This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
MSP-MVS95.62 696.54 192.86 9298.31 4980.10 16497.42 8896.78 4492.20 1397.11 898.29 2893.46 199.10 9596.01 2099.30 399.38 10
OPU-MVS97.30 299.19 892.31 399.12 698.54 2092.06 299.84 1299.11 199.37 199.74 1
GG-mvs-BLEND93.49 6694.94 14186.26 2981.62 33097.00 2788.32 12094.30 16491.23 396.21 21988.49 11397.43 7398.00 86
gg-mvs-nofinetune85.48 18482.90 20493.24 7494.51 15585.82 3779.22 33496.97 3161.19 33387.33 12853.01 34690.58 496.07 22086.07 13097.23 7897.81 100
baseline290.39 10290.21 9390.93 15290.86 24280.99 13995.20 21297.41 1586.03 9580.07 20494.61 15890.58 497.47 16787.29 12389.86 15394.35 198
CHOSEN 280x42091.71 7391.85 6791.29 14394.94 14182.69 10087.89 30996.17 12385.94 9687.27 12994.31 16390.27 695.65 24694.04 4695.86 10395.53 180
DPM-MVS96.21 295.53 998.26 196.26 10595.09 199.15 496.98 2993.39 996.45 1498.79 1090.17 799.99 189.33 10699.25 499.70 3
ET-MVSNet_ETH3D90.01 10889.03 11392.95 8894.38 15886.77 2698.14 3496.31 11489.30 4063.33 31896.72 11490.09 893.63 30490.70 8682.29 21798.46 47
MVSTER89.25 12088.92 11790.24 16995.98 11384.66 6596.79 13695.36 16787.19 8280.33 19990.61 21390.02 995.97 22485.38 13578.64 23690.09 236
test_0728_THIRD88.38 5696.69 1098.76 1289.64 1099.76 2097.47 1098.84 2299.38 10
tttt051788.57 13788.19 12489.71 18793.00 18875.99 25595.67 19696.67 6380.78 20481.82 18694.40 16288.97 1197.58 15776.05 22286.31 18195.57 179
thisisatest053089.65 11389.02 11491.53 13893.46 17980.78 14596.52 14996.67 6381.69 19483.79 16194.90 15488.85 1297.68 15277.80 19887.49 17596.14 167
thisisatest051590.95 9090.26 9193.01 8594.03 16884.27 7197.91 4796.67 6383.18 16786.87 13395.51 13788.66 1397.85 14780.46 17689.01 15896.92 144
SED-MVS95.88 496.22 394.87 1999.03 1385.03 5899.12 696.78 4488.72 4997.79 398.91 388.48 1499.82 1698.15 298.97 1599.74 1
test_241102_ONE99.03 1385.03 5896.78 4488.72 4997.79 398.90 688.48 1499.82 16
DPE-MVS95.32 995.55 894.64 2598.79 2184.87 6397.77 5696.74 5486.11 9196.54 1398.89 788.39 1699.74 2897.67 899.05 1099.31 14
test_241102_TWO96.78 4488.72 4997.70 598.91 387.86 1799.82 1698.15 299.00 1399.47 7
DVP-MVS95.58 795.91 794.57 2699.05 1085.18 5199.06 996.46 9488.75 4796.69 1098.76 1287.69 1899.76 2097.90 598.85 2098.77 30
test072699.05 1085.18 5199.11 896.78 4488.75 4797.65 698.91 387.69 18
MCST-MVS96.17 396.12 596.32 599.42 289.36 898.94 1597.10 2395.17 292.11 6498.46 2487.33 2099.97 297.21 1299.31 299.63 5
TSAR-MVS + GP.94.35 2194.50 1893.89 4697.38 9183.04 9698.10 3795.29 17391.57 1693.81 4697.45 8286.64 2199.43 6196.28 1794.01 11999.20 18
DWT-MVSNet_test90.52 10189.80 10592.70 10095.73 11982.20 11093.69 24896.55 8388.34 5787.04 13295.34 14086.53 2297.55 15976.32 21988.66 16398.34 53
TSAR-MVS + MP.94.79 1495.17 1293.64 5797.66 7584.10 7395.85 19196.42 9991.26 2097.49 796.80 11186.50 2398.49 12695.54 2899.03 1198.33 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS96.30 196.54 195.55 1299.31 587.69 1999.06 997.12 2294.66 396.79 998.78 1186.42 2499.95 397.59 999.18 599.00 23
DeepPCF-MVS89.82 194.61 1696.17 489.91 18197.09 9770.21 30498.99 1496.69 6195.57 195.08 2899.23 186.40 2599.87 897.84 798.66 3099.65 4
ETH3 D test640095.56 895.41 1196.00 799.02 1689.42 798.75 1896.80 4387.28 7795.88 1998.95 285.92 2699.41 6297.15 1398.95 1899.18 20
HPM-MVS++copyleft95.32 995.48 1094.85 2098.62 3486.04 3297.81 5496.93 3592.45 1195.69 2098.50 2285.38 2799.85 1094.75 3899.18 598.65 38
NCCC95.63 595.94 694.69 2499.21 785.15 5699.16 396.96 3294.11 695.59 2198.64 1985.07 2899.91 495.61 2799.10 799.00 23
EPP-MVSNet89.76 11189.72 10689.87 18293.78 17076.02 25497.22 9596.51 8879.35 23685.11 14395.01 15284.82 2997.10 18687.46 12288.21 16996.50 157
agg_prior194.10 2894.31 2593.48 6798.59 3583.13 9397.77 5696.56 8184.38 13794.19 4198.13 3884.66 3099.16 8995.74 2598.74 2798.15 71
TEST998.64 3183.71 8097.82 5296.65 6784.29 14195.16 2598.09 4384.39 3199.36 70
train_agg94.28 2294.45 2093.74 5198.64 3183.71 8097.82 5296.65 6784.50 13395.16 2598.09 4384.33 3299.36 7095.91 2398.96 1798.16 69
test_898.63 3383.64 8397.81 5496.63 7284.50 13395.10 2798.11 4284.33 3299.23 76
SD-MVS94.84 1395.02 1394.29 3497.87 7084.61 6697.76 6096.19 12289.59 3696.66 1298.17 3684.33 3299.60 4696.09 1898.50 3798.66 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS94.56 1794.75 1493.96 4598.84 2083.40 8798.04 4296.41 10085.79 9995.00 3198.28 2984.32 3599.18 8797.35 1198.77 2599.28 15
旧先验197.39 8879.58 17796.54 8498.08 4684.00 3697.42 7497.62 114
CSCG92.02 6791.65 7293.12 7998.53 3780.59 15097.47 8097.18 2077.06 26984.64 15097.98 5483.98 3799.52 5390.72 8597.33 7699.23 17
IB-MVS85.34 488.67 13387.14 15093.26 7393.12 18684.32 6898.76 1797.27 1787.19 8279.36 20890.45 21683.92 3898.53 12484.41 14169.79 28496.93 142
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CostFormer89.08 12188.39 12391.15 14793.13 18579.15 18588.61 30596.11 12683.14 16889.58 10386.93 26283.83 3996.87 19688.22 11785.92 18797.42 125
SteuartSystems-ACMMP94.13 2794.44 2193.20 7695.41 12581.35 13299.02 1396.59 7789.50 3794.18 4398.36 2783.68 4099.45 6094.77 3798.45 4098.81 29
Skip Steuart: Steuart Systems R&D Blog.
