DeepPCF-MVS | | 89.82 1 | 94.61 17 | 96.17 5 | 89.91 191 | 97.09 102 | 70.21 319 | 98.99 14 | 96.69 67 | 95.57 1 | 95.08 31 | 99.23 1 | 86.40 28 | 99.87 8 | 97.84 10 | 98.66 34 | 99.65 6 |
|
ETH3 D test6400 | | | 95.56 9 | 95.41 12 | 96.00 9 | 99.02 19 | 89.42 9 | 98.75 18 | 96.80 47 | 87.28 83 | 95.88 22 | 98.95 2 | 85.92 29 | 99.41 66 | 97.15 17 | 98.95 20 | 99.18 24 |
|
SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 22 | 99.03 16 | 85.03 61 | 99.12 6 | 96.78 48 | 88.72 51 | 97.79 4 | 98.91 3 | 88.48 16 | 99.82 17 | 98.15 3 | 98.97 17 | 99.74 1 |
|
test_241102_TWO | | | | | | | | | 96.78 48 | 88.72 51 | 97.70 6 | 98.91 3 | 87.86 20 | 99.82 17 | 98.15 3 | 99.00 15 | 99.47 9 |
|
test0726 | | | | | | 99.05 10 | 85.18 54 | 99.11 8 | 96.78 48 | 88.75 49 | 97.65 8 | 98.91 3 | 87.69 21 | | | | |
|
test_241102_ONE | | | | | | 99.03 16 | 85.03 61 | | 96.78 48 | 88.72 51 | 97.79 4 | 98.90 6 | 88.48 16 | 99.82 17 | | | |
|
DPE-MVS |  | | 95.32 10 | 95.55 9 | 94.64 28 | 98.79 25 | 84.87 66 | 97.77 60 | 96.74 59 | 86.11 101 | 96.54 16 | 98.89 7 | 88.39 18 | 99.74 32 | 97.67 11 | 99.05 12 | 99.31 18 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ETH3D-3000-0.1 | | | 94.43 20 | 94.42 23 | 94.45 31 | 97.78 76 | 85.78 40 | 97.98 48 | 96.53 92 | 85.29 123 | 95.45 25 | 98.81 8 | 83.36 45 | 99.38 68 | 96.07 23 | 98.53 37 | 98.19 69 |
|
9.14 | | | | 94.26 28 | | 98.10 65 | | 98.14 35 | 96.52 93 | 84.74 135 | 94.83 37 | 98.80 9 | 82.80 54 | 99.37 72 | 95.95 26 | 98.42 46 | |
|
DPM-MVS | | | 96.21 2 | 95.53 10 | 98.26 1 | 96.26 110 | 95.09 1 | 99.15 4 | 96.98 31 | 93.39 9 | 96.45 17 | 98.79 10 | 90.17 9 | 99.99 1 | 89.33 114 | 99.25 6 | 99.70 3 |
|
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 14 | 99.31 5 | 87.69 21 | 99.06 9 | 97.12 23 | 94.66 3 | 96.79 11 | 98.78 11 | 86.42 27 | 99.95 3 | 97.59 12 | 99.18 7 | 99.00 27 |
|
DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 21 | 99.05 10 | 85.34 49 | 98.13 38 | 96.77 54 | 88.38 59 | 97.70 6 | 98.77 12 | 92.06 3 | 99.84 12 | 97.47 13 | 99.37 1 | 99.70 3 |
|
test_one_0601 | | | | | | 98.91 20 | 84.56 71 | | 96.70 64 | 88.06 66 | 96.57 15 | 98.77 12 | 88.04 19 | | | | |
|
DVP-MVS |  | | 95.58 8 | 95.91 8 | 94.57 29 | 99.05 10 | 85.18 54 | 99.06 9 | 96.46 100 | 88.75 49 | 96.69 12 | 98.76 14 | 87.69 21 | 99.76 24 | 97.90 8 | 98.85 22 | 98.77 34 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 88.38 59 | 96.69 12 | 98.76 14 | 89.64 12 | 99.76 24 | 97.47 13 | 98.84 24 | 99.38 14 |
|
xxxxxxxxxxxxxcwj | | | 94.38 21 | 94.62 18 | 93.68 58 | 98.24 57 | 83.34 93 | 98.61 23 | 92.69 297 | 91.32 18 | 95.07 32 | 98.74 16 | 82.93 51 | 99.38 68 | 95.42 34 | 98.51 38 | 98.32 58 |
|
SF-MVS | | | 94.17 26 | 94.05 31 | 94.55 30 | 97.56 85 | 85.95 35 | 97.73 66 | 96.43 104 | 84.02 158 | 95.07 32 | 98.74 16 | 82.93 51 | 99.38 68 | 95.42 34 | 98.51 38 | 98.32 58 |
|
SMA-MVS |  | | 94.70 16 | 94.68 16 | 94.76 25 | 98.02 69 | 85.94 37 | 97.47 85 | 96.77 54 | 85.32 120 | 97.92 3 | 98.70 18 | 83.09 50 | 99.84 12 | 95.79 28 | 99.08 10 | 98.49 50 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSLP-MVS++ | | | 94.28 23 | 94.39 24 | 93.97 47 | 98.30 55 | 84.06 79 | 98.64 21 | 96.93 37 | 90.71 26 | 93.08 60 | 98.70 18 | 79.98 74 | 99.21 84 | 94.12 49 | 99.07 11 | 98.63 43 |
|
ETH3D cwj APD-0.16 | | | 93.91 36 | 93.76 34 | 94.36 34 | 96.70 106 | 85.74 41 | 97.22 100 | 96.41 106 | 83.94 161 | 94.13 49 | 98.69 20 | 83.13 49 | 99.37 72 | 95.25 37 | 98.39 51 | 97.97 94 |
|
NCCC | | | 95.63 6 | 95.94 7 | 94.69 27 | 99.21 7 | 85.15 59 | 99.16 3 | 96.96 34 | 94.11 6 | 95.59 24 | 98.64 21 | 85.07 31 | 99.91 4 | 95.61 31 | 99.10 9 | 99.00 27 |
|
OPU-MVS | | | | | 97.30 2 | 99.19 8 | 92.31 3 | 99.12 6 | | | | 98.54 22 | 92.06 3 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 19 | 94.30 27 | 95.02 19 | 98.86 23 | 85.68 44 | 98.06 44 | 96.64 76 | 93.64 8 | 91.74 78 | 98.54 22 | 80.17 73 | 99.90 5 | 92.28 75 | 98.75 30 | 99.49 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS++ |  | | 95.32 10 | 95.48 11 | 94.85 23 | 98.62 38 | 86.04 34 | 97.81 58 | 96.93 37 | 92.45 11 | 95.69 23 | 98.50 24 | 85.38 30 | 99.85 10 | 94.75 42 | 99.18 7 | 98.65 42 |
|
PHI-MVS | | | 93.59 39 | 93.63 36 | 93.48 70 | 98.05 68 | 81.76 131 | 98.64 21 | 97.13 22 | 82.60 193 | 94.09 50 | 98.49 25 | 80.35 68 | 99.85 10 | 94.74 43 | 98.62 35 | 98.83 32 |
|
testtj | | | 94.09 30 | 94.08 30 | 94.09 45 | 99.28 6 | 83.32 95 | 97.59 75 | 96.61 79 | 83.60 173 | 94.77 39 | 98.46 26 | 82.72 55 | 99.64 46 | 95.29 36 | 98.42 46 | 99.32 17 |
|
MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 15 | 97.10 25 | 95.17 2 | 92.11 72 | 98.46 26 | 87.33 23 | 99.97 2 | 97.21 16 | 99.31 4 | 99.63 7 |
|
PC_three_1452 | | | | | | | | | | 91.12 21 | 98.33 2 | 98.42 28 | 92.51 2 | 99.81 20 | 98.96 2 | 99.37 1 | 99.70 3 |
|
MP-MVS-pluss | | | 92.58 61 | 92.35 59 | 93.29 75 | 97.30 98 | 82.53 109 | 96.44 166 | 96.04 138 | 84.68 138 | 89.12 117 | 98.37 29 | 77.48 108 | 99.74 32 | 93.31 61 | 98.38 52 | 97.59 123 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SteuartSystems-ACMMP | | | 94.13 28 | 94.44 22 | 93.20 79 | 95.41 131 | 81.35 140 | 99.02 13 | 96.59 83 | 89.50 40 | 94.18 48 | 98.36 30 | 83.68 43 | 99.45 64 | 94.77 41 | 98.45 44 | 98.81 33 |
Skip Steuart: Steuart Systems R&D Blog. |
MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 95 | 98.31 54 | 80.10 171 | 97.42 93 | 96.78 48 | 92.20 13 | 97.11 10 | 98.29 31 | 93.46 1 | 99.10 99 | 96.01 24 | 99.30 5 | 99.38 14 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 94.56 18 | 94.75 15 | 93.96 48 | 98.84 24 | 83.40 92 | 98.04 46 | 96.41 106 | 85.79 109 | 95.00 34 | 98.28 32 | 84.32 38 | 99.18 91 | 97.35 15 | 98.77 29 | 99.28 19 |
|
CDPH-MVS | | | 93.12 44 | 92.91 48 | 93.74 54 | 98.65 34 | 83.88 80 | 97.67 70 | 96.26 122 | 83.00 184 | 93.22 58 | 98.24 33 | 81.31 61 | 99.21 84 | 89.12 115 | 98.74 31 | 98.14 75 |
|
APD-MVS |  | | 93.61 38 | 93.59 37 | 93.69 57 | 98.76 26 | 83.26 96 | 97.21 102 | 96.09 134 | 82.41 195 | 94.65 40 | 98.21 34 | 81.96 60 | 98.81 118 | 94.65 44 | 98.36 54 | 99.01 26 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
zzz-MVS | | | 92.74 52 | 92.71 51 | 92.86 95 | 97.90 71 | 80.85 151 | 96.47 161 | 96.33 117 | 87.92 69 | 90.20 102 | 98.18 35 | 76.71 122 | 99.76 24 | 92.57 72 | 98.09 60 | 97.96 95 |
|
MTAPA | | | 92.45 63 | 92.31 60 | 92.86 95 | 97.90 71 | 80.85 151 | 92.88 282 | 96.33 117 | 87.92 69 | 90.20 102 | 98.18 35 | 76.71 122 | 99.76 24 | 92.57 72 | 98.09 60 | 97.96 95 |
|
PS-MVSNAJ | | | 94.17 26 | 93.52 39 | 96.10 8 | 95.65 126 | 92.35 2 | 98.21 33 | 95.79 151 | 92.42 12 | 96.24 18 | 98.18 35 | 71.04 200 | 99.17 92 | 96.77 19 | 97.39 80 | 96.79 158 |
|
MAR-MVS | | | 90.63 100 | 90.22 96 | 91.86 132 | 98.47 47 | 78.20 224 | 97.18 106 | 96.61 79 | 83.87 165 | 88.18 130 | 98.18 35 | 68.71 213 | 99.75 30 | 83.66 164 | 97.15 85 | 97.63 120 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
SD-MVS | | | 94.84 14 | 95.02 14 | 94.29 37 | 97.87 75 | 84.61 70 | 97.76 64 | 96.19 129 | 89.59 39 | 96.66 14 | 98.17 39 | 84.33 35 | 99.60 50 | 96.09 22 | 98.50 41 | 98.66 41 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
xiu_mvs_v2_base | | | 93.92 34 | 93.26 42 | 95.91 10 | 95.07 142 | 92.02 6 | 98.19 34 | 95.68 156 | 92.06 14 | 96.01 21 | 98.14 40 | 70.83 203 | 98.96 107 | 96.74 20 | 96.57 99 | 96.76 161 |
|
agg_prior1 | | | 94.10 29 | 94.31 26 | 93.48 70 | 98.59 39 | 83.13 98 | 97.77 60 | 96.56 87 | 84.38 148 | 94.19 45 | 98.13 41 | 84.66 33 | 99.16 93 | 95.74 29 | 98.74 31 | 98.15 74 |
|
Regformer-1 | | | 94.00 33 | 94.04 32 | 93.87 50 | 98.41 48 | 84.29 74 | 97.43 91 | 97.04 27 | 89.50 40 | 92.75 66 | 98.13 41 | 82.60 57 | 99.26 79 | 93.55 55 | 96.99 88 | 98.06 81 |
|
Regformer-2 | | | 93.92 34 | 94.01 33 | 93.67 59 | 98.41 48 | 83.75 84 | 97.43 91 | 97.00 29 | 89.43 42 | 92.69 67 | 98.13 41 | 82.48 58 | 99.22 82 | 93.51 56 | 96.99 88 | 98.04 82 |
|
PAPR | | | 92.74 52 | 92.17 65 | 94.45 31 | 98.89 22 | 84.87 66 | 97.20 104 | 96.20 127 | 87.73 75 | 88.40 126 | 98.12 44 | 78.71 90 | 99.76 24 | 87.99 126 | 96.28 102 | 98.74 35 |
|
test_8 | | | | | | 98.63 37 | 83.64 88 | 97.81 58 | 96.63 78 | 84.50 144 | 95.10 30 | 98.11 45 | 84.33 35 | 99.23 80 | | | |
|
TEST9 | | | | | | 98.64 35 | 83.71 85 | 97.82 56 | 96.65 73 | 84.29 152 | 95.16 28 | 98.09 46 | 84.39 34 | 99.36 74 | | | |
|
train_agg | | | 94.28 23 | 94.45 21 | 93.74 54 | 98.64 35 | 83.71 85 | 97.82 56 | 96.65 73 | 84.50 144 | 95.16 28 | 98.09 46 | 84.33 35 | 99.36 74 | 95.91 27 | 98.96 19 | 98.16 72 |
|
CP-MVS | | | 92.54 62 | 92.60 56 | 92.34 116 | 98.50 45 | 79.90 174 | 98.40 26 | 96.40 109 | 84.75 134 | 90.48 99 | 98.09 46 | 77.40 109 | 99.21 84 | 91.15 86 | 98.23 59 | 97.92 97 |
|
旧先验1 | | | | | | 97.39 93 | 79.58 184 | | 96.54 90 | | | 98.08 49 | 84.00 39 | | | 97.42 79 | 97.62 121 |
|
SR-MVS | | | 92.16 66 | 92.27 61 | 91.83 135 | 98.37 51 | 78.41 214 | 96.67 152 | 95.76 152 | 82.19 199 | 91.97 73 | 98.07 50 | 76.44 125 | 98.64 122 | 93.71 52 | 97.27 82 | 98.45 52 |
|
ZD-MVS | | | | | | 99.09 9 | 83.22 97 | | 96.60 82 | 82.88 187 | 93.61 54 | 98.06 51 | 82.93 51 | 99.14 95 | 95.51 33 | 98.49 42 | |
|
test1172 | | | 91.64 77 | 92.00 69 | 90.54 171 | 98.20 61 | 74.48 283 | 96.45 164 | 95.65 157 | 81.97 203 | 91.63 79 | 98.02 52 | 75.76 138 | 98.61 123 | 93.16 63 | 97.17 84 | 98.52 49 |
|
test_prior3 | | | 94.03 32 | 94.34 25 | 93.09 84 | 98.68 29 | 81.91 123 | 98.37 28 | 96.40 109 | 86.08 103 | 94.57 41 | 98.02 52 | 83.14 47 | 99.06 101 | 95.05 38 | 98.79 27 | 98.29 63 |
|
test_prior2 | | | | | | | | 98.37 28 | | 86.08 103 | 94.57 41 | 98.02 52 | 83.14 47 | | 95.05 38 | 98.79 27 | |
|
