This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS96.46 1069.91 3595.18 1380.75 3595.28 192.34 695.36 1296.47 20
MSP-MVS90.38 391.87 185.88 8292.83 7664.03 18793.06 10094.33 4882.19 1993.65 296.15 2785.89 197.19 7991.02 1597.75 196.43 22
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS89.94 790.36 788.70 1396.45 1169.38 4396.89 494.44 4071.65 18792.11 397.21 576.79 799.11 492.34 695.36 1297.62 2
test_241102_ONE96.45 1169.38 4394.44 4071.65 18792.11 397.05 876.79 799.11 4
test_241102_TWO94.41 4371.65 18792.07 597.21 574.58 1499.11 492.34 695.36 1296.59 13
test072696.40 1469.99 3196.76 694.33 4871.92 17391.89 697.11 773.77 17
SMA-MVScopyleft88.14 1488.29 1787.67 2593.21 6768.72 5893.85 7394.03 5674.18 11991.74 796.67 1365.61 6598.42 2889.24 2496.08 595.88 39
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPM-MVS90.70 290.52 591.24 189.68 15176.68 297.29 195.35 1082.87 1491.58 897.22 479.93 399.10 783.12 7497.64 297.94 1
TSAR-MVS + MP.88.11 1688.64 1486.54 6191.73 10968.04 7490.36 20693.55 7482.89 1391.29 992.89 11372.27 2596.03 12987.99 3594.77 2395.54 46
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_part296.29 1768.16 7290.78 10
DPE-MVScopyleft88.77 1389.21 1387.45 3396.26 1867.56 8694.17 5294.15 5368.77 23490.74 1197.27 376.09 1098.49 2390.58 1794.91 1896.30 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS89.41 1089.73 1188.45 1896.40 1469.99 3196.64 894.52 3671.92 17390.55 1296.93 1073.77 1799.08 991.91 1094.90 1996.29 26
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 15790.55 1296.93 1076.24 999.08 991.53 1294.99 1596.43 22
DeepPCF-MVS81.17 189.72 891.38 384.72 12393.00 7358.16 28096.72 794.41 4386.50 590.25 1497.83 175.46 1298.67 1992.78 395.49 1197.32 4
CANet89.61 989.99 988.46 1794.39 3869.71 3996.53 1193.78 6086.89 489.68 1595.78 3165.94 6099.10 792.99 293.91 4096.58 15
xiu_mvs_v2_base87.92 1987.38 2989.55 1091.41 12176.43 395.74 2093.12 9683.53 1289.55 1695.95 2953.45 20097.68 5091.07 1492.62 5994.54 88
PS-MVSNAJ88.14 1487.61 2489.71 792.06 9576.72 195.75 1993.26 8783.86 1089.55 1696.06 2853.55 19697.89 4491.10 1393.31 5094.54 88
ETH3 D test640090.27 590.44 689.75 696.82 674.33 795.89 1694.80 2677.13 8089.13 1897.38 274.49 1598.48 2492.32 995.98 696.46 21
CNVR-MVS90.32 490.89 488.61 1696.76 770.65 2396.47 1294.83 2384.83 889.07 1996.80 1270.86 2999.06 1192.64 495.71 996.12 30
HPM-MVS++copyleft89.37 1189.95 1087.64 2695.10 2968.23 7195.24 3194.49 3882.43 1788.90 2096.35 2171.89 2898.63 2088.76 3096.40 496.06 31
APDe-MVS87.54 2387.84 2086.65 5696.07 2166.30 12494.84 4493.78 6069.35 22588.39 2196.34 2267.74 4597.66 5490.62 1693.44 4996.01 34
EPNet87.84 2088.38 1586.23 7493.30 6366.05 12995.26 3094.84 2287.09 388.06 2294.53 7266.79 5397.34 7083.89 7091.68 7395.29 56
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SD-MVS87.49 2487.49 2687.50 3293.60 5668.82 5693.90 7092.63 11576.86 8487.90 2395.76 3266.17 5797.63 5689.06 2691.48 7796.05 32
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
canonicalmvs86.85 3686.25 4288.66 1591.80 10871.92 1393.54 8691.71 14980.26 4087.55 2495.25 4963.59 9096.93 10088.18 3484.34 13697.11 6
旧先验292.00 14359.37 30487.54 2593.47 22075.39 131
ETH3D-3000-0.187.61 2287.89 1986.75 5293.58 5767.21 9794.31 5094.14 5472.92 14887.13 2696.62 1467.81 4497.94 3990.13 1894.42 3295.09 68
MVSFormer83.75 8582.88 8786.37 6989.24 16271.18 1889.07 23890.69 18665.80 25687.13 2694.34 8264.99 7092.67 24372.83 14791.80 7195.27 60
lupinMVS87.74 2187.77 2187.63 3089.24 16271.18 1896.57 1092.90 10482.70 1687.13 2695.27 4764.99 7095.80 13489.34 2291.80 7195.93 36
alignmvs87.28 2686.97 3488.24 2091.30 12271.14 2095.61 2493.56 7379.30 4987.07 2995.25 4968.43 3496.93 10087.87 3684.33 13796.65 11
NCCC89.07 1289.46 1287.91 2196.60 969.05 5096.38 1394.64 3384.42 986.74 3096.20 2566.56 5698.76 1889.03 2894.56 2995.92 37
xxxxxxxxxxxxxcwj87.14 2987.19 3186.99 4593.84 4967.89 7895.05 3884.72 30578.19 6686.25 3196.44 1866.98 4997.79 4788.68 3194.56 2995.28 58
SF-MVS87.03 3287.09 3386.84 4792.70 8267.45 9293.64 8193.76 6370.78 21086.25 3196.44 1866.98 4997.79 4788.68 3194.56 2995.28 58
9.1487.63 2393.86 4894.41 4894.18 5272.76 15186.21 3396.51 1666.64 5497.88 4590.08 1994.04 37
testtj86.62 4086.66 3986.50 6396.95 565.70 13994.41 4893.45 7967.74 24086.19 3496.39 2064.38 7797.91 4287.33 4493.14 5395.90 38
APD-MVScopyleft85.93 4985.99 4585.76 8995.98 2365.21 15193.59 8492.58 11766.54 25186.17 3595.88 3063.83 8497.00 9086.39 5292.94 5595.06 69
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CANet_DTU84.09 7783.52 7185.81 8690.30 14066.82 11091.87 14789.01 25185.27 686.09 3693.74 9547.71 24996.98 9477.90 11989.78 9493.65 122
VNet86.20 4585.65 5287.84 2393.92 4769.99 3195.73 2295.94 678.43 6486.00 3793.07 10758.22 14097.00 9085.22 5984.33 13796.52 17
TSAR-MVS + GP.87.96 1788.37 1686.70 5593.51 6065.32 14895.15 3493.84 5978.17 6885.93 3894.80 6775.80 1198.21 3189.38 2188.78 9896.59 13
MCST-MVS91.08 191.46 289.94 497.66 273.37 997.13 295.58 889.33 185.77 3996.26 2472.84 2299.38 192.64 495.93 897.08 7
ETH3D cwj APD-0.1687.06 3187.18 3286.71 5391.99 9967.48 9192.97 10594.21 5171.48 19885.72 4096.32 2368.13 3898.00 3889.06 2694.70 2794.65 84
DELS-MVS90.05 690.09 889.94 493.14 7073.88 897.01 394.40 4588.32 285.71 4194.91 6374.11 1698.91 1387.26 4695.94 797.03 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS86.83 3786.85 3786.78 5193.47 6165.55 14495.39 2995.10 1771.77 18485.69 4296.52 1562.07 10498.77 1786.06 5495.60 1096.03 33
TEST994.18 4067.28 9594.16 5393.51 7571.75 18585.52 4395.33 4268.01 3997.27 77
train_agg87.21 2887.42 2886.60 5794.18 4067.28 9594.16 5393.51 7571.87 17885.52 4395.33 4268.19 3697.27 7789.09 2594.90 1995.25 63
test_894.19 3967.19 9894.15 5593.42 8271.87 17885.38 4595.35 4168.19 3696.95 97
testdata81.34 20389.02 16657.72 28489.84 21958.65 30785.32 4694.09 8857.03 15293.28 22269.34 18090.56 8993.03 140
ZD-MVS96.63 865.50 14693.50 7770.74 21185.26 4795.19 5364.92 7397.29 7387.51 4093.01 54
test_prior387.38 2587.70 2286.42 6694.71 3367.35 9395.10 3693.10 9775.40 10185.25 4895.61 3767.94 4096.84 10287.47 4194.77 2395.05 70
test_prior295.10 3675.40 10185.25 4895.61 3767.94 4087.47 4194.77 23
ACMMP_NAP86.05 4785.80 4986.80 5091.58 11367.53 8891.79 15193.49 7874.93 10984.61 5095.30 4459.42 13097.92 4186.13 5394.92 1794.94 75
jason86.40 4286.17 4387.11 4186.16 22170.54 2595.71 2392.19 13282.00 2384.58 5194.34 8261.86 10695.53 15487.76 3790.89 8495.27 60
jason: jason.
