 9798.92 186
CLD-MVS94.06 18293.90 17294.55 23296.02 23890.69 26099.98 897.72 20496.62 3991.05 21298.85 16377.21 26598.47 18298.11 9489.51 22094.48 226
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS96.60 12195.56 13999.72 996.85 22099.22 1598.31 27798.94 3691.57 19890.90 21399.61 9886.66 19599.96 5397.36 11899.88 7299.99 20
MSDG94.37 17793.36 18897.40 15698.88 12693.95 19599.37 19597.38 24485.75 29290.80 21499.17 13184.11 21799.88 8586.35 27598.43 12898.36 198
VPNet91.81 22690.46 23495.85 19894.74 26895.54 16098.98 23498.59 7192.14 18290.77 21597.44 20268.73 30997.54 23494.89 15577.89 31194.46 227
MIMVSNet90.30 25988.67 27095.17 21196.45 23191.64 24992.39 33297.15 26285.99 28790.50 21693.19 31666.95 31594.86 32382.01 30293.43 20699.01 185
mvs_anonymous95.65 14895.03 15297.53 15098.19 15495.74 15499.33 19997.49 23290.87 21690.47 21797.10 21288.23 18197.16 25395.92 14297.66 14599.68 112
Patchmatch-test92.65 21291.50 22196.10 19196.85 22090.49 26691.50 33697.19 25682.76 31290.23 21895.59 25895.02 5398.00 21777.41 31896.98 16199.82 94
LPG-MVS_test92.96 20392.71 19793.71 26495.43 25888.67 28899.75 13197.62 21292.81 15390.05 21998.49 17975.24 28298.40 19195.84 14489.12 22294.07 265
LGP-MVS_train93.71 26495.43 25888.67 28897.62 21292.81 15390.05 21998.49 17975.24 28298.40 19195.84 14489.12 22294.07 265
DP-MVS94.54 17293.42 18497.91 13899.46 9894.04 19398.93 24097.48 23381.15 31790.04 22199.55 10287.02 19299.95 6088.97 24798.11 13599.73 105
test_djsdf92.83 20692.29 20694.47 23791.90 31292.46 22699.55 17097.27 25291.17 20889.96 22296.07 24681.10 23696.89 27294.67 16488.91 22494.05 267
ACMM91.95 1092.88 20592.52 20393.98 25795.75 24889.08 28599.77 12597.52 22793.00 14889.95 22397.99 19376.17 27698.46 18593.63 19088.87 22694.39 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
131496.84 10995.96 12799.48 3396.74 22798.52 5498.31 27798.86 4495.82 5689.91 22498.98 14587.49 18699.96 5397.80 10799.73 8799.96 67
XVG-ACMP-BASELINE91.22 23990.75 23092.63 28393.73 28485.61 30898.52 26997.44 23692.77 15789.90 22596.85 22466.64 31698.39 19392.29 20488.61 23193.89 281
miper_enhance_ethall94.36 17993.98 17095.49 20198.68 13495.24 16999.73 13997.29 25193.28 14289.86 22695.97 24794.37 7497.05 26292.20 20684.45 26694.19 251
nrg03093.51 19492.53 20296.45 18194.36 27397.20 10499.81 11497.16 26191.60 19789.86 22697.46 20186.37 19897.68 22995.88 14380.31 29894.46 227
V4291.28 23790.12 24594.74 22393.42 29093.46 20499.68 14797.02 27187.36 26989.85 22895.05 28381.31 23597.34 24187.34 26580.07 30093.40 300
v14419290.79 24789.52 25494.59 22993.11 29692.77 21599.56 16896.99 27586.38 28389.82 22994.95 29080.50 24697.10 25983.98 29080.41 29693.90 280
GBi-Net90.88 24489.82 24894.08 25097.53 19291.97 23498.43 27296.95 28087.05 27389.68 23094.72 29371.34 29996.11 30187.01 27185.65 25594.17 252
