IU-MVS | | | | | | 96.46 10 | 69.91 35 | | 95.18 13 | 80.75 35 | 95.28 1 | | | | 92.34 6 | 95.36 12 | 96.47 20 |
|
MSP-MVS | | | 90.38 3 | 91.87 1 | 85.88 82 | 92.83 76 | 64.03 187 | 93.06 100 | 94.33 48 | 82.19 19 | 93.65 2 | 96.15 27 | 85.89 1 | 97.19 79 | 91.02 15 | 97.75 1 | 96.43 22 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SED-MVS | | | 89.94 7 | 90.36 7 | 88.70 13 | 96.45 11 | 69.38 43 | 96.89 4 | 94.44 40 | 71.65 187 | 92.11 3 | 97.21 5 | 76.79 7 | 99.11 4 | 92.34 6 | 95.36 12 | 97.62 2 |
|
test_241102_ONE | | | | | | 96.45 11 | 69.38 43 | | 94.44 40 | 71.65 187 | 92.11 3 | 97.05 8 | 76.79 7 | 99.11 4 | | | |
|
test_241102_TWO | | | | | | | | | 94.41 43 | 71.65 187 | 92.07 5 | 97.21 5 | 74.58 14 | 99.11 4 | 92.34 6 | 95.36 12 | 96.59 13 |
|
test0726 | | | | | | 96.40 14 | 69.99 31 | 96.76 6 | 94.33 48 | 71.92 173 | 91.89 6 | 97.11 7 | 73.77 17 | | | | |
|
SMA-MVS |  | | 88.14 14 | 88.29 17 | 87.67 25 | 93.21 67 | 68.72 58 | 93.85 73 | 94.03 56 | 74.18 119 | 91.74 7 | 96.67 13 | 65.61 65 | 98.42 28 | 89.24 24 | 96.08 5 | 95.88 39 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPM-MVS | | | 90.70 2 | 90.52 5 | 91.24 1 | 89.68 151 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 8 | 97.22 4 | 79.93 3 | 99.10 7 | 83.12 74 | 97.64 2 | 97.94 1 |
|
TSAR-MVS + MP. | | | 88.11 16 | 88.64 14 | 86.54 61 | 91.73 109 | 68.04 74 | 90.36 206 | 93.55 74 | 82.89 13 | 91.29 9 | 92.89 113 | 72.27 25 | 96.03 129 | 87.99 35 | 94.77 23 | 95.54 46 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
test_part2 | | | | | | 96.29 17 | 68.16 72 | | | | 90.78 10 | | | | | | |
|
DPE-MVS |  | | 88.77 13 | 89.21 13 | 87.45 33 | 96.26 18 | 67.56 86 | 94.17 52 | 94.15 53 | 68.77 234 | 90.74 11 | 97.27 3 | 76.09 10 | 98.49 23 | 90.58 17 | 94.91 18 | 96.30 25 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS | | | 89.41 10 | 89.73 11 | 88.45 18 | 96.40 14 | 69.99 31 | 96.64 8 | 94.52 36 | 71.92 173 | 90.55 12 | 96.93 10 | 73.77 17 | 99.08 9 | 91.91 10 | 94.90 19 | 96.29 26 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 72.48 157 | 90.55 12 | 96.93 10 | 76.24 9 | 99.08 9 | 91.53 12 | 94.99 15 | 96.43 22 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 8 | 91.38 3 | 84.72 123 | 93.00 73 | 58.16 280 | 96.72 7 | 94.41 43 | 86.50 5 | 90.25 14 | 97.83 1 | 75.46 12 | 98.67 19 | 92.78 3 | 95.49 11 | 97.32 4 |
|
CANet | | | 89.61 9 | 89.99 9 | 88.46 17 | 94.39 38 | 69.71 39 | 96.53 11 | 93.78 60 | 86.89 4 | 89.68 15 | 95.78 31 | 65.94 60 | 99.10 7 | 92.99 2 | 93.91 40 | 96.58 15 |
|
xiu_mvs_v2_base | | | 87.92 19 | 87.38 29 | 89.55 10 | 91.41 121 | 76.43 3 | 95.74 20 | 93.12 96 | 83.53 12 | 89.55 16 | 95.95 29 | 53.45 200 | 97.68 50 | 91.07 14 | 92.62 59 | 94.54 88 |
|
PS-MVSNAJ | | | 88.14 14 | 87.61 24 | 89.71 7 | 92.06 95 | 76.72 1 | 95.75 19 | 93.26 87 | 83.86 10 | 89.55 16 | 96.06 28 | 53.55 196 | 97.89 44 | 91.10 13 | 93.31 50 | 94.54 88 |
|
ETH3 D test6400 | | | 90.27 5 | 90.44 6 | 89.75 6 | 96.82 6 | 74.33 7 | 95.89 16 | 94.80 26 | 77.13 80 | 89.13 18 | 97.38 2 | 74.49 15 | 98.48 24 | 92.32 9 | 95.98 6 | 96.46 21 |
|
CNVR-MVS | | | 90.32 4 | 90.89 4 | 88.61 16 | 96.76 7 | 70.65 23 | 96.47 12 | 94.83 23 | 84.83 8 | 89.07 19 | 96.80 12 | 70.86 29 | 99.06 11 | 92.64 4 | 95.71 9 | 96.12 30 |
|
HPM-MVS++ |  | | 89.37 11 | 89.95 10 | 87.64 26 | 95.10 29 | 68.23 71 | 95.24 31 | 94.49 38 | 82.43 17 | 88.90 20 | 96.35 21 | 71.89 28 | 98.63 20 | 88.76 30 | 96.40 4 | 96.06 31 |
|
APDe-MVS | | | 87.54 23 | 87.84 20 | 86.65 56 | 96.07 21 | 66.30 124 | 94.84 44 | 93.78 60 | 69.35 225 | 88.39 21 | 96.34 22 | 67.74 45 | 97.66 54 | 90.62 16 | 93.44 49 | 96.01 34 |
|
EPNet | | | 87.84 20 | 88.38 15 | 86.23 74 | 93.30 63 | 66.05 129 | 95.26 30 | 94.84 22 | 87.09 3 | 88.06 22 | 94.53 72 | 66.79 53 | 97.34 70 | 83.89 70 | 91.68 73 | 95.29 56 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
SD-MVS | | | 87.49 24 | 87.49 26 | 87.50 32 | 93.60 56 | 68.82 56 | 93.90 70 | 92.63 115 | 76.86 84 | 87.90 23 | 95.76 32 | 66.17 57 | 97.63 56 | 89.06 26 | 91.48 77 | 96.05 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
canonicalmvs | | | 86.85 36 | 86.25 42 | 88.66 15 | 91.80 108 | 71.92 13 | 93.54 86 | 91.71 149 | 80.26 40 | 87.55 24 | 95.25 49 | 63.59 90 | 96.93 100 | 88.18 34 | 84.34 136 | 97.11 6 |
|
旧先验2 | | | | | | | | 92.00 143 | | 59.37 304 | 87.54 25 | | | 93.47 220 | 75.39 131 | | |
|
ETH3D-3000-0.1 | | | 87.61 22 | 87.89 19 | 86.75 52 | 93.58 57 | 67.21 97 | 94.31 50 | 94.14 54 | 72.92 148 | 87.13 26 | 96.62 14 | 67.81 44 | 97.94 39 | 90.13 18 | 94.42 32 | 95.09 68 |
|
MVSFormer | | | 83.75 85 | 82.88 87 | 86.37 69 | 89.24 162 | 71.18 18 | 89.07 238 | 90.69 186 | 65.80 256 | 87.13 26 | 94.34 82 | 64.99 70 | 92.67 243 | 72.83 147 | 91.80 71 | 95.27 60 |
|
lupinMVS | | | 87.74 21 | 87.77 21 | 87.63 30 | 89.24 162 | 71.18 18 | 96.57 10 | 92.90 104 | 82.70 16 | 87.13 26 | 95.27 47 | 64.99 70 | 95.80 134 | 89.34 22 | 91.80 71 | 95.93 36 |
|
alignmvs | | | 87.28 26 | 86.97 34 | 88.24 20 | 91.30 122 | 71.14 20 | 95.61 24 | 93.56 73 | 79.30 49 | 87.07 29 | 95.25 49 | 68.43 34 | 96.93 100 | 87.87 36 | 84.33 137 | 96.65 11 |
|
NCCC | | | 89.07 12 | 89.46 12 | 87.91 21 | 96.60 9 | 69.05 50 | 96.38 13 | 94.64 33 | 84.42 9 | 86.74 30 | 96.20 25 | 66.56 56 | 98.76 18 | 89.03 28 | 94.56 29 | 95.92 37 |
|
xxxxxxxxxxxxxcwj | | | 87.14 29 | 87.19 31 | 86.99 45 | 93.84 49 | 67.89 78 | 95.05 38 | 84.72 305 | 78.19 66 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 58 |
|
SF-MVS | | | 87.03 32 | 87.09 33 | 86.84 47 | 92.70 82 | 67.45 92 | 93.64 81 | 93.76 63 | 70.78 210 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 58 |
|
9.14 | | | | 87.63 23 | | 93.86 48 | | 94.41 48 | 94.18 52 | 72.76 151 | 86.21 33 | 96.51 16 | 66.64 54 | 97.88 45 | 90.08 19 | 94.04 37 | |
|
testtj | | | 86.62 40 | 86.66 39 | 86.50 63 | 96.95 5 | 65.70 139 | 94.41 48 | 93.45 79 | 67.74 240 | 86.19 34 | 96.39 20 | 64.38 77 | 97.91 42 | 87.33 44 | 93.14 53 | 95.90 38 |
|
APD-MVS |  | | 85.93 49 | 85.99 45 | 85.76 89 | 95.98 23 | 65.21 151 | 93.59 84 | 92.58 117 | 66.54 251 | 86.17 35 | 95.88 30 | 63.83 84 | 97.00 90 | 86.39 52 | 92.94 55 | 95.06 69 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CANet_DTU | | | 84.09 77 | 83.52 71 | 85.81 86 | 90.30 140 | 66.82 110 | 91.87 147 | 89.01 251 | 85.27 6 | 86.09 36 | 93.74 95 | 47.71 249 | 96.98 94 | 77.90 119 | 89.78 94 | 93.65 122 |
|
VNet | | | 86.20 45 | 85.65 52 | 87.84 23 | 93.92 47 | 69.99 31 | 95.73 22 | 95.94 6 | 78.43 64 | 86.00 37 | 93.07 107 | 58.22 140 | 97.00 90 | 85.22 59 | 84.33 137 | 96.52 17 |
|
TSAR-MVS + GP. | | | 87.96 17 | 88.37 16 | 86.70 55 | 93.51 60 | 65.32 148 | 95.15 34 | 93.84 59 | 78.17 68 | 85.93 38 | 94.80 67 | 75.80 11 | 98.21 31 | 89.38 21 | 88.78 98 | 96.59 13 |
|
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 39 | 96.26 24 | 72.84 22 | 99.38 1 | 92.64 4 | 95.93 8 | 97.08 7 |
|
ETH3D cwj APD-0.16 | | | 87.06 31 | 87.18 32 | 86.71 53 | 91.99 99 | 67.48 91 | 92.97 105 | 94.21 51 | 71.48 198 | 85.72 40 | 96.32 23 | 68.13 38 | 98.00 38 | 89.06 26 | 94.70 27 | 94.65 84 |
|
DELS-MVS | | | 90.05 6 | 90.09 8 | 89.94 4 | 93.14 70 | 73.88 8 | 97.01 3 | 94.40 45 | 88.32 2 | 85.71 41 | 94.91 63 | 74.11 16 | 98.91 13 | 87.26 46 | 95.94 7 | 97.03 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PHI-MVS | | | 86.83 37 | 86.85 37 | 86.78 51 | 93.47 61 | 65.55 144 | 95.39 29 | 95.10 17 | 71.77 184 | 85.69 42 | 96.52 15 | 62.07 104 | 98.77 17 | 86.06 54 | 95.60 10 | 96.03 33 |
|
TEST9 | | | | | | 94.18 40 | 67.28 95 | 94.16 53 | 93.51 75 | 71.75 185 | 85.52 43 | 95.33 42 | 68.01 39 | 97.27 77 | | | |
|
train_agg | | | 87.21 28 | 87.42 28 | 86.60 57 | 94.18 40 | 67.28 95 | 94.16 53 | 93.51 75 | 71.87 178 | 85.52 43 | 95.33 42 | 68.19 36 | 97.27 77 | 89.09 25 | 94.90 19 | 95.25 63 |
|
test_8 | | | | | | 94.19 39 | 67.19 98 | 94.15 55 | 93.42 82 | 71.87 178 | 85.38 45 | 95.35 41 | 68.19 36 | 96.95 97 | | | |
|
testdata | | | | | 81.34 203 | 89.02 166 | 57.72 284 | | 89.84 219 | 58.65 307 | 85.32 46 | 94.09 88 | 57.03 152 | 93.28 222 | 69.34 180 | 90.56 89 | 93.03 140 |
|
ZD-MVS | | | | | | 96.63 8 | 65.50 146 | | 93.50 77 | 70.74 211 | 85.26 47 | 95.19 53 | 64.92 73 | 97.29 73 | 87.51 40 | 93.01 54 | |
|
test_prior3 | | | 87.38 25 | 87.70 22 | 86.42 66 | 94.71 33 | 67.35 93 | 95.10 36 | 93.10 97 | 75.40 101 | 85.25 48 | 95.61 37 | 67.94 40 | 96.84 102 | 87.47 41 | 94.77 23 | 95.05 70 |
|
test_prior2 | | | | | | | | 95.10 36 | | 75.40 101 | 85.25 48 | 95.61 37 | 67.94 40 | | 87.47 41 | 94.77 23 | |
|
ACMMP_NAP | | | 86.05 47 | 85.80 49 | 86.80 50 | 91.58 113 | 67.53 88 | 91.79 151 | 93.49 78 | 74.93 109 | 84.61 50 | 95.30 44 | 59.42 130 | 97.92 41 | 86.13 53 | 94.92 17 | 94.94 75 |
|
jason | | | 86.40 42 | 86.17 43 | 87.11 41 | 86.16 221 | 70.54 25 | 95.71 23 | 92.19 132 | 82.00 23 | 84.58 51 | 94.34 82 | 61.86 106 | 95.53 154 | 87.76 37 | 90.89 84 | 95.27 60 |
jason: jason. |
agg_prior1 | | | 87.02 33 | 87.26 30 | 86.28 73 | 94.16 44 | 66.97 106 | 94.08 59 | 93.31 85 | 71.85 180 | 84.49 52 | 95.39 40 | 68.91 33 | 96.75 106 | 88.84 29 | 94.32 34 | 95.13 66 |
|
agg_prior | | | | | | 94.16 44 | 66.97 106 | | 93.31 85 | | 84.49 52 | | | 96.75 106 | | | |
|
Regformer-1 | | | 87.24 27 | 87.60 25 | 86.15 76 | 95.14 27 | 65.83 137 | 93.95 66 | 95.12 15 | 82.11 21 | 84.25 54 | 95.73 33 | 67.88 43 | 98.35 29 | 85.60 56 | 88.64 100 | 94.26 96 |
|