RRT_test8_iter0587.14 15786.41 15889.32 19194.41 15781.10 13797.06 11895.33 17184.67 12876.27 24090.48 21483.60 4196.33 21385.10 13670.78 27390.53 226
ETH3D-3000-0.194.43 1994.42 2294.45 2897.78 7185.78 3897.98 4496.53 8685.29 11295.45 2298.81 883.36 4299.38 6496.07 1998.53 3398.19 66
DELS-MVS94.98 1194.49 1996.44 496.42 10390.59 599.21 297.02 2694.40 591.46 7397.08 10083.32 4399.69 3692.83 6198.70 2999.04 21
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_prior394.03 3194.34 2493.09 8198.68 2581.91 11598.37 2796.40 10386.08 9394.57 3898.02 4983.14 4499.06 9795.05 3598.79 2398.29 60
test_prior298.37 2786.08 9394.57 3898.02 4983.14 4495.05 3598.79 23
ETH3D cwj APD-0.1693.91 3593.76 3394.36 3196.70 10185.74 3997.22 9596.41 10083.94 15094.13 4498.69 1883.13 4699.37 6895.25 3498.39 4797.97 89
SMA-MVScopyleft94.70 1594.68 1594.76 2298.02 6485.94 3597.47 8096.77 5085.32 10997.92 298.70 1683.09 4799.84 1295.79 2499.08 898.49 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.09 983.22 9296.60 7682.88 17593.61 4998.06 4882.93 4899.14 9195.51 2998.49 38
xxxxxxxxxxxxxcwj94.38 2094.62 1793.68 5598.24 5283.34 8898.61 2392.69 28491.32 1895.07 2998.74 1482.93 4899.38 6495.42 3098.51 3498.32 55
SF-MVS94.17 2594.05 3094.55 2797.56 8085.95 3397.73 6296.43 9884.02 14795.07 2998.74 1482.93 4899.38 6495.42 3098.51 3498.32 55
9.1494.26 2798.10 6098.14 3496.52 8784.74 12494.83 3498.80 982.80 5199.37 6895.95 2298.42 42
testtj94.09 2994.08 2994.09 4299.28 683.32 9097.59 7196.61 7383.60 16294.77 3698.46 2482.72 5299.64 4295.29 3398.42 4299.32 13
segment_acmp82.69 53
Regformer-194.00 3294.04 3193.87 4798.41 4384.29 6997.43 8697.04 2589.50 3792.75 5998.13 3882.60 5499.26 7593.55 5096.99 8298.06 78
Regformer-293.92 3394.01 3293.67 5698.41 4383.75 7997.43 8697.00 2789.43 3992.69 6098.13 3882.48 5599.22 7893.51 5196.99 8298.04 79
PAPM92.87 4992.40 5794.30 3392.25 20987.85 1696.40 16196.38 10791.07 2188.72 11496.90 10482.11 5697.37 17190.05 9697.70 6797.67 109
APD-MVScopyleft93.61 3793.59 3693.69 5498.76 2283.26 9197.21 9796.09 12782.41 18394.65 3798.21 3181.96 5798.81 11394.65 4098.36 5099.01 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS93.12 4392.91 4793.74 5198.65 3083.88 7597.67 6696.26 11683.00 17293.22 5398.24 3081.31 5899.21 8089.12 10798.74 2798.14 72
MG-MVS94.25 2493.72 3495.85 999.38 389.35 997.98 4498.09 889.99 3292.34 6396.97 10381.30 5998.99 10188.54 11198.88 1999.20 18
test1294.25 3598.34 4785.55 4496.35 11092.36 6280.84 6099.22 7898.31 5297.98 88
Regformer-393.19 4193.19 4293.19 7798.10 6083.01 9797.08 11696.98 2988.98 4391.35 7897.89 5980.80 6199.23 7692.30 6795.20 10997.32 130
baseline188.85 12887.49 14092.93 9095.21 13186.85 2595.47 20394.61 20987.29 7683.11 16994.99 15380.70 6296.89 19482.28 16673.72 25895.05 187
tpmrst88.36 14287.38 14491.31 14194.36 15979.92 16687.32 31395.26 17585.32 10988.34 11986.13 27880.60 6396.70 20383.78 14685.34 19597.30 133
Regformer-493.06 4493.12 4392.89 9198.10 6082.20 11097.08 11696.92 3788.87 4591.23 8097.89 5980.57 6499.19 8592.21 6995.20 10997.29 134
PHI-MVS93.59 3893.63 3593.48 6798.05 6381.76 12398.64 2197.13 2182.60 18194.09 4598.49 2380.35 6599.85 1094.74 3998.62 3198.83 28
CDS-MVSNet89.50 11588.96 11691.14 14891.94 22580.93 14197.09 11495.81 14284.26 14284.72 14894.20 16780.31 6695.64 24783.37 15888.96 15996.85 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm287.35 15686.26 15990.62 16192.93 19178.67 19688.06 30895.99 13279.33 23787.40 12686.43 27380.28 6796.40 21080.23 17985.73 19196.79 148
1112_ss88.60 13687.47 14292.00 12493.21 18280.97 14096.47 15292.46 28683.64 16080.86 19297.30 9180.24 6897.62 15577.60 20385.49 19297.40 127
Test_1112_low_res88.03 14786.73 15591.94 12693.15 18480.88 14296.44 15792.41 28783.59 16380.74 19491.16 20480.18 6997.59 15677.48 20685.40 19397.36 129
DeepC-MVS_fast89.06 294.48 1894.30 2695.02 1798.86 1985.68 4298.06 4096.64 7093.64 891.74 7098.54 2080.17 7099.90 592.28 6898.75 2699.49 6
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++94.28 2294.39 2393.97 4498.30 5084.06 7498.64 2196.93 3590.71 2593.08 5598.70 1679.98 7199.21 8094.12 4599.07 998.63 39
EPNet94.06 3094.15 2893.76 5097.27 9484.35 6798.29 2997.64 1394.57 495.36 2396.88 10679.96 7299.12 9491.30 7696.11 9897.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR93.41 4093.39 3993.47 7097.34 9282.83 9997.56 7498.27 689.16 4289.71 9997.14 9779.77 7399.56 5193.65 4897.94 6298.02 81
miper_enhance_ethall85.95 17685.20 17088.19 21694.85 14479.76 16996.00 18094.06 23582.98 17377.74 22088.76 23579.42 7495.46 25680.58 17572.42 26589.36 251
TESTMET0.1,189.83 10989.34 11191.31 14192.54 20080.19 16297.11 11096.57 7986.15 9086.85 13491.83 19779.32 7596.95 19081.30 17192.35 13896.77 150
WTY-MVS92.65 5891.68 7195.56 1196.00 11288.90 1098.23 3197.65 1288.57 5289.82 9897.22 9579.29 7699.06 9789.57 10288.73 16298.73 35
112190.66 9589.82 10493.16 7897.39 8881.71 12693.33 25796.66 6674.45 28391.38 7497.55 7979.27 7799.52 5379.95 18298.43 4198.26 63
HY-MVS84.06 691.63 7590.37 9095.39 1496.12 10988.25 1290.22 29397.58 1488.33 5890.50 9091.96 19379.26 7899.06 9790.29 9489.07 15798.88 27
PAPM_NR91.46 7990.82 8393.37 7198.50 4081.81 12295.03 22196.13 12484.65 12986.10 13997.65 7379.24 7999.75 2683.20 16096.88 8798.56 42
alignmvs92.97 4692.26 6195.12 1695.54 12287.77 1798.67 1996.38 10788.04 6293.01 5697.45 8279.20 8098.60 12093.25 5788.76 16198.99 25
新几何193.12 7997.44 8481.60 12996.71 5874.54 28291.22 8197.57 7579.13 8199.51 5677.40 20798.46 3998.26 63
JIA-IIPM79.00 26577.20 26384.40 28089.74 25964.06 32775.30 34295.44 16262.15 32881.90 18459.08 34478.92 8295.59 25166.51 28385.78 19093.54 209
MVSFormer91.36 8290.57 8693.73 5393.00 18888.08 1494.80 22694.48 21480.74 20594.90 3297.13 9878.84 8395.10 27583.77 14797.46 7098.02 81
lupinMVS93.87 3693.58 3794.75 2393.00 18888.08 1499.15 495.50 15891.03 2294.90 3297.66 6978.84 8397.56 15894.64 4197.46 7098.62 40
testdata90.13 17295.92 11474.17 27296.49 9373.49 29194.82 3597.99 5278.80 8597.93 14183.53 15697.52 6998.29 60
PAPR92.74 5192.17 6494.45 2898.89 1884.87 6397.20 9996.20 12087.73 7088.40 11898.12 4178.71 8699.76 2087.99 11896.28 9698.74 31
EI-MVSNet-Vis-set91.84 7091.77 7092.04 12397.60 7781.17 13496.61 14696.87 3988.20 6089.19 10897.55 7978.69 8799.14 9190.29 9490.94 14895.80 173
HFP-MVS92.89 4792.86 4992.98 8698.71 2381.12 13597.58 7296.70 5985.20 11591.75 6897.97 5678.47 8899.71 3290.95 7998.41 4498.12 74
#test#92.99 4592.99 4592.98 8698.71 2381.12 13597.77 5696.70 5985.75 10091.75 6897.97 5678.47 8899.71 3291.36 7598.41 4498.12 74
ZNCC-MVS92.75 5092.60 5593.23 7598.24 5281.82 12197.63 6796.50 9085.00 12091.05 8397.74 6778.38 9099.80 1990.48 8898.34 5198.07 77
Patchmatch-test78.25 26974.72 28188.83 20091.20 23474.10 27373.91 34588.70 32559.89 33966.82 30385.12 29478.38 9094.54 28848.84 33879.58 22897.86 95
Vis-MVSNet (Re-imp)88.88 12788.87 11888.91 19893.89 16974.43 27096.93 12994.19 22784.39 13683.22 16795.67 13278.24 9294.70 28578.88 19494.40 11697.61 115
tpm85.55 18284.47 18388.80 20190.19 25175.39 26288.79 30394.69 20084.83 12283.96 15885.21 29078.22 9394.68 28676.32 21978.02 24396.34 162
MP-MVScopyleft92.61 5992.67 5392.42 10998.13 5979.73 17397.33 9396.20 12085.63 10290.53 8997.66 6978.14 9499.70 3592.12 7098.30 5397.85 96