agg_prior187.02 3387.26 3086.28 7394.16 4466.97 10694.08 5993.31 8571.85 18084.49 5295.39 4068.91 3396.75 10688.84 2994.32 3495.13 66
agg_prior94.16 4466.97 10693.31 8584.49 5296.75 106
Regformer-187.24 2787.60 2586.15 7695.14 2765.83 13793.95 6695.12 1582.11 2184.25 5495.73 3367.88 4398.35 2985.60 5688.64 10094.26 96
xiu_mvs_v1_base_debu82.16 10781.12 11085.26 10786.42 21568.72 5892.59 12390.44 19473.12 14384.20 5594.36 7738.04 29395.73 13884.12 6786.81 11391.33 174
xiu_mvs_v1_base82.16 10781.12 11085.26 10786.42 21568.72 5892.59 12390.44 19473.12 14384.20 5594.36 7738.04 29395.73 13884.12 6786.81 11391.33 174
xiu_mvs_v1_base_debi82.16 10781.12 11085.26 10786.42 21568.72 5892.59 12390.44 19473.12 14384.20 5594.36 7738.04 29395.73 13884.12 6786.81 11391.33 174
ETV-MVS86.01 4886.11 4485.70 9390.21 14267.02 10593.43 9191.92 14081.21 3184.13 5894.07 9060.93 11395.63 14489.28 2389.81 9294.46 94
CS-MVS86.61 4186.85 3785.88 8291.52 11766.25 12695.42 2792.25 12580.36 3984.10 5994.82 6662.88 9996.08 12588.25 3392.07 6995.30 55
Regformer-287.00 3487.43 2785.71 9295.14 2764.73 16693.95 6694.95 2081.69 2684.03 6095.73 3367.35 4798.19 3385.40 5888.64 10094.20 98
SteuartSystems-ACMMP86.82 3886.90 3586.58 5990.42 13766.38 12196.09 1593.87 5877.73 7384.01 6195.66 3563.39 9297.94 3987.40 4393.55 4895.42 47
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS87.11 3086.27 4089.62 897.79 176.27 494.96 4294.49 3878.74 6283.87 6292.94 11064.34 7896.94 9875.19 13294.09 3695.66 42
DeepC-MVS_fast79.48 287.95 1888.00 1887.79 2495.86 2468.32 6695.74 2094.11 5583.82 1183.49 6396.19 2664.53 7698.44 2683.42 7394.88 2296.61 12
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Effi-MVS+83.82 8382.76 9086.99 4589.56 15469.40 4291.35 17386.12 29472.59 15383.22 6492.81 11759.60 12896.01 13181.76 8587.80 10795.56 45
CDPH-MVS85.71 5285.46 5386.46 6494.75 3267.19 9893.89 7192.83 10670.90 20683.09 6595.28 4563.62 8897.36 6880.63 9694.18 3594.84 77
MVS_Test84.16 7683.20 8187.05 4391.56 11469.82 3689.99 21992.05 13477.77 7282.84 6686.57 20063.93 8396.09 12374.91 13889.18 9695.25 63
hse-mvs383.01 9482.56 9484.35 13489.34 15862.02 22792.72 11493.76 6381.45 2782.73 6792.25 12960.11 12097.13 8387.69 3862.96 27893.91 115
hse-mvs281.12 12481.11 11381.16 20886.52 21457.48 28989.40 23091.16 17081.45 2782.73 6790.49 15260.11 12094.58 17787.69 3860.41 30591.41 173
test1287.09 4294.60 3568.86 5492.91 10382.67 6965.44 6697.55 5993.69 4694.84 77
HY-MVS76.49 584.28 7183.36 8087.02 4492.22 9267.74 8284.65 27894.50 3779.15 5382.23 7087.93 18566.88 5196.94 9880.53 9782.20 14996.39 24
LFMVS84.34 7082.73 9189.18 1194.76 3173.25 1094.99 4191.89 14171.90 17582.16 7193.49 10047.98 24697.05 8582.55 8184.82 13097.25 5
WTY-MVS86.32 4385.81 4887.85 2292.82 7869.37 4595.20 3295.25 1282.71 1581.91 7294.73 6867.93 4297.63 5679.55 10282.25 14896.54 16
VDD-MVS83.06 9381.81 10486.81 4990.86 13267.70 8395.40 2891.50 15875.46 9881.78 7392.34 12740.09 28297.13 8386.85 5082.04 15095.60 44
Regformer-385.80 5185.92 4685.46 9994.17 4265.09 15992.95 10795.11 1681.13 3281.68 7495.04 5465.82 6298.32 3083.02 7584.36 13492.97 142
diffmvs84.28 7183.83 6985.61 9587.40 20168.02 7590.88 19189.24 23880.54 3781.64 7592.52 11959.83 12594.52 18487.32 4585.11 12894.29 95
MSLP-MVS++86.27 4485.91 4787.35 3692.01 9868.97 5395.04 4092.70 10979.04 5781.50 7696.50 1758.98 13796.78 10483.49 7293.93 3996.29 26
Regformer-485.45 5485.69 5184.73 12194.17 4263.23 20492.95 10794.83 2380.66 3681.29 7795.04 5465.12 6898.08 3682.74 7784.36 13492.88 146
SR-MVS82.81 9782.58 9383.50 15593.35 6261.16 23992.23 13191.28 16764.48 26481.27 7895.28 4553.71 19595.86 13382.87 7688.77 9993.49 126
baseline85.01 6084.44 6486.71 5388.33 18168.73 5790.24 21091.82 14581.05 3481.18 7992.50 12063.69 8796.08 12584.45 6586.71 11895.32 53
test_yl84.28 7183.16 8287.64 2694.52 3669.24 4695.78 1795.09 1869.19 22881.09 8092.88 11457.00 15497.44 6381.11 9481.76 15296.23 28
DCV-MVSNet84.28 7183.16 8287.64 2694.52 3669.24 4695.78 1795.09 1869.19 22881.09 8092.88 11457.00 15497.44 6381.11 9481.76 15296.23 28
UA-Net80.02 14279.65 13281.11 21189.33 15957.72 28486.33 27289.00 25277.44 7881.01 8289.15 16859.33 13295.90 13261.01 24784.28 13989.73 196
PVSNet_BlendedMVS83.38 8983.43 7583.22 15893.76 5167.53 8894.06 6093.61 7179.13 5481.00 8385.14 21463.19 9597.29 7387.08 4773.91 20584.83 274
PVSNet_Blended86.73 3986.86 3686.31 7293.76 5167.53 8896.33 1493.61 7182.34 1881.00 8393.08 10563.19 9597.29 7387.08 4791.38 7894.13 104
casdiffmvs85.37 5584.87 6086.84 4788.25 18469.07 4993.04 10291.76 14681.27 3080.84 8592.07 13164.23 7996.06 12784.98 6187.43 11095.39 48
MP-MVS-pluss85.24 5785.13 5685.56 9691.42 11965.59 14391.54 16392.51 11974.56 11280.62 8695.64 3659.15 13497.00 9086.94 4993.80 4194.07 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS84.73 6484.47 6285.50 9791.89 10465.16 15391.55 16292.23 12675.32 10380.53 8795.21 5156.06 16997.16 8184.86 6392.55 6194.18 99
MTAPA83.91 8183.38 7985.50 9791.89 10465.16 15381.75 29892.23 12675.32 10380.53 8795.21 5156.06 16997.16 8184.86 6392.55 6194.18 99
PAPM85.89 5085.46 5387.18 3988.20 18672.42 1292.41 12792.77 10782.11 2180.34 8993.07 10768.27 3595.02 16478.39 11493.59 4794.09 106
CostFormer82.33 10481.15 10985.86 8589.01 16768.46 6382.39 29693.01 9975.59 9680.25 9081.57 25572.03 2794.96 16679.06 10777.48 18694.16 102
test117281.90 11381.83 10382.13 18593.23 6457.52 28891.61 16190.98 18164.32 26680.20 9195.00 5651.26 21695.61 14681.73 8688.13 10493.26 132
PMMVS81.98 11282.04 10081.78 19389.76 15056.17 29891.13 18490.69 18677.96 7080.09 9293.57 9846.33 25794.99 16581.41 9087.46 10994.17 101
ZNCC-MVS85.33 5685.08 5786.06 7793.09 7265.65 14193.89 7193.41 8373.75 13079.94 9394.68 7060.61 11698.03 3782.63 8093.72 4494.52 90
112181.25 12080.05 12584.87 11892.30 8964.31 18087.91 25591.39 16259.44 30379.94 9392.91 11157.09 15097.01 8866.63 20292.81 5893.29 131
sss82.71 10082.38 9783.73 14789.25 16159.58 26592.24 13094.89 2177.96 7079.86 9592.38 12556.70 16097.05 8577.26 12280.86 16094.55 86
新几何184.73 12192.32 8864.28 18291.46 16059.56 30279.77 9692.90 11256.95 15796.57 11163.40 23292.91 5693.34 128
APD-MVS_3200maxsize81.64 11681.32 10882.59 17092.36 8758.74 27491.39 16991.01 18063.35 27279.72 9794.62 7151.82 20996.14 12179.71 10087.93 10692.89 145
MP-MVScopyleft85.02 5984.97 5885.17 11092.60 8464.27 18393.24 9592.27 12473.13 14279.63 9894.43 7561.90 10597.17 8085.00 6092.56 6094.06 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM184.42 13293.21 6764.27 18393.40 8465.39 25979.51 9992.50 12058.11 14296.69 10865.27 22293.96 3892.32 157
VDDNet80.50 13378.26 15487.21 3886.19 22069.79 3794.48 4791.31 16460.42 29579.34 10090.91 14438.48 28996.56 11282.16 8281.05 15895.27 60
EIA-MVS84.84 6384.88 5984.69 12491.30 12262.36 22293.85 7392.04 13579.45 4779.33 10194.28 8562.42 10296.35 11580.05 9991.25 8195.38 49