xiu_mvs_v1_base_debu | | | 82.16 107 | 81.12 110 | 85.26 107 | 86.42 215 | 68.72 58 | 92.59 123 | 90.44 194 | 73.12 143 | 84.20 55 | 94.36 77 | 38.04 293 | 95.73 138 | 84.12 67 | 86.81 113 | 91.33 174 |
|
xiu_mvs_v1_base | | | 82.16 107 | 81.12 110 | 85.26 107 | 86.42 215 | 68.72 58 | 92.59 123 | 90.44 194 | 73.12 143 | 84.20 55 | 94.36 77 | 38.04 293 | 95.73 138 | 84.12 67 | 86.81 113 | 91.33 174 |
|
xiu_mvs_v1_base_debi | | | 82.16 107 | 81.12 110 | 85.26 107 | 86.42 215 | 68.72 58 | 92.59 123 | 90.44 194 | 73.12 143 | 84.20 55 | 94.36 77 | 38.04 293 | 95.73 138 | 84.12 67 | 86.81 113 | 91.33 174 |
|
ETV-MVS | | | 86.01 48 | 86.11 44 | 85.70 93 | 90.21 142 | 67.02 105 | 93.43 91 | 91.92 140 | 81.21 31 | 84.13 58 | 94.07 90 | 60.93 113 | 95.63 144 | 89.28 23 | 89.81 92 | 94.46 94 |
|
CS-MVS | | | 86.61 41 | 86.85 37 | 85.88 82 | 91.52 117 | 66.25 126 | 95.42 27 | 92.25 125 | 80.36 39 | 84.10 59 | 94.82 66 | 62.88 99 | 96.08 125 | 88.25 33 | 92.07 69 | 95.30 55 |
|
Regformer-2 | | | 87.00 34 | 87.43 27 | 85.71 92 | 95.14 27 | 64.73 166 | 93.95 66 | 94.95 20 | 81.69 26 | 84.03 60 | 95.73 33 | 67.35 47 | 98.19 33 | 85.40 58 | 88.64 100 | 94.20 98 |
|
SteuartSystems-ACMMP | | | 86.82 38 | 86.90 35 | 86.58 59 | 90.42 137 | 66.38 121 | 96.09 15 | 93.87 58 | 77.73 73 | 84.01 61 | 95.66 35 | 63.39 92 | 97.94 39 | 87.40 43 | 93.55 48 | 95.42 47 |
Skip Steuart: Steuart Systems R&D Blog. |
MG-MVS | | | 87.11 30 | 86.27 40 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 42 | 94.49 38 | 78.74 62 | 83.87 62 | 92.94 110 | 64.34 78 | 96.94 98 | 75.19 132 | 94.09 36 | 95.66 42 |
|
DeepC-MVS_fast | | 79.48 2 | 87.95 18 | 88.00 18 | 87.79 24 | 95.86 24 | 68.32 66 | 95.74 20 | 94.11 55 | 83.82 11 | 83.49 63 | 96.19 26 | 64.53 76 | 98.44 26 | 83.42 73 | 94.88 22 | 96.61 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Effi-MVS+ | | | 83.82 83 | 82.76 90 | 86.99 45 | 89.56 154 | 69.40 42 | 91.35 173 | 86.12 294 | 72.59 153 | 83.22 64 | 92.81 117 | 59.60 128 | 96.01 131 | 81.76 85 | 87.80 107 | 95.56 45 |
|
CDPH-MVS | | | 85.71 52 | 85.46 53 | 86.46 64 | 94.75 32 | 67.19 98 | 93.89 71 | 92.83 106 | 70.90 206 | 83.09 65 | 95.28 45 | 63.62 88 | 97.36 68 | 80.63 96 | 94.18 35 | 94.84 77 |
|
MVS_Test | | | 84.16 76 | 83.20 81 | 87.05 43 | 91.56 114 | 69.82 36 | 89.99 219 | 92.05 134 | 77.77 72 | 82.84 66 | 86.57 200 | 63.93 83 | 96.09 123 | 74.91 138 | 89.18 96 | 95.25 63 |
|
hse-mvs3 | | | 83.01 94 | 82.56 94 | 84.35 134 | 89.34 158 | 62.02 227 | 92.72 114 | 93.76 63 | 81.45 27 | 82.73 67 | 92.25 129 | 60.11 120 | 97.13 83 | 87.69 38 | 62.96 278 | 93.91 115 |
|
hse-mvs2 | | | 81.12 124 | 81.11 113 | 81.16 208 | 86.52 214 | 57.48 289 | 89.40 230 | 91.16 170 | 81.45 27 | 82.73 67 | 90.49 152 | 60.11 120 | 94.58 177 | 87.69 38 | 60.41 305 | 91.41 173 |
|
test12 | | | | | 87.09 42 | 94.60 35 | 68.86 54 | | 92.91 103 | | 82.67 69 | | 65.44 66 | 97.55 59 | | 93.69 46 | 94.84 77 |
|
HY-MVS | | 76.49 5 | 84.28 71 | 83.36 80 | 87.02 44 | 92.22 92 | 67.74 82 | 84.65 278 | 94.50 37 | 79.15 53 | 82.23 70 | 87.93 185 | 66.88 51 | 96.94 98 | 80.53 97 | 82.20 149 | 96.39 24 |
|
LFMVS | | | 84.34 70 | 82.73 91 | 89.18 11 | 94.76 31 | 73.25 10 | 94.99 41 | 91.89 141 | 71.90 175 | 82.16 71 | 93.49 100 | 47.98 246 | 97.05 85 | 82.55 81 | 84.82 130 | 97.25 5 |
|
WTY-MVS | | | 86.32 43 | 85.81 48 | 87.85 22 | 92.82 78 | 69.37 45 | 95.20 32 | 95.25 12 | 82.71 15 | 81.91 72 | 94.73 68 | 67.93 42 | 97.63 56 | 79.55 102 | 82.25 148 | 96.54 16 |
|
VDD-MVS | | | 83.06 93 | 81.81 104 | 86.81 49 | 90.86 132 | 67.70 83 | 95.40 28 | 91.50 158 | 75.46 98 | 81.78 73 | 92.34 127 | 40.09 282 | 97.13 83 | 86.85 50 | 82.04 150 | 95.60 44 |
|
Regformer-3 | | | 85.80 51 | 85.92 46 | 85.46 99 | 94.17 42 | 65.09 159 | 92.95 107 | 95.11 16 | 81.13 32 | 81.68 74 | 95.04 54 | 65.82 62 | 98.32 30 | 83.02 75 | 84.36 134 | 92.97 142 |
|
diffmvs | | | 84.28 71 | 83.83 69 | 85.61 95 | 87.40 201 | 68.02 75 | 90.88 191 | 89.24 238 | 80.54 37 | 81.64 75 | 92.52 119 | 59.83 125 | 94.52 184 | 87.32 45 | 85.11 128 | 94.29 95 |
|
MSLP-MVS++ | | | 86.27 44 | 85.91 47 | 87.35 36 | 92.01 98 | 68.97 53 | 95.04 40 | 92.70 109 | 79.04 57 | 81.50 76 | 96.50 17 | 58.98 137 | 96.78 104 | 83.49 72 | 93.93 39 | 96.29 26 |
|
Regformer-4 | | | 85.45 54 | 85.69 51 | 84.73 121 | 94.17 42 | 63.23 204 | 92.95 107 | 94.83 23 | 80.66 36 | 81.29 77 | 95.04 54 | 65.12 68 | 98.08 36 | 82.74 77 | 84.36 134 | 92.88 146 |
|
SR-MVS | | | 82.81 97 | 82.58 93 | 83.50 155 | 93.35 62 | 61.16 239 | 92.23 131 | 91.28 167 | 64.48 264 | 81.27 78 | 95.28 45 | 53.71 195 | 95.86 133 | 82.87 76 | 88.77 99 | 93.49 126 |
|
baseline | | | 85.01 60 | 84.44 64 | 86.71 53 | 88.33 181 | 68.73 57 | 90.24 210 | 91.82 145 | 81.05 34 | 81.18 79 | 92.50 120 | 63.69 87 | 96.08 125 | 84.45 65 | 86.71 118 | 95.32 53 |
|
test_yl | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 36 | 69.24 46 | 95.78 17 | 95.09 18 | 69.19 228 | 81.09 80 | 92.88 114 | 57.00 154 | 97.44 63 | 81.11 94 | 81.76 152 | 96.23 28 |
|
DCV-MVSNet | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 36 | 69.24 46 | 95.78 17 | 95.09 18 | 69.19 228 | 81.09 80 | 92.88 114 | 57.00 154 | 97.44 63 | 81.11 94 | 81.76 152 | 96.23 28 |
|
UA-Net | | | 80.02 142 | 79.65 132 | 81.11 211 | 89.33 159 | 57.72 284 | 86.33 272 | 89.00 252 | 77.44 78 | 81.01 82 | 89.15 168 | 59.33 132 | 95.90 132 | 61.01 247 | 84.28 139 | 89.73 196 |
|
PVSNet_BlendedMVS | | | 83.38 89 | 83.43 75 | 83.22 158 | 93.76 51 | 67.53 88 | 94.06 60 | 93.61 71 | 79.13 54 | 81.00 83 | 85.14 214 | 63.19 95 | 97.29 73 | 87.08 47 | 73.91 205 | 84.83 274 |
|
PVSNet_Blended | | | 86.73 39 | 86.86 36 | 86.31 72 | 93.76 51 | 67.53 88 | 96.33 14 | 93.61 71 | 82.34 18 | 81.00 83 | 93.08 105 | 63.19 95 | 97.29 73 | 87.08 47 | 91.38 78 | 94.13 104 |
|
casdiffmvs | | | 85.37 55 | 84.87 60 | 86.84 47 | 88.25 184 | 69.07 49 | 93.04 102 | 91.76 146 | 81.27 30 | 80.84 85 | 92.07 131 | 64.23 79 | 96.06 127 | 84.98 61 | 87.43 110 | 95.39 48 |
|
MP-MVS-pluss | | | 85.24 57 | 85.13 56 | 85.56 96 | 91.42 119 | 65.59 143 | 91.54 163 | 92.51 119 | 74.56 112 | 80.62 86 | 95.64 36 | 59.15 134 | 97.00 90 | 86.94 49 | 93.80 41 | 94.07 108 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
zzz-MVS | | | 84.73 64 | 84.47 62 | 85.50 97 | 91.89 104 | 65.16 153 | 91.55 162 | 92.23 126 | 75.32 103 | 80.53 87 | 95.21 51 | 56.06 169 | 97.16 81 | 84.86 63 | 92.55 61 | 94.18 99 |
|
MTAPA | | | 83.91 81 | 83.38 79 | 85.50 97 | 91.89 104 | 65.16 153 | 81.75 298 | 92.23 126 | 75.32 103 | 80.53 87 | 95.21 51 | 56.06 169 | 97.16 81 | 84.86 63 | 92.55 61 | 94.18 99 |
|
PAPM | | | 85.89 50 | 85.46 53 | 87.18 39 | 88.20 186 | 72.42 12 | 92.41 127 | 92.77 107 | 82.11 21 | 80.34 89 | 93.07 107 | 68.27 35 | 95.02 164 | 78.39 114 | 93.59 47 | 94.09 106 |
|
CostFormer | | | 82.33 104 | 81.15 109 | 85.86 85 | 89.01 167 | 68.46 63 | 82.39 296 | 93.01 99 | 75.59 96 | 80.25 90 | 81.57 255 | 72.03 27 | 94.96 166 | 79.06 107 | 77.48 186 | 94.16 102 |
|
test1172 | | | 81.90 113 | 81.83 103 | 82.13 185 | 93.23 64 | 57.52 288 | 91.61 161 | 90.98 181 | 64.32 266 | 80.20 91 | 95.00 56 | 51.26 216 | 95.61 146 | 81.73 86 | 88.13 104 | 93.26 132 |
|
PMMVS | | | 81.98 112 | 82.04 100 | 81.78 193 | 89.76 150 | 56.17 298 | 91.13 184 | 90.69 186 | 77.96 70 | 80.09 92 | 93.57 98 | 46.33 257 | 94.99 165 | 81.41 90 | 87.46 109 | 94.17 101 |
|
ZNCC-MVS | | | 85.33 56 | 85.08 57 | 86.06 77 | 93.09 72 | 65.65 141 | 93.89 71 | 93.41 83 | 73.75 130 | 79.94 93 | 94.68 70 | 60.61 116 | 98.03 37 | 82.63 80 | 93.72 44 | 94.52 90 |
|
1121 | | | 81.25 120 | 80.05 125 | 84.87 118 | 92.30 89 | 64.31 180 | 87.91 255 | 91.39 162 | 59.44 303 | 79.94 93 | 92.91 111 | 57.09 150 | 97.01 88 | 66.63 202 | 92.81 58 | 93.29 131 |
|
sss | | | 82.71 100 | 82.38 97 | 83.73 147 | 89.25 161 | 59.58 265 | 92.24 130 | 94.89 21 | 77.96 70 | 79.86 95 | 92.38 125 | 56.70 160 | 97.05 85 | 77.26 122 | 80.86 160 | 94.55 86 |
|
新几何1 | | | | | 84.73 121 | 92.32 88 | 64.28 182 | | 91.46 160 | 59.56 302 | 79.77 96 | 92.90 112 | 56.95 157 | 96.57 111 | 63.40 232 | 92.91 56 | 93.34 128 |
|
APD-MVS_3200maxsize | | | 81.64 116 | 81.32 108 | 82.59 170 | 92.36 87 | 58.74 274 | 91.39 169 | 91.01 180 | 63.35 272 | 79.72 97 | 94.62 71 | 51.82 209 | 96.14 121 | 79.71 100 | 87.93 106 | 92.89 145 |
|
MP-MVS |  | | 85.02 59 | 84.97 58 | 85.17 110 | 92.60 84 | 64.27 183 | 93.24 95 | 92.27 124 | 73.13 142 | 79.63 98 | 94.43 75 | 61.90 105 | 97.17 80 | 85.00 60 | 92.56 60 | 94.06 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
原ACMM1 | | | | | 84.42 132 | 93.21 67 | 64.27 183 | | 93.40 84 | 65.39 259 | 79.51 99 | 92.50 120 | 58.11 142 | 96.69 108 | 65.27 222 | 93.96 38 | 92.32 157 |
|
VDDNet | | | 80.50 133 | 78.26 154 | 87.21 38 | 86.19 220 | 69.79 37 | 94.48 47 | 91.31 164 | 60.42 295 | 79.34 100 | 90.91 144 | 38.48 289 | 96.56 112 | 82.16 82 | 81.05 158 | 95.27 60 |
|
EIA-MVS | | | 84.84 63 | 84.88 59 | 84.69 124 | 91.30 122 | 62.36 222 | 93.85 73 | 92.04 135 | 79.45 47 | 79.33 101 | 94.28 85 | 62.42 102 | 96.35 115 | 80.05 99 | 91.25 81 | 95.38 49 |
|
HFP-MVS | | | 84.73 64 | 84.40 65 | 85.72 90 | 93.75 53 | 65.01 160 | 93.50 88 | 93.19 91 | 72.19 167 | 79.22 102 | 94.93 60 | 59.04 135 | 97.67 51 | 81.55 87 | 92.21 64 | 94.49 92 |
|
#test# | | | 84.98 61 | 84.74 61 | 85.72 90 | 93.75 53 | 65.01 160 | 94.09 58 | 93.19 91 | 73.55 136 | 79.22 102 | 94.93 60 | 59.04 135 | 97.67 51 | 82.66 78 | 92.21 64 | 94.49 92 |
|
