This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 1098.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1898.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12998.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test072699.93 2699.29 1099.96 2598.42 12797.28 1899.86 499.94 497.22 15
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 18098.08 18597.05 2699.86 499.86 2990.65 16399.71 12999.39 4198.63 13098.69 203
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17898.17 17497.34 1699.85 699.85 3391.20 15299.89 7999.41 4099.67 9598.69 203
旧先验299.46 19194.21 11499.85 699.95 6096.96 137
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6498.46 10594.56 9799.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4398.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2597.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7698.21 16893.53 14299.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7698.37 14293.81 13399.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5898.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2598.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 1098.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 1098.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
testdata98.42 11999.47 10095.33 17298.56 7793.78 13599.79 2199.85 3393.64 10199.94 6894.97 15999.94 57100.00 1
9.1498.38 3899.87 5299.91 7298.33 14993.22 15099.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 10198.38 13993.19 15199.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CS-MVS-test97.85 7597.70 7398.30 12497.57 19896.72 121100.00 197.11 27495.06 7999.76 2499.45 11492.12 14098.44 19198.97 5799.28 11699.75 106
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 9098.33 14993.97 12599.76 2499.87 2694.99 5899.75 12198.55 86100.00 199.98 51
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 9098.36 14494.08 11899.74 2699.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 10198.24 16492.18 19099.73 2799.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
CS-MVS97.74 8397.61 7798.15 13297.52 20496.69 123100.00 197.11 27494.93 8299.73 2799.41 11891.68 14798.25 21598.84 6899.24 11999.52 147
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4398.65 6095.78 6099.73 2799.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4395.78 6099.73 2799.76 7296.00 2999.78 20100.00 1
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7698.55 8395.14 7899.72 3199.84 4695.46 43100.00 199.65 3299.99 2099.99 20
TEST999.92 3598.92 2399.96 2598.43 11693.90 13099.71 3299.86 2995.88 3499.85 94
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2598.43 11694.35 10799.71 3299.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
test_899.92 3598.88 2699.96 2598.43 11694.35 10799.69 3499.85 3395.94 3199.85 94
test1299.43 3599.74 7798.56 5398.40 13299.65 3594.76 6399.75 12199.98 3399.99 20
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 9098.44 10897.48 1599.64 3699.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DROMVSNet97.45 9097.30 9097.90 14297.43 20695.90 15499.99 597.08 27894.64 9599.64 3699.33 12589.56 17598.15 21998.76 7599.25 11799.65 123
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2598.43 11694.63 9699.63 3899.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
agg_prior99.93 2698.77 3698.43 11699.63 3899.85 94
xiu_mvs_v1_base_debu97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
xiu_mvs_v1_base97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
xiu_mvs_v1_base_debi97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 12199.62 4099.85 3394.97 5999.96 5395.11 15799.95 5199.92 87
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 1098.80 5090.78 22999.62 4099.78 6695.30 46100.00 199.80 1899.93 6399.99 20
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2598.44 10897.96 799.55 4599.94 497.18 17100.00 193.81 19199.94 5799.98 51
新几何199.42 3899.75 7698.27 6598.63 6692.69 16899.55 4599.82 5394.40 71100.00 191.21 22599.94 5799.99 20
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10498.37 14294.68 9299.53 4799.83 4992.87 120100.00 198.66 8299.84 8099.99 20
112198.03 6997.57 8099.40 4199.74 7798.21 6698.31 29198.62 6792.78 16399.53 4799.83 4995.08 50100.00 194.36 17899.92 6799.99 20
PMMVS96.76 11796.76 10696.76 17898.28 15492.10 24399.91 7297.98 19294.12 11699.53 4799.39 12186.93 20498.73 17396.95 13897.73 14899.45 156
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4398.42 12797.50 1499.52 5099.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_part299.89 4599.25 1399.49 51
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 7298.39 13597.20 2499.46 5299.85 3395.53 4299.79 10999.86 12100.00 199.99 20
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2598.55 8394.87 8699.45 5399.85 3394.07 89100.00 198.67 79100.00 199.98 51
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4398.56 7797.56 1399.44 5499.85 3395.38 45100.00 199.31 4399.99 2099.87 93
MVSFormer96.94 10996.60 11097.95 13897.28 21697.70 8599.55 17697.27 26091.17 21899.43 5599.54 10790.92 15996.89 28294.67 17299.62 9899.25 177
lupinMVS97.85 7597.60 7898.62 10097.28 21697.70 8599.99 597.55 22895.50 7199.43 5599.67 9590.92 15998.71 17598.40 9099.62 9899.45 156
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 9098.52 9096.05 5399.41 5799.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 9098.52 9096.04 5499.41 5799.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5898.42 12796.22 4999.41 5799.78 6694.34 7699.96 5398.92 6199.95 5199.99 20
X-MVStestdata93.83 19192.06 22099.15 6199.94 1497.50 9499.94 5898.42 12796.22 4999.41 5741.37 36894.34 7699.96 5398.92 6199.95 5199.99 20
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13699.76 13498.31 15394.43 10299.40 6199.75 7793.28 11099.78 11198.90 6499.92 6799.97 63
RE-MVS-def98.13 5599.79 7096.37 13699.76 13498.31 15394.43 10299.40 6199.75 7792.95 11998.90 6499.92 6799.97 63
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12799.82 11598.30 15693.95 12799.37 6399.77 6892.84 12199.76 11898.95 5899.92 6799.97 63
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13799.50 1693.90 13099.37 6399.76 7293.24 113100.00 197.75 12099.96 4899.98 51
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10898.35 14694.92 8399.32 6599.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
ZD-MVS99.92 3598.57 5198.52 9092.34 18699.31 6699.83 4995.06 5299.80 10699.70 3099.97 44