test190.88 24489.82 24894.08 25097.53 19291.97 23498.43 27296.95 28087.05 27389.68 23094.72 29371.34 29996.11 30187.01 27185.65 25594.17 252
FMVSNet392.69 21091.58 21895.99 19298.29 14697.42 9999.26 20897.62 21289.80 23489.68 23095.32 27481.62 23296.27 29787.01 27185.65 25594.29 243
IterMVS-LS92.69 21092.11 20894.43 24196.80 22392.74 21799.45 18596.89 28788.98 24389.65 23395.38 27188.77 17696.34 29490.98 22382.04 28194.22 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114491.09 24089.83 24794.87 21993.25 29293.69 20099.62 16096.98 27786.83 27989.64 23494.99 28880.94 23897.05 26285.08 28481.16 28893.87 283
v192192090.46 25489.12 26194.50 23592.96 30092.46 22699.49 17996.98 27786.10 28689.61 23595.30 27578.55 26197.03 26682.17 30180.89 29494.01 270
v119290.62 25289.25 25994.72 22593.13 29393.07 21099.50 17797.02 27186.33 28489.56 23695.01 28579.22 25497.09 26182.34 30081.16 28894.01 270
PCF-MVS94.20 595.18 15594.10 16898.43 11698.55 13695.99 14697.91 29397.31 25090.35 22589.48 23799.22 12985.19 20899.89 7990.40 23598.47 12799.41 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator91.47 1296.28 13495.34 14499.08 7196.82 22297.47 9699.45 18598.81 4795.52 6889.39 23899.00 14281.97 22799.95 6097.27 12099.83 7799.84 92
v124090.20 26288.79 26894.44 23993.05 29892.27 23099.38 19396.92 28585.89 28889.36 23994.87 29277.89 26497.03 26680.66 30881.08 29094.01 270
FIs94.10 18193.43 18396.11 19094.70 26996.82 11799.58 16498.93 3992.54 17289.34 24097.31 20687.62 18597.10 25994.22 17586.58 25094.40 234
ITE_SJBPF92.38 28495.69 25485.14 31295.71 31792.81 15389.33 24198.11 18970.23 30498.42 18885.91 27988.16 23893.59 297
v2v48291.30 23590.07 24695.01 21493.13 29393.79 19799.77 12597.02 27188.05 26189.25 24295.37 27280.73 24197.15 25487.28 26680.04 30194.09 264
UniMVSNet (Re)93.07 20292.13 20795.88 19694.84 26696.24 13799.88 8498.98 3492.49 17589.25 24295.40 26887.09 19197.14 25593.13 19878.16 30994.26 245
UniMVSNet_NR-MVSNet92.95 20492.11 20895.49 20194.61 27195.28 16799.83 11199.08 3091.49 20089.21 24496.86 22387.14 19096.73 28093.20 19477.52 31494.46 227
DU-MVS92.46 21591.45 22395.49 20194.05 27895.28 16799.81 11498.74 5192.25 18089.21 24496.64 23181.66 23096.73 28093.20 19477.52 31494.46 227
eth_miper_zixun_eth92.41 21691.93 21293.84 26197.28 20590.68 26198.83 25096.97 27988.57 25589.19 24695.73 25389.24 17296.69 28289.97 24081.55 28494.15 258
cl-mvsnet293.77 18893.25 19195.33 20699.49 9594.43 18699.61 16198.09 17590.38 22389.16 24795.61 25690.56 15697.34 24191.93 20884.45 26694.21 250
Baseline_NR-MVSNet90.33 25889.51 25592.81 28192.84 30189.95 27599.77 12593.94 33884.69 30289.04 24895.66 25581.66 23096.52 28790.99 22276.98 31991.97 319
FC-MVSNet-test93.81 18693.15 19295.80 19994.30 27596.20 13899.42 18798.89 4192.33 17889.03 24997.27 20887.39 18896.83 27693.20 19486.48 25194.36 236
QAPM95.40 15294.17 16699.10 6996.92 21697.71 8299.40 18898.68 5589.31 23788.94 25098.89 15482.48 22599.96 5393.12 19999.83 7799.62 122
