This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 299.85 1
test_part198.39 298.94 296.75 4299.23 390.73 7398.63 399.28 299.01 299.60 299.55 298.75 299.68 396.41 499.97 199.84 2
UniMVSNet_ETH3D97.13 797.72 495.35 8399.51 287.38 12897.70 797.54 10598.16 398.94 399.33 397.84 599.08 9290.73 11999.73 1499.59 13
pmmvs696.80 1497.36 1095.15 9599.12 887.82 12496.68 2397.86 7896.10 2698.14 2399.28 497.94 498.21 20491.38 11399.69 1599.42 19
UA-Net97.35 597.24 1297.69 598.22 6893.87 2998.42 598.19 3296.95 1495.46 12499.23 593.45 7399.57 1495.34 1399.89 399.63 10
OurMVSNet-221017-096.80 1496.75 1996.96 3699.03 1191.85 5797.98 698.01 6494.15 4898.93 499.07 688.07 17899.57 1495.86 1099.69 1599.46 18
gg-mvs-nofinetune82.10 30681.02 31085.34 31387.46 34571.04 32594.74 9767.56 35596.44 2279.43 34798.99 745.24 35896.15 29967.18 34192.17 32388.85 338
Anonymous2023121196.60 2697.13 1395.00 9997.46 11786.35 15597.11 1598.24 2897.58 898.72 998.97 893.15 8499.15 8393.18 6499.74 1399.50 17
ANet_high94.83 9496.28 3790.47 25096.65 15073.16 31594.33 11398.74 696.39 2398.09 2498.93 993.37 7798.70 15990.38 12699.68 1899.53 15
mvs_tets96.83 1096.71 2097.17 2798.83 2292.51 4896.58 2797.61 10087.57 19298.80 898.90 1096.50 1199.59 1396.15 899.47 3899.40 21
PS-MVSNAJss96.01 5296.04 5295.89 6498.82 2388.51 11095.57 6997.88 7788.72 16698.81 798.86 1190.77 14199.60 995.43 1299.53 3499.57 14
test_djsdf96.62 2496.49 2997.01 3398.55 4091.77 5997.15 1297.37 11588.98 16098.26 2198.86 1193.35 7899.60 996.41 499.45 4299.66 7
K. test v393.37 13493.27 14393.66 14998.05 7982.62 20394.35 11286.62 31896.05 2897.51 3898.85 1376.59 28499.65 493.21 6398.20 18698.73 88
Gipumacopyleft95.31 7695.80 6493.81 14797.99 8890.91 6996.42 3597.95 7396.69 1791.78 23798.85 1391.77 11595.49 30991.72 10299.08 8795.02 275
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LTVRE_ROB93.87 197.93 398.16 397.26 2698.81 2493.86 3099.07 298.98 497.01 1398.92 598.78 1595.22 3898.61 16896.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 1896.42 3097.68 798.00 8594.03 2496.97 1697.61 10087.68 18998.45 1998.77 1694.20 6699.50 2096.70 399.40 5299.53 15
SixPastTwentyTwo94.91 8795.21 8293.98 13798.52 4583.19 19795.93 5694.84 23394.86 3898.49 1698.74 1781.45 24899.60 994.69 1799.39 5399.15 37
jajsoiax96.59 2896.42 3097.12 2998.76 2792.49 4996.44 3497.42 11386.96 20198.71 1198.72 1895.36 3299.56 1795.92 999.45 4299.32 26
VDDNet94.03 12194.27 11693.31 16298.87 2082.36 20595.51 7191.78 29197.19 1296.32 8398.60 1984.24 22498.75 14787.09 19898.83 12198.81 79
TransMVSNet (Re)95.27 7996.04 5292.97 17298.37 6081.92 20995.07 8796.76 16593.97 5297.77 2798.57 2095.72 1997.90 22688.89 16799.23 7499.08 45
Baseline_NR-MVSNet94.47 10795.09 8792.60 18998.50 5380.82 22592.08 18396.68 16893.82 5596.29 8698.56 2190.10 15897.75 24490.10 14199.66 2099.24 31