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4398.61 6994.77 8899.31 6699.85 3394.22 83100.00 198.70 7799.98 3399.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4398.61 6995.00 8199.31 6699.85 3394.22 83100.00 198.78 7399.98 3399.98 51
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4398.60 7194.77 8899.31 6699.84 4693.73 98100.00 198.70 7799.98 3399.98 51
ETV-MVS97.92 7397.80 7198.25 12798.14 16596.48 13099.98 1097.63 21795.61 6899.29 7099.46 11392.55 12998.82 16599.02 5698.54 13199.46 154
test22299.55 9497.41 10299.34 20698.55 8391.86 19999.27 7199.83 4993.84 9699.95 5199.99 20
abl_697.67 8697.34 8798.66 9799.68 8696.11 15099.68 15398.14 18093.80 13499.27 7199.70 8888.65 19099.98 4297.46 12499.72 9299.89 90
test117298.38 5398.25 4798.77 9099.88 4996.56 12999.80 12298.36 14494.68 9299.20 7399.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
CANet_DTU96.76 11796.15 12198.60 10298.78 13697.53 9099.84 10897.63 21797.25 2399.20 7399.64 9981.36 24899.98 4292.77 21198.89 12498.28 206
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7699.51 1597.60 1299.20 7399.36 12493.71 9999.91 7497.99 10798.71 12999.61 128
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS95.94 297.71 8598.98 1093.92 26799.63 8881.76 34299.96 2598.56 7799.47 199.19 7699.99 194.16 87100.00 199.92 999.93 63100.00 1
VNet97.21 10296.57 11299.13 6898.97 11997.82 8199.03 24199.21 2794.31 11099.18 7798.88 16386.26 21099.89 7998.93 6094.32 20599.69 114
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1898.64 6398.47 299.13 7899.92 1196.38 26100.00 199.74 24100.00 1100.00 1
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21998.47 10398.14 499.08 7999.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t97.41 9596.83 10399.14 6399.51 9897.83 8099.89 8498.27 16188.48 26699.06 8099.66 9790.30 16799.64 13996.32 14599.97 4499.96 70
PVSNet91.05 1397.13 10396.69 10898.45 11699.52 9695.81 15799.95 4399.65 1094.73 9099.04 8199.21 13684.48 22599.95 6094.92 16098.74 12899.58 137
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28499.42 2097.03 2799.02 8299.09 14099.35 198.21 21799.73 2799.78 8899.77 104
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15698.52 9095.79 5999.01 8399.77 6894.40 7199.75 12198.82 6999.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15698.52 9095.76 6299.01 8399.77 6894.33 7999.75 12198.80 7299.83 8199.98 51
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16399.44 1897.33 1799.00 8599.72 8494.03 9099.98 4298.73 76100.00 1100.00 1
diffmvs97.00 10796.64 10998.09 13497.64 19596.17 14699.81 11797.19 26494.67 9498.95 8699.28 12686.43 20898.76 17198.37 9197.42 15699.33 170
HPM-MVS_fast97.80 8097.50 8198.68 9599.79 7096.42 13299.88 8798.16 17791.75 20498.94 8799.54 10791.82 14699.65 13897.62 12299.99 2099.99 20
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12699.97 1898.39 13594.43 10298.90 8899.87 2694.30 81100.00 199.04 5499.99 2099.99 20
MVS_Test96.46 12995.74 14098.61 10198.18 16297.23 10599.31 21097.15 27091.07 22298.84 8997.05 22688.17 19398.97 16194.39 17797.50 15399.61 128
API-MVS97.86 7497.66 7498.47 11499.52 9695.41 17099.47 18998.87 4491.68 20598.84 8999.85 3392.34 13499.99 3698.44 8999.96 48100.00 1
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6498.39 13594.04 12398.80 9199.74 8192.98 118100.00 198.16 9799.76 8999.93 81
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15899.87 9099.86 296.70 3698.78 9299.79 6292.03 14199.90 7599.17 4699.86 7999.88 92
hse-mvs394.92 16594.36 16896.59 18598.85 13291.29 26498.93 25198.94 3695.90 5698.77 9398.42 19290.89 16199.77 11597.80 11370.76 33998.72 202
hse-mvs294.38 18294.08 17595.31 21598.27 15690.02 28699.29 21598.56 7795.90 5698.77 9398.00 20190.89 16198.26 21497.80 11369.20 34597.64 217
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12599.97 1897.92 19998.07 598.76 9599.55 10595.00 5799.94 6899.91 1197.68 15099.99 20
sss97.57 8897.03 9999.18 5498.37 14998.04 7299.73 14599.38 2193.46 14498.76 9599.06 14291.21 15199.89 7996.33 14497.01 16699.62 126
CostFormer96.10 14095.88 13796.78 17797.03 22392.55 23597.08 32097.83 20890.04 24198.72 9794.89 30395.01 5698.29 20896.54 14395.77 18899.50 151
tpmrst96.27 13995.98 12797.13 16897.96 17293.15 21996.34 32998.17 17492.07 19398.71 9895.12 29493.91 9398.73 17394.91 16296.62 17199.50 151
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6499.90 196.81 3398.67 9999.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
MAR-MVS97.43 9197.19 9298.15 13299.47 10094.79 18999.05 23998.76 5192.65 17198.66 10099.82 5388.52 19199.98 4298.12 9999.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+96.30 13695.69 14198.16 12997.85 18096.26 13997.41 31397.21 26390.37 23498.65 10198.58 18286.61 20798.70 17697.11 13297.37 15899.52 147
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13599.90 7698.17 17492.61 17398.62 10299.57 10491.87 14499.67 13698.87 6699.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4398.38 13995.04 8098.61 10399.80 5893.39 104100.00 198.64 83100.00 199.98 51
jason97.24 10096.86 10298.38 12295.73 26297.32 10399.97 1897.40 24995.34 7498.60 10499.54 10787.70 19598.56 18297.94 11099.47 10999.25 177
jason: jason.
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 1098.51 9797.00 2898.52 10599.71 8687.80 19499.95 6099.75 2299.38 11399.83 96
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12899.40 19698.51 9795.29 7598.51 10699.76 7293.60 10299.71 12998.53 8799.52 10699.95 78
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5898.44 10894.31 11098.50 10799.82 5393.06 11799.99 3698.30 9499.99 2099.93 81
LFMVS94.75 17093.56 18898.30 12499.03 11495.70 16498.74 26897.98 19287.81 27598.47 10899.39 12167.43 33099.53 14198.01 10595.20 19999.67 117
tpm295.47 15595.18 15496.35 19496.91 22891.70 25796.96 32397.93 19788.04 27298.44 10995.40 28093.32 10797.97 22894.00 18695.61 19299.38 163
alignmvs97.81 7997.33 8899.25 4998.77 13798.66 4699.99 598.44 10894.40 10698.41 11099.47 11193.65 10099.42 15198.57 8594.26 20699.67 117
UA-Net96.54 12695.96 13298.27 12698.23 15995.71 16398.00 30598.45 10793.72 13898.41 11099.27 12988.71 18999.66 13791.19 22697.69 14999.44 158
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6898.44 10892.06 19598.40 11299.84 4695.68 38100.00 198.19 9599.71 9399.97 63
CPTT-MVS97.64 8797.32 8998.58 10599.97 395.77 15999.96 2598.35 14689.90 24298.36 11399.79 6291.18 15599.99 3698.37 9199.99 2099.99 20
PAPM98.60 3398.42 3199.14 6396.05 25098.96 2099.90 7699.35 2396.68 3798.35 11499.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
HY-MVS92.50 797.79 8197.17 9499.63 1298.98 11899.32 697.49 31299.52 1395.69 6698.32 11597.41 21393.32 10799.77 11598.08 10395.75 19099.81 98