MAR-MVS | | | 84.18 75 | 83.43 75 | 86.44 65 | 96.25 19 | 65.93 134 | 94.28 51 | 94.27 50 | 74.41 113 | 79.16 104 | 95.61 37 | 53.99 191 | 98.88 16 | 69.62 177 | 93.26 51 | 94.50 91 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PAPR | | | 85.15 58 | 84.47 62 | 87.18 39 | 96.02 22 | 68.29 67 | 91.85 149 | 93.00 101 | 76.59 88 | 79.03 105 | 95.00 56 | 61.59 107 | 97.61 58 | 78.16 116 | 89.00 97 | 95.63 43 |
|
SR-MVS-dyc-post | | | 81.06 125 | 80.70 117 | 82.15 183 | 92.02 96 | 58.56 276 | 90.90 189 | 90.45 191 | 62.76 278 | 78.89 106 | 94.46 73 | 51.26 216 | 95.61 146 | 78.77 111 | 86.77 116 | 92.28 159 |
|
RE-MVS-def | | | | 80.48 122 | | 92.02 96 | 58.56 276 | 90.90 189 | 90.45 191 | 62.76 278 | 78.89 106 | 94.46 73 | 49.30 233 | | 78.77 111 | 86.77 116 | 92.28 159 |
|
GST-MVS | | | 84.63 67 | 84.29 66 | 85.66 94 | 92.82 78 | 65.27 149 | 93.04 102 | 93.13 95 | 73.20 140 | 78.89 106 | 94.18 87 | 59.41 131 | 97.85 46 | 81.45 89 | 92.48 63 | 93.86 118 |
|
MVS_111021_HR | | | 86.19 46 | 85.80 49 | 87.37 35 | 93.17 69 | 69.79 37 | 93.99 64 | 93.76 63 | 79.08 56 | 78.88 109 | 93.99 91 | 62.25 103 | 98.15 34 | 85.93 55 | 91.15 82 | 94.15 103 |
|
region2R | | | 84.36 69 | 84.03 68 | 85.36 104 | 93.54 59 | 64.31 180 | 93.43 91 | 92.95 102 | 72.16 170 | 78.86 110 | 94.84 65 | 56.97 156 | 97.53 60 | 81.38 91 | 92.11 68 | 94.24 97 |
|
ACMMPR | | | 84.37 68 | 84.06 67 | 85.28 106 | 93.56 58 | 64.37 178 | 93.50 88 | 93.15 94 | 72.19 167 | 78.85 111 | 94.86 64 | 56.69 161 | 97.45 62 | 81.55 87 | 92.20 66 | 94.02 111 |
|
UGNet | | | 79.87 145 | 78.68 148 | 83.45 157 | 89.96 145 | 61.51 234 | 92.13 133 | 90.79 184 | 76.83 85 | 78.85 111 | 86.33 203 | 38.16 291 | 96.17 120 | 67.93 192 | 87.17 111 | 92.67 148 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
GG-mvs-BLEND | | | | | 86.53 62 | 91.91 103 | 69.67 41 | 75.02 330 | 94.75 28 | | 78.67 113 | 90.85 145 | 77.91 5 | 94.56 180 | 72.25 154 | 93.74 43 | 95.36 50 |
|
XVS | | | 83.87 82 | 83.47 73 | 85.05 111 | 93.22 65 | 63.78 190 | 92.92 109 | 92.66 112 | 73.99 122 | 78.18 114 | 94.31 84 | 55.25 175 | 97.41 65 | 79.16 105 | 91.58 75 | 93.95 113 |
|
X-MVStestdata | | | 76.86 195 | 74.13 215 | 85.05 111 | 93.22 65 | 63.78 190 | 92.92 109 | 92.66 112 | 73.99 122 | 78.18 114 | 10.19 362 | 55.25 175 | 97.41 65 | 79.16 105 | 91.58 75 | 93.95 113 |
|
EI-MVSNet-Vis-set | | | 83.77 84 | 83.67 70 | 84.06 140 | 92.79 81 | 63.56 200 | 91.76 154 | 94.81 25 | 79.65 46 | 77.87 116 | 94.09 88 | 63.35 93 | 97.90 43 | 79.35 103 | 79.36 166 | 90.74 184 |
|
Vis-MVSNet |  | | 80.92 128 | 79.98 128 | 83.74 145 | 88.48 176 | 61.80 229 | 93.44 90 | 88.26 273 | 73.96 125 | 77.73 117 | 91.76 136 | 49.94 227 | 94.76 171 | 65.84 214 | 90.37 90 | 94.65 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
abl_6 | | | 79.82 146 | 79.20 144 | 81.70 197 | 89.85 147 | 58.34 278 | 88.47 248 | 90.07 210 | 62.56 281 | 77.71 118 | 93.08 105 | 47.65 250 | 96.78 104 | 77.94 118 | 85.45 127 | 89.99 193 |
|
DWT-MVSNet_test | | | 83.95 80 | 82.80 89 | 87.41 34 | 92.90 75 | 70.07 30 | 89.12 237 | 94.42 42 | 82.15 20 | 77.64 119 | 91.77 135 | 70.81 30 | 96.22 118 | 65.03 223 | 81.36 156 | 95.94 35 |
|
CSCG | | | 86.87 35 | 86.26 41 | 88.72 12 | 95.05 30 | 70.79 22 | 93.83 77 | 95.33 11 | 68.48 238 | 77.63 120 | 94.35 81 | 73.04 20 | 98.45 25 | 84.92 62 | 93.71 45 | 96.92 9 |
|
TESTMET0.1,1 | | | 82.41 103 | 81.98 101 | 83.72 148 | 88.08 187 | 63.74 192 | 92.70 116 | 93.77 62 | 79.30 49 | 77.61 121 | 87.57 190 | 58.19 141 | 94.08 198 | 73.91 142 | 86.68 119 | 93.33 130 |
|
tpm2 | | | 79.80 147 | 77.95 160 | 85.34 105 | 88.28 182 | 68.26 69 | 81.56 301 | 91.42 161 | 70.11 216 | 77.59 122 | 80.50 273 | 67.40 46 | 94.26 193 | 67.34 197 | 77.35 187 | 93.51 125 |
|
CP-MVS | | | 83.71 86 | 83.40 78 | 84.65 125 | 93.14 70 | 63.84 188 | 94.59 46 | 92.28 123 | 71.03 204 | 77.41 123 | 94.92 62 | 55.21 178 | 96.19 119 | 81.32 92 | 90.70 86 | 93.91 115 |
|
ab-mvs | | | 80.18 138 | 78.31 153 | 85.80 87 | 88.44 178 | 65.49 147 | 83.00 293 | 92.67 111 | 71.82 182 | 77.36 124 | 85.01 215 | 54.50 184 | 96.59 109 | 76.35 128 | 75.63 198 | 95.32 53 |
|
test222 | | | | | | 89.77 149 | 61.60 233 | 89.55 225 | 89.42 233 | 56.83 316 | 77.28 125 | 92.43 124 | 52.76 203 | | | 91.14 83 | 93.09 138 |
|
PGM-MVS | | | 83.25 90 | 82.70 92 | 84.92 115 | 92.81 80 | 64.07 186 | 90.44 202 | 92.20 131 | 71.28 199 | 77.23 126 | 94.43 75 | 55.17 179 | 97.31 72 | 79.33 104 | 91.38 78 | 93.37 127 |
|
gg-mvs-nofinetune | | | 77.18 193 | 74.31 210 | 85.80 87 | 91.42 119 | 68.36 65 | 71.78 332 | 94.72 29 | 49.61 334 | 77.12 127 | 45.92 350 | 77.41 6 | 93.98 206 | 67.62 195 | 93.16 52 | 95.05 70 |
|
HPM-MVS |  | | 83.25 90 | 82.95 86 | 84.17 138 | 92.25 91 | 62.88 215 | 90.91 188 | 91.86 142 | 70.30 215 | 77.12 127 | 93.96 92 | 56.75 159 | 96.28 116 | 82.04 83 | 91.34 80 | 93.34 128 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
PVSNet_Blended_VisFu | | | 83.97 79 | 83.50 72 | 85.39 103 | 90.02 144 | 66.59 118 | 93.77 78 | 91.73 147 | 77.43 79 | 77.08 129 | 89.81 164 | 63.77 86 | 96.97 95 | 79.67 101 | 88.21 103 | 92.60 150 |
|
DeepC-MVS | | 77.85 3 | 85.52 53 | 85.24 55 | 86.37 69 | 88.80 171 | 66.64 115 | 92.15 132 | 93.68 68 | 81.07 33 | 76.91 130 | 93.64 96 | 62.59 101 | 98.44 26 | 85.50 57 | 92.84 57 | 94.03 110 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EI-MVSNet-UG-set | | | 83.14 92 | 82.96 85 | 83.67 150 | 92.28 90 | 63.19 206 | 91.38 171 | 94.68 31 | 79.22 51 | 76.60 131 | 93.75 94 | 62.64 100 | 97.76 49 | 78.07 117 | 78.01 177 | 90.05 192 |
|
EPNet_dtu | | | 78.80 164 | 79.26 143 | 77.43 271 | 88.06 188 | 49.71 330 | 91.96 145 | 91.95 139 | 77.67 74 | 76.56 132 | 91.28 141 | 58.51 139 | 90.20 291 | 56.37 266 | 80.95 159 | 92.39 154 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DP-MVS Recon | | | 82.73 98 | 81.65 105 | 85.98 79 | 97.31 4 | 67.06 102 | 95.15 34 | 91.99 137 | 69.08 231 | 76.50 133 | 93.89 93 | 54.48 187 | 98.20 32 | 70.76 168 | 85.66 125 | 92.69 147 |
|
Anonymous202405211 | | | 77.96 181 | 75.33 197 | 85.87 84 | 93.73 55 | 64.52 168 | 94.85 43 | 85.36 300 | 62.52 282 | 76.11 134 | 90.18 158 | 29.43 330 | 97.29 73 | 68.51 188 | 77.24 190 | 95.81 40 |
|
tpmrst | | | 80.57 131 | 79.14 146 | 84.84 119 | 90.10 143 | 68.28 68 | 81.70 299 | 89.72 226 | 77.63 75 | 75.96 135 | 79.54 286 | 64.94 72 | 92.71 240 | 75.43 130 | 77.28 189 | 93.55 124 |
|
thisisatest0515 | | | 83.41 88 | 82.49 95 | 86.16 75 | 89.46 157 | 68.26 69 | 93.54 86 | 94.70 30 | 74.31 116 | 75.75 136 | 90.92 143 | 72.62 23 | 96.52 113 | 69.64 175 | 81.50 154 | 93.71 120 |
|
CHOSEN 1792x2688 | | | 84.98 61 | 83.45 74 | 89.57 9 | 89.94 146 | 75.14 5 | 92.07 138 | 92.32 122 | 81.87 24 | 75.68 137 | 88.27 178 | 60.18 119 | 98.60 21 | 80.46 98 | 90.27 91 | 94.96 74 |
|
test-LLR | | | 80.10 140 | 79.56 135 | 81.72 195 | 86.93 210 | 61.17 237 | 92.70 116 | 91.54 155 | 71.51 196 | 75.62 138 | 86.94 197 | 53.83 192 | 92.38 254 | 72.21 155 | 84.76 132 | 91.60 168 |
|
test-mter | | | 79.96 143 | 79.38 141 | 81.72 195 | 86.93 210 | 61.17 237 | 92.70 116 | 91.54 155 | 73.85 127 | 75.62 138 | 86.94 197 | 49.84 229 | 92.38 254 | 72.21 155 | 84.76 132 | 91.60 168 |
|
mPP-MVS | | | 82.96 96 | 82.44 96 | 84.52 129 | 92.83 76 | 62.92 213 | 92.76 112 | 91.85 143 | 71.52 195 | 75.61 140 | 94.24 86 | 53.48 199 | 96.99 93 | 78.97 108 | 90.73 85 | 93.64 123 |
|
MVS_111021_LR | | | 82.02 111 | 81.52 106 | 83.51 154 | 88.42 179 | 62.88 215 | 89.77 222 | 88.93 253 | 76.78 86 | 75.55 141 | 93.10 103 | 50.31 223 | 95.38 157 | 83.82 71 | 87.02 112 | 92.26 162 |
|
API-MVS | | | 82.28 105 | 80.53 121 | 87.54 31 | 96.13 20 | 70.59 24 | 93.63 82 | 91.04 179 | 65.72 258 | 75.45 142 | 92.83 116 | 56.11 168 | 98.89 15 | 64.10 228 | 89.75 95 | 93.15 136 |
|
Fast-Effi-MVS+ | | | 81.14 122 | 80.01 126 | 84.51 130 | 90.24 141 | 65.86 135 | 94.12 57 | 89.15 244 | 73.81 129 | 75.37 143 | 88.26 179 | 57.26 148 | 94.53 183 | 66.97 201 | 84.92 129 | 93.15 136 |
|
nrg030 | | | 80.93 127 | 79.86 129 | 84.13 139 | 83.69 259 | 68.83 55 | 93.23 96 | 91.20 168 | 75.55 97 | 75.06 144 | 88.22 182 | 63.04 98 | 94.74 173 | 81.88 84 | 66.88 251 | 88.82 204 |
|
baseline1 | | | 81.84 114 | 81.03 114 | 84.28 137 | 91.60 112 | 66.62 116 | 91.08 185 | 91.66 152 | 81.87 24 | 74.86 145 | 91.67 139 | 69.98 32 | 94.92 169 | 71.76 161 | 64.75 267 | 91.29 179 |
|
HPM-MVS_fast | | | 80.25 137 | 79.55 137 | 82.33 176 | 91.55 115 | 59.95 260 | 91.32 175 | 89.16 243 | 65.23 262 | 74.71 146 | 93.07 107 | 47.81 248 | 95.74 137 | 74.87 140 | 88.23 102 | 91.31 178 |
|
TR-MVS | | | 78.77 166 | 77.37 173 | 82.95 161 | 90.49 136 | 60.88 243 | 93.67 80 | 90.07 210 | 70.08 217 | 74.51 147 | 91.37 140 | 45.69 260 | 95.70 143 | 60.12 253 | 80.32 161 | 92.29 158 |
|
AUN-MVS | | | 78.37 174 | 77.43 169 | 81.17 207 | 86.60 213 | 57.45 290 | 89.46 229 | 91.16 170 | 74.11 120 | 74.40 148 | 90.49 152 | 55.52 174 | 94.57 178 | 74.73 141 | 60.43 304 | 91.48 171 |
|
HQP-NCC | | | | | | 87.54 197 | | 94.06 60 | | 79.80 42 | 74.18 149 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 197 | | 94.06 60 | | 79.80 42 | 74.18 149 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 149 | | | 95.61 146 | | | 88.63 206 |
|
HQP-MVS | | | 81.14 122 | 80.64 119 | 82.64 168 | 87.54 197 | 63.66 197 | 94.06 60 | 91.70 150 | 79.80 42 | 74.18 149 | 90.30 156 | 51.63 213 | 95.61 146 | 77.63 120 | 78.90 170 | 88.63 206 |
|