GBi-Net93.21 14292.96 14693.97 13895.40 22784.29 17995.99 5296.56 17488.63 16795.10 13998.53 2281.31 25098.98 10786.74 20198.38 16098.65 91
test193.21 14292.96 14693.97 13895.40 22784.29 17995.99 5296.56 17488.63 16795.10 13998.53 2281.31 25098.98 10786.74 20198.38 16098.65 91
FMVSNet194.84 9395.13 8593.97 13897.60 10884.29 17995.99 5296.56 17492.38 7597.03 5698.53 2290.12 15598.98 10788.78 16999.16 8098.65 91
MIMVSNet195.52 6695.45 7295.72 7399.14 589.02 9696.23 4796.87 15893.73 5697.87 2698.49 2590.73 14599.05 9786.43 21099.60 2499.10 44
pm-mvs195.43 6995.94 5593.93 14198.38 5885.08 17395.46 7297.12 13991.84 9797.28 4698.46 2695.30 3597.71 24690.17 13799.42 4698.99 53
TDRefinement97.68 497.60 597.93 299.02 1295.95 598.61 498.81 597.41 1097.28 4698.46 2694.62 5798.84 12994.64 1899.53 3498.99 53
v7n96.82 1197.31 1195.33 8598.54 4286.81 14196.83 1998.07 5196.59 2098.46 1898.43 2892.91 9099.52 1896.25 799.76 1199.65 9
DTE-MVSNet96.74 1897.43 694.67 11099.13 684.68 17696.51 2997.94 7698.14 498.67 1398.32 2995.04 4599.69 293.27 6199.82 899.62 11
ACMH88.36 1296.59 2897.43 694.07 13598.56 3785.33 17196.33 4098.30 2194.66 3998.72 998.30 3097.51 698.00 22194.87 1599.59 2698.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS96.69 2197.39 994.61 11299.16 484.50 17796.54 2898.05 5598.06 598.64 1498.25 3195.01 4899.65 492.95 7499.83 699.68 5
PS-CasMVS96.69 2197.43 694.49 12399.13 684.09 18696.61 2597.97 7097.91 698.64 1498.13 3295.24 3799.65 493.39 5599.84 499.72 3
Vis-MVSNetpermissive95.50 6795.48 7195.56 7998.11 7489.40 9195.35 7398.22 3092.36 7794.11 16998.07 3392.02 10899.44 2493.38 5697.67 22097.85 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2024052995.50 6795.83 6294.50 12197.33 12385.93 16395.19 8396.77 16496.64 1997.61 3498.05 3493.23 8198.79 13888.60 17499.04 9698.78 82
VPA-MVSNet95.14 8195.67 6893.58 15297.76 9583.15 19894.58 10497.58 10293.39 6397.05 5598.04 3593.25 8098.51 18189.75 14999.59 2699.08 45
LCM-MVSNet-Re94.20 11894.58 10393.04 16895.91 20383.13 19993.79 12799.19 392.00 8798.84 698.04 3593.64 7099.02 10381.28 26298.54 14696.96 209
v1094.68 10095.27 8192.90 17796.57 15680.15 22994.65 10197.57 10390.68 13197.43 4198.00 3788.18 17599.15 8394.84 1699.55 3399.41 20
DeepC-MVS91.39 495.43 6995.33 7795.71 7497.67 10590.17 7793.86 12698.02 6287.35 19496.22 9297.99 3894.48 6199.05 9792.73 7999.68 1897.93 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
JIA-IIPM85.08 28983.04 29891.19 23187.56 34286.14 16089.40 26784.44 33988.98 16082.20 33697.95 3956.82 34796.15 29976.55 30483.45 34591.30 330
v894.65 10195.29 7992.74 18296.65 15079.77 24394.59 10297.17 13591.86 9397.47 4097.93 4088.16 17699.08 9294.32 2399.47 3899.38 22
testing_294.03 12194.38 10993.00 17096.79 14781.41 21792.87 15096.96 14785.88 21797.06 5497.92 4191.18 13698.71 15891.72 10299.04 9698.87 72
