This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 697.72 395.35 8699.51 287.38 13397.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12799.73 1499.59 12
pmmvs696.80 1397.36 995.15 9899.12 887.82 12896.68 2497.86 8396.10 2698.14 2499.28 397.94 398.21 21691.38 11899.69 1599.42 19
UA-Net97.35 497.24 1197.69 598.22 6993.87 3098.42 698.19 3596.95 1495.46 13099.23 493.45 7599.57 1395.34 1299.89 299.63 9
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 6994.15 5098.93 399.07 588.07 18399.57 1395.86 999.69 1599.46 18
gg-mvs-nofinetune82.10 32081.02 32285.34 32987.46 36171.04 34094.74 10467.56 37396.44 2279.43 36498.99 645.24 37296.15 31367.18 35892.17 34088.85 355
Anonymous2023121196.60 2597.13 1295.00 10297.46 12286.35 16297.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
ANet_high94.83 9596.28 3790.47 26096.65 15773.16 32894.33 12198.74 896.39 2398.09 2598.93 893.37 7998.70 16790.38 13499.68 1899.53 14
mvs_tets96.83 996.71 1997.17 2798.83 2292.51 4996.58 2897.61 10587.57 20598.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
PS-MVSNAJss96.01 5196.04 5295.89 6598.82 2388.51 11495.57 7497.88 8288.72 17898.81 698.86 1090.77 14499.60 895.43 1199.53 3599.57 13
test_djsdf96.62 2396.49 2897.01 3398.55 4091.77 6097.15 1397.37 12088.98 17298.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
K. test v393.37 13793.27 14893.66 15698.05 8082.62 21294.35 12086.62 33496.05 2897.51 4098.85 1276.59 29399.65 393.21 6798.20 19998.73 90
Gipumacopyleft95.31 7795.80 6493.81 15497.99 9090.91 7096.42 3797.95 7896.69 1791.78 25198.85 1291.77 11995.49 32691.72 10899.08 9695.02 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2493.86 3199.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17996.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 1796.42 2997.68 798.00 8794.03 2596.97 1797.61 10587.68 20298.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
SixPastTwentyTwo94.91 8895.21 8393.98 14398.52 4583.19 20495.93 5994.84 24294.86 3998.49 1598.74 1681.45 25499.60 894.69 1699.39 5499.15 37
jajsoiax96.59 2796.42 2997.12 2998.76 2792.49 5096.44 3697.42 11886.96 21498.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
VDDNet94.03 12594.27 11993.31 16998.87 2082.36 21495.51 7791.78 30397.19 1296.32 8698.60 1884.24 22998.75 15687.09 21298.83 12998.81 79
TransMVSNet (Re)95.27 8096.04 5292.97 17798.37 6081.92 21895.07 9396.76 17393.97 5497.77 2898.57 1995.72 1897.90 23988.89 17899.23 7999.08 45
Baseline_NR-MVSNet94.47 10995.09 8892.60 19598.50 5380.82 23492.08 19396.68 17693.82 5896.29 8998.56 2090.10 16297.75 25790.10 15199.66 2199.24 31
GBi-Net93.21 14692.96 15193.97 14495.40 24084.29 18795.99 5596.56 18288.63 18095.10 14798.53 2181.31 25698.98 11586.74 21598.38 17398.65 97
test193.21 14692.96 15193.97 14495.40 24084.29 18795.99 5596.56 18288.63 18095.10 14798.53 2181.31 25698.98 11586.74 21598.38 17398.65 97
FMVSNet194.84 9495.13 8693.97 14497.60 11384.29 18795.99 5596.56 18292.38 7997.03 5798.53 2190.12 15998.98 11588.78 18099.16 8998.65 97
MIMVSNet195.52 6695.45 7395.72 7499.14 589.02 10096.23 4996.87 16493.73 5997.87 2798.49 2490.73 14899.05 10486.43 22499.60 2599.10 44
pm-mvs195.43 7095.94 5593.93 14798.38 5885.08 18195.46 7897.12 14591.84 10197.28 4898.46 2595.30 3497.71 25990.17 14799.42 4798.99 53
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
v7n96.82 1097.31 1095.33 8898.54 4286.81 14796.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
test_part194.39 11094.55 10793.92 14896.14 19882.86 21095.54 7598.09 5295.36 3698.27 2098.36 2875.91 29599.44 2493.41 5899.84 399.47 17
DTE-MVSNet96.74 1797.43 594.67 11599.13 684.68 18496.51 3097.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
ACMH88.36 1296.59 2797.43 594.07 14198.56 3785.33 17896.33 4298.30 2394.66 4098.72 898.30 3097.51 598.00 23394.87 1499.59 2798.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 18596.54 2998.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
test111190.39 21690.61 21089.74 27898.04 8371.50 33995.59 7179.72 36889.41 16095.94 10998.14 3270.79 31298.81 14488.52 18699.32 6298.90 69
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 19496.61 2697.97 7597.91 598.64 1398.13 3395.24 3699.65 393.39 5999.84 399.72 2
test250685.42 29884.57 30087.96 30797.81 9666.53 35996.14 5056.35 37689.04 17093.55 19898.10 3442.88 37898.68 17188.09 19499.18 8698.67 95
ECVR-MVScopyleft90.12 22690.16 21890.00 27597.81 9672.68 33395.76 6678.54 36989.04 17095.36 13498.10 3470.51 31398.64 17787.10 21199.18 8698.67 95
Vis-MVSNetpermissive95.50 6795.48 7295.56 8198.11 7589.40 9595.35 7998.22 3292.36 8194.11 17798.07 3692.02 11299.44 2493.38 6097.67 23397.85 172
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2024052995.50 6795.83 6294.50 12697.33 12885.93 17095.19 8996.77 17296.64 1997.61 3598.05 3793.23 8398.79 14788.60 18599.04 10598.78 82
VPA-MVSNet95.14 8295.67 6893.58 15997.76 9983.15 20594.58 11197.58 10793.39 6697.05 5698.04 3893.25 8298.51 19289.75 15999.59 2799.08 45
LCM-MVSNet-Re94.20 12194.58 10693.04 17495.91 21683.13 20693.79 13899.19 292.00 9198.84 598.04 3893.64 7299.02 11081.28 27698.54 15796.96 222
v1094.68 10195.27 8292.90 18296.57 16380.15 23894.65 10897.57 10890.68 13697.43 4398.00 4088.18 18099.15 8794.84 1599.55 3499.41 20
DeepC-MVS91.39 495.43 7095.33 7895.71 7597.67 10990.17 7993.86 13798.02 6787.35 20796.22 9597.99 4194.48 6299.05 10492.73 8399.68 1897.93 162
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
JIA-IIPM85.08 30183.04 31091.19 23987.56 35886.14 16789.40 27884.44 35588.98 17282.20 35397.95 4256.82 36096.15 31376.55 31983.45 36291.30 347
v894.65 10295.29 8092.74 18796.65 15779.77 25294.59 10997.17 14191.86 9797.47 4297.93 4388.16 18199.08 9994.32 2299.47 3999.38 22
APDe-MVS96.46 3296.64 2295.93 6097.68 10889.38 9696.90 1998.41 1692.52 7797.43 4397.92 4495.11 4299.50 1994.45 1999.30 6598.92 67
nrg03096.32 4196.55 2695.62 7797.83 9588.55 11295.77 6598.29 2692.68 7398.03 2697.91 4595.13 4098.95 12293.85 3699.49 3899.36 24
lessismore_v093.87 15298.05 8083.77 19880.32 36697.13 5297.91 4577.49 28199.11 9592.62 8698.08 21098.74 88
Anonymous2024052192.86 15993.57 13790.74 25396.57 16375.50 31294.15 12695.60 21889.38 16195.90 11297.90 4780.39 26397.96 23792.60 8799.68 1898.75 85
WR-MVS_H96.60 2597.05 1495.24 9499.02 1286.44 15896.78 2398.08 5397.42 998.48 1697.86 4891.76 12099.63 694.23 2699.84 399.66 6
VDD-MVS94.37 11194.37 11394.40 13397.49 11986.07 16893.97 13493.28 27394.49 4496.24 9397.78 4987.99 18698.79 14788.92 17699.14 9198.34 124
RPSCF95.58 6594.89 9297.62 897.58 11496.30 495.97 5897.53 11292.42 7893.41 20097.78 4991.21 13697.77 25491.06 12097.06 25098.80 80
test_040295.73 6096.22 4094.26 13698.19 7185.77 17393.24 15197.24 13796.88 1697.69 3097.77 5194.12 6899.13 9191.54 11599.29 6897.88 168
tfpnnormal94.27 11794.87 9392.48 20097.71 10480.88 23394.55 11595.41 22993.70 6096.67 7397.72 5291.40 12898.18 22087.45 20599.18 8698.36 123