miper_ehance_all_eth93.16 19992.60 19994.82 22297.57 19193.56 20299.50 17797.07 26788.75 25088.85 25195.52 26290.97 15196.74 27990.77 22884.45 26694.17 252
AllTest92.48 21491.64 21695.00 21599.01 11188.43 29298.94 23996.82 29386.50 28188.71 25298.47 18374.73 28699.88 8585.39 28196.18 17196.71 214
TestCases95.00 21599.01 11188.43 29296.82 29386.50 28188.71 25298.47 18374.73 28699.88 8585.39 28196.18 17196.71 214
cl_fuxian92.53 21391.87 21494.52 23397.40 19792.99 21399.40 18896.93 28487.86 26388.69 25495.44 26689.95 16296.44 29090.45 23280.69 29594.14 261
pmmvs492.10 22291.07 22895.18 21092.82 30294.96 17599.48 18196.83 29187.45 26888.66 25596.56 23483.78 21896.83 27689.29 24484.77 26493.75 290
PS-MVSNAJss93.64 19393.31 18994.61 22892.11 30992.19 23199.12 21697.38 24492.51 17488.45 25696.99 21991.20 14497.29 24794.36 16987.71 24294.36 236
UniMVSNet_ETH3D90.06 26688.58 27194.49 23694.67 27088.09 29797.81 29597.57 22083.91 30688.44 25797.41 20357.44 33597.62 23291.41 21488.59 23397.77 208
TranMVSNet+NR-MVSNet91.68 23390.61 23394.87 21993.69 28593.98 19499.69 14598.65 5991.03 21388.44 25796.83 22780.05 25096.18 30090.26 23776.89 32194.45 232
FMVSNet291.02 24189.56 25295.41 20597.53 19295.74 15498.98 23497.41 24187.05 27388.43 25995.00 28771.34 29996.24 29985.12 28385.21 26094.25 247
COLMAP_ROBcopyleft90.47 1492.18 22191.49 22294.25 24599.00 11388.04 29898.42 27596.70 29982.30 31488.43 25999.01 14076.97 26799.85 9486.11 27896.50 16894.86 221
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator+91.53 1196.31 13195.24 14699.52 2696.88 21998.64 4999.72 14298.24 15695.27 7588.42 26198.98 14582.76 22499.94 6897.10 12599.83 7799.96 67
RRT_test8_iter0594.58 17194.11 16795.98 19397.88 16996.11 14499.89 8197.45 23491.66 19688.28 26296.71 22896.53 2497.40 23794.73 16283.85 27394.45 232
v14890.70 24889.63 25093.92 25892.97 29990.97 25699.75 13196.89 28787.51 26688.27 26395.01 28581.67 22997.04 26487.40 26477.17 31893.75 290
DSMNet-mixed88.28 28388.24 27788.42 31589.64 32975.38 33798.06 28989.86 34585.59 29488.20 26492.14 32276.15 27791.95 33578.46 31496.05 17497.92 204
WR-MVS92.31 21891.25 22595.48 20494.45 27295.29 16699.60 16298.68 5590.10 22888.07 26596.89 22180.68 24296.80 27893.14 19779.67 30294.36 236
test0.0.03 193.86 18393.61 17694.64 22795.02 26592.18 23299.93 6198.58 7294.07 11287.96 26698.50 17893.90 9394.96 32181.33 30593.17 20996.78 213
XXY-MVS91.82 22590.46 23495.88 19693.91 28195.40 16498.87 24797.69 20688.63 25487.87 26797.08 21374.38 28997.89 22491.66 21284.07 27094.35 239
Patchmtry89.70 27088.49 27293.33 27096.24 23489.94 27791.37 33796.23 30878.22 32487.69 26893.31 31491.04 14996.03 30680.18 31182.10 28094.02 268
cl-mvsnet192.32 21791.60 21794.47 23797.31 20392.74 21799.58 16496.75 29786.99 27687.64 26995.54 26089.55 16696.50 28888.58 25082.44 27894.17 252