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test89.36 11788.60 12091.63 13694.91 14380.76 14695.60 19995.53 15582.56 18284.03 15591.24 20378.03 9596.81 19987.07 12688.41 16797.32 130
ACMMP_NAP93.46 3993.23 4194.17 3997.16 9584.28 7096.82 13496.65 6786.24 8994.27 4097.99 5277.94 9699.83 1593.39 5298.57 3298.39 52
原ACMM191.22 14697.77 7278.10 21596.61 7381.05 20091.28 7997.42 8677.92 9798.98 10279.85 18598.51 3496.59 155
EI-MVSNet-UG-set91.35 8391.22 7791.73 13297.39 8880.68 14896.47 15296.83 4287.92 6488.30 12197.36 8877.84 9899.13 9389.43 10589.45 15595.37 183
patchmatchnet-post77.09 33177.78 9995.39 257
sam_mvs177.59 10097.54 117
EIA-MVS91.73 7192.05 6590.78 15894.52 15276.40 24798.06 4095.34 17089.19 4188.90 11297.28 9377.56 10197.73 15190.77 8496.86 9098.20 65
GST-MVS92.43 6392.22 6393.04 8498.17 5781.64 12897.40 9096.38 10784.71 12690.90 8597.40 8777.55 10299.76 2089.75 10097.74 6697.72 105
CS-MVS92.88 4893.09 4492.26 11595.21 13180.70 14798.84 1695.26 17588.83 4692.50 6197.48 8177.49 10397.63 15495.34 3296.88 8798.46 47
MP-MVS-pluss92.58 6092.35 5893.29 7297.30 9382.53 10396.44 15796.04 13184.68 12789.12 10998.37 2677.48 10499.74 2893.31 5698.38 4897.59 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS92.54 6192.60 5592.34 11198.50 4079.90 16798.40 2696.40 10384.75 12390.48 9198.09 4377.40 10599.21 8091.15 7898.23 5597.92 92
region2R92.72 5492.70 5292.79 9598.68 2580.53 15497.53 7696.51 8885.22 11391.94 6697.98 5477.26 10699.67 4090.83 8398.37 4998.18 67
PatchmatchNetpermissive86.83 16485.12 17391.95 12594.12 16382.27 10886.55 31995.64 15184.59 13182.98 17184.99 29677.26 10695.96 22768.61 27391.34 14697.64 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
XVS92.69 5692.71 5092.63 10298.52 3880.29 15797.37 9196.44 9687.04 8491.38 7497.83 6477.24 10899.59 4790.46 8998.07 5898.02 81
X-MVStestdata86.26 17284.14 18892.63 10298.52 3880.29 15797.37 9196.44 9687.04 8491.38 7420.73 35677.24 10899.59 4790.46 8998.07 5898.02 81
ETV-MVS92.72 5492.87 4892.28 11494.54 15181.89 11797.98 4495.21 17789.77 3593.11 5496.83 10877.23 11097.50 16595.74 2595.38 10797.44 124
ACMMPR92.69 5692.67 5392.75 9698.66 2880.57 15197.58 7296.69 6185.20 11591.57 7297.92 5877.01 11199.67 4090.95 7998.41 4498.00 86
UniMVSNet_NR-MVSNet85.49 18384.59 17988.21 21589.44 26579.36 17896.71 14296.41 10085.22 11378.11 21890.98 20876.97 11295.14 27279.14 19168.30 29790.12 234
DP-MVS Recon91.72 7290.85 8294.34 3299.50 185.00 6098.51 2595.96 13480.57 20988.08 12397.63 7476.84 11399.89 785.67 13294.88 11398.13 73
CANet94.89 1294.64 1695.63 1097.55 8188.12 1399.06 996.39 10694.07 795.34 2497.80 6576.83 11499.87 897.08 1497.64 6898.89 26
PVSNet_Blended_VisFu91.24 8590.77 8492.66 10195.09 13582.40 10697.77 5695.87 14088.26 5986.39 13593.94 17276.77 11599.27 7388.80 11094.00 12096.31 165
FIs86.73 16886.10 16088.61 20490.05 25480.21 16196.14 17696.95 3385.56 10678.37 21692.30 18876.73 11695.28 26479.51 18679.27 23090.35 229
zzz-MVS92.74 5192.71 5092.86 9297.90 6680.85 14396.47 15296.33 11187.92 6490.20 9498.18 3276.71 11799.76 2092.57 6598.09 5697.96 90
MTAPA92.45 6292.31 5992.86 9297.90 6680.85 14392.88 27096.33 11187.92 6490.20 9498.18 3276.71 11799.76 2092.57 6598.09 5697.96 90
miper_ehance_all_eth84.57 19683.60 19687.50 23092.64 19878.25 20895.40 20693.47 25979.28 24076.41 23687.64 25176.53 11995.24 26778.58 19572.42 26589.01 263
SR-MVS92.16 6592.27 6091.83 13198.37 4678.41 20396.67 14595.76 14482.19 18791.97 6598.07 4776.44 12098.64 11793.71 4797.27 7798.45 49
PVSNet_BlendedMVS90.05 10789.96 9990.33 16797.47 8283.86 7698.02 4396.73 5587.98 6389.53 10489.61 22776.42 12199.57 4994.29 4379.59 22787.57 294
PVSNet_Blended93.13 4292.98 4693.57 6197.47 8283.86 7699.32 196.73 5591.02 2389.53 10496.21 12076.42 12199.57 4994.29 4395.81 10597.29 134
test-mter88.95 12388.60 12089.98 17792.26 20777.23 23597.11 11095.96 13485.32 10986.30 13791.38 20076.37 12396.78 20180.82 17391.92 14295.94 170
test22296.15 10878.41 20395.87 18996.46 9471.97 30289.66 10197.45 8276.33 12498.24 5498.30 59
FC-MVSNet-test85.96 17585.39 16787.66 22489.38 26678.02 21695.65 19896.87 3985.12 11777.34 22291.94 19576.28 12594.74 28477.09 20878.82 23490.21 232
test_post33.80 35276.17 12695.97 224
PGM-MVS91.93 6891.80 6992.32 11398.27 5179.74 17295.28 20797.27 1783.83 15590.89 8697.78 6676.12 12799.56 5188.82 10997.93 6497.66 110
Patchmatch-RL test76.65 28374.01 28884.55 27677.37 33964.23 32578.49 33882.84 34578.48 25264.63 31373.40 33776.05 12891.70 32276.99 20957.84 33097.72 105
cl-mvsnet285.11 18884.17 18787.92 21995.06 13878.82 19295.51 20194.22 22479.74 23176.77 23087.92 24875.96 12995.68 24379.93 18472.42 26589.27 252
TAMVS88.48 13887.79 13190.56 16291.09 23779.18 18396.45 15595.88 13883.64 16083.12 16893.33 17975.94 13095.74 24282.40 16588.27 16896.75 152
EPNet_dtu87.65 15387.89 12886.93 24294.57 14971.37 29896.72 14096.50 9088.56 5387.12 13095.02 15175.91 13194.01 29766.62 28090.00 15295.42 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs_anonymous88.68 13287.62 13691.86 12894.80 14581.69 12793.53 25394.92 18882.03 18978.87 21290.43 21775.77 13295.34 26085.04 13893.16 13098.55 44
test117291.64 7492.00 6690.54 16398.20 5674.48 26996.45 15595.65 14981.97 19191.63 7198.02 4975.76 13398.61 11893.16 5897.17 7998.52 45
SR-MVS-dyc-post91.29 8491.45 7590.80 15697.76 7376.03 25296.20 17395.44 16280.56 21090.72 8797.84 6275.76 13398.61 11891.99 7296.79 9197.75 103
test_yl91.46 7990.53 8794.24 3697.41 8685.18 5198.08 3897.72 1080.94 20189.85 9696.14 12175.61 13598.81 11390.42 9288.56 16598.74 31
DCV-MVSNet91.46 7990.53 8794.24 3697.41 8685.18 5198.08 3897.72 1080.94 20189.85 9696.14 12175.61 13598.81 11390.42 9288.56 16598.74 31
HPM-MVScopyleft91.62 7691.53 7491.89 12797.88 6979.22 18296.99 12195.73 14682.07 18889.50 10697.19 9675.59 13798.93 10990.91 8197.94 6297.54 117
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS91.88 6991.82 6892.07 12198.38 4578.63 19797.29 9496.09 12785.12 11788.45 11797.66 6975.53 13899.68 3889.83 9898.02 6197.88 93
PatchT79.75 25776.85 26788.42 20689.55 26275.49 26177.37 34094.61 20963.07 32582.46 17473.32 33875.52 13993.41 30751.36 33184.43 19896.36 160
CR-MVSNet83.53 21081.36 22690.06 17490.16 25279.75 17079.02 33691.12 30284.24 14382.27 18080.35 32175.45 14093.67 30363.37 29886.25 18296.75 152
Patchmtry77.36 27774.59 28285.67 26189.75 25775.75 25977.85 33991.12 30260.28 33671.23 28280.35 32175.45 14093.56 30557.94 31367.34 30887.68 290
thres100view90088.30 14386.95 15392.33 11296.10 11084.90 6297.14 10798.85 282.69 17983.41 16493.66 17775.43 14297.93 14169.04 26986.24 18494.17 199
thres600view788.06 14686.70 15692.15 11996.10 11085.17 5597.14 10798.85 282.70 17883.41 16493.66 17775.43 14297.82 14867.13 27885.88 18893.45 212
UniMVSNet (Re)85.31 18684.23 18688.55 20589.75 25780.55 15296.72 14096.89 3885.42 10778.40 21588.93 23375.38 14495.52 25478.58 19568.02 30089.57 244
tfpn200view988.48 13887.15 14892.47 10696.21 10685.30 4997.44 8298.85 283.37 16483.99 15693.82 17475.36 14597.93 14169.04 26986.24 18494.17 199
thres40088.42 14187.15 14892.23 11696.21 10685.30 4997.44 8298.85 283.37 16483.99 15693.82 17475.36 14597.93 14169.04 26986.24 18493.45 212
sam_mvs75.35 147
jason92.73 5392.23 6294.21 3890.50 24687.30 2398.65 2095.09 18090.61 2692.76 5897.13 9875.28 14897.30 17493.32 5596.75 9398.02 81
jason: jason.