PAPM_NR | | | 82.97 95 | 81.84 102 | 86.37 69 | 94.10 46 | 66.76 113 | 87.66 259 | 92.84 105 | 69.96 218 | 74.07 153 | 93.57 98 | 63.10 97 | 97.50 61 | 70.66 170 | 90.58 88 | 94.85 76 |
|
VPA-MVSNet | | | 79.03 158 | 78.00 158 | 82.11 189 | 85.95 224 | 64.48 171 | 93.22 97 | 94.66 32 | 75.05 108 | 74.04 154 | 84.95 217 | 52.17 208 | 93.52 218 | 74.90 139 | 67.04 250 | 88.32 214 |
|
CDS-MVSNet | | | 81.43 118 | 80.74 116 | 83.52 153 | 86.26 219 | 64.45 172 | 92.09 136 | 90.65 189 | 75.83 95 | 73.95 155 | 89.81 164 | 63.97 82 | 92.91 233 | 71.27 164 | 82.82 145 | 93.20 135 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm | | | 78.58 171 | 77.03 175 | 83.22 158 | 85.94 226 | 64.56 167 | 83.21 291 | 91.14 173 | 78.31 65 | 73.67 156 | 79.68 284 | 64.01 81 | 92.09 263 | 66.07 212 | 71.26 225 | 93.03 140 |
|
BH-RMVSNet | | | 79.46 154 | 77.65 165 | 84.89 116 | 91.68 111 | 65.66 140 | 93.55 85 | 88.09 275 | 72.93 147 | 73.37 157 | 91.12 142 | 46.20 259 | 96.12 122 | 56.28 267 | 85.61 126 | 92.91 144 |
|
thres200 | | | 79.66 148 | 78.33 152 | 83.66 151 | 92.54 85 | 65.82 138 | 93.06 100 | 96.31 3 | 74.90 110 | 73.30 158 | 88.66 171 | 59.67 127 | 95.61 146 | 47.84 298 | 78.67 173 | 89.56 199 |
|
Anonymous20240529 | | | 76.84 197 | 74.15 214 | 84.88 117 | 91.02 126 | 64.95 163 | 93.84 76 | 91.09 175 | 53.57 324 | 73.00 159 | 87.42 192 | 35.91 309 | 97.32 71 | 69.14 183 | 72.41 217 | 92.36 155 |
|
CPTT-MVS | | | 79.59 150 | 79.16 145 | 80.89 220 | 91.54 116 | 59.80 262 | 92.10 135 | 88.54 266 | 60.42 295 | 72.96 160 | 93.28 102 | 48.27 242 | 92.80 237 | 78.89 110 | 86.50 121 | 90.06 191 |
|
HyFIR lowres test | | | 81.03 126 | 79.56 135 | 85.43 101 | 87.81 194 | 68.11 73 | 90.18 211 | 90.01 215 | 70.65 212 | 72.95 161 | 86.06 206 | 63.61 89 | 94.50 185 | 75.01 136 | 79.75 164 | 93.67 121 |
|
EPP-MVSNet | | | 81.79 115 | 81.52 106 | 82.61 169 | 88.77 172 | 60.21 257 | 93.02 104 | 93.66 70 | 68.52 237 | 72.90 162 | 90.39 154 | 72.19 26 | 94.96 166 | 74.93 137 | 79.29 168 | 92.67 148 |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 261 | 80.13 313 | | 67.65 243 | 72.79 163 | | 54.33 189 | | 59.83 254 | | 92.58 151 |
|
mvs-test1 | | | 78.74 167 | 77.95 160 | 81.14 209 | 83.22 264 | 57.13 293 | 93.96 65 | 87.78 279 | 75.42 99 | 72.68 164 | 90.80 146 | 45.08 264 | 94.54 182 | 75.08 134 | 77.49 185 | 91.74 167 |
|
TAMVS | | | 80.37 135 | 79.45 138 | 83.13 160 | 85.14 236 | 63.37 201 | 91.23 178 | 90.76 185 | 74.81 111 | 72.65 165 | 88.49 173 | 60.63 115 | 92.95 228 | 69.41 179 | 81.95 151 | 93.08 139 |
|
VPNet | | | 78.82 163 | 77.53 168 | 82.70 166 | 84.52 246 | 66.44 120 | 93.93 68 | 92.23 126 | 80.46 38 | 72.60 166 | 88.38 176 | 49.18 235 | 93.13 224 | 72.47 153 | 63.97 275 | 88.55 208 |
|
CLD-MVS | | | 82.73 98 | 82.35 98 | 83.86 143 | 87.90 193 | 67.65 85 | 95.45 26 | 92.18 133 | 85.06 7 | 72.58 167 | 92.27 128 | 52.46 206 | 95.78 135 | 84.18 66 | 79.06 169 | 88.16 216 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HQP_MVS | | | 80.34 136 | 79.75 131 | 82.12 186 | 86.94 208 | 62.42 220 | 93.13 98 | 91.31 164 | 78.81 60 | 72.53 168 | 89.14 169 | 50.66 220 | 95.55 152 | 76.74 123 | 78.53 175 | 88.39 212 |
|
plane_prior3 | | | | | | | 61.95 228 | | | 79.09 55 | 72.53 168 | | | | | | |
|
EPMVS | | | 78.49 173 | 75.98 190 | 86.02 78 | 91.21 124 | 69.68 40 | 80.23 311 | 91.20 168 | 75.25 105 | 72.48 170 | 78.11 294 | 54.65 183 | 93.69 215 | 57.66 263 | 83.04 143 | 94.69 80 |
|
1112_ss | | | 80.56 132 | 79.83 130 | 82.77 164 | 88.65 173 | 60.78 245 | 92.29 128 | 88.36 268 | 72.58 154 | 72.46 171 | 94.95 58 | 65.09 69 | 93.42 221 | 66.38 208 | 77.71 179 | 94.10 105 |
|
PVSNet | | 73.49 8 | 80.05 141 | 78.63 149 | 84.31 135 | 90.92 129 | 64.97 162 | 92.47 126 | 91.05 178 | 79.18 52 | 72.43 172 | 90.51 151 | 37.05 305 | 94.06 200 | 68.06 190 | 86.00 123 | 93.90 117 |
|
OMC-MVS | | | 78.67 170 | 77.91 162 | 80.95 218 | 85.76 228 | 57.40 291 | 88.49 247 | 88.67 261 | 73.85 127 | 72.43 172 | 92.10 130 | 49.29 234 | 94.55 181 | 72.73 149 | 77.89 178 | 90.91 183 |
|
MVS | | | 84.66 66 | 82.86 88 | 90.06 2 | 90.93 128 | 74.56 6 | 87.91 255 | 95.54 9 | 68.55 236 | 72.35 174 | 94.71 69 | 59.78 126 | 98.90 14 | 81.29 93 | 94.69 28 | 96.74 10 |
|
EI-MVSNet | | | 78.97 160 | 78.22 155 | 81.25 205 | 85.33 232 | 62.73 218 | 89.53 227 | 93.21 88 | 72.39 161 | 72.14 175 | 90.13 160 | 60.99 111 | 94.72 174 | 67.73 194 | 72.49 215 | 86.29 245 |
|
MVSTER | | | 82.47 102 | 82.05 99 | 83.74 145 | 92.68 83 | 69.01 51 | 91.90 146 | 93.21 88 | 79.83 41 | 72.14 175 | 85.71 210 | 74.72 13 | 94.72 174 | 75.72 129 | 72.49 215 | 87.50 221 |
|
RRT_MVS | | | 77.38 190 | 76.59 182 | 79.77 241 | 90.91 130 | 63.61 199 | 91.15 183 | 90.91 182 | 72.28 164 | 72.06 177 | 87.28 195 | 43.92 269 | 89.04 300 | 73.32 143 | 67.47 248 | 86.67 236 |
|
OPM-MVS | | | 79.00 159 | 78.09 156 | 81.73 194 | 83.52 262 | 63.83 189 | 91.64 160 | 90.30 201 | 76.36 91 | 71.97 178 | 89.93 163 | 46.30 258 | 95.17 162 | 75.10 133 | 77.70 180 | 86.19 248 |
|
Test_1112_low_res | | | 79.56 151 | 78.60 150 | 82.43 172 | 88.24 185 | 60.39 254 | 92.09 136 | 87.99 277 | 72.10 171 | 71.84 179 | 87.42 192 | 64.62 75 | 93.04 225 | 65.80 215 | 77.30 188 | 93.85 119 |
|
MDTV_nov1_ep13 | | | | 72.61 232 | | 89.06 165 | 68.48 62 | 80.33 309 | 90.11 209 | 71.84 181 | 71.81 180 | 75.92 313 | 53.01 202 | 93.92 209 | 48.04 295 | 73.38 207 | |
|
tfpn200view9 | | | 78.79 165 | 77.43 169 | 82.88 162 | 92.21 93 | 64.49 169 | 92.05 139 | 96.28 4 | 73.48 137 | 71.75 181 | 88.26 179 | 60.07 122 | 95.32 158 | 45.16 308 | 77.58 182 | 88.83 202 |
|
thres400 | | | 78.68 168 | 77.43 169 | 82.43 172 | 92.21 93 | 64.49 169 | 92.05 139 | 96.28 4 | 73.48 137 | 71.75 181 | 88.26 179 | 60.07 122 | 95.32 158 | 45.16 308 | 77.58 182 | 87.48 222 |
|
ACMMP |  | | 81.49 117 | 80.67 118 | 83.93 142 | 91.71 110 | 62.90 214 | 92.13 133 | 92.22 130 | 71.79 183 | 71.68 183 | 93.49 100 | 50.32 222 | 96.96 96 | 78.47 113 | 84.22 141 | 91.93 165 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CHOSEN 280x420 | | | 77.35 191 | 76.95 178 | 78.55 258 | 87.07 207 | 62.68 219 | 69.71 337 | 82.95 321 | 68.80 233 | 71.48 184 | 87.27 196 | 66.03 59 | 84.00 330 | 76.47 126 | 82.81 146 | 88.95 201 |
|
IS-MVSNet | | | 80.14 139 | 79.41 139 | 82.33 176 | 87.91 192 | 60.08 259 | 91.97 144 | 88.27 271 | 72.90 149 | 71.44 185 | 91.73 138 | 61.44 108 | 93.66 216 | 62.47 240 | 86.53 120 | 93.24 133 |
|
PatchmatchNet |  | | 77.46 188 | 74.63 203 | 85.96 80 | 89.55 155 | 70.35 27 | 79.97 315 | 89.55 229 | 72.23 166 | 70.94 186 | 76.91 305 | 57.03 152 | 92.79 238 | 54.27 273 | 81.17 157 | 94.74 79 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
thisisatest0530 | | | 81.15 121 | 80.07 124 | 84.39 133 | 88.26 183 | 65.63 142 | 91.40 167 | 94.62 34 | 71.27 200 | 70.93 187 | 89.18 167 | 72.47 24 | 96.04 128 | 65.62 217 | 76.89 192 | 91.49 170 |
|
test_part1 | | | 79.63 149 | 77.86 163 | 84.93 114 | 92.50 86 | 71.43 15 | 94.15 55 | 91.08 176 | 72.51 156 | 70.66 188 | 84.98 216 | 59.84 124 | 95.07 163 | 72.07 158 | 62.94 279 | 88.30 215 |
|
AdaColmap |  | | 78.94 161 | 77.00 177 | 84.76 120 | 96.34 16 | 65.86 135 | 92.66 120 | 87.97 278 | 62.18 284 | 70.56 189 | 92.37 126 | 43.53 271 | 97.35 69 | 64.50 226 | 82.86 144 | 91.05 182 |
|
cascas | | | 78.18 177 | 75.77 193 | 85.41 102 | 87.14 206 | 69.11 48 | 92.96 106 | 91.15 172 | 66.71 250 | 70.47 190 | 86.07 205 | 37.49 299 | 96.48 114 | 70.15 173 | 79.80 163 | 90.65 185 |
|
thres600view7 | | | 78.00 179 | 76.66 181 | 82.03 191 | 91.93 101 | 63.69 195 | 91.30 176 | 96.33 1 | 72.43 159 | 70.46 191 | 87.89 186 | 60.31 117 | 94.92 169 | 42.64 320 | 76.64 193 | 87.48 222 |
|
thres100view900 | | | 78.37 174 | 77.01 176 | 82.46 171 | 91.89 104 | 63.21 205 | 91.19 182 | 96.33 1 | 72.28 164 | 70.45 192 | 87.89 186 | 60.31 117 | 95.32 158 | 45.16 308 | 77.58 182 | 88.83 202 |
|
CVMVSNet | | | 74.04 232 | 74.27 211 | 73.33 302 | 85.33 232 | 43.94 345 | 89.53 227 | 88.39 267 | 54.33 323 | 70.37 193 | 90.13 160 | 49.17 236 | 84.05 328 | 61.83 244 | 79.36 166 | 91.99 164 |
|
GA-MVS | | | 78.33 176 | 76.23 187 | 84.65 125 | 83.65 260 | 66.30 124 | 91.44 164 | 90.14 208 | 76.01 93 | 70.32 194 | 84.02 226 | 42.50 274 | 94.72 174 | 70.98 165 | 77.00 191 | 92.94 143 |
|
mvs_anonymous | | | 81.36 119 | 79.99 127 | 85.46 99 | 90.39 139 | 68.40 64 | 86.88 269 | 90.61 190 | 74.41 113 | 70.31 195 | 84.67 220 | 63.79 85 | 92.32 258 | 73.13 144 | 85.70 124 | 95.67 41 |
|
IB-MVS | | 77.80 4 | 82.18 106 | 80.46 123 | 87.35 36 | 89.14 164 | 70.28 28 | 95.59 25 | 95.17 14 | 78.85 58 | 70.19 196 | 85.82 208 | 70.66 31 | 97.67 51 | 72.19 157 | 66.52 254 | 94.09 106 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
TAPA-MVS | | 70.22 12 | 74.94 226 | 73.53 222 | 79.17 252 | 90.40 138 | 52.07 318 | 89.19 235 | 89.61 228 | 62.69 280 | 70.07 197 | 92.67 118 | 48.89 240 | 94.32 188 | 38.26 334 | 79.97 162 | 91.12 181 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SCA | | | 75.82 214 | 72.76 229 | 85.01 113 | 86.63 212 | 70.08 29 | 81.06 305 | 89.19 241 | 71.60 192 | 70.01 198 | 77.09 303 | 45.53 261 | 90.25 286 | 60.43 250 | 73.27 208 | 94.68 81 |
|
XXY-MVS | | | 77.94 182 | 76.44 184 | 82.43 172 | 82.60 270 | 64.44 173 | 92.01 141 | 91.83 144 | 73.59 135 | 70.00 199 | 85.82 208 | 54.43 188 | 94.76 171 | 69.63 176 | 68.02 244 | 88.10 217 |
|
CR-MVSNet | | | 73.79 236 | 70.82 248 | 82.70 166 | 83.15 266 | 67.96 76 | 70.25 334 | 84.00 313 | 73.67 134 | 69.97 200 | 72.41 324 | 57.82 144 | 89.48 297 | 52.99 279 | 73.13 209 | 90.64 186 |
