thres100view900 | | | 78.37 177 | 77.01 179 | 82.46 174 | 91.89 104 | 63.21 206 | 91.19 185 | 96.33 1 | 72.28 166 | 70.45 195 | 87.89 189 | 60.31 118 | 95.32 160 | 45.16 311 | 77.58 185 | 88.83 205 |
|
thres600view7 | | | 78.00 182 | 76.66 184 | 82.03 194 | 91.93 101 | 63.69 196 | 91.30 179 | 96.33 1 | 72.43 161 | 70.46 194 | 87.89 189 | 60.31 118 | 94.92 171 | 42.64 323 | 76.64 196 | 87.48 225 |
|
thres200 | | | 79.66 150 | 78.33 154 | 83.66 153 | 92.54 85 | 65.82 139 | 93.06 102 | 96.31 3 | 74.90 112 | 73.30 160 | 88.66 174 | 59.67 129 | 95.61 147 | 47.84 301 | 78.67 176 | 89.56 202 |
|
tfpn200view9 | | | 78.79 168 | 77.43 171 | 82.88 165 | 92.21 93 | 64.49 170 | 92.05 142 | 96.28 4 | 73.48 139 | 71.75 183 | 88.26 182 | 60.07 123 | 95.32 160 | 45.16 311 | 77.58 185 | 88.83 205 |
|
thres400 | | | 78.68 171 | 77.43 171 | 82.43 175 | 92.21 93 | 64.49 170 | 92.05 142 | 96.28 4 | 73.48 139 | 71.75 183 | 88.26 182 | 60.07 123 | 95.32 160 | 45.16 311 | 77.58 185 | 87.48 225 |
|
VNet | | | 86.20 46 | 85.65 53 | 87.84 23 | 93.92 47 | 69.99 32 | 95.73 24 | 95.94 6 | 78.43 66 | 86.00 39 | 93.07 109 | 58.22 142 | 97.00 90 | 85.22 61 | 84.33 139 | 96.52 17 |
|
baseline2 | | | 83.68 89 | 83.42 79 | 84.48 132 | 87.37 205 | 66.00 132 | 90.06 217 | 95.93 7 | 79.71 46 | 69.08 212 | 90.39 156 | 77.92 4 | 96.28 116 | 78.91 111 | 81.38 157 | 91.16 183 |
|
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 41 | 96.26 24 | 72.84 22 | 99.38 1 | 92.64 4 | 95.93 8 | 97.08 7 |
|
MVS | | | 84.66 68 | 82.86 90 | 90.06 2 | 90.93 127 | 74.56 6 | 87.91 258 | 95.54 9 | 68.55 239 | 72.35 176 | 94.71 70 | 59.78 128 | 98.90 14 | 81.29 95 | 94.69 28 | 96.74 10 |
|
DPM-MVS | | | 90.70 2 | 90.52 5 | 91.24 1 | 89.68 152 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 8 | 97.22 4 | 79.93 3 | 99.10 7 | 83.12 76 | 97.64 2 | 97.94 1 |
|
CSCG | | | 86.87 37 | 86.26 42 | 88.72 12 | 95.05 30 | 70.79 22 | 93.83 79 | 95.33 11 | 68.48 241 | 77.63 122 | 94.35 83 | 73.04 20 | 98.45 25 | 84.92 64 | 93.71 47 | 96.92 9 |
|
WTY-MVS | | | 86.32 44 | 85.81 49 | 87.85 22 | 92.82 78 | 69.37 46 | 95.20 33 | 95.25 12 | 82.71 15 | 81.91 74 | 94.73 69 | 67.93 42 | 97.63 56 | 79.55 104 | 82.25 150 | 96.54 16 |
|
IU-MVS | | | | | | 96.46 10 | 69.91 36 | | 95.18 13 | 80.75 37 | 95.28 1 | | | | 92.34 6 | 95.36 12 | 96.47 20 |
|
IB-MVS | | 77.80 4 | 82.18 108 | 80.46 125 | 87.35 36 | 89.14 166 | 70.28 28 | 95.59 27 | 95.17 14 | 78.85 59 | 70.19 199 | 85.82 211 | 70.66 31 | 97.67 51 | 72.19 159 | 66.52 257 | 94.09 106 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Regformer-1 | | | 87.24 29 | 87.60 27 | 86.15 78 | 95.14 27 | 65.83 138 | 93.95 68 | 95.12 15 | 82.11 21 | 84.25 56 | 95.73 33 | 67.88 43 | 98.35 29 | 85.60 58 | 88.64 102 | 94.26 95 |
|
Regformer-3 | | | 85.80 52 | 85.92 47 | 85.46 100 | 94.17 42 | 65.09 160 | 92.95 109 | 95.11 16 | 81.13 34 | 81.68 76 | 95.04 56 | 65.82 63 | 98.32 30 | 83.02 77 | 84.36 136 | 92.97 144 |
|
PHI-MVS | | | 86.83 39 | 86.85 39 | 86.78 51 | 93.47 61 | 65.55 145 | 95.39 30 | 95.10 17 | 71.77 186 | 85.69 44 | 96.52 15 | 62.07 105 | 98.77 17 | 86.06 56 | 95.60 10 | 96.03 33 |
|
test_yl | | | 84.28 73 | 83.16 84 | 87.64 26 | 94.52 36 | 69.24 47 | 95.78 19 | 95.09 18 | 69.19 231 | 81.09 82 | 92.88 116 | 57.00 156 | 97.44 63 | 81.11 96 | 81.76 154 | 96.23 28 |
|
DCV-MVSNet | | | 84.28 73 | 83.16 84 | 87.64 26 | 94.52 36 | 69.24 47 | 95.78 19 | 95.09 18 | 69.19 231 | 81.09 82 | 92.88 116 | 57.00 156 | 97.44 63 | 81.11 96 | 81.76 154 | 96.23 28 |
|
Regformer-2 | | | 87.00 36 | 87.43 29 | 85.71 93 | 95.14 27 | 64.73 167 | 93.95 68 | 94.95 20 | 81.69 26 | 84.03 61 | 95.73 33 | 67.35 47 | 98.19 33 | 85.40 60 | 88.64 102 | 94.20 98 |
|
sss | | | 82.71 102 | 82.38 99 | 83.73 149 | 89.25 163 | 59.58 268 | 92.24 133 | 94.89 21 | 77.96 72 | 79.86 97 | 92.38 127 | 56.70 162 | 97.05 85 | 77.26 124 | 80.86 162 | 94.55 85 |
|
EPNet | | | 87.84 20 | 88.38 15 | 86.23 75 | 93.30 63 | 66.05 130 | 95.26 31 | 94.84 22 | 87.09 3 | 88.06 22 | 94.53 73 | 66.79 53 | 97.34 70 | 83.89 72 | 91.68 75 | 95.29 55 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Regformer-4 | | | 85.45 55 | 85.69 52 | 84.73 122 | 94.17 42 | 63.23 205 | 92.95 109 | 94.83 23 | 80.66 38 | 81.29 79 | 95.04 56 | 65.12 70 | 98.08 36 | 82.74 79 | 84.36 136 | 92.88 148 |
|
CNVR-MVS | | | 90.32 4 | 90.89 4 | 88.61 16 | 96.76 7 | 70.65 23 | 96.47 13 | 94.83 23 | 84.83 8 | 89.07 19 | 96.80 12 | 70.86 29 | 99.06 11 | 92.64 4 | 95.71 9 | 96.12 30 |
|
EI-MVSNet-Vis-set | | | 83.77 86 | 83.67 72 | 84.06 141 | 92.79 81 | 63.56 201 | 91.76 157 | 94.81 25 | 79.65 47 | 77.87 118 | 94.09 90 | 63.35 95 | 97.90 43 | 79.35 105 | 79.36 169 | 90.74 187 |
|
ETH3 D test6400 | | | 90.27 5 | 90.44 6 | 89.75 6 | 96.82 6 | 74.33 7 | 95.89 18 | 94.80 26 | 77.13 82 | 89.13 18 | 97.38 2 | 74.49 15 | 98.48 24 | 92.32 9 | 95.98 6 | 96.46 21 |
|
tttt0517 | | | 79.50 154 | 78.53 153 | 82.41 178 | 87.22 207 | 61.43 239 | 89.75 226 | 94.76 27 | 69.29 229 | 67.91 230 | 88.06 187 | 72.92 21 | 95.63 145 | 62.91 239 | 73.90 209 | 90.16 193 |
|
GG-mvs-BLEND | | | | | 86.53 63 | 91.91 103 | 69.67 42 | 75.02 333 | 94.75 28 | | 78.67 115 | 90.85 147 | 77.91 5 | 94.56 182 | 72.25 156 | 93.74 45 | 95.36 50 |
|
gg-mvs-nofinetune | | | 77.18 196 | 74.31 213 | 85.80 88 | 91.42 118 | 68.36 67 | 71.78 335 | 94.72 29 | 49.61 337 | 77.12 129 | 45.92 354 | 77.41 6 | 93.98 209 | 67.62 197 | 93.16 54 | 95.05 69 |
|
thisisatest0515 | | | 83.41 90 | 82.49 97 | 86.16 77 | 89.46 159 | 68.26 71 | 93.54 88 | 94.70 30 | 74.31 118 | 75.75 138 | 90.92 145 | 72.62 23 | 96.52 113 | 69.64 177 | 81.50 156 | 93.71 122 |
|
EI-MVSNet-UG-set | | | 83.14 94 | 82.96 87 | 83.67 152 | 92.28 90 | 63.19 208 | 91.38 174 | 94.68 31 | 79.22 52 | 76.60 133 | 93.75 96 | 62.64 101 | 97.76 49 | 78.07 119 | 78.01 180 | 90.05 195 |
|
VPA-MVSNet | | | 79.03 160 | 78.00 160 | 82.11 192 | 85.95 227 | 64.48 172 | 93.22 99 | 94.66 32 | 75.05 110 | 74.04 156 | 84.95 220 | 52.17 211 | 93.52 221 | 74.90 141 | 67.04 253 | 88.32 217 |
|
NCCC | | | 89.07 12 | 89.46 12 | 87.91 21 | 96.60 9 | 69.05 51 | 96.38 14 | 94.64 33 | 84.42 9 | 86.74 31 | 96.20 25 | 66.56 56 | 98.76 18 | 89.03 30 | 94.56 29 | 95.92 37 |
|
ET-MVSNet_ETH3D | | | 84.01 80 | 83.15 86 | 86.58 60 | 90.78 133 | 70.89 21 | 94.74 47 | 94.62 34 | 81.44 29 | 58.19 299 | 93.64 98 | 73.64 19 | 92.35 260 | 82.66 80 | 78.66 177 | 96.50 19 |
|
thisisatest0530 | | | 81.15 123 | 80.07 126 | 84.39 134 | 88.26 186 | 65.63 143 | 91.40 170 | 94.62 34 | 71.27 202 | 70.93 190 | 89.18 170 | 72.47 24 | 96.04 127 | 65.62 219 | 76.89 195 | 91.49 173 |
|
DVP-MVS | | | 89.41 10 | 89.73 11 | 88.45 18 | 96.40 14 | 69.99 32 | 96.64 8 | 94.52 36 | 71.92 175 | 90.55 12 | 96.93 10 | 73.77 17 | 99.08 9 | 91.91 10 | 94.90 19 | 96.29 26 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
HY-MVS | | 76.49 5 | 84.28 73 | 83.36 82 | 87.02 44 | 92.22 92 | 67.74 84 | 84.65 281 | 94.50 37 | 79.15 54 | 82.23 72 | 87.93 188 | 66.88 51 | 96.94 98 | 80.53 99 | 82.20 151 | 96.39 24 |
|
HPM-MVS++ |  | | 89.37 11 | 89.95 10 | 87.64 26 | 95.10 29 | 68.23 73 | 95.24 32 | 94.49 38 | 82.43 17 | 88.90 20 | 96.35 21 | 71.89 28 | 98.63 20 | 88.76 32 | 96.40 4 | 96.06 31 |
|
MG-MVS | | | 87.11 32 | 86.27 41 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 38 | 78.74 63 | 83.87 64 | 92.94 112 | 64.34 80 | 96.94 98 | 75.19 134 | 94.09 36 | 95.66 42 |
|
SED-MVS | | | 89.94 7 | 90.36 7 | 88.70 13 | 96.45 11 | 69.38 44 | 96.89 4 | 94.44 40 | 71.65 189 | 92.11 3 | 97.21 5 | 76.79 7 | 99.11 4 | 92.34 6 | 95.36 12 | 97.62 2 |
|
test_241102_ONE | | | | | | 96.45 11 | 69.38 44 | | 94.44 40 | 71.65 189 | 92.11 3 | 97.05 8 | 76.79 7 | 99.11 4 | | | |
|
DWT-MVSNet_test | | | 83.95 82 | 82.80 91 | 87.41 34 | 92.90 75 | 70.07 31 | 89.12 240 | 94.42 42 | 82.15 20 | 77.64 121 | 91.77 137 | 70.81 30 | 96.22 118 | 65.03 225 | 81.36 158 | 95.94 35 |
|
test_241102_TWO | | | | | | | | | 94.41 43 | 71.65 189 | 92.07 5 | 97.21 5 | 74.58 14 | 99.11 4 | 92.34 6 | 95.36 12 | 96.59 13 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 8 | 91.38 3 | 84.72 124 | 93.00 73 | 58.16 283 | 96.72 7 | 94.41 43 | 86.50 5 | 90.25 14 | 97.83 1 | 75.46 12 | 98.67 19 | 92.78 3 | 95.49 11 | 97.32 4 |
|
DELS-MVS | | | 90.05 6 | 90.09 8 | 89.94 4 | 93.14 70 | 73.88 8 | 97.01 3 | 94.40 45 | 88.32 2 | 85.71 43 | 94.91 65 | 74.11 16 | 98.91 13 | 87.26 47 | 95.94 7 | 97.03 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator | | 73.91 6 | 82.69 103 | 80.82 117 | 88.31 19 | 89.57 155 | 71.26 17 | 92.60 123 | 94.39 46 | 78.84 60 | 67.89 231 | 92.48 125 | 48.42 244 | 98.52 22 | 68.80 189 | 94.40 33 | 95.15 64 |
|
test_0728_SECOND | | | | | 88.70 13 | 96.45 11 | 70.43 26 | 96.64 8 | 94.37 47 | | | | | 99.15 2 | 91.91 10 | 94.90 19 | 96.51 18 |
|
test0726 | | | | | | 96.40 14 | 69.99 32 | 96.76 6 | 94.33 48 | 71.92 175 | 91.89 6 | 97.11 7 | 73.77 17 | | | | |
|
MSP-MVS | | | 90.38 3 | 91.87 1 | 85.88 84 | 92.83 76 | 64.03 188 | 93.06 102 | 94.33 48 | 82.19 19 | 93.65 2 | 96.15 27 | 85.89 1 | 97.19 79 | 91.02 15 | 97.75 1 | 96.43 22 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MAR-MVS | | | 84.18 77 | 83.43 77 | 86.44 66 | 96.25 19 | 65.93 135 | 94.28 53 | 94.27 50 | 74.41 115 | 79.16 106 | 95.61 37 | 53.99 194 | 98.88 16 | 69.62 179 | 93.26 53 | 94.50 90 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ETH3D cwj APD-0.16 | | | 87.06 33 | 87.18 34 | 86.71 54 | 91.99 99 | 67.48 93 | 92.97 107 | 94.21 51 | 71.48 200 | 85.72 42 | 96.32 23 | 68.13 38 | 98.00 38 | 89.06 28 | 94.70 27 | 94.65 83 |