APDe-MVS96.46 3396.64 2395.93 6197.68 10489.38 9296.90 1898.41 1492.52 7397.43 4197.92 4195.11 4299.50 2094.45 2099.30 6298.92 67
nrg03096.32 4296.55 2795.62 7697.83 9388.55 10895.77 6298.29 2492.68 6998.03 2597.91 4395.13 4198.95 11493.85 3499.49 3799.36 24
lessismore_v093.87 14598.05 7983.77 19180.32 35097.13 5097.91 4377.49 27499.11 8992.62 8298.08 19798.74 86
WR-MVS_H96.60 2697.05 1595.24 9199.02 1286.44 15196.78 2298.08 4897.42 998.48 1797.86 4591.76 11699.63 794.23 2799.84 499.66 7
VDD-MVS94.37 10894.37 11094.40 12897.49 11486.07 16193.97 12493.28 26394.49 4396.24 9097.78 4687.99 18198.79 13888.92 16599.14 8298.34 118
RPSCF95.58 6594.89 9197.62 897.58 10996.30 495.97 5597.53 10792.42 7493.41 18897.78 4691.21 13297.77 24191.06 11597.06 23798.80 80
test_040295.73 6096.22 4094.26 13198.19 7085.77 16693.24 14197.24 13196.88 1697.69 2997.77 4894.12 6799.13 8691.54 11099.29 6397.88 159
tfpnnormal94.27 11494.87 9292.48 19397.71 10080.88 22494.55 10895.41 22093.70 5796.67 7097.72 4991.40 12498.18 20887.45 19399.18 7998.36 117
XXY-MVS92.58 16293.16 14590.84 24397.75 9679.84 23991.87 19796.22 19285.94 21595.53 12197.68 5092.69 9694.48 32283.21 24397.51 22598.21 128
UGNet93.08 14592.50 16094.79 10693.87 26987.99 12095.07 8794.26 24990.64 13287.33 30697.67 5186.89 20298.49 18288.10 18198.71 13397.91 156
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
wuyk23d87.83 25890.79 19978.96 33390.46 32288.63 10492.72 15390.67 29791.65 10998.68 1297.64 5296.06 1777.53 35359.84 34899.41 5170.73 350
EG-PatchMatch MVS94.54 10594.67 10094.14 13397.87 9286.50 14792.00 18896.74 16688.16 17896.93 6097.61 5393.04 8897.90 22691.60 10798.12 19398.03 141
DSMNet-mixed82.21 30581.56 30484.16 32189.57 33170.00 33190.65 22977.66 35354.99 35383.30 33097.57 5477.89 27390.50 34566.86 34295.54 27291.97 325
FC-MVSNet-test95.32 7495.88 5893.62 15098.49 5481.77 21095.90 5898.32 1893.93 5397.53 3797.56 5588.48 17199.40 4092.91 7599.83 699.68 5
ab-mvs92.40 16792.62 15791.74 21297.02 13481.65 21295.84 6095.50 21886.95 20292.95 20797.56 5590.70 14697.50 25479.63 27997.43 22896.06 243
COLMAP_ROBcopyleft91.06 596.75 1796.62 2497.13 2898.38 5894.31 1596.79 2198.32 1896.69 1796.86 6297.56 5595.48 2698.77 14690.11 13999.44 4498.31 121
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVSNet96.19 4796.80 1894.38 12998.99 1483.82 19096.31 4297.53 10797.60 798.34 2097.52 5891.98 11299.63 793.08 7099.81 999.70 4
ACMH+88.43 1196.48 3196.82 1795.47 8198.54 4289.06 9595.65 6698.61 796.10 2698.16 2297.52 5896.90 898.62 16790.30 13199.60 2498.72 89
SMA-MVScopyleft95.77 5995.54 6996.47 5198.27 6591.19 6595.09 8597.79 8986.48 20597.42 4397.51 6094.47 6299.29 6893.55 4399.29 6398.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ambc92.98 17196.88 14083.01 20195.92 5796.38 18496.41 7797.48 6188.26 17497.80 23789.96 14498.93 10898.12 135