XXY-MVS92.58 16893.16 15090.84 25197.75 10079.84 24891.87 20896.22 20085.94 22895.53 12797.68 5392.69 10094.48 33983.21 25797.51 23898.21 135
UGNet93.08 14992.50 16694.79 11093.87 28587.99 12495.07 9394.26 25890.64 13787.33 32397.67 5486.89 20798.49 19388.10 19398.71 14197.91 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
KD-MVS_self_test94.10 12394.73 9992.19 20697.66 11079.49 25794.86 10097.12 14589.59 15896.87 6497.65 5590.40 15698.34 20689.08 17499.35 5798.75 85
wuyk23d87.83 26990.79 20678.96 34990.46 33888.63 10892.72 16290.67 31191.65 11398.68 1197.64 5696.06 1677.53 37059.84 36599.41 5270.73 368
EG-PatchMatch MVS94.54 10794.67 10394.14 13997.87 9486.50 15492.00 19896.74 17488.16 19096.93 6297.61 5793.04 9197.90 23991.60 11298.12 20698.03 150
DSMNet-mixed82.21 31781.56 31684.16 33789.57 34770.00 34890.65 24077.66 37154.99 37083.30 34797.57 5877.89 28090.50 36266.86 35995.54 28791.97 342
FC-MVSNet-test95.32 7595.88 5893.62 15798.49 5481.77 21995.90 6198.32 2093.93 5597.53 3997.56 5988.48 17699.40 4392.91 7999.83 699.68 4
ab-mvs92.40 17292.62 16291.74 22097.02 14081.65 22195.84 6395.50 22786.95 21592.95 22097.56 5990.70 14997.50 26779.63 29497.43 24196.06 256
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5894.31 1696.79 2298.32 2096.69 1796.86 6597.56 5995.48 2598.77 15590.11 14999.44 4598.31 127
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVSNet96.19 4696.80 1794.38 13498.99 1483.82 19796.31 4497.53 11297.60 798.34 1997.52 6291.98 11599.63 693.08 7499.81 999.70 3
ACMH+88.43 1196.48 3096.82 1695.47 8398.54 4289.06 9995.65 7098.61 996.10 2698.16 2397.52 6296.90 798.62 17890.30 14099.60 2598.72 91
SMA-MVScopyleft95.77 5995.54 7096.47 5098.27 6591.19 6695.09 9197.79 9486.48 21897.42 4597.51 6494.47 6399.29 7193.55 4699.29 6898.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ambc92.98 17696.88 14883.01 20995.92 6096.38 19296.41 8097.48 6588.26 17997.80 25089.96 15498.93 11698.12 142
PMVScopyleft87.21 1494.97 8695.33 7893.91 14998.97 1597.16 295.54 7595.85 21296.47 2193.40 20297.46 6695.31 3395.47 32786.18 22898.78 13689.11 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
abl_697.31 597.12 1397.86 398.54 4295.32 796.61 2698.35 1995.81 3197.55 3697.44 6796.51 999.40 4394.06 3099.23 7998.85 76
3Dnovator92.54 394.80 9794.90 9194.47 12995.47 23887.06 14096.63 2597.28 13591.82 10494.34 17597.41 6890.60 15198.65 17692.47 8998.11 20797.70 184
mvs_anonymous90.37 21891.30 19487.58 31292.17 31368.00 35289.84 26894.73 24783.82 25793.22 21197.40 6987.54 19297.40 27587.94 19895.05 29997.34 209
MP-MVS-pluss96.08 4995.92 5796.57 4599.06 1091.21 6593.25 15098.32 2087.89 19596.86 6597.38 7095.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test072698.51 4686.69 15095.34 8098.18 3691.85 9897.63 3297.37 7195.58 22
EU-MVSNet87.39 28086.71 28389.44 28293.40 29076.11 30594.93 9990.00 31457.17 36895.71 12097.37 7164.77 33797.68 26192.67 8594.37 31294.52 301
FMVSNet292.78 16192.73 16092.95 17995.40 24081.98 21794.18 12595.53 22688.63 18096.05 10497.37 7181.31 25698.81 14487.38 20898.67 14798.06 144
DVP-MVS++95.93 5396.34 3494.70 11496.54 16686.66 15298.45 498.22 3293.26 6897.54 3797.36 7493.12 8799.38 5493.88 3498.68 14598.04 147
test_one_060198.26 6687.14 13898.18 3694.25 4896.99 6097.36 7495.13 40
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2897.16 1298.17 4093.11 7096.48 7997.36 7496.92 699.34 6294.31 2399.38 5598.92 67
DVP-MVScopyleft95.82 5896.18 4294.72 11398.51 4686.69 15095.20 8797.00 15191.85 9897.40 4697.35 7795.58 2299.34 6293.44 5599.31 6398.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 6897.40 4697.35 7794.69 5599.34 6293.88 3499.42 4798.89 70
ACMMP_NAP96.21 4596.12 4796.49 4998.90 1891.42 6394.57 11298.03 6590.42 14396.37 8297.35 7795.68 1999.25 7794.44 2099.34 5898.80 80
DP-MVS95.62 6395.84 6194.97 10397.16 13588.62 10994.54 11797.64 10196.94 1596.58 7797.32 8093.07 9098.72 16190.45 13198.84 12497.57 192
MVS-HIRNet78.83 33580.60 32773.51 35293.07 29647.37 37587.10 31478.00 37068.94 35077.53 36697.26 8171.45 31094.62 33763.28 36488.74 35378.55 367
SED-MVS96.00 5296.41 3294.76 11198.51 4686.97 14395.21 8598.10 4991.95 9297.63 3297.25 8296.48 1199.35 5993.29 6399.29 6897.95 160
test_241102_TWO98.10 4991.95 9297.54 3797.25 8295.37 2899.35 5993.29 6399.25 7698.49 115
3Dnovator+92.74 295.86 5795.77 6596.13 5296.81 15390.79 7396.30 4697.82 8996.13 2594.74 16497.23 8491.33 13099.16 8693.25 6698.30 18598.46 118
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6192.13 5395.33 8198.25 2791.78 10597.07 5397.22 8596.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6192.13 5398.25 2791.78 10597.07 5397.22 8596.38 1399.28 7392.07 9799.59 2799.11 41
FIs94.90 8995.35 7693.55 16098.28 6481.76 22095.33 8198.14 4493.05 7197.07 5397.18 8787.65 19099.29 7191.72 10899.69 1599.61 11
PatchT87.51 27788.17 25885.55 32690.64 33366.91 35492.02 19786.09 33892.20 8789.05 29797.16 8864.15 33996.37 30989.21 17292.98 33293.37 327
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8298.26 6687.69 12993.75 13997.86 8395.96 3097.48 4197.14 8995.33 3299.44 2490.79 12699.76 1199.38 22
TSAR-MVS + MP.94.96 8794.75 9795.57 8098.86 2188.69 10696.37 3996.81 16885.23 23894.75 16397.12 9091.85 11799.40 4393.45 5398.33 18098.62 105
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VPNet93.08 14993.76 12991.03 24298.60 3475.83 31091.51 22095.62 21791.84 10195.74 11897.10 9189.31 17098.32 20785.07 24199.06 9798.93 63
IterMVS-LS93.78 12994.28 11792.27 20396.27 18779.21 26491.87 20896.78 17091.77 10796.57 7897.07 9287.15 19998.74 15991.99 9999.03 10698.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LFMVS91.33 19791.16 19991.82 21796.27 18779.36 25995.01 9685.61 34596.04 2994.82 16097.06 9372.03 30998.46 19984.96 24298.70 14397.65 188
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9193.82 3396.31 4498.25 2795.51 3596.99 6097.05 9495.63 2199.39 4893.31 6298.88 11998.75 85
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9594.85 5299.42 2993.49 4898.84 12498.00 152
RE-MVS-def96.66 2098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9595.40 2793.49 4898.84 12498.00 152
test_241102_ONE98.51 4686.97 14398.10 4991.85 9897.63 3297.03 9596.48 1198.95 122
DPE-MVScopyleft95.89 5495.88 5895.92 6297.93 9289.83 8593.46 14698.30 2392.37 8097.75 2996.95 9895.14 3999.51 1891.74 10799.28 7398.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2293.69 14197.62 10294.46 4596.29 8996.94 9993.56 7399.37 5694.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2295.88 6297.62 10294.46 4596.29 8996.94 9993.56 7399.37 5694.29 2499.42 4798.99 53
CR-MVSNet87.89 26787.12 27690.22 26891.01 33078.93 26692.52 16992.81 28073.08 33289.10 29596.93 10167.11 32197.64 26288.80 17992.70 33494.08 308
Patchmtry90.11 22789.92 22590.66 25590.35 33977.00 29492.96 15692.81 28090.25 14694.74 16496.93 10167.11 32197.52 26685.17 23498.98 10897.46 199