|
9.14 | | | | 87.63 25 | | 93.86 48 | | 94.41 50 | 94.18 52 | 72.76 153 | 86.21 34 | 96.51 16 | 66.64 54 | 97.88 45 | 90.08 19 | 94.04 37 | |
|
DPE-MVS |  | | 88.77 13 | 89.21 13 | 87.45 33 | 96.26 18 | 67.56 88 | 94.17 54 | 94.15 53 | 68.77 237 | 90.74 11 | 97.27 3 | 76.09 10 | 98.49 23 | 90.58 17 | 94.91 18 | 96.30 25 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ETH3D-3000-0.1 | | | 87.61 23 | 87.89 20 | 86.75 52 | 93.58 57 | 67.21 99 | 94.31 52 | 94.14 54 | 72.92 150 | 87.13 26 | 96.62 14 | 67.81 44 | 97.94 39 | 90.13 18 | 94.42 32 | 95.09 67 |
|
DeepC-MVS_fast | | 79.48 2 | 87.95 18 | 88.00 19 | 87.79 24 | 95.86 24 | 68.32 68 | 95.74 22 | 94.11 55 | 83.82 11 | 83.49 65 | 96.19 26 | 64.53 78 | 98.44 26 | 83.42 75 | 94.88 22 | 96.61 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SMA-MVS |  | | 88.14 14 | 88.29 17 | 87.67 25 | 93.21 67 | 68.72 59 | 93.85 75 | 94.03 56 | 74.18 121 | 91.74 7 | 96.67 13 | 65.61 66 | 98.42 28 | 89.24 25 | 96.08 5 | 95.88 39 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
FIs | | | 79.47 155 | 79.41 141 | 79.67 246 | 85.95 227 | 59.40 270 | 91.68 161 | 93.94 57 | 78.06 71 | 68.96 215 | 88.28 180 | 66.61 55 | 91.77 272 | 66.20 213 | 74.99 202 | 87.82 221 |
|
SteuartSystems-ACMMP | | | 86.82 40 | 86.90 37 | 86.58 60 | 90.42 138 | 66.38 123 | 96.09 17 | 93.87 58 | 77.73 75 | 84.01 62 | 95.66 35 | 63.39 94 | 97.94 39 | 87.40 44 | 93.55 50 | 95.42 47 |
Skip Steuart: Steuart Systems R&D Blog. |
TSAR-MVS + GP. | | | 87.96 17 | 88.37 16 | 86.70 56 | 93.51 60 | 65.32 149 | 95.15 35 | 93.84 59 | 78.17 70 | 85.93 40 | 94.80 68 | 75.80 11 | 98.21 31 | 89.38 22 | 88.78 100 | 96.59 13 |
|
CANet | | | 89.61 9 | 89.99 9 | 88.46 17 | 94.39 38 | 69.71 40 | 96.53 12 | 93.78 60 | 86.89 4 | 89.68 15 | 95.78 31 | 65.94 60 | 99.10 7 | 92.99 2 | 93.91 41 | 96.58 15 |
|
APDe-MVS | | | 87.54 24 | 87.84 21 | 86.65 57 | 96.07 21 | 66.30 126 | 94.84 45 | 93.78 60 | 69.35 228 | 88.39 21 | 96.34 22 | 67.74 45 | 97.66 54 | 90.62 16 | 93.44 51 | 96.01 34 |
|
TESTMET0.1,1 | | | 82.41 105 | 81.98 103 | 83.72 150 | 88.08 190 | 63.74 193 | 92.70 118 | 93.77 62 | 79.30 50 | 77.61 123 | 87.57 193 | 58.19 143 | 94.08 200 | 73.91 144 | 86.68 121 | 93.33 132 |
|
hse-mvs3 | | | 83.01 96 | 82.56 96 | 84.35 135 | 89.34 160 | 62.02 229 | 92.72 116 | 93.76 63 | 81.45 27 | 82.73 69 | 92.25 131 | 60.11 121 | 97.13 83 | 87.69 39 | 62.96 281 | 93.91 116 |
|
SF-MVS | | | 87.03 34 | 87.09 35 | 86.84 47 | 92.70 82 | 67.45 94 | 93.64 83 | 93.76 63 | 70.78 212 | 86.25 32 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 33 | 94.56 29 | 95.28 57 |
|
MVS_111021_HR | | | 86.19 47 | 85.80 50 | 87.37 35 | 93.17 69 | 69.79 38 | 93.99 66 | 93.76 63 | 79.08 57 | 78.88 111 | 93.99 93 | 62.25 104 | 98.15 34 | 85.93 57 | 91.15 84 | 94.15 103 |
|
FC-MVSNet-test | | | 77.99 183 | 78.08 159 | 77.70 269 | 84.89 244 | 55.51 306 | 90.27 211 | 93.75 66 | 76.87 85 | 66.80 246 | 87.59 192 | 65.71 65 | 90.23 293 | 62.89 240 | 73.94 207 | 87.37 228 |
|
QAPM | | | 79.95 146 | 77.39 175 | 87.64 26 | 89.63 153 | 71.41 16 | 93.30 96 | 93.70 67 | 65.34 264 | 67.39 239 | 91.75 139 | 47.83 250 | 98.96 12 | 57.71 265 | 89.81 94 | 92.54 155 |
|
RRT_test8_iter05 | | | 80.61 132 | 79.62 135 | 83.60 154 | 91.87 107 | 66.90 110 | 93.42 95 | 93.68 68 | 77.09 84 | 68.83 218 | 85.63 214 | 66.82 52 | 95.42 157 | 76.46 129 | 62.74 284 | 88.48 212 |
|
DeepC-MVS | | 77.85 3 | 85.52 54 | 85.24 57 | 86.37 70 | 88.80 174 | 66.64 117 | 92.15 135 | 93.68 68 | 81.07 35 | 76.91 132 | 93.64 98 | 62.59 102 | 98.44 26 | 85.50 59 | 92.84 59 | 94.03 111 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EPP-MVSNet | | | 81.79 117 | 81.52 108 | 82.61 172 | 88.77 175 | 60.21 260 | 93.02 106 | 93.66 70 | 68.52 240 | 72.90 164 | 90.39 156 | 72.19 26 | 94.96 168 | 74.93 139 | 79.29 171 | 92.67 150 |
|
PVSNet_BlendedMVS | | | 83.38 91 | 83.43 77 | 83.22 161 | 93.76 51 | 67.53 90 | 94.06 62 | 93.61 71 | 79.13 55 | 81.00 85 | 85.14 217 | 63.19 97 | 97.29 73 | 87.08 48 | 73.91 208 | 84.83 277 |
|
PVSNet_Blended | | | 86.73 41 | 86.86 38 | 86.31 73 | 93.76 51 | 67.53 90 | 96.33 16 | 93.61 71 | 82.34 18 | 81.00 85 | 93.08 107 | 63.19 97 | 97.29 73 | 87.08 48 | 91.38 80 | 94.13 104 |
|
alignmvs | | | 87.28 28 | 86.97 36 | 88.24 20 | 91.30 121 | 71.14 20 | 95.61 26 | 93.56 73 | 79.30 50 | 87.07 29 | 95.25 50 | 68.43 34 | 96.93 100 | 87.87 37 | 84.33 139 | 96.65 11 |
|
TSAR-MVS + MP. | | | 88.11 16 | 88.64 14 | 86.54 62 | 91.73 109 | 68.04 76 | 90.36 209 | 93.55 74 | 82.89 13 | 91.29 9 | 92.89 115 | 72.27 25 | 96.03 128 | 87.99 36 | 94.77 23 | 95.54 46 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TEST9 | | | | | | 94.18 40 | 67.28 97 | 94.16 55 | 93.51 75 | 71.75 187 | 85.52 45 | 95.33 43 | 68.01 39 | 97.27 77 | | | |
|
train_agg | | | 87.21 30 | 87.42 30 | 86.60 58 | 94.18 40 | 67.28 97 | 94.16 55 | 93.51 75 | 71.87 180 | 85.52 45 | 95.33 43 | 68.19 36 | 97.27 77 | 89.09 26 | 94.90 19 | 95.25 62 |
|
ZD-MVS | | | | | | 96.63 8 | 65.50 147 | | 93.50 77 | 70.74 213 | 85.26 49 | 95.19 54 | 64.92 75 | 97.29 73 | 87.51 41 | 93.01 56 | |
|
ACMMP_NAP | | | 86.05 48 | 85.80 50 | 86.80 50 | 91.58 113 | 67.53 90 | 91.79 154 | 93.49 78 | 74.93 111 | 84.61 52 | 95.30 45 | 59.42 132 | 97.92 41 | 86.13 55 | 94.92 17 | 94.94 74 |
|
testtj | | | 86.62 42 | 86.66 40 | 86.50 64 | 96.95 5 | 65.70 140 | 94.41 50 | 93.45 79 | 67.74 243 | 86.19 35 | 96.39 20 | 64.38 79 | 97.91 42 | 87.33 45 | 93.14 55 | 95.90 38 |
|
cdsmvs_eth3d_5k | | | 19.86 335 | 26.47 334 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 93.45 79 | 0.00 369 | 0.00 370 | 95.27 48 | 49.56 233 | 0.00 370 | 0.00 368 | 0.00 367 | 0.00 366 |
|
3Dnovator+ | | 73.60 7 | 82.10 112 | 80.60 122 | 86.60 58 | 90.89 130 | 66.80 114 | 95.20 33 | 93.44 81 | 74.05 123 | 67.42 237 | 92.49 124 | 49.46 234 | 97.65 55 | 70.80 169 | 91.68 75 | 95.33 51 |
|
test_8 | | | | | | 94.19 39 | 67.19 100 | 94.15 57 | 93.42 82 | 71.87 180 | 85.38 47 | 95.35 42 | 68.19 36 | 96.95 97 | | | |
|
ZNCC-MVS | | | 85.33 57 | 85.08 59 | 86.06 79 | 93.09 72 | 65.65 142 | 93.89 73 | 93.41 83 | 73.75 132 | 79.94 95 | 94.68 71 | 60.61 117 | 98.03 37 | 82.63 82 | 93.72 46 | 94.52 89 |
|
原ACMM1 | | | | | 84.42 133 | 93.21 67 | 64.27 184 | | 93.40 84 | 65.39 262 | 79.51 101 | 92.50 122 | 58.11 144 | 96.69 108 | 65.27 224 | 93.96 38 | 92.32 160 |
|
agg_prior1 | | | 87.02 35 | 87.26 32 | 86.28 74 | 94.16 44 | 66.97 108 | 94.08 61 | 93.31 85 | 71.85 182 | 84.49 54 | 95.39 41 | 68.91 33 | 96.75 106 | 88.84 31 | 94.32 34 | 95.13 65 |
|
agg_prior | | | | | | 94.16 44 | 66.97 108 | | 93.31 85 | | 84.49 54 | | | 96.75 106 | | | |
|
PS-MVSNAJ | | | 88.14 14 | 87.61 26 | 89.71 7 | 92.06 95 | 76.72 1 | 95.75 21 | 93.26 87 | 83.86 10 | 89.55 16 | 96.06 28 | 53.55 199 | 97.89 44 | 91.10 13 | 93.31 52 | 94.54 87 |
|
EI-MVSNet | | | 78.97 162 | 78.22 157 | 81.25 208 | 85.33 235 | 62.73 220 | 89.53 230 | 93.21 88 | 72.39 163 | 72.14 177 | 90.13 162 | 60.99 112 | 94.72 176 | 67.73 196 | 72.49 218 | 86.29 248 |
|
MVSTER | | | 82.47 104 | 82.05 101 | 83.74 147 | 92.68 83 | 69.01 52 | 91.90 149 | 93.21 88 | 79.83 42 | 72.14 177 | 85.71 213 | 74.72 13 | 94.72 176 | 75.72 131 | 72.49 218 | 87.50 224 |
|
UniMVSNet_NR-MVSNet | | | 78.15 181 | 77.55 169 | 79.98 237 | 84.46 251 | 60.26 258 | 92.25 132 | 93.20 90 | 77.50 79 | 68.88 216 | 86.61 202 | 66.10 58 | 92.13 264 | 66.38 210 | 62.55 285 | 87.54 223 |
|
HFP-MVS | | | 84.73 66 | 84.40 67 | 85.72 91 | 93.75 53 | 65.01 161 | 93.50 90 | 93.19 91 | 72.19 169 | 79.22 104 | 94.93 62 | 59.04 137 | 97.67 51 | 81.55 89 | 92.21 66 | 94.49 91 |
|
#test# | | | 84.98 63 | 84.74 63 | 85.72 91 | 93.75 53 | 65.01 161 | 94.09 60 | 93.19 91 | 73.55 138 | 79.22 104 | 94.93 62 | 59.04 137 | 97.67 51 | 82.66 80 | 92.21 66 | 94.49 91 |
|
UniMVSNet (Re) | | | 77.58 190 | 76.78 182 | 79.98 237 | 84.11 257 | 60.80 247 | 91.76 157 | 93.17 93 | 76.56 91 | 69.93 205 | 84.78 222 | 63.32 96 | 92.36 259 | 64.89 226 | 62.51 287 | 86.78 238 |
|
ACMMPR | | | 84.37 70 | 84.06 69 | 85.28 107 | 93.56 58 | 64.37 179 | 93.50 90 | 93.15 94 | 72.19 169 | 78.85 113 | 94.86 66 | 56.69 163 | 97.45 62 | 81.55 89 | 92.20 68 | 94.02 112 |
|
GST-MVS | | | 84.63 69 | 84.29 68 | 85.66 95 | 92.82 78 | 65.27 150 | 93.04 104 | 93.13 95 | 73.20 142 | 78.89 108 | 94.18 89 | 59.41 133 | 97.85 46 | 81.45 91 | 92.48 65 | 93.86 119 |
|
xiu_mvs_v2_base | | | 87.92 19 | 87.38 31 | 89.55 10 | 91.41 120 | 76.43 3 | 95.74 22 | 93.12 96 | 83.53 12 | 89.55 16 | 95.95 29 | 53.45 203 | 97.68 50 | 91.07 14 | 92.62 61 | 94.54 87 |
|
test_prior3 | | | 87.38 27 | 87.70 24 | 86.42 67 | 94.71 33 | 67.35 95 | 95.10 37 | 93.10 97 | 75.40 103 | 85.25 50 | 95.61 37 | 67.94 40 | 96.84 102 | 87.47 42 | 94.77 23 | 95.05 69 |
|
test_prior | | | | | 86.42 67 | 94.71 33 | 67.35 95 | | 93.10 97 | | | | | 96.84 102 | | | 95.05 69 |
|
test11 | | | | | | | | | 93.01 99 | | | | | | | | |
|
CostFormer | | | 82.33 106 | 81.15 111 | 85.86 86 | 89.01 169 | 68.46 64 | 82.39 299 | 93.01 99 | 75.59 98 | 80.25 92 | 81.57 258 | 72.03 27 | 94.96 168 | 79.06 109 | 77.48 189 | 94.16 102 |
|
PAPR | | | 85.15 59 | 84.47 64 | 87.18 39 | 96.02 22 | 68.29 69 | 91.85 152 | 93.00 101 | 76.59 90 | 79.03 107 | 95.00 58 | 61.59 108 | 97.61 58 | 78.16 118 | 89.00 99 | 95.63 43 |
|
region2R | | | 84.36 71 | 84.03 70 | 85.36 105 | 93.54 59 | 64.31 181 | 93.43 93 | 92.95 102 | 72.16 172 | 78.86 112 | 94.84 67 | 56.97 158 | 97.53 60 | 81.38 93 | 92.11 70 | 94.24 96 |
|