PMVScopyleft87.21 1494.97 8595.33 7793.91 14298.97 1597.16 295.54 7095.85 20496.47 2193.40 19097.46 6295.31 3495.47 31086.18 21498.78 12889.11 337
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
abl_697.31 697.12 1497.86 398.54 4295.32 796.61 2598.35 1795.81 3197.55 3597.44 6396.51 1099.40 4094.06 3199.23 7498.85 76
3Dnovator92.54 394.80 9694.90 9094.47 12495.47 22587.06 13496.63 2497.28 12991.82 10094.34 16797.41 6490.60 14898.65 16692.47 8498.11 19497.70 175
mvs_anonymous90.37 21091.30 18887.58 29892.17 29768.00 33589.84 25794.73 23883.82 24393.22 19897.40 6587.54 18797.40 26287.94 18595.05 28497.34 198
MP-MVS-pluss96.08 5095.92 5796.57 4699.06 1091.21 6493.25 14098.32 1887.89 18396.86 6297.38 6695.55 2599.39 4595.47 1199.47 3899.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test072698.51 4686.69 14495.34 7498.18 3391.85 9497.63 3197.37 6795.58 23
EU-MVSNet87.39 26986.71 27289.44 26993.40 27476.11 29394.93 9390.00 29957.17 35195.71 11497.37 6764.77 32497.68 24892.67 8194.37 29794.52 286
FMVSNet292.78 15592.73 15592.95 17495.40 22781.98 20894.18 11795.53 21788.63 16796.05 10197.37 6781.31 25098.81 13687.38 19698.67 13798.06 137
HPM-MVS_fast97.01 896.89 1697.39 2299.12 893.92 2797.16 1198.17 3693.11 6696.48 7697.36 7096.92 799.34 5994.31 2499.38 5498.92 67
DVP-MVS95.82 5896.18 4294.72 10998.51 4686.69 14495.20 8197.00 14491.85 9497.40 4497.35 7195.58 2399.34 5993.44 5299.31 6098.13 134
test_0728_THIRD93.26 6597.40 4497.35 7194.69 5599.34 5993.88 3399.42 4698.89 69
ACMMP_NAP96.21 4696.12 4796.49 5098.90 1891.42 6294.57 10598.03 6090.42 13896.37 7997.35 7195.68 2099.25 7494.44 2199.34 5698.80 80
DP-MVS95.62 6395.84 6194.97 10097.16 12988.62 10594.54 10997.64 9696.94 1596.58 7497.32 7493.07 8798.72 15290.45 12398.84 11697.57 183
MVS-HIRNet78.83 32180.60 31373.51 33693.07 28047.37 35787.10 30378.00 35268.94 33377.53 34997.26 7571.45 29994.62 32063.28 34788.74 33678.55 349
SED-MVS96.00 5396.41 3394.76 10798.51 4686.97 13795.21 7998.10 4591.95 8897.63 3197.25 7696.48 1299.35 5593.29 5999.29 6397.95 151
test_241102_TWO98.10 4591.95 8897.54 3697.25 7695.37 2999.35 5593.29 5999.25 7198.49 109
3Dnovator+92.74 295.86 5795.77 6596.13 5396.81 14590.79 7296.30 4497.82 8496.13 2594.74 15697.23 7891.33 12699.16 8293.25 6298.30 17298.46 112
LPG-MVS_test96.38 4196.23 3996.84 4098.36 6192.13 5295.33 7598.25 2591.78 10197.07 5197.22 7996.38 1499.28 7092.07 9199.59 2699.11 41
LGP-MVS_train96.84 4098.36 6192.13 5298.25 2591.78 10197.07 5197.22 7996.38 1499.28 7092.07 9199.59 2699.11 41
FIs94.90 8895.35 7593.55 15398.28 6481.76 21195.33 7598.14 4093.05 6797.07 5197.18 8187.65 18599.29 6891.72 10299.69 1599.61 12
PatchT87.51 26688.17 24785.55 31090.64 31766.91 33792.02 18786.09 32292.20 8389.05 28097.16 8264.15 32696.37 29689.21 16292.98 31793.37 312