HFP-MVS84.73 6484.40 6585.72 9093.75 5365.01 16093.50 8893.19 9172.19 16779.22 10294.93 6059.04 13597.67 5181.55 8792.21 6494.49 92
#test#84.98 6184.74 6185.72 9093.75 5365.01 16094.09 5893.19 9173.55 13679.22 10294.93 6059.04 13597.67 5182.66 7892.21 6494.49 92
MAR-MVS84.18 7583.43 7586.44 6596.25 1965.93 13494.28 5194.27 5074.41 11379.16 10495.61 3753.99 19198.88 1669.62 17793.26 5194.50 91
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR85.15 5884.47 6287.18 3996.02 2268.29 6791.85 14993.00 10176.59 8879.03 10595.00 5661.59 10797.61 5878.16 11689.00 9795.63 43
SR-MVS-dyc-post81.06 12580.70 11782.15 18392.02 9658.56 27690.90 18990.45 19162.76 27878.89 10694.46 7351.26 21695.61 14678.77 11186.77 11692.28 159
RE-MVS-def80.48 12292.02 9658.56 27690.90 18990.45 19162.76 27878.89 10694.46 7349.30 23378.77 11186.77 11692.28 159
GST-MVS84.63 6784.29 6685.66 9492.82 7865.27 14993.04 10293.13 9573.20 14078.89 10694.18 8759.41 13197.85 4681.45 8992.48 6393.86 118
MVS_111021_HR86.19 4685.80 4987.37 3593.17 6969.79 3793.99 6493.76 6379.08 5678.88 10993.99 9162.25 10398.15 3485.93 5591.15 8294.15 103
region2R84.36 6984.03 6885.36 10493.54 5964.31 18093.43 9192.95 10272.16 17078.86 11094.84 6556.97 15697.53 6081.38 9192.11 6894.24 97
ACMMPR84.37 6884.06 6785.28 10693.56 5864.37 17893.50 8893.15 9472.19 16778.85 11194.86 6456.69 16197.45 6281.55 8792.20 6694.02 111
UGNet79.87 14578.68 14883.45 15789.96 14561.51 23492.13 13390.79 18476.83 8578.85 11186.33 20338.16 29196.17 12067.93 19287.17 11192.67 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GG-mvs-BLEND86.53 6291.91 10369.67 4175.02 33094.75 2878.67 11390.85 14577.91 594.56 18072.25 15493.74 4395.36 50
XVS83.87 8283.47 7385.05 11193.22 6563.78 19092.92 10992.66 11273.99 12278.18 11494.31 8455.25 17597.41 6579.16 10591.58 7593.95 113
X-MVStestdata76.86 19574.13 21585.05 11193.22 6563.78 19092.92 10992.66 11273.99 12278.18 11410.19 36255.25 17597.41 6579.16 10591.58 7593.95 113
EI-MVSNet-Vis-set83.77 8483.67 7084.06 14092.79 8163.56 20091.76 15494.81 2579.65 4677.87 11694.09 8863.35 9397.90 4379.35 10379.36 16690.74 184
Vis-MVSNetpermissive80.92 12879.98 12883.74 14588.48 17661.80 22993.44 9088.26 27373.96 12577.73 11791.76 13649.94 22794.76 17165.84 21490.37 9094.65 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
abl_679.82 14679.20 14481.70 19789.85 14758.34 27888.47 24890.07 21062.56 28177.71 11893.08 10547.65 25096.78 10477.94 11885.45 12789.99 193
DWT-MVSNet_test83.95 8082.80 8987.41 3492.90 7570.07 3089.12 23794.42 4282.15 2077.64 11991.77 13570.81 3096.22 11865.03 22381.36 15695.94 35
CSCG86.87 3586.26 4188.72 1295.05 3070.79 2293.83 7795.33 1168.48 23877.63 12094.35 8173.04 2098.45 2584.92 6293.71 4596.92 9
TESTMET0.1,182.41 10381.98 10183.72 14888.08 18763.74 19292.70 11693.77 6279.30 4977.61 12187.57 19058.19 14194.08 19873.91 14286.68 11993.33 130
tpm279.80 14777.95 16085.34 10588.28 18268.26 6981.56 30191.42 16170.11 21677.59 12280.50 27367.40 4694.26 19367.34 19777.35 18793.51 125
CP-MVS83.71 8683.40 7884.65 12593.14 7063.84 18894.59 4692.28 12371.03 20477.41 12394.92 6255.21 17896.19 11981.32 9290.70 8693.91 115
ab-mvs80.18 13878.31 15385.80 8788.44 17865.49 14783.00 29392.67 11171.82 18277.36 12485.01 21554.50 18496.59 10976.35 12875.63 19895.32 53
test22289.77 14961.60 23389.55 22589.42 23356.83 31677.28 12592.43 12452.76 20391.14 8393.09 138
PGM-MVS83.25 9082.70 9284.92 11592.81 8064.07 18690.44 20292.20 13171.28 19977.23 12694.43 7555.17 17997.31 7279.33 10491.38 7893.37 127
gg-mvs-nofinetune77.18 19374.31 21085.80 8791.42 11968.36 6571.78 33294.72 2949.61 33477.12 12745.92 35077.41 693.98 20667.62 19593.16 5295.05 70
HPM-MVScopyleft83.25 9082.95 8684.17 13892.25 9162.88 21590.91 18891.86 14270.30 21577.12 12793.96 9256.75 15996.28 11682.04 8391.34 8093.34 128
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu83.97 7983.50 7285.39 10390.02 14466.59 11893.77 7891.73 14777.43 7977.08 12989.81 16463.77 8696.97 9579.67 10188.21 10392.60 150
DeepC-MVS77.85 385.52 5385.24 5586.37 6988.80 17166.64 11592.15 13293.68 6881.07 3376.91 13093.64 9662.59 10198.44 2685.50 5792.84 5794.03 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set83.14 9282.96 8583.67 15092.28 9063.19 20691.38 17194.68 3179.22 5176.60 13193.75 9462.64 10097.76 4978.07 11778.01 17790.05 192
EPNet_dtu78.80 16479.26 14377.43 27188.06 18849.71 33091.96 14591.95 13977.67 7476.56 13291.28 14158.51 13990.20 29156.37 26680.95 15992.39 154
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon82.73 9881.65 10585.98 7997.31 467.06 10295.15 3491.99 13769.08 23176.50 13393.89 9354.48 18798.20 3270.76 16885.66 12592.69 147
Anonymous20240521177.96 18175.33 19785.87 8493.73 5564.52 16894.85 4385.36 30062.52 28276.11 13490.18 15829.43 33097.29 7368.51 18877.24 19095.81 40
tpmrst80.57 13179.14 14684.84 11990.10 14368.28 6881.70 29989.72 22677.63 7575.96 13579.54 28664.94 7292.71 24075.43 13077.28 18993.55 124
thisisatest051583.41 8882.49 9586.16 7589.46 15768.26 6993.54 8694.70 3074.31 11675.75 13690.92 14372.62 2396.52 11369.64 17581.50 15493.71 120
CHOSEN 1792x268884.98 6183.45 7489.57 989.94 14675.14 592.07 13892.32 12281.87 2475.68 13788.27 17860.18 11998.60 2180.46 9890.27 9194.96 74
test-LLR80.10 14079.56 13581.72 19586.93 21061.17 23792.70 11691.54 15571.51 19675.62 13886.94 19753.83 19292.38 25472.21 15584.76 13291.60 168
test-mter79.96 14379.38 14181.72 19586.93 21061.17 23792.70 11691.54 15573.85 12775.62 13886.94 19749.84 22992.38 25472.21 15584.76 13291.60 168
mPP-MVS82.96 9682.44 9684.52 12992.83 7662.92 21392.76 11291.85 14371.52 19575.61 14094.24 8653.48 19996.99 9378.97 10890.73 8593.64 123
MVS_111021_LR82.02 11181.52 10683.51 15488.42 17962.88 21589.77 22288.93 25376.78 8675.55 14193.10 10350.31 22395.38 15783.82 7187.02 11292.26 162
API-MVS82.28 10580.53 12187.54 3196.13 2070.59 2493.63 8291.04 17965.72 25875.45 14292.83 11656.11 16898.89 1564.10 22889.75 9593.15 136
Fast-Effi-MVS+81.14 12280.01 12684.51 13090.24 14165.86 13594.12 5789.15 24473.81 12975.37 14388.26 17957.26 14894.53 18366.97 20184.92 12993.15 136
nrg03080.93 12779.86 12984.13 13983.69 25968.83 5593.23 9691.20 16875.55 9775.06 14488.22 18263.04 9894.74 17381.88 8466.88 25188.82 204
baseline181.84 11481.03 11484.28 13791.60 11266.62 11691.08 18591.66 15281.87 2474.86 14591.67 13969.98 3294.92 16971.76 16164.75 26791.29 179
HPM-MVS_fast80.25 13779.55 13782.33 17691.55 11559.95 26091.32 17589.16 24365.23 26274.71 14693.07 10747.81 24895.74 13774.87 14088.23 10291.31 178
TR-MVS78.77 16677.37 17382.95 16190.49 13660.88 24393.67 8090.07 21070.08 21774.51 14791.37 14045.69 26095.70 14360.12 25380.32 16192.29 158
AUN-MVS78.37 17477.43 16981.17 20786.60 21357.45 29089.46 22991.16 17074.11 12074.40 14890.49 15255.52 17494.57 17874.73 14160.43 30491.48 171