test12 | | | | | 87.09 42 | 94.60 35 | 68.86 55 | | 92.91 103 | | 82.67 71 | | 65.44 68 | 97.55 59 | | 93.69 48 | 94.84 76 |
|
lupinMVS | | | 87.74 21 | 87.77 23 | 87.63 30 | 89.24 164 | 71.18 18 | 96.57 10 | 92.90 104 | 82.70 16 | 87.13 26 | 95.27 48 | 64.99 72 | 95.80 135 | 89.34 23 | 91.80 73 | 95.93 36 |
|
PAPM_NR | | | 82.97 97 | 81.84 104 | 86.37 70 | 94.10 46 | 66.76 115 | 87.66 262 | 92.84 105 | 69.96 221 | 74.07 155 | 93.57 100 | 63.10 99 | 97.50 61 | 70.66 172 | 90.58 90 | 94.85 75 |
|
CDPH-MVS | | | 85.71 53 | 85.46 55 | 86.46 65 | 94.75 32 | 67.19 100 | 93.89 73 | 92.83 106 | 70.90 208 | 83.09 67 | 95.28 46 | 63.62 90 | 97.36 68 | 80.63 98 | 94.18 35 | 94.84 76 |
|
tfpnnormal | | | 70.10 263 | 67.36 269 | 78.32 263 | 83.45 266 | 60.97 245 | 88.85 244 | 92.77 107 | 64.85 266 | 60.83 286 | 78.53 293 | 43.52 275 | 93.48 222 | 31.73 353 | 61.70 297 | 80.52 322 |
|
PAPM | | | 85.89 51 | 85.46 55 | 87.18 39 | 88.20 189 | 72.42 12 | 92.41 129 | 92.77 107 | 82.11 21 | 80.34 91 | 93.07 109 | 68.27 35 | 95.02 166 | 78.39 116 | 93.59 49 | 94.09 106 |
|
MS-PatchMatch | | | 77.90 187 | 76.50 186 | 82.12 189 | 85.99 226 | 69.95 35 | 91.75 159 | 92.70 109 | 73.97 126 | 62.58 279 | 84.44 226 | 41.11 282 | 95.78 136 | 63.76 233 | 92.17 69 | 80.62 321 |
|
MSLP-MVS++ | | | 86.27 45 | 85.91 48 | 87.35 36 | 92.01 98 | 68.97 54 | 95.04 41 | 92.70 109 | 79.04 58 | 81.50 78 | 96.50 17 | 58.98 139 | 96.78 104 | 83.49 74 | 93.93 39 | 96.29 26 |
|
ab-mvs | | | 80.18 140 | 78.31 155 | 85.80 88 | 88.44 181 | 65.49 148 | 83.00 296 | 92.67 111 | 71.82 184 | 77.36 126 | 85.01 218 | 54.50 186 | 96.59 109 | 76.35 130 | 75.63 201 | 95.32 53 |
|
save fliter | | | | | | 93.84 49 | 67.89 80 | 95.05 39 | 92.66 112 | 78.19 68 | | | | | | | |
|
XVS | | | 83.87 84 | 83.47 75 | 85.05 112 | 93.22 65 | 63.78 191 | 92.92 111 | 92.66 112 | 73.99 124 | 78.18 116 | 94.31 86 | 55.25 177 | 97.41 65 | 79.16 107 | 91.58 77 | 93.95 114 |
|
X-MVStestdata | | | 76.86 198 | 74.13 218 | 85.05 112 | 93.22 65 | 63.78 191 | 92.92 111 | 92.66 112 | 73.99 124 | 78.18 116 | 10.19 366 | 55.25 177 | 97.41 65 | 79.16 107 | 91.58 77 | 93.95 114 |
|
SD-MVS | | | 87.49 26 | 87.49 28 | 87.50 32 | 93.60 56 | 68.82 57 | 93.90 72 | 92.63 115 | 76.86 86 | 87.90 23 | 95.76 32 | 66.17 57 | 97.63 56 | 89.06 28 | 91.48 79 | 96.05 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
无先验 | | | | | | | | 92.71 117 | 92.61 116 | 62.03 288 | | | | 97.01 88 | 66.63 204 | | 93.97 113 |
|
APD-MVS |  | | 85.93 50 | 85.99 46 | 85.76 90 | 95.98 23 | 65.21 152 | 93.59 86 | 92.58 117 | 66.54 254 | 86.17 36 | 95.88 30 | 63.83 86 | 97.00 90 | 86.39 53 | 92.94 57 | 95.06 68 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CS-MVS-test | | | 87.65 22 | 88.14 18 | 86.17 76 | 90.76 134 | 68.37 66 | 96.57 10 | 92.56 118 | 81.30 31 | 86.75 30 | 95.45 40 | 65.85 62 | 95.93 131 | 90.06 20 | 93.92 40 | 94.23 97 |
|
1314 | | | 80.70 131 | 78.95 149 | 85.94 83 | 87.77 198 | 67.56 88 | 87.91 258 | 92.55 119 | 72.17 171 | 67.44 236 | 93.09 106 | 50.27 227 | 97.04 87 | 71.68 165 | 87.64 110 | 93.23 136 |
|
MP-MVS-pluss | | | 85.24 58 | 85.13 58 | 85.56 97 | 91.42 118 | 65.59 144 | 91.54 166 | 92.51 120 | 74.56 114 | 80.62 88 | 95.64 36 | 59.15 136 | 97.00 90 | 86.94 50 | 93.80 43 | 94.07 108 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
WR-MVS | | | 76.76 202 | 75.74 197 | 79.82 242 | 84.60 247 | 62.27 227 | 92.60 123 | 92.51 120 | 76.06 94 | 67.87 232 | 85.34 215 | 56.76 160 | 90.24 292 | 62.20 244 | 63.69 280 | 86.94 236 |
|
OpenMVS |  | 70.45 11 | 78.54 175 | 75.92 194 | 86.41 69 | 85.93 230 | 71.68 14 | 92.74 115 | 92.51 120 | 66.49 255 | 64.56 260 | 91.96 134 | 43.88 273 | 98.10 35 | 54.61 274 | 90.65 89 | 89.44 203 |
|
CHOSEN 1792x2688 | | | 84.98 63 | 83.45 76 | 89.57 9 | 89.94 147 | 75.14 5 | 92.07 141 | 92.32 123 | 81.87 24 | 75.68 139 | 88.27 181 | 60.18 120 | 98.60 21 | 80.46 100 | 90.27 93 | 94.96 73 |
|
CS-MVS | | | 87.54 24 | 87.81 22 | 86.74 53 | 90.46 137 | 70.23 29 | 96.34 15 | 92.31 124 | 81.40 30 | 86.14 37 | 95.17 55 | 65.49 67 | 95.92 132 | 89.09 26 | 93.91 41 | 94.06 109 |
|
CP-MVS | | | 83.71 88 | 83.40 80 | 84.65 126 | 93.14 70 | 63.84 189 | 94.59 48 | 92.28 125 | 71.03 206 | 77.41 125 | 94.92 64 | 55.21 180 | 96.19 119 | 81.32 94 | 90.70 88 | 93.91 116 |
|
MP-MVS |  | | 85.02 61 | 84.97 60 | 85.17 111 | 92.60 84 | 64.27 184 | 93.24 97 | 92.27 126 | 73.13 144 | 79.63 100 | 94.43 76 | 61.90 106 | 97.17 80 | 85.00 62 | 92.56 62 | 94.06 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
zzz-MVS | | | 84.73 66 | 84.47 64 | 85.50 98 | 91.89 104 | 65.16 154 | 91.55 165 | 92.23 127 | 75.32 105 | 80.53 89 | 95.21 52 | 56.06 171 | 97.16 81 | 84.86 65 | 92.55 63 | 94.18 99 |
|
MTGPA |  | | | | | | | | 92.23 127 | | | | | | | | |
|
MTAPA | | | 83.91 83 | 83.38 81 | 85.50 98 | 91.89 104 | 65.16 154 | 81.75 301 | 92.23 127 | 75.32 105 | 80.53 89 | 95.21 52 | 56.06 171 | 97.16 81 | 84.86 65 | 92.55 63 | 94.18 99 |
|
VPNet | | | 78.82 166 | 77.53 170 | 82.70 169 | 84.52 249 | 66.44 122 | 93.93 70 | 92.23 127 | 80.46 40 | 72.60 168 | 88.38 179 | 49.18 238 | 93.13 227 | 72.47 155 | 63.97 278 | 88.55 211 |
|
ACMMP |  | | 81.49 119 | 80.67 120 | 83.93 143 | 91.71 110 | 62.90 216 | 92.13 136 | 92.22 131 | 71.79 185 | 71.68 185 | 93.49 102 | 50.32 225 | 96.96 96 | 78.47 115 | 84.22 143 | 91.93 168 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PGM-MVS | | | 83.25 92 | 82.70 94 | 84.92 116 | 92.81 80 | 64.07 187 | 90.44 205 | 92.20 132 | 71.28 201 | 77.23 128 | 94.43 76 | 55.17 181 | 97.31 72 | 79.33 106 | 91.38 80 | 93.37 129 |
|
jason | | | 86.40 43 | 86.17 44 | 87.11 41 | 86.16 224 | 70.54 25 | 95.71 25 | 92.19 133 | 82.00 23 | 84.58 53 | 94.34 84 | 61.86 107 | 95.53 156 | 87.76 38 | 90.89 86 | 95.27 59 |
jason: jason. |
CLD-MVS | | | 82.73 100 | 82.35 100 | 83.86 144 | 87.90 196 | 67.65 87 | 95.45 28 | 92.18 134 | 85.06 7 | 72.58 169 | 92.27 130 | 52.46 209 | 95.78 136 | 84.18 68 | 79.06 172 | 88.16 219 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVS_Test | | | 84.16 78 | 83.20 83 | 87.05 43 | 91.56 114 | 69.82 37 | 89.99 222 | 92.05 135 | 77.77 74 | 82.84 68 | 86.57 203 | 63.93 85 | 96.09 123 | 74.91 140 | 89.18 98 | 95.25 62 |
|
EIA-MVS | | | 84.84 65 | 84.88 61 | 84.69 125 | 91.30 121 | 62.36 224 | 93.85 75 | 92.04 136 | 79.45 48 | 79.33 103 | 94.28 87 | 62.42 103 | 96.35 115 | 80.05 101 | 91.25 83 | 95.38 49 |
|
WR-MVS_H | | | 70.59 260 | 69.94 256 | 72.53 311 | 81.03 283 | 51.43 324 | 87.35 266 | 92.03 137 | 67.38 248 | 60.23 288 | 80.70 272 | 55.84 175 | 83.45 337 | 46.33 307 | 58.58 315 | 82.72 300 |
|
FMVSNet3 | | | 77.73 188 | 76.04 192 | 82.80 166 | 91.20 124 | 68.99 53 | 91.87 150 | 91.99 138 | 73.35 141 | 67.04 242 | 83.19 239 | 56.62 164 | 92.14 263 | 59.80 258 | 69.34 236 | 87.28 231 |
|
DP-MVS Recon | | | 82.73 100 | 81.65 107 | 85.98 81 | 97.31 4 | 67.06 104 | 95.15 35 | 91.99 138 | 69.08 234 | 76.50 135 | 93.89 95 | 54.48 189 | 98.20 32 | 70.76 170 | 85.66 127 | 92.69 149 |
|
EPNet_dtu | | | 78.80 167 | 79.26 145 | 77.43 274 | 88.06 191 | 49.71 333 | 91.96 148 | 91.95 140 | 77.67 76 | 76.56 134 | 91.28 143 | 58.51 141 | 90.20 294 | 56.37 269 | 80.95 161 | 92.39 157 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ETV-MVS | | | 86.01 49 | 86.11 45 | 85.70 94 | 90.21 143 | 67.02 107 | 93.43 93 | 91.92 141 | 81.21 33 | 84.13 60 | 94.07 92 | 60.93 114 | 95.63 145 | 89.28 24 | 89.81 94 | 94.46 93 |
|
LFMVS | | | 84.34 72 | 82.73 93 | 89.18 11 | 94.76 31 | 73.25 10 | 94.99 42 | 91.89 142 | 71.90 177 | 82.16 73 | 93.49 102 | 47.98 249 | 97.05 85 | 82.55 83 | 84.82 132 | 97.25 5 |
|
HPM-MVS |  | | 83.25 92 | 82.95 88 | 84.17 139 | 92.25 91 | 62.88 217 | 90.91 191 | 91.86 143 | 70.30 217 | 77.12 129 | 93.96 94 | 56.75 161 | 96.28 116 | 82.04 85 | 91.34 82 | 93.34 130 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mPP-MVS | | | 82.96 98 | 82.44 98 | 84.52 130 | 92.83 76 | 62.92 215 | 92.76 114 | 91.85 144 | 71.52 197 | 75.61 142 | 94.24 88 | 53.48 202 | 96.99 93 | 78.97 110 | 90.73 87 | 93.64 125 |
|
XXY-MVS | | | 77.94 185 | 76.44 187 | 82.43 175 | 82.60 273 | 64.44 174 | 92.01 144 | 91.83 145 | 73.59 137 | 70.00 202 | 85.82 211 | 54.43 190 | 94.76 173 | 69.63 178 | 68.02 247 | 88.10 220 |
|
baseline | | | 85.01 62 | 84.44 66 | 86.71 54 | 88.33 184 | 68.73 58 | 90.24 213 | 91.82 146 | 81.05 36 | 81.18 81 | 92.50 122 | 63.69 89 | 96.08 125 | 84.45 67 | 86.71 120 | 95.32 53 |
|
casdiffmvs | | | 85.37 56 | 84.87 62 | 86.84 47 | 88.25 187 | 69.07 50 | 93.04 104 | 91.76 147 | 81.27 32 | 80.84 87 | 92.07 133 | 64.23 81 | 96.06 126 | 84.98 63 | 87.43 112 | 95.39 48 |
|
NR-MVSNet | | | 76.05 211 | 74.59 207 | 80.44 226 | 82.96 271 | 62.18 228 | 90.83 196 | 91.73 148 | 77.12 83 | 60.96 285 | 86.35 204 | 59.28 135 | 91.80 271 | 60.74 251 | 61.34 300 | 87.35 229 |
|
PVSNet_Blended_VisFu | | | 83.97 81 | 83.50 74 | 85.39 104 | 90.02 145 | 66.59 120 | 93.77 80 | 91.73 148 | 77.43 81 | 77.08 131 | 89.81 166 | 63.77 88 | 96.97 95 | 79.67 103 | 88.21 105 | 92.60 153 |
|
canonicalmvs | | | 86.85 38 | 86.25 43 | 88.66 15 | 91.80 108 | 71.92 13 | 93.54 88 | 91.71 150 | 80.26 41 | 87.55 24 | 95.25 50 | 63.59 92 | 96.93 100 | 88.18 35 | 84.34 138 | 97.11 6 |
|
HQP3-MVS | | | | | | | | | 91.70 151 | | | | | | | 78.90 173 | |
|
HQP-MVS | | | 81.14 124 | 80.64 121 | 82.64 171 | 87.54 200 | 63.66 198 | 94.06 62 | 91.70 151 | 79.80 43 | 74.18 151 | 90.30 158 | 51.63 216 | 95.61 147 | 77.63 122 | 78.90 173 | 88.63 209 |
|