ACMMP_NAP | | | 93.46 40 | 93.23 43 | 94.17 42 | 97.16 100 | 84.28 75 | 96.82 140 | 96.65 73 | 86.24 99 | 94.27 44 | 97.99 55 | 77.94 100 | 99.83 16 | 93.39 57 | 98.57 36 | 98.39 55 |
|
testdata | | | | | 90.13 182 | 95.92 119 | 74.17 286 | | 96.49 99 | 73.49 307 | 94.82 38 | 97.99 55 | 78.80 89 | 97.93 146 | 83.53 168 | 97.52 74 | 98.29 63 |
|
region2R | | | 92.72 55 | 92.70 53 | 92.79 98 | 98.68 29 | 80.53 161 | 97.53 80 | 96.51 94 | 85.22 124 | 91.94 74 | 97.98 57 | 77.26 110 | 99.67 44 | 90.83 91 | 98.37 53 | 98.18 70 |
|
CSCG | | | 92.02 68 | 91.65 75 | 93.12 82 | 98.53 41 | 80.59 157 | 97.47 85 | 97.18 21 | 77.06 283 | 84.64 161 | 97.98 57 | 83.98 40 | 99.52 57 | 90.72 93 | 97.33 81 | 99.23 21 |
|
HFP-MVS | | | 92.89 49 | 92.86 50 | 92.98 89 | 98.71 27 | 81.12 143 | 97.58 76 | 96.70 64 | 85.20 126 | 91.75 76 | 97.97 59 | 78.47 92 | 99.71 36 | 90.95 87 | 98.41 48 | 98.12 77 |
|
#test# | | | 92.99 47 | 92.99 46 | 92.98 89 | 98.71 27 | 81.12 143 | 97.77 60 | 96.70 64 | 85.75 110 | 91.75 76 | 97.97 59 | 78.47 92 | 99.71 36 | 91.36 83 | 98.41 48 | 98.12 77 |
|
ACMMPR | | | 92.69 57 | 92.67 54 | 92.75 99 | 98.66 32 | 80.57 158 | 97.58 76 | 96.69 67 | 85.20 126 | 91.57 80 | 97.92 61 | 77.01 116 | 99.67 44 | 90.95 87 | 98.41 48 | 98.00 89 |
|
Regformer-3 | | | 93.19 42 | 93.19 44 | 93.19 80 | 98.10 65 | 83.01 103 | 97.08 121 | 96.98 31 | 88.98 46 | 91.35 86 | 97.89 62 | 80.80 64 | 99.23 80 | 92.30 74 | 95.20 115 | 97.32 138 |
|
Regformer-4 | | | 93.06 46 | 93.12 45 | 92.89 94 | 98.10 65 | 82.20 117 | 97.08 121 | 96.92 39 | 88.87 48 | 91.23 88 | 97.89 62 | 80.57 67 | 99.19 89 | 92.21 76 | 95.20 115 | 97.29 142 |
|
APD-MVS_3200maxsize | | | 91.23 89 | 91.35 79 | 90.89 161 | 97.89 73 | 76.35 261 | 96.30 177 | 95.52 165 | 79.82 240 | 91.03 92 | 97.88 64 | 74.70 160 | 98.54 128 | 92.11 78 | 96.89 92 | 97.77 109 |
|
SR-MVS-dyc-post | | | 91.29 87 | 91.45 78 | 90.80 163 | 97.76 78 | 76.03 266 | 96.20 183 | 95.44 170 | 80.56 222 | 90.72 95 | 97.84 65 | 75.76 138 | 98.61 123 | 91.99 79 | 96.79 96 | 97.75 110 |
|
RE-MVS-def | | | | 91.18 83 | | 97.76 78 | 76.03 266 | 96.20 183 | 95.44 170 | 80.56 222 | 90.72 95 | 97.84 65 | 73.36 178 | | 91.99 79 | 96.79 96 | 97.75 110 |
|
XVS | | | 92.69 57 | 92.71 51 | 92.63 107 | 98.52 42 | 80.29 164 | 97.37 96 | 96.44 102 | 87.04 91 | 91.38 82 | 97.83 67 | 77.24 112 | 99.59 51 | 90.46 97 | 98.07 62 | 98.02 84 |
|
CANet | | | 94.89 13 | 94.64 17 | 95.63 12 | 97.55 86 | 88.12 15 | 99.06 9 | 96.39 112 | 94.07 7 | 95.34 27 | 97.80 68 | 76.83 119 | 99.87 8 | 97.08 18 | 97.64 73 | 98.89 30 |
|
PGM-MVS | | | 91.93 69 | 91.80 72 | 92.32 118 | 98.27 56 | 79.74 179 | 95.28 218 | 97.27 18 | 83.83 166 | 90.89 94 | 97.78 69 | 76.12 132 | 99.56 55 | 88.82 117 | 97.93 68 | 97.66 117 |
|
ZNCC-MVS | | | 92.75 51 | 92.60 56 | 93.23 78 | 98.24 57 | 81.82 129 | 97.63 71 | 96.50 96 | 85.00 131 | 91.05 91 | 97.74 70 | 78.38 94 | 99.80 23 | 90.48 96 | 98.34 55 | 98.07 80 |
|
API-MVS | | | 90.18 110 | 88.97 119 | 93.80 52 | 98.66 32 | 82.95 104 | 97.50 84 | 95.63 160 | 75.16 293 | 86.31 145 | 97.69 71 | 72.49 184 | 99.90 5 | 81.26 183 | 96.07 105 | 98.56 46 |
|
cdsmvs_eth3d_5k | | | 21.43 339 | 28.57 342 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 95.93 144 | 0.00 376 | 0.00 377 | 97.66 72 | 63.57 243 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
MP-MVS |  | | 92.61 60 | 92.67 54 | 92.42 114 | 98.13 64 | 79.73 180 | 97.33 98 | 96.20 127 | 85.63 112 | 90.53 97 | 97.66 72 | 78.14 98 | 99.70 39 | 92.12 77 | 98.30 57 | 97.85 102 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mPP-MVS | | | 91.88 71 | 91.82 71 | 92.07 125 | 98.38 50 | 78.63 208 | 97.29 99 | 96.09 134 | 85.12 128 | 88.45 125 | 97.66 72 | 75.53 143 | 99.68 42 | 89.83 106 | 98.02 65 | 97.88 98 |
|
lupinMVS | | | 93.87 37 | 93.58 38 | 94.75 26 | 93.00 202 | 88.08 16 | 99.15 4 | 95.50 166 | 91.03 23 | 94.90 35 | 97.66 72 | 78.84 87 | 97.56 162 | 94.64 45 | 97.46 75 | 98.62 44 |
|
PAPM_NR | | | 91.46 82 | 90.82 86 | 93.37 74 | 98.50 45 | 81.81 130 | 95.03 232 | 96.13 131 | 84.65 140 | 86.10 148 | 97.65 76 | 79.24 82 | 99.75 30 | 83.20 172 | 96.88 93 | 98.56 46 |
|
DP-MVS Recon | | | 91.72 75 | 90.85 85 | 94.34 35 | 99.50 1 | 85.00 63 | 98.51 25 | 95.96 141 | 80.57 221 | 88.08 131 | 97.63 77 | 76.84 118 | 99.89 7 | 85.67 141 | 94.88 119 | 98.13 76 |
|
æ–°å‡ ä½•1 | | | | | 93.12 82 | 97.44 89 | 81.60 137 | | 96.71 63 | 74.54 298 | 91.22 89 | 97.57 78 | 79.13 84 | 99.51 60 | 77.40 219 | 98.46 43 | 98.26 66 |
|
xiu_mvs_v1_base_debu | | | 90.54 102 | 89.54 112 | 93.55 65 | 92.31 216 | 87.58 22 | 96.99 126 | 94.87 198 | 87.23 85 | 93.27 55 | 97.56 79 | 57.43 285 | 98.32 136 | 92.72 69 | 93.46 136 | 94.74 204 |
|
xiu_mvs_v1_base | | | 90.54 102 | 89.54 112 | 93.55 65 | 92.31 216 | 87.58 22 | 96.99 126 | 94.87 198 | 87.23 85 | 93.27 55 | 97.56 79 | 57.43 285 | 98.32 136 | 92.72 69 | 93.46 136 | 94.74 204 |
|
xiu_mvs_v1_base_debi | | | 90.54 102 | 89.54 112 | 93.55 65 | 92.31 216 | 87.58 22 | 96.99 126 | 94.87 198 | 87.23 85 | 93.27 55 | 97.56 79 | 57.43 285 | 98.32 136 | 92.72 69 | 93.46 136 | 94.74 204 |
|
EI-MVSNet-Vis-set | | | 91.84 72 | 91.77 73 | 92.04 127 | 97.60 82 | 81.17 142 | 96.61 153 | 96.87 41 | 88.20 64 | 89.19 116 | 97.55 82 | 78.69 91 | 99.14 95 | 90.29 102 | 90.94 157 | 95.80 184 |
|
1121 | | | 90.66 99 | 89.82 108 | 93.16 81 | 97.39 93 | 81.71 134 | 93.33 269 | 96.66 72 | 74.45 299 | 91.38 82 | 97.55 82 | 79.27 80 | 99.52 57 | 79.95 193 | 98.43 45 | 98.26 66 |
|
alignmvs | | | 92.97 48 | 92.26 62 | 95.12 18 | 95.54 128 | 87.77 19 | 98.67 19 | 96.38 113 | 88.04 67 | 93.01 61 | 97.45 84 | 79.20 83 | 98.60 125 | 93.25 62 | 88.76 171 | 98.99 29 |
|
test222 | | | | | | 96.15 113 | 78.41 214 | 95.87 199 | 96.46 100 | 71.97 318 | 89.66 109 | 97.45 84 | 76.33 129 | | | 98.24 58 | 98.30 62 |
|
TSAR-MVS + GP. | | | 94.35 22 | 94.50 19 | 93.89 49 | 97.38 96 | 83.04 102 | 98.10 40 | 95.29 181 | 91.57 16 | 93.81 51 | 97.45 84 | 86.64 24 | 99.43 65 | 96.28 21 | 94.01 128 | 99.20 22 |
|
CPTT-MVS | | | 89.72 116 | 89.87 107 | 89.29 203 | 98.33 53 | 73.30 292 | 97.70 68 | 95.35 177 | 75.68 289 | 87.40 135 | 97.44 87 | 70.43 205 | 98.25 139 | 89.56 111 | 96.90 91 | 96.33 174 |
|
CS-MVS | | | 93.12 44 | 93.27 41 | 92.64 106 | 93.86 177 | 83.12 100 | 98.85 16 | 94.85 201 | 88.61 54 | 94.19 45 | 97.42 88 | 79.02 85 | 97.02 195 | 94.89 40 | 97.77 70 | 97.78 108 |
|
原ACMM1 | | | | | 91.22 153 | 97.77 77 | 78.10 226 | | 96.61 79 | 81.05 212 | 91.28 87 | 97.42 88 | 77.92 101 | 98.98 106 | 79.85 196 | 98.51 38 | 96.59 165 |
|
GST-MVS | | | 92.43 64 | 92.22 64 | 93.04 87 | 98.17 62 | 81.64 136 | 97.40 95 | 96.38 113 | 84.71 137 | 90.90 93 | 97.40 90 | 77.55 107 | 99.76 24 | 89.75 108 | 97.74 71 | 97.72 112 |
|
EI-MVSNet-UG-set | | | 91.35 86 | 91.22 80 | 91.73 136 | 97.39 93 | 80.68 155 | 96.47 161 | 96.83 44 | 87.92 69 | 88.30 129 | 97.36 91 | 77.84 102 | 99.13 97 | 89.43 113 | 89.45 164 | 95.37 194 |
|
canonicalmvs | | | 92.27 65 | 91.22 80 | 95.41 15 | 95.80 121 | 88.31 13 | 97.09 119 | 94.64 215 | 88.49 57 | 92.99 62 | 97.31 92 | 72.68 183 | 98.57 127 | 93.38 59 | 88.58 174 | 99.36 16 |
|
MVS | | | 90.60 101 | 88.64 124 | 96.50 5 | 94.25 166 | 90.53 8 | 93.33 269 | 97.21 20 | 77.59 274 | 78.88 223 | 97.31 92 | 71.52 195 | 99.69 40 | 89.60 109 | 98.03 64 | 99.27 20 |
|
1112_ss | | | 88.60 141 | 87.47 148 | 92.00 128 | 93.21 194 | 80.97 148 | 96.47 161 | 92.46 299 | 83.64 171 | 80.86 204 | 97.30 94 | 80.24 71 | 97.62 159 | 77.60 215 | 85.49 202 | 97.40 135 |
|
ab-mvs-re | | | 8.11 343 | 10.81 346 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 97.30 94 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
EIA-MVS | | | 91.73 73 | 92.05 68 | 90.78 165 | 94.52 158 | 76.40 260 | 98.06 44 | 95.34 178 | 89.19 44 | 88.90 120 | 97.28 96 | 77.56 106 | 97.73 156 | 90.77 92 | 96.86 95 | 98.20 68 |
|
ACMMP |  | | 90.39 106 | 89.97 102 | 91.64 139 | 97.58 84 | 78.21 223 | 96.78 143 | 96.72 62 | 84.73 136 | 84.72 159 | 97.23 97 | 71.22 197 | 99.63 48 | 88.37 124 | 92.41 146 | 97.08 149 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
WTY-MVS | | | 92.65 59 | 91.68 74 | 95.56 13 | 96.00 117 | 88.90 12 | 98.23 32 | 97.65 12 | 88.57 55 | 89.82 106 | 97.22 98 | 79.29 79 | 99.06 101 | 89.57 110 | 88.73 172 | 98.73 39 |
|
HPM-MVS |  | | 91.62 79 | 91.53 77 | 91.89 131 | 97.88 74 | 79.22 192 | 96.99 126 | 95.73 154 | 82.07 200 | 89.50 114 | 97.19 99 | 75.59 142 | 98.93 113 | 90.91 89 | 97.94 66 | 97.54 124 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVS_111021_HR | | | 93.41 41 | 93.39 40 | 93.47 73 | 97.34 97 | 82.83 105 | 97.56 78 | 98.27 6 | 89.16 45 | 89.71 107 | 97.14 100 | 79.77 76 | 99.56 55 | 93.65 53 | 97.94 66 | 98.02 84 |
|
MVSFormer | | | 91.36 85 | 90.57 89 | 93.73 56 | 93.00 202 | 88.08 16 | 94.80 237 | 94.48 222 | 80.74 217 | 94.90 35 | 97.13 101 | 78.84 87 | 95.10 287 | 83.77 159 | 97.46 75 | 98.02 84 |
|
jason | | | 92.73 54 | 92.23 63 | 94.21 41 | 90.50 262 | 87.30 25 | 98.65 20 | 95.09 187 | 90.61 27 | 92.76 65 | 97.13 101 | 75.28 153 | 97.30 181 | 93.32 60 | 96.75 98 | 98.02 84 |
jason: jason. |
DROMVSNet | | | 91.73 73 | 92.11 66 | 90.58 169 | 93.54 185 | 77.77 237 | 98.07 43 | 94.40 228 | 87.44 79 | 92.99 62 | 97.11 103 | 74.59 164 | 96.87 205 | 93.75 51 | 97.08 86 | 97.11 147 |
|
DELS-MVS | | | 94.98 12 | 94.49 20 | 96.44 6 | 96.42 108 | 90.59 7 | 99.21 2 | 97.02 28 | 94.40 5 | 91.46 81 | 97.08 104 | 83.32 46 | 99.69 40 | 92.83 68 | 98.70 33 | 99.04 25 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_LR | | | 91.60 80 | 91.64 76 | 91.47 145 | 95.74 122 | 78.79 205 | 96.15 185 | 96.77 54 | 88.49 57 | 88.64 123 | 97.07 105 | 72.33 186 | 99.19 89 | 93.13 66 | 96.48 101 | 96.43 169 |
|