FMVSNet587.82 27086.56 28591.62 22492.31 30879.81 25193.49 14594.81 24583.26 25991.36 25596.93 10152.77 36797.49 26976.07 32198.03 21497.55 195
RPMNet90.31 22290.14 22290.81 25291.01 33078.93 26692.52 16998.12 4691.91 9589.10 29596.89 10468.84 31699.41 3690.17 14792.70 33494.08 308
PGM-MVS96.32 4195.94 5597.43 1998.59 3693.84 3295.33 8198.30 2391.40 11895.76 11696.87 10595.26 3599.45 2392.77 8099.21 8299.00 51
test117296.79 1596.52 2797.60 998.03 8494.87 1096.07 5498.06 5995.76 3296.89 6396.85 10694.85 5299.42 2993.35 6198.81 13298.53 112
OPM-MVS95.61 6495.45 7396.08 5398.49 5491.00 6892.65 16697.33 12990.05 14896.77 7096.85 10695.04 4598.56 18792.77 8099.06 9798.70 94
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM88.83 996.30 4396.07 5096.97 3598.39 5792.95 4594.74 10498.03 6590.82 13297.15 5196.85 10696.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3393.88 2996.95 1898.18 3692.26 8596.33 8596.84 10995.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
casdiffmvs94.32 11594.80 9592.85 18496.05 20581.44 22592.35 18298.05 6091.53 11695.75 11796.80 11093.35 8098.49 19391.01 12398.32 18298.64 101
QAPM92.88 15792.77 15693.22 17295.82 21983.31 20196.45 3497.35 12783.91 25693.75 19196.77 11189.25 17198.88 12984.56 24797.02 25297.49 198
LS3D96.11 4895.83 6296.95 3794.75 25894.20 1897.34 1197.98 7297.31 1195.32 13696.77 11193.08 8999.20 8391.79 10598.16 20197.44 201
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5693.04 4294.54 11798.05 6090.45 14296.31 8796.76 11392.91 9498.72 16191.19 11999.42 4798.32 125
MIMVSNet87.13 28886.54 28688.89 29296.05 20576.11 30594.39 11988.51 31981.37 27888.27 31296.75 11472.38 30695.52 32465.71 36195.47 28995.03 288
AllTest94.88 9194.51 11096.00 5598.02 8592.17 5195.26 8498.43 1390.48 14095.04 15296.74 11592.54 10497.86 24585.11 23998.98 10897.98 156
TestCases96.00 5598.02 8592.17 5198.43 1390.48 14095.04 15296.74 11592.54 10497.86 24585.11 23998.98 10897.98 156
SR-MVS96.70 1996.42 2997.54 1198.05 8094.69 1196.13 5198.07 5695.17 3796.82 6796.73 11795.09 4499.43 2892.99 7798.71 14198.50 114
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2494.06 2096.10 5297.78 9592.73 7293.48 19996.72 11894.23 6699.42 2991.99 9999.29 6899.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_Test92.57 17093.29 14590.40 26393.53 28975.85 30892.52 16996.96 15488.73 17792.35 23896.70 11990.77 14498.37 20592.53 8895.49 28896.99 221
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8897.46 12288.05 12292.04 19598.42 1587.63 20396.36 8396.68 12094.37 6499.32 6892.41 9199.05 10098.64 101
SF-MVS95.88 5695.88 5895.87 6698.12 7489.65 8895.58 7398.56 1191.84 10196.36 8396.68 12094.37 6499.32 6892.41 9199.05 10098.64 101
mPP-MVS96.46 3296.05 5197.69 598.62 3194.65 1396.45 3497.74 9692.59 7695.47 12896.68 12094.50 6199.42 2993.10 7299.26 7598.99 53
Anonymous20240521192.58 16892.50 16692.83 18596.55 16583.22 20392.43 17691.64 30494.10 5195.59 12496.64 12381.88 25397.50 26785.12 23898.52 15997.77 179
IterMVS-SCA-FT91.65 18891.55 18591.94 21593.89 28479.22 26387.56 30593.51 27091.53 11695.37 13396.62 12478.65 27298.90 12691.89 10494.95 30097.70 184
ACMMPR96.46 3296.14 4597.41 2198.60 3493.82 3396.30 4697.96 7692.35 8295.57 12596.61 12594.93 5199.41 3693.78 3899.15 9099.00 51
PM-MVS93.33 13892.67 16195.33 8896.58 16294.06 2092.26 18792.18 29485.92 22996.22 9596.61 12585.64 22395.99 31990.35 13698.23 19495.93 261
region2R96.41 3796.09 4897.38 2398.62 3193.81 3596.32 4397.96 7692.26 8595.28 13996.57 12795.02 4799.41 3693.63 4299.11 9598.94 62
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3091.96 5695.70 6798.01 6993.34 6796.64 7496.57 12794.99 4999.36 5893.48 5199.34 5898.82 78
Skip Steuart: Steuart Systems R&D Blog.
XVS96.49 2996.18 4297.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17396.49 12994.56 5999.39 4893.57 4499.05 10098.93 63
HFP-MVS96.39 3996.17 4497.04 3198.51 4693.37 3996.30 4697.98 7292.35 8295.63 12296.47 13095.37 2899.27 7593.78 3899.14 9198.48 116
#test#95.89 5495.51 7197.04 3198.51 4693.37 3995.14 9097.98 7289.34 16395.63 12296.47 13095.37 2899.27 7591.99 9999.14 9198.48 116
XVG-OURS94.72 9994.12 12296.50 4898.00 8794.23 1791.48 22198.17 4090.72 13495.30 13796.47 13087.94 18796.98 28891.41 11797.61 23698.30 128
ACMP88.15 1395.71 6195.43 7596.54 4698.17 7291.73 6194.24 12398.08 5389.46 15996.61 7696.47 13095.85 1799.12 9390.45 13199.56 3398.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19094.53 27084.10 19395.70 6797.03 14982.44 27291.14 26196.42 13488.47 17798.38 20285.95 22997.47 24095.55 279
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3897.51 998.44 1292.35 8295.95 10796.41 13596.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v124093.29 14093.71 13192.06 21396.01 21077.89 28291.81 21497.37 12085.12 24396.69 7296.40 13686.67 21099.07 10394.51 1898.76 13899.22 32
SD-MVS95.19 8195.73 6693.55 16096.62 16088.88 10594.67 10698.05 6091.26 12197.25 5096.40 13695.42 2694.36 34392.72 8499.19 8497.40 205
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 20490.85 20490.63 25695.63 23379.24 26289.81 26992.87 27989.90 15194.39 17296.40 13685.77 21995.27 33473.86 33299.05 10097.39 206
IterMVS90.18 22490.16 21890.21 26993.15 29575.98 30787.56 30592.97 27886.43 22094.09 17896.40 13678.32 27697.43 27287.87 19994.69 30797.23 213
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVS96.44 3596.08 4997.54 1198.29 6394.62 1496.80 2198.08 5392.67 7595.08 15096.39 14094.77 5499.42 2993.17 6999.44 4598.58 110
v119293.49 13493.78 12892.62 19496.16 19679.62 25491.83 21397.22 13986.07 22696.10 10396.38 14187.22 19799.02 11094.14 2998.88 11999.22 32
V4293.43 13693.58 13692.97 17795.34 24481.22 22892.67 16596.49 18787.25 20996.20 9796.37 14287.32 19698.85 13692.39 9398.21 19798.85 76
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2692.79 4796.08 5398.16 4391.74 10995.34 13596.36 14395.68 1999.44 2494.41 2199.28 7398.97 59
IS-MVSNet94.49 10894.35 11494.92 10498.25 6886.46 15797.13 1594.31 25696.24 2496.28 9296.36 14382.88 23899.35 5988.19 19099.52 3798.96 60
v114493.50 13393.81 12692.57 19696.28 18679.61 25591.86 21296.96 15486.95 21595.91 11196.32 14587.65 19098.96 12093.51 4798.88 11999.13 39
baseline94.26 11894.80 9592.64 19196.08 20380.99 23193.69 14198.04 6490.80 13394.89 15896.32 14593.19 8498.48 19791.68 11098.51 16198.43 120
TinyColmap92.00 18392.76 15789.71 27995.62 23477.02 29390.72 23896.17 20387.70 20195.26 14096.29 14792.54 10496.45 30581.77 27198.77 13795.66 275
GST-MVS96.24 4495.99 5497.00 3498.65 2992.71 4895.69 6998.01 6992.08 9095.74 11896.28 14895.22 3799.42 2993.17 6999.06 9798.88 72
USDC89.02 24789.08 23788.84 29395.07 24974.50 31988.97 28796.39 19173.21 33193.27 20796.28 14882.16 24896.39 30777.55 31098.80 13495.62 278
v2v48293.29 14093.63 13492.29 20296.35 18078.82 26991.77 21696.28 19488.45 18495.70 12196.26 15086.02 21898.90 12693.02 7598.81 13299.14 38