HQP-NCC87.54 19794.06 6079.80 4274.18 149
ACMP_Plane87.54 19794.06 6079.80 4274.18 149
HQP4-MVS74.18 14995.61 14688.63 206
HQP-MVS81.14 12280.64 11982.64 16887.54 19763.66 19794.06 6091.70 15079.80 4274.18 14990.30 15651.63 21395.61 14677.63 12078.90 17088.63 206
PAPM_NR82.97 9581.84 10286.37 6994.10 4666.76 11387.66 25992.84 10569.96 21874.07 15393.57 9863.10 9797.50 6170.66 17090.58 8894.85 76
VPA-MVSNet79.03 15878.00 15882.11 18985.95 22464.48 17193.22 9794.66 3275.05 10874.04 15484.95 21752.17 20893.52 21874.90 13967.04 25088.32 214
CDS-MVSNet81.43 11880.74 11683.52 15386.26 21964.45 17292.09 13690.65 18975.83 9573.95 15589.81 16463.97 8292.91 23371.27 16482.82 14593.20 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm78.58 17177.03 17583.22 15885.94 22664.56 16783.21 29191.14 17378.31 6573.67 15679.68 28464.01 8192.09 26366.07 21271.26 22593.03 140
BH-RMVSNet79.46 15477.65 16584.89 11691.68 11165.66 14093.55 8588.09 27572.93 14773.37 15791.12 14246.20 25996.12 12256.28 26785.61 12692.91 144
thres20079.66 14878.33 15283.66 15192.54 8565.82 13893.06 10096.31 374.90 11073.30 15888.66 17159.67 12795.61 14647.84 29878.67 17389.56 199
Anonymous2024052976.84 19774.15 21484.88 11791.02 12664.95 16393.84 7691.09 17553.57 32473.00 15987.42 19235.91 30997.32 7169.14 18372.41 21792.36 155
CPTT-MVS79.59 15079.16 14580.89 22091.54 11659.80 26292.10 13588.54 26660.42 29572.96 16093.28 10248.27 24292.80 23778.89 11086.50 12190.06 191
HyFIR lowres test81.03 12679.56 13585.43 10187.81 19468.11 7390.18 21190.01 21570.65 21272.95 16186.06 20663.61 8994.50 18575.01 13679.75 16493.67 121
EPP-MVSNet81.79 11581.52 10682.61 16988.77 17260.21 25793.02 10493.66 7068.52 23772.90 16290.39 15472.19 2694.96 16674.93 13779.29 16892.67 148
MDTV_nov1_ep13_2view59.90 26180.13 31367.65 24372.79 16354.33 18959.83 25492.58 151
mvs-test178.74 16777.95 16081.14 20983.22 26457.13 29393.96 6587.78 27975.42 9972.68 16490.80 14645.08 26494.54 18275.08 13477.49 18591.74 167
TAMVS80.37 13579.45 13883.13 16085.14 23663.37 20191.23 17890.76 18574.81 11172.65 16588.49 17360.63 11592.95 22869.41 17981.95 15193.08 139
VPNet78.82 16377.53 16882.70 16684.52 24666.44 12093.93 6892.23 12680.46 3872.60 16688.38 17649.18 23593.13 22472.47 15363.97 27588.55 208
CLD-MVS82.73 9882.35 9883.86 14387.90 19367.65 8595.45 2692.18 13385.06 772.58 16792.27 12852.46 20695.78 13584.18 6679.06 16988.16 216
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP_MVS80.34 13679.75 13182.12 18686.94 20862.42 22093.13 9891.31 16478.81 6072.53 16889.14 16950.66 22095.55 15276.74 12378.53 17588.39 212
plane_prior361.95 22879.09 5572.53 168
EPMVS78.49 17375.98 19086.02 7891.21 12469.68 4080.23 31191.20 16875.25 10572.48 17078.11 29454.65 18393.69 21557.66 26383.04 14394.69 80
1112_ss80.56 13279.83 13082.77 16488.65 17360.78 24592.29 12888.36 26872.58 15472.46 17194.95 5865.09 6993.42 22166.38 20877.71 17994.10 105
PVSNet73.49 880.05 14178.63 14984.31 13590.92 12964.97 16292.47 12691.05 17879.18 5272.43 17290.51 15137.05 30594.06 20068.06 19086.00 12393.90 117
OMC-MVS78.67 17077.91 16280.95 21885.76 22857.40 29188.49 24788.67 26173.85 12772.43 17292.10 13049.29 23494.55 18172.73 14977.89 17890.91 183
MVS84.66 6682.86 8890.06 290.93 12874.56 687.91 25595.54 968.55 23672.35 17494.71 6959.78 12698.90 1481.29 9394.69 2896.74 10
EI-MVSNet78.97 16078.22 15581.25 20585.33 23262.73 21889.53 22793.21 8872.39 16172.14 17590.13 16060.99 11194.72 17467.73 19472.49 21586.29 245
MVSTER82.47 10282.05 9983.74 14592.68 8369.01 5191.90 14693.21 8879.83 4172.14 17585.71 21074.72 1394.72 17475.72 12972.49 21587.50 221
RRT_MVS77.38 19076.59 18279.77 24190.91 13063.61 19991.15 18390.91 18272.28 16472.06 17787.28 19543.92 26989.04 30073.32 14367.47 24886.67 236
OPM-MVS79.00 15978.09 15681.73 19483.52 26263.83 18991.64 16090.30 20176.36 9171.97 17889.93 16346.30 25895.17 16275.10 13377.70 18086.19 248
Test_1112_low_res79.56 15178.60 15082.43 17288.24 18560.39 25492.09 13687.99 27772.10 17171.84 17987.42 19264.62 7593.04 22565.80 21577.30 18893.85 119
MDTV_nov1_ep1372.61 23289.06 16568.48 6280.33 30990.11 20971.84 18171.81 18075.92 31353.01 20293.92 20948.04 29573.38 207
tfpn200view978.79 16577.43 16982.88 16292.21 9364.49 16992.05 13996.28 473.48 13771.75 18188.26 17960.07 12295.32 15845.16 30877.58 18288.83 202
thres40078.68 16877.43 16982.43 17292.21 9364.49 16992.05 13996.28 473.48 13771.75 18188.26 17960.07 12295.32 15845.16 30877.58 18287.48 222
ACMMPcopyleft81.49 11780.67 11883.93 14291.71 11062.90 21492.13 13392.22 13071.79 18371.68 18393.49 10050.32 22296.96 9678.47 11384.22 14191.93 165
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CHOSEN 280x42077.35 19176.95 17878.55 25887.07 20762.68 21969.71 33782.95 32168.80 23371.48 18487.27 19666.03 5984.00 33076.47 12682.81 14688.95 201
IS-MVSNet80.14 13979.41 13982.33 17687.91 19260.08 25991.97 14488.27 27172.90 14971.44 18591.73 13861.44 10893.66 21662.47 24086.53 12093.24 133
PatchmatchNetpermissive77.46 18874.63 20385.96 8089.55 15570.35 2779.97 31589.55 22972.23 16670.94 18676.91 30557.03 15292.79 23854.27 27381.17 15794.74 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053081.15 12180.07 12484.39 13388.26 18365.63 14291.40 16794.62 3471.27 20070.93 18789.18 16772.47 2496.04 12865.62 21776.89 19291.49 170
test_part179.63 14977.86 16384.93 11492.50 8671.43 1594.15 5591.08 17672.51 15670.66 18884.98 21659.84 12495.07 16372.07 15862.94 27988.30 215
AdaColmapbinary78.94 16177.00 17784.76 12096.34 1665.86 13592.66 12087.97 27862.18 28470.56 18992.37 12643.53 27197.35 6964.50 22682.86 14491.05 182
cascas78.18 17775.77 19385.41 10287.14 20669.11 4892.96 10691.15 17266.71 25070.47 19086.07 20537.49 29996.48 11470.15 17379.80 16390.65 185
thres600view778.00 17976.66 18182.03 19191.93 10163.69 19591.30 17696.33 172.43 15970.46 19187.89 18660.31 11794.92 16942.64 32076.64 19387.48 222
thres100view90078.37 17477.01 17682.46 17191.89 10463.21 20591.19 18296.33 172.28 16470.45 19287.89 18660.31 11795.32 15845.16 30877.58 18288.83 202
CVMVSNet74.04 23274.27 21173.33 30285.33 23243.94 34589.53 22788.39 26754.33 32370.37 19390.13 16049.17 23684.05 32861.83 24479.36 16691.99 164
GA-MVS78.33 17676.23 18784.65 12583.65 26066.30 12491.44 16490.14 20876.01 9370.32 19484.02 22642.50 27494.72 17470.98 16577.00 19192.94 143
mvs_anonymous81.36 11979.99 12785.46 9990.39 13968.40 6486.88 26990.61 19074.41 11370.31 19584.67 22063.79 8592.32 25873.13 14485.70 12495.67 41
IB-MVS77.80 482.18 10680.46 12387.35 3689.14 16470.28 2895.59 2595.17 1478.85 5870.19 19685.82 20870.66 3197.67 5172.19 15766.52 25494.09 106
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAPA-MVS70.22 1274.94 22673.53 22279.17 25290.40 13852.07 31889.19 23589.61 22862.69 28070.07 19792.67 11848.89 24094.32 18838.26 33479.97 16291.12 181