D2MVS92.76 20792.59 20193.27 27295.13 26189.54 28199.69 14599.38 2192.26 17987.59 27094.61 29985.05 21097.79 22691.59 21388.01 23992.47 314
cl-mvsnet_92.31 21891.58 21894.52 23397.33 20292.77 21599.57 16696.78 29686.97 27787.56 27195.51 26389.43 16796.62 28488.60 24982.44 27894.16 257
v890.54 25389.17 26094.66 22693.43 28993.40 20799.20 21196.94 28385.76 29087.56 27194.51 30081.96 22897.19 25184.94 28578.25 30893.38 302
miper_lstm_enhance91.81 22691.39 22493.06 27897.34 20089.18 28499.38 19396.79 29586.70 28087.47 27395.22 28090.00 16195.86 31188.26 25481.37 28694.15 258
anonymousdsp91.79 23190.92 22994.41 24290.76 32392.93 21498.93 24097.17 25989.08 23987.46 27495.30 27578.43 26396.92 27192.38 20388.73 22993.39 301
jajsoiax91.92 22491.18 22694.15 24791.35 31890.95 25799.00 23397.42 23992.61 16687.38 27597.08 21372.46 29597.36 23994.53 16788.77 22894.13 262
mvs_tets91.81 22691.08 22794.00 25591.63 31690.58 26498.67 26197.43 23792.43 17687.37 27697.05 21671.76 29797.32 24394.75 16088.68 23094.11 263
v1090.25 26188.82 26794.57 23193.53 28793.43 20599.08 22096.87 28985.00 29987.34 27794.51 30080.93 23997.02 26882.85 29779.23 30393.26 304
pmmvs590.17 26489.09 26293.40 26992.10 31089.77 27899.74 13495.58 32185.88 28987.24 27895.74 25173.41 29396.48 28988.54 25183.56 27493.95 276
ACMP92.05 992.74 20892.42 20593.73 26295.91 24288.72 28799.81 11497.53 22594.13 10887.00 27998.23 18774.07 29098.47 18296.22 13888.86 22793.99 273
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS-HIRNet86.22 28983.19 29995.31 20796.71 22990.29 27092.12 33397.33 24862.85 33986.82 28070.37 34269.37 30697.49 23575.12 32597.99 14198.15 201
Anonymous2023121189.86 26888.44 27394.13 24998.93 11990.68 26198.54 26798.26 15576.28 32786.73 28195.54 26070.60 30397.56 23390.82 22780.27 29994.15 258
v7n89.65 27188.29 27693.72 26392.22 30890.56 26599.07 22497.10 26485.42 29886.73 28194.72 29380.06 24997.13 25681.14 30678.12 31093.49 298
IterMVS-SCA-FT90.85 24690.16 24492.93 27996.72 22889.96 27498.89 24296.99 27588.95 24686.63 28395.67 25476.48 27295.00 32087.04 26984.04 27293.84 285
EU-MVSNet90.14 26590.34 23889.54 30992.55 30581.06 33098.69 25998.04 18091.41 20686.59 28496.84 22680.83 24093.31 33486.20 27681.91 28294.26 245
OpenMVScopyleft90.15 1594.77 16493.59 17998.33 12196.07 23697.48 9599.56 16898.57 7490.46 22286.51 28598.95 15178.57 26099.94 6893.86 17899.74 8697.57 210
IterMVS90.91 24390.17 24393.12 27596.78 22690.42 26998.89 24297.05 27089.03 24186.49 28695.42 26776.59 27195.02 31987.22 26784.09 26993.93 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H91.30 23590.35 23794.15 24794.17 27792.62 22499.17 21498.94 3688.87 24886.48 28794.46 30484.36 21496.61 28588.19 25578.51 30793.21 306
MS-PatchMatch90.65 24990.30 23991.71 29394.22 27685.50 31098.24 28197.70 20588.67 25286.42 28896.37 23867.82 31398.03 21683.62 29399.62 9491.60 321