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4798.10 7694.07 1992.46 17498.13 4590.69 13593.75 19196.25 15198.03 297.02 28792.08 9695.55 28698.45 119
pmmvs-eth3d91.54 19190.73 20893.99 14295.76 22487.86 12790.83 23593.98 26578.23 30694.02 18496.22 15282.62 24496.83 29486.57 22098.33 18097.29 212
h-mvs3392.89 15691.99 17595.58 7996.97 14290.55 7593.94 13594.01 26489.23 16693.95 18596.19 15376.88 29099.14 8991.02 12195.71 28397.04 219
v192192093.26 14393.61 13592.19 20696.04 20978.31 27591.88 20797.24 13785.17 24096.19 9996.19 15386.76 20999.05 10494.18 2898.84 12499.22 32
EPP-MVSNet93.91 12793.68 13394.59 12298.08 7785.55 17697.44 1094.03 26194.22 4994.94 15596.19 15382.07 24999.57 1387.28 20998.89 11798.65 97
APD-MVScopyleft95.00 8594.69 10095.93 6097.38 12590.88 7194.59 10997.81 9089.22 16895.46 13096.17 15693.42 7899.34 6289.30 16598.87 12297.56 194
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
v14419293.20 14893.54 13992.16 21096.05 20578.26 27691.95 20097.14 14284.98 24795.96 10696.11 15787.08 20199.04 10793.79 3798.84 12499.17 35
VNet92.67 16592.96 15191.79 21896.27 18780.15 23891.95 20094.98 23792.19 8894.52 17096.07 15887.43 19497.39 27684.83 24398.38 17397.83 173
v14892.87 15893.29 14591.62 22496.25 19077.72 28591.28 22695.05 23589.69 15495.93 11096.04 15987.34 19598.38 20290.05 15297.99 21798.78 82
9.1494.81 9497.49 11994.11 12898.37 1787.56 20695.38 13296.03 16094.66 5699.08 9990.70 12898.97 112
FMVSNet390.78 20590.32 21792.16 21093.03 29979.92 24792.54 16894.95 23886.17 22595.10 14796.01 16169.97 31598.75 15686.74 21598.38 17397.82 175
MG-MVS89.54 24089.80 22788.76 29494.88 25172.47 33589.60 27292.44 29185.82 23089.48 29195.98 16282.85 23997.74 25881.87 27095.27 29596.08 255
UniMVSNet (Re)95.32 7595.15 8595.80 6997.79 9888.91 10292.91 15898.07 5693.46 6596.31 8795.97 16390.14 15899.34 6292.11 9499.64 2399.16 36
DU-MVS95.28 7895.12 8795.75 7397.75 10088.59 11092.58 16797.81 9093.99 5296.80 6895.90 16490.10 16299.41 3691.60 11299.58 3199.26 29
NR-MVSNet95.28 7895.28 8195.26 9397.75 10087.21 13795.08 9297.37 12093.92 5797.65 3195.90 16490.10 16299.33 6790.11 14999.66 2199.26 29
ETH3D-3000-0.194.86 9294.55 10795.81 6797.61 11289.72 8694.05 13098.37 1788.09 19195.06 15195.85 16692.58 10299.10 9790.33 13998.99 10798.62 105
EI-MVSNet92.99 15393.26 14992.19 20692.12 31479.21 26492.32 18494.67 25191.77 10795.24 14395.85 16687.14 20098.49 19391.99 9998.26 18898.86 73
CVMVSNet85.16 30084.72 29886.48 31992.12 31470.19 34492.32 18488.17 32456.15 36990.64 26895.85 16667.97 31996.69 29888.78 18090.52 34992.56 338
EI-MVSNet-UG-set94.35 11394.27 11994.59 12292.46 30785.87 17192.42 17794.69 24993.67 6496.13 10195.84 16991.20 13798.86 13493.78 3898.23 19499.03 49
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11792.55 30685.98 16992.44 17594.69 24993.70 6096.12 10295.81 17091.24 13498.86 13493.76 4198.22 19698.98 58
ZD-MVS97.23 13090.32 7897.54 11084.40 25394.78 16295.79 17192.76 9999.39 4888.72 18398.40 168
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22694.68 26580.16 23785.49 33392.14 29790.41 14494.93 15695.79 17185.10 22496.93 29185.15 23694.19 31797.57 192
MVSTER89.32 24388.75 24591.03 24290.10 34176.62 30090.85 23494.67 25182.27 27395.24 14395.79 17161.09 35398.49 19390.49 13098.26 18897.97 159
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7297.69 10788.59 11092.26 18797.84 8794.91 3896.80 6895.78 17490.42 15399.41 3691.60 11299.58 3199.29 28
PC_three_145275.31 32195.87 11395.75 17592.93 9396.34 31287.18 21098.68 14598.04 147
new-patchmatchnet88.97 25090.79 20683.50 34094.28 27555.83 37485.34 33493.56 26986.18 22495.47 12895.73 17683.10 23696.51 30385.40 23398.06 21198.16 137
UnsupCasMVSNet_eth90.33 22090.34 21690.28 26594.64 26780.24 23689.69 27195.88 21085.77 23193.94 18795.69 17781.99 25092.98 35484.21 25091.30 34597.62 190
RRT_MVS91.36 19690.05 22395.29 9289.21 35188.15 11992.51 17394.89 24086.73 21795.54 12695.68 17861.82 35099.30 7094.91 1399.13 9498.43 120
OPU-MVS95.15 9896.84 15089.43 9395.21 8595.66 17993.12 8798.06 22786.28 22798.61 15097.95 160
testtj94.81 9694.42 11196.01 5497.23 13090.51 7794.77 10397.85 8691.29 12094.92 15795.66 17991.71 12199.40 4388.07 19598.25 19198.11 143
MVP-Stereo90.07 23088.92 24193.54 16296.31 18486.49 15590.93 23395.59 22279.80 28691.48 25395.59 18180.79 26097.39 27678.57 30491.19 34696.76 231
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP_MVS94.26 11893.93 12495.23 9597.71 10488.12 12094.56 11397.81 9091.74 10993.31 20395.59 18186.93 20498.95 12289.26 16998.51 16198.60 108
plane_prior495.59 181
Anonymous2023120688.77 25588.29 25390.20 27096.31 18478.81 27089.56 27493.49 27174.26 32592.38 23695.58 18482.21 24695.43 32972.07 34198.75 14096.34 245
旧先验196.20 19284.17 19294.82 24395.57 18589.57 16897.89 22296.32 246
Regformer-394.28 11694.23 12194.46 13092.78 30486.28 16492.39 17994.70 24893.69 6395.97 10595.56 18691.34 12998.48 19793.45 5398.14 20398.62 105
Regformer-494.90 8994.67 10395.59 7892.78 30489.02 10092.39 17995.91 20994.50 4396.41 8095.56 18692.10 11199.01 11294.23 2698.14 20398.74 88
ETH3D cwj APD-0.1693.99 12693.38 14495.80 6996.82 15189.92 8292.72 16298.02 6784.73 25193.65 19595.54 18891.68 12299.22 8188.78 18098.49 16498.26 131
GeoE94.55 10594.68 10294.15 13897.23 13085.11 18094.14 12797.34 12888.71 17995.26 14095.50 18994.65 5799.12 9390.94 12498.40 16898.23 132
MVS_030490.96 20290.15 22193.37 16693.17 29487.06 14093.62 14392.43 29289.60 15782.25 35295.50 18982.56 24597.83 24884.41 24997.83 22595.22 283
CPTT-MVS94.74 9894.12 12296.60 4498.15 7393.01 4395.84 6397.66 10089.21 16993.28 20695.46 19188.89 17398.98 11589.80 15698.82 13097.80 177
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12196.14 19887.90 12593.36 14997.14 14285.53 23593.90 18895.45 19291.30 13298.59 18389.51 16298.62 14997.31 211
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS94.58 10494.29 11695.46 8496.94 14489.35 9791.81 21496.80 16989.66 15593.90 18895.44 19392.80 9898.72 16192.74 8298.52 15998.32 125
testdata91.03 24296.87 14982.01 21694.28 25771.55 33892.46 23295.42 19485.65 22297.38 27882.64 26297.27 24593.70 321
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5195.96 21292.96 4489.48 27597.46 11685.14 24196.23 9495.42 19493.19 8498.08 22690.37 13598.76 13897.38 208
OMC-MVS94.22 12093.69 13295.81 6797.25 12991.27 6492.27 18697.40 11987.10 21394.56 16895.42 19493.74 7198.11 22586.62 21998.85 12398.06 144
WR-MVS93.49 13493.72 13092.80 18697.57 11580.03 24490.14 25795.68 21693.70 6096.62 7595.39 19787.21 19899.04 10787.50 20499.64 2399.33 25
ITE_SJBPF95.95 5797.34 12793.36 4196.55 18591.93 9494.82 16095.39 19791.99 11497.08 28585.53 23297.96 21897.41 202
RRT_test8_iter0588.21 26388.17 25888.33 30391.62 32366.82 35891.73 21796.60 18086.34 22194.14 17695.38 19947.72 37199.11 9591.78 10698.26 18899.06 47
MSLP-MVS++93.25 14593.88 12591.37 23096.34 18182.81 21193.11 15297.74 9689.37 16294.08 17995.29 20090.40 15696.35 31090.35 13698.25 19194.96 290