baseline1 | | | 81.84 116 | 81.03 116 | 84.28 138 | 91.60 112 | 66.62 118 | 91.08 188 | 91.66 153 | 81.87 24 | 74.86 147 | 91.67 141 | 69.98 32 | 94.92 171 | 71.76 163 | 64.75 270 | 91.29 182 |
|
FMVSNet2 | | | 76.07 208 | 74.01 220 | 82.26 183 | 88.85 171 | 67.66 86 | 91.33 177 | 91.61 154 | 70.84 209 | 65.98 249 | 82.25 247 | 48.03 246 | 92.00 268 | 58.46 263 | 68.73 242 | 87.10 233 |
|
114514_t | | | 79.17 159 | 77.67 166 | 83.68 151 | 95.32 26 | 65.53 146 | 92.85 113 | 91.60 155 | 63.49 274 | 67.92 229 | 90.63 151 | 46.65 257 | 95.72 143 | 67.01 202 | 83.54 144 | 89.79 197 |
|
test-LLR | | | 80.10 142 | 79.56 137 | 81.72 198 | 86.93 213 | 61.17 240 | 92.70 118 | 91.54 156 | 71.51 198 | 75.62 140 | 86.94 200 | 53.83 195 | 92.38 257 | 72.21 157 | 84.76 134 | 91.60 171 |
|
test-mter | | | 79.96 145 | 79.38 143 | 81.72 198 | 86.93 213 | 61.17 240 | 92.70 118 | 91.54 156 | 73.85 129 | 75.62 140 | 86.94 200 | 49.84 232 | 92.38 257 | 72.21 157 | 84.76 134 | 91.60 171 |
|
DU-MVS | | | 76.86 198 | 75.84 195 | 79.91 239 | 82.96 271 | 60.26 258 | 91.26 180 | 91.54 156 | 76.46 92 | 68.88 216 | 86.35 204 | 56.16 168 | 92.13 264 | 66.38 210 | 62.55 285 | 87.35 229 |
|
旧先验1 | | | | | | 91.94 100 | 60.74 251 | | 91.50 159 | | | 94.36 78 | 65.23 69 | | | 91.84 71 | 94.55 85 |
|
VDD-MVS | | | 83.06 95 | 81.81 106 | 86.81 49 | 90.86 131 | 67.70 85 | 95.40 29 | 91.50 159 | 75.46 100 | 81.78 75 | 92.34 129 | 40.09 285 | 97.13 83 | 86.85 51 | 82.04 152 | 95.60 44 |
|
新几何1 | | | | | 84.73 122 | 92.32 88 | 64.28 183 | | 91.46 161 | 59.56 305 | 79.77 98 | 92.90 114 | 56.95 159 | 96.57 111 | 63.40 234 | 92.91 58 | 93.34 130 |
|
tpm2 | | | 79.80 149 | 77.95 162 | 85.34 106 | 88.28 185 | 68.26 71 | 81.56 304 | 91.42 162 | 70.11 219 | 77.59 124 | 80.50 276 | 67.40 46 | 94.26 195 | 67.34 199 | 77.35 190 | 93.51 127 |
|
1121 | | | 81.25 122 | 80.05 127 | 84.87 119 | 92.30 89 | 64.31 181 | 87.91 258 | 91.39 163 | 59.44 306 | 79.94 95 | 92.91 113 | 57.09 152 | 97.01 88 | 66.63 204 | 92.81 60 | 93.29 133 |
|
TranMVSNet+NR-MVSNet | | | 75.86 216 | 74.52 210 | 79.89 240 | 82.44 274 | 60.64 254 | 91.37 175 | 91.37 164 | 76.63 89 | 67.65 234 | 86.21 207 | 52.37 210 | 91.55 276 | 61.84 246 | 60.81 303 | 87.48 225 |
|
VDDNet | | | 80.50 135 | 78.26 156 | 87.21 38 | 86.19 223 | 69.79 38 | 94.48 49 | 91.31 165 | 60.42 298 | 79.34 102 | 90.91 146 | 38.48 292 | 96.56 112 | 82.16 84 | 81.05 160 | 95.27 59 |
|
HQP_MVS | | | 80.34 138 | 79.75 133 | 82.12 189 | 86.94 211 | 62.42 222 | 93.13 100 | 91.31 165 | 78.81 61 | 72.53 170 | 89.14 172 | 50.66 223 | 95.55 153 | 76.74 125 | 78.53 178 | 88.39 215 |
|
plane_prior5 | | | | | | | | | 91.31 165 | | | | | 95.55 153 | 76.74 125 | 78.53 178 | 88.39 215 |
|
SR-MVS | | | 82.81 99 | 82.58 95 | 83.50 157 | 93.35 62 | 61.16 242 | 92.23 134 | 91.28 168 | 64.48 267 | 81.27 80 | 95.28 46 | 53.71 198 | 95.86 134 | 82.87 78 | 88.77 101 | 93.49 128 |
|
DROMVSNet | | | 85.15 59 | 85.60 54 | 83.80 145 | 89.58 154 | 63.21 206 | 94.76 46 | 91.26 169 | 78.47 65 | 83.91 63 | 94.36 78 | 60.06 125 | 95.55 153 | 86.16 54 | 91.82 72 | 92.64 152 |
|
nrg030 | | | 80.93 129 | 79.86 131 | 84.13 140 | 83.69 262 | 68.83 56 | 93.23 98 | 91.20 170 | 75.55 99 | 75.06 146 | 88.22 185 | 63.04 100 | 94.74 175 | 81.88 86 | 66.88 254 | 88.82 207 |
|
EPMVS | | | 78.49 176 | 75.98 193 | 86.02 80 | 91.21 123 | 69.68 41 | 80.23 314 | 91.20 170 | 75.25 107 | 72.48 172 | 78.11 297 | 54.65 185 | 93.69 218 | 57.66 266 | 83.04 145 | 94.69 79 |
|
hse-mvs2 | | | 81.12 126 | 81.11 115 | 81.16 211 | 86.52 217 | 57.48 292 | 89.40 233 | 91.16 172 | 81.45 27 | 82.73 69 | 90.49 154 | 60.11 121 | 94.58 179 | 87.69 39 | 60.41 308 | 91.41 176 |
|
AUN-MVS | | | 78.37 177 | 77.43 171 | 81.17 210 | 86.60 216 | 57.45 293 | 89.46 232 | 91.16 172 | 74.11 122 | 74.40 150 | 90.49 154 | 55.52 176 | 94.57 180 | 74.73 143 | 60.43 307 | 91.48 174 |
|
cascas | | | 78.18 180 | 75.77 196 | 85.41 103 | 87.14 209 | 69.11 49 | 92.96 108 | 91.15 174 | 66.71 253 | 70.47 193 | 86.07 208 | 37.49 302 | 96.48 114 | 70.15 175 | 79.80 166 | 90.65 188 |
|
tpm | | | 78.58 174 | 77.03 178 | 83.22 161 | 85.94 229 | 64.56 168 | 83.21 294 | 91.14 175 | 78.31 67 | 73.67 158 | 79.68 287 | 64.01 83 | 92.09 266 | 66.07 214 | 71.26 228 | 93.03 142 |
|
PCF-MVS | | 73.15 9 | 79.29 157 | 77.63 168 | 84.29 137 | 86.06 225 | 65.96 134 | 87.03 268 | 91.10 176 | 69.86 223 | 69.79 207 | 90.64 149 | 57.54 149 | 96.59 109 | 64.37 229 | 82.29 149 | 90.32 191 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Anonymous20240529 | | | 76.84 200 | 74.15 217 | 84.88 118 | 91.02 125 | 64.95 164 | 93.84 78 | 91.09 177 | 53.57 327 | 73.00 161 | 87.42 195 | 35.91 312 | 97.32 71 | 69.14 185 | 72.41 220 | 92.36 158 |
|
test_part1 | | | 79.63 151 | 77.86 165 | 84.93 115 | 92.50 86 | 71.43 15 | 94.15 57 | 91.08 178 | 72.51 158 | 70.66 191 | 84.98 219 | 59.84 126 | 95.07 165 | 72.07 160 | 62.94 282 | 88.30 218 |
|
PS-MVSNAJss | | | 77.26 195 | 76.31 189 | 80.13 234 | 80.64 288 | 59.16 274 | 90.63 204 | 91.06 179 | 72.80 152 | 68.58 223 | 84.57 225 | 53.55 199 | 93.96 210 | 72.97 147 | 71.96 222 | 87.27 232 |
|
PVSNet | | 73.49 8 | 80.05 143 | 78.63 151 | 84.31 136 | 90.92 128 | 64.97 163 | 92.47 128 | 91.05 180 | 79.18 53 | 72.43 174 | 90.51 153 | 37.05 308 | 94.06 202 | 68.06 192 | 86.00 125 | 93.90 118 |
|
API-MVS | | | 82.28 107 | 80.53 123 | 87.54 31 | 96.13 20 | 70.59 24 | 93.63 84 | 91.04 181 | 65.72 261 | 75.45 144 | 92.83 118 | 56.11 170 | 98.89 15 | 64.10 230 | 89.75 97 | 93.15 138 |
|
APD-MVS_3200maxsize | | | 81.64 118 | 81.32 110 | 82.59 173 | 92.36 87 | 58.74 277 | 91.39 172 | 91.01 182 | 63.35 275 | 79.72 99 | 94.62 72 | 51.82 212 | 96.14 121 | 79.71 102 | 87.93 108 | 92.89 147 |
|
test1172 | | | 81.90 115 | 81.83 105 | 82.13 188 | 93.23 64 | 57.52 291 | 91.61 164 | 90.98 183 | 64.32 269 | 80.20 93 | 95.00 58 | 51.26 219 | 95.61 147 | 81.73 88 | 88.13 106 | 93.26 134 |
|
RRT_MVS | | | 77.38 193 | 76.59 185 | 79.77 244 | 90.91 129 | 63.61 200 | 91.15 186 | 90.91 184 | 72.28 166 | 72.06 179 | 87.28 198 | 43.92 272 | 89.04 303 | 73.32 145 | 67.47 251 | 86.67 239 |
|
MVP-Stereo | | | 77.12 197 | 76.23 190 | 79.79 243 | 81.72 279 | 66.34 125 | 89.29 234 | 90.88 185 | 70.56 215 | 62.01 282 | 82.88 240 | 49.34 235 | 94.13 197 | 65.55 221 | 93.80 43 | 78.88 334 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
UGNet | | | 79.87 147 | 78.68 150 | 83.45 159 | 89.96 146 | 61.51 237 | 92.13 136 | 90.79 186 | 76.83 87 | 78.85 113 | 86.33 206 | 38.16 294 | 96.17 120 | 67.93 194 | 87.17 113 | 92.67 150 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TAMVS | | | 80.37 137 | 79.45 140 | 83.13 163 | 85.14 239 | 63.37 202 | 91.23 181 | 90.76 187 | 74.81 113 | 72.65 167 | 88.49 176 | 60.63 116 | 92.95 231 | 69.41 181 | 81.95 153 | 93.08 141 |
|
MVSFormer | | | 83.75 87 | 82.88 89 | 86.37 70 | 89.24 164 | 71.18 18 | 89.07 241 | 90.69 188 | 65.80 259 | 87.13 26 | 94.34 84 | 64.99 72 | 92.67 246 | 72.83 149 | 91.80 73 | 95.27 59 |
|
test_djsdf | | | 73.76 240 | 72.56 236 | 77.39 275 | 77.00 325 | 53.93 313 | 89.07 241 | 90.69 188 | 65.80 259 | 63.92 266 | 82.03 250 | 43.14 276 | 92.67 246 | 72.83 149 | 68.53 243 | 85.57 267 |
|
PMMVS | | | 81.98 114 | 82.04 102 | 81.78 196 | 89.76 151 | 56.17 301 | 91.13 187 | 90.69 188 | 77.96 72 | 80.09 94 | 93.57 100 | 46.33 260 | 94.99 167 | 81.41 92 | 87.46 111 | 94.17 101 |
|
CDS-MVSNet | | | 81.43 120 | 80.74 118 | 83.52 155 | 86.26 222 | 64.45 173 | 92.09 139 | 90.65 191 | 75.83 97 | 73.95 157 | 89.81 166 | 63.97 84 | 92.91 236 | 71.27 166 | 82.82 147 | 93.20 137 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
mvs_anonymous | | | 81.36 121 | 79.99 129 | 85.46 100 | 90.39 140 | 68.40 65 | 86.88 272 | 90.61 192 | 74.41 115 | 70.31 198 | 84.67 223 | 63.79 87 | 92.32 261 | 73.13 146 | 85.70 126 | 95.67 41 |
|
SR-MVS-dyc-post | | | 81.06 127 | 80.70 119 | 82.15 186 | 92.02 96 | 58.56 279 | 90.90 192 | 90.45 193 | 62.76 281 | 78.89 108 | 94.46 74 | 51.26 219 | 95.61 147 | 78.77 113 | 86.77 118 | 92.28 162 |
|
RE-MVS-def | | | | 80.48 124 | | 92.02 96 | 58.56 279 | 90.90 192 | 90.45 193 | 62.76 281 | 78.89 108 | 94.46 74 | 49.30 236 | | 78.77 113 | 86.77 118 | 92.28 162 |
|
RPMNet | | | 70.42 262 | 65.68 278 | 84.63 128 | 83.15 269 | 67.96 78 | 70.25 337 | 90.45 193 | 46.83 345 | 69.97 203 | 65.10 344 | 56.48 167 | 95.30 163 | 35.79 342 | 73.13 212 | 90.64 189 |
|
xiu_mvs_v1_base_debu | | | 82.16 109 | 81.12 112 | 85.26 108 | 86.42 218 | 68.72 59 | 92.59 125 | 90.44 196 | 73.12 145 | 84.20 57 | 94.36 78 | 38.04 296 | 95.73 139 | 84.12 69 | 86.81 115 | 91.33 177 |
|
xiu_mvs_v1_base | | | 82.16 109 | 81.12 112 | 85.26 108 | 86.42 218 | 68.72 59 | 92.59 125 | 90.44 196 | 73.12 145 | 84.20 57 | 94.36 78 | 38.04 296 | 95.73 139 | 84.12 69 | 86.81 115 | 91.33 177 |
|
xiu_mvs_v1_base_debi | | | 82.16 109 | 81.12 112 | 85.26 108 | 86.42 218 | 68.72 59 | 92.59 125 | 90.44 196 | 73.12 145 | 84.20 57 | 94.36 78 | 38.04 296 | 95.73 139 | 84.12 69 | 86.81 115 | 91.33 177 |
|
GBi-Net | | | 75.65 219 | 73.83 222 | 81.10 215 | 88.85 171 | 65.11 157 | 90.01 219 | 90.32 199 | 70.84 209 | 67.04 242 | 80.25 281 | 48.03 246 | 91.54 277 | 59.80 258 | 69.34 236 | 86.64 240 |
|
test1 | | | 75.65 219 | 73.83 222 | 81.10 215 | 88.85 171 | 65.11 157 | 90.01 219 | 90.32 199 | 70.84 209 | 67.04 242 | 80.25 281 | 48.03 246 | 91.54 277 | 59.80 258 | 69.34 236 | 86.64 240 |
|
FMVSNet1 | | | 72.71 250 | 69.91 257 | 81.10 215 | 83.60 264 | 65.11 157 | 90.01 219 | 90.32 199 | 63.92 271 | 63.56 270 | 80.25 281 | 36.35 311 | 91.54 277 | 54.46 275 | 66.75 255 | 86.64 240 |