|
RPMNet | | | 70.42 259 | 65.68 275 | 84.63 127 | 83.15 266 | 67.96 76 | 70.25 334 | 90.45 191 | 46.83 342 | 69.97 200 | 65.10 341 | 56.48 165 | 95.30 161 | 35.79 339 | 73.13 209 | 90.64 186 |
|
UniMVSNet (Re) | | | 77.58 187 | 76.78 179 | 79.98 234 | 84.11 254 | 60.80 244 | 91.76 154 | 93.17 93 | 76.56 89 | 69.93 202 | 84.78 219 | 63.32 94 | 92.36 256 | 64.89 224 | 62.51 284 | 86.78 235 |
|
bset_n11_16_dypcd | | | 75.95 212 | 74.16 213 | 81.30 204 | 76.91 323 | 65.14 155 | 88.89 240 | 87.48 282 | 74.30 117 | 69.90 203 | 83.40 233 | 42.16 277 | 92.42 252 | 78.39 114 | 66.03 255 | 86.32 244 |
|
PCF-MVS | | 73.15 9 | 79.29 155 | 77.63 166 | 84.29 136 | 86.06 222 | 65.96 133 | 87.03 265 | 91.10 174 | 69.86 220 | 69.79 204 | 90.64 147 | 57.54 147 | 96.59 109 | 64.37 227 | 82.29 147 | 90.32 188 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
v2v482 | | | 77.42 189 | 75.65 195 | 82.73 165 | 80.38 287 | 67.13 101 | 91.85 149 | 90.23 205 | 75.09 107 | 69.37 205 | 83.39 234 | 53.79 194 | 94.44 186 | 71.77 160 | 65.00 264 | 86.63 240 |
|
PatchT | | | 69.11 268 | 65.37 279 | 80.32 225 | 82.07 274 | 63.68 196 | 67.96 343 | 87.62 281 | 50.86 331 | 69.37 205 | 65.18 340 | 57.09 150 | 88.53 304 | 41.59 323 | 66.60 253 | 88.74 205 |
|
Vis-MVSNet (Re-imp) | | | 79.24 156 | 79.57 134 | 78.24 263 | 88.46 177 | 52.29 317 | 90.41 204 | 89.12 246 | 74.24 118 | 69.13 207 | 91.91 133 | 65.77 63 | 90.09 293 | 59.00 259 | 88.09 105 | 92.33 156 |
|
BH-w/o | | | 80.49 134 | 79.30 142 | 84.05 141 | 90.83 133 | 64.36 179 | 93.60 83 | 89.42 233 | 74.35 115 | 69.09 208 | 90.15 159 | 55.23 177 | 95.61 146 | 64.61 225 | 86.43 122 | 92.17 163 |
|
baseline2 | | | 83.68 87 | 83.42 77 | 84.48 131 | 87.37 202 | 66.00 131 | 90.06 214 | 95.93 7 | 79.71 45 | 69.08 209 | 90.39 154 | 77.92 4 | 96.28 116 | 78.91 109 | 81.38 155 | 91.16 180 |
|
v1144 | | | 76.73 200 | 74.88 200 | 82.27 178 | 80.23 292 | 66.60 117 | 91.68 158 | 90.21 207 | 73.69 132 | 69.06 210 | 81.89 248 | 52.73 204 | 94.40 187 | 69.21 182 | 65.23 261 | 85.80 259 |
|
Baseline_NR-MVSNet | | | 73.99 233 | 72.83 228 | 77.48 270 | 80.78 282 | 59.29 270 | 91.79 151 | 84.55 308 | 68.85 232 | 68.99 211 | 80.70 269 | 56.16 166 | 92.04 264 | 62.67 238 | 60.98 299 | 81.11 312 |
|
FIs | | | 79.47 153 | 79.41 139 | 79.67 243 | 85.95 224 | 59.40 267 | 91.68 158 | 93.94 57 | 78.06 69 | 68.96 212 | 88.28 177 | 66.61 55 | 91.77 269 | 66.20 211 | 74.99 199 | 87.82 218 |
|
UniMVSNet_NR-MVSNet | | | 78.15 178 | 77.55 167 | 79.98 234 | 84.46 248 | 60.26 255 | 92.25 129 | 93.20 90 | 77.50 77 | 68.88 213 | 86.61 199 | 66.10 58 | 92.13 261 | 66.38 208 | 62.55 282 | 87.54 220 |
|
DU-MVS | | | 76.86 195 | 75.84 192 | 79.91 236 | 82.96 268 | 60.26 255 | 91.26 177 | 91.54 155 | 76.46 90 | 68.88 213 | 86.35 201 | 56.16 166 | 92.13 261 | 66.38 208 | 62.55 282 | 87.35 226 |
|
RRT_test8_iter05 | | | 80.61 130 | 79.62 133 | 83.60 152 | 91.87 107 | 66.90 108 | 93.42 93 | 93.68 68 | 77.09 82 | 68.83 215 | 85.63 211 | 66.82 52 | 95.42 155 | 76.46 127 | 62.74 281 | 88.48 209 |
|
miper_enhance_ethall | | | 78.86 162 | 77.97 159 | 81.54 199 | 88.00 191 | 65.17 152 | 91.41 165 | 89.15 244 | 75.19 106 | 68.79 216 | 83.98 227 | 67.17 48 | 92.82 235 | 72.73 149 | 65.30 258 | 86.62 241 |
|
XVG-OURS-SEG-HR | | | 74.70 228 | 73.08 226 | 79.57 246 | 78.25 314 | 57.33 292 | 80.49 307 | 87.32 284 | 63.22 274 | 68.76 217 | 90.12 162 | 44.89 266 | 91.59 272 | 70.55 171 | 74.09 203 | 89.79 194 |
|
XVG-OURS | | | 74.25 231 | 72.46 235 | 79.63 244 | 78.45 313 | 57.59 287 | 80.33 309 | 87.39 283 | 63.86 269 | 68.76 217 | 89.62 166 | 40.50 281 | 91.72 270 | 69.00 184 | 74.25 201 | 89.58 197 |
|
V42 | | | 76.46 202 | 74.55 206 | 82.19 182 | 79.14 304 | 67.82 80 | 90.26 209 | 89.42 233 | 73.75 130 | 68.63 219 | 81.89 248 | 51.31 215 | 94.09 197 | 71.69 162 | 64.84 265 | 84.66 275 |
|
PS-MVSNAJss | | | 77.26 192 | 76.31 186 | 80.13 231 | 80.64 285 | 59.16 271 | 90.63 201 | 91.06 177 | 72.80 150 | 68.58 220 | 84.57 222 | 53.55 196 | 93.96 207 | 72.97 145 | 71.96 219 | 87.27 229 |
|
v1192 | | | 75.98 210 | 73.92 218 | 82.15 183 | 79.73 294 | 66.24 127 | 91.22 179 | 89.75 221 | 72.67 152 | 68.49 221 | 81.42 258 | 49.86 228 | 94.27 191 | 67.08 199 | 65.02 263 | 85.95 256 |
|
tpm cat1 | | | 75.30 221 | 72.21 237 | 84.58 128 | 88.52 174 | 67.77 81 | 78.16 324 | 88.02 276 | 61.88 288 | 68.45 222 | 76.37 309 | 60.65 114 | 94.03 204 | 53.77 276 | 74.11 202 | 91.93 165 |
|
v144192 | | | 76.05 208 | 74.03 216 | 82.12 186 | 79.50 298 | 66.55 119 | 91.39 169 | 89.71 227 | 72.30 163 | 68.17 223 | 81.33 260 | 51.75 211 | 94.03 204 | 67.94 191 | 64.19 271 | 85.77 260 |
|
v1921920 | | | 75.63 218 | 73.49 223 | 82.06 190 | 79.38 299 | 66.35 122 | 91.07 187 | 89.48 230 | 71.98 172 | 67.99 224 | 81.22 263 | 49.16 237 | 93.90 210 | 66.56 204 | 64.56 270 | 85.92 258 |
|
Effi-MVS+-dtu | | | 76.14 204 | 75.28 198 | 78.72 257 | 83.22 264 | 55.17 305 | 89.87 220 | 87.78 279 | 75.42 99 | 67.98 225 | 81.43 257 | 45.08 264 | 92.52 249 | 75.08 134 | 71.63 220 | 88.48 209 |
|
114514_t | | | 79.17 157 | 77.67 164 | 83.68 149 | 95.32 26 | 65.53 145 | 92.85 111 | 91.60 154 | 63.49 271 | 67.92 226 | 90.63 149 | 46.65 254 | 95.72 142 | 67.01 200 | 83.54 142 | 89.79 194 |
|
tttt0517 | | | 79.50 152 | 78.53 151 | 82.41 175 | 87.22 204 | 61.43 236 | 89.75 223 | 94.76 27 | 69.29 226 | 67.91 227 | 88.06 184 | 72.92 21 | 95.63 144 | 62.91 236 | 73.90 206 | 90.16 190 |
|
3Dnovator | | 73.91 6 | 82.69 101 | 80.82 115 | 88.31 19 | 89.57 153 | 71.26 17 | 92.60 121 | 94.39 46 | 78.84 59 | 67.89 228 | 92.48 123 | 48.42 241 | 98.52 22 | 68.80 187 | 94.40 33 | 95.15 65 |
|
WR-MVS | | | 76.76 199 | 75.74 194 | 79.82 239 | 84.60 244 | 62.27 225 | 92.60 121 | 92.51 119 | 76.06 92 | 67.87 229 | 85.34 212 | 56.76 158 | 90.24 289 | 62.20 241 | 63.69 277 | 86.94 233 |
|
dp | | | 75.01 225 | 72.09 238 | 83.76 144 | 89.28 160 | 66.22 128 | 79.96 316 | 89.75 221 | 71.16 201 | 67.80 230 | 77.19 302 | 51.81 210 | 92.54 248 | 50.39 284 | 71.44 224 | 92.51 153 |
|
TranMVSNet+NR-MVSNet | | | 75.86 213 | 74.52 207 | 79.89 237 | 82.44 271 | 60.64 251 | 91.37 172 | 91.37 163 | 76.63 87 | 67.65 231 | 86.21 204 | 52.37 207 | 91.55 273 | 61.84 243 | 60.81 300 | 87.48 222 |
|
cl-mvsnet2 | | | 77.94 182 | 76.78 179 | 81.42 201 | 87.57 196 | 64.93 164 | 90.67 197 | 88.86 256 | 72.45 158 | 67.63 232 | 82.68 240 | 64.07 80 | 92.91 233 | 71.79 159 | 65.30 258 | 86.44 242 |
|
1314 | | | 80.70 129 | 78.95 147 | 85.94 81 | 87.77 195 | 67.56 86 | 87.91 255 | 92.55 118 | 72.17 169 | 67.44 233 | 93.09 104 | 50.27 224 | 97.04 87 | 71.68 163 | 87.64 108 | 93.23 134 |
|
3Dnovator+ | | 73.60 7 | 82.10 110 | 80.60 120 | 86.60 57 | 90.89 131 | 66.80 112 | 95.20 32 | 93.44 81 | 74.05 121 | 67.42 234 | 92.49 122 | 49.46 231 | 97.65 55 | 70.80 167 | 91.68 73 | 95.33 51 |
|
v1240 | | | 75.21 223 | 72.98 227 | 81.88 192 | 79.20 301 | 66.00 131 | 90.75 196 | 89.11 247 | 71.63 191 | 67.41 235 | 81.22 263 | 47.36 251 | 93.87 211 | 65.46 220 | 64.72 268 | 85.77 260 |
|
QAPM | | | 79.95 144 | 77.39 172 | 87.64 26 | 89.63 152 | 71.41 16 | 93.30 94 | 93.70 67 | 65.34 261 | 67.39 236 | 91.75 137 | 47.83 247 | 98.96 12 | 57.71 262 | 89.81 92 | 92.54 152 |
|
miper_ehance_all_eth | | | 77.60 186 | 76.44 184 | 81.09 215 | 85.70 229 | 64.41 176 | 90.65 198 | 88.64 263 | 72.31 162 | 67.37 237 | 82.52 241 | 64.77 74 | 92.64 246 | 70.67 169 | 65.30 258 | 86.24 247 |
|
v148 | | | 76.19 203 | 74.47 208 | 81.36 202 | 80.05 293 | 64.44 173 | 91.75 156 | 90.23 205 | 73.68 133 | 67.13 238 | 80.84 268 | 55.92 172 | 93.86 213 | 68.95 185 | 61.73 293 | 85.76 262 |
|
GBi-Net | | | 75.65 216 | 73.83 219 | 81.10 212 | 88.85 168 | 65.11 156 | 90.01 216 | 90.32 197 | 70.84 207 | 67.04 239 | 80.25 278 | 48.03 243 | 91.54 274 | 59.80 255 | 69.34 233 | 86.64 237 |
|
test1 | | | 75.65 216 | 73.83 219 | 81.10 212 | 88.85 168 | 65.11 156 | 90.01 216 | 90.32 197 | 70.84 207 | 67.04 239 | 80.25 278 | 48.03 243 | 91.54 274 | 59.80 255 | 69.34 233 | 86.64 237 |
|
FMVSNet3 | | | 77.73 185 | 76.04 189 | 82.80 163 | 91.20 125 | 68.99 52 | 91.87 147 | 91.99 137 | 73.35 139 | 67.04 239 | 83.19 236 | 56.62 162 | 92.14 260 | 59.80 255 | 69.34 233 | 87.28 228 |
|
BH-untuned | | | 78.68 168 | 77.08 174 | 83.48 156 | 89.84 148 | 63.74 192 | 92.70 116 | 88.59 264 | 71.57 193 | 66.83 242 | 88.65 172 | 51.75 211 | 95.39 156 | 59.03 258 | 84.77 131 | 91.32 177 |
|
FC-MVSNet-test | | | 77.99 180 | 78.08 157 | 77.70 266 | 84.89 241 | 55.51 303 | 90.27 208 | 93.75 66 | 76.87 83 | 66.80 243 | 87.59 189 | 65.71 64 | 90.23 290 | 62.89 237 | 73.94 204 | 87.37 225 |
|
cl_fuxian | | | 76.83 198 | 75.47 196 | 80.93 219 | 85.02 239 | 64.18 185 | 90.39 205 | 88.11 274 | 71.66 186 | 66.65 244 | 81.64 253 | 63.58 91 | 92.56 247 | 69.31 181 | 62.86 280 | 86.04 253 |
|
MVS_0304 | | | 68.99 271 | 67.23 268 | 74.28 297 | 80.36 288 | 52.54 315 | 87.01 267 | 86.36 289 | 59.89 301 | 66.22 245 | 73.56 320 | 24.25 339 | 88.03 308 | 57.34 264 | 70.11 228 | 82.27 305 |
|
FMVSNet2 | | | 76.07 205 | 74.01 217 | 82.26 180 | 88.85 168 | 67.66 84 | 91.33 174 | 91.61 153 | 70.84 207 | 65.98 246 | 82.25 244 | 48.03 243 | 92.00 265 | 58.46 260 | 68.73 239 | 87.10 230 |
|
eth_miper_zixun_eth | | | 75.96 211 | 74.40 209 | 80.66 221 | 84.66 243 | 63.02 208 | 89.28 232 | 88.27 271 | 71.88 177 | 65.73 247 | 81.65 252 | 59.45 129 | 92.81 236 | 68.13 189 | 60.53 302 | 86.14 249 |