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9393.58 3794.09 12996.99 15391.05 12692.40 23595.22 20191.03 14299.25 7792.11 9498.69 14497.90 166
MSP-MVS95.34 7494.63 10597.48 1498.67 2894.05 2296.41 3898.18 3691.26 12195.12 14695.15 20286.60 21299.50 1993.43 5796.81 26098.89 70
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MDA-MVSNet_test_wron88.16 26588.23 25687.93 30892.22 31073.71 32480.71 35888.84 31682.52 27094.88 15995.14 20382.70 24293.61 34983.28 25693.80 32096.46 241
Vis-MVSNet (Re-imp)90.42 21490.16 21891.20 23897.66 11077.32 29094.33 12187.66 32791.20 12392.99 21895.13 20475.40 29798.28 20977.86 30699.19 8497.99 155
YYNet188.17 26488.24 25587.93 30892.21 31173.62 32580.75 35788.77 31782.51 27194.99 15495.11 20582.70 24293.70 34883.33 25593.83 31996.48 240
D2MVS89.93 23489.60 23290.92 24794.03 28178.40 27488.69 29494.85 24178.96 30093.08 21495.09 20674.57 29896.94 28988.19 19098.96 11497.41 202
CDPH-MVS92.67 16591.83 17995.18 9796.94 14488.46 11590.70 23997.07 14877.38 30992.34 24095.08 20792.67 10198.88 12985.74 23098.57 15398.20 136
PVSNet_BlendedMVS90.35 21989.96 22491.54 22794.81 25578.80 27190.14 25796.93 15679.43 29288.68 30795.06 20886.27 21598.15 22380.27 28498.04 21397.68 186
Regformer-194.55 10594.33 11595.19 9692.83 30288.54 11391.87 20895.84 21393.99 5295.95 10795.04 20992.00 11398.79 14793.14 7198.31 18398.23 132
Regformer-294.86 9294.55 10795.77 7192.83 30289.98 8191.87 20896.40 19094.38 4796.19 9995.04 20992.47 10799.04 10793.49 4898.31 18398.28 129
tpm84.38 30584.08 30485.30 33090.47 33763.43 36989.34 27985.63 34477.24 31287.62 31995.03 21161.00 35497.30 27979.26 29991.09 34895.16 284
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18097.73 10383.95 19692.14 19197.46 11678.85 30292.35 23894.98 21284.16 23099.08 9986.36 22596.77 26295.79 269
miper_lstm_enhance89.90 23589.80 22790.19 27191.37 32777.50 28783.82 34995.00 23684.84 24993.05 21694.96 21376.53 29495.20 33589.96 15498.67 14797.86 170
新几何193.17 17397.16 13587.29 13494.43 25367.95 35391.29 25694.94 21486.97 20398.23 21581.06 28197.75 22693.98 314
112190.26 22389.23 23393.34 16797.15 13787.40 13291.94 20294.39 25467.88 35491.02 26294.91 21586.91 20698.59 18381.17 27997.71 23094.02 313
cl____90.65 20990.56 21290.91 24991.85 31876.98 29686.75 32295.36 23285.53 23594.06 18194.89 21677.36 28597.98 23690.27 14298.98 10897.76 180
DIV-MVS_self_test90.65 20990.56 21290.91 24991.85 31876.99 29586.75 32295.36 23285.52 23794.06 18194.89 21677.37 28497.99 23590.28 14198.97 11297.76 180
test22296.95 14385.27 17988.83 29093.61 26765.09 36190.74 26694.85 21884.62 22897.36 24393.91 315
test_prior393.29 14092.85 15494.61 11795.95 21387.23 13590.21 25397.36 12589.33 16490.77 26494.81 21990.41 15498.68 17188.21 18898.55 15497.93 162
test_prior290.21 25389.33 16490.77 26494.81 21990.41 15488.21 18898.55 154
CHOSEN 1792x268887.19 28685.92 29491.00 24597.13 13879.41 25884.51 34295.60 21864.14 36290.07 27994.81 21978.26 27797.14 28473.34 33495.38 29396.46 241
114514_t90.51 21189.80 22792.63 19398.00 8782.24 21593.40 14897.29 13365.84 35989.40 29294.80 22286.99 20298.75 15683.88 25298.61 15096.89 225
tttt051789.81 23788.90 24392.55 19797.00 14179.73 25395.03 9583.65 35789.88 15295.30 13794.79 22353.64 36599.39 4891.99 9998.79 13598.54 111
EPNet89.80 23888.25 25494.45 13183.91 37286.18 16693.87 13687.07 33291.16 12580.64 36194.72 22478.83 27098.89 12885.17 23498.89 11798.28 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS281.31 32383.44 30774.92 35190.52 33646.49 37669.19 36585.23 35184.30 25487.95 31694.71 22576.95 28984.36 36964.07 36298.09 20993.89 316
testgi90.38 21791.34 19387.50 31397.49 11971.54 33889.43 27695.16 23488.38 18694.54 16994.68 22692.88 9693.09 35371.60 34597.85 22497.88 168
NCCC94.08 12493.54 13995.70 7696.49 17189.90 8492.39 17996.91 16090.64 13792.33 24194.60 22790.58 15298.96 12090.21 14697.70 23198.23 132
MVS_111021_HR93.63 13293.42 14394.26 13696.65 15786.96 14589.30 28196.23 19888.36 18793.57 19794.60 22793.45 7597.77 25490.23 14498.38 17398.03 150
TAMVS90.16 22589.05 23893.49 16596.49 17186.37 16090.34 25092.55 28980.84 28292.99 21894.57 22981.94 25298.20 21773.51 33398.21 19795.90 264
DROMVSNet95.44 6995.62 6994.89 10596.93 14687.69 12996.48 3399.14 393.93 5592.77 22494.52 23093.95 7099.49 2293.62 4399.22 8197.51 197
原ACMM192.87 18396.91 14784.22 19097.01 15076.84 31489.64 29094.46 23188.00 18598.70 16781.53 27498.01 21695.70 273
agg_prior192.60 16791.76 18295.10 10096.20 19288.89 10390.37 24896.88 16279.67 29090.21 27494.41 23291.30 13298.78 15188.46 18798.37 17897.64 189
MVS_111021_LR93.66 13193.28 14794.80 10996.25 19090.95 6990.21 25395.43 22887.91 19393.74 19394.40 23392.88 9696.38 30890.39 13398.28 18697.07 216
TEST996.45 17389.46 9190.60 24196.92 15879.09 29890.49 26994.39 23491.31 13198.88 129
train_agg92.71 16491.83 17995.35 8696.45 17389.46 9190.60 24196.92 15879.37 29390.49 26994.39 23491.20 13798.88 12988.66 18498.43 16697.72 183
test_896.37 17589.14 9890.51 24496.89 16179.37 29390.42 27194.36 23691.20 13798.82 139
FPMVS84.50 30483.28 30888.16 30596.32 18394.49 1585.76 33185.47 34683.09 26385.20 33394.26 23763.79 34286.58 36763.72 36391.88 34483.40 362
MCST-MVS92.91 15592.51 16594.10 14097.52 11785.72 17491.36 22597.13 14480.33 28492.91 22194.24 23891.23 13598.72 16189.99 15397.93 22097.86 170
BH-RMVSNet90.47 21390.44 21490.56 25995.21 24778.65 27389.15 28593.94 26688.21 18892.74 22594.22 23986.38 21397.88 24178.67 30395.39 29295.14 286
pmmvs488.95 25187.70 26692.70 18994.30 27485.60 17587.22 31192.16 29674.62 32389.75 28994.19 24077.97 27996.41 30682.71 26196.36 27196.09 254
Patchmatch-RL test88.81 25488.52 24789.69 28095.33 24579.94 24686.22 33092.71 28478.46 30495.80 11594.18 24166.25 32995.33 33289.22 17198.53 15893.78 318
PHI-MVS94.34 11493.80 12795.95 5795.65 23191.67 6294.82 10197.86 8387.86 19693.04 21794.16 24291.58 12498.78 15190.27 14298.96 11497.41 202
TAPA-MVS88.58 1092.49 17191.75 18394.73 11296.50 17089.69 8792.91 15897.68 9978.02 30792.79 22394.10 24390.85 14397.96 23784.76 24598.16 20196.54 234
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DP-MVS Recon92.31 17591.88 17893.60 15897.18 13486.87 14691.10 23097.37 12084.92 24892.08 24694.08 24488.59 17598.20 21783.50 25498.14 20395.73 271
CANet92.38 17391.99 17593.52 16493.82 28783.46 20091.14 22897.00 15189.81 15386.47 32794.04 24587.90 18899.21 8289.50 16398.27 18797.90 166
F-COLMAP92.28 17691.06 20095.95 5797.52 11791.90 5793.53 14497.18 14083.98 25588.70 30694.04 24588.41 17898.55 18980.17 28795.99 27797.39 206
UnsupCasMVSNet_bld88.50 25988.03 26189.90 27695.52 23778.88 26887.39 30994.02 26379.32 29693.06 21594.02 24780.72 26194.27 34475.16 32693.08 33096.54 234
MDTV_nov1_ep1383.88 30689.42 34961.52 37088.74 29387.41 32973.99 32784.96 33694.01 24865.25 33495.53 32378.02 30593.16 327