|
PVSNet_0 | | 68.08 15 | 71.81 254 | 68.32 266 | 82.27 181 | 84.68 245 | 62.31 226 | 88.68 247 | 90.31 202 | 75.84 96 | 57.93 304 | 80.65 275 | 37.85 299 | 94.19 196 | 69.94 176 | 29.05 357 | 90.31 192 |
|
OPM-MVS | | | 79.00 161 | 78.09 158 | 81.73 197 | 83.52 265 | 63.83 190 | 91.64 163 | 90.30 203 | 76.36 93 | 71.97 180 | 89.93 165 | 46.30 261 | 95.17 164 | 75.10 135 | 77.70 183 | 86.19 251 |
|
CP-MVSNet | | | 70.50 261 | 69.91 257 | 72.26 314 | 80.71 286 | 51.00 327 | 87.23 267 | 90.30 203 | 67.84 242 | 59.64 290 | 82.69 242 | 50.23 228 | 82.30 345 | 51.28 284 | 59.28 311 | 83.46 290 |
|
KD-MVS_2432*1600 | | | 69.03 272 | 66.37 274 | 77.01 280 | 85.56 233 | 61.06 243 | 81.44 305 | 90.25 205 | 67.27 249 | 58.00 302 | 76.53 310 | 54.49 187 | 87.63 316 | 48.04 298 | 35.77 352 | 82.34 306 |
|
miper_refine_blended | | | 69.03 272 | 66.37 274 | 77.01 280 | 85.56 233 | 61.06 243 | 81.44 305 | 90.25 205 | 67.27 249 | 58.00 302 | 76.53 310 | 54.49 187 | 87.63 316 | 48.04 298 | 35.77 352 | 82.34 306 |
|
v148 | | | 76.19 206 | 74.47 211 | 81.36 205 | 80.05 296 | 64.44 174 | 91.75 159 | 90.23 207 | 73.68 135 | 67.13 241 | 80.84 271 | 55.92 174 | 93.86 216 | 68.95 187 | 61.73 296 | 85.76 265 |
|
v2v482 | | | 77.42 192 | 75.65 198 | 82.73 168 | 80.38 290 | 67.13 103 | 91.85 152 | 90.23 207 | 75.09 109 | 69.37 208 | 83.39 237 | 53.79 197 | 94.44 188 | 71.77 162 | 65.00 267 | 86.63 243 |
|
v1144 | | | 76.73 203 | 74.88 203 | 82.27 181 | 80.23 295 | 66.60 119 | 91.68 161 | 90.21 209 | 73.69 134 | 69.06 213 | 81.89 251 | 52.73 207 | 94.40 189 | 69.21 184 | 65.23 264 | 85.80 262 |
|
GA-MVS | | | 78.33 179 | 76.23 190 | 84.65 126 | 83.65 263 | 66.30 126 | 91.44 167 | 90.14 210 | 76.01 95 | 70.32 197 | 84.02 229 | 42.50 277 | 94.72 176 | 70.98 167 | 77.00 194 | 92.94 145 |
|
MDTV_nov1_ep13 | | | | 72.61 235 | | 89.06 167 | 68.48 63 | 80.33 312 | 90.11 211 | 71.84 183 | 71.81 182 | 75.92 316 | 53.01 205 | 93.92 212 | 48.04 298 | 73.38 210 | |
|
D2MVS | | | 73.80 238 | 72.02 242 | 79.15 257 | 79.15 306 | 62.97 211 | 88.58 249 | 90.07 212 | 72.94 148 | 59.22 293 | 78.30 294 | 42.31 279 | 92.70 245 | 65.59 220 | 72.00 221 | 81.79 312 |
|
abl_6 | | | 79.82 148 | 79.20 146 | 81.70 200 | 89.85 148 | 58.34 281 | 88.47 251 | 90.07 212 | 62.56 284 | 77.71 120 | 93.08 107 | 47.65 253 | 96.78 104 | 77.94 120 | 85.45 129 | 89.99 196 |
|
TR-MVS | | | 78.77 169 | 77.37 176 | 82.95 164 | 90.49 136 | 60.88 246 | 93.67 82 | 90.07 212 | 70.08 220 | 74.51 149 | 91.37 142 | 45.69 263 | 95.70 144 | 60.12 256 | 80.32 164 | 92.29 161 |
|
Anonymous20231211 | | | 73.08 242 | 70.39 253 | 81.13 213 | 90.62 135 | 63.33 203 | 91.40 170 | 90.06 215 | 51.84 331 | 64.46 263 | 80.67 274 | 36.49 310 | 94.07 201 | 63.83 232 | 64.17 275 | 85.98 258 |
|
jajsoiax | | | 73.05 243 | 71.51 247 | 77.67 270 | 77.46 322 | 54.83 309 | 88.81 245 | 90.04 216 | 69.13 233 | 62.85 277 | 83.51 234 | 31.16 328 | 92.75 242 | 70.83 168 | 69.80 232 | 85.43 270 |
|
HyFIR lowres test | | | 81.03 128 | 79.56 137 | 85.43 102 | 87.81 197 | 68.11 75 | 90.18 214 | 90.01 217 | 70.65 214 | 72.95 163 | 86.06 209 | 63.61 91 | 94.50 187 | 75.01 138 | 79.75 167 | 93.67 123 |
|
ACMM | | 69.62 13 | 74.34 232 | 72.73 233 | 79.17 255 | 84.25 256 | 57.87 285 | 90.36 209 | 89.93 218 | 63.17 278 | 65.64 251 | 86.04 210 | 37.79 300 | 94.10 198 | 65.89 215 | 71.52 225 | 85.55 268 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CL-MVSNet_2432*1600 | | | 69.92 265 | 68.09 267 | 75.41 291 | 73.25 336 | 55.90 304 | 90.05 218 | 89.90 219 | 69.96 221 | 61.96 283 | 76.54 309 | 51.05 221 | 87.64 315 | 49.51 292 | 50.59 334 | 82.70 302 |
|
UnsupCasMVSNet_eth | | | 65.79 295 | 63.10 295 | 73.88 301 | 70.71 343 | 50.29 331 | 81.09 307 | 89.88 220 | 72.58 156 | 49.25 333 | 74.77 321 | 32.57 322 | 87.43 319 | 55.96 271 | 41.04 347 | 83.90 284 |
|
testdata | | | | | 81.34 206 | 89.02 168 | 57.72 287 | | 89.84 221 | 58.65 310 | 85.32 48 | 94.09 90 | 57.03 154 | 93.28 225 | 69.34 182 | 90.56 91 | 93.03 142 |
|
mvs_tets | | | 72.71 250 | 71.11 248 | 77.52 271 | 77.41 323 | 54.52 311 | 88.45 252 | 89.76 222 | 68.76 238 | 62.70 278 | 83.26 238 | 29.49 332 | 92.71 243 | 70.51 174 | 69.62 234 | 85.34 272 |
|
v1192 | | | 75.98 213 | 73.92 221 | 82.15 186 | 79.73 297 | 66.24 128 | 91.22 182 | 89.75 223 | 72.67 154 | 68.49 224 | 81.42 261 | 49.86 231 | 94.27 193 | 67.08 201 | 65.02 266 | 85.95 259 |
|
PS-CasMVS | | | 69.86 267 | 69.13 261 | 72.07 317 | 80.35 292 | 50.57 329 | 87.02 269 | 89.75 223 | 67.27 249 | 59.19 294 | 82.28 246 | 46.58 258 | 82.24 346 | 50.69 286 | 59.02 312 | 83.39 292 |
|
dp | | | 75.01 228 | 72.09 241 | 83.76 146 | 89.28 162 | 66.22 129 | 79.96 319 | 89.75 223 | 71.16 203 | 67.80 233 | 77.19 305 | 51.81 213 | 92.54 251 | 50.39 287 | 71.44 227 | 92.51 156 |
|
LPG-MVS_test | | | 75.82 217 | 74.58 208 | 79.56 250 | 84.31 254 | 59.37 271 | 90.44 205 | 89.73 226 | 69.49 226 | 64.86 256 | 88.42 177 | 38.65 290 | 94.30 191 | 72.56 153 | 72.76 215 | 85.01 275 |
|
LGP-MVS_train | | | | | 79.56 250 | 84.31 254 | 59.37 271 | | 89.73 226 | 69.49 226 | 64.86 256 | 88.42 177 | 38.65 290 | 94.30 191 | 72.56 153 | 72.76 215 | 85.01 275 |
|
tpmrst | | | 80.57 133 | 79.14 148 | 84.84 120 | 90.10 144 | 68.28 70 | 81.70 302 | 89.72 228 | 77.63 77 | 75.96 137 | 79.54 289 | 64.94 74 | 92.71 243 | 75.43 132 | 77.28 192 | 93.55 126 |
|
v144192 | | | 76.05 211 | 74.03 219 | 82.12 189 | 79.50 301 | 66.55 121 | 91.39 172 | 89.71 229 | 72.30 165 | 68.17 226 | 81.33 263 | 51.75 214 | 94.03 207 | 67.94 193 | 64.19 274 | 85.77 263 |
|
TAPA-MVS | | 70.22 12 | 74.94 229 | 73.53 225 | 79.17 255 | 90.40 139 | 52.07 321 | 89.19 238 | 89.61 230 | 62.69 283 | 70.07 200 | 92.67 120 | 48.89 243 | 94.32 190 | 38.26 337 | 79.97 165 | 91.12 184 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PatchmatchNet |  | | 77.46 191 | 74.63 206 | 85.96 82 | 89.55 157 | 70.35 27 | 79.97 318 | 89.55 231 | 72.23 168 | 70.94 189 | 76.91 308 | 57.03 154 | 92.79 241 | 54.27 276 | 81.17 159 | 94.74 78 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v1921920 | | | 75.63 221 | 73.49 226 | 82.06 193 | 79.38 302 | 66.35 124 | 91.07 190 | 89.48 232 | 71.98 174 | 67.99 227 | 81.22 266 | 49.16 240 | 93.90 213 | 66.56 206 | 64.56 273 | 85.92 261 |
|
v7n | | | 71.31 257 | 68.65 262 | 79.28 253 | 76.40 328 | 60.77 249 | 86.71 273 | 89.45 233 | 64.17 270 | 58.77 298 | 78.24 295 | 44.59 270 | 93.54 220 | 57.76 264 | 61.75 295 | 83.52 288 |
|
test0.0.03 1 | | | 72.76 248 | 72.71 234 | 72.88 309 | 80.25 294 | 47.99 339 | 91.22 182 | 89.45 233 | 71.51 198 | 62.51 280 | 87.66 191 | 53.83 195 | 85.06 328 | 50.16 288 | 67.84 250 | 85.58 266 |
|
test222 | | | | | | 89.77 150 | 61.60 236 | 89.55 228 | 89.42 235 | 56.83 319 | 77.28 127 | 92.43 126 | 52.76 206 | | | 91.14 85 | 93.09 140 |
|
V42 | | | 76.46 205 | 74.55 209 | 82.19 185 | 79.14 307 | 67.82 82 | 90.26 212 | 89.42 235 | 73.75 132 | 68.63 222 | 81.89 251 | 51.31 218 | 94.09 199 | 71.69 164 | 64.84 268 | 84.66 278 |
|
BH-w/o | | | 80.49 136 | 79.30 144 | 84.05 142 | 90.83 132 | 64.36 180 | 93.60 85 | 89.42 235 | 74.35 117 | 69.09 211 | 90.15 161 | 55.23 179 | 95.61 147 | 64.61 227 | 86.43 124 | 92.17 166 |
|
pm-mvs1 | | | 72.89 246 | 71.09 249 | 78.26 265 | 79.10 308 | 57.62 289 | 90.80 197 | 89.30 238 | 67.66 245 | 62.91 276 | 81.78 253 | 49.11 241 | 92.95 231 | 60.29 255 | 58.89 313 | 84.22 281 |
|
v8 | | | 75.35 223 | 73.26 228 | 81.61 201 | 80.67 287 | 66.82 112 | 89.54 229 | 89.27 239 | 71.65 189 | 63.30 273 | 80.30 280 | 54.99 183 | 94.06 202 | 67.33 200 | 62.33 288 | 83.94 283 |
|
diffmvs | | | 84.28 73 | 83.83 71 | 85.61 96 | 87.40 204 | 68.02 77 | 90.88 194 | 89.24 240 | 80.54 39 | 81.64 77 | 92.52 121 | 59.83 127 | 94.52 186 | 87.32 46 | 85.11 130 | 94.29 94 |
|
PEN-MVS | | | 69.46 269 | 68.56 263 | 72.17 316 | 79.27 303 | 49.71 333 | 86.90 271 | 89.24 240 | 67.24 252 | 59.08 295 | 82.51 245 | 47.23 255 | 83.54 336 | 48.42 296 | 57.12 316 | 83.25 293 |
|
UniMVSNet_ETH3D | | | 72.74 249 | 70.53 252 | 79.36 252 | 78.62 315 | 56.64 299 | 85.01 279 | 89.20 242 | 63.77 273 | 64.84 258 | 84.44 226 | 34.05 317 | 91.86 270 | 63.94 231 | 70.89 230 | 89.57 201 |
|
SCA | | | 75.82 217 | 72.76 232 | 85.01 114 | 86.63 215 | 70.08 30 | 81.06 308 | 89.19 243 | 71.60 194 | 70.01 201 | 77.09 306 | 45.53 264 | 90.25 289 | 60.43 253 | 73.27 211 | 94.68 80 |
|
EG-PatchMatch MVS | | | 68.55 276 | 65.41 281 | 77.96 268 | 78.69 313 | 62.93 213 | 89.86 224 | 89.17 244 | 60.55 297 | 50.27 329 | 77.73 300 | 22.60 347 | 94.06 202 | 47.18 304 | 72.65 217 | 76.88 341 |
|
HPM-MVS_fast | | | 80.25 139 | 79.55 139 | 82.33 179 | 91.55 115 | 59.95 263 | 91.32 178 | 89.16 245 | 65.23 265 | 74.71 148 | 93.07 109 | 47.81 251 | 95.74 138 | 74.87 142 | 88.23 104 | 91.31 181 |
|
miper_enhance_ethall | | | 78.86 165 | 77.97 161 | 81.54 202 | 88.00 194 | 65.17 153 | 91.41 168 | 89.15 246 | 75.19 108 | 68.79 219 | 83.98 230 | 67.17 48 | 92.82 238 | 72.73 151 | 65.30 261 | 86.62 244 |
|
Fast-Effi-MVS+ | | | 81.14 124 | 80.01 128 | 84.51 131 | 90.24 142 | 65.86 136 | 94.12 59 | 89.15 246 | 73.81 131 | 75.37 145 | 88.26 182 | 57.26 150 | 94.53 185 | 66.97 203 | 84.92 131 | 93.15 138 |
|
Vis-MVSNet (Re-imp) | | | 79.24 158 | 79.57 136 | 78.24 266 | 88.46 180 | 52.29 320 | 90.41 207 | 89.12 248 | 74.24 120 | 69.13 210 | 91.91 135 | 65.77 64 | 90.09 296 | 59.00 262 | 88.09 107 | 92.33 159 |
|
v1240 | | | 75.21 226 | 72.98 230 | 81.88 195 | 79.20 304 | 66.00 132 | 90.75 199 | 89.11 249 | 71.63 193 | 67.41 238 | 81.22 266 | 47.36 254 | 93.87 214 | 65.46 222 | 64.72 271 | 85.77 263 |