CS-MVS-test | | | 91.92 70 | 92.11 66 | 91.37 146 | 94.00 175 | 79.66 181 | 98.39 27 | 94.38 229 | 87.14 90 | 92.87 64 | 97.05 106 | 77.17 115 | 96.97 198 | 91.44 82 | 96.55 100 | 97.47 131 |
|
abl_6 | | | 89.80 114 | 89.71 111 | 90.07 183 | 96.53 107 | 75.52 274 | 94.48 240 | 95.04 190 | 81.12 211 | 89.22 115 | 97.00 107 | 68.83 212 | 98.96 107 | 89.86 105 | 95.27 114 | 95.73 186 |
|
MG-MVS | | | 94.25 25 | 93.72 35 | 95.85 11 | 99.38 3 | 89.35 11 | 97.98 48 | 98.09 8 | 89.99 35 | 92.34 69 | 96.97 108 | 81.30 62 | 98.99 105 | 88.54 119 | 98.88 21 | 99.20 22 |
|
HPM-MVS_fast | | | 90.38 108 | 90.17 99 | 91.03 157 | 97.61 81 | 77.35 246 | 97.15 111 | 95.48 167 | 79.51 246 | 88.79 121 | 96.90 109 | 71.64 194 | 98.81 118 | 87.01 135 | 97.44 77 | 96.94 151 |
|
PAPM | | | 92.87 50 | 92.40 58 | 94.30 36 | 92.25 223 | 87.85 18 | 96.40 170 | 96.38 113 | 91.07 22 | 88.72 122 | 96.90 109 | 82.11 59 | 97.37 178 | 90.05 104 | 97.70 72 | 97.67 116 |
|
EPNet | | | 94.06 31 | 94.15 29 | 93.76 53 | 97.27 99 | 84.35 72 | 98.29 30 | 97.64 13 | 94.57 4 | 95.36 26 | 96.88 111 | 79.96 75 | 99.12 98 | 91.30 84 | 96.11 104 | 97.82 105 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OMC-MVS | | | 88.80 135 | 88.16 131 | 90.72 166 | 95.30 134 | 77.92 233 | 94.81 236 | 94.51 221 | 86.80 94 | 84.97 155 | 96.85 112 | 67.53 218 | 98.60 125 | 85.08 146 | 87.62 182 | 95.63 188 |
|
ETV-MVS | | | 92.72 55 | 92.87 49 | 92.28 119 | 94.54 157 | 81.89 125 | 97.98 48 | 95.21 184 | 89.77 38 | 93.11 59 | 96.83 113 | 77.23 114 | 97.50 170 | 95.74 29 | 95.38 113 | 97.44 132 |
|
TAPA-MVS | | 81.61 12 | 85.02 198 | 83.67 201 | 89.06 205 | 96.79 104 | 73.27 294 | 95.92 195 | 94.79 206 | 74.81 296 | 80.47 208 | 96.83 113 | 71.07 199 | 98.19 142 | 49.82 353 | 92.57 142 | 95.71 187 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CANet_DTU | | | 90.98 92 | 90.04 101 | 93.83 51 | 94.76 152 | 86.23 32 | 96.32 176 | 93.12 290 | 93.11 10 | 93.71 52 | 96.82 115 | 63.08 246 | 99.48 62 | 84.29 152 | 95.12 118 | 95.77 185 |
|
TSAR-MVS + MP. | | | 94.79 15 | 95.17 13 | 93.64 60 | 97.66 80 | 84.10 78 | 95.85 201 | 96.42 105 | 91.26 20 | 97.49 9 | 96.80 116 | 86.50 26 | 98.49 131 | 95.54 32 | 99.03 13 | 98.33 57 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepC-MVS | | 86.58 3 | 91.53 81 | 91.06 84 | 92.94 92 | 94.52 158 | 81.89 125 | 95.95 193 | 95.98 140 | 90.76 25 | 83.76 173 | 96.76 117 | 73.24 179 | 99.71 36 | 91.67 81 | 96.96 90 | 97.22 145 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CNLPA | | | 86.96 167 | 85.37 176 | 91.72 137 | 97.59 83 | 79.34 190 | 97.21 102 | 91.05 319 | 74.22 300 | 78.90 222 | 96.75 118 | 67.21 222 | 98.95 110 | 74.68 245 | 90.77 158 | 96.88 156 |
|
ET-MVSNet_ETH3D | | | 90.01 112 | 89.03 117 | 92.95 91 | 94.38 164 | 86.77 28 | 98.14 35 | 96.31 120 | 89.30 43 | 63.33 334 | 96.72 119 | 90.09 10 | 93.63 316 | 90.70 94 | 82.29 227 | 98.46 51 |
|
AdaColmap |  | | 88.81 134 | 87.61 143 | 92.39 115 | 99.33 4 | 79.95 172 | 96.70 151 | 95.58 161 | 77.51 275 | 83.05 181 | 96.69 120 | 61.90 258 | 99.72 35 | 84.29 152 | 93.47 135 | 97.50 129 |
|
LFMVS | | | 89.27 124 | 87.64 140 | 94.16 44 | 97.16 100 | 85.52 47 | 97.18 106 | 94.66 212 | 79.17 254 | 89.63 110 | 96.57 121 | 55.35 302 | 98.22 140 | 89.52 112 | 89.54 163 | 98.74 35 |
|
PMMVS | | | 89.46 120 | 89.92 105 | 88.06 229 | 94.64 153 | 69.57 326 | 96.22 181 | 94.95 194 | 87.27 84 | 91.37 85 | 96.54 122 | 65.88 229 | 97.39 176 | 88.54 119 | 93.89 130 | 97.23 144 |
|
1314 | | | 88.94 129 | 87.20 153 | 94.17 42 | 93.21 194 | 85.73 42 | 93.33 269 | 96.64 76 | 82.89 186 | 75.98 258 | 96.36 123 | 66.83 225 | 99.39 67 | 83.52 169 | 96.02 107 | 97.39 136 |
|
PLC |  | 83.97 7 | 88.00 156 | 87.38 150 | 89.83 194 | 98.02 69 | 76.46 258 | 97.16 110 | 94.43 227 | 79.26 253 | 81.98 194 | 96.28 124 | 69.36 210 | 99.27 77 | 77.71 214 | 92.25 148 | 93.77 219 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PVSNet_Blended | | | 93.13 43 | 92.98 47 | 93.57 64 | 97.47 87 | 83.86 81 | 99.32 1 | 96.73 60 | 91.02 24 | 89.53 112 | 96.21 125 | 76.42 126 | 99.57 53 | 94.29 47 | 95.81 111 | 97.29 142 |
|
test_yl | | | 91.46 82 | 90.53 90 | 94.24 39 | 97.41 91 | 85.18 54 | 98.08 41 | 97.72 10 | 80.94 213 | 89.85 104 | 96.14 126 | 75.61 140 | 98.81 118 | 90.42 100 | 88.56 175 | 98.74 35 |
|
DCV-MVSNet | | | 91.46 82 | 90.53 90 | 94.24 39 | 97.41 91 | 85.18 54 | 98.08 41 | 97.72 10 | 80.94 213 | 89.85 104 | 96.14 126 | 75.61 140 | 98.81 118 | 90.42 100 | 88.56 175 | 98.74 35 |
|
sss | | | 90.87 96 | 89.96 103 | 93.60 63 | 94.15 168 | 83.84 83 | 97.14 112 | 98.13 7 | 85.93 107 | 89.68 108 | 96.09 128 | 71.67 192 | 99.30 76 | 87.69 127 | 89.16 166 | 97.66 117 |
|
3Dnovator+ | | 82.88 8 | 89.63 118 | 87.85 135 | 94.99 20 | 94.49 162 | 86.76 29 | 97.84 55 | 95.74 153 | 86.10 102 | 75.47 267 | 96.02 129 | 65.00 237 | 99.51 60 | 82.91 176 | 97.07 87 | 98.72 40 |
|
diffmvs | | | 91.17 90 | 90.74 88 | 92.44 113 | 93.11 201 | 82.50 111 | 96.25 180 | 93.62 267 | 87.79 73 | 90.40 100 | 95.93 130 | 73.44 177 | 97.42 174 | 93.62 54 | 92.55 143 | 97.41 134 |
|
3Dnovator | | 82.32 10 | 89.33 122 | 87.64 140 | 94.42 33 | 93.73 181 | 85.70 43 | 97.73 66 | 96.75 58 | 86.73 97 | 76.21 255 | 95.93 130 | 62.17 251 | 99.68 42 | 81.67 181 | 97.81 69 | 97.88 98 |
|
VDD-MVS | | | 88.28 150 | 87.02 160 | 92.06 126 | 95.09 140 | 80.18 170 | 97.55 79 | 94.45 226 | 83.09 180 | 89.10 118 | 95.92 132 | 47.97 324 | 98.49 131 | 93.08 67 | 86.91 187 | 97.52 128 |
|
VNet | | | 92.11 67 | 91.22 80 | 94.79 24 | 96.91 103 | 86.98 26 | 97.91 51 | 97.96 9 | 86.38 98 | 93.65 53 | 95.74 133 | 70.16 208 | 98.95 110 | 93.39 57 | 88.87 170 | 98.43 53 |
|
OpenMVS |  | 79.58 14 | 86.09 183 | 83.62 204 | 93.50 68 | 90.95 253 | 86.71 30 | 97.44 87 | 95.83 149 | 75.35 290 | 72.64 289 | 95.72 134 | 57.42 288 | 99.64 46 | 71.41 268 | 95.85 110 | 94.13 214 |
|
Effi-MVS+ | | | 90.70 98 | 89.90 106 | 93.09 84 | 93.61 182 | 83.48 90 | 95.20 223 | 92.79 295 | 83.22 177 | 91.82 75 | 95.70 135 | 71.82 191 | 97.48 172 | 91.25 85 | 93.67 133 | 98.32 58 |
|
114514_t | | | 88.79 136 | 87.57 144 | 92.45 112 | 98.21 60 | 81.74 132 | 96.99 126 | 95.45 169 | 75.16 293 | 82.48 184 | 95.69 136 | 68.59 214 | 98.50 130 | 80.33 188 | 95.18 117 | 97.10 148 |
|
baseline | | | 90.76 97 | 90.10 100 | 92.74 100 | 92.90 206 | 82.56 108 | 94.60 239 | 94.56 220 | 87.69 76 | 89.06 119 | 95.67 137 | 73.76 172 | 97.51 169 | 90.43 99 | 92.23 149 | 98.16 72 |
|
Vis-MVSNet (Re-imp) | | | 88.88 132 | 88.87 123 | 88.91 209 | 93.89 176 | 74.43 284 | 96.93 135 | 94.19 236 | 84.39 147 | 83.22 178 | 95.67 137 | 78.24 96 | 94.70 297 | 78.88 206 | 94.40 125 | 97.61 122 |
|
QAPM | | | 86.88 170 | 84.51 189 | 93.98 46 | 94.04 172 | 85.89 38 | 97.19 105 | 96.05 137 | 73.62 304 | 75.12 270 | 95.62 139 | 62.02 254 | 99.74 32 | 70.88 274 | 96.06 106 | 96.30 176 |
|
IS-MVSNet | | | 88.67 138 | 88.16 131 | 90.20 181 | 93.61 182 | 76.86 253 | 96.77 145 | 93.07 291 | 84.02 158 | 83.62 174 | 95.60 140 | 74.69 163 | 96.24 229 | 78.43 209 | 93.66 134 | 97.49 130 |
|
casdiffmvs | | | 90.95 94 | 90.39 92 | 92.63 107 | 92.82 207 | 82.53 109 | 96.83 139 | 94.47 224 | 87.69 76 | 88.47 124 | 95.56 141 | 74.04 169 | 97.54 167 | 90.90 90 | 92.74 141 | 97.83 104 |
|
thisisatest0515 | | | 90.95 94 | 90.26 95 | 93.01 88 | 94.03 174 | 84.27 76 | 97.91 51 | 96.67 69 | 83.18 178 | 86.87 142 | 95.51 142 | 88.66 15 | 97.85 152 | 80.46 187 | 89.01 168 | 96.92 154 |
|
BH-RMVSNet | | | 86.84 171 | 85.28 177 | 91.49 144 | 95.35 133 | 80.26 167 | 96.95 133 | 92.21 301 | 82.86 188 | 81.77 198 | 95.46 143 | 59.34 271 | 97.64 158 | 69.79 279 | 93.81 132 | 96.57 166 |
|
CLD-MVS | | | 87.97 157 | 87.48 147 | 89.44 200 | 92.16 228 | 80.54 160 | 98.14 35 | 94.92 195 | 91.41 17 | 79.43 219 | 95.40 144 | 62.34 249 | 97.27 184 | 90.60 95 | 82.90 221 | 90.50 239 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
DWT-MVSNet_test | | | 90.52 105 | 89.80 109 | 92.70 103 | 95.73 124 | 82.20 117 | 93.69 260 | 96.55 89 | 88.34 61 | 87.04 141 | 95.34 145 | 86.53 25 | 97.55 164 | 76.32 231 | 88.66 173 | 98.34 56 |
|
test2506 | | | 90.96 93 | 90.39 92 | 92.65 105 | 93.54 185 | 82.46 112 | 96.37 171 | 97.35 16 | 86.78 95 | 87.55 134 | 95.25 146 | 77.83 103 | 97.50 170 | 84.07 154 | 94.80 120 | 97.98 91 |
|
ECVR-MVS |  | | 88.35 148 | 87.25 152 | 91.65 138 | 93.54 185 | 79.40 187 | 96.56 157 | 90.78 324 | 86.78 95 | 85.57 150 | 95.25 146 | 57.25 289 | 97.56 162 | 84.73 150 | 94.80 120 | 97.98 91 |
|
XVG-OURS-SEG-HR | | | 85.74 189 | 85.16 181 | 87.49 243 | 90.22 266 | 71.45 312 | 91.29 300 | 94.09 243 | 81.37 208 | 83.90 171 | 95.22 148 | 60.30 264 | 97.53 168 | 85.58 142 | 84.42 209 | 93.50 222 |
|
LS3D | | | 82.22 245 | 79.94 257 | 89.06 205 | 97.43 90 | 74.06 288 | 93.20 276 | 92.05 303 | 61.90 346 | 73.33 282 | 95.21 149 | 59.35 270 | 99.21 84 | 54.54 341 | 92.48 145 | 93.90 218 |
|
test1111 | | | 88.11 153 | 87.04 159 | 91.35 147 | 93.15 197 | 78.79 205 | 96.57 155 | 90.78 324 | 86.88 93 | 85.04 154 | 95.20 150 | 57.23 290 | 97.39 176 | 83.88 156 | 94.59 122 | 97.87 100 |
|
VDDNet | | | 86.44 178 | 84.51 189 | 92.22 121 | 91.56 243 | 81.83 128 | 97.10 118 | 94.64 215 | 69.50 329 | 87.84 132 | 95.19 151 | 48.01 323 | 97.92 151 | 89.82 107 | 86.92 186 | 96.89 155 |
|
F-COLMAP | | | 84.50 208 | 83.44 208 | 87.67 235 | 95.22 136 | 72.22 299 | 95.95 193 | 93.78 259 | 75.74 288 | 76.30 252 | 95.18 152 | 59.50 269 | 98.45 133 | 72.67 261 | 86.59 190 | 92.35 228 |
|
TR-MVS | | | 86.30 180 | 84.93 186 | 90.42 173 | 94.63 154 | 77.58 241 | 96.57 155 | 93.82 254 | 80.30 230 | 82.42 186 | 95.16 153 | 58.74 275 | 97.55 164 | 74.88 243 | 87.82 181 | 96.13 179 |
|
gm-plane-assit | | | | | | 92.27 220 | 79.64 183 | | | 84.47 146 | | 95.15 154 | | 97.93 146 | 85.81 140 | | |
|