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13899.36 20598.50 10195.21 7798.30 11699.75 7793.29 10999.73 12898.37 9199.30 11599.81 98
PVSNet_BlendedMVS96.05 14195.82 13996.72 18099.59 9096.99 11499.95 4399.10 2894.06 12198.27 11795.80 26189.00 18599.95 6099.12 4787.53 25293.24 315
PVSNet_Blended97.94 7197.64 7598.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11799.08 14189.00 18599.95 6099.12 4799.25 11799.57 138
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4398.39 13594.70 9198.26 11999.81 5791.84 145100.00 198.85 6799.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
WTY-MVS98.10 6797.60 7899.60 1798.92 12599.28 1299.89 8499.52 1395.58 6998.24 12099.39 12193.33 10699.74 12597.98 10995.58 19399.78 103
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 12199.24 13492.58 12899.94 6898.63 8499.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DWT-MVSNet_test97.31 9797.19 9297.66 15098.24 15894.67 19198.86 26098.20 17293.60 14198.09 12298.89 16197.51 798.78 16894.04 18597.28 15999.55 140
MDTV_nov1_ep13_2view96.26 13996.11 33291.89 19898.06 12394.40 7194.30 18199.67 117
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4398.43 11695.35 7398.03 12499.75 7794.03 9099.98 4298.11 10099.83 8199.99 20
MDTV_nov1_ep1395.69 14197.90 17594.15 19895.98 33498.44 10893.12 15397.98 12595.74 26395.10 4998.58 18190.02 24996.92 168
GG-mvs-BLEND98.54 10998.21 16098.01 7393.87 34398.52 9097.92 12697.92 20599.02 297.94 23398.17 9699.58 10399.67 117
EIA-MVS97.53 8997.46 8297.76 14798.04 16994.84 18699.98 1097.61 22294.41 10597.90 12799.59 10292.40 13298.87 16398.04 10499.13 12299.59 131
test_yl97.83 7797.37 8599.21 5199.18 10897.98 7599.64 16399.27 2591.43 21497.88 12898.99 14995.84 3599.84 10398.82 6995.32 19799.79 100
DCV-MVSNet97.83 7797.37 8599.21 5199.18 10897.98 7599.64 16399.27 2591.43 21497.88 12898.99 14995.84 3599.84 10398.82 6995.32 19799.79 100
canonicalmvs97.09 10696.32 11899.39 4398.93 12398.95 2199.72 14897.35 25294.45 10097.88 12899.42 11686.71 20599.52 14298.48 8893.97 21099.72 111
VDDNet93.12 20891.91 22396.76 17896.67 24392.65 23398.69 27398.21 16882.81 32697.75 13199.28 12661.57 34699.48 14998.09 10294.09 20898.15 208
EPMVS96.53 12796.01 12498.09 13498.43 14896.12 14996.36 32899.43 1993.53 14297.64 13295.04 29694.41 7098.38 20291.13 22798.11 14199.75 106
JIA-IIPM91.76 24290.70 24294.94 22696.11 24887.51 31393.16 34698.13 18275.79 34697.58 13377.68 35792.84 12197.97 22888.47 26396.54 17299.33 170
EPNet_dtu95.71 15095.39 14796.66 18298.92 12593.41 21699.57 17298.90 4196.19 5197.52 13498.56 18492.65 12697.36 25077.89 33098.33 13699.20 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14799.82 11598.43 11694.56 9797.52 13499.70 8894.40 7199.98 4297.00 13599.98 3399.99 20
thisisatest051597.41 9597.02 10098.59 10497.71 19497.52 9199.97 1898.54 8791.83 20097.45 13699.04 14397.50 899.10 15794.75 16896.37 17799.16 182
OMC-MVS97.28 9897.23 9197.41 15999.76 7493.36 21899.65 15997.95 19596.03 5597.41 13799.70 8889.61 17499.51 14396.73 14298.25 14099.38 163
gg-mvs-nofinetune93.51 20191.86 22598.47 11497.72 19297.96 7792.62 34798.51 9774.70 34997.33 13869.59 36098.91 397.79 23697.77 11899.56 10499.67 117
PatchT90.38 26688.75 28095.25 21895.99 25290.16 28391.22 35497.54 23076.80 34297.26 13986.01 35291.88 14396.07 31666.16 35395.91 18599.51 149
PLCcopyleft95.54 397.93 7297.89 6998.05 13699.82 6594.77 19099.92 6898.46 10593.93 12897.20 14099.27 12995.44 4499.97 5197.41 12599.51 10899.41 161
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 12298.28 15895.76 6297.18 14199.88 2292.74 124100.00 198.67 7999.88 7699.99 20
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 20098.28 15895.76 6297.18 14199.88 2292.74 124100.00 198.67 7999.88 7699.99 20
PatchmatchNetpermissive95.94 14495.45 14597.39 16197.83 18194.41 19596.05 33398.40 13292.86 15797.09 14395.28 29194.21 8698.07 22489.26 25598.11 14199.70 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053097.10 10496.72 10798.22 12897.60 19796.70 12299.92 6898.54 8791.11 22197.07 14498.97 15397.47 999.03 15893.73 19696.09 18098.92 192
CR-MVSNet93.45 20492.62 20695.94 20296.29 24592.66 23192.01 35096.23 32292.62 17296.94 14593.31 32791.04 15696.03 31779.23 32395.96 18399.13 186
RPMNet89.76 28087.28 29597.19 16796.29 24592.66 23192.01 35098.31 15370.19 35496.94 14585.87 35387.25 20099.78 11162.69 35695.96 18399.13 186
baseline96.43 13095.98 12797.76 14797.34 21095.17 17999.51 18297.17 26793.92 12996.90 14799.28 12685.37 21898.64 17997.50 12396.86 17099.46 154
Vis-MVSNetpermissive95.72 14895.15 15597.45 15797.62 19694.28 19799.28 21698.24 16494.27 11396.84 14898.94 15879.39 26798.76 17193.25 20298.49 13299.30 173
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VDD-MVS93.77 19592.94 20196.27 19598.55 14290.22 28298.77 26797.79 21090.85 22796.82 14999.42 11661.18 34899.77 11598.95 5894.13 20798.82 198
UGNet95.33 15794.57 16597.62 15398.55 14294.85 18598.67 27599.32 2495.75 6596.80 15096.27 25272.18 31199.96 5394.58 17499.05 12398.04 210
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary97.23 10196.80 10598.51 11299.99 195.60 16699.09 22898.84 4793.32 14796.74 15199.72 8486.04 211100.00 198.01 10599.43 11299.94 80
tpm93.70 19993.41 19494.58 23995.36 27387.41 31497.01 32196.90 29890.85 22796.72 15294.14 31990.40 16696.84 28590.75 23988.54 24199.51 149
tttt051796.85 11296.49 11497.92 14097.48 20595.89 15699.85 10498.54 8790.72 23096.63 15398.93 16097.47 999.02 15993.03 20995.76 18998.85 196
mvs-test195.53 15395.97 13094.20 25597.77 18585.44 32499.95 4397.06 28194.92 8396.58 15498.72 17385.81 21298.98 16094.80 16598.11 14198.18 207
casdiffmvs96.42 13195.97 13097.77 14697.30 21494.98 18299.84 10897.09 27793.75 13796.58 15499.26 13285.07 22198.78 16897.77 11897.04 16599.54 144
CNLPA97.76 8297.38 8498.92 8599.53 9596.84 11899.87 9098.14 18093.78 13596.55 15699.69 9192.28 13599.98 4297.13 13199.44 11199.93 81
PatchMatch-RL96.04 14295.40 14697.95 13899.59 9095.22 17899.52 18099.07 3193.96 12696.49 15798.35 19382.28 23899.82 10590.15 24899.22 12098.81 199
MP-MVS-pluss98.07 6897.64 7599.38 4499.74 7798.41 6099.74 14098.18 17393.35 14696.45 15899.85 3392.64 12799.97 5198.91 6399.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ADS-MVSNet293.80 19493.88 18093.55 27997.87 17885.94 32094.24 33996.84 30290.07 23996.43 15994.48 31490.29 16895.37 32587.44 27397.23 16099.36 166
ADS-MVSNet94.79 16794.02 17697.11 17097.87 17893.79 20694.24 33998.16 17790.07 23996.43 15994.48 31490.29 16898.19 21887.44 27397.23 16099.36 166