cl_fuxian83.80 20682.65 20887.25 23792.10 21577.74 22695.25 21093.04 27878.58 25176.01 24487.21 25875.25 14995.11 27477.54 20568.89 29288.91 269
MVS_Test90.29 10589.18 11293.62 5995.23 12984.93 6194.41 23294.66 20484.31 13990.37 9391.02 20675.13 15097.82 14883.11 16294.42 11598.12 74
thres20088.92 12587.65 13392.73 9896.30 10485.62 4397.85 5098.86 184.38 13784.82 14693.99 17175.12 15198.01 13970.86 26386.67 17894.56 197
EPMVS87.47 15585.90 16392.18 11895.41 12582.26 10987.00 31596.28 11585.88 9884.23 15385.57 28475.07 15296.26 21671.14 26192.50 13598.03 80
UA-Net88.92 12588.48 12290.24 16994.06 16577.18 23793.04 26694.66 20487.39 7591.09 8293.89 17374.92 15398.18 13875.83 22491.43 14595.35 184
tpm cat183.63 20981.38 22590.39 16693.53 17878.19 21485.56 32595.09 18070.78 30778.51 21483.28 31074.80 15497.03 18766.77 27984.05 20095.95 169
APD-MVS_3200maxsize91.23 8691.35 7690.89 15497.89 6876.35 24896.30 16795.52 15779.82 22991.03 8497.88 6174.70 15598.54 12392.11 7196.89 8697.77 102
IS-MVSNet88.67 13388.16 12590.20 17193.61 17476.86 24096.77 13993.07 27784.02 14783.62 16395.60 13574.69 15696.24 21878.43 19793.66 12597.49 123
MDTV_nov1_ep1383.69 19194.09 16481.01 13886.78 31796.09 12783.81 15684.75 14784.32 30274.44 15796.54 20663.88 29485.07 196
MDTV_nov1_ep13_2view81.74 12486.80 31680.65 20785.65 14074.26 15876.52 21596.98 140
cl-mvsnet_83.27 21482.12 21386.74 24492.20 21075.95 25695.11 21793.27 27078.44 25474.82 25887.02 26174.19 15995.19 26974.67 23569.32 28889.09 257
cl-mvsnet183.27 21482.12 21386.74 24492.19 21175.92 25795.11 21793.26 27178.44 25474.81 25987.08 26074.19 15995.19 26974.66 23669.30 28989.11 256
casdiffmvs90.95 9090.39 8992.63 10292.82 19382.53 10396.83 13394.47 21687.69 7188.47 11695.56 13674.04 16197.54 16290.90 8292.74 13297.83 98
tpmvs83.04 22080.77 23189.84 18395.43 12477.96 21885.59 32495.32 17275.31 27676.27 24083.70 30773.89 16297.41 16959.53 30781.93 21894.14 201
test_post185.88 32330.24 35573.77 16395.07 27773.89 242
baseline90.76 9390.10 9692.74 9792.90 19282.56 10294.60 22894.56 21287.69 7189.06 11195.67 13273.76 16497.51 16490.43 9192.23 14098.16 69
EI-MVSNet85.80 17885.20 17087.59 22691.55 23077.41 23195.13 21595.36 16780.43 21580.33 19994.71 15673.72 16595.97 22476.96 21178.64 23689.39 246
IterMVS-LS83.93 20482.80 20687.31 23591.46 23377.39 23295.66 19793.43 26180.44 21375.51 25287.26 25673.72 16595.16 27176.99 20970.72 27589.39 246
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AUN-MVS86.25 17385.57 16488.26 21393.57 17673.38 27595.45 20495.88 13883.94 15085.47 14194.21 16673.70 16796.67 20583.54 15564.41 31994.73 196
miper_lstm_enhance81.66 24180.66 23484.67 27391.19 23571.97 29091.94 28093.19 27277.86 25872.27 27885.26 28873.46 16893.42 30673.71 24567.05 31088.61 271
diffmvs91.17 8790.74 8592.44 10893.11 18782.50 10596.25 17093.62 25587.79 6890.40 9295.93 12573.44 16997.42 16893.62 4992.55 13497.41 126
RE-MVS-def91.18 8097.76 7376.03 25296.20 17395.44 16280.56 21090.72 8797.84 6273.36 17091.99 7296.79 9197.75 103
DeepC-MVS86.58 391.53 7891.06 8192.94 8994.52 15281.89 11795.95 18395.98 13390.76 2483.76 16296.76 11273.24 17199.71 3291.67 7496.96 8497.22 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPMNet79.85 25675.92 27491.64 13490.16 25279.75 17079.02 33695.44 16258.43 34282.27 18072.55 33973.03 17298.41 13046.10 34286.25 18296.75 152
CHOSEN 1792x268891.07 8890.21 9393.64 5795.18 13383.53 8496.26 16996.13 12488.92 4484.90 14593.10 18372.86 17399.62 4588.86 10895.67 10697.79 101
eth_miper_zixun_eth83.12 21882.01 21586.47 24991.85 22874.80 26594.33 23593.18 27379.11 24375.74 25187.25 25772.71 17495.32 26276.78 21267.13 30989.27 252
canonicalmvs92.27 6491.22 7795.41 1395.80 11688.31 1197.09 11494.64 20788.49 5492.99 5797.31 8972.68 17598.57 12293.38 5488.58 16499.36 12
API-MVS90.18 10688.97 11593.80 4998.66 2882.95 9897.50 7995.63 15275.16 27786.31 13697.69 6872.49 17699.90 581.26 17296.07 9998.56 42
nrg03086.79 16685.43 16690.87 15588.76 26985.34 4797.06 11894.33 22184.31 13980.45 19791.98 19272.36 17796.36 21288.48 11471.13 27090.93 223
MVS_111021_LR91.60 7791.64 7391.47 14095.74 11778.79 19596.15 17596.77 5088.49 5488.64 11597.07 10172.33 17899.19 8593.13 5996.48 9596.43 159
test-LLR88.48 13887.98 12789.98 17792.26 20777.23 23597.11 11095.96 13483.76 15786.30 13791.38 20072.30 17996.78 20180.82 17391.92 14295.94 170
test0.0.03 182.79 22482.48 21083.74 28786.81 28972.22 28496.52 14995.03 18483.76 15773.00 27193.20 18072.30 17988.88 33564.15 29377.52 24490.12 234
Effi-MVS+90.70 9489.90 10293.09 8193.61 17483.48 8595.20 21292.79 28283.22 16691.82 6795.70 13071.82 18197.48 16691.25 7793.67 12498.32 55
sss90.87 9289.96 9993.60 6094.15 16283.84 7897.14 10798.13 785.93 9789.68 10096.09 12371.67 18299.30 7287.69 11989.16 15697.66 110
Test By Simon71.65 183
HPM-MVS_fast90.38 10490.17 9591.03 15097.61 7677.35 23397.15 10695.48 15979.51 23488.79 11396.90 10471.64 18498.81 11387.01 12797.44 7296.94 141
MVS90.60 9788.64 11996.50 394.25 16090.53 693.33 25797.21 1977.59 26178.88 21197.31 8971.52 18599.69 3689.60 10198.03 6099.27 16
dp84.30 20182.31 21290.28 16894.24 16177.97 21786.57 31895.53 15579.94 22880.75 19385.16 29271.49 18696.39 21163.73 29583.36 20596.48 158
ACMMPcopyleft90.39 10289.97 9891.64 13497.58 7978.21 21296.78 13796.72 5784.73 12584.72 14897.23 9471.22 18799.63 4488.37 11692.41 13797.08 139
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PCF-MVS84.09 586.77 16785.00 17592.08 12092.06 21983.07 9592.14 27894.47 21679.63 23376.90 22994.78 15571.15 18899.20 8472.87 24791.05 14793.98 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS81.61 1285.02 18983.67 19289.06 19496.79 9973.27 27995.92 18594.79 19874.81 28080.47 19696.83 10871.07 18998.19 13749.82 33692.57 13395.71 176
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pcd_1.5k_mvsjas5.92 3307.89 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 36071.04 1900.00 3600.00 3580.00 3580.00 356
PS-MVSNAJss84.91 19184.30 18586.74 24485.89 30274.40 27194.95 22294.16 22983.93 15276.45 23590.11 22471.04 19095.77 23783.16 16179.02 23390.06 238
PS-MVSNAJ94.17 2593.52 3896.10 695.65 12092.35 298.21 3295.79 14392.42 1296.24 1598.18 3271.04 19099.17 8896.77 1597.39 7596.79 148
xiu_mvs_v2_base93.92 3393.26 4095.91 895.07 13792.02 498.19 3395.68 14892.06 1496.01 1898.14 3770.83 19398.96 10396.74 1696.57 9496.76 151
RRT_MVS86.89 16185.96 16189.68 18895.01 14084.13 7296.33 16594.98 18684.20 14480.10 20392.07 19170.52 19495.01 27983.30 15977.14 24589.91 240
CPTT-MVS89.72 11289.87 10389.29 19298.33 4873.30 27797.70 6495.35 16975.68 27387.40 12697.44 8570.43 19598.25 13489.56 10396.90 8596.33 164