|
ACMM | | 69.62 13 | 74.34 229 | 72.73 230 | 79.17 252 | 84.25 253 | 57.87 282 | 90.36 206 | 89.93 216 | 63.17 275 | 65.64 248 | 86.04 207 | 37.79 297 | 94.10 196 | 65.89 213 | 71.52 222 | 85.55 265 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
cl-mvsnet_ | | | 76.07 205 | 74.67 201 | 80.28 227 | 85.15 235 | 61.76 230 | 90.12 212 | 88.73 259 | 71.16 201 | 65.43 249 | 81.57 255 | 61.15 109 | 92.95 228 | 66.54 205 | 62.17 286 | 86.13 251 |
|
cl-mvsnet1 | | | 76.07 205 | 74.67 201 | 80.28 227 | 85.14 236 | 61.75 231 | 90.12 212 | 88.73 259 | 71.16 201 | 65.42 250 | 81.60 254 | 61.15 109 | 92.94 232 | 66.54 205 | 62.16 288 | 86.14 249 |
|
Fast-Effi-MVS+-dtu | | | 75.04 224 | 73.37 224 | 80.07 232 | 80.86 281 | 59.52 266 | 91.20 181 | 85.38 299 | 71.90 175 | 65.20 251 | 84.84 218 | 41.46 278 | 92.97 227 | 66.50 207 | 72.96 211 | 87.73 219 |
|
IterMVS-LS | | | 76.49 201 | 75.18 199 | 80.43 224 | 84.49 247 | 62.74 217 | 90.64 199 | 88.80 257 | 72.40 160 | 65.16 252 | 81.72 251 | 60.98 112 | 92.27 259 | 67.74 193 | 64.65 269 | 86.29 245 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
LPG-MVS_test | | | 75.82 214 | 74.58 205 | 79.56 247 | 84.31 251 | 59.37 268 | 90.44 202 | 89.73 224 | 69.49 223 | 64.86 253 | 88.42 174 | 38.65 287 | 94.30 189 | 72.56 151 | 72.76 212 | 85.01 272 |
|
LGP-MVS_train | | | | | 79.56 247 | 84.31 251 | 59.37 268 | | 89.73 224 | 69.49 223 | 64.86 253 | 88.42 174 | 38.65 287 | 94.30 189 | 72.56 151 | 72.76 212 | 85.01 272 |
|
UniMVSNet_ETH3D | | | 72.74 246 | 70.53 249 | 79.36 249 | 78.62 312 | 56.64 296 | 85.01 276 | 89.20 240 | 63.77 270 | 64.84 255 | 84.44 223 | 34.05 314 | 91.86 267 | 63.94 229 | 70.89 227 | 89.57 198 |
|
MIMVSNet | | | 71.64 252 | 68.44 261 | 81.23 206 | 81.97 275 | 64.44 173 | 73.05 331 | 88.80 257 | 69.67 222 | 64.59 256 | 74.79 317 | 32.79 317 | 87.82 310 | 53.99 274 | 76.35 195 | 91.42 172 |
|
OpenMVS |  | 70.45 11 | 78.54 172 | 75.92 191 | 86.41 68 | 85.93 227 | 71.68 14 | 92.74 113 | 92.51 119 | 66.49 252 | 64.56 257 | 91.96 132 | 43.88 270 | 98.10 35 | 54.61 271 | 90.65 87 | 89.44 200 |
|
ADS-MVSNet2 | | | 66.90 286 | 63.44 291 | 77.26 275 | 88.06 188 | 60.70 249 | 68.01 341 | 75.56 337 | 57.57 309 | 64.48 258 | 69.87 333 | 38.68 285 | 84.10 327 | 40.87 325 | 67.89 245 | 86.97 231 |
|
ADS-MVSNet | | | 68.54 274 | 64.38 287 | 81.03 216 | 88.06 188 | 66.90 108 | 68.01 341 | 84.02 312 | 57.57 309 | 64.48 258 | 69.87 333 | 38.68 285 | 89.21 299 | 40.87 325 | 67.89 245 | 86.97 231 |
|
Anonymous20231211 | | | 73.08 239 | 70.39 250 | 81.13 210 | 90.62 135 | 63.33 202 | 91.40 167 | 90.06 213 | 51.84 328 | 64.46 260 | 80.67 271 | 36.49 307 | 94.07 199 | 63.83 230 | 64.17 272 | 85.98 255 |
|
PLC |  | 68.80 14 | 75.23 222 | 73.68 221 | 79.86 238 | 92.93 74 | 58.68 275 | 90.64 199 | 88.30 269 | 60.90 292 | 64.43 261 | 90.53 150 | 42.38 275 | 94.57 178 | 56.52 265 | 76.54 194 | 86.33 243 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
tpmvs | | | 72.88 244 | 69.76 256 | 82.22 181 | 90.98 127 | 67.05 103 | 78.22 323 | 88.30 269 | 63.10 276 | 64.35 262 | 74.98 316 | 55.09 180 | 94.27 191 | 43.25 314 | 69.57 232 | 85.34 269 |
|
test_djsdf | | | 73.76 237 | 72.56 233 | 77.39 272 | 77.00 322 | 53.93 310 | 89.07 238 | 90.69 186 | 65.80 256 | 63.92 263 | 82.03 247 | 43.14 273 | 92.67 243 | 72.83 147 | 68.53 240 | 85.57 264 |
|
JIA-IIPM | | | 66.06 290 | 62.45 297 | 76.88 280 | 81.42 279 | 54.45 309 | 57.49 352 | 88.67 261 | 49.36 335 | 63.86 264 | 46.86 349 | 56.06 169 | 90.25 286 | 49.53 288 | 68.83 237 | 85.95 256 |
|
CNLPA | | | 74.31 230 | 72.30 236 | 80.32 225 | 91.49 118 | 61.66 232 | 90.85 192 | 80.72 327 | 56.67 317 | 63.85 265 | 90.64 147 | 46.75 253 | 90.84 281 | 53.79 275 | 75.99 197 | 88.47 211 |
|
PatchMatch-RL | | | 72.06 250 | 69.98 251 | 78.28 261 | 89.51 156 | 55.70 302 | 83.49 285 | 83.39 319 | 61.24 291 | 63.72 266 | 82.76 238 | 34.77 312 | 93.03 226 | 53.37 278 | 77.59 181 | 86.12 252 |
|
FMVSNet1 | | | 72.71 247 | 69.91 254 | 81.10 212 | 83.60 261 | 65.11 156 | 90.01 216 | 90.32 197 | 63.92 268 | 63.56 267 | 80.25 278 | 36.35 308 | 91.54 274 | 54.46 272 | 66.75 252 | 86.64 237 |
|
pmmvs4 | | | 73.92 234 | 71.81 241 | 80.25 229 | 79.17 302 | 65.24 150 | 87.43 262 | 87.26 286 | 67.64 244 | 63.46 268 | 83.91 228 | 48.96 239 | 91.53 277 | 62.94 235 | 65.49 257 | 83.96 279 |
|
pmmvs5 | | | 73.35 238 | 71.52 243 | 78.86 256 | 78.64 311 | 60.61 252 | 91.08 185 | 86.90 287 | 67.69 241 | 63.32 269 | 83.64 229 | 44.33 268 | 90.53 283 | 62.04 242 | 66.02 256 | 85.46 266 |
|
v8 | | | 75.35 220 | 73.26 225 | 81.61 198 | 80.67 284 | 66.82 110 | 89.54 226 | 89.27 237 | 71.65 187 | 63.30 270 | 80.30 277 | 54.99 181 | 94.06 200 | 67.33 198 | 62.33 285 | 83.94 280 |
|
v10 | | | 74.77 227 | 72.54 234 | 81.46 200 | 80.33 290 | 66.71 114 | 89.15 236 | 89.08 248 | 70.94 205 | 63.08 271 | 79.86 282 | 52.52 205 | 94.04 203 | 65.70 216 | 62.17 286 | 83.64 282 |
|
ACMP | | 71.68 10 | 75.58 219 | 74.23 212 | 79.62 245 | 84.97 240 | 59.64 263 | 90.80 194 | 89.07 249 | 70.39 214 | 62.95 272 | 87.30 194 | 38.28 290 | 93.87 211 | 72.89 146 | 71.45 223 | 85.36 268 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
pm-mvs1 | | | 72.89 243 | 71.09 246 | 78.26 262 | 79.10 305 | 57.62 286 | 90.80 194 | 89.30 236 | 67.66 242 | 62.91 273 | 81.78 250 | 49.11 238 | 92.95 228 | 60.29 252 | 58.89 310 | 84.22 278 |
|
jajsoiax | | | 73.05 240 | 71.51 244 | 77.67 267 | 77.46 319 | 54.83 306 | 88.81 242 | 90.04 214 | 69.13 230 | 62.85 274 | 83.51 231 | 31.16 325 | 92.75 239 | 70.83 166 | 69.80 229 | 85.43 267 |
|
mvs_tets | | | 72.71 247 | 71.11 245 | 77.52 268 | 77.41 320 | 54.52 308 | 88.45 249 | 89.76 220 | 68.76 235 | 62.70 275 | 83.26 235 | 29.49 329 | 92.71 240 | 70.51 172 | 69.62 231 | 85.34 269 |
|
MS-PatchMatch | | | 77.90 184 | 76.50 183 | 82.12 186 | 85.99 223 | 69.95 34 | 91.75 156 | 92.70 109 | 73.97 124 | 62.58 276 | 84.44 223 | 41.11 279 | 95.78 135 | 63.76 231 | 92.17 67 | 80.62 318 |
|
test0.0.03 1 | | | 72.76 245 | 72.71 231 | 72.88 306 | 80.25 291 | 47.99 336 | 91.22 179 | 89.45 231 | 71.51 196 | 62.51 277 | 87.66 188 | 53.83 192 | 85.06 325 | 50.16 285 | 67.84 247 | 85.58 263 |
|
anonymousdsp | | | 71.14 255 | 69.37 257 | 76.45 282 | 72.95 334 | 54.71 307 | 84.19 280 | 88.88 254 | 61.92 287 | 62.15 278 | 79.77 283 | 38.14 292 | 91.44 279 | 68.90 186 | 67.45 249 | 83.21 291 |
|
MVP-Stereo | | | 77.12 194 | 76.23 187 | 79.79 240 | 81.72 276 | 66.34 123 | 89.29 231 | 90.88 183 | 70.56 213 | 62.01 279 | 82.88 237 | 49.34 232 | 94.13 195 | 65.55 219 | 93.80 41 | 78.88 331 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CL-MVSNet_2432*1600 | | | 69.92 262 | 68.09 264 | 75.41 288 | 73.25 333 | 55.90 301 | 90.05 215 | 89.90 217 | 69.96 218 | 61.96 280 | 76.54 306 | 51.05 218 | 87.64 312 | 49.51 289 | 50.59 331 | 82.70 299 |
|
miper_lstm_enhance | | | 73.05 240 | 71.73 242 | 77.03 276 | 83.80 257 | 58.32 279 | 81.76 297 | 88.88 254 | 69.80 221 | 61.01 281 | 78.23 293 | 57.19 149 | 87.51 315 | 65.34 221 | 59.53 307 | 85.27 271 |
|
NR-MVSNet | | | 76.05 208 | 74.59 204 | 80.44 223 | 82.96 268 | 62.18 226 | 90.83 193 | 91.73 147 | 77.12 81 | 60.96 282 | 86.35 201 | 59.28 133 | 91.80 268 | 60.74 248 | 61.34 297 | 87.35 226 |
|
tfpnnormal | | | 70.10 260 | 67.36 266 | 78.32 260 | 83.45 263 | 60.97 242 | 88.85 241 | 92.77 107 | 64.85 263 | 60.83 283 | 78.53 290 | 43.52 272 | 93.48 219 | 31.73 349 | 61.70 294 | 80.52 319 |
|
IterMVS | | | 72.65 249 | 70.83 247 | 78.09 264 | 82.17 272 | 62.96 210 | 87.64 260 | 86.28 291 | 71.56 194 | 60.44 284 | 78.85 289 | 45.42 263 | 86.66 319 | 63.30 233 | 61.83 290 | 84.65 276 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
WR-MVS_H | | | 70.59 257 | 69.94 253 | 72.53 308 | 81.03 280 | 51.43 321 | 87.35 263 | 92.03 136 | 67.38 245 | 60.23 285 | 80.70 269 | 55.84 173 | 83.45 334 | 46.33 304 | 58.58 312 | 82.72 297 |
|
TransMVSNet (Re) | | | 70.07 261 | 67.66 265 | 77.31 274 | 80.62 286 | 59.13 272 | 91.78 153 | 84.94 304 | 65.97 255 | 60.08 286 | 80.44 274 | 50.78 219 | 91.87 266 | 48.84 291 | 45.46 338 | 80.94 314 |
|
CP-MVSNet | | | 70.50 258 | 69.91 254 | 72.26 311 | 80.71 283 | 51.00 324 | 87.23 264 | 90.30 201 | 67.84 239 | 59.64 287 | 82.69 239 | 50.23 225 | 82.30 342 | 51.28 281 | 59.28 308 | 83.46 287 |
|
IterMVS-SCA-FT | | | 71.55 253 | 69.97 252 | 76.32 283 | 81.48 277 | 60.67 250 | 87.64 260 | 85.99 295 | 66.17 254 | 59.50 288 | 78.88 288 | 45.53 261 | 83.65 332 | 62.58 239 | 61.93 289 | 84.63 277 |
|
Patchmtry | | | 67.53 283 | 63.93 288 | 78.34 259 | 82.12 273 | 64.38 177 | 68.72 338 | 84.00 313 | 48.23 339 | 59.24 289 | 72.41 324 | 57.82 144 | 89.27 298 | 46.10 305 | 56.68 317 | 81.36 311 |
|
D2MVS | | | 73.80 235 | 72.02 239 | 79.15 254 | 79.15 303 | 62.97 209 | 88.58 246 | 90.07 210 | 72.94 146 | 59.22 290 | 78.30 291 | 42.31 276 | 92.70 242 | 65.59 218 | 72.00 218 | 81.79 309 |
|
PS-CasMVS | | | 69.86 264 | 69.13 258 | 72.07 314 | 80.35 289 | 50.57 326 | 87.02 266 | 89.75 221 | 67.27 246 | 59.19 291 | 82.28 243 | 46.58 255 | 82.24 343 | 50.69 283 | 59.02 309 | 83.39 289 |
|
PEN-MVS | | | 69.46 266 | 68.56 260 | 72.17 313 | 79.27 300 | 49.71 330 | 86.90 268 | 89.24 238 | 67.24 249 | 59.08 292 | 82.51 242 | 47.23 252 | 83.54 333 | 48.42 293 | 57.12 313 | 83.25 290 |
|