TranMVSNet+NR-MVSNet96.07 5196.26 3895.50 8098.26 6687.69 12593.75 12897.86 7895.96 3097.48 3997.14 8395.33 3399.44 2490.79 11899.76 1199.38 22
TSAR-MVS + MP.94.96 8694.75 9695.57 7898.86 2188.69 10296.37 3796.81 16085.23 22594.75 15597.12 8491.85 11499.40 4093.45 5098.33 16798.62 99
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VPNet93.08 14593.76 12691.03 23498.60 3475.83 29891.51 20995.62 20991.84 9795.74 11297.10 8589.31 16598.32 19585.07 22799.06 8898.93 63
IterMVS-LS93.78 12694.28 11492.27 19696.27 17679.21 25491.87 19796.78 16291.77 10396.57 7597.07 8687.15 19498.74 15091.99 9399.03 9898.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LFMVS91.33 19091.16 19291.82 20996.27 17679.36 24995.01 9085.61 32996.04 2994.82 15297.06 8772.03 29898.46 18884.96 22898.70 13597.65 179
APD-MVS_3200maxsize96.82 1196.65 2297.32 2597.95 8993.82 3296.31 4298.25 2595.51 3596.99 5997.05 8895.63 2299.39 4593.31 5898.88 11198.75 85
SR-MVS-dyc-post96.84 996.60 2697.56 1098.07 7795.27 896.37 3798.12 4295.66 3397.00 5797.03 8994.85 5299.42 2893.49 4598.84 11698.00 143
RE-MVS-def96.66 2198.07 7795.27 896.37 3798.12 4295.66 3397.00 5797.03 8995.40 2893.49 4598.84 11698.00 143
test_241102_ONE98.51 4686.97 13798.10 4591.85 9497.63 3197.03 8996.48 1298.95 114
DPE-MVS95.89 5495.88 5895.92 6397.93 9089.83 8393.46 13698.30 2192.37 7697.75 2896.95 9295.14 4099.51 1991.74 10199.28 6898.41 116
zzz-MVS96.47 3296.14 4597.47 1598.95 1694.05 2193.69 13097.62 9794.46 4496.29 8696.94 9393.56 7199.37 5294.29 2599.42 4698.99 53
MTAPA96.65 2396.38 3497.47 1598.95 1694.05 2195.88 5997.62 9794.46 4496.29 8696.94 9393.56 7199.37 5294.29 2599.42 4698.99 53
CR-MVSNet87.89 25687.12 26590.22 25791.01 31478.93 25692.52 16092.81 27073.08 31589.10 27896.93 9567.11 30897.64 24988.80 16892.70 31994.08 293
Patchmtry90.11 21889.92 21690.66 24690.35 32377.00 28292.96 14692.81 27090.25 14194.74 15696.93 9567.11 30897.52 25385.17 22098.98 10097.46 188
FMVSNet587.82 25986.56 27491.62 21692.31 29279.81 24293.49 13594.81 23683.26 24591.36 24196.93 9552.77 35397.49 25676.07 30698.03 20297.55 186
RPMNet90.31 21490.14 21390.81 24491.01 31478.93 25692.52 16098.12 4291.91 9189.10 27896.89 9868.84 30399.41 3590.17 13792.70 31994.08 293
PGM-MVS96.32 4295.94 5597.43 1998.59 3693.84 3195.33 7598.30 2191.40 11495.76 11096.87 9995.26 3699.45 2392.77 7699.21 7699.00 51
test117296.79 1696.52 2897.60 998.03 8294.87 1096.07 5198.06 5495.76 3296.89 6196.85 10094.85 5299.42 2893.35 5798.81 12498.53 106
OPM-MVS95.61 6495.45 7296.08 5498.49 5491.00 6792.65 15797.33 12390.05 14396.77 6796.85 10095.04 4598.56 17692.77 7699.06 8898.70 90
ACMM88.83 996.30 4496.07 5096.97 3598.39 5792.95 4494.74 9798.03 6090.82 12797.15 4996.85 10096.25 1699.00 10693.10 6899.33 5898.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMPcopyleft96.61 2596.34 3597.43 1998.61 3393.88 2896.95 1798.18 3392.26 8196.33 8296.84 10395.10 4399.40 4093.47 4999.33 5899.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