CP-MVSNet91.23 23890.22 24194.26 24493.96 28092.39 22899.09 21898.57 7488.95 24686.42 28896.57 23379.19 25596.37 29290.29 23678.95 30494.02 268
LF4IMVS89.25 27888.85 26690.45 30392.81 30381.19 32998.12 28694.79 33191.44 20386.29 29097.11 21165.30 32198.11 21288.53 25285.25 25992.07 316
PVSNet_088.03 1991.80 22990.27 24096.38 18598.27 15090.46 26799.94 5599.61 1193.99 11786.26 29197.39 20571.13 30299.89 7998.77 6967.05 33698.79 194
PS-CasMVS90.63 25189.51 25593.99 25693.83 28291.70 24798.98 23498.52 8788.48 25686.15 29296.53 23575.46 28096.31 29588.83 24878.86 30693.95 276
FMVSNet188.50 28186.64 28694.08 25095.62 25791.97 23498.43 27296.95 28083.00 31086.08 29394.72 29359.09 33396.11 30181.82 30484.07 27094.17 252
PEN-MVS90.19 26389.06 26393.57 26793.06 29790.90 25899.06 22598.47 9988.11 26085.91 29496.30 23976.67 27095.94 31087.07 26876.91 32093.89 281
ppachtmachnet_test89.58 27288.35 27493.25 27392.40 30690.44 26899.33 19996.73 29885.49 29685.90 29595.77 25081.09 23796.00 30976.00 32482.49 27793.30 303
OurMVSNet-221017-089.81 26989.48 25790.83 29991.64 31581.21 32898.17 28595.38 32491.48 20185.65 29697.31 20672.66 29497.29 24788.15 25684.83 26393.97 275
our_test_390.39 25589.48 25793.12 27592.40 30689.57 28099.33 19996.35 30787.84 26485.30 29794.99 28884.14 21696.09 30480.38 30984.56 26593.71 295
testgi89.01 27988.04 27991.90 29193.49 28884.89 31499.73 13995.66 31993.89 12585.14 29898.17 18859.68 33294.66 32577.73 31788.88 22596.16 219
DTE-MVSNet89.40 27388.24 27792.88 28092.66 30489.95 27599.10 21798.22 15987.29 27085.12 29996.22 24176.27 27595.30 31883.56 29475.74 32493.41 299
FMVSNet588.32 28287.47 28390.88 29796.90 21888.39 29497.28 30295.68 31882.60 31384.67 30092.40 32179.83 25191.16 33676.39 32381.51 28593.09 307
tfpnnormal89.29 27687.61 28294.34 24394.35 27494.13 19298.95 23898.94 3683.94 30484.47 30195.51 26374.84 28597.39 23877.05 32180.41 29691.48 322
MVP-Stereo90.93 24290.45 23692.37 28591.25 32088.76 28698.05 29096.17 31087.27 27184.04 30295.30 27578.46 26297.27 24983.78 29299.70 9091.09 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LTVRE_ROB88.28 1890.29 26089.05 26494.02 25395.08 26390.15 27397.19 30397.43 23784.91 30083.99 30397.06 21574.00 29198.28 20584.08 28887.71 24293.62 296
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 27587.81 28194.01 25493.40 29191.93 23798.62 26496.48 30686.25 28583.86 30496.14 24373.68 29297.04 26486.16 27775.73 32593.04 309
USDC90.00 26788.96 26593.10 27794.81 26788.16 29698.71 25795.54 32293.66 13283.75 30597.20 20965.58 31998.31 20283.96 29187.49 24692.85 311
ACMH+89.98 1690.35 25789.54 25392.78 28295.99 23986.12 30698.81 25197.18 25889.38 23683.14 30697.76 19768.42 31198.43 18789.11 24686.05 25393.78 289
Anonymous2023120686.32 28885.42 28989.02 31189.11 33180.53 33399.05 22995.28 32585.43 29782.82 30793.92 30874.40 28893.44 33366.99 33481.83 28393.08 308