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SCA75.82 21472.76 22985.01 11386.63 21270.08 2981.06 30589.19 24171.60 19270.01 19877.09 30345.53 26190.25 28660.43 25073.27 20894.68 81
XXY-MVS77.94 18276.44 18482.43 17282.60 27064.44 17392.01 14191.83 14473.59 13570.00 19985.82 20854.43 18894.76 17169.63 17668.02 24488.10 217
CR-MVSNet73.79 23670.82 24882.70 16683.15 26667.96 7670.25 33484.00 31373.67 13469.97 20072.41 32457.82 14489.48 29752.99 27973.13 20990.64 186
RPMNet70.42 25965.68 27584.63 12783.15 26667.96 7670.25 33490.45 19146.83 34269.97 20065.10 34156.48 16595.30 16135.79 33973.13 20990.64 186
UniMVSNet (Re)77.58 18776.78 17979.98 23484.11 25460.80 24491.76 15493.17 9376.56 8969.93 20284.78 21963.32 9492.36 25664.89 22462.51 28486.78 235
bset_n11_16_dypcd75.95 21274.16 21381.30 20476.91 32365.14 15588.89 24087.48 28274.30 11769.90 20383.40 23342.16 27792.42 25278.39 11466.03 25586.32 244
PCF-MVS73.15 979.29 15577.63 16684.29 13686.06 22265.96 13387.03 26591.10 17469.86 22069.79 20490.64 14757.54 14796.59 10964.37 22782.29 14790.32 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v2v48277.42 18975.65 19582.73 16580.38 28767.13 10191.85 14990.23 20575.09 10769.37 20583.39 23453.79 19494.44 18671.77 16065.00 26486.63 240
PatchT69.11 26865.37 27980.32 22582.07 27463.68 19667.96 34387.62 28150.86 33169.37 20565.18 34057.09 15088.53 30441.59 32366.60 25388.74 205
Vis-MVSNet (Re-imp)79.24 15679.57 13478.24 26388.46 17752.29 31790.41 20489.12 24674.24 11869.13 20791.91 13365.77 6390.09 29359.00 25988.09 10592.33 156
BH-w/o80.49 13479.30 14284.05 14190.83 13364.36 17993.60 8389.42 23374.35 11569.09 20890.15 15955.23 17795.61 14664.61 22586.43 12292.17 163
baseline283.68 8783.42 7784.48 13187.37 20266.00 13190.06 21495.93 779.71 4569.08 20990.39 15477.92 496.28 11678.91 10981.38 15591.16 180
v114476.73 20074.88 20082.27 17880.23 29266.60 11791.68 15890.21 20773.69 13269.06 21081.89 24852.73 20494.40 18769.21 18265.23 26185.80 259
Baseline_NR-MVSNet73.99 23372.83 22877.48 27080.78 28259.29 27091.79 15184.55 30868.85 23268.99 21180.70 26956.16 16692.04 26462.67 23860.98 29981.11 312
FIs79.47 15379.41 13979.67 24385.95 22459.40 26791.68 15893.94 5778.06 6968.96 21288.28 17766.61 5591.77 26966.20 21174.99 19987.82 218
UniMVSNet_NR-MVSNet78.15 17877.55 16779.98 23484.46 24860.26 25592.25 12993.20 9077.50 7768.88 21386.61 19966.10 5892.13 26166.38 20862.55 28287.54 220
DU-MVS76.86 19575.84 19279.91 23682.96 26860.26 25591.26 17791.54 15576.46 9068.88 21386.35 20156.16 16692.13 26166.38 20862.55 28287.35 226
RRT_test8_iter0580.61 13079.62 13383.60 15291.87 10766.90 10893.42 9393.68 6877.09 8268.83 21585.63 21166.82 5295.42 15576.46 12762.74 28188.48 209
miper_enhance_ethall78.86 16277.97 15981.54 19988.00 19165.17 15291.41 16589.15 24475.19 10668.79 21683.98 22767.17 4892.82 23572.73 14965.30 25886.62 241
XVG-OURS-SEG-HR74.70 22873.08 22679.57 24678.25 31457.33 29280.49 30787.32 28463.22 27468.76 21790.12 16244.89 26691.59 27270.55 17174.09 20389.79 194
XVG-OURS74.25 23172.46 23579.63 24478.45 31357.59 28780.33 30987.39 28363.86 26968.76 21789.62 16640.50 28191.72 27069.00 18474.25 20189.58 197
V4276.46 20274.55 20682.19 18279.14 30467.82 8090.26 20989.42 23373.75 13068.63 21981.89 24851.31 21594.09 19771.69 16264.84 26584.66 275
PS-MVSNAJss77.26 19276.31 18680.13 23180.64 28559.16 27190.63 20191.06 17772.80 15068.58 22084.57 22253.55 19693.96 20772.97 14571.96 21987.27 229
v119275.98 21073.92 21882.15 18379.73 29466.24 12791.22 17989.75 22172.67 15268.49 22181.42 25849.86 22894.27 19167.08 19965.02 26385.95 256
tpm cat175.30 22172.21 23784.58 12888.52 17467.77 8178.16 32488.02 27661.88 28868.45 22276.37 30960.65 11494.03 20453.77 27674.11 20291.93 165
v14419276.05 20874.03 21682.12 18679.50 29866.55 11991.39 16989.71 22772.30 16368.17 22381.33 26051.75 21194.03 20467.94 19164.19 27185.77 260
v192192075.63 21873.49 22382.06 19079.38 29966.35 12291.07 18789.48 23071.98 17267.99 22481.22 26349.16 23793.90 21066.56 20464.56 27085.92 258
Effi-MVS+-dtu76.14 20475.28 19878.72 25783.22 26455.17 30589.87 22087.78 27975.42 9967.98 22581.43 25745.08 26492.52 24975.08 13471.63 22088.48 209
114514_t79.17 15777.67 16483.68 14995.32 2665.53 14592.85 11191.60 15463.49 27167.92 22690.63 14946.65 25495.72 14267.01 20083.54 14289.79 194
tttt051779.50 15278.53 15182.41 17587.22 20461.43 23689.75 22394.76 2769.29 22667.91 22788.06 18472.92 2195.63 14462.91 23673.90 20690.16 190
3Dnovator73.91 682.69 10180.82 11588.31 1989.57 15371.26 1792.60 12194.39 4678.84 5967.89 22892.48 12348.42 24198.52 2268.80 18794.40 3395.15 65
WR-MVS76.76 19975.74 19479.82 23984.60 24462.27 22592.60 12192.51 11976.06 9267.87 22985.34 21256.76 15890.24 28962.20 24163.69 27786.94 233
dp75.01 22572.09 23883.76 14489.28 16066.22 12879.96 31689.75 22171.16 20167.80 23077.19 30251.81 21092.54 24850.39 28471.44 22492.51 153
TranMVSNet+NR-MVSNet75.86 21374.52 20779.89 23782.44 27160.64 25191.37 17291.37 16376.63 8767.65 23186.21 20452.37 20791.55 27361.84 24360.81 30087.48 222
cl-mvsnet277.94 18276.78 17981.42 20187.57 19664.93 16490.67 19788.86 25672.45 15867.63 23282.68 24064.07 8092.91 23371.79 15965.30 25886.44 242
131480.70 12978.95 14785.94 8187.77 19567.56 8687.91 25592.55 11872.17 16967.44 23393.09 10450.27 22497.04 8771.68 16387.64 10893.23 134
3Dnovator+73.60 782.10 11080.60 12086.60 5790.89 13166.80 11295.20 3293.44 8174.05 12167.42 23492.49 12249.46 23197.65 5570.80 16791.68 7395.33 51
v124075.21 22372.98 22781.88 19279.20 30166.00 13190.75 19689.11 24771.63 19167.41 23581.22 26347.36 25193.87 21165.46 22064.72 26885.77 260
QAPM79.95 14477.39 17287.64 2689.63 15271.41 1693.30 9493.70 6765.34 26167.39 23691.75 13747.83 24798.96 1257.71 26289.81 9292.54 152
miper_ehance_all_eth77.60 18676.44 18481.09 21585.70 22964.41 17690.65 19888.64 26372.31 16267.37 23782.52 24164.77 7492.64 24670.67 16965.30 25886.24 247
v14876.19 20374.47 20881.36 20280.05 29364.44 17391.75 15690.23 20573.68 13367.13 23880.84 26855.92 17293.86 21368.95 18561.73 29385.76 262
GBi-Net75.65 21673.83 21981.10 21288.85 16865.11 15690.01 21690.32 19770.84 20767.04 23980.25 27848.03 24391.54 27459.80 25569.34 23386.64 237
test175.65 21673.83 21981.10 21288.85 16865.11 15690.01 21690.32 19770.84 20767.04 23980.25 27848.03 24391.54 27459.80 25569.34 23386.64 237
FMVSNet377.73 18576.04 18982.80 16391.20 12568.99 5291.87 14791.99 13773.35 13967.04 23983.19 23656.62 16292.14 26059.80 25569.34 23387.28 228
BH-untuned78.68 16877.08 17483.48 15689.84 14863.74 19292.70 11688.59 26471.57 19366.83 24288.65 17251.75 21195.39 15659.03 25884.77 13191.32 177
FC-MVSNet-test77.99 18078.08 15777.70 26684.89 24155.51 30390.27 20893.75 6676.87 8366.80 24387.59 18965.71 6490.23 29062.89 23773.94 20487.37 225
cl_fuxian76.83 19875.47 19680.93 21985.02 23964.18 18590.39 20588.11 27471.66 18666.65 24481.64 25363.58 9192.56 24769.31 18162.86 28086.04 253