OpenMVS_ROBcopyleft85.12 1689.52 24189.05 23890.92 24794.58 26881.21 22991.10 23093.41 27277.03 31393.41 20093.99 24983.23 23597.80 25079.93 29194.80 30493.74 320
diffmvs91.74 18691.93 17791.15 24093.06 29778.17 27788.77 29297.51 11586.28 22292.42 23493.96 25088.04 18497.46 27090.69 12996.67 26597.82 175
CL-MVSNet_self_test90.04 23289.90 22690.47 26095.24 24677.81 28386.60 32892.62 28785.64 23493.25 21093.92 25183.84 23196.06 31779.93 29198.03 21497.53 196
eth_miper_zixun_eth90.72 20690.61 21091.05 24192.04 31676.84 29886.91 31796.67 17785.21 23994.41 17193.92 25179.53 26798.26 21389.76 15897.02 25298.06 144
c3_l91.32 19891.42 19091.00 24592.29 30976.79 29987.52 30896.42 18985.76 23294.72 16693.89 25382.73 24198.16 22290.93 12598.55 15498.04 147
pmmvs587.87 26887.14 27590.07 27293.26 29376.97 29788.89 28992.18 29473.71 32988.36 31093.89 25376.86 29296.73 29780.32 28396.81 26096.51 236
PCF-MVS84.52 1789.12 24687.71 26593.34 16796.06 20485.84 17286.58 32997.31 13068.46 35293.61 19693.89 25387.51 19398.52 19167.85 35698.11 20795.66 275
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + GP.93.07 15192.41 16895.06 10195.82 21990.87 7290.97 23292.61 28888.04 19294.61 16793.79 25688.08 18297.81 24989.41 16498.39 17196.50 239
ETH3 D test640091.91 18491.25 19593.89 15096.59 16184.41 18692.10 19297.72 9878.52 30391.82 25093.78 25788.70 17499.13 9183.61 25398.39 17198.14 139
HY-MVS82.50 1886.81 29285.93 29389.47 28193.63 28877.93 28094.02 13191.58 30575.68 31683.64 34493.64 25877.40 28297.42 27371.70 34492.07 34193.05 332
LF4IMVS92.72 16392.02 17494.84 10895.65 23191.99 5592.92 15796.60 18085.08 24592.44 23393.62 25986.80 20896.35 31086.81 21498.25 19196.18 252
Test_1112_low_res87.50 27886.58 28490.25 26796.80 15477.75 28487.53 30796.25 19669.73 34886.47 32793.61 26075.67 29697.88 24179.95 28993.20 32695.11 287
MS-PatchMatch88.05 26687.75 26488.95 29093.28 29177.93 28087.88 30192.49 29075.42 31992.57 23093.59 26180.44 26294.24 34681.28 27692.75 33394.69 298
CNLPA91.72 18791.20 19693.26 17196.17 19591.02 6791.14 22895.55 22590.16 14790.87 26393.56 26286.31 21494.40 34279.92 29397.12 24994.37 304
ppachtmachnet_test88.61 25888.64 24688.50 29991.76 32070.99 34284.59 34192.98 27779.30 29792.38 23693.53 26379.57 26697.45 27186.50 22397.17 24897.07 216
CSCG94.69 10094.75 9794.52 12597.55 11687.87 12695.01 9697.57 10892.68 7396.20 9793.44 26491.92 11698.78 15189.11 17399.24 7896.92 223
NP-MVS96.82 15187.10 13993.40 265
HQP-MVS92.09 18191.49 18993.88 15196.36 17784.89 18291.37 22297.31 13087.16 21088.81 30093.40 26584.76 22698.60 18186.55 22197.73 22798.14 139
test_yl90.11 22789.73 23091.26 23494.09 27979.82 24990.44 24592.65 28590.90 12893.19 21293.30 26773.90 30098.03 22982.23 26796.87 25895.93 261
DCV-MVSNet90.11 22789.73 23091.26 23494.09 27979.82 24990.44 24592.65 28590.90 12893.19 21293.30 26773.90 30098.03 22982.23 26796.87 25895.93 261
CMPMVSbinary68.83 2287.28 28285.67 29592.09 21288.77 35585.42 17790.31 25194.38 25570.02 34788.00 31593.30 26773.78 30294.03 34775.96 32396.54 26796.83 227
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CostFormer83.09 31182.21 31485.73 32589.27 35067.01 35390.35 24986.47 33570.42 34583.52 34693.23 27061.18 35296.85 29377.21 31488.26 35593.34 328
DELS-MVS92.05 18292.16 17091.72 22194.44 27180.13 24087.62 30297.25 13687.34 20892.22 24393.18 27189.54 16998.73 16089.67 16098.20 19996.30 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 27587.31 27088.54 29894.71 26474.27 32293.10 15388.20 32386.20 22392.18 24493.04 27273.21 30395.52 32479.32 29885.82 35895.83 266
BH-untuned90.68 20890.90 20190.05 27495.98 21179.57 25690.04 26094.94 23987.91 19394.07 18093.00 27387.76 18997.78 25379.19 30095.17 29792.80 335
hse-mvs292.24 17891.20 19695.38 8596.16 19690.65 7492.52 16992.01 30189.23 16693.95 18592.99 27476.88 29098.69 16991.02 12196.03 27596.81 228
HyFIR lowres test87.19 28685.51 29692.24 20497.12 13980.51 23585.03 33696.06 20566.11 35891.66 25292.98 27570.12 31499.14 8975.29 32595.23 29697.07 216
AUN-MVS90.05 23188.30 25295.32 9196.09 20290.52 7692.42 17792.05 30082.08 27588.45 30992.86 27665.76 33198.69 16988.91 17796.07 27496.75 232
SCA87.43 27987.21 27388.10 30692.01 31771.98 33789.43 27688.11 32582.26 27488.71 30592.83 27778.65 27297.59 26379.61 29593.30 32594.75 295
Patchmatch-test86.10 29586.01 29286.38 32390.63 33474.22 32389.57 27386.69 33385.73 23389.81 28692.83 27765.24 33591.04 36077.82 30995.78 28293.88 317
MVSFormer92.18 17992.23 16992.04 21494.74 26080.06 24297.15 1397.37 12088.98 17288.83 29892.79 27977.02 28799.60 896.41 496.75 26396.46 241
jason89.17 24588.32 25191.70 22295.73 22680.07 24188.10 29993.22 27471.98 33790.09 27692.79 27978.53 27598.56 18787.43 20697.06 25096.46 241
jason: jason.
PatchmatchNetpermissive85.22 29984.64 29986.98 31789.51 34869.83 34990.52 24387.34 33078.87 30187.22 32492.74 28166.91 32396.53 30181.77 27186.88 35794.58 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AdaColmapbinary91.63 18991.36 19292.47 20195.56 23686.36 16192.24 18996.27 19588.88 17689.90 28392.69 28291.65 12398.32 20777.38 31397.64 23492.72 337
thisisatest053088.69 25787.52 26892.20 20596.33 18279.36 25992.81 16084.01 35686.44 21993.67 19492.68 28353.62 36699.25 7789.65 16198.45 16598.00 152
miper_ehance_all_eth90.48 21290.42 21590.69 25491.62 32376.57 30186.83 32096.18 20283.38 25894.06 18192.66 28482.20 24798.04 22889.79 15797.02 25297.45 200
cl2289.02 24788.50 24890.59 25889.76 34376.45 30286.62 32794.03 26182.98 26692.65 22792.49 28572.05 30897.53 26588.93 17597.02 25297.78 178
bset_n11_16_dypcd89.99 23389.15 23692.53 19894.75 25881.34 22684.19 34587.56 32885.13 24293.77 19092.46 28672.82 30499.01 11292.46 9099.21 8297.23 213
ADS-MVSNet284.01 30782.20 31589.41 28389.04 35276.37 30487.57 30390.98 30872.71 33584.46 33892.45 28768.08 31796.48 30470.58 35183.97 36095.38 281
ADS-MVSNet82.25 31681.55 31784.34 33689.04 35265.30 36187.57 30385.13 35272.71 33584.46 33892.45 28768.08 31792.33 35670.58 35183.97 36095.38 281
tpm281.46 32280.35 32984.80 33289.90 34265.14 36390.44 24585.36 34765.82 36082.05 35592.44 28957.94 35796.69 29870.71 35088.49 35492.56 338
N_pmnet88.90 25287.25 27293.83 15394.40 27393.81 3584.73 33887.09 33179.36 29593.26 20892.43 29079.29 26891.68 35877.50 31297.22 24796.00 258
alignmvs93.26 14392.85 15494.50 12695.70 22787.45 13193.45 14795.76 21491.58 11495.25 14292.42 29181.96 25198.72 16191.61 11197.87 22397.33 210
CDS-MVSNet89.55 23988.22 25793.53 16395.37 24386.49 15589.26 28293.59 26879.76 28891.15 26092.31 29277.12 28698.38 20277.51 31197.92 22195.71 272
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft85.34 1590.40 21588.92 24194.85 10796.53 16990.02 8091.58 21996.48 18880.16 28586.14 32992.18 29385.73 22098.25 21476.87 31694.61 30996.30 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
our_test_387.55 27687.59 26787.44 31491.76 32070.48 34383.83 34890.55 31279.79 28792.06 24792.17 29478.63 27495.63 32284.77 24494.73 30596.22 250