WR-MVS_H81.02 24780.09 24183.79 28588.08 27971.26 29994.46 23096.54 8480.08 22472.81 27486.82 26370.36 19692.65 31264.18 29267.50 30687.46 298
NR-MVSNet83.35 21281.52 22488.84 19988.76 26981.31 13394.45 23195.16 17884.65 12967.81 29990.82 20970.36 19694.87 28174.75 23366.89 31290.33 230
VNet92.11 6691.22 7794.79 2196.91 9886.98 2497.91 4797.96 986.38 8893.65 4895.74 12870.16 19898.95 10693.39 5288.87 16098.43 50
Fast-Effi-MVS+87.93 15086.94 15490.92 15394.04 16679.16 18498.26 3093.72 25181.29 19783.94 15992.90 18469.83 19996.68 20476.70 21391.74 14496.93 142
PLCcopyleft83.97 788.00 14887.38 14489.83 18498.02 6476.46 24597.16 10594.43 21979.26 24181.98 18396.28 11969.36 20099.27 7377.71 20292.25 13993.77 207
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-w/o88.24 14587.47 14290.54 16395.03 13978.54 19897.41 8993.82 24284.08 14578.23 21794.51 16169.34 20197.21 17980.21 18094.58 11495.87 172
abl_689.80 11089.71 10790.07 17396.53 10275.52 26094.48 22995.04 18381.12 19989.22 10797.00 10268.83 20298.96 10389.86 9795.27 10895.73 175
MAR-MVS90.63 9690.22 9291.86 12898.47 4278.20 21397.18 10196.61 7383.87 15488.18 12298.18 3268.71 20399.75 2683.66 15297.15 8097.63 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
114514_t88.79 13187.57 13892.45 10798.21 5581.74 12496.99 12195.45 16175.16 27782.48 17395.69 13168.59 20498.50 12580.33 17795.18 11197.10 138
DU-MVS84.57 19683.33 20088.28 21288.76 26979.36 17896.43 15995.41 16685.42 10778.11 21890.82 20967.61 20595.14 27279.14 19168.30 29790.33 230
Baseline_NR-MVSNet81.22 24680.07 24384.68 27285.32 31075.12 26496.48 15188.80 32276.24 27177.28 22486.40 27467.61 20594.39 29175.73 22666.73 31384.54 322
WR-MVS84.32 20082.96 20288.41 20789.38 26680.32 15696.59 14796.25 11783.97 14976.63 23290.36 21867.53 20794.86 28275.82 22570.09 28290.06 238
OMC-MVS88.80 13088.16 12590.72 15995.30 12877.92 22194.81 22594.51 21386.80 8684.97 14496.85 10767.53 20798.60 12085.08 13787.62 17295.63 177
LCM-MVSNet-Re83.75 20783.54 19784.39 28193.54 17764.14 32692.51 27384.03 34183.90 15366.14 30786.59 26767.36 20992.68 31184.89 14092.87 13196.35 161
v14882.41 23280.89 22986.99 24186.18 29776.81 24196.27 16893.82 24280.49 21275.28 25586.11 27967.32 21095.75 23975.48 22767.03 31188.42 277
CNLPA86.96 15985.37 16891.72 13397.59 7879.34 18097.21 9791.05 30574.22 28478.90 21096.75 11367.21 21198.95 10674.68 23490.77 14996.88 146
FMVSNet384.71 19382.71 20790.70 16094.55 15087.71 1895.92 18594.67 20381.73 19375.82 24888.08 24666.99 21294.47 28971.23 25875.38 25189.91 240
v881.88 23780.06 24487.32 23486.63 29079.04 19094.41 23293.65 25478.77 24973.19 27085.57 28466.87 21395.81 23473.84 24467.61 30587.11 301
131488.94 12487.20 14694.17 3993.21 18285.73 4093.33 25796.64 7082.89 17475.98 24596.36 11866.83 21499.39 6383.52 15796.02 10197.39 128
BH-untuned86.95 16085.94 16289.99 17694.52 15277.46 23096.78 13793.37 26681.80 19276.62 23393.81 17666.64 21597.02 18876.06 22193.88 12295.48 181
CVMVSNet84.83 19285.57 16482.63 29991.55 23060.38 33695.13 21595.03 18480.60 20882.10 18294.71 15666.40 21690.19 33374.30 23990.32 15197.31 132
PMMVS89.46 11689.92 10188.06 21794.64 14769.57 31196.22 17194.95 18787.27 7891.37 7796.54 11765.88 21797.39 17088.54 11193.89 12197.23 136
v2v48283.46 21181.86 21888.25 21486.19 29679.65 17496.34 16494.02 23681.56 19577.32 22388.23 24365.62 21896.03 22177.77 19969.72 28689.09 257
v114482.90 22381.27 22787.78 22286.29 29479.07 18996.14 17693.93 23880.05 22577.38 22186.80 26465.50 21995.93 22975.21 23070.13 27988.33 279
v1081.43 24379.53 24987.11 23986.38 29178.87 19194.31 23693.43 26177.88 25773.24 26985.26 28865.44 22095.75 23972.14 25267.71 30486.72 305
HQP2-MVS65.40 221
HQP-MVS87.91 15187.55 13988.98 19792.08 21678.48 19997.63 6794.80 19690.52 2782.30 17694.56 15965.40 22197.32 17287.67 12083.01 20891.13 219
V4283.04 22081.53 22387.57 22886.27 29579.09 18895.87 18994.11 23280.35 21777.22 22586.79 26565.32 22396.02 22277.74 20070.14 27887.61 293
pmmvs482.54 22880.79 23087.79 22186.11 29880.49 15593.55 25293.18 27377.29 26573.35 26789.40 22965.26 22495.05 27875.32 22873.61 25987.83 287
3Dnovator+82.88 889.63 11487.85 12994.99 1894.49 15686.76 2797.84 5195.74 14586.10 9275.47 25396.02 12465.00 22599.51 5682.91 16497.07 8198.72 36
HQP_MVS87.50 15487.09 15188.74 20291.86 22677.96 21897.18 10194.69 20089.89 3381.33 18894.15 16864.77 22697.30 17487.08 12482.82 21290.96 221
plane_prior691.98 22177.92 22164.77 226
v14419282.43 22980.73 23287.54 22985.81 30378.22 20995.98 18193.78 24779.09 24477.11 22686.49 26964.66 22895.91 23074.20 24069.42 28788.49 273
TranMVSNet+NR-MVSNet83.24 21681.71 22087.83 22087.71 28278.81 19496.13 17894.82 19584.52 13276.18 24390.78 21164.07 22994.60 28774.60 23766.59 31490.09 236
CP-MVSNet81.01 24880.08 24283.79 28587.91 28070.51 30194.29 24195.65 14980.83 20372.54 27788.84 23463.71 23092.32 31568.58 27468.36 29688.55 272
cdsmvs_eth3d_5k21.43 32528.57 3280.00 3420.00 3630.00 3640.00 35495.93 1370.00 3590.00 36097.66 6963.57 2310.00 3600.00 3580.00 3580.00 356
Vis-MVSNetpermissive88.67 13387.82 13091.24 14592.68 19478.82 19296.95 12793.85 24187.55 7387.07 13195.13 14863.43 23297.21 17977.58 20496.15 9797.70 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v119282.31 23380.55 23687.60 22585.94 30078.47 20295.85 19193.80 24579.33 23776.97 22886.51 26863.33 23395.87 23173.11 24670.13 27988.46 275
CANet_DTU90.98 8990.04 9793.83 4894.76 14686.23 3096.32 16693.12 27693.11 1093.71 4796.82 11063.08 23499.48 5884.29 14295.12 11295.77 174
ab-mvs87.08 15884.94 17693.48 6793.34 18183.67 8288.82 30295.70 14781.18 19884.55 15190.14 22362.72 23598.94 10885.49 13482.54 21697.85 96
v192192082.02 23680.23 24087.41 23285.62 30477.92 22195.79 19393.69 25278.86 24876.67 23186.44 27162.50 23695.83 23372.69 24869.77 28588.47 274
CLD-MVS87.97 14987.48 14189.44 18992.16 21480.54 15398.14 3494.92 18891.41 1779.43 20795.40 13962.34 23797.27 17790.60 8782.90 21190.50 227
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator82.32 1089.33 11887.64 13494.42 3093.73 17385.70 4197.73 6296.75 5386.73 8776.21 24295.93 12562.17 23899.68 3881.67 17097.81 6597.88 93
ADS-MVSNet279.57 25977.53 26185.71 26093.78 17072.13 28679.48 33286.11 33473.09 29480.14 20179.99 32462.15 23990.14 33459.49 30883.52 20294.85 190
ADS-MVSNet81.26 24578.36 25589.96 17993.78 17079.78 16879.48 33293.60 25673.09 29480.14 20179.99 32462.15 23995.24 26759.49 30883.52 20294.85 190
QAPM86.88 16284.51 18093.98 4394.04 16685.89 3697.19 10096.05 13073.62 28875.12 25695.62 13462.02 24199.74 2870.88 26296.06 10096.30 166
Effi-MVS+-dtu84.61 19584.90 17883.72 28891.96 22263.14 33094.95 22293.34 26785.57 10379.79 20587.12 25961.99 24295.61 25083.55 15385.83 18992.41 215