MVS_030468.99 27167.23 26874.28 29780.36 28852.54 31587.01 26786.36 28959.89 30166.22 24573.56 32024.25 33988.03 30857.34 26470.11 22882.27 305
FMVSNet276.07 20574.01 21782.26 18088.85 16867.66 8491.33 17491.61 15370.84 20765.98 24682.25 24448.03 24392.00 26558.46 26068.73 23987.10 230
eth_miper_zixun_eth75.96 21174.40 20980.66 22184.66 24363.02 20889.28 23288.27 27171.88 17765.73 24781.65 25259.45 12992.81 23668.13 18960.53 30286.14 249
ACMM69.62 1374.34 22972.73 23079.17 25284.25 25357.87 28290.36 20689.93 21663.17 27565.64 24886.04 20737.79 29794.10 19665.89 21371.52 22285.55 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl-mvsnet_76.07 20574.67 20180.28 22785.15 23561.76 23090.12 21288.73 25971.16 20165.43 24981.57 25561.15 10992.95 22866.54 20562.17 28686.13 251
cl-mvsnet176.07 20574.67 20180.28 22785.14 23661.75 23190.12 21288.73 25971.16 20165.42 25081.60 25461.15 10992.94 23266.54 20562.16 28886.14 249
Fast-Effi-MVS+-dtu75.04 22473.37 22480.07 23280.86 28159.52 26691.20 18185.38 29971.90 17565.20 25184.84 21841.46 27892.97 22766.50 20772.96 21187.73 219
IterMVS-LS76.49 20175.18 19980.43 22484.49 24762.74 21790.64 19988.80 25772.40 16065.16 25281.72 25160.98 11292.27 25967.74 19364.65 26986.29 245
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LPG-MVS_test75.82 21474.58 20579.56 24784.31 25159.37 26890.44 20289.73 22469.49 22364.86 25388.42 17438.65 28794.30 18972.56 15172.76 21285.01 272
LGP-MVS_train79.56 24784.31 25159.37 26889.73 22469.49 22364.86 25388.42 17438.65 28794.30 18972.56 15172.76 21285.01 272
UniMVSNet_ETH3D72.74 24670.53 24979.36 24978.62 31256.64 29685.01 27689.20 24063.77 27064.84 25584.44 22334.05 31491.86 26763.94 22970.89 22789.57 198
MIMVSNet71.64 25268.44 26181.23 20681.97 27564.44 17373.05 33188.80 25769.67 22264.59 25674.79 31732.79 31787.82 31053.99 27476.35 19591.42 172
OpenMVScopyleft70.45 1178.54 17275.92 19186.41 6885.93 22771.68 1492.74 11392.51 11966.49 25264.56 25791.96 13243.88 27098.10 3554.61 27190.65 8789.44 200
ADS-MVSNet266.90 28663.44 29177.26 27588.06 18860.70 24968.01 34175.56 33757.57 30964.48 25869.87 33338.68 28584.10 32740.87 32567.89 24586.97 231
ADS-MVSNet68.54 27464.38 28781.03 21688.06 18866.90 10868.01 34184.02 31257.57 30964.48 25869.87 33338.68 28589.21 29940.87 32567.89 24586.97 231
Anonymous2023121173.08 23970.39 25081.13 21090.62 13563.33 20291.40 16790.06 21351.84 32864.46 26080.67 27136.49 30794.07 19963.83 23064.17 27285.98 255
PLCcopyleft68.80 1475.23 22273.68 22179.86 23892.93 7458.68 27590.64 19988.30 26960.90 29264.43 26190.53 15042.38 27594.57 17856.52 26576.54 19486.33 243
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpmvs72.88 24469.76 25682.22 18190.98 12767.05 10378.22 32388.30 26963.10 27664.35 26274.98 31655.09 18094.27 19143.25 31469.57 23285.34 269
test_djsdf73.76 23772.56 23377.39 27277.00 32253.93 31089.07 23890.69 18665.80 25663.92 26382.03 24743.14 27392.67 24372.83 14768.53 24085.57 264
JIA-IIPM66.06 29062.45 29776.88 28081.42 27954.45 30957.49 35288.67 26149.36 33563.86 26446.86 34956.06 16990.25 28649.53 28868.83 23785.95 256
CNLPA74.31 23072.30 23680.32 22591.49 11861.66 23290.85 19280.72 32756.67 31763.85 26590.64 14746.75 25390.84 28153.79 27575.99 19788.47 211
PatchMatch-RL72.06 25069.98 25178.28 26189.51 15655.70 30283.49 28583.39 31961.24 29163.72 26682.76 23834.77 31293.03 22653.37 27877.59 18186.12 252
FMVSNet172.71 24769.91 25481.10 21283.60 26165.11 15690.01 21690.32 19763.92 26863.56 26780.25 27836.35 30891.54 27454.46 27266.75 25286.64 237
pmmvs473.92 23471.81 24180.25 22979.17 30265.24 15087.43 26287.26 28667.64 24463.46 26883.91 22848.96 23991.53 27762.94 23565.49 25783.96 279
pmmvs573.35 23871.52 24378.86 25678.64 31160.61 25291.08 18586.90 28767.69 24163.32 26983.64 22944.33 26890.53 28362.04 24266.02 25685.46 266
v875.35 22073.26 22581.61 19880.67 28466.82 11089.54 22689.27 23771.65 18763.30 27080.30 27754.99 18194.06 20067.33 19862.33 28583.94 280
v1074.77 22772.54 23481.46 20080.33 29066.71 11489.15 23689.08 24870.94 20563.08 27179.86 28252.52 20594.04 20365.70 21662.17 28683.64 282
ACMP71.68 1075.58 21974.23 21279.62 24584.97 24059.64 26390.80 19489.07 24970.39 21462.95 27287.30 19438.28 29093.87 21172.89 14671.45 22385.36 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pm-mvs172.89 24371.09 24678.26 26279.10 30557.62 28690.80 19489.30 23667.66 24262.91 27381.78 25049.11 23892.95 22860.29 25258.89 31084.22 278
jajsoiax73.05 24071.51 24477.67 26777.46 31954.83 30688.81 24290.04 21469.13 23062.85 27483.51 23131.16 32592.75 23970.83 16669.80 22985.43 267
mvs_tets72.71 24771.11 24577.52 26877.41 32054.52 30888.45 24989.76 22068.76 23562.70 27583.26 23529.49 32992.71 24070.51 17269.62 23185.34 269
MS-PatchMatch77.90 18476.50 18382.12 18685.99 22369.95 3491.75 15692.70 10973.97 12462.58 27684.44 22341.11 27995.78 13563.76 23192.17 6780.62 318
test0.0.03 172.76 24572.71 23172.88 30680.25 29147.99 33691.22 17989.45 23171.51 19662.51 27787.66 18853.83 19285.06 32550.16 28567.84 24785.58 263
anonymousdsp71.14 25569.37 25776.45 28272.95 33454.71 30784.19 28088.88 25461.92 28762.15 27879.77 28338.14 29291.44 27968.90 18667.45 24983.21 291
MVP-Stereo77.12 19476.23 18779.79 24081.72 27666.34 12389.29 23190.88 18370.56 21362.01 27982.88 23749.34 23294.13 19565.55 21993.80 4178.88 331
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CL-MVSNet_2432*160069.92 26268.09 26475.41 28873.25 33355.90 30190.05 21589.90 21769.96 21861.96 28076.54 30651.05 21887.64 31249.51 28950.59 33182.70 299
miper_lstm_enhance73.05 24071.73 24277.03 27683.80 25758.32 27981.76 29788.88 25469.80 22161.01 28178.23 29357.19 14987.51 31565.34 22159.53 30785.27 271
NR-MVSNet76.05 20874.59 20480.44 22382.96 26862.18 22690.83 19391.73 14777.12 8160.96 28286.35 20159.28 13391.80 26860.74 24861.34 29787.35 226
tfpnnormal70.10 26067.36 26678.32 26083.45 26360.97 24288.85 24192.77 10764.85 26360.83 28378.53 29043.52 27293.48 21931.73 34961.70 29480.52 319
IterMVS72.65 24970.83 24778.09 26482.17 27262.96 21087.64 26086.28 29171.56 19460.44 28478.85 28945.42 26386.66 31963.30 23361.83 29084.65 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H70.59 25769.94 25372.53 30881.03 28051.43 32187.35 26392.03 13667.38 24560.23 28580.70 26955.84 17383.45 33446.33 30458.58 31282.72 297
TransMVSNet (Re)70.07 26167.66 26577.31 27480.62 28659.13 27291.78 15384.94 30465.97 25560.08 28680.44 27450.78 21991.87 26648.84 29145.46 33880.94 314
CP-MVSNet70.50 25869.91 25472.26 31180.71 28351.00 32487.23 26490.30 20167.84 23959.64 28782.69 23950.23 22582.30 34251.28 28159.28 30883.46 287
IterMVS-SCA-FT71.55 25369.97 25276.32 28381.48 27760.67 25087.64 26085.99 29566.17 25459.50 28878.88 28845.53 26183.65 33262.58 23961.93 28984.63 277