ACMMPcopyleft97.74 8397.44 8398.66 9799.92 3596.13 14799.18 22399.45 1794.84 8796.41 16199.71 8691.40 14999.99 3697.99 10798.03 14699.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.27 9996.81 10498.66 9798.81 13496.67 12499.92 6898.64 6394.51 9996.38 16298.49 18689.05 18499.88 8597.10 13398.34 13599.43 159
AUN-MVS93.28 20592.60 20795.34 21398.29 15290.09 28599.31 21098.56 7791.80 20396.35 16398.00 20189.38 17898.28 21092.46 21269.22 34497.64 217
thres20096.96 10896.21 12099.22 5098.97 11998.84 3099.85 10499.71 593.17 15296.26 16498.88 16389.87 17299.51 14394.26 18294.91 20099.31 172
HyFIR lowres test96.66 12496.43 11697.36 16399.05 11393.91 20599.70 15099.80 390.54 23196.26 16498.08 19892.15 13898.23 21696.84 14195.46 19499.93 81
SCA94.69 17193.81 18297.33 16597.10 21994.44 19398.86 26098.32 15193.30 14896.17 16695.59 27076.48 28797.95 23191.06 22997.43 15499.59 131
tfpn200view996.79 11595.99 12599.19 5398.94 12198.82 3199.78 12699.71 592.86 15796.02 16798.87 16589.33 17999.50 14593.84 18894.57 20199.27 175
thres40096.78 11695.99 12599.16 5998.94 12198.82 3199.78 12699.71 592.86 15796.02 16798.87 16589.33 17999.50 14593.84 18894.57 20199.16 182
dp95.05 16294.43 16796.91 17397.99 17192.73 22996.29 33097.98 19289.70 24595.93 16994.67 30993.83 9798.45 19086.91 28596.53 17399.54 144
thres100view90096.74 11995.92 13599.18 5498.90 12898.77 3699.74 14099.71 592.59 17595.84 17098.86 16789.25 18199.50 14593.84 18894.57 20199.27 175
thres600view796.69 12295.87 13899.14 6398.90 12898.78 3599.74 14099.71 592.59 17595.84 17098.86 16789.25 18199.50 14593.44 20194.50 20499.16 182
EPP-MVSNet96.69 12296.60 11096.96 17297.74 18893.05 22299.37 20398.56 7788.75 26095.83 17299.01 14696.01 2898.56 18296.92 13997.20 16299.25 177
TESTMET0.1,196.74 11996.26 11998.16 12997.36 20996.48 13099.96 2598.29 15791.93 19795.77 17398.07 19995.54 4098.29 20890.55 24098.89 12499.70 112
F-COLMAP96.93 11096.95 10196.87 17599.71 8491.74 25399.85 10497.95 19593.11 15495.72 17499.16 13892.35 13399.94 6895.32 15599.35 11498.92 192
test-LLR96.47 12896.04 12397.78 14497.02 22495.44 16899.96 2598.21 16894.07 11995.55 17596.38 24793.90 9498.27 21290.42 24398.83 12699.64 124
test-mter96.39 13295.93 13497.78 14497.02 22495.44 16899.96 2598.21 16891.81 20295.55 17596.38 24795.17 4798.27 21290.42 24398.83 12699.64 124
IS-MVSNet96.29 13795.90 13697.45 15798.13 16694.80 18899.08 23097.61 22292.02 19695.54 17798.96 15590.64 16498.08 22293.73 19697.41 15799.47 153
CHOSEN 1792x268896.81 11496.53 11397.64 15198.91 12793.07 22099.65 15999.80 395.64 6795.39 17898.86 16784.35 22799.90 7596.98 13699.16 12199.95 78
CDS-MVSNet96.34 13396.07 12297.13 16897.37 20894.96 18399.53 17997.91 20091.55 20995.37 17998.32 19495.05 5397.13 26693.80 19295.75 19099.30 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu94.53 17995.30 15092.22 29797.77 18582.54 33599.59 16997.06 28194.92 8395.29 18095.37 28485.81 21297.89 23494.80 16597.07 16496.23 227
CSCG97.10 10497.04 9897.27 16699.89 4591.92 24899.90 7699.07 3188.67 26295.26 18199.82 5393.17 11599.98 4298.15 9899.47 10999.90 89
Vis-MVSNet (Re-imp)96.32 13495.98 12797.35 16497.93 17494.82 18799.47 18998.15 17991.83 20095.09 18299.11 13991.37 15097.47 24793.47 20097.43 15499.74 108
TAMVS95.85 14595.58 14396.65 18397.07 22093.50 21399.17 22497.82 20991.39 21795.02 18398.01 20092.20 13697.30 25593.75 19595.83 18799.14 185
XVG-OURS-SEG-HR94.79 16794.70 16495.08 22198.05 16889.19 29599.08 23097.54 23093.66 13994.87 18499.58 10378.78 27299.79 10997.31 12793.40 21496.25 225
XVG-OURS94.82 16694.74 16395.06 22298.00 17089.19 29599.08 23097.55 22894.10 11794.71 18599.62 10080.51 25999.74 12596.04 14893.06 21896.25 225
ab-mvs94.69 17193.42 19298.51 11298.07 16796.26 13996.49 32798.68 5690.31 23694.54 18697.00 22876.30 28999.71 12995.98 14993.38 21599.56 139
TAPA-MVS92.12 894.42 18193.60 18596.90 17499.33 10691.78 25299.78 12698.00 18989.89 24394.52 18799.47 11191.97 14299.18 15569.90 34699.52 10699.73 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS94.54 17793.56 18897.49 15697.96 17294.34 19698.71 27197.51 23690.30 23794.51 18898.69 17475.56 29498.77 17092.82 21095.99 18299.35 168
Fast-Effi-MVS+95.02 16394.19 17197.52 15597.88 17694.55 19299.97 1897.08 27888.85 25994.47 18997.96 20484.59 22498.41 19489.84 25197.10 16399.59 131
DeepC-MVS94.51 496.92 11196.40 11798.45 11699.16 11095.90 15499.66 15698.06 18696.37 4794.37 19099.49 11083.29 23499.90 7597.63 12199.61 10199.55 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF91.80 23992.79 20488.83 32498.15 16469.87 35598.11 30196.60 31583.93 31994.33 19199.27 12979.60 26699.46 15091.99 21693.16 21797.18 221
BH-RMVSNet95.18 15994.31 17097.80 14398.17 16395.23 17799.76 13497.53 23292.52 18094.27 19299.25 13376.84 28398.80 16690.89 23699.54 10599.35 168
CVMVSNet94.68 17394.94 15893.89 26996.80 23686.92 31699.06 23598.98 3494.45 10094.23 19399.02 14485.60 21495.31 32790.91 23595.39 19699.43 159
baseline195.78 14794.86 15998.54 10998.47 14798.07 7099.06 23597.99 19092.68 16994.13 19498.62 17993.28 11098.69 17793.79 19385.76 26198.84 197
Anonymous20240521193.10 20991.99 22196.40 19199.10 11289.65 29298.88 25697.93 19783.71 32194.00 19598.75 17268.79 32299.88 8595.08 15891.71 22099.68 115
cascas94.64 17493.61 18397.74 14997.82 18296.26 13999.96 2597.78 21185.76 30194.00 19597.54 21076.95 28299.21 15497.23 12995.43 19597.76 216
Anonymous2024052992.10 23290.65 24396.47 18698.82 13390.61 27498.72 27098.67 5975.54 34793.90 19798.58 18266.23 33399.90 7594.70 17190.67 22198.90 195
MVS_030489.28 28788.31 28692.21 29897.05 22286.53 31797.76 31099.57 1285.58 30693.86 19892.71 33151.04 35896.30 30784.49 29892.72 21993.79 298
LS3D95.84 14695.11 15698.02 13799.85 5595.10 18098.74 26898.50 10187.22 28293.66 19999.86 2987.45 19899.95 6090.94 23499.81 8799.02 190
GeoE94.36 18593.48 19096.99 17197.29 21593.54 21299.96 2596.72 31188.35 26993.43 20098.94 15882.05 23998.05 22588.12 26896.48 17599.37 165
HQP-NCC95.78 25699.87 9096.82 3093.37 201
ACMP_Plane95.78 25699.87 9096.82 3093.37 201
HQP4-MVS93.37 20198.39 19894.53 231
HQP-MVS94.61 17594.50 16694.92 22795.78 25691.85 24999.87 9097.89 20196.82 3093.37 20198.65 17680.65 25798.39 19897.92 11189.60 22294.53 231
HQP_MVS94.49 18094.36 16894.87 22895.71 26591.74 25399.84 10897.87 20396.38 4493.01 20598.59 18080.47 26198.37 20397.79 11689.55 22594.52 233
plane_prior391.64 25996.63 3893.01 205
GA-MVS93.83 19192.84 20296.80 17695.73 26293.57 21099.88 8797.24 26292.57 17892.92 20796.66 24078.73 27397.67 24087.75 27194.06 20999.17 181