mvs-test186.83 16487.17 14785.81 25991.96 22265.24 32397.90 4993.34 26785.57 10384.51 15295.14 14761.99 24297.19 18183.55 15390.55 15095.00 188
XXY-MVS83.84 20582.00 21689.35 19087.13 28681.38 13195.72 19494.26 22380.15 22375.92 24790.63 21261.96 24496.52 20778.98 19373.28 26390.14 233
AdaColmapbinary88.81 12987.61 13792.39 11099.33 479.95 16596.70 14495.58 15377.51 26283.05 17096.69 11561.90 24599.72 3184.29 14293.47 12697.50 122
VPA-MVSNet85.32 18583.83 19089.77 18690.25 24982.63 10196.36 16297.07 2483.03 17181.21 19089.02 23261.58 24696.31 21585.02 13970.95 27290.36 228
test_djsdf83.00 22282.45 21184.64 27484.07 32169.78 30894.80 22694.48 21480.74 20575.41 25487.70 25061.32 24795.10 27583.77 14779.76 22489.04 261
v124081.70 23979.83 24787.30 23685.50 30577.70 22795.48 20293.44 26078.46 25376.53 23486.44 27160.85 24895.84 23271.59 25570.17 27788.35 278
D2MVS82.67 22681.55 22286.04 25787.77 28176.47 24495.21 21196.58 7882.66 18070.26 29085.46 28760.39 24995.80 23676.40 21779.18 23185.83 316
XVG-OURS-SEG-HR85.74 18085.16 17287.49 23190.22 25071.45 29791.29 28794.09 23381.37 19683.90 16095.22 14160.30 25097.53 16385.58 13384.42 19993.50 210
PEN-MVS79.47 26178.26 25783.08 29586.36 29268.58 31493.85 24694.77 19979.76 23071.37 28188.55 23859.79 25192.46 31364.50 29165.40 31688.19 281
TransMVSNet (Re)76.94 28174.38 28484.62 27585.92 30175.25 26395.28 20789.18 31973.88 28767.22 30086.46 27059.64 25294.10 29559.24 31152.57 33984.50 323
DP-MVS81.47 24278.28 25691.04 14998.14 5878.48 19995.09 22086.97 32961.14 33471.12 28492.78 18659.59 25399.38 6453.11 32886.61 17995.27 186
v7n79.32 26377.34 26285.28 26584.05 32272.89 28393.38 25593.87 24075.02 27970.68 28684.37 30159.58 25495.62 24967.60 27567.50 30687.32 300
F-COLMAP84.50 19883.44 19987.67 22395.22 13072.22 28495.95 18393.78 24775.74 27276.30 23995.18 14459.50 25598.45 12872.67 24986.59 18092.35 216
LS3D82.22 23479.94 24689.06 19497.43 8574.06 27493.20 26492.05 28961.90 32973.33 26895.21 14259.35 25699.21 8054.54 32492.48 13693.90 206
BH-RMVSNet86.84 16385.28 16991.49 13995.35 12780.26 16096.95 12792.21 28882.86 17681.77 18795.46 13859.34 25797.64 15369.79 26793.81 12396.57 156
MVP-Stereo82.65 22781.67 22185.59 26286.10 29978.29 20693.33 25792.82 28177.75 25969.17 29787.98 24759.28 25895.76 23871.77 25396.88 8782.73 331
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-CasMVS80.27 25479.18 25083.52 29287.56 28469.88 30694.08 24395.29 17380.27 22072.08 27988.51 24159.22 25992.23 31767.49 27668.15 29988.45 276
DTE-MVSNet78.37 26877.06 26582.32 30285.22 31167.17 31993.40 25493.66 25378.71 25070.53 28888.29 24259.06 26092.23 31761.38 30363.28 32487.56 295
TR-MVS86.30 17184.93 17790.42 16594.63 14877.58 22896.57 14893.82 24280.30 21882.42 17595.16 14558.74 26197.55 15974.88 23287.82 17196.13 168
OPM-MVS85.84 17785.10 17488.06 21788.34 27577.83 22495.72 19494.20 22687.89 6780.45 19794.05 17058.57 26297.26 17883.88 14582.76 21489.09 257
PatchMatch-RL85.00 19083.66 19389.02 19695.86 11574.55 26892.49 27493.60 25679.30 23979.29 20991.47 19858.53 26398.45 12870.22 26692.17 14194.07 203
pm-mvs180.05 25578.02 25886.15 25585.42 30675.81 25895.11 21792.69 28477.13 26670.36 28987.43 25358.44 26495.27 26571.36 25764.25 32087.36 299
our_test_377.90 27475.37 27785.48 26485.39 30776.74 24293.63 24991.67 29473.39 29265.72 30984.65 29958.20 26593.13 31057.82 31467.87 30186.57 307
IterMVS-SCA-FT80.51 25379.10 25284.73 27189.63 26174.66 26692.98 26791.81 29380.05 22571.06 28585.18 29158.04 26691.40 32372.48 25170.70 27688.12 283
SCA85.63 18183.64 19491.60 13792.30 20581.86 11992.88 27095.56 15484.85 12182.52 17285.12 29458.04 26695.39 25773.89 24287.58 17497.54 117
EU-MVSNet76.92 28276.95 26676.83 31984.10 32054.73 34691.77 28392.71 28372.74 29769.57 29488.69 23658.03 26887.43 34064.91 29070.00 28388.33 279
IterMVS80.67 25179.16 25185.20 26689.79 25676.08 25192.97 26891.86 29180.28 21971.20 28385.14 29357.93 26991.34 32472.52 25070.74 27488.18 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp80.98 24979.97 24584.01 28281.73 32670.44 30292.49 27493.58 25877.10 26872.98 27286.31 27557.58 27094.90 28079.32 18878.63 23886.69 306
xiu_mvs_v1_base_debu90.54 9889.54 10893.55 6292.31 20287.58 2096.99 12194.87 19187.23 7993.27 5097.56 7657.43 27198.32 13192.72 6293.46 12794.74 193
xiu_mvs_v1_base90.54 9889.54 10893.55 6292.31 20287.58 2096.99 12194.87 19187.23 7993.27 5097.56 7657.43 27198.32 13192.72 6293.46 12794.74 193
xiu_mvs_v1_base_debi90.54 9889.54 10893.55 6292.31 20287.58 2096.99 12194.87 19187.23 7993.27 5097.56 7657.43 27198.32 13192.72 6293.46 12794.74 193
OpenMVScopyleft79.58 1486.09 17483.62 19593.50 6590.95 23986.71 2897.44 8295.83 14175.35 27472.64 27595.72 12957.42 27499.64 4271.41 25695.85 10494.13 202
PVSNet82.34 989.02 12287.79 13192.71 9995.49 12381.50 13097.70 6497.29 1687.76 6985.47 14195.12 14956.90 27598.90 11080.33 17794.02 11897.71 107
Fast-Effi-MVS+-dtu83.33 21382.60 20985.50 26389.55 26269.38 31296.09 17991.38 29782.30 18475.96 24691.41 19956.71 27695.58 25275.13 23184.90 19791.54 217
ppachtmachnet_test77.19 27874.22 28686.13 25685.39 30778.22 20993.98 24491.36 29971.74 30467.11 30284.87 29756.67 27793.37 30852.21 32964.59 31886.80 304
VPNet84.69 19482.92 20390.01 17589.01 26883.45 8696.71 14295.46 16085.71 10179.65 20692.18 19056.66 27896.01 22383.05 16367.84 30390.56 225
GA-MVS85.79 17984.04 18991.02 15189.47 26480.27 15996.90 13094.84 19485.57 10380.88 19189.08 23056.56 27996.47 20977.72 20185.35 19496.34 162
XVG-OURS85.18 18784.38 18487.59 22690.42 24871.73 29491.06 29094.07 23482.00 19083.29 16695.08 15056.42 28097.55 15983.70 15183.42 20493.49 211
GBi-Net82.42 23080.43 23888.39 20892.66 19581.95 11294.30 23893.38 26379.06 24575.82 24885.66 28056.38 28193.84 29971.23 25875.38 25189.38 248
test182.42 23080.43 23888.39 20892.66 19581.95 11294.30 23893.38 26379.06 24575.82 24885.66 28056.38 28193.84 29971.23 25875.38 25189.38 248
FMVSNet282.79 22480.44 23789.83 18492.66 19585.43 4695.42 20594.35 22079.06 24574.46 26087.28 25456.38 28194.31 29269.72 26874.68 25589.76 242
pmmvs581.34 24479.54 24886.73 24785.02 31276.91 23996.22 17191.65 29577.65 26073.55 26488.61 23755.70 28494.43 29074.12 24173.35 26288.86 270
tfpnnormal78.14 27075.42 27686.31 25388.33 27679.24 18194.41 23296.22 11973.51 28969.81 29285.52 28655.43 28595.75 23947.65 34067.86 30283.95 327
LFMVS89.27 11987.64 13494.16 4197.16 9585.52 4597.18 10194.66 20479.17 24289.63 10296.57 11655.35 28698.22 13589.52 10489.54 15498.74 31
ACMM80.70 1383.72 20882.85 20586.31 25391.19 23572.12 28795.88 18894.29 22280.44 21377.02 22791.96 19355.24 28797.14 18579.30 18980.38 22289.67 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron73.54 29570.43 30282.86 29684.55 31471.85 29191.74 28491.32 30167.63 31646.73 34481.09 31855.11 28890.42 33255.91 32159.76 32886.31 310