|
v10 | | | 74.77 230 | 72.54 237 | 81.46 203 | 80.33 293 | 66.71 116 | 89.15 239 | 89.08 250 | 70.94 207 | 63.08 274 | 79.86 285 | 52.52 208 | 94.04 205 | 65.70 218 | 62.17 289 | 83.64 285 |
|
ACMP | | 71.68 10 | 75.58 222 | 74.23 215 | 79.62 248 | 84.97 243 | 59.64 266 | 90.80 197 | 89.07 251 | 70.39 216 | 62.95 275 | 87.30 197 | 38.28 293 | 93.87 214 | 72.89 148 | 71.45 226 | 85.36 271 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UnsupCasMVSNet_bld | | | 61.60 310 | 57.71 314 | 73.29 306 | 68.73 348 | 51.64 322 | 78.61 322 | 89.05 252 | 57.20 316 | 46.11 338 | 61.96 347 | 28.70 335 | 88.60 305 | 50.08 289 | 38.90 349 | 79.63 329 |
|
CANet_DTU | | | 84.09 79 | 83.52 73 | 85.81 87 | 90.30 141 | 66.82 112 | 91.87 150 | 89.01 253 | 85.27 6 | 86.09 38 | 93.74 97 | 47.71 252 | 96.98 94 | 77.90 121 | 89.78 96 | 93.65 124 |
|
UA-Net | | | 80.02 144 | 79.65 134 | 81.11 214 | 89.33 161 | 57.72 287 | 86.33 275 | 89.00 254 | 77.44 80 | 81.01 84 | 89.15 171 | 59.33 134 | 95.90 133 | 61.01 250 | 84.28 141 | 89.73 199 |
|
MVS_111021_LR | | | 82.02 113 | 81.52 108 | 83.51 156 | 88.42 182 | 62.88 217 | 89.77 225 | 88.93 255 | 76.78 88 | 75.55 143 | 93.10 105 | 50.31 226 | 95.38 159 | 83.82 73 | 87.02 114 | 92.26 165 |
|
miper_lstm_enhance | | | 73.05 243 | 71.73 245 | 77.03 279 | 83.80 260 | 58.32 282 | 81.76 300 | 88.88 256 | 69.80 224 | 61.01 284 | 78.23 296 | 57.19 151 | 87.51 318 | 65.34 223 | 59.53 310 | 85.27 274 |
|
anonymousdsp | | | 71.14 258 | 69.37 260 | 76.45 285 | 72.95 337 | 54.71 310 | 84.19 283 | 88.88 256 | 61.92 290 | 62.15 281 | 79.77 286 | 38.14 295 | 91.44 282 | 68.90 188 | 67.45 252 | 83.21 294 |
|
cl-mvsnet2 | | | 77.94 185 | 76.78 182 | 81.42 204 | 87.57 199 | 64.93 165 | 90.67 200 | 88.86 258 | 72.45 160 | 67.63 235 | 82.68 243 | 64.07 82 | 92.91 236 | 71.79 161 | 65.30 261 | 86.44 245 |
|
MIMVSNet | | | 71.64 255 | 68.44 264 | 81.23 209 | 81.97 278 | 64.44 174 | 73.05 334 | 88.80 259 | 69.67 225 | 64.59 259 | 74.79 320 | 32.79 320 | 87.82 313 | 53.99 277 | 76.35 198 | 91.42 175 |
|
IterMVS-LS | | | 76.49 204 | 75.18 202 | 80.43 227 | 84.49 250 | 62.74 219 | 90.64 202 | 88.80 259 | 72.40 162 | 65.16 255 | 81.72 254 | 60.98 113 | 92.27 262 | 67.74 195 | 64.65 272 | 86.29 248 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
cl-mvsnet____ | | | 76.07 208 | 74.67 204 | 80.28 230 | 85.15 238 | 61.76 233 | 90.12 215 | 88.73 261 | 71.16 203 | 65.43 252 | 81.57 258 | 61.15 110 | 92.95 231 | 66.54 207 | 62.17 289 | 86.13 254 |
|
cl-mvsnet1 | | | 76.07 208 | 74.67 204 | 80.28 230 | 85.14 239 | 61.75 234 | 90.12 215 | 88.73 261 | 71.16 203 | 65.42 253 | 81.60 257 | 61.15 110 | 92.94 235 | 66.54 207 | 62.16 291 | 86.14 252 |
|
JIA-IIPM | | | 66.06 293 | 62.45 300 | 76.88 283 | 81.42 282 | 54.45 312 | 57.49 355 | 88.67 263 | 49.36 338 | 63.86 267 | 46.86 353 | 56.06 171 | 90.25 289 | 49.53 291 | 68.83 240 | 85.95 259 |
|
OMC-MVS | | | 78.67 173 | 77.91 164 | 80.95 221 | 85.76 231 | 57.40 294 | 88.49 250 | 88.67 263 | 73.85 129 | 72.43 174 | 92.10 132 | 49.29 237 | 94.55 183 | 72.73 151 | 77.89 181 | 90.91 186 |
|
miper_ehance_all_eth | | | 77.60 189 | 76.44 187 | 81.09 218 | 85.70 232 | 64.41 177 | 90.65 201 | 88.64 265 | 72.31 164 | 67.37 240 | 82.52 244 | 64.77 76 | 92.64 249 | 70.67 171 | 65.30 261 | 86.24 250 |
|
BH-untuned | | | 78.68 171 | 77.08 177 | 83.48 158 | 89.84 149 | 63.74 193 | 92.70 118 | 88.59 266 | 71.57 195 | 66.83 245 | 88.65 175 | 51.75 214 | 95.39 158 | 59.03 261 | 84.77 133 | 91.32 180 |
|
DTE-MVSNet | | | 68.46 278 | 67.33 270 | 71.87 319 | 77.94 320 | 49.00 336 | 86.16 276 | 88.58 267 | 66.36 256 | 58.19 299 | 82.21 248 | 46.36 259 | 83.87 334 | 44.97 314 | 55.17 323 | 82.73 299 |
|
CPTT-MVS | | | 79.59 152 | 79.16 147 | 80.89 223 | 91.54 116 | 59.80 265 | 92.10 138 | 88.54 268 | 60.42 298 | 72.96 162 | 93.28 104 | 48.27 245 | 92.80 240 | 78.89 112 | 86.50 123 | 90.06 194 |
|
CVMVSNet | | | 74.04 235 | 74.27 214 | 73.33 305 | 85.33 235 | 43.94 348 | 89.53 230 | 88.39 269 | 54.33 326 | 70.37 196 | 90.13 162 | 49.17 239 | 84.05 331 | 61.83 247 | 79.36 169 | 91.99 167 |
|
1112_ss | | | 80.56 134 | 79.83 132 | 82.77 167 | 88.65 176 | 60.78 248 | 92.29 131 | 88.36 270 | 72.58 156 | 72.46 173 | 94.95 60 | 65.09 71 | 93.42 224 | 66.38 210 | 77.71 182 | 94.10 105 |
|
tpmvs | | | 72.88 247 | 69.76 259 | 82.22 184 | 90.98 126 | 67.05 105 | 78.22 326 | 88.30 271 | 63.10 279 | 64.35 265 | 74.98 319 | 55.09 182 | 94.27 193 | 43.25 317 | 69.57 235 | 85.34 272 |
|
PLC |  | 68.80 14 | 75.23 225 | 73.68 224 | 79.86 241 | 92.93 74 | 58.68 278 | 90.64 202 | 88.30 271 | 60.90 295 | 64.43 264 | 90.53 152 | 42.38 278 | 94.57 180 | 56.52 268 | 76.54 197 | 86.33 246 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
eth_miper_zixun_eth | | | 75.96 214 | 74.40 212 | 80.66 224 | 84.66 246 | 63.02 210 | 89.28 235 | 88.27 273 | 71.88 179 | 65.73 250 | 81.65 255 | 59.45 131 | 92.81 239 | 68.13 191 | 60.53 305 | 86.14 252 |
|
IS-MVSNet | | | 80.14 141 | 79.41 141 | 82.33 179 | 87.91 195 | 60.08 262 | 91.97 147 | 88.27 273 | 72.90 151 | 71.44 187 | 91.73 140 | 61.44 109 | 93.66 219 | 62.47 243 | 86.53 122 | 93.24 135 |
|
Vis-MVSNet |  | | 80.92 130 | 79.98 130 | 83.74 147 | 88.48 179 | 61.80 232 | 93.44 92 | 88.26 275 | 73.96 127 | 77.73 119 | 91.76 138 | 49.94 230 | 94.76 173 | 65.84 216 | 90.37 92 | 94.65 83 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
cl_fuxian | | | 76.83 201 | 75.47 199 | 80.93 222 | 85.02 242 | 64.18 186 | 90.39 208 | 88.11 276 | 71.66 188 | 66.65 247 | 81.64 256 | 63.58 93 | 92.56 250 | 69.31 183 | 62.86 283 | 86.04 256 |
|
BH-RMVSNet | | | 79.46 156 | 77.65 167 | 84.89 117 | 91.68 111 | 65.66 141 | 93.55 87 | 88.09 277 | 72.93 149 | 73.37 159 | 91.12 144 | 46.20 262 | 96.12 122 | 56.28 270 | 85.61 128 | 92.91 146 |
|
tpm cat1 | | | 75.30 224 | 72.21 240 | 84.58 129 | 88.52 177 | 67.77 83 | 78.16 327 | 88.02 278 | 61.88 291 | 68.45 225 | 76.37 312 | 60.65 115 | 94.03 207 | 53.77 279 | 74.11 205 | 91.93 168 |
|
Test_1112_low_res | | | 79.56 153 | 78.60 152 | 82.43 175 | 88.24 188 | 60.39 257 | 92.09 139 | 87.99 279 | 72.10 173 | 71.84 181 | 87.42 195 | 64.62 77 | 93.04 228 | 65.80 217 | 77.30 191 | 93.85 120 |
|
AdaColmap |  | | 78.94 163 | 77.00 180 | 84.76 121 | 96.34 16 | 65.86 136 | 92.66 122 | 87.97 280 | 62.18 287 | 70.56 192 | 92.37 128 | 43.53 274 | 97.35 69 | 64.50 228 | 82.86 146 | 91.05 185 |
|
Effi-MVS+-dtu | | | 76.14 207 | 75.28 201 | 78.72 260 | 83.22 267 | 55.17 308 | 89.87 223 | 87.78 281 | 75.42 101 | 67.98 228 | 81.43 260 | 45.08 267 | 92.52 252 | 75.08 136 | 71.63 223 | 88.48 212 |
|
mvs-test1 | | | 78.74 170 | 77.95 162 | 81.14 212 | 83.22 267 | 57.13 296 | 93.96 67 | 87.78 281 | 75.42 101 | 72.68 166 | 90.80 148 | 45.08 267 | 94.54 184 | 75.08 136 | 77.49 188 | 91.74 170 |
|
PatchT | | | 69.11 271 | 65.37 282 | 80.32 228 | 82.07 277 | 63.68 197 | 67.96 346 | 87.62 283 | 50.86 334 | 69.37 208 | 65.18 343 | 57.09 152 | 88.53 307 | 41.59 326 | 66.60 256 | 88.74 208 |
|
bset_n11_16_dypcd | | | 75.95 215 | 74.16 216 | 81.30 207 | 76.91 326 | 65.14 156 | 88.89 243 | 87.48 284 | 74.30 119 | 69.90 206 | 83.40 236 | 42.16 280 | 92.42 255 | 78.39 116 | 66.03 258 | 86.32 247 |
|
XVG-OURS | | | 74.25 234 | 72.46 238 | 79.63 247 | 78.45 316 | 57.59 290 | 80.33 312 | 87.39 285 | 63.86 272 | 68.76 220 | 89.62 168 | 40.50 284 | 91.72 273 | 69.00 186 | 74.25 204 | 89.58 200 |
|
Anonymous20231206 | | | 67.53 286 | 65.78 276 | 72.79 310 | 74.95 332 | 47.59 341 | 88.23 254 | 87.32 286 | 61.75 293 | 58.07 301 | 77.29 303 | 37.79 300 | 87.29 320 | 42.91 319 | 63.71 279 | 83.48 289 |
|
XVG-OURS-SEG-HR | | | 74.70 231 | 73.08 229 | 79.57 249 | 78.25 317 | 57.33 295 | 80.49 310 | 87.32 286 | 63.22 277 | 68.76 220 | 90.12 164 | 44.89 269 | 91.59 275 | 70.55 173 | 74.09 206 | 89.79 197 |
|
pmmvs4 | | | 73.92 237 | 71.81 244 | 80.25 232 | 79.17 305 | 65.24 151 | 87.43 265 | 87.26 288 | 67.64 247 | 63.46 271 | 83.91 231 | 48.96 242 | 91.53 280 | 62.94 238 | 65.49 260 | 83.96 282 |
|
pmmvs5 | | | 73.35 241 | 71.52 246 | 78.86 259 | 78.64 314 | 60.61 255 | 91.08 188 | 86.90 289 | 67.69 244 | 63.32 272 | 83.64 232 | 44.33 271 | 90.53 286 | 62.04 245 | 66.02 259 | 85.46 269 |
|
pmmvs6 | | | 67.57 285 | 64.76 284 | 76.00 289 | 72.82 339 | 53.37 315 | 88.71 246 | 86.78 290 | 53.19 328 | 57.58 306 | 78.03 298 | 35.33 314 | 92.41 256 | 55.56 272 | 54.88 325 | 82.21 309 |
|
MVS_0304 | | | 68.99 274 | 67.23 271 | 74.28 300 | 80.36 291 | 52.54 318 | 87.01 270 | 86.36 291 | 59.89 304 | 66.22 248 | 73.56 323 | 24.25 342 | 88.03 311 | 57.34 267 | 70.11 231 | 82.27 308 |
|
F-COLMAP | | | 70.66 259 | 68.44 264 | 77.32 276 | 86.37 221 | 55.91 303 | 88.00 256 | 86.32 292 | 56.94 318 | 57.28 307 | 88.07 186 | 33.58 318 | 92.49 253 | 51.02 285 | 68.37 244 | 83.55 286 |
|
IterMVS | | | 72.65 252 | 70.83 250 | 78.09 267 | 82.17 275 | 62.96 212 | 87.64 263 | 86.28 293 | 71.56 196 | 60.44 287 | 78.85 292 | 45.42 266 | 86.66 322 | 63.30 236 | 61.83 293 | 84.65 279 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet5 | | | 68.04 281 | 65.66 279 | 75.18 293 | 84.43 252 | 57.89 284 | 83.54 287 | 86.26 294 | 61.83 292 | 53.64 317 | 73.30 324 | 37.15 306 | 85.08 327 | 48.99 293 | 61.77 294 | 82.56 305 |
|
GeoE | | | 78.90 164 | 77.43 171 | 83.29 160 | 88.95 170 | 62.02 229 | 92.31 130 | 86.23 295 | 70.24 218 | 71.34 188 | 89.27 169 | 54.43 190 | 94.04 205 | 63.31 235 | 80.81 163 | 93.81 121 |
|