Patchmtry67.53 28363.93 28878.34 25982.12 27364.38 17768.72 33884.00 31348.23 33959.24 28972.41 32457.82 14489.27 29846.10 30556.68 31781.36 311
D2MVS73.80 23572.02 23979.15 25479.15 30362.97 20988.58 24690.07 21072.94 14659.22 29078.30 29142.31 27692.70 24265.59 21872.00 21881.79 309
PS-CasMVS69.86 26469.13 25872.07 31480.35 28950.57 32687.02 26689.75 22167.27 24659.19 29182.28 24346.58 25582.24 34350.69 28359.02 30983.39 289
PEN-MVS69.46 26668.56 26072.17 31379.27 30049.71 33086.90 26889.24 23867.24 24959.08 29282.51 24247.23 25283.54 33348.42 29357.12 31383.25 290
RPSCF64.24 29861.98 30071.01 31876.10 32745.00 34275.83 32875.94 33546.94 34158.96 29384.59 22131.40 32482.00 34447.76 29960.33 30686.04 253
XVG-ACMP-BASELINE68.04 27865.53 27775.56 28774.06 33252.37 31678.43 32085.88 29662.03 28558.91 29481.21 26520.38 34891.15 28060.69 24968.18 24283.16 292
v7n71.31 25468.65 25979.28 25076.40 32560.77 24686.71 27089.45 23164.17 26758.77 29578.24 29244.59 26793.54 21757.76 26161.75 29283.52 285
ET-MVSNet_ETH3D84.01 7883.15 8486.58 5990.78 13470.89 2194.74 4594.62 3481.44 2958.19 29693.64 9673.64 1992.35 25782.66 7878.66 17496.50 19
DTE-MVSNet68.46 27567.33 26771.87 31677.94 31749.00 33386.16 27388.58 26566.36 25358.19 29682.21 24546.36 25683.87 33144.97 31155.17 32082.73 296
Anonymous2023120667.53 28365.78 27372.79 30774.95 32947.59 33888.23 25187.32 28461.75 29058.07 29877.29 30037.79 29787.29 31742.91 31663.71 27683.48 286
KD-MVS_2432*160069.03 26966.37 27177.01 27785.56 23061.06 24081.44 30290.25 20367.27 24658.00 29976.53 30754.49 18587.63 31348.04 29535.77 34982.34 303
miper_refine_blended69.03 26966.37 27177.01 27785.56 23061.06 24081.44 30290.25 20367.27 24658.00 29976.53 30754.49 18587.63 31348.04 29535.77 34982.34 303
PVSNet_068.08 1571.81 25168.32 26382.27 17884.68 24262.31 22488.68 24490.31 20075.84 9457.93 30180.65 27237.85 29694.19 19469.94 17429.05 35390.31 189
DP-MVS69.90 26366.48 26980.14 23095.36 2562.93 21189.56 22476.11 33450.27 33357.69 30285.23 21339.68 28395.73 13833.35 34371.05 22681.78 310
pmmvs667.57 28264.76 28176.00 28672.82 33653.37 31288.71 24386.78 28853.19 32557.58 30378.03 29535.33 31192.41 25355.56 26954.88 32282.21 306
F-COLMAP70.66 25668.44 26177.32 27386.37 21855.91 30088.00 25386.32 29056.94 31557.28 30488.07 18333.58 31592.49 25051.02 28268.37 24183.55 283
Patchmatch-RL test68.17 27764.49 28579.19 25171.22 33853.93 31070.07 33671.54 34669.22 22756.79 30562.89 34356.58 16388.61 30169.53 17852.61 32695.03 73
LS3D69.17 26766.40 27077.50 26991.92 10256.12 29985.12 27580.37 32846.96 34056.50 30687.51 19137.25 30093.71 21432.52 34879.40 16582.68 300
ppachtmachnet_test67.72 28063.70 28979.77 24178.92 30666.04 13088.68 24482.90 32260.11 29955.45 30775.96 31239.19 28490.55 28239.53 32952.55 32782.71 298
LTVRE_ROB59.60 1966.27 28963.54 29074.45 29484.00 25651.55 32067.08 34483.53 31658.78 30654.94 30880.31 27634.54 31393.23 22340.64 32768.03 24378.58 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MSDG69.54 26565.73 27480.96 21785.11 23863.71 19484.19 28083.28 32056.95 31454.50 30984.03 22531.50 32396.03 12942.87 31869.13 23683.14 293
EU-MVSNet64.01 29963.01 29367.02 32874.40 33138.86 35483.27 28986.19 29345.11 34454.27 31081.15 26636.91 30680.01 34748.79 29257.02 31482.19 307
testgi64.48 29762.87 29569.31 32171.24 33740.62 34985.49 27479.92 32965.36 26054.18 31183.49 23223.74 34284.55 32641.60 32260.79 30182.77 295
ITE_SJBPF70.43 31974.44 33047.06 34077.32 33260.16 29854.04 31283.53 23023.30 34384.01 32943.07 31561.58 29680.21 324
OpenMVS_ROBcopyleft61.12 1866.39 28862.92 29476.80 28176.51 32457.77 28389.22 23383.41 31855.48 32153.86 31377.84 29626.28 33893.95 20834.90 34168.76 23878.68 333
FMVSNet568.04 27865.66 27675.18 29084.43 24957.89 28183.54 28486.26 29261.83 28953.64 31473.30 32137.15 30385.08 32448.99 29061.77 29182.56 302
ACMH+65.35 1667.65 28164.55 28376.96 27984.59 24557.10 29488.08 25280.79 32658.59 30853.00 31581.09 26726.63 33792.95 22846.51 30261.69 29580.82 315
our_test_368.29 27664.69 28279.11 25578.92 30664.85 16588.40 25085.06 30260.32 29752.68 31676.12 31140.81 28089.80 29644.25 31355.65 31882.67 301
test_040264.54 29661.09 30274.92 29184.10 25560.75 24787.95 25479.71 33052.03 32752.41 31777.20 30132.21 32191.64 27123.14 35261.03 29872.36 344
LCM-MVSNet-Re72.93 24271.84 24076.18 28588.49 17548.02 33580.07 31470.17 34773.96 12552.25 31880.09 28149.98 22688.24 30667.35 19684.23 14092.28 159
test20.0363.83 30062.65 29667.38 32770.58 34239.94 35086.57 27184.17 31063.29 27351.86 31977.30 29937.09 30482.47 34038.87 33354.13 32479.73 325
OurMVSNet-221017-064.68 29562.17 29972.21 31276.08 32847.35 33980.67 30681.02 32556.19 31851.60 32079.66 28527.05 33688.56 30353.60 27753.63 32580.71 317
ACMH63.93 1768.62 27264.81 28080.03 23385.22 23463.25 20387.72 25884.66 30760.83 29351.57 32179.43 28727.29 33594.96 16641.76 32164.84 26581.88 308
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DSMNet-mixed56.78 31554.44 31863.79 33063.21 35029.44 35864.43 34664.10 35442.12 34851.32 32271.60 32931.76 32275.04 34936.23 33665.20 26286.87 234
pmmvs-eth3d65.53 29362.32 29875.19 28969.39 34459.59 26482.80 29483.43 31762.52 28251.30 32372.49 32232.86 31687.16 31855.32 27050.73 33078.83 332
PM-MVS59.40 31356.59 31467.84 32363.63 34941.86 34676.76 32663.22 35559.01 30551.07 32472.27 32711.72 35683.25 33661.34 24550.28 33278.39 335
Patchmatch-test65.86 29160.94 30380.62 22283.75 25858.83 27358.91 35175.26 33944.50 34650.95 32577.09 30358.81 13887.90 30935.13 34064.03 27395.12 67
SixPastTwentyTwo64.92 29461.78 30174.34 29678.74 30949.76 32983.42 28879.51 33162.86 27750.27 32677.35 29830.92 32790.49 28445.89 30647.06 33682.78 294
EG-PatchMatch MVS68.55 27365.41 27877.96 26578.69 31062.93 21189.86 22189.17 24260.55 29450.27 32677.73 29722.60 34494.06 20047.18 30172.65 21476.88 338
ambc69.61 32061.38 35341.35 34749.07 35585.86 29750.18 32866.40 33810.16 35788.14 30745.73 30744.20 33979.32 329
DIV-MVS_2432*160060.87 30958.60 30967.68 32566.13 34739.93 35175.63 32984.70 30657.32 31249.57 32968.45 33629.55 32882.87 33848.09 29447.94 33580.25 323
UnsupCasMVSNet_eth65.79 29263.10 29273.88 29870.71 34050.29 32881.09 30489.88 21872.58 15449.25 33074.77 31832.57 31987.43 31655.96 26841.04 34483.90 281
COLMAP_ROBcopyleft57.96 2062.98 30459.65 30672.98 30581.44 27853.00 31483.75 28375.53 33848.34 33848.81 33181.40 25924.14 34090.30 28532.95 34560.52 30375.65 341
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC67.43 28564.51 28476.19 28477.94 31755.29 30478.38 32185.00 30373.17 14148.36 33280.37 27521.23 34692.48 25152.15 28064.02 27480.81 316
Anonymous2024052162.09 30559.08 30871.10 31767.19 34648.72 33483.91 28285.23 30150.38 33247.84 33371.22 33220.74 34785.51 32346.47 30358.75 31179.06 330
K. test v363.09 30359.61 30773.53 30176.26 32649.38 33283.27 28977.15 33364.35 26547.77 33472.32 32628.73 33187.79 31149.93 28736.69 34883.41 288