SixPastTwentyTwo88.73 28088.01 28090.88 29791.85 31382.24 32398.22 28395.18 32988.97 24482.26 30896.89 22171.75 29896.67 28384.00 28982.98 27593.72 294
TinyColmap87.87 28586.51 28791.94 29095.05 26485.57 30997.65 29794.08 33684.40 30381.82 30996.85 22462.14 32898.33 20080.25 31086.37 25291.91 320
ACMH89.72 1790.64 25089.63 25093.66 26695.64 25588.64 29098.55 26597.45 23489.03 24181.62 31097.61 19969.75 30598.41 18989.37 24387.62 24493.92 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs685.69 29083.84 29591.26 29690.00 32884.41 31697.82 29496.15 31175.86 32981.29 31195.39 27061.21 33096.87 27483.52 29573.29 32892.50 313
TransMVSNet (Re)87.25 28685.28 29093.16 27493.56 28691.03 25598.54 26794.05 33783.69 30881.09 31296.16 24275.32 28196.40 29176.69 32268.41 33392.06 317
NR-MVSNet91.56 23490.22 24195.60 20094.05 27895.76 15398.25 28098.70 5391.16 21080.78 31396.64 23183.23 22396.57 28691.41 21477.73 31394.46 227
LCM-MVSNet-Re92.31 21892.60 19991.43 29497.53 19279.27 33599.02 23291.83 34292.07 18480.31 31494.38 30583.50 22095.48 31397.22 12297.58 14699.54 140
TDRefinement84.76 29782.56 30191.38 29574.58 34384.80 31597.36 30194.56 33484.73 30180.21 31596.12 24563.56 32598.39 19387.92 25863.97 33790.95 326
N_pmnet80.06 30880.78 30677.89 32391.94 31145.28 35098.80 25256.82 35478.10 32580.08 31693.33 31277.03 26695.76 31268.14 33382.81 27692.64 312
test_040285.58 29183.94 29490.50 30193.81 28385.04 31398.55 26595.20 32876.01 32879.72 31795.13 28164.15 32496.26 29866.04 33786.88 24990.21 330
test20.0384.72 29983.99 29286.91 31788.19 33380.62 33298.88 24495.94 31488.36 25878.87 31894.62 29868.75 30889.11 34066.52 33575.82 32391.00 324
pmmvs380.27 30777.77 31087.76 31680.32 34182.43 32298.23 28291.97 34172.74 33678.75 31987.97 32957.30 33690.99 33770.31 32962.37 33989.87 331
MIMVSNet182.58 30480.51 30788.78 31386.68 33484.20 31796.65 30995.41 32378.75 32378.59 32092.44 32051.88 33989.76 33965.26 33878.95 30492.38 315
DeepMVS_CXcopyleft82.92 32295.98 24158.66 34496.01 31392.72 15878.34 32195.51 26358.29 33498.08 21382.57 29885.29 25892.03 318
Patchmatch-RL test86.90 28785.98 28889.67 30884.45 33675.59 33689.71 33992.43 34086.89 27877.83 32290.94 32594.22 8293.63 33187.75 26069.61 33099.79 97
lessismore_v090.53 30090.58 32480.90 33195.80 31677.01 32395.84 24866.15 31896.95 26983.03 29675.05 32693.74 293
K. test v388.05 28487.24 28490.47 30291.82 31482.23 32498.96 23797.42 23989.05 24076.93 32495.60 25768.49 31095.42 31485.87 28081.01 29293.75 290
ambc83.23 32177.17 34262.61 34187.38 34194.55 33576.72 32586.65 33330.16 34596.36 29384.85 28669.86 32990.73 327
PM-MVS80.47 30678.88 30985.26 31983.79 33872.22 33895.89 32091.08 34385.71 29376.56 32688.30 32836.64 34493.90 32882.39 29969.57 33189.66 333
OpenMVS_ROBcopyleft79.82 2083.77 30381.68 30490.03 30688.30 33282.82 31998.46 27095.22 32773.92 33576.00 32791.29 32455.00 33796.94 27068.40 33288.51 23590.34 328