EU-MVSNet | | | 64.01 302 | 63.01 296 | 67.02 331 | 74.40 334 | 38.86 357 | 83.27 292 | 86.19 296 | 45.11 347 | 54.27 313 | 81.15 269 | 36.91 309 | 80.01 350 | 48.79 295 | 57.02 317 | 82.19 310 |
|
Effi-MVS+ | | | 83.82 85 | 82.76 92 | 86.99 45 | 89.56 156 | 69.40 43 | 91.35 176 | 86.12 297 | 72.59 155 | 83.22 66 | 92.81 119 | 59.60 130 | 96.01 130 | 81.76 87 | 87.80 109 | 95.56 45 |
|
IterMVS-SCA-FT | | | 71.55 256 | 69.97 255 | 76.32 286 | 81.48 280 | 60.67 253 | 87.64 263 | 85.99 298 | 66.17 257 | 59.50 291 | 78.88 291 | 45.53 264 | 83.65 335 | 62.58 242 | 61.93 292 | 84.63 280 |
|
XVG-ACMP-BASELINE | | | 68.04 281 | 65.53 280 | 75.56 290 | 74.06 335 | 52.37 319 | 78.43 323 | 85.88 299 | 62.03 288 | 58.91 297 | 81.21 268 | 20.38 351 | 91.15 283 | 60.69 252 | 68.18 245 | 83.16 295 |
|
ambc | | | | | 69.61 323 | 61.38 356 | 41.35 350 | 49.07 358 | 85.86 300 | | 50.18 331 | 66.40 341 | 10.16 360 | 88.14 310 | 45.73 310 | 44.20 342 | 79.32 332 |
|
CMPMVS |  | 48.56 21 | 66.77 290 | 64.41 289 | 73.84 302 | 70.65 344 | 50.31 330 | 77.79 328 | 85.73 301 | 45.54 346 | 44.76 344 | 82.14 249 | 35.40 313 | 90.14 295 | 63.18 237 | 74.54 203 | 81.07 316 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Fast-Effi-MVS+-dtu | | | 75.04 227 | 73.37 227 | 80.07 235 | 80.86 284 | 59.52 269 | 91.20 184 | 85.38 302 | 71.90 177 | 65.20 254 | 84.84 221 | 41.46 281 | 92.97 230 | 66.50 209 | 72.96 214 | 87.73 222 |
|
Anonymous202405211 | | | 77.96 184 | 75.33 200 | 85.87 85 | 93.73 55 | 64.52 169 | 94.85 44 | 85.36 303 | 62.52 285 | 76.11 136 | 90.18 160 | 29.43 333 | 97.29 73 | 68.51 190 | 77.24 193 | 95.81 40 |
|
Anonymous20240521 | | | 62.09 308 | 59.08 311 | 71.10 320 | 67.19 349 | 48.72 337 | 83.91 285 | 85.23 304 | 50.38 335 | 47.84 336 | 71.22 335 | 20.74 350 | 85.51 326 | 46.47 306 | 58.75 314 | 79.06 333 |
|
our_test_3 | | | 68.29 279 | 64.69 285 | 79.11 258 | 78.92 309 | 64.85 166 | 88.40 253 | 85.06 305 | 60.32 300 | 52.68 319 | 76.12 314 | 40.81 283 | 89.80 299 | 44.25 316 | 55.65 321 | 82.67 304 |
|
USDC | | | 67.43 288 | 64.51 287 | 76.19 287 | 77.94 320 | 55.29 307 | 78.38 324 | 85.00 306 | 73.17 143 | 48.36 335 | 80.37 278 | 21.23 349 | 92.48 254 | 52.15 283 | 64.02 277 | 80.81 319 |
|
TransMVSNet (Re) | | | 70.07 264 | 67.66 268 | 77.31 277 | 80.62 289 | 59.13 275 | 91.78 156 | 84.94 307 | 65.97 258 | 60.08 289 | 80.44 277 | 50.78 222 | 91.87 269 | 48.84 294 | 45.46 341 | 80.94 317 |
|
xxxxxxxxxxxxxcwj | | | 87.14 31 | 87.19 33 | 86.99 45 | 93.84 49 | 67.89 80 | 95.05 39 | 84.72 308 | 78.19 68 | 86.25 32 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 33 | 94.56 29 | 95.28 57 |
|
DIV-MVS_2432*1600 | | | 60.87 312 | 58.60 312 | 67.68 328 | 66.13 350 | 39.93 354 | 75.63 332 | 84.70 309 | 57.32 315 | 49.57 332 | 68.45 339 | 29.55 331 | 82.87 341 | 48.09 297 | 47.94 338 | 80.25 326 |
|
ACMH | | 63.93 17 | 68.62 275 | 64.81 283 | 80.03 236 | 85.22 237 | 63.25 204 | 87.72 261 | 84.66 310 | 60.83 296 | 51.57 324 | 79.43 290 | 27.29 338 | 94.96 168 | 41.76 324 | 64.84 268 | 81.88 311 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Baseline_NR-MVSNet | | | 73.99 236 | 72.83 231 | 77.48 273 | 80.78 285 | 59.29 273 | 91.79 154 | 84.55 311 | 68.85 235 | 68.99 214 | 80.70 272 | 56.16 168 | 92.04 267 | 62.67 241 | 60.98 302 | 81.11 315 |
|
MIMVSNet1 | | | 60.16 315 | 57.33 316 | 68.67 325 | 69.71 346 | 44.13 347 | 78.92 321 | 84.21 312 | 55.05 325 | 44.63 345 | 71.85 331 | 23.91 344 | 81.54 349 | 32.63 351 | 55.03 324 | 80.35 323 |
|
test20.03 | | | 63.83 303 | 62.65 299 | 67.38 330 | 70.58 345 | 39.94 353 | 86.57 274 | 84.17 313 | 63.29 276 | 51.86 322 | 77.30 302 | 37.09 307 | 82.47 343 | 38.87 336 | 54.13 327 | 79.73 328 |
|
MDA-MVSNet_test_wron | | | 63.78 304 | 60.16 307 | 74.64 295 | 78.15 318 | 60.41 256 | 83.49 288 | 84.03 314 | 56.17 323 | 39.17 352 | 71.59 333 | 37.22 304 | 83.24 340 | 42.87 321 | 48.73 336 | 80.26 325 |
|
ADS-MVSNet | | | 68.54 277 | 64.38 290 | 81.03 219 | 88.06 191 | 66.90 110 | 68.01 344 | 84.02 315 | 57.57 312 | 64.48 261 | 69.87 336 | 38.68 288 | 89.21 302 | 40.87 328 | 67.89 248 | 86.97 234 |
|
CR-MVSNet | | | 73.79 239 | 70.82 251 | 82.70 169 | 83.15 269 | 67.96 78 | 70.25 337 | 84.00 316 | 73.67 136 | 69.97 203 | 72.41 327 | 57.82 146 | 89.48 300 | 52.99 282 | 73.13 212 | 90.64 189 |
|
Patchmtry | | | 67.53 286 | 63.93 291 | 78.34 262 | 82.12 276 | 64.38 178 | 68.72 341 | 84.00 316 | 48.23 342 | 59.24 292 | 72.41 327 | 57.82 146 | 89.27 301 | 46.10 308 | 56.68 320 | 81.36 314 |
|
YYNet1 | | | 63.76 305 | 60.14 308 | 74.62 296 | 78.06 319 | 60.19 261 | 83.46 290 | 83.99 318 | 56.18 322 | 39.25 351 | 71.56 334 | 37.18 305 | 83.34 338 | 42.90 320 | 48.70 337 | 80.32 324 |
|
LTVRE_ROB | | 59.60 19 | 66.27 292 | 63.54 293 | 74.45 297 | 84.00 259 | 51.55 323 | 67.08 347 | 83.53 319 | 58.78 309 | 54.94 311 | 80.31 279 | 34.54 316 | 93.23 226 | 40.64 330 | 68.03 246 | 78.58 337 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs-eth3d | | | 65.53 296 | 62.32 301 | 75.19 292 | 69.39 347 | 59.59 267 | 82.80 297 | 83.43 320 | 62.52 285 | 51.30 326 | 72.49 325 | 32.86 319 | 87.16 321 | 55.32 273 | 50.73 333 | 78.83 335 |
|
OpenMVS_ROB |  | 61.12 18 | 66.39 291 | 62.92 297 | 76.80 284 | 76.51 327 | 57.77 286 | 89.22 236 | 83.41 321 | 55.48 324 | 53.86 316 | 77.84 299 | 26.28 341 | 93.95 211 | 34.90 344 | 68.76 241 | 78.68 336 |
|
PatchMatch-RL | | | 72.06 253 | 69.98 254 | 78.28 264 | 89.51 158 | 55.70 305 | 83.49 288 | 83.39 322 | 61.24 294 | 63.72 269 | 82.76 241 | 34.77 315 | 93.03 229 | 53.37 281 | 77.59 184 | 86.12 255 |
|
MSDG | | | 69.54 268 | 65.73 277 | 80.96 220 | 85.11 241 | 63.71 195 | 84.19 283 | 83.28 323 | 56.95 317 | 54.50 312 | 84.03 228 | 31.50 326 | 96.03 128 | 42.87 321 | 69.13 239 | 83.14 296 |
|
CHOSEN 280x420 | | | 77.35 194 | 76.95 181 | 78.55 261 | 87.07 210 | 62.68 221 | 69.71 340 | 82.95 324 | 68.80 236 | 71.48 186 | 87.27 199 | 66.03 59 | 84.00 333 | 76.47 128 | 82.81 148 | 88.95 204 |
|
ppachtmachnet_test | | | 67.72 283 | 63.70 292 | 79.77 244 | 78.92 309 | 66.04 131 | 88.68 247 | 82.90 325 | 60.11 302 | 55.45 310 | 75.96 315 | 39.19 287 | 90.55 285 | 39.53 332 | 52.55 330 | 82.71 301 |
|
new-patchmatchnet | | | 59.30 317 | 56.48 318 | 67.79 327 | 65.86 351 | 44.19 346 | 82.47 298 | 81.77 326 | 59.94 303 | 43.65 348 | 66.20 342 | 27.67 337 | 81.68 348 | 39.34 333 | 41.40 346 | 77.50 340 |
|
MDA-MVSNet-bldmvs | | | 61.54 311 | 57.70 315 | 73.05 307 | 79.53 300 | 57.00 298 | 83.08 295 | 81.23 327 | 57.57 312 | 34.91 354 | 72.45 326 | 32.79 320 | 86.26 325 | 35.81 341 | 41.95 345 | 75.89 343 |
|
OurMVSNet-221017-0 | | | 64.68 298 | 62.17 302 | 72.21 315 | 76.08 331 | 47.35 342 | 80.67 309 | 81.02 328 | 56.19 321 | 51.60 323 | 79.66 288 | 27.05 339 | 88.56 306 | 53.60 280 | 53.63 328 | 80.71 320 |
|
ACMH+ | | 65.35 16 | 67.65 284 | 64.55 286 | 76.96 282 | 84.59 248 | 57.10 297 | 88.08 255 | 80.79 329 | 58.59 311 | 53.00 318 | 81.09 270 | 26.63 340 | 92.95 231 | 46.51 305 | 61.69 298 | 80.82 318 |
|
CNLPA | | | 74.31 233 | 72.30 239 | 80.32 228 | 91.49 117 | 61.66 235 | 90.85 195 | 80.72 330 | 56.67 320 | 63.85 268 | 90.64 149 | 46.75 256 | 90.84 284 | 53.79 278 | 75.99 200 | 88.47 214 |
|
LS3D | | | 69.17 270 | 66.40 273 | 77.50 272 | 91.92 102 | 56.12 302 | 85.12 278 | 80.37 331 | 46.96 343 | 56.50 309 | 87.51 194 | 37.25 303 | 93.71 217 | 32.52 352 | 79.40 168 | 82.68 303 |
|
testgi | | | 64.48 300 | 62.87 298 | 69.31 324 | 71.24 340 | 40.62 352 | 85.49 277 | 79.92 332 | 65.36 263 | 54.18 314 | 83.49 235 | 23.74 345 | 84.55 329 | 41.60 325 | 60.79 304 | 82.77 298 |
|
test_0402 | | | 64.54 299 | 61.09 305 | 74.92 294 | 84.10 258 | 60.75 250 | 87.95 257 | 79.71 333 | 52.03 330 | 52.41 320 | 77.20 304 | 32.21 324 | 91.64 274 | 23.14 356 | 61.03 301 | 72.36 348 |
|
SixPastTwentyTwo | | | 64.92 297 | 61.78 304 | 74.34 299 | 78.74 312 | 49.76 332 | 83.42 291 | 79.51 334 | 62.86 280 | 50.27 329 | 77.35 301 | 30.92 330 | 90.49 287 | 45.89 309 | 47.06 339 | 82.78 297 |
|
ITE_SJBPF | | | | | 70.43 322 | 74.44 333 | 47.06 343 | | 77.32 335 | 60.16 301 | 54.04 315 | 83.53 233 | 23.30 346 | 84.01 332 | 43.07 318 | 61.58 299 | 80.21 327 |
|
K. test v3 | | | 63.09 306 | 59.61 310 | 73.53 304 | 76.26 329 | 49.38 335 | 83.27 292 | 77.15 336 | 64.35 268 | 47.77 337 | 72.32 329 | 28.73 334 | 87.79 314 | 49.93 290 | 36.69 351 | 83.41 291 |
|
DP-MVS | | | 69.90 266 | 66.48 272 | 80.14 233 | 95.36 25 | 62.93 213 | 89.56 227 | 76.11 337 | 50.27 336 | 57.69 305 | 85.23 216 | 39.68 286 | 95.73 139 | 33.35 347 | 71.05 229 | 81.78 313 |
|
RPSCF | | | 64.24 301 | 61.98 303 | 71.01 321 | 76.10 330 | 45.00 345 | 75.83 331 | 75.94 338 | 46.94 344 | 58.96 296 | 84.59 224 | 31.40 327 | 82.00 347 | 47.76 302 | 60.33 309 | 86.04 256 |
|
TinyColmap | | | 60.32 313 | 56.42 319 | 72.00 318 | 78.78 311 | 53.18 316 | 78.36 325 | 75.64 339 | 52.30 329 | 41.59 350 | 75.82 317 | 14.76 357 | 88.35 308 | 35.84 340 | 54.71 326 | 74.46 345 |
|
ADS-MVSNet2 | | | 66.90 289 | 63.44 294 | 77.26 278 | 88.06 191 | 60.70 252 | 68.01 344 | 75.56 340 | 57.57 312 | 64.48 261 | 69.87 336 | 38.68 288 | 84.10 330 | 40.87 328 | 67.89 248 | 86.97 234 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 307 | 59.65 309 | 72.98 308 | 81.44 281 | 53.00 317 | 83.75 286 | 75.53 341 | 48.34 341 | 48.81 334 | 81.40 262 | 24.14 343 | 90.30 288 | 32.95 349 | 60.52 306 | 75.65 344 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Patchmatch-test | | | 65.86 294 | 60.94 306 | 80.62 225 | 83.75 261 | 58.83 276 | 58.91 354 | 75.26 342 | 44.50 349 | 50.95 328 | 77.09 306 | 58.81 140 | 87.90 312 | 35.13 343 | 64.03 276 | 95.12 66 |