casdiffmvs94.32 11294.80 9492.85 17996.05 19281.44 21692.35 17298.05 5591.53 11295.75 11196.80 10493.35 7898.49 18291.01 11698.32 16998.64 95
QAPM92.88 15292.77 15193.22 16695.82 20783.31 19496.45 3297.35 12283.91 24293.75 18096.77 10589.25 16698.88 12184.56 23397.02 23997.49 187
LS3D96.11 4995.83 6296.95 3794.75 24494.20 1797.34 1097.98 6797.31 1195.32 12996.77 10593.08 8699.20 7991.79 9998.16 18897.44 190
XVG-ACMP-BASELINE95.68 6295.34 7696.69 4498.40 5693.04 4194.54 10998.05 5590.45 13796.31 8496.76 10792.91 9098.72 15291.19 11499.42 4698.32 119
MIMVSNet87.13 27786.54 27588.89 27996.05 19276.11 29394.39 11188.51 30481.37 26288.27 29596.75 10872.38 29595.52 30765.71 34495.47 27495.03 274
AllTest94.88 9094.51 10696.00 5698.02 8392.17 5095.26 7898.43 1190.48 13595.04 14496.74 10992.54 10097.86 23285.11 22598.98 10097.98 147
TestCases96.00 5698.02 8392.17 5098.43 1190.48 13595.04 14496.74 10992.54 10097.86 23285.11 22598.98 10097.98 147
SR-MVS96.70 2096.42 3097.54 1198.05 7994.69 1196.13 4898.07 5195.17 3696.82 6496.73 11195.09 4499.43 2792.99 7398.71 13398.50 108
MP-MVScopyleft96.14 4895.68 6797.51 1398.81 2494.06 1996.10 4997.78 9092.73 6893.48 18796.72 11294.23 6599.42 2891.99 9399.29 6399.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_Test92.57 16493.29 14090.40 25293.53 27375.85 29692.52 16096.96 14788.73 16592.35 22496.70 11390.77 14198.37 19492.53 8395.49 27396.99 208
xxxxxxxxxxxxxcwj95.03 8294.93 8995.33 8597.46 11788.05 11892.04 18598.42 1387.63 19096.36 8096.68 11494.37 6399.32 6592.41 8599.05 9198.64 95
SF-MVS95.88 5695.88 5895.87 6598.12 7389.65 8695.58 6898.56 891.84 9796.36 8096.68 11494.37 6399.32 6592.41 8599.05 9198.64 95
mPP-MVS96.46 3396.05 5197.69 598.62 3194.65 1296.45 3297.74 9192.59 7295.47 12296.68 11494.50 6099.42 2893.10 6899.26 7098.99 53
Anonymous20240521192.58 16292.50 16092.83 18096.55 15783.22 19692.43 16691.64 29294.10 4995.59 11896.64 11781.88 24797.50 25485.12 22498.52 14897.77 170
IterMVS-SCA-FT91.65 18191.55 17991.94 20793.89 26879.22 25387.56 29493.51 26091.53 11295.37 12796.62 11878.65 26598.90 11891.89 9894.95 28597.70 175
ACMMPR96.46 3396.14 4597.41 2198.60 3493.82 3296.30 4497.96 7192.35 7895.57 11996.61 11994.93 5199.41 3593.78 3699.15 8199.00 51
PM-MVS93.33 13592.67 15695.33 8596.58 15594.06 1992.26 17792.18 28385.92 21696.22 9296.61 11985.64 21895.99 30290.35 12898.23 18195.93 248
region2R96.41 3896.09 4897.38 2398.62 3193.81 3496.32 4197.96 7192.26 8195.28 13296.57 12195.02 4799.41 3593.63 4099.11 8698.94 62
SteuartSystems-ACMMP96.40 3996.30 3696.71 4398.63 3091.96 5595.70 6398.01 6493.34 6496.64 7196.57 12194.99 4999.36 5493.48 4899.34 5698.82 78
Skip Steuart: Steuart Systems R&D Blog.