tpm cat193.51 20192.52 21296.47 18697.77 18591.47 26396.13 33198.06 18680.98 33392.91 20893.78 32289.66 17398.87 16387.03 28196.39 17699.09 188
1112_ss96.01 14395.20 15398.42 11997.80 18396.41 13399.65 15996.66 31392.71 16692.88 20999.40 11992.16 13799.30 15291.92 21893.66 21199.55 140
Test_1112_low_res95.72 14894.83 16098.42 11997.79 18496.41 13399.65 15996.65 31492.70 16792.86 21096.13 25692.15 13899.30 15291.88 21993.64 21299.55 140
IB-MVS92.85 694.99 16493.94 17898.16 12997.72 19295.69 16599.99 598.81 4894.28 11292.70 21196.90 23095.08 5099.17 15696.07 14773.88 33799.60 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+-dtu93.72 19893.86 18193.29 28297.06 22186.16 31899.80 12296.83 30392.66 17092.58 21297.83 20681.39 24797.67 24089.75 25296.87 16996.05 229
tpmvs94.28 18793.57 18796.40 19198.55 14291.50 26295.70 33898.55 8387.47 27792.15 21394.26 31891.42 14898.95 16288.15 26695.85 18698.76 201
BH-w/o95.71 15095.38 14896.68 18198.49 14692.28 23999.84 10897.50 23792.12 19292.06 21498.79 17184.69 22398.67 17895.29 15699.66 9699.09 188
VPA-MVSNet92.70 21891.55 23096.16 19795.09 27596.20 14498.88 25699.00 3391.02 22491.82 21595.29 29076.05 29397.96 23095.62 15481.19 29494.30 251
baseline296.71 12196.49 11497.37 16295.63 26995.96 15399.74 14098.88 4392.94 15691.61 21698.97 15397.72 598.62 18094.83 16498.08 14597.53 220
OPM-MVS93.21 20692.80 20394.44 24893.12 30890.85 27099.77 12997.61 22296.19 5191.56 21798.65 17675.16 29998.47 18693.78 19489.39 22893.99 283
EI-MVSNet93.73 19793.40 19594.74 23296.80 23692.69 23099.06 23597.67 21588.96 25591.39 21899.02 14488.75 18897.30 25591.07 22887.85 24794.22 257
MVSTER95.53 15395.22 15296.45 18898.56 14197.72 8299.91 7297.67 21592.38 18591.39 21897.14 22097.24 1497.30 25594.80 16587.85 24794.34 250
RRT_MVS95.23 15894.77 16296.61 18498.28 15498.32 6399.81 11797.41 24792.59 17591.28 22097.76 20795.02 5497.23 26193.65 19887.14 25494.28 253
BH-untuned95.18 15994.83 16096.22 19698.36 15091.22 26599.80 12297.32 25690.91 22591.08 22198.67 17583.51 23198.54 18494.23 18399.61 10198.92 192
CLD-MVS94.06 18993.90 17994.55 24196.02 25190.69 27199.98 1097.72 21296.62 3991.05 22298.85 17077.21 27998.47 18698.11 10089.51 22794.48 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS96.60 12595.56 14499.72 996.85 23399.22 1598.31 29198.94 3691.57 20890.90 22399.61 10186.66 20699.96 5397.36 12699.88 7699.99 20
MSDG94.37 18393.36 19697.40 16098.88 13093.95 20499.37 20397.38 25085.75 30390.80 22499.17 13784.11 22999.88 8586.35 28698.43 13498.36 205
VPNet91.81 23690.46 24595.85 20594.74 28195.54 16798.98 24598.59 7292.14 19190.77 22597.44 21268.73 32497.54 24494.89 16377.89 32094.46 236
bset_n11_16_dypcd93.05 21192.30 21595.31 21590.23 34195.05 18199.44 19497.28 25992.51 18190.65 22696.68 23985.30 21996.71 29294.49 17684.14 27594.16 266
MIMVSNet90.30 26988.67 28195.17 22096.45 24491.64 25992.39 34897.15 27085.99 29790.50 22793.19 32966.95 33194.86 33382.01 31393.43 21399.01 191
mvs_anonymous95.65 15295.03 15797.53 15498.19 16195.74 16199.33 20797.49 23890.87 22690.47 22897.10 22288.23 19297.16 26395.92 15097.66 15199.68 115
Patchmatch-test92.65 22191.50 23196.10 19996.85 23390.49 27791.50 35297.19 26482.76 32790.23 22995.59 27095.02 5498.00 22777.41 33296.98 16799.82 97
LPG-MVS_test92.96 21292.71 20593.71 27395.43 27188.67 30199.75 13797.62 21992.81 16090.05 23098.49 18675.24 29798.40 19695.84 15289.12 22994.07 275
LGP-MVS_train93.71 27395.43 27188.67 30197.62 21992.81 16090.05 23098.49 18675.24 29798.40 19695.84 15289.12 22994.07 275
DP-MVS94.54 17793.42 19297.91 14199.46 10294.04 20098.93 25197.48 23981.15 33290.04 23299.55 10587.02 20399.95 6088.97 25798.11 14199.73 109
test_djsdf92.83 21592.29 21694.47 24691.90 32692.46 23699.55 17697.27 26091.17 21889.96 23396.07 25881.10 25096.89 28294.67 17288.91 23194.05 277
ACMM91.95 1092.88 21492.52 21293.98 26695.75 26189.08 29899.77 12997.52 23493.00 15589.95 23497.99 20376.17 29198.46 18993.63 19988.87 23394.39 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
131496.84 11395.96 13299.48 3396.74 24098.52 5598.31 29198.86 4595.82 5889.91 23598.98 15187.49 19799.96 5397.80 11399.73 9199.96 70
XVG-ACMP-BASELINE91.22 24990.75 24092.63 29493.73 29785.61 32198.52 28397.44 24292.77 16489.90 23696.85 23466.64 33298.39 19892.29 21488.61 23893.89 291
miper_enhance_ethall94.36 18593.98 17795.49 20898.68 14095.24 17699.73 14597.29 25893.28 14989.86 23795.97 25994.37 7597.05 27292.20 21584.45 27294.19 260
nrg03093.51 20192.53 21196.45 18894.36 28697.20 10699.81 11797.16 26991.60 20789.86 23797.46 21186.37 20997.68 23995.88 15180.31 30694.46 236
V4291.28 24790.12 25694.74 23293.42 30393.46 21499.68 15397.02 28487.36 27989.85 23995.05 29581.31 24997.34 25287.34 27680.07 30893.40 310
v14419290.79 25789.52 26594.59 23893.11 30992.77 22599.56 17496.99 28786.38 29389.82 24094.95 30280.50 26097.10 26983.98 30180.41 30493.90 290
GBi-Net90.88 25489.82 25994.08 25997.53 20091.97 24498.43 28696.95 29287.05 28389.68 24194.72 30571.34 31496.11 31287.01 28285.65 26294.17 261
test190.88 25489.82 25994.08 25997.53 20091.97 24498.43 28696.95 29287.05 28389.68 24194.72 30571.34 31496.11 31287.01 28285.65 26294.17 261
FMVSNet392.69 21991.58 22895.99 20098.29 15297.42 10199.26 21897.62 21989.80 24489.68 24195.32 28681.62 24696.27 30887.01 28285.65 26294.29 252
IterMVS-LS92.69 21992.11 21894.43 25096.80 23692.74 22799.45 19296.89 29988.98 25389.65 24495.38 28388.77 18796.34 30590.98 23382.04 28894.22 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114491.09 25089.83 25894.87 22893.25 30593.69 20999.62 16696.98 28986.83 28989.64 24594.99 30080.94 25297.05 27285.08 29581.16 29593.87 293
v192192090.46 26489.12 27294.50 24492.96 31392.46 23699.49 18696.98 28986.10 29689.61 24695.30 28778.55 27597.03 27682.17 31280.89 30294.01 280
v119290.62 26289.25 27094.72 23493.13 30693.07 22099.50 18497.02 28486.33 29489.56 24795.01 29779.22 26897.09 27182.34 31181.16 29594.01 280
PCF-MVS94.20 595.18 15994.10 17498.43 11898.55 14295.99 15297.91 30797.31 25790.35 23589.48 24899.22 13585.19 22099.89 7990.40 24598.47 13399.41 161
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator91.47 1296.28 13895.34 14999.08 7196.82 23597.47 9799.45 19298.81 4895.52 7089.39 24999.00 14881.97 24099.95 6097.27 12899.83 8199.84 95
v124090.20 27288.79 27994.44 24893.05 31192.27 24099.38 20196.92 29785.89 29889.36 25094.87 30477.89 27897.03 27680.66 31981.08 29894.01 280
FIs94.10 18893.43 19196.11 19894.70 28296.82 11999.58 17098.93 4092.54 17989.34 25197.31 21687.62 19697.10 26994.22 18486.58 25794.40 243