UnsupCasMVSNet_eth85.52 29283.99 29290.10 30589.36 33083.51 31896.65 30997.99 18289.14 23875.89 32893.83 30963.25 32693.92 32781.92 30367.90 33592.88 310
new_pmnet84.49 30082.92 30089.21 31090.03 32782.60 32096.89 30895.62 32080.59 31975.77 32989.17 32765.04 32294.79 32472.12 32781.02 29190.23 329
EG-PatchMatch MVS85.35 29583.81 29689.99 30790.39 32581.89 32698.21 28496.09 31281.78 31674.73 33093.72 31151.56 34097.12 25879.16 31388.61 23190.96 325
pmmvs-eth3d84.03 30281.97 30290.20 30484.15 33787.09 30298.10 28894.73 33383.05 30974.10 33187.77 33065.56 32094.01 32681.08 30769.24 33289.49 334
new-patchmatchnet81.19 30579.34 30886.76 31882.86 33980.36 33497.92 29295.27 32682.09 31572.02 33286.87 33262.81 32790.74 33871.10 32863.08 33889.19 336
ET-MVSNet_ETH3D94.37 17793.28 19097.64 14798.30 14597.99 7399.99 497.61 21594.35 10071.57 33399.45 11196.23 2795.34 31696.91 13285.14 26299.59 127
UnsupCasMVSNet_bld79.97 30977.03 31188.78 31385.62 33581.98 32593.66 32897.35 24675.51 33270.79 33483.05 33748.70 34294.91 32278.31 31560.29 34089.46 335
CMPMVSbinary61.59 2184.75 29885.14 29183.57 32090.32 32662.54 34296.98 30697.59 21974.33 33469.95 33596.66 22964.17 32398.32 20187.88 25988.41 23689.84 332
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testmvs40.60 32044.45 32229.05 33519.49 35514.11 35699.68 14718.47 35520.74 34964.59 33698.48 18210.95 35417.09 35356.66 34211.01 34855.94 346
testing_285.10 29681.72 30395.22 20982.25 34094.16 19097.54 29897.01 27488.15 25962.23 33786.43 33444.43 34397.18 25292.28 20585.20 26194.31 241
LCM-MVSNet67.77 31164.73 31476.87 32462.95 34956.25 34689.37 34093.74 33944.53 34361.99 33880.74 33820.42 35186.53 34269.37 33159.50 34187.84 337
PMMVS267.15 31264.15 31576.14 32570.56 34662.07 34393.89 32687.52 34958.09 34060.02 33978.32 33922.38 35084.54 34359.56 34147.03 34281.80 339
Gipumacopyleft66.95 31365.00 31372.79 32691.52 31767.96 34066.16 34695.15 33047.89 34258.54 34067.99 34429.74 34687.54 34150.20 34377.83 31262.87 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet185.50 29483.33 29792.00 28990.89 32288.38 29599.22 21096.55 30379.60 32257.26 34192.72 31779.09 25793.78 33077.25 31977.37 31793.84 285
MDA-MVSNet_test_wron85.51 29383.32 29892.10 28890.96 32188.58 29199.20 21196.52 30479.70 32157.12 34292.69 31979.11 25693.86 32977.10 32077.46 31693.86 284
MDA-MVSNet-bldmvs84.09 30181.52 30591.81 29291.32 31988.00 29998.67 26195.92 31580.22 32055.60 34393.32 31368.29 31293.60 33273.76 32676.61 32293.82 287
FPMVS68.72 31068.72 31268.71 32865.95 34744.27 35295.97 31994.74 33251.13 34153.26 34490.50 32625.11 34983.00 34460.80 34080.97 29378.87 340
test12337.68 32139.14 32333.31 33419.94 35424.83 35598.36 2769.75 35615.53 35051.31 34587.14 33119.62 35217.74 35247.10 3443.47 35057.36 345
tmp_tt65.23 31462.94 31672.13 32744.90 35250.03 34881.05 34389.42 34838.45 34448.51 34699.90 1754.09 33878.70 34691.84 21118.26 34787.64 338