mvs-test1 | | | 86.83 172 | 87.17 154 | 85.81 270 | 91.96 236 | 65.24 339 | 97.90 53 | 93.34 281 | 85.57 113 | 84.51 163 | 95.14 155 | 61.99 255 | 97.19 188 | 83.55 165 | 90.55 159 | 95.00 199 |
|
Vis-MVSNet |  | | 88.67 138 | 87.82 136 | 91.24 152 | 92.68 208 | 78.82 202 | 96.95 133 | 93.85 253 | 87.55 78 | 87.07 140 | 95.13 156 | 63.43 244 | 97.21 186 | 77.58 216 | 96.15 103 | 97.70 115 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PVSNet | | 82.34 9 | 89.02 127 | 87.79 137 | 92.71 102 | 95.49 129 | 81.50 138 | 97.70 68 | 97.29 17 | 87.76 74 | 85.47 151 | 95.12 157 | 56.90 291 | 98.90 114 | 80.33 188 | 94.02 127 | 97.71 114 |
|
h-mvs33 | | | 89.30 123 | 88.95 121 | 90.36 175 | 95.07 142 | 76.04 265 | 96.96 132 | 97.11 24 | 90.39 31 | 92.22 70 | 95.10 158 | 74.70 160 | 98.86 115 | 93.14 64 | 65.89 327 | 96.16 177 |
|
XVG-OURS | | | 85.18 196 | 84.38 193 | 87.59 238 | 90.42 264 | 71.73 309 | 91.06 303 | 94.07 244 | 82.00 202 | 83.29 177 | 95.08 159 | 56.42 296 | 97.55 164 | 83.70 163 | 83.42 214 | 93.49 223 |
|
EPNet_dtu | | | 87.65 161 | 87.89 134 | 86.93 254 | 94.57 155 | 71.37 313 | 96.72 147 | 96.50 96 | 88.56 56 | 87.12 139 | 95.02 160 | 75.91 136 | 94.01 309 | 66.62 292 | 90.00 161 | 95.42 193 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPP-MVSNet | | | 89.76 115 | 89.72 110 | 89.87 192 | 93.78 178 | 76.02 268 | 97.22 100 | 96.51 94 | 79.35 248 | 85.11 153 | 95.01 161 | 84.82 32 | 97.10 193 | 87.46 130 | 88.21 179 | 96.50 167 |
|
baseline1 | | | 88.85 133 | 87.49 146 | 92.93 93 | 95.21 137 | 86.85 27 | 95.47 213 | 94.61 217 | 87.29 82 | 83.11 180 | 94.99 162 | 80.70 65 | 96.89 203 | 82.28 178 | 73.72 267 | 95.05 198 |
|
thisisatest0530 | | | 89.65 117 | 89.02 118 | 91.53 143 | 93.46 191 | 80.78 153 | 96.52 158 | 96.67 69 | 81.69 206 | 83.79 172 | 94.90 163 | 88.85 14 | 97.68 157 | 77.80 210 | 87.49 185 | 96.14 178 |
|
PCF-MVS | | 84.09 5 | 86.77 175 | 85.00 184 | 92.08 124 | 92.06 233 | 83.07 101 | 92.14 290 | 94.47 224 | 79.63 244 | 76.90 242 | 94.78 164 | 71.15 198 | 99.20 88 | 72.87 259 | 91.05 156 | 93.98 216 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EI-MVSNet | | | 85.80 187 | 85.20 178 | 87.59 238 | 91.55 244 | 77.41 244 | 95.13 226 | 95.36 175 | 80.43 227 | 80.33 211 | 94.71 165 | 73.72 173 | 95.97 236 | 76.96 223 | 78.64 246 | 89.39 259 |
|
CVMVSNet | | | 84.83 201 | 85.57 172 | 82.63 312 | 91.55 244 | 60.38 353 | 95.13 226 | 95.03 191 | 80.60 220 | 82.10 193 | 94.71 165 | 66.40 228 | 90.19 348 | 74.30 250 | 90.32 160 | 97.31 140 |
|
baseline2 | | | 90.39 106 | 90.21 97 | 90.93 159 | 90.86 256 | 80.99 147 | 95.20 223 | 97.41 15 | 86.03 105 | 80.07 216 | 94.61 167 | 90.58 6 | 97.47 173 | 87.29 131 | 89.86 162 | 94.35 210 |
|
NP-MVS | | | | | | 92.04 234 | 78.22 220 | | | | | 94.56 168 | | | | | |
|
HQP-MVS | | | 87.91 159 | 87.55 145 | 88.98 208 | 92.08 230 | 78.48 210 | 97.63 71 | 94.80 204 | 90.52 28 | 82.30 187 | 94.56 168 | 65.40 233 | 97.32 179 | 87.67 128 | 83.01 218 | 91.13 231 |
|
BH-w/o | | | 88.24 151 | 87.47 148 | 90.54 171 | 95.03 145 | 78.54 209 | 97.41 94 | 93.82 254 | 84.08 156 | 78.23 230 | 94.51 170 | 69.34 211 | 97.21 186 | 80.21 191 | 94.58 123 | 95.87 183 |
|
tttt0517 | | | 88.57 142 | 88.19 130 | 89.71 198 | 93.00 202 | 75.99 269 | 95.67 206 | 96.67 69 | 80.78 216 | 81.82 197 | 94.40 171 | 88.97 13 | 97.58 161 | 76.05 234 | 86.31 191 | 95.57 190 |
|
CHOSEN 280x420 | | | 91.71 76 | 91.85 70 | 91.29 150 | 94.94 147 | 82.69 106 | 87.89 323 | 96.17 130 | 85.94 106 | 87.27 138 | 94.31 172 | 90.27 8 | 95.65 258 | 94.04 50 | 95.86 109 | 95.53 191 |
|
GG-mvs-BLEND | | | | | 93.49 69 | 94.94 147 | 86.26 31 | 81.62 344 | 97.00 29 | | 88.32 128 | 94.30 173 | 91.23 5 | 96.21 230 | 88.49 121 | 97.43 78 | 98.00 89 |
|
Anonymous202405211 | | | 84.41 209 | 81.93 228 | 91.85 134 | 96.78 105 | 78.41 214 | 97.44 87 | 91.34 314 | 70.29 325 | 84.06 165 | 94.26 174 | 41.09 346 | 98.96 107 | 79.46 198 | 82.65 225 | 98.17 71 |
|
hse-mvs2 | | | 88.22 152 | 88.21 129 | 88.25 225 | 93.54 185 | 73.41 289 | 95.41 216 | 95.89 145 | 90.39 31 | 92.22 70 | 94.22 175 | 74.70 160 | 96.66 216 | 93.14 64 | 64.37 332 | 94.69 208 |
|
AUN-MVS | | | 86.25 182 | 85.57 172 | 88.26 224 | 93.57 184 | 73.38 290 | 95.45 214 | 95.88 146 | 83.94 161 | 85.47 151 | 94.21 176 | 73.70 175 | 96.67 215 | 83.54 167 | 64.41 331 | 94.73 207 |
|
CDS-MVSNet | | | 89.50 119 | 88.96 120 | 91.14 155 | 91.94 239 | 80.93 149 | 97.09 119 | 95.81 150 | 84.26 153 | 84.72 159 | 94.20 177 | 80.31 69 | 95.64 259 | 83.37 170 | 88.96 169 | 96.85 157 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
HQP_MVS | | | 87.50 162 | 87.09 158 | 88.74 214 | 91.86 240 | 77.96 230 | 97.18 106 | 94.69 208 | 89.89 36 | 81.33 199 | 94.15 178 | 64.77 238 | 97.30 181 | 87.08 132 | 82.82 222 | 90.96 233 |
|
plane_prior4 | | | | | | | | | | | | 94.15 178 | | | | | |
|
OPM-MVS | | | 85.84 186 | 85.10 183 | 88.06 229 | 88.34 291 | 77.83 236 | 95.72 204 | 94.20 235 | 87.89 72 | 80.45 209 | 94.05 180 | 58.57 276 | 97.26 185 | 83.88 156 | 82.76 224 | 89.09 270 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
GeoE | | | 86.36 179 | 85.20 178 | 89.83 194 | 93.17 196 | 76.13 263 | 97.53 80 | 92.11 302 | 79.58 245 | 80.99 202 | 94.01 181 | 66.60 227 | 96.17 231 | 73.48 257 | 89.30 165 | 97.20 146 |
|
thres200 | | | 88.92 130 | 87.65 139 | 92.73 101 | 96.30 109 | 85.62 45 | 97.85 54 | 98.86 1 | 84.38 148 | 84.82 157 | 93.99 182 | 75.12 156 | 98.01 144 | 70.86 275 | 86.67 188 | 94.56 209 |
|
PVSNet_Blended_VisFu | | | 91.24 88 | 90.77 87 | 92.66 104 | 95.09 140 | 82.40 113 | 97.77 60 | 95.87 148 | 88.26 63 | 86.39 144 | 93.94 183 | 76.77 120 | 99.27 77 | 88.80 118 | 94.00 129 | 96.31 175 |
|
UA-Net | | | 88.92 130 | 88.48 127 | 90.24 179 | 94.06 171 | 77.18 250 | 93.04 278 | 94.66 212 | 87.39 81 | 91.09 90 | 93.89 184 | 74.92 158 | 98.18 143 | 75.83 236 | 91.43 154 | 95.35 195 |
|
tfpn200view9 | | | 88.48 143 | 87.15 155 | 92.47 111 | 96.21 111 | 85.30 52 | 97.44 87 | 98.85 2 | 83.37 175 | 83.99 167 | 93.82 185 | 75.36 150 | 97.93 146 | 69.04 281 | 86.24 194 | 94.17 211 |
|
thres400 | | | 88.42 146 | 87.15 155 | 92.23 120 | 96.21 111 | 85.30 52 | 97.44 87 | 98.85 2 | 83.37 175 | 83.99 167 | 93.82 185 | 75.36 150 | 97.93 146 | 69.04 281 | 86.24 194 | 93.45 224 |
|
BH-untuned | | | 86.95 168 | 85.94 170 | 89.99 186 | 94.52 158 | 77.46 243 | 96.78 143 | 93.37 280 | 81.80 204 | 76.62 246 | 93.81 187 | 66.64 226 | 97.02 195 | 76.06 233 | 93.88 131 | 95.48 192 |
|
thres100view900 | | | 88.30 149 | 86.95 161 | 92.33 117 | 96.10 115 | 84.90 65 | 97.14 112 | 98.85 2 | 82.69 191 | 83.41 175 | 93.66 188 | 75.43 147 | 97.93 146 | 69.04 281 | 86.24 194 | 94.17 211 |
|
thres600view7 | | | 88.06 154 | 86.70 164 | 92.15 123 | 96.10 115 | 85.17 58 | 97.14 112 | 98.85 2 | 82.70 190 | 83.41 175 | 93.66 188 | 75.43 147 | 97.82 153 | 67.13 290 | 85.88 198 | 93.45 224 |
|
TAMVS | | | 88.48 143 | 87.79 137 | 90.56 170 | 91.09 251 | 79.18 193 | 96.45 164 | 95.88 146 | 83.64 171 | 83.12 179 | 93.33 190 | 75.94 135 | 95.74 254 | 82.40 177 | 88.27 178 | 96.75 162 |
|
test0.0.03 1 | | | 82.79 235 | 82.48 221 | 83.74 300 | 86.81 304 | 72.22 299 | 96.52 158 | 95.03 191 | 83.76 168 | 73.00 285 | 93.20 191 | 72.30 187 | 88.88 351 | 64.15 305 | 77.52 254 | 90.12 247 |
|
LPG-MVS_test | | | 84.20 213 | 83.49 207 | 86.33 261 | 90.88 254 | 73.06 295 | 95.28 218 | 94.13 239 | 82.20 197 | 76.31 250 | 93.20 191 | 54.83 307 | 96.95 199 | 83.72 161 | 80.83 230 | 88.98 276 |
|
LGP-MVS_train | | | | | 86.33 261 | 90.88 254 | 73.06 295 | | 94.13 239 | 82.20 197 | 76.31 250 | 93.20 191 | 54.83 307 | 96.95 199 | 83.72 161 | 80.83 230 | 88.98 276 |
|
CHOSEN 1792x2688 | | | 91.07 91 | 90.21 97 | 93.64 60 | 95.18 138 | 83.53 89 | 96.26 179 | 96.13 131 | 88.92 47 | 84.90 156 | 93.10 194 | 72.86 181 | 99.62 49 | 88.86 116 | 95.67 112 | 97.79 107 |
|
Fast-Effi-MVS+ | | | 87.93 158 | 86.94 162 | 90.92 160 | 94.04 172 | 79.16 194 | 98.26 31 | 93.72 263 | 81.29 209 | 83.94 170 | 92.90 195 | 69.83 209 | 96.68 214 | 76.70 225 | 91.74 153 | 96.93 152 |
|
RPSCF | | | 77.73 285 | 76.63 280 | 81.06 320 | 88.66 289 | 55.76 361 | 87.77 324 | 87.88 344 | 64.82 341 | 74.14 276 | 92.79 196 | 49.22 320 | 96.81 209 | 67.47 289 | 76.88 256 | 90.62 236 |
|
DP-MVS | | | 81.47 253 | 78.28 267 | 91.04 156 | 98.14 63 | 78.48 210 | 95.09 231 | 86.97 346 | 61.14 351 | 71.12 298 | 92.78 197 | 59.59 267 | 99.38 68 | 53.11 345 | 86.61 189 | 95.27 197 |
|
Anonymous20240529 | | | 83.15 228 | 80.60 246 | 90.80 163 | 95.74 122 | 78.27 218 | 96.81 141 | 94.92 195 | 60.10 355 | 81.89 196 | 92.54 198 | 45.82 331 | 98.82 117 | 79.25 202 | 78.32 251 | 95.31 196 |
|
FIs | | | 86.73 176 | 86.10 168 | 88.61 216 | 90.05 270 | 80.21 168 | 96.14 186 | 96.95 35 | 85.56 116 | 78.37 229 | 92.30 199 | 76.73 121 | 95.28 276 | 79.51 197 | 79.27 240 | 90.35 241 |
|
ACMP | | 81.66 11 | 84.00 214 | 83.22 210 | 86.33 261 | 91.53 246 | 72.95 297 | 95.91 197 | 93.79 258 | 83.70 170 | 73.79 277 | 92.22 200 | 54.31 310 | 96.89 203 | 83.98 155 | 79.74 236 | 89.16 268 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
VPNet | | | 84.69 204 | 82.92 212 | 90.01 185 | 89.01 284 | 83.45 91 | 96.71 149 | 95.46 168 | 85.71 111 | 79.65 218 | 92.18 201 | 56.66 294 | 96.01 235 | 83.05 175 | 67.84 314 | 90.56 237 |
|
RRT_MVS | | | 86.89 169 | 85.96 169 | 89.68 199 | 95.01 146 | 84.13 77 | 96.33 175 | 94.98 193 | 84.20 155 | 80.10 215 | 92.07 202 | 70.52 204 | 95.01 291 | 83.30 171 | 77.14 255 | 89.91 253 |
|
nrg030 | | | 86.79 174 | 85.43 174 | 90.87 162 | 88.76 285 | 85.34 49 | 97.06 123 | 94.33 231 | 84.31 150 | 80.45 209 | 91.98 203 | 72.36 185 | 96.36 223 | 88.48 122 | 71.13 280 | 90.93 235 |
|
HY-MVS | | 84.06 6 | 91.63 78 | 90.37 94 | 95.39 16 | 96.12 114 | 88.25 14 | 90.22 306 | 97.58 14 | 88.33 62 | 90.50 98 | 91.96 204 | 79.26 81 | 99.06 101 | 90.29 102 | 89.07 167 | 98.88 31 |