ITE_SJBPF92.38 29595.69 26785.14 32595.71 33292.81 16089.33 25298.11 19770.23 31998.42 19385.91 29088.16 24593.59 307
v2v48291.30 24590.07 25795.01 22393.13 30693.79 20699.77 12997.02 28488.05 27189.25 25395.37 28480.73 25597.15 26487.28 27780.04 30994.09 274
UniMVSNet (Re)93.07 21092.13 21795.88 20394.84 27996.24 14399.88 8798.98 3492.49 18389.25 25395.40 28087.09 20297.14 26593.13 20778.16 31894.26 254
UniMVSNet_NR-MVSNet92.95 21392.11 21895.49 20894.61 28495.28 17499.83 11499.08 3091.49 21089.21 25596.86 23387.14 20196.73 29093.20 20377.52 32394.46 236
DU-MVS92.46 22491.45 23395.49 20894.05 29195.28 17499.81 11798.74 5292.25 18989.21 25596.64 24281.66 24496.73 29093.20 20377.52 32394.46 236
eth_miper_zixun_eth92.41 22591.93 22293.84 27097.28 21690.68 27298.83 26296.97 29188.57 26589.19 25795.73 26589.24 18396.69 29389.97 25081.55 29194.15 268
cl-mvsnet293.77 19593.25 19995.33 21499.49 9994.43 19499.61 16798.09 18390.38 23389.16 25895.61 26890.56 16597.34 25291.93 21784.45 27294.21 259
Baseline_NR-MVSNet90.33 26889.51 26692.81 29292.84 31489.95 28899.77 12993.94 35484.69 31689.04 25995.66 26781.66 24496.52 29890.99 23276.98 32991.97 333
FC-MVSNet-test93.81 19393.15 20095.80 20694.30 28896.20 14499.42 19598.89 4292.33 18789.03 26097.27 21887.39 19996.83 28693.20 20386.48 25894.36 246
QAPM95.40 15694.17 17299.10 6996.92 22797.71 8399.40 19698.68 5689.31 24788.94 26198.89 16182.48 23799.96 5393.12 20899.83 8199.62 126
miper_ehance_all_eth93.16 20792.60 20794.82 23197.57 19893.56 21199.50 18497.07 28088.75 26088.85 26295.52 27490.97 15896.74 28990.77 23884.45 27294.17 261
AllTest92.48 22391.64 22695.00 22499.01 11588.43 30598.94 25096.82 30586.50 29188.71 26398.47 19074.73 30199.88 8585.39 29296.18 17896.71 223
TestCases95.00 22499.01 11588.43 30596.82 30586.50 29188.71 26398.47 19074.73 30199.88 8585.39 29296.18 17896.71 223
cl_fuxian92.53 22291.87 22494.52 24297.40 20792.99 22399.40 19696.93 29687.86 27388.69 26595.44 27889.95 17196.44 30190.45 24280.69 30394.14 271
pmmvs492.10 23291.07 23895.18 21992.82 31694.96 18399.48 18896.83 30387.45 27888.66 26696.56 24583.78 23096.83 28689.29 25484.77 27093.75 300
PS-MVSNAJss93.64 20093.31 19794.61 23792.11 32392.19 24199.12 22697.38 25092.51 18188.45 26796.99 22991.20 15297.29 25894.36 17887.71 24994.36 246
UniMVSNet_ETH3D90.06 27688.58 28294.49 24594.67 28388.09 31097.81 30997.57 22783.91 32088.44 26897.41 21357.44 35297.62 24291.41 22388.59 24097.77 215
TranMVSNet+NR-MVSNet91.68 24390.61 24494.87 22893.69 29893.98 20399.69 15198.65 6091.03 22388.44 26896.83 23780.05 26496.18 31190.26 24776.89 33194.45 241
FMVSNet291.02 25189.56 26395.41 21297.53 20095.74 16198.98 24597.41 24787.05 28388.43 27095.00 29971.34 31496.24 31085.12 29485.21 26794.25 256
COLMAP_ROBcopyleft90.47 1492.18 23091.49 23294.25 25499.00 11788.04 31198.42 28996.70 31282.30 32988.43 27099.01 14676.97 28199.85 9486.11 28996.50 17494.86 230
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator+91.53 1196.31 13595.24 15199.52 2696.88 23298.64 4999.72 14898.24 16495.27 7688.42 27298.98 15182.76 23699.94 6897.10 13399.83 8199.96 70
RRT_test8_iter0594.58 17694.11 17395.98 20197.88 17696.11 15099.89 8497.45 24091.66 20688.28 27396.71 23896.53 2497.40 24894.73 17083.85 28094.45 241
v14890.70 25889.63 26193.92 26792.97 31290.97 26799.75 13796.89 29987.51 27688.27 27495.01 29781.67 24397.04 27487.40 27577.17 32893.75 300
DSMNet-mixed88.28 29388.24 28888.42 32889.64 34475.38 35398.06 30389.86 36185.59 30588.20 27592.14 33776.15 29291.95 35078.46 32896.05 18197.92 211
WR-MVS92.31 22791.25 23595.48 21194.45 28595.29 17399.60 16898.68 5690.10 23888.07 27696.89 23180.68 25696.80 28893.14 20679.67 31094.36 246
test0.0.03 193.86 19093.61 18394.64 23695.02 27892.18 24299.93 6498.58 7394.07 11987.96 27798.50 18593.90 9494.96 33181.33 31693.17 21696.78 222
XXY-MVS91.82 23590.46 24595.88 20393.91 29495.40 17198.87 25997.69 21488.63 26487.87 27897.08 22374.38 30497.89 23491.66 22184.07 27794.35 249
Patchmtry89.70 28188.49 28393.33 28196.24 24789.94 29091.37 35396.23 32278.22 34087.69 27993.31 32791.04 15696.03 31780.18 32282.10 28794.02 278
cl-mvsnet192.32 22691.60 22794.47 24697.31 21392.74 22799.58 17096.75 30986.99 28687.64 28095.54 27289.55 17696.50 29988.58 26082.44 28594.17 261
D2MVS92.76 21692.59 21093.27 28395.13 27489.54 29499.69 15199.38 2192.26 18887.59 28194.61 31185.05 22297.79 23691.59 22288.01 24692.47 327
cl-mvsnet____92.31 22791.58 22894.52 24297.33 21292.77 22599.57 17296.78 30886.97 28787.56 28295.51 27589.43 17796.62 29588.60 25982.44 28594.16 266
v890.54 26389.17 27194.66 23593.43 30293.40 21799.20 22196.94 29585.76 30187.56 28294.51 31281.96 24197.19 26284.94 29678.25 31793.38 312
miper_lstm_enhance91.81 23691.39 23493.06 28997.34 21089.18 29799.38 20196.79 30786.70 29087.47 28495.22 29290.00 17095.86 32188.26 26481.37 29394.15 268
anonymousdsp91.79 24190.92 23994.41 25190.76 33792.93 22498.93 25197.17 26789.08 24987.46 28595.30 28778.43 27796.92 28192.38 21388.73 23693.39 311
jajsoiax91.92 23491.18 23694.15 25691.35 33290.95 26899.00 24397.42 24592.61 17387.38 28697.08 22372.46 31097.36 25094.53 17588.77 23594.13 272
mvs_tets91.81 23691.08 23794.00 26491.63 33090.58 27598.67 27597.43 24392.43 18487.37 28797.05 22671.76 31297.32 25494.75 16888.68 23794.11 273
v1090.25 27188.82 27894.57 24093.53 30093.43 21599.08 23096.87 30185.00 31187.34 28894.51 31280.93 25397.02 27882.85 30879.23 31193.26 314
pmmvs590.17 27489.09 27393.40 28092.10 32489.77 29199.74 14095.58 33685.88 30087.24 28995.74 26373.41 30896.48 30088.54 26183.56 28193.95 286
ACMP92.05 992.74 21792.42 21493.73 27195.91 25588.72 30099.81 11797.53 23294.13 11587.00 29098.23 19574.07 30598.47 18696.22 14688.86 23493.99 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS-HIRNet86.22 30183.19 31395.31 21596.71 24290.29 28192.12 34997.33 25562.85 35586.82 29170.37 35969.37 32197.49 24575.12 33997.99 14798.15 208
Anonymous2023121189.86 27888.44 28494.13 25898.93 12390.68 27298.54 28198.26 16276.28 34386.73 29295.54 27270.60 31897.56 24390.82 23780.27 30794.15 268
v7n89.65 28288.29 28793.72 27292.22 32290.56 27699.07 23497.10 27685.42 30986.73 29294.72 30580.06 26397.13 26681.14 31778.12 31993.49 308
IterMVS-SCA-FT90.85 25690.16 25592.93 29096.72 24189.96 28798.89 25496.99 28788.95 25686.63 29495.67 26676.48 28795.00 33087.04 28084.04 27993.84 295
EU-MVSNet90.14 27590.34 24989.54 32092.55 31981.06 34598.69 27398.04 18891.41 21686.59 29596.84 23680.83 25493.31 34786.20 28781.91 28994.26 254