|
MVS-HIRNet | | | 60.25 314 | 55.55 320 | 74.35 298 | 84.37 253 | 56.57 300 | 71.64 336 | 74.11 343 | 34.44 354 | 45.54 343 | 42.24 357 | 31.11 329 | 89.81 297 | 40.36 331 | 76.10 199 | 76.67 342 |
|
pmmvs3 | | | 55.51 319 | 51.50 324 | 67.53 329 | 57.90 358 | 50.93 328 | 80.37 311 | 73.66 344 | 40.63 352 | 44.15 347 | 64.75 345 | 16.30 354 | 78.97 351 | 44.77 315 | 40.98 348 | 72.69 346 |
|
TDRefinement | | | 55.28 320 | 51.58 323 | 66.39 332 | 59.53 357 | 46.15 344 | 76.23 330 | 72.80 345 | 44.60 348 | 42.49 349 | 76.28 313 | 15.29 355 | 82.39 344 | 33.20 348 | 43.75 343 | 70.62 350 |
|
Gipuma |  | | 34.91 329 | 31.44 332 | 45.30 342 | 70.99 342 | 39.64 356 | 19.85 363 | 72.56 346 | 20.10 360 | 16.16 362 | 21.47 363 | 5.08 367 | 71.16 354 | 13.07 360 | 43.70 344 | 25.08 359 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
FPMVS | | | 45.64 324 | 43.10 327 | 53.23 339 | 51.42 361 | 36.46 358 | 64.97 348 | 71.91 347 | 29.13 356 | 27.53 356 | 61.55 348 | 9.83 361 | 65.01 359 | 16.00 359 | 55.58 322 | 58.22 355 |
|
ANet_high | | | 40.27 326 | 35.20 329 | 55.47 336 | 34.74 367 | 34.47 359 | 63.84 350 | 71.56 348 | 48.42 340 | 18.80 360 | 41.08 358 | 9.52 362 | 64.45 360 | 20.18 357 | 8.66 364 | 67.49 352 |
|
Patchmatch-RL test | | | 68.17 280 | 64.49 288 | 79.19 254 | 71.22 341 | 53.93 313 | 70.07 339 | 71.54 349 | 69.22 230 | 56.79 308 | 62.89 346 | 56.58 165 | 88.61 304 | 69.53 180 | 52.61 329 | 95.03 72 |
|
LCM-MVSNet-Re | | | 72.93 245 | 71.84 243 | 76.18 288 | 88.49 178 | 48.02 338 | 80.07 317 | 70.17 350 | 73.96 127 | 52.25 321 | 80.09 284 | 49.98 229 | 88.24 309 | 67.35 198 | 84.23 142 | 92.28 162 |
|
LCM-MVSNet | | | 40.54 325 | 35.79 328 | 54.76 338 | 36.92 366 | 30.81 360 | 51.41 356 | 69.02 351 | 22.07 358 | 24.63 357 | 45.37 355 | 4.56 368 | 65.81 357 | 33.67 346 | 34.50 354 | 67.67 351 |
|
AllTest | | | 61.66 309 | 58.06 313 | 72.46 312 | 79.57 298 | 51.42 325 | 80.17 315 | 68.61 352 | 51.25 332 | 45.88 339 | 81.23 264 | 19.86 352 | 86.58 323 | 38.98 334 | 57.01 318 | 79.39 330 |
|
TestCases | | | | | 72.46 312 | 79.57 298 | 51.42 325 | | 68.61 352 | 51.25 332 | 45.88 339 | 81.23 264 | 19.86 352 | 86.58 323 | 38.98 334 | 57.01 318 | 79.39 330 |
|
LF4IMVS | | | 54.01 321 | 52.12 322 | 59.69 334 | 62.41 355 | 39.91 355 | 68.59 342 | 68.28 354 | 42.96 350 | 44.55 346 | 75.18 318 | 14.09 358 | 68.39 355 | 41.36 327 | 51.68 331 | 70.78 349 |
|
door | | | | | | | | | 66.57 355 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 356 | | | | | | | | |
|
DSMNet-mixed | | | 56.78 318 | 54.44 321 | 63.79 333 | 63.21 353 | 29.44 361 | 64.43 349 | 64.10 357 | 42.12 351 | 51.32 325 | 71.60 332 | 31.76 325 | 75.04 352 | 36.23 339 | 65.20 265 | 86.87 237 |
|
PM-MVS | | | 59.40 316 | 56.59 317 | 67.84 326 | 63.63 352 | 41.86 349 | 76.76 329 | 63.22 358 | 59.01 308 | 51.07 327 | 72.27 330 | 11.72 359 | 83.25 339 | 61.34 248 | 50.28 335 | 78.39 338 |
|
new_pmnet | | | 49.31 323 | 46.44 326 | 57.93 335 | 62.84 354 | 40.74 351 | 68.47 343 | 62.96 359 | 36.48 353 | 35.09 353 | 57.81 349 | 14.97 356 | 72.18 353 | 32.86 350 | 46.44 340 | 60.88 354 |
|
lessismore_v0 | | | | | 73.72 303 | 72.93 338 | 47.83 340 | | 61.72 360 | | 45.86 341 | 73.76 322 | 28.63 336 | 89.81 297 | 47.75 303 | 31.37 356 | 83.53 287 |
|
test_method | | | 38.59 327 | 35.16 330 | 48.89 341 | 54.33 359 | 21.35 366 | 45.32 359 | 53.71 361 | 7.41 364 | 28.74 355 | 51.62 351 | 8.70 363 | 52.87 361 | 33.73 345 | 32.89 355 | 72.47 347 |
|
PMMVS2 | | | 37.93 328 | 33.61 331 | 50.92 340 | 46.31 363 | 24.76 364 | 60.55 353 | 50.05 362 | 28.94 357 | 20.93 358 | 47.59 352 | 4.41 369 | 65.13 358 | 25.14 355 | 18.55 359 | 62.87 353 |
|
PMVS |  | 26.43 22 | 31.84 330 | 28.16 333 | 42.89 343 | 25.87 369 | 27.58 362 | 50.92 357 | 49.78 363 | 21.37 359 | 14.17 363 | 40.81 359 | 2.01 370 | 66.62 356 | 9.61 362 | 38.88 350 | 34.49 358 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 24.61 331 | 24.00 335 | 26.45 346 | 43.74 364 | 18.44 368 | 60.86 351 | 39.66 364 | 15.11 361 | 9.53 365 | 22.10 362 | 6.52 365 | 46.94 363 | 8.31 363 | 10.14 361 | 13.98 361 |
|
tmp_tt | | | 22.26 334 | 23.75 336 | 17.80 348 | 5.23 370 | 12.06 370 | 35.26 360 | 39.48 365 | 2.82 366 | 18.94 359 | 44.20 356 | 22.23 348 | 24.64 366 | 36.30 338 | 9.31 363 | 16.69 360 |
|
MVE |  | 24.84 23 | 24.35 332 | 19.77 338 | 38.09 344 | 34.56 368 | 26.92 363 | 26.57 361 | 38.87 366 | 11.73 363 | 11.37 364 | 27.44 360 | 1.37 371 | 50.42 362 | 11.41 361 | 14.60 360 | 36.93 356 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 23.76 333 | 23.20 337 | 25.46 347 | 41.52 365 | 16.90 369 | 60.56 352 | 38.79 367 | 14.62 362 | 8.99 366 | 20.24 365 | 7.35 364 | 45.82 364 | 7.25 364 | 9.46 362 | 13.64 362 |
|
MTMP | | | | | | | | 93.77 80 | 32.52 368 | | | | | | | | |
|
DeepMVS_CX |  | | | | 34.71 345 | 51.45 360 | 24.73 365 | | 28.48 369 | 31.46 355 | 17.49 361 | 52.75 350 | 5.80 366 | 42.60 365 | 18.18 358 | 19.42 358 | 36.81 357 |
|
N_pmnet | | | 50.55 322 | 49.11 325 | 54.88 337 | 77.17 324 | 4.02 371 | 84.36 282 | 2.00 370 | 48.59 339 | 45.86 341 | 68.82 338 | 32.22 323 | 82.80 342 | 31.58 354 | 51.38 332 | 77.81 339 |
|
wuyk23d | | | 11.30 336 | 10.95 339 | 12.33 349 | 48.05 362 | 19.89 367 | 25.89 362 | 1.92 371 | 3.58 365 | 3.12 367 | 1.37 367 | 0.64 372 | 15.77 367 | 6.23 365 | 7.77 365 | 1.35 363 |
|
testmvs | | | 7.23 338 | 9.62 341 | 0.06 351 | 0.04 371 | 0.02 373 | 84.98 280 | 0.02 372 | 0.03 367 | 0.18 368 | 1.21 368 | 0.01 374 | 0.02 368 | 0.14 366 | 0.01 366 | 0.13 365 |
|
test123 | | | 6.92 339 | 9.21 342 | 0.08 350 | 0.03 372 | 0.05 372 | 81.65 303 | 0.01 373 | 0.02 368 | 0.14 369 | 0.85 369 | 0.03 373 | 0.02 368 | 0.12 367 | 0.00 367 | 0.16 364 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 367 | 0.00 366 |
|
pcd_1.5k_mvsjas | | | 4.46 340 | 5.95 343 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 53.55 199 | 0.00 370 | 0.00 368 | 0.00 367 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 367 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 367 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 367 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 367 | 0.00 366 |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
ab-mvs-re | | | 7.91 337 | 10.55 340 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 94.95 60 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 367 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 367 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 11 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
test_0728_THIRD | | | | | | | | | | 72.48 159 | 90.55 12 | 96.93 10 | 76.24 9 | 99.08 9 | 91.53 12 | 94.99 15 | 96.43 22 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 80 |
|
test_part2 | | | | | | 96.29 17 | 68.16 74 | | | | 90.78 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 145 | | | | 94.68 80 |
|
sam_mvs | | | | | | | | | | | | | 54.91 184 | | | | |
|
test_post1 | | | | | | | | 78.95 320 | | | | 20.70 364 | 53.05 204 | 91.50 281 | 60.43 253 | | |
|
test_post | | | | | | | | | | | | 23.01 361 | 56.49 166 | 92.67 246 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 340 | 57.62 148 | 90.25 289 | | | |
|
gm-plane-assit | | | | | | 88.42 182 | 67.04 106 | | | 78.62 64 | | 91.83 136 | | 97.37 67 | 76.57 127 | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 21 | 94.96 16 | 95.29 55 |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 52 | 94.75 26 | 95.33 51 |
|
test_prior4 | | | | | | | 67.18 102 | 93.92 71 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 37 | | 75.40 103 | 85.25 50 | 95.61 37 | 67.94 40 | | 87.47 42 | 94.77 23 | |
|
旧先验2 | | | | | | | | 92.00 146 | | 59.37 307 | 87.54 25 | | | 93.47 223 | 75.39 133 | | |
|
新几何2 | | | | | | | | 91.41 168 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 92.01 144 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 96.09 123 | 61.26 249 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 60 | | | | |
|
testdata1 | | | | | | | | 89.21 237 | | 77.55 78 | | | | | | | |
|
plane_prior7 | | | | | | 86.94 211 | 61.51 237 | | | | | | | | | | |
|
plane_prior6 | | | | | | 87.23 206 | 62.32 225 | | | | | | 50.66 223 | | | | |
|
plane_prior4 | | | | | | | | | | | | 89.14 172 | | | | | |
|
plane_prior3 | | | | | | | 61.95 231 | | | 79.09 56 | 72.53 170 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 100 | | 78.81 61 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 208 | | | | | | | | | | | |
|
plane_prior | | | | | | | 62.42 222 | 93.85 75 | | 79.38 49 | | | | | | 78.80 175 | |
|
HQP5-MVS | | | | | | | 63.66 198 | | | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 200 | | 94.06 62 | | 79.80 43 | 74.18 151 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 200 | | 94.06 62 | | 79.80 43 | 74.18 151 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 122 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 151 | | | 95.61 147 | | | 88.63 209 |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 216 | | | | |
|
NP-MVS | | | | | | 87.41 203 | 63.04 209 | | | | | 90.30 158 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 264 | 80.13 316 | | 67.65 246 | 72.79 165 | | 54.33 192 | | 59.83 257 | | 92.58 154 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 223 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 233 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 193 | | | | |
|