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 26096.67 394.00 13295.41 22989.94 14991.93 24992.13 29590.12 15998.97 11987.68 20297.48 23997.67 187
PAPM_NR91.03 20190.81 20591.68 22396.73 15581.10 23093.72 14096.35 19388.19 18988.77 30492.12 29685.09 22597.25 28082.40 26693.90 31896.68 233
canonicalmvs94.59 10394.69 10094.30 13595.60 23587.03 14295.59 7198.24 3091.56 11595.21 14592.04 29794.95 5098.66 17491.45 11697.57 23797.20 215
CS-MVS-test93.33 13893.53 14192.71 18895.74 22583.08 20794.55 11598.85 591.02 12789.30 29491.91 29891.79 11899.23 8090.23 14498.41 16795.82 267
MSDG90.82 20390.67 20991.26 23494.16 27683.08 20786.63 32696.19 20190.60 13991.94 24891.89 29989.16 17295.75 32180.96 28294.51 31094.95 291
CS-MVS92.12 18092.62 16290.60 25794.57 26978.12 27892.00 19898.58 1087.75 19990.08 27791.88 30089.79 16699.10 9790.35 13698.60 15294.58 299
sss87.23 28386.82 28088.46 30193.96 28277.94 27986.84 31992.78 28377.59 30887.61 32091.83 30178.75 27191.92 35777.84 30794.20 31695.52 280
CANet_DTU89.85 23689.17 23591.87 21692.20 31280.02 24590.79 23695.87 21186.02 22782.53 35191.77 30280.01 26498.57 18685.66 23197.70 23197.01 220
patchmatchnet-post91.71 30366.22 33097.59 263
PatchMatch-RL89.18 24488.02 26292.64 19195.90 21792.87 4688.67 29691.06 30780.34 28390.03 28091.67 30483.34 23394.42 34176.35 32094.84 30390.64 351
tpmrst82.85 31482.93 31282.64 34287.65 35758.99 37290.14 25787.90 32675.54 31883.93 34291.63 30566.79 32695.36 33081.21 27881.54 36693.57 326
WTY-MVS86.93 29186.50 28988.24 30494.96 25074.64 31587.19 31292.07 29978.29 30588.32 31191.59 30678.06 27894.27 34474.88 32793.15 32895.80 268
DPM-MVS89.35 24288.40 25092.18 20996.13 20184.20 19186.96 31696.15 20475.40 32087.36 32291.55 30783.30 23498.01 23282.17 26996.62 26694.32 306
EPMVS81.17 32680.37 32883.58 33985.58 36865.08 36490.31 25171.34 37277.31 31185.80 33191.30 30859.38 35592.70 35579.99 28882.34 36592.96 333
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12494.66 26688.25 11792.05 19496.65 17889.62 15690.08 27791.23 30992.56 10398.60 18186.30 22696.27 27296.90 224
cdsmvs_eth3d_5k23.35 34031.13 3430.00 3580.00 3810.00 3820.00 36995.58 2240.00 3760.00 37791.15 31093.43 770.00 3770.00 3750.00 3750.00 373
lupinMVS88.34 26287.31 27091.45 22894.74 26080.06 24287.23 31092.27 29371.10 34188.83 29891.15 31077.02 28798.53 19086.67 21896.75 26395.76 270
API-MVS91.52 19291.61 18491.26 23494.16 27686.26 16594.66 10794.82 24391.17 12492.13 24591.08 31290.03 16597.06 28679.09 30197.35 24490.45 352
thres600view787.66 27387.10 27789.36 28596.05 20573.17 32792.72 16285.31 34891.89 9693.29 20590.97 31363.42 34398.39 20073.23 33596.99 25796.51 236
thres100view90087.35 28186.89 27988.72 29596.14 19873.09 32993.00 15585.31 34892.13 8993.26 20890.96 31463.42 34398.28 20971.27 34796.54 26794.79 293
tpmvs84.22 30683.97 30584.94 33187.09 36365.18 36291.21 22788.35 32082.87 26785.21 33290.96 31465.24 33596.75 29679.60 29785.25 35992.90 334
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23195.69 22881.56 22289.92 26496.05 20683.22 26091.26 25790.74 31691.55 12598.82 13989.29 16695.91 27893.62 323
xiu_mvs_v1_base91.47 19391.52 18691.33 23195.69 22881.56 22289.92 26496.05 20683.22 26091.26 25790.74 31691.55 12598.82 13989.29 16695.91 27893.62 323
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23195.69 22881.56 22289.92 26496.05 20683.22 26091.26 25790.74 31691.55 12598.82 13989.29 16695.91 27893.62 323
1112_ss88.42 26087.41 26991.45 22896.69 15680.99 23189.72 27096.72 17573.37 33087.00 32590.69 31977.38 28398.20 21781.38 27593.72 32195.15 285
ab-mvs-re7.56 34310.08 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37790.69 3190.00 3810.00 3770.00 3750.00 3750.00 373
Effi-MVS+92.79 16092.74 15892.94 18095.10 24883.30 20294.00 13297.53 11291.36 11989.35 29390.65 32194.01 6998.66 17487.40 20795.30 29496.88 226
mvs-test193.07 15191.80 18196.89 3994.74 26095.83 692.17 19095.41 22989.94 14989.85 28490.59 32290.12 15998.88 12987.68 20295.66 28495.97 259
GA-MVS87.70 27186.82 28090.31 26493.27 29277.22 29284.72 34092.79 28285.11 24489.82 28590.07 32366.80 32497.76 25684.56 24794.27 31595.96 260
EPNet_dtu85.63 29784.37 30189.40 28486.30 36674.33 32191.64 21888.26 32184.84 24972.96 37089.85 32471.27 31197.69 26076.60 31897.62 23596.18 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM81.91 32180.11 33187.31 31593.87 28572.32 33684.02 34793.22 27469.47 34976.13 36889.84 32572.15 30797.23 28153.27 36989.02 35292.37 340
tfpn200view987.05 28986.52 28788.67 29695.77 22272.94 33091.89 20586.00 34090.84 13092.61 22889.80 32663.93 34098.28 20971.27 34796.54 26794.79 293
thres40087.20 28586.52 28789.24 28995.77 22272.94 33091.89 20586.00 34090.84 13092.61 22889.80 32663.93 34098.28 20971.27 34796.54 26796.51 236
TR-MVS87.70 27187.17 27489.27 28794.11 27879.26 26188.69 29491.86 30281.94 27690.69 26789.79 32882.82 24097.42 27372.65 33991.98 34291.14 348
new_pmnet81.22 32481.01 32381.86 34490.92 33270.15 34584.03 34680.25 36770.83 34385.97 33089.78 32967.93 32084.65 36867.44 35791.90 34390.78 350
PAPR87.65 27486.77 28290.27 26692.85 30177.38 28988.56 29796.23 19876.82 31584.98 33589.75 33086.08 21797.16 28372.33 34093.35 32496.26 249
CLD-MVS91.82 18591.41 19193.04 17496.37 17583.65 19986.82 32197.29 13384.65 25292.27 24289.67 33192.20 10997.85 24783.95 25199.47 3997.62 190
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat180.61 33079.46 33384.07 33888.78 35465.06 36589.26 28288.23 32262.27 36581.90 35789.66 33262.70 34895.29 33371.72 34380.60 36791.86 345
pmmvs380.83 32778.96 33586.45 32087.23 36277.48 28884.87 33782.31 36063.83 36385.03 33489.50 33349.66 36893.10 35273.12 33795.10 29888.78 357
miper_enhance_ethall88.42 26087.87 26390.07 27288.67 35675.52 31185.10 33595.59 22275.68 31692.49 23189.45 33478.96 26997.88 24187.86 20097.02 25296.81 228
KD-MVS_2432*160082.17 31880.75 32586.42 32182.04 37470.09 34681.75 35590.80 30982.56 26890.37 27289.30 33542.90 37696.11 31574.47 32892.55 33693.06 330
miper_refine_blended82.17 31880.75 32586.42 32182.04 37470.09 34681.75 35590.80 30982.56 26890.37 27289.30 33542.90 37696.11 31574.47 32892.55 33693.06 330
PVSNet_Blended88.74 25688.16 26090.46 26294.81 25578.80 27186.64 32596.93 15674.67 32288.68 30789.18 33786.27 21598.15 22380.27 28496.00 27694.44 303
dp79.28 33378.62 33681.24 34585.97 36756.45 37386.91 31785.26 35072.97 33381.45 35989.17 33856.01 36295.45 32873.19 33676.68 36891.82 346
ET-MVSNet_ETH3D86.15 29484.27 30391.79 21893.04 29881.28 22787.17 31386.14 33779.57 29183.65 34388.66 33957.10 35898.18 22087.74 20195.40 29195.90 264
xiu_mvs_v2_base89.00 24989.19 23488.46 30194.86 25374.63 31686.97 31595.60 21880.88 28087.83 31788.62 34091.04 14198.81 14482.51 26594.38 31191.93 343
Fast-Effi-MVS+91.28 19990.86 20392.53 19895.45 23982.53 21389.25 28496.52 18685.00 24689.91 28288.55 34192.94 9298.84 13784.72 24695.44 29096.22 250