XVS96.49 3096.18 4297.44 1798.56 3793.99 2596.50 3097.95 7394.58 4094.38 16596.49 12394.56 5899.39 4593.57 4199.05 9198.93 63
HFP-MVS96.39 4096.17 4497.04 3198.51 4693.37 3896.30 4497.98 6792.35 7895.63 11696.47 12495.37 2999.27 7293.78 3699.14 8298.48 110
#test#95.89 5495.51 7097.04 3198.51 4693.37 3895.14 8497.98 6789.34 15595.63 11696.47 12495.37 2999.27 7291.99 9399.14 8298.48 110
XVG-OURS94.72 9894.12 11996.50 4998.00 8594.23 1691.48 21098.17 3690.72 12995.30 13096.47 12487.94 18296.98 27591.41 11297.61 22398.30 122
ACMP88.15 1395.71 6195.43 7496.54 4798.17 7191.73 6094.24 11598.08 4889.46 15396.61 7396.47 12495.85 1899.12 8890.45 12399.56 3298.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVScopyleft89.45 892.27 17292.13 16792.68 18494.53 25484.10 18595.70 6397.03 14282.44 25691.14 24796.42 12888.47 17298.38 19185.95 21597.47 22795.55 265
HPM-MVScopyleft96.81 1396.62 2497.36 2498.89 1993.53 3797.51 898.44 1092.35 7895.95 10496.41 12996.71 999.42 2893.99 3299.36 5599.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v124093.29 13693.71 12892.06 20596.01 19777.89 27191.81 20397.37 11585.12 22996.69 6996.40 13086.67 20599.07 9694.51 1998.76 13099.22 32
SD-MVS95.19 8095.73 6693.55 15396.62 15388.88 10194.67 9998.05 5591.26 11797.25 4896.40 13095.42 2794.36 32692.72 8099.19 7797.40 194
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 19790.85 19790.63 24795.63 22079.24 25289.81 25892.87 26989.90 14694.39 16496.40 13085.77 21495.27 31773.86 31599.05 9197.39 195
IterMVS90.18 21690.16 21090.21 25893.15 27975.98 29587.56 29492.97 26886.43 20794.09 17096.40 13078.32 26997.43 25987.87 18694.69 29297.23 202
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVS96.44 3696.08 4997.54 1198.29 6394.62 1396.80 2098.08 4892.67 7195.08 14296.39 13494.77 5499.42 2893.17 6599.44 4498.58 104
v119293.49 13193.78 12592.62 18896.16 18579.62 24591.83 20297.22 13386.07 21396.10 10096.38 13587.22 19299.02 10394.14 3098.88 11199.22 32
V4293.43 13393.58 13392.97 17295.34 23181.22 21992.67 15696.49 17987.25 19696.20 9496.37 13687.32 19198.85 12892.39 8798.21 18498.85 76
ZNCC-MVS96.42 3796.20 4197.07 3098.80 2692.79 4696.08 5098.16 3991.74 10595.34 12896.36 13795.68 2099.44 2494.41 2299.28 6898.97 59
IS-MVSNet94.49 10694.35 11194.92 10198.25 6786.46 15097.13 1494.31 24796.24 2496.28 8996.36 13782.88 23299.35 5588.19 17899.52 3698.96 60
v114493.50 13093.81 12392.57 19096.28 17579.61 24691.86 20196.96 14786.95 20295.91 10796.32 13987.65 18598.96 11293.51 4498.88 11199.13 39