E-PMN52.30 31752.18 31852.67 33271.51 34445.40 34993.62 32976.60 35236.01 34643.50 34764.13 34627.11 34867.31 34931.06 34826.06 34445.30 348
EMVS51.44 31951.22 32052.11 33370.71 34544.97 35194.04 32575.66 35335.34 34842.40 34861.56 34928.93 34765.87 35027.64 34924.73 34545.49 347
MVEpermissive53.74 2251.54 31847.86 32162.60 33059.56 35050.93 34779.41 34477.69 35135.69 34736.27 34961.76 3485.79 35769.63 34737.97 34736.61 34367.24 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 31552.24 31767.66 32949.27 35156.82 34583.94 34282.02 35070.47 33733.28 35064.54 34517.23 35369.16 34845.59 34523.85 34677.02 341
PMVScopyleft49.05 2353.75 31651.34 31960.97 33140.80 35334.68 35374.82 34589.62 34737.55 34528.67 35172.12 3417.09 35581.63 34543.17 34668.21 33466.59 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 32320.84 32518.99 33665.34 34827.73 35450.43 3477.67 3579.50 3518.01 3526.34 3526.13 35626.24 35123.40 35010.69 3492.99 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.43 32231.24 3240.00 3370.00 3560.00 3570.00 34898.09 1750.00 3520.00 35399.67 9183.37 2210.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.60 32510.13 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35391.20 1440.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.28 32411.04 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.40 1140.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS99.93 299.89 4499.80 299.96 2399.80 5797.44 11100.00 1100.00 199.98 33100.00 1
save fliter99.82 6398.79 3399.96 2398.40 12997.66 10
test_0728_SECOND99.82 599.94 1499.47 599.95 4098.43 112100.00 199.99 5100.00 1100.00 1
GSMVS99.59 127
test_part10.00 3370.00 3570.00 34898.41 1270.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs194.72 6399.59 127
sam_mvs94.25 81
MTGPAbinary98.28 151
test_post195.78 32159.23 35093.20 11197.74 22891.06 220
test_post63.35 34794.43 6898.13 211
patchmatchnet-post91.70 32395.12 4897.95 221
MTMP99.87 8796.49 305
gm-plane-assit96.97 21593.76 19991.47 20298.96 14998.79 16394.92 152
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 35100.00 1100.00 1
test_prior498.05 7099.94 55
test_prior99.43 3599.94 1498.49 5698.65 5999.80 10699.99 20
新几何299.40 188
旧先验199.76 7097.52 9098.64 6299.85 3395.63 3999.94 5699.99 20
无先验99.49 17998.71 5293.46 137100.00 194.36 16999.99 20
原ACMM299.90 73
testdata299.99 3690.54 231
segment_acmp96.68 22
testdata199.28 20696.35 48
plane_prior795.71 25291.59 251
plane_prior695.76 24791.72 24680.47 247
plane_prior597.87 19598.37 19897.79 10889.55 21894.52 224
plane_prior498.59 173
plane_prior299.84 10596.38 44
plane_prior195.73 249
plane_prior91.74 24399.86 9896.76 3489.59 217
n20.00 358
nn0.00 358
door-mid89.69 346
test1198.44 104
door90.31 344
HQP5-MVS91.85 239
BP-MVS97.92 105
HQP3-MVS97.89 19389.60 215
HQP2-MVS80.65 243
NP-MVS95.77 24691.79 24198.65 169
ACMMP++_ref87.04 248
ACMMP++88.23 237
Test By Simon92.82 119