|
ACMM | | 80.70 13 | 83.72 219 | 82.85 214 | 86.31 264 | 91.19 249 | 72.12 302 | 95.88 198 | 94.29 232 | 80.44 225 | 77.02 240 | 91.96 204 | 55.24 303 | 97.14 192 | 79.30 201 | 80.38 232 | 89.67 256 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FC-MVSNet-test | | | 85.96 184 | 85.39 175 | 87.66 236 | 89.38 282 | 78.02 227 | 95.65 208 | 96.87 41 | 85.12 128 | 77.34 235 | 91.94 206 | 76.28 130 | 94.74 296 | 77.09 220 | 78.82 244 | 90.21 245 |
|
MSDG | | | 80.62 263 | 77.77 271 | 89.14 204 | 93.43 192 | 77.24 247 | 91.89 293 | 90.18 328 | 69.86 328 | 68.02 312 | 91.94 206 | 52.21 312 | 98.84 116 | 59.32 324 | 83.12 216 | 91.35 230 |
|
TESTMET0.1,1 | | | 89.83 113 | 89.34 115 | 91.31 148 | 92.54 214 | 80.19 169 | 97.11 115 | 96.57 85 | 86.15 100 | 86.85 143 | 91.83 208 | 79.32 78 | 96.95 199 | 81.30 182 | 92.35 147 | 96.77 160 |
|
PatchMatch-RL | | | 85.00 199 | 83.66 202 | 89.02 207 | 95.86 120 | 74.55 282 | 92.49 286 | 93.60 268 | 79.30 251 | 79.29 221 | 91.47 209 | 58.53 277 | 98.45 133 | 70.22 278 | 92.17 150 | 94.07 215 |
|
Fast-Effi-MVS+-dtu | | | 83.33 224 | 82.60 220 | 85.50 276 | 89.55 278 | 69.38 327 | 96.09 189 | 91.38 311 | 82.30 196 | 75.96 260 | 91.41 210 | 56.71 292 | 95.58 264 | 75.13 242 | 84.90 207 | 91.54 229 |
|
test-LLR | | | 88.48 143 | 87.98 133 | 89.98 187 | 92.26 221 | 77.23 248 | 97.11 115 | 95.96 141 | 83.76 168 | 86.30 146 | 91.38 211 | 72.30 187 | 96.78 211 | 80.82 184 | 91.92 151 | 95.94 181 |
|
test-mter | | | 88.95 128 | 88.60 125 | 89.98 187 | 92.26 221 | 77.23 248 | 97.11 115 | 95.96 141 | 85.32 120 | 86.30 146 | 91.38 211 | 76.37 128 | 96.78 211 | 80.82 184 | 91.92 151 | 95.94 181 |
|
ITE_SJBPF | | | | | 82.38 313 | 87.00 303 | 65.59 338 | | 89.55 332 | 79.99 238 | 69.37 309 | 91.30 213 | 41.60 345 | 95.33 273 | 62.86 312 | 74.63 265 | 86.24 323 |
|
HyFIR lowres test | | | 89.36 121 | 88.60 125 | 91.63 141 | 94.91 149 | 80.76 154 | 95.60 209 | 95.53 163 | 82.56 194 | 84.03 166 | 91.24 214 | 78.03 99 | 96.81 209 | 87.07 134 | 88.41 177 | 97.32 138 |
|
Test_1112_low_res | | | 88.03 155 | 86.73 163 | 91.94 130 | 93.15 197 | 80.88 150 | 96.44 166 | 92.41 300 | 83.59 174 | 80.74 206 | 91.16 215 | 80.18 72 | 97.59 160 | 77.48 218 | 85.40 203 | 97.36 137 |
|
testgi | | | 74.88 303 | 73.40 303 | 79.32 328 | 80.13 347 | 61.75 349 | 93.21 275 | 86.64 349 | 79.49 247 | 66.56 322 | 91.06 216 | 35.51 355 | 88.67 352 | 56.79 335 | 71.25 279 | 87.56 307 |
|
MVS_Test | | | 90.29 109 | 89.18 116 | 93.62 62 | 95.23 135 | 84.93 64 | 94.41 243 | 94.66 212 | 84.31 150 | 90.37 101 | 91.02 217 | 75.13 155 | 97.82 153 | 83.11 174 | 94.42 124 | 98.12 77 |
|
cascas | | | 86.50 177 | 84.48 191 | 92.55 110 | 92.64 212 | 85.95 35 | 97.04 125 | 95.07 189 | 75.32 291 | 80.50 207 | 91.02 217 | 54.33 309 | 97.98 145 | 86.79 136 | 87.62 182 | 93.71 220 |
|
UniMVSNet_NR-MVSNet | | | 85.49 192 | 84.59 188 | 88.21 227 | 89.44 281 | 79.36 188 | 96.71 149 | 96.41 106 | 85.22 124 | 78.11 231 | 90.98 219 | 76.97 117 | 95.14 283 | 79.14 203 | 68.30 308 | 90.12 247 |
|
DU-MVS | | | 84.57 206 | 83.33 209 | 88.28 223 | 88.76 285 | 79.36 188 | 96.43 168 | 95.41 174 | 85.42 117 | 78.11 231 | 90.82 220 | 67.61 216 | 95.14 283 | 79.14 203 | 68.30 308 | 90.33 242 |
|
NR-MVSNet | | | 83.35 223 | 81.52 235 | 88.84 211 | 88.76 285 | 81.31 141 | 94.45 242 | 95.16 185 | 84.65 140 | 67.81 313 | 90.82 220 | 70.36 206 | 94.87 293 | 74.75 244 | 66.89 324 | 90.33 242 |
|
TranMVSNet+NR-MVSNet | | | 83.24 227 | 81.71 231 | 87.83 232 | 87.71 298 | 78.81 204 | 96.13 188 | 94.82 203 | 84.52 143 | 76.18 256 | 90.78 222 | 64.07 241 | 94.60 299 | 74.60 248 | 66.59 326 | 90.09 249 |
|
XXY-MVS | | | 83.84 216 | 82.00 227 | 89.35 201 | 87.13 302 | 81.38 139 | 95.72 204 | 94.26 233 | 80.15 234 | 75.92 261 | 90.63 223 | 61.96 257 | 96.52 218 | 78.98 205 | 73.28 273 | 90.14 246 |
|
MVSTER | | | 89.25 125 | 88.92 122 | 90.24 179 | 95.98 118 | 84.66 69 | 96.79 142 | 95.36 175 | 87.19 88 | 80.33 211 | 90.61 224 | 90.02 11 | 95.97 236 | 85.38 144 | 78.64 246 | 90.09 249 |
|
RRT_test8_iter05 | | | 87.14 165 | 86.41 166 | 89.32 202 | 94.41 163 | 81.10 145 | 97.06 123 | 95.33 179 | 84.67 139 | 76.27 253 | 90.48 225 | 83.60 44 | 96.33 224 | 85.10 145 | 70.78 283 | 90.53 238 |
|
UGNet | | | 87.73 160 | 86.55 165 | 91.27 151 | 95.16 139 | 79.11 196 | 96.35 173 | 96.23 124 | 88.14 65 | 87.83 133 | 90.48 225 | 50.65 314 | 99.09 100 | 80.13 192 | 94.03 126 | 95.60 189 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
IB-MVS | | 85.34 4 | 88.67 138 | 87.14 157 | 93.26 76 | 93.12 200 | 84.32 73 | 98.76 17 | 97.27 18 | 87.19 88 | 79.36 220 | 90.45 227 | 83.92 41 | 98.53 129 | 84.41 151 | 69.79 294 | 96.93 152 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
mvs_anonymous | | | 88.68 137 | 87.62 142 | 91.86 132 | 94.80 151 | 81.69 135 | 93.53 265 | 94.92 195 | 82.03 201 | 78.87 224 | 90.43 228 | 75.77 137 | 95.34 272 | 85.04 147 | 93.16 139 | 98.55 48 |
|
WR-MVS | | | 84.32 211 | 82.96 211 | 88.41 219 | 89.38 282 | 80.32 163 | 96.59 154 | 96.25 123 | 83.97 160 | 76.63 245 | 90.36 229 | 67.53 218 | 94.86 294 | 75.82 237 | 70.09 292 | 90.06 251 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 299 | 73.00 305 | 83.94 296 | 92.38 215 | 69.08 328 | 91.85 294 | 86.93 347 | 61.48 349 | 65.32 326 | 90.27 230 | 42.27 342 | 96.93 202 | 50.91 350 | 75.63 260 | 85.80 331 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AllTest | | | 75.92 297 | 73.06 304 | 84.47 290 | 92.18 226 | 67.29 333 | 91.07 302 | 84.43 356 | 67.63 332 | 63.48 331 | 90.18 231 | 38.20 350 | 97.16 189 | 57.04 332 | 73.37 270 | 88.97 278 |
|
TestCases | | | | | 84.47 290 | 92.18 226 | 67.29 333 | | 84.43 356 | 67.63 332 | 63.48 331 | 90.18 231 | 38.20 350 | 97.16 189 | 57.04 332 | 73.37 270 | 88.97 278 |
|
UniMVSNet_ETH3D | | | 80.86 261 | 78.75 265 | 87.22 250 | 86.31 308 | 72.02 303 | 91.95 291 | 93.76 262 | 73.51 305 | 75.06 271 | 90.16 233 | 43.04 340 | 95.66 256 | 76.37 230 | 78.55 249 | 93.98 216 |
|
ab-mvs | | | 87.08 166 | 84.94 185 | 93.48 70 | 93.34 193 | 83.67 87 | 88.82 314 | 95.70 155 | 81.18 210 | 84.55 162 | 90.14 234 | 62.72 247 | 98.94 112 | 85.49 143 | 82.54 226 | 97.85 102 |
|
PS-MVSNAJss | | | 84.91 200 | 84.30 194 | 86.74 255 | 85.89 317 | 74.40 285 | 94.95 233 | 94.16 238 | 83.93 163 | 76.45 248 | 90.11 235 | 71.04 200 | 95.77 249 | 83.16 173 | 79.02 243 | 90.06 251 |
|
jajsoiax | | | 82.12 246 | 81.15 239 | 85.03 281 | 84.19 334 | 70.70 315 | 94.22 252 | 93.95 247 | 83.07 181 | 73.48 279 | 89.75 236 | 49.66 319 | 95.37 271 | 82.24 179 | 79.76 234 | 89.02 274 |
|
MS-PatchMatch | | | 83.05 230 | 81.82 230 | 86.72 259 | 89.64 276 | 79.10 197 | 94.88 235 | 94.59 219 | 79.70 243 | 70.67 301 | 89.65 237 | 50.43 316 | 96.82 208 | 70.82 277 | 95.99 108 | 84.25 340 |
|
PVSNet_BlendedMVS | | | 90.05 111 | 89.96 103 | 90.33 177 | 97.47 87 | 83.86 81 | 98.02 47 | 96.73 60 | 87.98 68 | 89.53 112 | 89.61 238 | 76.42 126 | 99.57 53 | 94.29 47 | 79.59 237 | 87.57 306 |
|
test_part1 | | | 84.72 202 | 82.85 214 | 90.34 176 | 95.73 124 | 84.79 68 | 96.75 146 | 94.10 242 | 79.05 260 | 75.97 259 | 89.51 239 | 67.69 215 | 95.94 240 | 79.34 199 | 67.50 317 | 90.30 244 |
|
mvs_tets | | | 81.74 249 | 80.71 244 | 84.84 282 | 84.22 333 | 70.29 318 | 93.91 257 | 93.78 259 | 82.77 189 | 73.37 280 | 89.46 240 | 47.36 328 | 95.31 275 | 81.99 180 | 79.55 239 | 88.92 280 |
|
pmmvs4 | | | 82.54 239 | 80.79 241 | 87.79 233 | 86.11 313 | 80.49 162 | 93.55 264 | 93.18 287 | 77.29 278 | 73.35 281 | 89.40 241 | 65.26 236 | 95.05 290 | 75.32 240 | 73.61 268 | 87.83 299 |
|
GA-MVS | | | 85.79 188 | 84.04 198 | 91.02 158 | 89.47 280 | 80.27 166 | 96.90 136 | 94.84 202 | 85.57 113 | 80.88 203 | 89.08 242 | 56.56 295 | 96.47 220 | 77.72 213 | 85.35 204 | 96.34 172 |
|
CMPMVS |  | 54.94 21 | 75.71 300 | 74.56 295 | 79.17 329 | 79.69 348 | 55.98 359 | 89.59 308 | 93.30 283 | 60.28 353 | 53.85 357 | 89.07 243 | 47.68 327 | 96.33 224 | 76.55 226 | 81.02 229 | 85.22 333 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
VPA-MVSNet | | | 85.32 194 | 83.83 199 | 89.77 197 | 90.25 265 | 82.63 107 | 96.36 172 | 97.07 26 | 83.03 183 | 81.21 201 | 89.02 244 | 61.58 259 | 96.31 226 | 85.02 148 | 70.95 282 | 90.36 240 |
|
bset_n11_16_dypcd | | | 84.35 210 | 82.83 216 | 88.91 209 | 82.54 341 | 82.07 119 | 94.12 254 | 93.47 272 | 85.39 119 | 78.55 226 | 88.98 245 | 62.23 250 | 95.11 285 | 86.75 137 | 73.42 269 | 89.55 258 |
|
UniMVSNet (Re) | | | 85.31 195 | 84.23 195 | 88.55 217 | 89.75 273 | 80.55 159 | 96.72 147 | 96.89 40 | 85.42 117 | 78.40 228 | 88.93 246 | 75.38 149 | 95.52 266 | 78.58 207 | 68.02 311 | 89.57 257 |
|
CP-MVSNet | | | 81.01 259 | 80.08 253 | 83.79 298 | 87.91 296 | 70.51 316 | 94.29 251 | 95.65 157 | 80.83 215 | 72.54 291 | 88.84 247 | 63.71 242 | 92.32 327 | 68.58 286 | 68.36 307 | 88.55 284 |
|
miper_enhance_ethall | | | 85.95 185 | 85.20 178 | 88.19 228 | 94.85 150 | 79.76 176 | 96.00 190 | 94.06 245 | 82.98 185 | 77.74 233 | 88.76 248 | 79.42 77 | 95.46 268 | 80.58 186 | 72.42 275 | 89.36 264 |
|
EU-MVSNet | | | 76.92 293 | 76.95 277 | 76.83 334 | 84.10 335 | 54.73 363 | 91.77 295 | 92.71 296 | 72.74 313 | 69.57 308 | 88.69 249 | 58.03 282 | 87.43 356 | 64.91 302 | 70.00 293 | 88.33 291 |
|
pmmvs5 | | | 81.34 255 | 79.54 259 | 86.73 258 | 85.02 327 | 76.91 252 | 96.22 181 | 91.65 309 | 77.65 273 | 73.55 278 | 88.61 250 | 55.70 300 | 94.43 302 | 74.12 252 | 73.35 272 | 88.86 282 |
|
PEN-MVS | | | 79.47 272 | 78.26 268 | 83.08 308 | 86.36 307 | 68.58 329 | 93.85 258 | 94.77 207 | 79.76 241 | 71.37 295 | 88.55 251 | 59.79 265 | 92.46 325 | 64.50 303 | 65.40 328 | 88.19 293 |
|