OpenMVScopyleft90.15 1594.77 16993.59 18698.33 12396.07 24997.48 9699.56 17498.57 7590.46 23286.51 29698.95 15778.57 27499.94 6893.86 18799.74 9097.57 219
IterMVS90.91 25390.17 25493.12 28696.78 23990.42 28098.89 25497.05 28389.03 25186.49 29795.42 27976.59 28695.02 32987.22 27884.09 27693.93 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H91.30 24590.35 24894.15 25694.17 29092.62 23499.17 22498.94 3688.87 25886.48 29894.46 31684.36 22696.61 29688.19 26578.51 31693.21 316
MS-PatchMatch90.65 25990.30 25091.71 30494.22 28985.50 32398.24 29597.70 21388.67 26286.42 29996.37 24967.82 32898.03 22683.62 30499.62 9891.60 335
CP-MVSNet91.23 24890.22 25294.26 25393.96 29392.39 23899.09 22898.57 7588.95 25686.42 29996.57 24479.19 26996.37 30390.29 24678.95 31394.02 278
test_part192.15 23190.72 24196.44 19098.87 13197.46 9898.99 24498.26 16285.89 29886.34 30196.34 25081.71 24297.48 24691.06 22978.99 31294.37 245
LF4IMVS89.25 28888.85 27790.45 31492.81 31781.19 34498.12 30094.79 34791.44 21386.29 30297.11 22165.30 33898.11 22188.53 26285.25 26692.07 330
PVSNet_088.03 1991.80 23990.27 25196.38 19398.27 15690.46 27899.94 5899.61 1193.99 12486.26 30397.39 21571.13 31799.89 7998.77 7467.05 34998.79 200
PS-CasMVS90.63 26189.51 26693.99 26593.83 29591.70 25798.98 24598.52 9088.48 26686.15 30496.53 24675.46 29596.31 30688.83 25878.86 31593.95 286
FMVSNet188.50 29186.64 29794.08 25995.62 27091.97 24498.43 28696.95 29283.00 32486.08 30594.72 30559.09 35096.11 31281.82 31584.07 27794.17 261
PEN-MVS90.19 27389.06 27493.57 27893.06 31090.90 26999.06 23598.47 10388.11 27085.91 30696.30 25176.67 28495.94 32087.07 27976.91 33093.89 291
ppachtmachnet_test89.58 28388.35 28593.25 28492.40 32090.44 27999.33 20796.73 31085.49 30785.90 30795.77 26281.09 25196.00 31976.00 33882.49 28493.30 313
OurMVSNet-221017-089.81 27989.48 26890.83 31091.64 32981.21 34398.17 29995.38 34091.48 21185.65 30897.31 21672.66 30997.29 25888.15 26684.83 26993.97 285
our_test_390.39 26589.48 26893.12 28692.40 32089.57 29399.33 20796.35 32187.84 27485.30 30994.99 30084.14 22896.09 31580.38 32084.56 27193.71 305
testgi89.01 28988.04 29091.90 30293.49 30184.89 32799.73 14595.66 33493.89 13285.14 31098.17 19659.68 34994.66 33577.73 33188.88 23296.16 228
DTE-MVSNet89.40 28488.24 28892.88 29192.66 31889.95 28899.10 22798.22 16787.29 28085.12 31196.22 25376.27 29095.30 32883.56 30575.74 33493.41 309
FMVSNet588.32 29287.47 29490.88 30896.90 23188.39 30797.28 31595.68 33382.60 32884.67 31292.40 33679.83 26591.16 35276.39 33781.51 29293.09 317
tfpnnormal89.29 28687.61 29394.34 25294.35 28794.13 19998.95 24998.94 3683.94 31884.47 31395.51 27574.84 30097.39 24977.05 33580.41 30491.48 337
MVP-Stereo90.93 25290.45 24792.37 29691.25 33488.76 29998.05 30496.17 32487.27 28184.04 31495.30 28778.46 27697.27 26083.78 30399.70 9491.09 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LTVRE_ROB88.28 1890.29 27089.05 27594.02 26295.08 27690.15 28497.19 31797.43 24384.91 31483.99 31597.06 22574.00 30698.28 21084.08 29987.71 24993.62 306
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 28587.81 29294.01 26393.40 30491.93 24798.62 27896.48 31986.25 29583.86 31696.14 25573.68 30797.04 27486.16 28875.73 33593.04 319
USDC90.00 27788.96 27693.10 28894.81 28088.16 30998.71 27195.54 33793.66 13983.75 31797.20 21965.58 33598.31 20783.96 30287.49 25392.85 322
CL-MVSNet_2432*160084.50 31283.15 31488.53 32786.00 35281.79 34198.82 26397.35 25285.12 31083.62 31890.91 34276.66 28591.40 35169.53 34760.36 35492.40 328
ACMH+89.98 1690.35 26789.54 26492.78 29395.99 25286.12 31998.81 26497.18 26689.38 24683.14 31997.76 20768.42 32698.43 19289.11 25686.05 26093.78 299
Anonymous2023120686.32 30085.42 30289.02 32389.11 34680.53 34999.05 23995.28 34185.43 30882.82 32093.92 32074.40 30393.44 34666.99 35181.83 29093.08 318
DIV-MVS_2432*160083.59 31782.06 31788.20 32986.93 35080.70 34797.21 31696.38 32082.87 32582.49 32188.97 34567.63 32992.32 34873.75 34162.30 35391.58 336
SixPastTwentyTwo88.73 29088.01 29190.88 30891.85 32782.24 33798.22 29795.18 34588.97 25482.26 32296.89 23171.75 31396.67 29484.00 30082.98 28293.72 304
KD-MVS_2432*160088.00 29586.10 29993.70 27596.91 22894.04 20097.17 31897.12 27284.93 31281.96 32392.41 33492.48 13094.51 33679.23 32352.68 35792.56 324
miper_refine_blended88.00 29586.10 29993.70 27596.91 22894.04 20097.17 31897.12 27284.93 31281.96 32392.41 33492.48 13094.51 33679.23 32352.68 35792.56 324
TinyColmap87.87 29786.51 29891.94 30195.05 27785.57 32297.65 31194.08 35284.40 31781.82 32596.85 23462.14 34598.33 20580.25 32186.37 25991.91 334
ACMH89.72 1790.64 26089.63 26193.66 27795.64 26888.64 30398.55 27997.45 24089.03 25181.62 32697.61 20969.75 32098.41 19489.37 25387.62 25193.92 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052185.15 30883.81 30989.16 32288.32 34782.69 33398.80 26595.74 33179.72 33681.53 32790.99 34065.38 33794.16 33872.69 34281.11 29790.63 343
pmmvs685.69 30283.84 30891.26 30790.00 34384.41 32997.82 30896.15 32575.86 34581.29 32895.39 28261.21 34796.87 28483.52 30673.29 33892.50 326
TransMVSNet (Re)87.25 29885.28 30393.16 28593.56 29991.03 26698.54 28194.05 35383.69 32281.09 32996.16 25475.32 29696.40 30276.69 33668.41 34692.06 331
test_method80.79 32079.70 32384.08 33492.83 31567.06 35799.51 18295.42 33854.34 35781.07 33093.53 32444.48 36092.22 34978.90 32777.23 32792.94 320
NR-MVSNet91.56 24490.22 25295.60 20794.05 29195.76 16098.25 29498.70 5491.16 22080.78 33196.64 24283.23 23596.57 29791.41 22377.73 32294.46 236
LCM-MVSNet-Re92.31 22792.60 20791.43 30597.53 20079.27 35199.02 24291.83 35892.07 19380.31 33294.38 31783.50 23295.48 32397.22 13097.58 15299.54 144
TDRefinement84.76 30982.56 31691.38 30674.58 36084.80 32897.36 31494.56 35084.73 31580.21 33396.12 25763.56 34298.39 19887.92 26963.97 35090.95 341
N_pmnet80.06 32380.78 32177.89 33891.94 32545.28 36798.80 26556.82 37078.10 34180.08 33493.33 32577.03 28095.76 32268.14 35082.81 28392.64 323
test_040285.58 30383.94 30790.50 31293.81 29685.04 32698.55 27995.20 34476.01 34479.72 33595.13 29364.15 34196.26 30966.04 35486.88 25690.21 346
test20.0384.72 31183.99 30586.91 33188.19 34980.62 34898.88 25695.94 32888.36 26878.87 33694.62 31068.75 32389.11 35666.52 35275.82 33391.00 339
pmmvs380.27 32277.77 32687.76 33080.32 35882.43 33698.23 29691.97 35772.74 35278.75 33787.97 34757.30 35390.99 35370.31 34562.37 35289.87 347
MIMVSNet182.58 31880.51 32288.78 32586.68 35184.20 33096.65 32595.41 33978.75 33978.59 33892.44 33351.88 35689.76 35565.26 35578.95 31392.38 329