UnsupCasMVSNet_bld61.60 30757.71 31173.29 30368.73 34551.64 31978.61 31989.05 25057.20 31346.11 33561.96 34428.70 33288.60 30250.08 28638.90 34679.63 326
AllTest61.66 30658.06 31072.46 30979.57 29551.42 32280.17 31268.61 34951.25 32945.88 33681.23 26119.86 34986.58 32038.98 33157.01 31579.39 327
TestCases72.46 30979.57 29551.42 32268.61 34951.25 32945.88 33681.23 26119.86 34986.58 32038.98 33157.01 31579.39 327
lessismore_v073.72 30072.93 33547.83 33761.72 35745.86 33873.76 31928.63 33389.81 29447.75 30031.37 35283.53 284
N_pmnet50.55 31949.11 32254.88 33477.17 3214.02 36784.36 2792.00 36648.59 33645.86 33868.82 33532.22 32082.80 33931.58 35051.38 32977.81 336
MVS-HIRNet60.25 31155.55 31774.35 29584.37 25056.57 29771.64 33374.11 34034.44 35145.54 34042.24 35331.11 32689.81 29440.36 32876.10 19676.67 339
CMPMVSbinary48.56 2166.77 28764.41 28673.84 29970.65 34150.31 32777.79 32585.73 29845.54 34344.76 34182.14 24635.40 31090.14 29263.18 23474.54 20081.07 313
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet160.16 31257.33 31368.67 32269.71 34344.13 34478.92 31884.21 30955.05 32244.63 34271.85 32823.91 34181.54 34632.63 34755.03 32180.35 320
LF4IMVS54.01 31852.12 31959.69 33162.41 35239.91 35268.59 33968.28 35142.96 34744.55 34375.18 31514.09 35568.39 35241.36 32451.68 32870.78 345
pmmvs355.51 31651.50 32167.53 32657.90 35550.93 32580.37 30873.66 34140.63 34944.15 34464.75 34216.30 35178.97 34844.77 31240.98 34572.69 343
new-patchmatchnet59.30 31456.48 31567.79 32465.86 34844.19 34382.47 29581.77 32359.94 30043.65 34566.20 33927.67 33481.68 34539.34 33041.40 34377.50 337
TDRefinement55.28 31751.58 32066.39 32959.53 35446.15 34176.23 32772.80 34244.60 34542.49 34676.28 31015.29 35282.39 34133.20 34443.75 34070.62 346
TinyColmap60.32 31056.42 31672.00 31578.78 30853.18 31378.36 32275.64 33652.30 32641.59 34775.82 31414.76 35488.35 30535.84 33754.71 32374.46 342
YYNet163.76 30260.14 30574.62 29378.06 31660.19 25883.46 28783.99 31556.18 31939.25 34871.56 33137.18 30283.34 33542.90 31748.70 33480.32 321
MDA-MVSNet_test_wron63.78 30160.16 30474.64 29278.15 31560.41 25383.49 28584.03 31156.17 32039.17 34971.59 33037.22 30183.24 33742.87 31848.73 33380.26 322
new_pmnet49.31 32046.44 32357.93 33262.84 35140.74 34868.47 34062.96 35636.48 35035.09 35057.81 34614.97 35372.18 35032.86 34646.44 33760.88 350
MDA-MVSNet-bldmvs61.54 30857.70 31273.05 30479.53 29757.00 29583.08 29281.23 32457.57 30934.91 35172.45 32332.79 31786.26 32235.81 33841.95 34275.89 340
FPMVS45.64 32143.10 32453.23 33651.42 35736.46 35564.97 34571.91 34429.13 35327.53 35261.55 3459.83 35865.01 35616.00 35555.58 31958.22 351
LCM-MVSNet40.54 32235.79 32554.76 33536.92 36230.81 35751.41 35369.02 34822.07 35524.63 35345.37 3514.56 36465.81 35433.67 34234.50 35167.67 347
PMMVS237.93 32433.61 32750.92 33746.31 35924.76 36160.55 35050.05 35828.94 35420.93 35447.59 3484.41 36565.13 35525.14 35118.55 35562.87 349
tmp_tt22.26 33023.75 33217.80 3445.23 36612.06 36635.26 35639.48 3612.82 36218.94 35544.20 35222.23 34524.64 36236.30 3359.31 35916.69 356
ANet_high40.27 32335.20 32655.47 33334.74 36334.47 35663.84 34771.56 34548.42 33718.80 35641.08 3549.52 35964.45 35720.18 3538.66 36067.49 348
DeepMVS_CXcopyleft34.71 34151.45 35624.73 36228.48 36531.46 35217.49 35752.75 3475.80 36242.60 36118.18 35419.42 35436.81 353
Gipumacopyleft34.91 32531.44 32845.30 33870.99 33939.64 35319.85 35972.56 34320.10 35716.16 35821.47 3595.08 36371.16 35113.07 35643.70 34125.08 355
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 32628.16 32942.89 33925.87 36527.58 35950.92 35449.78 35921.37 35614.17 35940.81 3552.01 36666.62 3539.61 35838.88 34734.49 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 32819.77 33438.09 34034.56 36426.92 36026.57 35738.87 36211.73 36011.37 36027.44 3561.37 36750.42 35811.41 35714.60 35636.93 352
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 32724.00 33126.45 34243.74 36018.44 36460.86 34839.66 36015.11 3589.53 36122.10 3586.52 36146.94 3598.31 35910.14 35713.98 357
EMVS23.76 32923.20 33325.46 34341.52 36116.90 36560.56 34938.79 36314.62 3598.99 36220.24 3617.35 36045.82 3607.25 3609.46 35813.64 358
wuyk23d11.30 33210.95 33512.33 34548.05 35819.89 36325.89 3581.92 3673.58 3613.12 3631.37 3630.64 36815.77 3636.23 3617.77 3611.35 359
testmvs7.23 3349.62 3370.06 3470.04 3670.02 36984.98 2770.02 3680.03 3630.18 3641.21 3640.01 3700.02 3640.14 3620.01 3620.13 361
test1236.92 3359.21 3380.08 3460.03 3680.05 36881.65 3000.01 3690.02 3640.14 3650.85 3650.03 3690.02 3640.12 3630.00 3630.16 360
uanet_test0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3630.00 362
cdsmvs_eth3d_5k19.86 33126.47 3300.00 3480.00 3690.00 3700.00 36093.45 790.00 3650.00 36695.27 4749.56 2300.00 3660.00 3640.00 3630.00 362
pcd_1.5k_mvsjas4.46 3365.95 3390.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 36653.55 1960.00 3660.00 3640.00 3630.00 362
sosnet-low-res0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3630.00 362
sosnet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3630.00 362
uncertanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3630.00 362
Regformer0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3630.00 362
ab-mvs-re7.91 33310.55 3360.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 36694.95 580.00 3710.00 3660.00 3640.00 3630.00 362
uanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3630.00 362
OPU-MVS89.97 397.52 373.15 1196.89 497.00 983.82 299.15 295.72 197.63 397.62 2
save fliter93.84 4967.89 7895.05 3892.66 11278.19 66
test_0728_SECOND88.70 1396.45 1170.43 2696.64 894.37 4799.15 291.91 1094.90 1996.51 18
GSMVS94.68 81
sam_mvs157.85 14394.68 81
sam_mvs54.91 182
MTGPAbinary92.23 126
test_post178.95 31720.70 36053.05 20191.50 27860.43 250
test_post23.01 35756.49 16492.67 243
patchmatchnet-post67.62 33757.62 14690.25 286
MTMP93.77 7832.52 364
gm-plane-assit88.42 17967.04 10478.62 6391.83 13497.37 6776.57 125
test9_res89.41 2094.96 1695.29 56
agg_prior286.41 5194.75 2695.33 51
test_prior467.18 10093.92 69
test_prior86.42 6694.71 3367.35 9393.10 9796.84 10295.05 70
新几何291.41 165
旧先验191.94 10060.74 24891.50 15894.36 7765.23 6791.84 7094.55 86
无先验92.71 11592.61 11662.03 28597.01 8866.63 20293.97 112
原ACMM292.01 141
testdata296.09 12361.26 246
segment_acmp65.94 60
testdata189.21 23477.55 76
plane_prior786.94 20861.51 234
plane_prior687.23 20362.32 22350.66 220
plane_prior591.31 16495.55 15276.74 12378.53 17588.39 212
plane_prior489.14 169
plane_prior293.13 9878.81 60
plane_prior187.15 205
plane_prior62.42 22093.85 7379.38 4878.80 172
n20.00 370
nn0.00 370
door-mid66.01 353
test1193.01 99
door66.57 352
HQP5-MVS63.66 197
BP-MVS77.63 120
HQP3-MVS91.70 15078.90 170
HQP2-MVS51.63 213
NP-MVS87.41 20063.04 20790.30 156
ACMMP++_ref71.63 220
ACMMP++69.72 230
Test By Simon54.21 190