ACMH+ | | 76.62 16 | 77.47 288 | 74.94 290 | 85.05 280 | 91.07 252 | 71.58 311 | 93.26 274 | 90.01 329 | 71.80 319 | 64.76 328 | 88.55 251 | 41.62 344 | 96.48 219 | 62.35 313 | 71.00 281 | 87.09 314 |
|
PVSNet_0 | | 77.72 15 | 81.70 250 | 78.95 264 | 89.94 190 | 90.77 259 | 76.72 256 | 95.96 192 | 96.95 35 | 85.01 130 | 70.24 305 | 88.53 253 | 52.32 311 | 98.20 141 | 86.68 138 | 44.08 362 | 94.89 200 |
|
PS-CasMVS | | | 80.27 265 | 79.18 261 | 83.52 305 | 87.56 300 | 69.88 321 | 94.08 255 | 95.29 181 | 80.27 232 | 72.08 293 | 88.51 254 | 59.22 273 | 92.23 329 | 67.49 288 | 68.15 310 | 88.45 288 |
|
DTE-MVSNet | | | 78.37 279 | 77.06 276 | 82.32 315 | 85.22 326 | 67.17 335 | 93.40 266 | 93.66 265 | 78.71 263 | 70.53 302 | 88.29 255 | 59.06 274 | 92.23 329 | 61.38 317 | 63.28 337 | 87.56 307 |
|
v2v482 | | | 83.46 222 | 81.86 229 | 88.25 225 | 86.19 311 | 79.65 182 | 96.34 174 | 94.02 246 | 81.56 207 | 77.32 236 | 88.23 256 | 65.62 230 | 96.03 233 | 77.77 211 | 69.72 296 | 89.09 270 |
|
USDC | | | 78.65 277 | 76.25 282 | 85.85 269 | 87.58 299 | 74.60 281 | 89.58 309 | 90.58 327 | 84.05 157 | 63.13 335 | 88.23 256 | 40.69 348 | 96.86 207 | 66.57 294 | 75.81 259 | 86.09 326 |
|
XVG-ACMP-BASELINE | | | 79.38 273 | 77.90 270 | 83.81 297 | 84.98 328 | 67.14 336 | 89.03 313 | 93.18 287 | 80.26 233 | 72.87 287 | 88.15 258 | 38.55 349 | 96.26 227 | 76.05 234 | 78.05 252 | 88.02 296 |
|
FMVSNet3 | | | 84.71 203 | 82.71 218 | 90.70 167 | 94.55 156 | 87.71 20 | 95.92 195 | 94.67 211 | 81.73 205 | 75.82 262 | 88.08 259 | 66.99 223 | 94.47 301 | 71.23 270 | 75.38 261 | 89.91 253 |
|
MVP-Stereo | | | 82.65 238 | 81.67 232 | 85.59 275 | 86.10 314 | 78.29 217 | 93.33 269 | 92.82 294 | 77.75 272 | 69.17 311 | 87.98 260 | 59.28 272 | 95.76 250 | 71.77 265 | 96.88 93 | 82.73 348 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
cl22 | | | 85.11 197 | 84.17 196 | 87.92 231 | 95.06 144 | 78.82 202 | 95.51 211 | 94.22 234 | 79.74 242 | 76.77 243 | 87.92 261 | 75.96 134 | 95.68 255 | 79.93 195 | 72.42 275 | 89.27 265 |
|
OurMVSNet-221017-0 | | | 77.18 291 | 76.06 283 | 80.55 323 | 83.78 338 | 60.00 354 | 90.35 305 | 91.05 319 | 77.01 284 | 66.62 321 | 87.92 261 | 47.73 326 | 94.03 308 | 71.63 266 | 68.44 306 | 87.62 304 |
|
test_djsdf | | | 83.00 233 | 82.45 222 | 84.64 287 | 84.07 336 | 69.78 323 | 94.80 237 | 94.48 222 | 80.74 217 | 75.41 268 | 87.70 263 | 61.32 261 | 95.10 287 | 83.77 159 | 79.76 234 | 89.04 273 |
|
miper_ehance_all_eth | | | 84.57 206 | 83.60 205 | 87.50 242 | 92.64 212 | 78.25 219 | 95.40 217 | 93.47 272 | 79.28 252 | 76.41 249 | 87.64 264 | 76.53 124 | 95.24 278 | 78.58 207 | 72.42 275 | 89.01 275 |
|
ACMH | | 75.40 17 | 77.99 282 | 74.96 289 | 87.10 252 | 90.67 260 | 76.41 259 | 93.19 277 | 91.64 310 | 72.47 316 | 63.44 333 | 87.61 265 | 43.34 337 | 97.16 189 | 58.34 326 | 73.94 266 | 87.72 300 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pm-mvs1 | | | 80.05 266 | 78.02 269 | 86.15 266 | 85.42 321 | 75.81 272 | 95.11 228 | 92.69 297 | 77.13 280 | 70.36 303 | 87.43 266 | 58.44 278 | 95.27 277 | 71.36 269 | 64.25 333 | 87.36 311 |
|
FMVSNet2 | | | 82.79 235 | 80.44 248 | 89.83 194 | 92.66 209 | 85.43 48 | 95.42 215 | 94.35 230 | 79.06 257 | 74.46 274 | 87.28 267 | 56.38 297 | 94.31 304 | 69.72 280 | 74.68 264 | 89.76 255 |
|
LTVRE_ROB | | 73.68 18 | 77.99 282 | 75.74 286 | 84.74 283 | 90.45 263 | 72.02 303 | 86.41 334 | 91.12 316 | 72.57 315 | 66.63 320 | 87.27 268 | 54.95 306 | 96.98 197 | 56.29 336 | 75.98 257 | 85.21 334 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
IterMVS-LS | | | 83.93 215 | 82.80 217 | 87.31 247 | 91.46 247 | 77.39 245 | 95.66 207 | 93.43 275 | 80.44 225 | 75.51 266 | 87.26 269 | 73.72 173 | 95.16 282 | 76.99 221 | 70.72 285 | 89.39 259 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
eth_miper_zixun_eth | | | 83.12 229 | 82.01 226 | 86.47 260 | 91.85 242 | 74.80 279 | 94.33 246 | 93.18 287 | 79.11 255 | 75.74 265 | 87.25 270 | 72.71 182 | 95.32 274 | 76.78 224 | 67.13 321 | 89.27 265 |
|
c3_l | | | 83.80 217 | 82.65 219 | 87.25 249 | 92.10 229 | 77.74 239 | 95.25 221 | 93.04 292 | 78.58 264 | 76.01 257 | 87.21 271 | 75.25 154 | 95.11 285 | 77.54 217 | 68.89 302 | 88.91 281 |
|
Effi-MVS+-dtu | | | 84.61 205 | 84.90 187 | 83.72 301 | 91.96 236 | 63.14 346 | 94.95 233 | 93.34 281 | 85.57 113 | 79.79 217 | 87.12 272 | 61.99 255 | 95.61 262 | 83.55 165 | 85.83 199 | 92.41 227 |
|
DIV-MVS_self_test | | | 83.27 225 | 82.12 224 | 86.74 255 | 92.19 225 | 75.92 271 | 95.11 228 | 93.26 285 | 78.44 267 | 74.81 273 | 87.08 273 | 74.19 167 | 95.19 280 | 74.66 247 | 69.30 299 | 89.11 269 |
|
cl____ | | | 83.27 225 | 82.12 224 | 86.74 255 | 92.20 224 | 75.95 270 | 95.11 228 | 93.27 284 | 78.44 267 | 74.82 272 | 87.02 274 | 74.19 167 | 95.19 280 | 74.67 246 | 69.32 298 | 89.09 270 |
|
CostFormer | | | 89.08 126 | 88.39 128 | 91.15 154 | 93.13 199 | 79.15 195 | 88.61 317 | 96.11 133 | 83.14 179 | 89.58 111 | 86.93 275 | 83.83 42 | 96.87 205 | 88.22 125 | 85.92 197 | 97.42 133 |
|
WR-MVS_H | | | 81.02 258 | 80.09 252 | 83.79 298 | 88.08 295 | 71.26 314 | 94.46 241 | 96.54 90 | 80.08 235 | 72.81 288 | 86.82 276 | 70.36 206 | 92.65 324 | 64.18 304 | 67.50 317 | 87.46 310 |
|
v1144 | | | 82.90 234 | 81.27 238 | 87.78 234 | 86.29 309 | 79.07 199 | 96.14 186 | 93.93 248 | 80.05 236 | 77.38 234 | 86.80 277 | 65.50 231 | 95.93 242 | 75.21 241 | 70.13 289 | 88.33 291 |
|
V42 | | | 83.04 231 | 81.53 234 | 87.57 240 | 86.27 310 | 79.09 198 | 95.87 199 | 94.11 241 | 80.35 229 | 77.22 238 | 86.79 278 | 65.32 235 | 96.02 234 | 77.74 212 | 70.14 288 | 87.61 305 |
|
LF4IMVS | | | 72.36 314 | 70.82 311 | 76.95 333 | 79.18 349 | 56.33 358 | 86.12 335 | 86.11 351 | 69.30 330 | 63.06 336 | 86.66 279 | 33.03 359 | 92.25 328 | 65.33 300 | 68.64 304 | 82.28 352 |
|
LCM-MVSNet-Re | | | 83.75 218 | 83.54 206 | 84.39 294 | 93.54 185 | 64.14 342 | 92.51 285 | 84.03 358 | 83.90 164 | 66.14 323 | 86.59 280 | 67.36 220 | 92.68 323 | 84.89 149 | 92.87 140 | 96.35 171 |
|
v1192 | | | 82.31 244 | 80.55 247 | 87.60 237 | 85.94 315 | 78.47 213 | 95.85 201 | 93.80 257 | 79.33 249 | 76.97 241 | 86.51 281 | 63.33 245 | 95.87 244 | 73.11 258 | 70.13 289 | 88.46 287 |
|
v144192 | | | 82.43 240 | 80.73 243 | 87.54 241 | 85.81 318 | 78.22 220 | 95.98 191 | 93.78 259 | 79.09 256 | 77.11 239 | 86.49 282 | 64.66 240 | 95.91 243 | 74.20 251 | 69.42 297 | 88.49 285 |
|
TransMVSNet (Re) | | | 76.94 292 | 74.38 296 | 84.62 288 | 85.92 316 | 75.25 277 | 95.28 218 | 89.18 336 | 73.88 303 | 67.22 314 | 86.46 283 | 59.64 266 | 94.10 307 | 59.24 325 | 52.57 353 | 84.50 338 |
|
v1921920 | | | 82.02 247 | 80.23 251 | 87.41 244 | 85.62 319 | 77.92 233 | 95.79 203 | 93.69 264 | 78.86 261 | 76.67 244 | 86.44 284 | 62.50 248 | 95.83 246 | 72.69 260 | 69.77 295 | 88.47 286 |
|
v1240 | | | 81.70 250 | 79.83 258 | 87.30 248 | 85.50 320 | 77.70 240 | 95.48 212 | 93.44 274 | 78.46 266 | 76.53 247 | 86.44 284 | 60.85 262 | 95.84 245 | 71.59 267 | 70.17 287 | 88.35 290 |
|
tpm2 | | | 87.35 164 | 86.26 167 | 90.62 168 | 92.93 205 | 78.67 207 | 88.06 322 | 95.99 139 | 79.33 249 | 87.40 135 | 86.43 286 | 80.28 70 | 96.40 221 | 80.23 190 | 85.73 201 | 96.79 158 |
|
Baseline_NR-MVSNet | | | 81.22 257 | 80.07 254 | 84.68 285 | 85.32 325 | 75.12 278 | 96.48 160 | 88.80 339 | 76.24 287 | 77.28 237 | 86.40 287 | 67.61 216 | 94.39 303 | 75.73 238 | 66.73 325 | 84.54 337 |
|
anonymousdsp | | | 80.98 260 | 79.97 256 | 84.01 295 | 81.73 342 | 70.44 317 | 92.49 286 | 93.58 270 | 77.10 282 | 72.98 286 | 86.31 288 | 57.58 284 | 94.90 292 | 79.32 200 | 78.63 248 | 86.69 318 |
|
SixPastTwentyTwo | | | 76.04 296 | 74.32 297 | 81.22 319 | 84.54 330 | 61.43 352 | 91.16 301 | 89.30 335 | 77.89 269 | 64.04 330 | 86.31 288 | 48.23 321 | 94.29 305 | 63.54 309 | 63.84 335 | 87.93 298 |
|
Anonymous20231211 | | | 79.72 269 | 77.19 275 | 87.33 245 | 95.59 127 | 77.16 251 | 95.18 225 | 94.18 237 | 59.31 357 | 72.57 290 | 86.20 290 | 47.89 325 | 95.66 256 | 74.53 249 | 69.24 300 | 89.18 267 |
|
tpmrst | | | 88.36 147 | 87.38 150 | 91.31 148 | 94.36 165 | 79.92 173 | 87.32 327 | 95.26 183 | 85.32 120 | 88.34 127 | 86.13 291 | 80.60 66 | 96.70 213 | 83.78 158 | 85.34 205 | 97.30 141 |
|
v148 | | | 82.41 243 | 80.89 240 | 86.99 253 | 86.18 312 | 76.81 254 | 96.27 178 | 93.82 254 | 80.49 224 | 75.28 269 | 86.11 292 | 67.32 221 | 95.75 251 | 75.48 239 | 67.03 323 | 88.42 289 |
|
GBi-Net | | | 82.42 241 | 80.43 249 | 88.39 220 | 92.66 209 | 81.95 120 | 94.30 248 | 93.38 277 | 79.06 257 | 75.82 262 | 85.66 293 | 56.38 297 | 93.84 311 | 71.23 270 | 75.38 261 | 89.38 261 |
|
test1 | | | 82.42 241 | 80.43 249 | 88.39 220 | 92.66 209 | 81.95 120 | 94.30 248 | 93.38 277 | 79.06 257 | 75.82 262 | 85.66 293 | 56.38 297 | 93.84 311 | 71.23 270 | 75.38 261 | 89.38 261 |
|
FMVSNet1 | | | 79.50 271 | 76.54 281 | 88.39 220 | 88.47 290 | 81.95 120 | 94.30 248 | 93.38 277 | 73.14 309 | 72.04 294 | 85.66 293 | 43.86 334 | 93.84 311 | 65.48 299 | 72.53 274 | 89.38 261 |
|
TDRefinement | | | 69.20 322 | 65.78 326 | 79.48 327 | 66.04 368 | 62.21 348 | 88.21 319 | 86.12 350 | 62.92 343 | 61.03 344 | 85.61 296 | 33.23 358 | 94.16 306 | 55.82 339 | 53.02 351 | 82.08 353 |
|
v8 | | | 81.88 248 | 80.06 255 | 87.32 246 | 86.63 305 | 79.04 200 | 94.41 243 | 93.65 266 | 78.77 262 | 73.19 284 | 85.57 297 | 66.87 224 | 95.81 247 | 73.84 255 | 67.61 316 | 87.11 313 |
|
EPMVS | | | 87.47 163 | 85.90 171 | 92.18 122 | 95.41 131 | 82.26 116 | 87.00 329 | 96.28 121 | 85.88 108 | 84.23 164 | 85.57 297 | 75.07 157 | 96.26 227 | 71.14 273 | 92.50 144 | 98.03 83 |
|
tfpnnormal | | | 78.14 281 | 75.42 287 | 86.31 264 | 88.33 292 | 79.24 191 | 94.41 243 | 96.22 125 | 73.51 305 | 69.81 307 | 85.52 299 | 55.43 301 | 95.75 251 | 47.65 357 | 67.86 313 | 83.95 343 |