DeepMVS_CXcopyleft82.92 33795.98 25458.66 36196.01 32792.72 16578.34 33995.51 27558.29 35198.08 22282.57 30985.29 26592.03 332
Patchmatch-RL test86.90 29985.98 30189.67 31984.45 35475.59 35289.71 35592.43 35686.89 28877.83 34090.94 34194.22 8393.63 34487.75 27169.61 34199.79 100
lessismore_v090.53 31190.58 33880.90 34695.80 33077.01 34195.84 26066.15 33496.95 27983.03 30775.05 33693.74 303
K. test v388.05 29487.24 29690.47 31391.82 32882.23 33898.96 24897.42 24589.05 25076.93 34295.60 26968.49 32595.42 32485.87 29181.01 30093.75 300
ambc83.23 33677.17 35962.61 35887.38 35794.55 35176.72 34386.65 35130.16 36296.36 30484.85 29769.86 34090.73 342
PM-MVS80.47 32178.88 32585.26 33383.79 35672.22 35495.89 33691.08 35985.71 30476.56 34488.30 34636.64 36193.90 34182.39 31069.57 34289.66 349
OpenMVS_ROBcopyleft79.82 2083.77 31681.68 31990.03 31788.30 34882.82 33298.46 28495.22 34373.92 35176.00 34591.29 33955.00 35496.94 28068.40 34988.51 24290.34 344
UnsupCasMVSNet_eth85.52 30483.99 30590.10 31689.36 34583.51 33196.65 32597.99 19089.14 24875.89 34693.83 32163.25 34393.92 34081.92 31467.90 34892.88 321
new_pmnet84.49 31382.92 31589.21 32190.03 34282.60 33496.89 32495.62 33580.59 33475.77 34789.17 34465.04 33994.79 33472.12 34381.02 29990.23 345
EG-PatchMatch MVS85.35 30783.81 30989.99 31890.39 33981.89 34098.21 29896.09 32681.78 33174.73 34893.72 32351.56 35797.12 26879.16 32688.61 23890.96 340
pmmvs-eth3d84.03 31581.97 31890.20 31584.15 35587.09 31598.10 30294.73 34983.05 32374.10 34987.77 34865.56 33694.01 33981.08 31869.24 34389.49 350
new-patchmatchnet81.19 31979.34 32486.76 33282.86 35780.36 35097.92 30695.27 34282.09 33072.02 35086.87 35062.81 34490.74 35471.10 34463.08 35189.19 352
ET-MVSNet_ETH3D94.37 18393.28 19897.64 15198.30 15197.99 7499.99 597.61 22294.35 10771.57 35199.45 11496.23 2795.34 32696.91 14085.14 26899.59 131
UnsupCasMVSNet_bld79.97 32477.03 32788.78 32585.62 35381.98 33993.66 34497.35 25275.51 34870.79 35283.05 35448.70 35994.91 33278.31 32960.29 35589.46 351
CMPMVSbinary61.59 2184.75 31085.14 30483.57 33590.32 34062.54 35996.98 32297.59 22674.33 35069.95 35396.66 24064.17 34098.32 20687.88 27088.41 24389.84 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testmvs40.60 33544.45 33829.05 35019.49 37214.11 37399.68 15318.47 37120.74 36664.59 35498.48 18910.95 37117.09 36956.66 35911.01 36555.94 362
LCM-MVSNet67.77 32664.73 33076.87 33962.95 36656.25 36389.37 35693.74 35544.53 36061.99 35580.74 35520.42 36886.53 35869.37 34859.50 35687.84 353
PMMVS267.15 32764.15 33176.14 34070.56 36362.07 36093.89 34287.52 36558.09 35660.02 35678.32 35622.38 36784.54 35959.56 35847.03 35981.80 355
Gipumacopyleft66.95 32865.00 32972.79 34191.52 33167.96 35666.16 36295.15 34647.89 35958.54 35767.99 36129.74 36387.54 35750.20 36077.83 32162.87 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet185.50 30683.33 31192.00 30090.89 33688.38 30899.22 22096.55 31679.60 33857.26 35892.72 33079.09 27193.78 34377.25 33377.37 32693.84 295
MDA-MVSNet_test_wron85.51 30583.32 31292.10 29990.96 33588.58 30499.20 22196.52 31779.70 33757.12 35992.69 33279.11 27093.86 34277.10 33477.46 32593.86 294
MDA-MVSNet-bldmvs84.09 31481.52 32091.81 30391.32 33388.00 31298.67 27595.92 32980.22 33555.60 36093.32 32668.29 32793.60 34573.76 34076.61 33293.82 297
FPMVS68.72 32568.72 32868.71 34365.95 36444.27 36995.97 33594.74 34851.13 35853.26 36190.50 34325.11 36683.00 36060.80 35780.97 30178.87 356
test12337.68 33639.14 33933.31 34919.94 37124.83 37298.36 2909.75 37215.53 36751.31 36287.14 34919.62 36917.74 36847.10 3613.47 36757.36 361
tmp_tt65.23 32962.94 33272.13 34244.90 36950.03 36581.05 35989.42 36438.45 36148.51 36399.90 1754.09 35578.70 36291.84 22018.26 36487.64 354
E-PMN52.30 33252.18 33452.67 34771.51 36145.40 36693.62 34576.60 36836.01 36343.50 36464.13 36327.11 36567.31 36531.06 36526.06 36145.30 364
EMVS51.44 33451.22 33652.11 34870.71 36244.97 36894.04 34175.66 36935.34 36542.40 36561.56 36628.93 36465.87 36627.64 36624.73 36245.49 363
MVEpermissive53.74 2251.54 33347.86 33762.60 34559.56 36750.93 36479.41 36077.69 36735.69 36436.27 36661.76 3655.79 37469.63 36337.97 36436.61 36067.24 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 33052.24 33367.66 34449.27 36856.82 36283.94 35882.02 36670.47 35333.28 36764.54 36217.23 37069.16 36445.59 36223.85 36377.02 357
PMVScopyleft49.05 2353.75 33151.34 33560.97 34640.80 37034.68 37074.82 36189.62 36337.55 36228.67 36872.12 3587.09 37281.63 36143.17 36368.21 34766.59 359
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 33820.84 34118.99 35165.34 36527.73 37150.43 3637.67 3739.50 3688.01 3696.34 3696.13 37326.24 36723.40 36710.69 3662.99 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.43 33731.24 3400.00 3520.00 3730.00 3740.00 36498.09 1830.00 3690.00 37099.67 9583.37 2330.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.60 34010.13 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37091.20 1520.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.28 33911.04 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.40 1190.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS99.93 299.89 4599.80 299.96 2599.80 5897.44 11100.00 1100.00 199.98 33100.00 1
save fliter99.82 6598.79 3399.96 2598.40 13297.66 10
test_0728_SECOND99.82 599.94 1499.47 599.95 4398.43 116100.00 199.99 5100.00 1100.00 1
GSMVS99.59 131
sam_mvs194.72 6499.59 131
sam_mvs94.25 82
MTGPAbinary98.28 158
test_post195.78 33759.23 36793.20 11497.74 23891.06 229
test_post63.35 36494.43 6998.13 220
patchmatchnet-post91.70 33895.12 4897.95 231
MTMP99.87 9096.49 318
gm-plane-assit96.97 22693.76 20891.47 21298.96 15598.79 16794.92 160
test9_res99.71 2999.99 20100.00 1
agg_prior299.48 36100.00 1100.00 1
test_prior498.05 7199.94 58
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
新几何299.40 196
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
无先验99.49 18698.71 5393.46 144100.00 194.36 17899.99 20
原ACMM299.90 76
testdata299.99 3690.54 241
segment_acmp96.68 22
testdata199.28 21696.35 48
plane_prior795.71 26591.59 261
plane_prior695.76 26091.72 25680.47 261
plane_prior597.87 20398.37 20397.79 11689.55 22594.52 233
plane_prior498.59 180
plane_prior299.84 10896.38 44
plane_prior195.73 262
plane_prior91.74 25399.86 10196.76 3489.59 224
n20.00 374
nn0.00 374
door-mid89.69 362
test1198.44 108
door90.31 360
HQP5-MVS91.85 249
BP-MVS97.92 111
HQP3-MVS97.89 20189.60 222
HQP2-MVS80.65 257
NP-MVS95.77 25991.79 25198.65 176
ACMMP++_ref87.04 255
ACMMP++88.23 244
Test By Simon92.82 123