RPSCF | | | 64.24 298 | 61.98 300 | 71.01 318 | 76.10 327 | 45.00 342 | 75.83 328 | 75.94 335 | 46.94 341 | 58.96 293 | 84.59 221 | 31.40 324 | 82.00 344 | 47.76 299 | 60.33 306 | 86.04 253 |
|
XVG-ACMP-BASELINE | | | 68.04 278 | 65.53 277 | 75.56 287 | 74.06 332 | 52.37 316 | 78.43 320 | 85.88 296 | 62.03 285 | 58.91 294 | 81.21 265 | 20.38 348 | 91.15 280 | 60.69 249 | 68.18 242 | 83.16 292 |
|
v7n | | | 71.31 254 | 68.65 259 | 79.28 250 | 76.40 325 | 60.77 246 | 86.71 270 | 89.45 231 | 64.17 267 | 58.77 295 | 78.24 292 | 44.59 267 | 93.54 217 | 57.76 261 | 61.75 292 | 83.52 285 |
|
ET-MVSNet_ETH3D | | | 84.01 78 | 83.15 84 | 86.58 59 | 90.78 134 | 70.89 21 | 94.74 45 | 94.62 34 | 81.44 29 | 58.19 296 | 93.64 96 | 73.64 19 | 92.35 257 | 82.66 78 | 78.66 174 | 96.50 19 |
|
DTE-MVSNet | | | 68.46 275 | 67.33 267 | 71.87 316 | 77.94 317 | 49.00 333 | 86.16 273 | 88.58 265 | 66.36 253 | 58.19 296 | 82.21 245 | 46.36 256 | 83.87 331 | 44.97 311 | 55.17 320 | 82.73 296 |
|
Anonymous20231206 | | | 67.53 283 | 65.78 273 | 72.79 307 | 74.95 329 | 47.59 338 | 88.23 251 | 87.32 284 | 61.75 290 | 58.07 298 | 77.29 300 | 37.79 297 | 87.29 317 | 42.91 316 | 63.71 276 | 83.48 286 |
|
KD-MVS_2432*1600 | | | 69.03 269 | 66.37 271 | 77.01 277 | 85.56 230 | 61.06 240 | 81.44 302 | 90.25 203 | 67.27 246 | 58.00 299 | 76.53 307 | 54.49 185 | 87.63 313 | 48.04 295 | 35.77 349 | 82.34 303 |
|
miper_refine_blended | | | 69.03 269 | 66.37 271 | 77.01 277 | 85.56 230 | 61.06 240 | 81.44 302 | 90.25 203 | 67.27 246 | 58.00 299 | 76.53 307 | 54.49 185 | 87.63 313 | 48.04 295 | 35.77 349 | 82.34 303 |
|
PVSNet_0 | | 68.08 15 | 71.81 251 | 68.32 263 | 82.27 178 | 84.68 242 | 62.31 224 | 88.68 244 | 90.31 200 | 75.84 94 | 57.93 301 | 80.65 272 | 37.85 296 | 94.19 194 | 69.94 174 | 29.05 353 | 90.31 189 |
|
DP-MVS | | | 69.90 263 | 66.48 269 | 80.14 230 | 95.36 25 | 62.93 211 | 89.56 224 | 76.11 334 | 50.27 333 | 57.69 302 | 85.23 213 | 39.68 283 | 95.73 138 | 33.35 343 | 71.05 226 | 81.78 310 |
|
pmmvs6 | | | 67.57 282 | 64.76 281 | 76.00 286 | 72.82 336 | 53.37 312 | 88.71 243 | 86.78 288 | 53.19 325 | 57.58 303 | 78.03 295 | 35.33 311 | 92.41 253 | 55.56 269 | 54.88 322 | 82.21 306 |
|
F-COLMAP | | | 70.66 256 | 68.44 261 | 77.32 273 | 86.37 218 | 55.91 300 | 88.00 253 | 86.32 290 | 56.94 315 | 57.28 304 | 88.07 183 | 33.58 315 | 92.49 250 | 51.02 282 | 68.37 241 | 83.55 283 |
|
Patchmatch-RL test | | | 68.17 277 | 64.49 285 | 79.19 251 | 71.22 338 | 53.93 310 | 70.07 336 | 71.54 346 | 69.22 227 | 56.79 305 | 62.89 343 | 56.58 163 | 88.61 301 | 69.53 178 | 52.61 326 | 95.03 73 |
|
LS3D | | | 69.17 267 | 66.40 270 | 77.50 269 | 91.92 102 | 56.12 299 | 85.12 275 | 80.37 328 | 46.96 340 | 56.50 306 | 87.51 191 | 37.25 300 | 93.71 214 | 32.52 348 | 79.40 165 | 82.68 300 |
|
ppachtmachnet_test | | | 67.72 280 | 63.70 289 | 79.77 241 | 78.92 306 | 66.04 130 | 88.68 244 | 82.90 322 | 60.11 299 | 55.45 307 | 75.96 312 | 39.19 284 | 90.55 282 | 39.53 329 | 52.55 327 | 82.71 298 |
|
LTVRE_ROB | | 59.60 19 | 66.27 289 | 63.54 290 | 74.45 294 | 84.00 256 | 51.55 320 | 67.08 344 | 83.53 316 | 58.78 306 | 54.94 308 | 80.31 276 | 34.54 313 | 93.23 223 | 40.64 327 | 68.03 243 | 78.58 334 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
MSDG | | | 69.54 265 | 65.73 274 | 80.96 217 | 85.11 238 | 63.71 194 | 84.19 280 | 83.28 320 | 56.95 314 | 54.50 309 | 84.03 225 | 31.50 323 | 96.03 129 | 42.87 318 | 69.13 236 | 83.14 293 |
|
EU-MVSNet | | | 64.01 299 | 63.01 293 | 67.02 328 | 74.40 331 | 38.86 354 | 83.27 289 | 86.19 293 | 45.11 344 | 54.27 310 | 81.15 266 | 36.91 306 | 80.01 347 | 48.79 292 | 57.02 314 | 82.19 307 |
|
testgi | | | 64.48 297 | 62.87 295 | 69.31 321 | 71.24 337 | 40.62 349 | 85.49 274 | 79.92 329 | 65.36 260 | 54.18 311 | 83.49 232 | 23.74 342 | 84.55 326 | 41.60 322 | 60.79 301 | 82.77 295 |
|
ITE_SJBPF | | | | | 70.43 319 | 74.44 330 | 47.06 340 | | 77.32 332 | 60.16 298 | 54.04 312 | 83.53 230 | 23.30 343 | 84.01 329 | 43.07 315 | 61.58 296 | 80.21 324 |
|
OpenMVS_ROB |  | 61.12 18 | 66.39 288 | 62.92 294 | 76.80 281 | 76.51 324 | 57.77 283 | 89.22 233 | 83.41 318 | 55.48 321 | 53.86 313 | 77.84 296 | 26.28 338 | 93.95 208 | 34.90 341 | 68.76 238 | 78.68 333 |
|
FMVSNet5 | | | 68.04 278 | 65.66 276 | 75.18 290 | 84.43 249 | 57.89 281 | 83.54 284 | 86.26 292 | 61.83 289 | 53.64 314 | 73.30 321 | 37.15 303 | 85.08 324 | 48.99 290 | 61.77 291 | 82.56 302 |
|
ACMH+ | | 65.35 16 | 67.65 281 | 64.55 283 | 76.96 279 | 84.59 245 | 57.10 294 | 88.08 252 | 80.79 326 | 58.59 308 | 53.00 315 | 81.09 267 | 26.63 337 | 92.95 228 | 46.51 302 | 61.69 295 | 80.82 315 |
|
our_test_3 | | | 68.29 276 | 64.69 282 | 79.11 255 | 78.92 306 | 64.85 165 | 88.40 250 | 85.06 302 | 60.32 297 | 52.68 316 | 76.12 311 | 40.81 280 | 89.80 296 | 44.25 313 | 55.65 318 | 82.67 301 |
|
test_0402 | | | 64.54 296 | 61.09 302 | 74.92 291 | 84.10 255 | 60.75 247 | 87.95 254 | 79.71 330 | 52.03 327 | 52.41 317 | 77.20 301 | 32.21 321 | 91.64 271 | 23.14 352 | 61.03 298 | 72.36 344 |
|
LCM-MVSNet-Re | | | 72.93 242 | 71.84 240 | 76.18 285 | 88.49 175 | 48.02 335 | 80.07 314 | 70.17 347 | 73.96 125 | 52.25 318 | 80.09 281 | 49.98 226 | 88.24 306 | 67.35 196 | 84.23 140 | 92.28 159 |
|
test20.03 | | | 63.83 300 | 62.65 296 | 67.38 327 | 70.58 342 | 39.94 350 | 86.57 271 | 84.17 310 | 63.29 273 | 51.86 319 | 77.30 299 | 37.09 304 | 82.47 340 | 38.87 333 | 54.13 324 | 79.73 325 |
|
OurMVSNet-221017-0 | | | 64.68 295 | 62.17 299 | 72.21 312 | 76.08 328 | 47.35 339 | 80.67 306 | 81.02 325 | 56.19 318 | 51.60 320 | 79.66 285 | 27.05 336 | 88.56 303 | 53.60 277 | 53.63 325 | 80.71 317 |
|
ACMH | | 63.93 17 | 68.62 272 | 64.81 280 | 80.03 233 | 85.22 234 | 63.25 203 | 87.72 258 | 84.66 307 | 60.83 293 | 51.57 321 | 79.43 287 | 27.29 335 | 94.96 166 | 41.76 321 | 64.84 265 | 81.88 308 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DSMNet-mixed | | | 56.78 315 | 54.44 318 | 63.79 330 | 63.21 350 | 29.44 358 | 64.43 346 | 64.10 354 | 42.12 348 | 51.32 322 | 71.60 329 | 31.76 322 | 75.04 349 | 36.23 336 | 65.20 262 | 86.87 234 |
|
pmmvs-eth3d | | | 65.53 293 | 62.32 298 | 75.19 289 | 69.39 344 | 59.59 264 | 82.80 294 | 83.43 317 | 62.52 282 | 51.30 323 | 72.49 322 | 32.86 316 | 87.16 318 | 55.32 270 | 50.73 330 | 78.83 332 |
|
PM-MVS | | | 59.40 313 | 56.59 314 | 67.84 323 | 63.63 349 | 41.86 346 | 76.76 326 | 63.22 355 | 59.01 305 | 51.07 324 | 72.27 327 | 11.72 356 | 83.25 336 | 61.34 245 | 50.28 332 | 78.39 335 |
|
Patchmatch-test | | | 65.86 291 | 60.94 303 | 80.62 222 | 83.75 258 | 58.83 273 | 58.91 351 | 75.26 339 | 44.50 346 | 50.95 325 | 77.09 303 | 58.81 138 | 87.90 309 | 35.13 340 | 64.03 273 | 95.12 67 |
|
SixPastTwentyTwo | | | 64.92 294 | 61.78 301 | 74.34 296 | 78.74 309 | 49.76 329 | 83.42 288 | 79.51 331 | 62.86 277 | 50.27 326 | 77.35 298 | 30.92 327 | 90.49 284 | 45.89 306 | 47.06 336 | 82.78 294 |
|
EG-PatchMatch MVS | | | 68.55 273 | 65.41 278 | 77.96 265 | 78.69 310 | 62.93 211 | 89.86 221 | 89.17 242 | 60.55 294 | 50.27 326 | 77.73 297 | 22.60 344 | 94.06 200 | 47.18 301 | 72.65 214 | 76.88 338 |
|
ambc | | | | | 69.61 320 | 61.38 353 | 41.35 347 | 49.07 355 | 85.86 297 | | 50.18 328 | 66.40 338 | 10.16 357 | 88.14 307 | 45.73 307 | 44.20 339 | 79.32 329 |
|
DIV-MVS_2432*1600 | | | 60.87 309 | 58.60 309 | 67.68 325 | 66.13 347 | 39.93 351 | 75.63 329 | 84.70 306 | 57.32 312 | 49.57 329 | 68.45 336 | 29.55 328 | 82.87 338 | 48.09 294 | 47.94 335 | 80.25 323 |
|
UnsupCasMVSNet_eth | | | 65.79 292 | 63.10 292 | 73.88 298 | 70.71 340 | 50.29 328 | 81.09 304 | 89.88 218 | 72.58 154 | 49.25 330 | 74.77 318 | 32.57 319 | 87.43 316 | 55.96 268 | 41.04 344 | 83.90 281 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 304 | 59.65 306 | 72.98 305 | 81.44 278 | 53.00 314 | 83.75 283 | 75.53 338 | 48.34 338 | 48.81 331 | 81.40 259 | 24.14 340 | 90.30 285 | 32.95 345 | 60.52 303 | 75.65 341 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
USDC | | | 67.43 285 | 64.51 284 | 76.19 284 | 77.94 317 | 55.29 304 | 78.38 321 | 85.00 303 | 73.17 141 | 48.36 332 | 80.37 275 | 21.23 346 | 92.48 251 | 52.15 280 | 64.02 274 | 80.81 316 |
|
Anonymous20240521 | | | 62.09 305 | 59.08 308 | 71.10 317 | 67.19 346 | 48.72 334 | 83.91 282 | 85.23 301 | 50.38 332 | 47.84 333 | 71.22 332 | 20.74 347 | 85.51 323 | 46.47 303 | 58.75 311 | 79.06 330 |
|
K. test v3 | | | 63.09 303 | 59.61 307 | 73.53 301 | 76.26 326 | 49.38 332 | 83.27 289 | 77.15 333 | 64.35 265 | 47.77 334 | 72.32 326 | 28.73 331 | 87.79 311 | 49.93 287 | 36.69 348 | 83.41 288 |
|
UnsupCasMVSNet_bld | | | 61.60 307 | 57.71 311 | 73.29 303 | 68.73 345 | 51.64 319 | 78.61 319 | 89.05 250 | 57.20 313 | 46.11 335 | 61.96 344 | 28.70 332 | 88.60 302 | 50.08 286 | 38.90 346 | 79.63 326 |
|
AllTest | | | 61.66 306 | 58.06 310 | 72.46 309 | 79.57 295 | 51.42 322 | 80.17 312 | 68.61 349 | 51.25 329 | 45.88 336 | 81.23 261 | 19.86 349 | 86.58 320 | 38.98 331 | 57.01 315 | 79.39 327 |
|
TestCases | | | | | 72.46 309 | 79.57 295 | 51.42 322 | | 68.61 349 | 51.25 329 | 45.88 336 | 81.23 261 | 19.86 349 | 86.58 320 | 38.98 331 | 57.01 315 | 79.39 327 |
|
lessismore_v0 | | | | | 73.72 300 | 72.93 335 | 47.83 337 | | 61.72 357 | | 45.86 338 | 73.76 319 | 28.63 333 | 89.81 294 | 47.75 300 | 31.37 352 | 83.53 284 |
|
N_pmnet | | | 50.55 319 | 49.11 322 | 54.88 334 | 77.17 321 | 4.02 367 | 84.36 279 | 2.00 366 | 48.59 336 | 45.86 338 | 68.82 335 | 32.22 320 | 82.80 339 | 31.58 350 | 51.38 329 | 77.81 336 |
|