YYNet173.53 29670.43 30282.85 29784.52 31671.73 29491.69 28591.37 29867.63 31646.79 34381.21 31755.04 28990.43 33155.93 32059.70 32986.38 309
LTVRE_ROB73.68 1877.99 27175.74 27584.74 27090.45 24772.02 28886.41 32091.12 30272.57 29966.63 30487.27 25554.95 29096.98 18956.29 31975.98 24785.21 319
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test84.20 20283.49 19886.33 25090.88 24073.06 28095.28 20794.13 23082.20 18576.31 23793.20 18054.83 29196.95 19083.72 14980.83 22088.98 264
LGP-MVS_train86.33 25090.88 24073.06 28094.13 23082.20 18576.31 23793.20 18054.83 29196.95 19083.72 14980.83 22088.98 264
cascas86.50 16984.48 18292.55 10592.64 19885.95 3397.04 12095.07 18275.32 27580.50 19591.02 20654.33 29397.98 14086.79 12887.62 17293.71 208
ACMP81.66 1184.00 20383.22 20186.33 25091.53 23272.95 28295.91 18793.79 24683.70 15973.79 26392.22 18954.31 29496.89 19483.98 14479.74 22689.16 255
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet_077.72 1581.70 23978.95 25389.94 18090.77 24376.72 24395.96 18296.95 3385.01 11970.24 29188.53 24052.32 29598.20 13686.68 12944.08 34794.89 189
MSDG80.62 25277.77 26089.14 19393.43 18077.24 23491.89 28190.18 31169.86 31268.02 29891.94 19552.21 29698.84 11159.32 31083.12 20691.35 218
DSMNet-mixed73.13 29872.45 29475.19 32577.51 33846.82 34985.09 32682.01 34667.61 32069.27 29681.33 31650.89 29786.28 34254.54 32483.80 20192.46 214
UGNet87.73 15286.55 15791.27 14495.16 13479.11 18696.35 16396.23 11888.14 6187.83 12590.48 21450.65 29899.09 9680.13 18194.03 11795.60 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FMVSNet576.46 28474.16 28783.35 29490.05 25476.17 24989.58 29789.85 31371.39 30665.29 31180.42 32050.61 29987.70 33961.05 30569.24 29086.18 312
MS-PatchMatch83.05 21981.82 21986.72 24889.64 26079.10 18794.88 22494.59 21179.70 23270.67 28789.65 22650.43 30096.82 19870.82 26595.99 10284.25 325
Anonymous2023120675.29 28973.64 28980.22 31080.75 32763.38 32993.36 25690.71 30973.09 29467.12 30183.70 30750.33 30190.85 32853.63 32770.10 28186.44 308
N_pmnet61.30 31460.20 31764.60 32984.32 31717.00 36191.67 28610.98 36061.77 33058.45 33378.55 32749.89 30291.83 32042.27 34563.94 32184.97 320
jajsoiax82.12 23581.15 22885.03 26884.19 31970.70 30094.22 24293.95 23783.07 17073.48 26589.75 22549.66 30395.37 25982.24 16879.76 22489.02 262
RPSCF77.73 27576.63 26981.06 30788.66 27355.76 34487.77 31087.88 32764.82 32474.14 26292.79 18549.22 30496.81 19967.47 27776.88 24690.62 224
SixPastTwentyTwo76.04 28574.32 28581.22 30684.54 31561.43 33591.16 28889.30 31877.89 25664.04 31486.31 27548.23 30594.29 29363.54 29763.84 32287.93 286
test20.0372.36 30271.15 29875.98 32377.79 33659.16 33992.40 27689.35 31774.09 28561.50 32584.32 30248.09 30685.54 34550.63 33462.15 32683.24 328
VDDNet86.44 17084.51 18092.22 11791.56 22981.83 12097.10 11394.64 20769.50 31387.84 12495.19 14348.01 30797.92 14689.82 9986.92 17696.89 145
VDD-MVS88.28 14487.02 15292.06 12295.09 13580.18 16397.55 7594.45 21883.09 16989.10 11095.92 12747.97 30898.49 12693.08 6086.91 17797.52 121
Anonymous2023121179.72 25877.19 26487.33 23395.59 12177.16 23895.18 21494.18 22859.31 34072.57 27686.20 27747.89 30995.66 24474.53 23869.24 29089.18 254
OurMVSNet-221017-077.18 27976.06 27280.55 30983.78 32360.00 33790.35 29291.05 30577.01 27066.62 30587.92 24847.73 31094.03 29671.63 25468.44 29587.62 292
CMPMVSbinary54.94 2175.71 28874.56 28379.17 31579.69 33255.98 34289.59 29693.30 26960.28 33653.85 34089.07 23147.68 31196.33 21376.55 21481.02 21985.22 318
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvs_tets81.74 23880.71 23384.84 26984.22 31870.29 30393.91 24593.78 24782.77 17773.37 26689.46 22847.36 31295.31 26381.99 16979.55 22988.92 268
test_part177.94 27374.98 27886.83 24386.85 28876.14 25094.31 23693.03 27958.41 34369.77 29384.53 30047.22 31395.27 26575.23 22965.46 31589.06 260
MDA-MVSNet-bldmvs71.45 30467.94 30881.98 30485.33 30968.50 31592.35 27788.76 32370.40 30842.99 34581.96 31346.57 31491.31 32548.75 33954.39 33486.11 313
pmmvs-eth3d73.59 29470.66 30082.38 30076.40 34173.38 27589.39 30089.43 31672.69 29860.34 32977.79 32946.43 31591.26 32666.42 28457.06 33182.51 332
Anonymous2024052983.15 21780.60 23590.80 15695.74 11778.27 20796.81 13594.92 18860.10 33881.89 18592.54 18745.82 31698.82 11279.25 19078.32 24195.31 185
MVS-HIRNet71.36 30567.00 30984.46 27990.58 24569.74 30979.15 33587.74 32846.09 34661.96 32450.50 34745.14 31795.64 24753.74 32688.11 17088.00 285
CL-MVSNet_2432*160070.97 30669.31 30675.95 32476.24 34355.39 34587.45 31190.94 30770.20 31062.96 32177.48 33044.01 31888.09 33761.25 30453.26 33684.37 324
FMVSNet179.50 26076.54 27088.39 20888.47 27481.95 11294.30 23893.38 26373.14 29372.04 28085.66 28043.86 31993.84 29965.48 28772.53 26489.38 248
K. test v373.62 29371.59 29779.69 31282.98 32559.85 33890.85 29188.83 32177.13 26658.90 33082.11 31243.62 32091.72 32165.83 28654.10 33587.50 297
pmmvs674.65 29271.67 29683.60 29079.13 33469.94 30593.31 26190.88 30861.05 33565.83 30884.15 30443.43 32194.83 28366.62 28060.63 32786.02 315
ACMH75.40 1777.99 27174.96 27987.10 24090.67 24476.41 24693.19 26591.64 29672.47 30063.44 31787.61 25243.34 32297.16 18258.34 31273.94 25787.72 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_040272.68 30069.54 30582.09 30388.67 27271.81 29392.72 27286.77 33161.52 33162.21 32283.91 30543.22 32393.76 30234.60 34772.23 26880.72 339
lessismore_v079.98 31180.59 32958.34 34080.87 34758.49 33283.46 30943.10 32493.89 29863.11 29948.68 34187.72 288
UniMVSNet_ETH3D80.86 25078.75 25487.22 23886.31 29372.02 28891.95 27993.76 25073.51 28975.06 25790.16 22243.04 32595.66 24476.37 21878.55 23993.98 204
UnsupCasMVSNet_eth73.25 29770.57 30181.30 30577.53 33766.33 32187.24 31493.89 23980.38 21657.90 33581.59 31542.91 32690.56 33065.18 28948.51 34287.01 303
COLMAP_ROBcopyleft73.24 1975.74 28773.00 29383.94 28392.38 20169.08 31391.85 28286.93 33061.48 33265.32 31090.27 21942.27 32796.93 19350.91 33375.63 25085.80 317
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet79.18 26475.99 27388.72 20387.37 28580.66 14979.96 33191.82 29277.38 26474.33 26181.87 31441.78 32890.74 32966.36 28583.10 20794.76 192
ACMH+76.62 1677.47 27674.94 28085.05 26791.07 23871.58 29693.26 26290.01 31271.80 30364.76 31288.55 23841.62 32996.48 20862.35 30171.00 27187.09 302
ITE_SJBPF82.38 30087.00 28765.59 32289.55 31579.99 22769.37 29591.30 20241.60 33095.33 26162.86 30074.63 25686.24 311
Anonymous20240521184.41 19981.93 21791.85 13096.78 10078.41 20397.44 8291.34 30070.29 30984.06 15494.26 16541.09 33198.96 10379.46 18782.65 21598.17 68