thres20085.85 29685.18 29787.88 31094.44 27172.52 33489.08 28686.21 33688.57 18391.44 25488.40 34264.22 33898.00 23368.35 35595.88 28193.12 329
BH-w/o87.21 28487.02 27887.79 31194.77 25777.27 29187.90 30093.21 27681.74 27789.99 28188.39 34383.47 23296.93 29171.29 34692.43 33889.15 353
MAR-MVS90.32 22188.87 24494.66 11694.82 25491.85 5894.22 12494.75 24680.91 27987.52 32188.07 34486.63 21197.87 24476.67 31796.21 27394.25 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EIA-MVS92.35 17492.03 17393.30 17095.81 22183.97 19592.80 16198.17 4087.71 20089.79 28787.56 34591.17 14099.18 8587.97 19797.27 24596.77 230
baseline283.38 30981.54 31888.90 29191.38 32672.84 33288.78 29181.22 36378.97 29979.82 36387.56 34561.73 35197.80 25074.30 33090.05 35196.05 257
MVS84.98 30284.30 30287.01 31691.03 32977.69 28691.94 20294.16 25959.36 36784.23 34187.50 34785.66 22196.80 29571.79 34293.05 33186.54 359
PS-MVSNAJ88.86 25388.99 24088.48 30094.88 25174.71 31486.69 32495.60 21880.88 28087.83 31787.37 34890.77 14498.82 13982.52 26494.37 31291.93 343
131486.46 29386.33 29086.87 31891.65 32274.54 31791.94 20294.10 26074.28 32484.78 33787.33 34983.03 23795.00 33678.72 30291.16 34791.06 349
thisisatest051584.72 30382.99 31189.90 27692.96 30075.33 31384.36 34383.42 35877.37 31088.27 31286.65 35053.94 36498.72 16182.56 26397.40 24295.67 274
test0.0.03 182.48 31581.47 31985.48 32789.70 34473.57 32684.73 33881.64 36283.07 26488.13 31486.61 35162.86 34689.10 36666.24 36090.29 35093.77 319
IB-MVS77.21 1983.11 31081.05 32189.29 28691.15 32875.85 30885.66 33286.00 34079.70 28982.02 35686.61 35148.26 37098.39 20077.84 30792.22 33993.63 322
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVEpermissive59.87 2373.86 33772.65 34077.47 35087.00 36574.35 32061.37 36760.93 37567.27 35569.69 37186.49 35381.24 25972.33 37156.45 36883.45 36285.74 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet76.22 2082.89 31382.37 31384.48 33593.96 28264.38 36778.60 36088.61 31871.50 33984.43 34086.36 35474.27 29994.60 33869.87 35393.69 32294.46 302
ETV-MVS92.99 15392.74 15893.72 15595.86 21886.30 16392.33 18397.84 8791.70 11292.81 22286.17 35592.22 10899.19 8488.03 19697.73 22795.66 275
cascas87.02 29086.28 29189.25 28891.56 32576.45 30284.33 34496.78 17071.01 34286.89 32685.91 35681.35 25596.94 28983.09 25895.60 28594.35 305
PMMVS83.00 31281.11 32088.66 29783.81 37386.44 15882.24 35485.65 34361.75 36682.07 35485.64 35779.75 26591.59 35975.99 32293.09 32987.94 358
CHOSEN 280x42080.04 33277.97 33886.23 32490.13 34074.53 31872.87 36389.59 31566.38 35776.29 36785.32 35856.96 35995.36 33069.49 35494.72 30688.79 356
test-LLR83.58 30883.17 30984.79 33389.68 34566.86 35683.08 35084.52 35383.07 26482.85 34984.78 35962.86 34693.49 35082.85 25994.86 30194.03 311
test-mter81.21 32580.01 33284.79 33389.68 34566.86 35683.08 35084.52 35373.85 32882.85 34984.78 35943.66 37593.49 35082.85 25994.86 30194.03 311
gm-plane-assit87.08 36459.33 37171.22 34083.58 36197.20 28273.95 331
TESTMET0.1,179.09 33478.04 33782.25 34387.52 35964.03 36883.08 35080.62 36570.28 34680.16 36283.22 36244.13 37490.56 36179.95 28993.36 32392.15 341
E-PMN80.72 32980.86 32480.29 34785.11 36968.77 35172.96 36281.97 36187.76 19883.25 34883.01 36362.22 34989.17 36577.15 31594.31 31482.93 363
EMVS80.35 33180.28 33080.54 34684.73 37169.07 35072.54 36480.73 36487.80 19781.66 35881.73 36462.89 34589.84 36375.79 32494.65 30882.71 364
DWT-MVSNet_test80.74 32879.18 33485.43 32887.51 36066.87 35589.87 26786.01 33974.20 32680.86 36080.62 36548.84 36996.68 30081.54 27383.14 36492.75 336
test_method50.44 33848.94 34154.93 35339.68 37712.38 37928.59 36890.09 3136.82 37241.10 37478.41 36654.41 36370.69 37250.12 37051.26 37281.72 366
PVSNet_070.34 2174.58 33672.96 33979.47 34890.63 33466.24 36073.26 36183.40 35963.67 36478.02 36578.35 36772.53 30589.59 36456.68 36760.05 37182.57 365
GG-mvs-BLEND83.24 34185.06 37071.03 34194.99 9865.55 37474.09 36975.51 36844.57 37394.46 34059.57 36687.54 35684.24 361
DeepMVS_CXcopyleft53.83 35470.38 37664.56 36648.52 37833.01 37165.50 37274.21 36956.19 36146.64 37338.45 37270.07 36950.30 369
tmp_tt37.97 33944.33 34218.88 35511.80 37821.54 37863.51 36645.66 3794.23 37351.34 37350.48 37059.08 35622.11 37444.50 37168.35 37013.00 370
X-MVStestdata90.70 20788.45 24997.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17326.89 37194.56 5999.39 4893.57 4499.05 10098.93 63
testmvs9.02 34211.42 3451.81 3572.77 3801.13 38179.44 3591.90 3801.18 3752.65 3766.80 3721.95 3800.87 3762.62 3743.45 3743.44 372
test1239.49 34112.01 3441.91 3562.87 3791.30 38082.38 3531.34 3811.36 3742.84 3756.56 3732.45 3790.97 3752.73 3735.56 3733.47 371
test_post6.07 37465.74 33295.84 320
test_post190.21 2535.85 37565.36 33396.00 31879.61 295
test_blank0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas7.56 34310.09 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 37690.77 1440.00 3770.00 3750.00 3750.00 373
sosnet-low-res0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
sosnet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
Regformer0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
MSC_two_6792asdad95.90 6396.54 16689.57 8996.87 16499.41 3694.06 3099.30 6598.72 91
No_MVS95.90 6396.54 16689.57 8996.87 16499.41 3694.06 3099.30 6598.72 91
eth-test20.00 381
eth-test0.00 381
IU-MVS98.51 4686.66 15296.83 16772.74 33495.83 11493.00 7699.29 6898.64 101
save fliter97.46 12288.05 12292.04 19597.08 14787.63 203
test_0728_SECOND94.88 10698.55 4086.72 14995.20 8798.22 3299.38 5493.44 5599.31 6398.53 112
GSMVS94.75 295
test_part298.21 7089.41 9496.72 71
sam_mvs166.64 32794.75 295
sam_mvs66.41 328
MTGPAbinary97.62 102
MTMP94.82 10154.62 377
test9_res88.16 19298.40 16897.83 173
agg_prior287.06 21398.36 17997.98 156
agg_prior96.20 19288.89 10396.88 16290.21 27498.78 151
test_prior489.91 8390.74 237
test_prior94.61 11795.95 21387.23 13597.36 12598.68 17197.93 162
旧先验290.00 26268.65 35192.71 22696.52 30285.15 236
新几何290.02 261
无先验89.94 26395.75 21570.81 34498.59 18381.17 27994.81 292
原ACMM289.34 279
testdata298.03 22980.24 286
segment_acmp92.14 110
testdata188.96 28888.44 185
test1294.43 13295.95 21386.75 14896.24 19789.76 28889.79 16698.79 14797.95 21997.75 182
plane_prior797.71 10488.68 107
plane_prior697.21 13388.23 11886.93 204
plane_prior597.81 9098.95 12289.26 16998.51 16198.60 108
plane_prior388.43 11690.35 14593.31 203
plane_prior294.56 11391.74 109
plane_prior197.38 125
plane_prior88.12 12093.01 15488.98 17298.06 211
n20.00 382
nn0.00 382
door-mid92.13 298
test1196.65 178
door91.26 306
HQP5-MVS84.89 182
HQP-NCC96.36 17791.37 22287.16 21088.81 300
ACMP_Plane96.36 17791.37 22287.16 21088.81 300
BP-MVS86.55 221
HQP4-MVS88.81 30098.61 17998.15 138
HQP3-MVS97.31 13097.73 227
HQP2-MVS84.76 226
MDTV_nov1_ep13_2view42.48 37788.45 29867.22 35683.56 34566.80 32472.86 33894.06 310
ACMMP++_ref98.82 130
ACMMP++99.25 76
Test By Simon90.61 150