MVS-HIRNet | | | 60.25 311 | 55.55 317 | 74.35 295 | 84.37 250 | 56.57 297 | 71.64 333 | 74.11 340 | 34.44 351 | 45.54 340 | 42.24 353 | 31.11 326 | 89.81 294 | 40.36 328 | 76.10 196 | 76.67 339 |
|
CMPMVS |  | 48.56 21 | 66.77 287 | 64.41 286 | 73.84 299 | 70.65 341 | 50.31 327 | 77.79 325 | 85.73 298 | 45.54 343 | 44.76 341 | 82.14 246 | 35.40 310 | 90.14 292 | 63.18 234 | 74.54 200 | 81.07 313 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MIMVSNet1 | | | 60.16 312 | 57.33 313 | 68.67 322 | 69.71 343 | 44.13 344 | 78.92 318 | 84.21 309 | 55.05 322 | 44.63 342 | 71.85 328 | 23.91 341 | 81.54 346 | 32.63 347 | 55.03 321 | 80.35 320 |
|
LF4IMVS | | | 54.01 318 | 52.12 319 | 59.69 331 | 62.41 352 | 39.91 352 | 68.59 339 | 68.28 351 | 42.96 347 | 44.55 343 | 75.18 315 | 14.09 355 | 68.39 352 | 41.36 324 | 51.68 328 | 70.78 345 |
|
pmmvs3 | | | 55.51 316 | 51.50 321 | 67.53 326 | 57.90 355 | 50.93 325 | 80.37 308 | 73.66 341 | 40.63 349 | 44.15 344 | 64.75 342 | 16.30 351 | 78.97 348 | 44.77 312 | 40.98 345 | 72.69 343 |
|
new-patchmatchnet | | | 59.30 314 | 56.48 315 | 67.79 324 | 65.86 348 | 44.19 343 | 82.47 295 | 81.77 323 | 59.94 300 | 43.65 345 | 66.20 339 | 27.67 334 | 81.68 345 | 39.34 330 | 41.40 343 | 77.50 337 |
|
TDRefinement | | | 55.28 317 | 51.58 320 | 66.39 329 | 59.53 354 | 46.15 341 | 76.23 327 | 72.80 342 | 44.60 345 | 42.49 346 | 76.28 310 | 15.29 352 | 82.39 341 | 33.20 344 | 43.75 340 | 70.62 346 |
|
TinyColmap | | | 60.32 310 | 56.42 316 | 72.00 315 | 78.78 308 | 53.18 313 | 78.36 322 | 75.64 336 | 52.30 326 | 41.59 347 | 75.82 314 | 14.76 354 | 88.35 305 | 35.84 337 | 54.71 323 | 74.46 342 |
|
YYNet1 | | | 63.76 302 | 60.14 305 | 74.62 293 | 78.06 316 | 60.19 258 | 83.46 287 | 83.99 315 | 56.18 319 | 39.25 348 | 71.56 331 | 37.18 302 | 83.34 335 | 42.90 317 | 48.70 334 | 80.32 321 |
|
MDA-MVSNet_test_wron | | | 63.78 301 | 60.16 304 | 74.64 292 | 78.15 315 | 60.41 253 | 83.49 285 | 84.03 311 | 56.17 320 | 39.17 349 | 71.59 330 | 37.22 301 | 83.24 337 | 42.87 318 | 48.73 333 | 80.26 322 |
|
new_pmnet | | | 49.31 320 | 46.44 323 | 57.93 332 | 62.84 351 | 40.74 348 | 68.47 340 | 62.96 356 | 36.48 350 | 35.09 350 | 57.81 346 | 14.97 353 | 72.18 350 | 32.86 346 | 46.44 337 | 60.88 350 |
|
MDA-MVSNet-bldmvs | | | 61.54 308 | 57.70 312 | 73.05 304 | 79.53 297 | 57.00 295 | 83.08 292 | 81.23 324 | 57.57 309 | 34.91 351 | 72.45 323 | 32.79 317 | 86.26 322 | 35.81 338 | 41.95 342 | 75.89 340 |
|
FPMVS | | | 45.64 321 | 43.10 324 | 53.23 336 | 51.42 357 | 36.46 355 | 64.97 345 | 71.91 344 | 29.13 353 | 27.53 352 | 61.55 345 | 9.83 358 | 65.01 356 | 16.00 355 | 55.58 319 | 58.22 351 |
|
LCM-MVSNet | | | 40.54 322 | 35.79 325 | 54.76 335 | 36.92 362 | 30.81 357 | 51.41 353 | 69.02 348 | 22.07 355 | 24.63 353 | 45.37 351 | 4.56 364 | 65.81 354 | 33.67 342 | 34.50 351 | 67.67 347 |
|
PMMVS2 | | | 37.93 324 | 33.61 327 | 50.92 337 | 46.31 359 | 24.76 361 | 60.55 350 | 50.05 358 | 28.94 354 | 20.93 354 | 47.59 348 | 4.41 365 | 65.13 355 | 25.14 351 | 18.55 355 | 62.87 349 |
|
tmp_tt | | | 22.26 330 | 23.75 332 | 17.80 344 | 5.23 366 | 12.06 366 | 35.26 356 | 39.48 361 | 2.82 362 | 18.94 355 | 44.20 352 | 22.23 345 | 24.64 362 | 36.30 335 | 9.31 359 | 16.69 356 |
|
ANet_high | | | 40.27 323 | 35.20 326 | 55.47 333 | 34.74 363 | 34.47 356 | 63.84 347 | 71.56 345 | 48.42 337 | 18.80 356 | 41.08 354 | 9.52 359 | 64.45 357 | 20.18 353 | 8.66 360 | 67.49 348 |
|
DeepMVS_CX |  | | | | 34.71 341 | 51.45 356 | 24.73 362 | | 28.48 365 | 31.46 352 | 17.49 357 | 52.75 347 | 5.80 362 | 42.60 361 | 18.18 354 | 19.42 354 | 36.81 353 |
|
Gipuma |  | | 34.91 325 | 31.44 328 | 45.30 338 | 70.99 339 | 39.64 353 | 19.85 359 | 72.56 343 | 20.10 357 | 16.16 358 | 21.47 359 | 5.08 363 | 71.16 351 | 13.07 356 | 43.70 341 | 25.08 355 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 26.43 22 | 31.84 326 | 28.16 329 | 42.89 339 | 25.87 365 | 27.58 359 | 50.92 354 | 49.78 359 | 21.37 356 | 14.17 359 | 40.81 355 | 2.01 366 | 66.62 353 | 9.61 358 | 38.88 347 | 34.49 354 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 24.84 23 | 24.35 328 | 19.77 334 | 38.09 340 | 34.56 364 | 26.92 360 | 26.57 357 | 38.87 362 | 11.73 360 | 11.37 360 | 27.44 356 | 1.37 367 | 50.42 358 | 11.41 357 | 14.60 356 | 36.93 352 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 24.61 327 | 24.00 331 | 26.45 342 | 43.74 360 | 18.44 364 | 60.86 348 | 39.66 360 | 15.11 358 | 9.53 361 | 22.10 358 | 6.52 361 | 46.94 359 | 8.31 359 | 10.14 357 | 13.98 357 |
|
EMVS | | | 23.76 329 | 23.20 333 | 25.46 343 | 41.52 361 | 16.90 365 | 60.56 349 | 38.79 363 | 14.62 359 | 8.99 362 | 20.24 361 | 7.35 360 | 45.82 360 | 7.25 360 | 9.46 358 | 13.64 358 |
|
wuyk23d | | | 11.30 332 | 10.95 335 | 12.33 345 | 48.05 358 | 19.89 363 | 25.89 358 | 1.92 367 | 3.58 361 | 3.12 363 | 1.37 363 | 0.64 368 | 15.77 363 | 6.23 361 | 7.77 361 | 1.35 359 |
|
testmvs | | | 7.23 334 | 9.62 337 | 0.06 347 | 0.04 367 | 0.02 369 | 84.98 277 | 0.02 368 | 0.03 363 | 0.18 364 | 1.21 364 | 0.01 370 | 0.02 364 | 0.14 362 | 0.01 362 | 0.13 361 |
|
test123 | | | 6.92 335 | 9.21 338 | 0.08 346 | 0.03 368 | 0.05 368 | 81.65 300 | 0.01 369 | 0.02 364 | 0.14 365 | 0.85 365 | 0.03 369 | 0.02 364 | 0.12 363 | 0.00 363 | 0.16 360 |
|
uanet_test | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 363 | 0.00 362 |
|
cdsmvs_eth3d_5k | | | 19.86 331 | 26.47 330 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 93.45 79 | 0.00 365 | 0.00 366 | 95.27 47 | 49.56 230 | 0.00 366 | 0.00 364 | 0.00 363 | 0.00 362 |
|
pcd_1.5k_mvsjas | | | 4.46 336 | 5.95 339 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 53.55 196 | 0.00 366 | 0.00 364 | 0.00 363 | 0.00 362 |
|
sosnet-low-res | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 363 | 0.00 362 |
|
sosnet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 363 | 0.00 362 |
|
uncertanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 363 | 0.00 362 |
|
Regformer | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 363 | 0.00 362 |
|
ab-mvs-re | | | 7.91 333 | 10.55 336 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 94.95 58 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 363 | 0.00 362 |
|
uanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 363 | 0.00 362 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 11 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
save fliter | | | | | | 93.84 49 | 67.89 78 | 95.05 38 | 92.66 112 | 78.19 66 | | | | | | | |
|
test_0728_SECOND | | | | | 88.70 13 | 96.45 11 | 70.43 26 | 96.64 8 | 94.37 47 | | | | | 99.15 2 | 91.91 10 | 94.90 19 | 96.51 18 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 81 |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 143 | | | | 94.68 81 |
|
sam_mvs | | | | | | | | | | | | | 54.91 182 | | | | |
|
MTGPA |  | | | | | | | | 92.23 126 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 317 | | | | 20.70 360 | 53.05 201 | 91.50 278 | 60.43 250 | | |
|
test_post | | | | | | | | | | | | 23.01 357 | 56.49 164 | 92.67 243 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 337 | 57.62 146 | 90.25 286 | | | |
|
MTMP | | | | | | | | 93.77 78 | 32.52 364 | | | | | | | | |
|
gm-plane-assit | | | | | | 88.42 179 | 67.04 104 | | | 78.62 63 | | 91.83 134 | | 97.37 67 | 76.57 125 | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 20 | 94.96 16 | 95.29 56 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 51 | 94.75 26 | 95.33 51 |
|
test_prior4 | | | | | | | 67.18 100 | 93.92 69 | | | | | | | | | |
|
test_prior | | | | | 86.42 66 | 94.71 33 | 67.35 93 | | 93.10 97 | | | | | 96.84 102 | | | 95.05 70 |
|
新几何2 | | | | | | | | 91.41 165 | | | | | | | | | |
|
旧先验1 | | | | | | 91.94 100 | 60.74 248 | | 91.50 158 | | | 94.36 77 | 65.23 67 | | | 91.84 70 | 94.55 86 |
|
无先验 | | | | | | | | 92.71 115 | 92.61 116 | 62.03 285 | | | | 97.01 88 | 66.63 202 | | 93.97 112 |
|
原ACMM2 | | | | | | | | 92.01 141 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 123 | 61.26 246 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 60 | | | | |
|
testdata1 | | | | | | | | 89.21 234 | | 77.55 76 | | | | | | | |
|
plane_prior7 | | | | | | 86.94 208 | 61.51 234 | | | | | | | | | | |
|
plane_prior6 | | | | | | 87.23 203 | 62.32 223 | | | | | | 50.66 220 | | | | |
|
plane_prior5 | | | | | | | | | 91.31 164 | | | | | 95.55 152 | 76.74 123 | 78.53 175 | 88.39 212 |
|
plane_prior4 | | | | | | | | | | | | 89.14 169 | | | | | |
|
plane_prior2 | | | | | | | | 93.13 98 | | 78.81 60 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 205 | | | | | | | | | | | |
|
plane_prior | | | | | | | 62.42 220 | 93.85 73 | | 79.38 48 | | | | | | 78.80 172 | |
|
n2 | | | | | | | | | 0.00 370 | | | | | | | | |
|
nn | | | | | | | | | 0.00 370 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 353 | | | | | | | | |
|
test11 | | | | | | | | | 93.01 99 | | | | | | | | |
|
door | | | | | | | | | 66.57 352 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 197 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 120 | | |
|
HQP3-MVS | | | | | | | | | 91.70 150 | | | | | | | 78.90 170 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 213 | | | | |
|
NP-MVS | | | | | | 87.41 200 | 63.04 207 | | | | | 90.30 156 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 220 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 230 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 190 | | | | |
|