|
D2MVS | | | 82.67 237 | 81.55 233 | 86.04 268 | 87.77 297 | 76.47 257 | 95.21 222 | 96.58 84 | 82.66 192 | 70.26 304 | 85.46 300 | 60.39 263 | 95.80 248 | 76.40 229 | 79.18 241 | 85.83 330 |
|
miper_lstm_enhance | | | 81.66 252 | 80.66 245 | 84.67 286 | 91.19 249 | 71.97 305 | 91.94 292 | 93.19 286 | 77.86 271 | 72.27 292 | 85.26 301 | 73.46 176 | 93.42 318 | 73.71 256 | 67.05 322 | 88.61 283 |
|
v10 | | | 81.43 254 | 79.53 260 | 87.11 251 | 86.38 306 | 78.87 201 | 94.31 247 | 93.43 275 | 77.88 270 | 73.24 283 | 85.26 301 | 65.44 232 | 95.75 251 | 72.14 264 | 67.71 315 | 86.72 317 |
|
tpm | | | 85.55 191 | 84.47 192 | 88.80 213 | 90.19 267 | 75.39 276 | 88.79 315 | 94.69 208 | 84.83 133 | 83.96 169 | 85.21 303 | 78.22 97 | 94.68 298 | 76.32 231 | 78.02 253 | 96.34 172 |
|
IterMVS-SCA-FT | | | 80.51 264 | 79.10 263 | 84.73 284 | 89.63 277 | 74.66 280 | 92.98 279 | 91.81 307 | 80.05 236 | 71.06 299 | 85.18 304 | 58.04 280 | 91.40 337 | 72.48 263 | 70.70 286 | 88.12 295 |
|
dp | | | 84.30 212 | 82.31 223 | 90.28 178 | 94.24 167 | 77.97 229 | 86.57 332 | 95.53 163 | 79.94 239 | 80.75 205 | 85.16 305 | 71.49 196 | 96.39 222 | 63.73 307 | 83.36 215 | 96.48 168 |
|
IterMVS | | | 80.67 262 | 79.16 262 | 85.20 279 | 89.79 272 | 76.08 264 | 92.97 280 | 91.86 305 | 80.28 231 | 71.20 297 | 85.14 306 | 57.93 283 | 91.34 338 | 72.52 262 | 70.74 284 | 88.18 294 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
SCA | | | 85.63 190 | 83.64 203 | 91.60 142 | 92.30 219 | 81.86 127 | 92.88 282 | 95.56 162 | 84.85 132 | 82.52 183 | 85.12 307 | 58.04 280 | 95.39 269 | 73.89 253 | 87.58 184 | 97.54 124 |
|
Patchmatch-test | | | 78.25 280 | 74.72 293 | 88.83 212 | 91.20 248 | 74.10 287 | 73.91 360 | 88.70 342 | 59.89 356 | 66.82 319 | 85.12 307 | 78.38 94 | 94.54 300 | 48.84 355 | 79.58 238 | 97.86 101 |
|
PatchmatchNet |  | | 86.83 172 | 85.12 182 | 91.95 129 | 94.12 169 | 82.27 115 | 86.55 333 | 95.64 159 | 84.59 142 | 82.98 182 | 84.99 309 | 77.26 110 | 95.96 239 | 68.61 285 | 91.34 155 | 97.64 119 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ppachtmachnet_test | | | 77.19 290 | 74.22 298 | 86.13 267 | 85.39 322 | 78.22 220 | 93.98 256 | 91.36 313 | 71.74 320 | 67.11 316 | 84.87 310 | 56.67 293 | 93.37 320 | 52.21 346 | 64.59 330 | 86.80 316 |
|
TinyColmap | | | 72.41 313 | 68.99 320 | 82.68 311 | 88.11 294 | 69.59 325 | 88.41 318 | 85.20 353 | 65.55 338 | 57.91 351 | 84.82 311 | 30.80 363 | 95.94 240 | 51.38 347 | 68.70 303 | 82.49 351 |
|
our_test_3 | | | 77.90 284 | 75.37 288 | 85.48 277 | 85.39 322 | 76.74 255 | 93.63 261 | 91.67 308 | 73.39 308 | 65.72 325 | 84.65 312 | 58.20 279 | 93.13 322 | 57.82 328 | 67.87 312 | 86.57 319 |
|
v7n | | | 79.32 274 | 77.34 273 | 85.28 278 | 84.05 337 | 72.89 298 | 93.38 267 | 93.87 252 | 75.02 295 | 70.68 300 | 84.37 313 | 59.58 268 | 95.62 261 | 67.60 287 | 67.50 317 | 87.32 312 |
|
test20.03 | | | 72.36 314 | 71.15 310 | 75.98 338 | 77.79 353 | 59.16 356 | 92.40 288 | 89.35 334 | 74.09 301 | 61.50 342 | 84.32 314 | 48.09 322 | 85.54 361 | 50.63 351 | 62.15 339 | 83.24 344 |
|
MDTV_nov1_ep13 | | | | 83.69 200 | | 94.09 170 | 81.01 146 | 86.78 331 | 96.09 134 | 83.81 167 | 84.75 158 | 84.32 314 | 74.44 165 | 96.54 217 | 63.88 306 | 85.07 206 | |
|
pmmvs6 | | | 74.65 304 | 71.67 308 | 83.60 303 | 79.13 350 | 69.94 320 | 93.31 273 | 90.88 323 | 61.05 352 | 65.83 324 | 84.15 316 | 43.43 336 | 94.83 295 | 66.62 292 | 60.63 340 | 86.02 327 |
|
test_0402 | | | 72.68 312 | 69.54 318 | 82.09 316 | 88.67 288 | 71.81 308 | 92.72 284 | 86.77 348 | 61.52 348 | 62.21 339 | 83.91 317 | 43.22 338 | 93.76 314 | 34.60 364 | 72.23 278 | 80.72 356 |
|
EG-PatchMatch MVS | | | 74.92 302 | 72.02 307 | 83.62 302 | 83.76 339 | 73.28 293 | 93.62 262 | 92.04 304 | 68.57 331 | 58.88 348 | 83.80 318 | 31.87 361 | 95.57 265 | 56.97 334 | 78.67 245 | 82.00 354 |
|
Anonymous20231206 | | | 75.29 301 | 73.64 302 | 80.22 324 | 80.75 343 | 63.38 345 | 93.36 268 | 90.71 326 | 73.09 310 | 67.12 315 | 83.70 319 | 50.33 317 | 90.85 343 | 53.63 344 | 70.10 291 | 86.44 320 |
|
tpmvs | | | 83.04 231 | 80.77 242 | 89.84 193 | 95.43 130 | 77.96 230 | 85.59 338 | 95.32 180 | 75.31 292 | 76.27 253 | 83.70 319 | 73.89 170 | 97.41 175 | 59.53 321 | 81.93 228 | 94.14 213 |
|
lessismore_v0 | | | | | 79.98 325 | 80.59 345 | 58.34 357 | | 80.87 364 | | 58.49 349 | 83.46 321 | 43.10 339 | 93.89 310 | 63.11 311 | 48.68 355 | 87.72 300 |
|
tpm cat1 | | | 83.63 220 | 81.38 236 | 90.39 174 | 93.53 190 | 78.19 225 | 85.56 339 | 95.09 187 | 70.78 323 | 78.51 227 | 83.28 322 | 74.80 159 | 97.03 194 | 66.77 291 | 84.05 210 | 95.95 180 |
|
OpenMVS_ROB |  | 68.52 20 | 73.02 311 | 69.57 317 | 83.37 306 | 80.54 346 | 71.82 307 | 93.60 263 | 88.22 343 | 62.37 344 | 61.98 340 | 83.15 323 | 35.31 356 | 95.47 267 | 45.08 360 | 75.88 258 | 82.82 346 |
|
KD-MVS_2432*1600 | | | 77.63 286 | 74.92 291 | 85.77 271 | 90.86 256 | 79.44 185 | 88.08 320 | 93.92 249 | 76.26 285 | 67.05 317 | 82.78 324 | 72.15 189 | 91.92 332 | 61.53 314 | 41.62 363 | 85.94 328 |
|
miper_refine_blended | | | 77.63 286 | 74.92 291 | 85.77 271 | 90.86 256 | 79.44 185 | 88.08 320 | 93.92 249 | 76.26 285 | 67.05 317 | 82.78 324 | 72.15 189 | 91.92 332 | 61.53 314 | 41.62 363 | 85.94 328 |
|
K. test v3 | | | 73.62 305 | 71.59 309 | 79.69 326 | 82.98 340 | 59.85 355 | 90.85 304 | 88.83 338 | 77.13 280 | 58.90 347 | 82.11 326 | 43.62 335 | 91.72 335 | 65.83 298 | 54.10 348 | 87.50 309 |
|
MDA-MVSNet-bldmvs | | | 71.45 317 | 67.94 321 | 81.98 317 | 85.33 324 | 68.50 330 | 92.35 289 | 88.76 340 | 70.40 324 | 42.99 362 | 81.96 327 | 46.57 329 | 91.31 339 | 48.75 356 | 54.39 347 | 86.11 325 |
|
MIMVSNet | | | 79.18 275 | 75.99 284 | 88.72 215 | 87.37 301 | 80.66 156 | 79.96 345 | 91.82 306 | 77.38 277 | 74.33 275 | 81.87 328 | 41.78 343 | 90.74 344 | 66.36 297 | 83.10 217 | 94.76 203 |
|
UnsupCasMVSNet_eth | | | 73.25 309 | 70.57 313 | 81.30 318 | 77.53 354 | 66.33 337 | 87.24 328 | 93.89 251 | 80.38 228 | 57.90 352 | 81.59 329 | 42.91 341 | 90.56 345 | 65.18 301 | 48.51 356 | 87.01 315 |
|
CL-MVSNet_self_test | | | 75.81 298 | 74.14 300 | 80.83 322 | 78.33 352 | 67.79 332 | 94.22 252 | 93.52 271 | 77.28 279 | 69.82 306 | 81.54 330 | 61.47 260 | 89.22 350 | 57.59 330 | 53.51 349 | 85.48 332 |
|
DSMNet-mixed | | | 73.13 310 | 72.45 306 | 75.19 340 | 77.51 355 | 46.82 366 | 85.09 340 | 82.01 363 | 67.61 336 | 69.27 310 | 81.33 331 | 50.89 313 | 86.28 358 | 54.54 341 | 83.80 211 | 92.46 226 |
|
YYNet1 | | | 73.53 308 | 70.43 314 | 82.85 310 | 84.52 331 | 71.73 309 | 91.69 297 | 91.37 312 | 67.63 332 | 46.79 360 | 81.21 332 | 55.04 305 | 90.43 346 | 55.93 337 | 59.70 342 | 86.38 321 |
|
MDA-MVSNet_test_wron | | | 73.54 307 | 70.43 314 | 82.86 309 | 84.55 329 | 71.85 306 | 91.74 296 | 91.32 315 | 67.63 332 | 46.73 361 | 81.09 333 | 55.11 304 | 90.42 347 | 55.91 338 | 59.76 341 | 86.31 322 |
|
tmp_tt | | | 41.54 334 | 41.93 336 | 40.38 352 | 20.10 378 | 26.84 375 | 61.93 364 | 59.09 374 | 14.81 372 | 28.51 367 | 80.58 334 | 35.53 354 | 48.33 373 | 63.70 308 | 13.11 370 | 45.96 366 |
|
FMVSNet5 | | | 76.46 295 | 74.16 299 | 83.35 307 | 90.05 270 | 76.17 262 | 89.58 309 | 89.85 330 | 71.39 322 | 65.29 327 | 80.42 335 | 50.61 315 | 87.70 355 | 61.05 319 | 69.24 300 | 86.18 324 |
|
CR-MVSNet | | | 83.53 221 | 81.36 237 | 90.06 184 | 90.16 268 | 79.75 177 | 79.02 350 | 91.12 316 | 84.24 154 | 82.27 191 | 80.35 336 | 75.45 145 | 93.67 315 | 63.37 310 | 86.25 192 | 96.75 162 |
|
Patchmtry | | | 77.36 289 | 74.59 294 | 85.67 274 | 89.75 273 | 75.75 273 | 77.85 353 | 91.12 316 | 60.28 353 | 71.23 296 | 80.35 336 | 75.45 145 | 93.56 317 | 57.94 327 | 67.34 320 | 87.68 302 |
|
MVS_0304 | | | 78.43 278 | 76.70 279 | 83.60 303 | 88.22 293 | 69.81 322 | 92.91 281 | 95.10 186 | 72.32 317 | 78.71 225 | 80.29 338 | 33.78 357 | 93.37 320 | 68.77 284 | 80.23 233 | 87.63 303 |
|
ADS-MVSNet2 | | | 79.57 270 | 77.53 272 | 85.71 273 | 93.78 178 | 72.13 301 | 79.48 346 | 86.11 351 | 73.09 310 | 80.14 213 | 79.99 339 | 62.15 252 | 90.14 349 | 59.49 322 | 83.52 212 | 94.85 201 |
|
ADS-MVSNet | | | 81.26 256 | 78.36 266 | 89.96 189 | 93.78 178 | 79.78 175 | 79.48 346 | 93.60 268 | 73.09 310 | 80.14 213 | 79.99 339 | 62.15 252 | 95.24 278 | 59.49 322 | 83.52 212 | 94.85 201 |
|
MIMVSNet1 | | | 69.44 320 | 66.65 324 | 77.84 331 | 76.48 359 | 62.84 347 | 87.42 326 | 88.97 337 | 66.96 337 | 57.75 353 | 79.72 341 | 32.77 360 | 85.83 360 | 46.32 358 | 63.42 336 | 84.85 336 |
|
Anonymous20240521 | | | 72.06 316 | 69.91 316 | 78.50 330 | 77.11 357 | 61.67 351 | 91.62 299 | 90.97 321 | 65.52 339 | 62.37 338 | 79.05 342 | 36.32 352 | 90.96 342 | 57.75 329 | 68.52 305 | 82.87 345 |
|
N_pmnet | | | 61.30 327 | 60.20 330 | 64.60 344 | 84.32 332 | 17.00 379 | 91.67 298 | 10.98 378 | 61.77 347 | 58.45 350 | 78.55 343 | 49.89 318 | 91.83 334 | 42.27 362 | 63.94 334 | 84.97 335 |
|
PM-MVS | | | 69.32 321 | 66.93 323 | 76.49 335 | 73.60 364 | 55.84 360 | 85.91 336 | 79.32 367 | 74.72 297 | 61.09 343 | 78.18 344 | 21.76 365 | 91.10 341 | 70.86 275 | 56.90 345 | 82.51 349 |
|
pmmvs-eth3d | | | 73.59 306 | 70.66 312 | 82.38 313 | 76.40 360 | 73.38 290 | 89.39 312 | 89.43 333 | 72.69 314 | 60.34 346 | 77.79 345 | 46.43 330 | 91.26 340 | 66.42 296 | 57.06 344 | 82.51 349 |
|
KD-MVS_self_test | | | 70.97 319 | 69.31 319 | 75.95 339 | 76.24 362 | 55.39 362 | 87.45 325 | 90.94 322 | 70.20 326 | 62.96 337 | 77.48 346 | 44.01 333 | 88.09 353 | 61.25 318 | 53.26 350 | 84.37 339 |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 347 | 77.78 104 | 95.39 269 | | | |
|
DeepMVS_CX |  | | | | 64.06 345 | 78.53 351 | 43.26 369 | | 68.11 372 | 69.94 327 | 38.55 363 | 76.14 348 | 18.53 367 | 79.34 362 | 43.72 361 | 41.62 363 | 69.57 362 |