new-patchmatchnet68.85 31065.93 31277.61 31773.57 34763.94 32890.11 29488.73 32471.62 30555.08 33873.60 33640.84 33287.22 34151.35 33248.49 34381.67 338
USDC78.65 26676.25 27185.85 25887.58 28374.60 26789.58 29790.58 31084.05 14663.13 31988.23 24340.69 33396.86 19766.57 28275.81 24986.09 314
XVG-ACMP-BASELINE79.38 26277.90 25983.81 28484.98 31367.14 32089.03 30193.18 27380.26 22172.87 27388.15 24538.55 33496.26 21676.05 22278.05 24288.02 284
AllTest75.92 28673.06 29284.47 27792.18 21267.29 31791.07 28984.43 33967.63 31663.48 31590.18 22038.20 33597.16 18257.04 31573.37 26088.97 266
TestCases84.47 27792.18 21267.29 31784.43 33967.63 31663.48 31590.18 22038.20 33597.16 18257.04 31573.37 26088.97 266
UnsupCasMVSNet_bld68.60 31164.50 31480.92 30874.63 34567.80 31683.97 32792.94 28065.12 32354.63 33968.23 34235.97 33792.17 31960.13 30644.83 34582.78 330
tmp_tt41.54 32041.93 32240.38 33620.10 36026.84 35761.93 34959.09 35614.81 35528.51 35080.58 31935.53 33848.33 35663.70 29613.11 35345.96 349
testgi74.88 29173.40 29079.32 31480.13 33161.75 33393.21 26386.64 33279.49 23566.56 30691.06 20535.51 33988.67 33656.79 31871.25 26987.56 295
OpenMVS_ROBcopyleft68.52 2073.02 29969.57 30483.37 29380.54 33071.82 29293.60 25188.22 32662.37 32761.98 32383.15 31135.31 34095.47 25545.08 34375.88 24882.82 329
testing_276.96 28073.18 29188.30 21175.87 34479.64 17589.92 29594.21 22580.16 22251.23 34275.94 33333.94 34195.81 23482.28 16675.12 25489.46 245
MVS_030478.43 26776.70 26883.60 29088.22 27769.81 30792.91 26995.10 17972.32 30178.71 21380.29 32333.78 34293.37 30868.77 27280.23 22387.63 291
TDRefinement69.20 30965.78 31379.48 31366.04 35062.21 33288.21 30786.12 33362.92 32661.03 32785.61 28333.23 34394.16 29455.82 32253.02 33782.08 336
LF4IMVS72.36 30270.82 29976.95 31879.18 33356.33 34186.12 32186.11 33469.30 31463.06 32086.66 26633.03 34492.25 31665.33 28868.64 29482.28 335
MIMVSNet169.44 30766.65 31177.84 31676.48 34062.84 33187.42 31288.97 32066.96 32157.75 33679.72 32632.77 34585.83 34446.32 34163.42 32384.85 321
EG-PatchMatch MVS74.92 29072.02 29583.62 28983.76 32473.28 27893.62 25092.04 29068.57 31558.88 33183.80 30631.87 34695.57 25356.97 31778.67 23582.00 337
new_pmnet66.18 31263.18 31575.18 32676.27 34261.74 33483.79 32884.66 33856.64 34451.57 34171.85 34131.29 34787.93 33849.98 33562.55 32575.86 342
TinyColmap72.41 30168.99 30782.68 29888.11 27869.59 31088.41 30685.20 33665.55 32257.91 33484.82 29830.80 34895.94 22851.38 33068.70 29382.49 334
pmmvs365.75 31362.18 31676.45 32167.12 34964.54 32488.68 30485.05 33754.77 34557.54 33773.79 33529.40 34986.21 34355.49 32347.77 34478.62 340
PM-MVS69.32 30866.93 31076.49 32073.60 34655.84 34385.91 32279.32 35074.72 28161.09 32678.18 32821.76 35091.10 32770.86 26356.90 33282.51 332
DeepMVS_CXcopyleft64.06 33078.53 33543.26 35268.11 35469.94 31138.55 34676.14 33218.53 35179.34 34643.72 34441.62 34869.57 345
ambc76.02 32268.11 34851.43 34764.97 34889.59 31460.49 32874.49 33417.17 35292.46 31361.50 30252.85 33884.17 326
FPMVS55.09 31552.93 31861.57 33155.98 35140.51 35483.11 32983.41 34437.61 34834.95 34871.95 34014.40 35376.95 34729.81 34865.16 31767.25 346
EMVS31.70 32431.45 32632.48 33850.72 35523.95 35974.78 34352.30 35920.36 35316.08 35631.48 35412.80 35453.60 35511.39 35413.10 35419.88 352
ANet_high46.22 31841.28 32361.04 33239.91 35846.25 35170.59 34776.18 35158.87 34123.09 35248.00 34912.58 35566.54 35228.65 34913.62 35270.35 344
E-PMN32.70 32332.39 32533.65 33753.35 35425.70 35874.07 34453.33 35821.08 35217.17 35533.63 35311.85 35654.84 35412.98 35314.04 35120.42 351
Gipumacopyleft45.11 31942.05 32154.30 33380.69 32851.30 34835.80 35283.81 34228.13 35027.94 35134.53 35111.41 35776.70 34921.45 35054.65 33334.90 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS250.90 31746.31 32064.67 32855.53 35246.67 35077.30 34171.02 35240.89 34734.16 34959.32 3439.83 35876.14 35040.09 34628.63 34971.21 343
LCM-MVSNet52.52 31648.24 31965.35 32747.63 35641.45 35372.55 34683.62 34331.75 34937.66 34757.92 3459.19 35976.76 34849.26 33744.60 34677.84 341
PMVScopyleft34.80 2339.19 32135.53 32450.18 33429.72 35930.30 35659.60 35066.20 35526.06 35117.91 35449.53 3483.12 36074.09 35118.19 35249.40 34046.14 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive35.65 2233.85 32229.49 32746.92 33541.86 35736.28 35550.45 35156.52 35718.75 35418.28 35337.84 3502.41 36158.41 35318.71 35120.62 35046.06 348
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d14.10 32613.89 32914.72 33955.23 35322.91 36033.83 3533.56 3614.94 3564.11 3572.28 3592.06 36219.66 35710.23 3558.74 3551.59 355
test1239.07 32811.73 3311.11 3400.50 3620.77 36289.44 2990.20 3630.34 3582.15 35910.72 3580.34 3630.32 3581.79 3570.08 3572.23 353
testmvs9.92 32712.94 3300.84 3410.65 3610.29 36393.78 2470.39 3620.42 3572.85 35815.84 3570.17 3640.30 3592.18 3560.21 3561.91 354
uanet_test0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
sosnet-low-res0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
sosnet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
uncertanet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
Regformer0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
ab-mvs-re8.11 32910.81 3320.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 36097.30 910.00 3650.00 3600.00 3580.00 3580.00 356
uanet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
IU-MVS99.03 1385.34 4796.86 4192.05 1598.74 198.15 298.97 1599.42 9
save fliter98.24 5283.34 8898.61 2396.57 7991.32 18
test_0728_SECOND95.14 1599.04 1286.14 3199.06 996.77 5099.84 1297.90 598.85 2099.45 8
GSMVS97.54 117
test_part298.90 1785.14 5796.07 17
MTGPAbinary96.33 111
MTMP97.53 7668.16 353
gm-plane-assit92.27 20679.64 17584.47 13595.15 14697.93 14185.81 131
test9_res96.00 2199.03 1198.31 58
agg_prior294.30 4299.00 1398.57 41
agg_prior98.59 3583.13 9396.56 8194.19 4199.16 89
test_prior482.34 10797.75 61
test_prior93.09 8198.68 2581.91 11596.40 10399.06 9798.29 60
旧先验296.97 12674.06 28696.10 1697.76 15088.38 115
新几何296.42 160
无先验96.87 13196.78 4477.39 26399.52 5379.95 18298.43 50
原ACMM296.84 132
testdata299.48 5876.45 216
testdata195.57 20087.44 74
plane_prior791.86 22677.55 229
plane_prior594.69 20097.30 17487.08 12482.82 21290.96 221
plane_prior494.15 168
plane_prior377.75 22590.17 3181.33 188
plane_prior297.18 10189.89 33
plane_prior191.95 224
plane_prior77.96 21897.52 7890.36 3082.96 210
n20.00 364
nn0.00 364
door-mid79.75 349
test1196.50 90
door80.13 348
HQP5-MVS78.48 199
HQP-NCC92.08 21697.63 6790.52 2782.30 176
ACMP_Plane92.08 21697.63 6790.52 2782.30 176
BP-MVS87.67 120
HQP4-MVS82.30 17697.32 17291.13 219
HQP3-MVS94.80 19683.01 208
NP-MVS92.04 22078.22 20994.56 159
ACMMP++_ref78.45 240
ACMMP++79.05 232