|
ambc | | | | | 76.02 337 | 68.11 366 | 51.43 364 | 64.97 363 | 89.59 331 | | 60.49 345 | 74.49 349 | 17.17 368 | 92.46 325 | 61.50 316 | 52.85 352 | 84.17 341 |
|
pmmvs3 | | | 65.75 326 | 62.18 329 | 76.45 336 | 67.12 367 | 64.54 340 | 88.68 316 | 85.05 354 | 54.77 361 | 57.54 354 | 73.79 350 | 29.40 364 | 86.21 359 | 55.49 340 | 47.77 358 | 78.62 357 |
|
new-patchmatchnet | | | 68.85 323 | 65.93 325 | 77.61 332 | 73.57 365 | 63.94 344 | 90.11 307 | 88.73 341 | 71.62 321 | 55.08 355 | 73.60 351 | 40.84 347 | 87.22 357 | 51.35 349 | 48.49 357 | 81.67 355 |
|
Patchmatch-RL test | | | 76.65 294 | 74.01 301 | 84.55 289 | 77.37 356 | 64.23 341 | 78.49 352 | 82.84 362 | 78.48 265 | 64.63 329 | 73.40 352 | 76.05 133 | 91.70 336 | 76.99 221 | 57.84 343 | 97.72 112 |
|
PatchT | | | 79.75 268 | 76.85 278 | 88.42 218 | 89.55 278 | 75.49 275 | 77.37 354 | 94.61 217 | 63.07 342 | 82.46 185 | 73.32 353 | 75.52 144 | 93.41 319 | 51.36 348 | 84.43 208 | 96.36 170 |
|
RPMNet | | | 79.85 267 | 75.92 285 | 91.64 139 | 90.16 268 | 79.75 177 | 79.02 350 | 95.44 170 | 58.43 359 | 82.27 191 | 72.55 354 | 73.03 180 | 98.41 135 | 46.10 359 | 86.25 192 | 96.75 162 |
|
FPMVS | | | 55.09 329 | 52.93 332 | 61.57 347 | 55.98 369 | 40.51 372 | 83.11 343 | 83.41 361 | 37.61 364 | 34.95 365 | 71.95 355 | 14.40 369 | 76.95 363 | 29.81 365 | 65.16 329 | 67.25 363 |
|
test_method | | | 56.77 328 | 54.53 331 | 63.49 346 | 76.49 358 | 40.70 371 | 75.68 356 | 74.24 369 | 19.47 370 | 48.73 359 | 71.89 356 | 19.31 366 | 65.80 369 | 57.46 331 | 47.51 359 | 83.97 342 |
|
new_pmnet | | | 66.18 325 | 63.18 328 | 75.18 341 | 76.27 361 | 61.74 350 | 83.79 342 | 84.66 355 | 56.64 360 | 51.57 358 | 71.85 357 | 31.29 362 | 87.93 354 | 49.98 352 | 62.55 338 | 75.86 359 |
|
UnsupCasMVSNet_bld | | | 68.60 324 | 64.50 327 | 80.92 321 | 74.63 363 | 67.80 331 | 83.97 341 | 92.94 293 | 65.12 340 | 54.63 356 | 68.23 358 | 35.97 353 | 92.17 331 | 60.13 320 | 44.83 360 | 82.78 347 |
|
PMMVS2 | | | 50.90 331 | 46.31 334 | 64.67 343 | 55.53 370 | 46.67 367 | 77.30 355 | 71.02 370 | 40.89 363 | 34.16 366 | 59.32 359 | 9.83 374 | 76.14 366 | 40.09 363 | 28.63 366 | 71.21 360 |
|
JIA-IIPM | | | 79.00 276 | 77.20 274 | 84.40 293 | 89.74 275 | 64.06 343 | 75.30 357 | 95.44 170 | 62.15 345 | 81.90 195 | 59.08 360 | 78.92 86 | 95.59 263 | 66.51 295 | 85.78 200 | 93.54 221 |
|
LCM-MVSNet | | | 52.52 330 | 48.24 333 | 65.35 342 | 47.63 374 | 41.45 370 | 72.55 361 | 83.62 360 | 31.75 365 | 37.66 364 | 57.92 361 | 9.19 375 | 76.76 364 | 49.26 354 | 44.60 361 | 77.84 358 |
|
gg-mvs-nofinetune | | | 85.48 193 | 82.90 213 | 93.24 77 | 94.51 161 | 85.82 39 | 79.22 348 | 96.97 33 | 61.19 350 | 87.33 137 | 53.01 362 | 90.58 6 | 96.07 232 | 86.07 139 | 97.23 83 | 97.81 106 |
|
MVS-HIRNet | | | 71.36 318 | 67.00 322 | 84.46 292 | 90.58 261 | 69.74 324 | 79.15 349 | 87.74 345 | 46.09 362 | 61.96 341 | 50.50 363 | 45.14 332 | 95.64 259 | 53.74 343 | 88.11 180 | 88.00 297 |
|
PMVS |  | 34.80 23 | 39.19 335 | 35.53 338 | 50.18 350 | 29.72 377 | 30.30 374 | 59.60 365 | 66.20 373 | 26.06 367 | 17.91 371 | 49.53 364 | 3.12 376 | 74.09 367 | 18.19 369 | 49.40 354 | 46.14 364 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ANet_high | | | 46.22 332 | 41.28 337 | 61.04 348 | 39.91 376 | 46.25 368 | 70.59 362 | 76.18 368 | 58.87 358 | 23.09 369 | 48.00 365 | 12.58 371 | 66.54 368 | 28.65 366 | 13.62 369 | 70.35 361 |
|
MVE |  | 35.65 22 | 33.85 336 | 29.49 341 | 46.92 351 | 41.86 375 | 36.28 373 | 50.45 366 | 56.52 375 | 18.75 371 | 18.28 370 | 37.84 366 | 2.41 377 | 58.41 370 | 18.71 368 | 20.62 367 | 46.06 365 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
Gipuma |  | | 45.11 333 | 42.05 335 | 54.30 349 | 80.69 344 | 51.30 365 | 35.80 367 | 83.81 359 | 28.13 366 | 27.94 368 | 34.53 367 | 11.41 373 | 76.70 365 | 21.45 367 | 54.65 346 | 34.90 367 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_post | | | | | | | | | | | | 33.80 368 | 76.17 131 | 95.97 236 | | | |
|
E-PMN | | | 32.70 337 | 32.39 339 | 33.65 353 | 53.35 372 | 25.70 376 | 74.07 359 | 53.33 376 | 21.08 368 | 17.17 372 | 33.63 369 | 11.85 372 | 54.84 371 | 12.98 370 | 14.04 368 | 20.42 368 |
|
EMVS | | | 31.70 338 | 31.45 340 | 32.48 354 | 50.72 373 | 23.95 377 | 74.78 358 | 52.30 377 | 20.36 369 | 16.08 373 | 31.48 370 | 12.80 370 | 53.60 372 | 11.39 371 | 13.10 371 | 19.88 369 |
|
test_post1 | | | | | | | | 85.88 337 | | | | 30.24 371 | 73.77 171 | 95.07 289 | 73.89 253 | | |
|
X-MVStestdata | | | 86.26 181 | 84.14 197 | 92.63 107 | 98.52 42 | 80.29 164 | 97.37 96 | 96.44 102 | 87.04 91 | 91.38 82 | 20.73 372 | 77.24 112 | 99.59 51 | 90.46 97 | 98.07 62 | 98.02 84 |
|
testmvs | | | 9.92 341 | 12.94 344 | 0.84 357 | 0.65 379 | 0.29 381 | 93.78 259 | 0.39 380 | 0.42 374 | 2.85 375 | 15.84 373 | 0.17 380 | 0.30 376 | 2.18 373 | 0.21 373 | 1.91 371 |
|
test123 | | | 9.07 342 | 11.73 345 | 1.11 356 | 0.50 380 | 0.77 380 | 89.44 311 | 0.20 381 | 0.34 375 | 2.15 376 | 10.72 374 | 0.34 379 | 0.32 375 | 1.79 374 | 0.08 374 | 2.23 370 |
|
wuyk23d | | | 14.10 340 | 13.89 343 | 14.72 355 | 55.23 371 | 22.91 378 | 33.83 368 | 3.56 379 | 4.94 373 | 4.11 374 | 2.28 375 | 2.06 378 | 19.66 374 | 10.23 372 | 8.74 372 | 1.59 372 |
|
test_blank | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uanet_test | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
pcd_1.5k_mvsjas | | | 5.92 344 | 7.89 347 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 71.04 200 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
sosnet-low-res | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
sosnet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uncertanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
Regformer | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
FOURS1 | | | | | | 98.51 44 | 78.01 228 | 98.13 38 | 96.21 126 | 83.04 182 | 94.39 43 | | | | | | |
|
MSC_two_6792asdad | | | | | 97.14 3 | 99.05 10 | 92.19 4 | | 96.83 44 | | | | | 99.81 20 | 98.08 6 | 98.81 25 | 99.43 11 |
|
No_MVS | | | | | 97.14 3 | 99.05 10 | 92.19 4 | | 96.83 44 | | | | | 99.81 20 | 98.08 6 | 98.81 25 | 99.43 11 |
|
eth-test2 | | | | | | 0.00 381 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 381 | | | | | | | | | | | |
|
IU-MVS | | | | | | 99.03 16 | 85.34 49 | | 96.86 43 | 92.05 15 | 98.74 1 | | | | 98.15 3 | 98.97 17 | 99.42 13 |
|
save fliter | | | | | | 98.24 57 | 83.34 93 | 98.61 23 | 96.57 85 | 91.32 18 | | | | | | | |
|
test_0728_SECOND | | | | | 95.14 17 | 99.04 15 | 86.14 33 | 99.06 9 | 96.77 54 | | | | | 99.84 12 | 97.90 8 | 98.85 22 | 99.45 10 |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 124 |
|
test_part2 | | | | | | 98.90 21 | 85.14 60 | | | | 96.07 20 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 105 | | | | 97.54 124 |
|
sam_mvs | | | | | | | | | | | | | 75.35 152 | | | | |
|
MTGPA |  | | | | | | | | 96.33 117 | | | | | | | | |
|
MTMP | | | | | | | | 97.53 80 | 68.16 371 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 96.00 25 | 99.03 13 | 98.31 61 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 46 | 99.00 15 | 98.57 45 |
|
agg_prior | | | | | | 98.59 39 | 83.13 98 | | 96.56 87 | | 94.19 45 | | | 99.16 93 | | | |
|
test_prior4 | | | | | | | 82.34 114 | 97.75 65 | | | | | | | | | |
|
test_prior | | | | | 93.09 84 | 98.68 29 | 81.91 123 | | 96.40 109 | | | | | 99.06 101 | | | 98.29 63 |
|
旧先验2 | | | | | | | | 96.97 131 | | 74.06 302 | 96.10 19 | | | 97.76 155 | 88.38 123 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 96.42 169 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 96.87 137 | 96.78 48 | 77.39 276 | | | | 99.52 57 | 79.95 193 | | 98.43 53 |
|
原ACMM2 | | | | | | | | 96.84 138 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.48 62 | 76.45 228 | | |
|
segment_acmp | | | | | | | | | | | | | 82.69 56 | | | | |
|
testdata1 | | | | | | | | 95.57 210 | | 87.44 79 | | | | | | | |
|
test12 | | | | | 94.25 38 | 98.34 52 | 85.55 46 | | 96.35 116 | | 92.36 68 | | 80.84 63 | 99.22 82 | | 98.31 56 | 97.98 91 |
|
plane_prior7 | | | | | | 91.86 240 | 77.55 242 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 235 | 77.92 233 | | | | | | 64.77 238 | | | | |
|
plane_prior5 | | | | | | | | | 94.69 208 | | | | | 97.30 181 | 87.08 132 | 82.82 222 | 90.96 233 |
|
plane_prior3 | | | | | | | 77.75 238 | | | 90.17 34 | 81.33 199 | | | | | | |
|
plane_prior2 | | | | | | | | 97.18 106 | | 89.89 36 | | | | | | | |
|
plane_prior1 | | | | | | 91.95 238 | | | | | | | | | | | |
|
plane_prior | | | | | | | 77.96 230 | 97.52 83 | | 90.36 33 | | | | | | 82.96 220 | |
|
n2 | | | | | | | | | 0.00 382 | | | | | | | | |
|
nn | | | | | | | | | 0.00 382 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 366 | | | | | | | | |
|
test11 | | | | | | | | | 96.50 96 | | | | | | | | |
|
door | | | | | | | | | 80.13 365 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 210 | | | | | | | | | | |
|
HQP-NCC | | | | | | 92.08 230 | | 97.63 71 | | 90.52 28 | 82.30 187 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 230 | | 97.63 71 | | 90.52 28 | 82.30 187 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 128 | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 187 | | | 97.32 179 | | | 91.13 231 |
|
HQP3-MVS | | | | | | | | | 94.80 204 | | | | | | | 83.01 218 | |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 233 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 81.74 132 | 86.80 330 | | 80.65 219 | 85.65 149 | | 74.26 166 | | 76.52 227 | | 96.98 150 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 250 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 242 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 193 | | | | |
|