baseline94.26 11594.80 9492.64 18596.08 19080.99 22293.69 13098.04 5990.80 12894.89 15096.32 13993.19 8298.48 18691.68 10598.51 15098.43 114
TinyColmap92.00 17692.76 15289.71 26695.62 22177.02 28190.72 22796.17 19587.70 18895.26 13396.29 14192.54 10096.45 29281.77 25798.77 12995.66 261
GST-MVS96.24 4595.99 5497.00 3498.65 2992.71 4795.69 6598.01 6492.08 8695.74 11296.28 14295.22 3899.42 2893.17 6599.06 8898.88 71
USDC89.02 23689.08 22688.84 28095.07 23574.50 30688.97 27696.39 18373.21 31493.27 19596.28 14282.16 24296.39 29477.55 29598.80 12695.62 264
v2v48293.29 13693.63 13192.29 19596.35 16978.82 25991.77 20596.28 18688.45 17295.70 11596.26 14486.02 21398.90 11893.02 7198.81 12499.14 38
XVG-OURS-SEG-HR95.38 7195.00 8896.51 4898.10 7594.07 1892.46 16498.13 4190.69 13093.75 18096.25 14598.03 397.02 27492.08 9095.55 27198.45 113
pmmvs-eth3d91.54 18490.73 20193.99 13695.76 21287.86 12390.83 22493.98 25578.23 29094.02 17696.22 14682.62 23896.83 28186.57 20698.33 16797.29 201
v192192093.26 13993.61 13292.19 19996.04 19678.31 26591.88 19697.24 13185.17 22796.19 9696.19 14786.76 20499.05 9794.18 2998.84 11699.22 32
EPP-MVSNet93.91 12493.68 13094.59 11798.08 7685.55 16997.44 994.03 25294.22 4794.94 14796.19 14782.07 24399.57 1487.28 19798.89 10998.65 91
APD-MVScopyleft95.00 8494.69 9895.93 6197.38 12090.88 7094.59 10297.81 8589.22 15895.46 12496.17 14993.42 7699.34 5989.30 15598.87 11497.56 185
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
v14419293.20 14493.54 13592.16 20296.05 19278.26 26691.95 18997.14 13684.98 23395.96 10396.11 15087.08 19699.04 10093.79 3598.84 11699.17 35
VNet92.67 15992.96 14691.79 21096.27 17680.15 22991.95 18994.98 22892.19 8494.52 16296.07 15187.43 18997.39 26384.83 22998.38 16097.83 164
v14892.87 15393.29 14091.62 21696.25 17977.72 27391.28 21595.05 22689.69 14995.93 10696.04 15287.34 19098.38 19190.05 14297.99 20498.78 82
9.1494.81 9397.49 11494.11 11898.37 1587.56 19395.38 12696.03 15394.66 5699.08 9290.70 12098.97 104
FMVSNet390.78 19890.32 20992.16 20293.03 28379.92 23892.54 15994.95 22986.17 21295.10 13996.01 15469.97 30298.75 14786.74 20198.38 16097.82 166
MG-MVS89.54 22989.80 21788.76 28194.88 23772.47 32189.60 26192.44 28085.82 21889.48 27595.98 15582.85 23397.74 24581.87 25695.27 28096.08 242
UniMVSNet (Re)95.32 7495.15 8495.80 6897.79 9488.91 9892.91 14898.07 5193.46 6296.31 8495.97 15690.14 15499.34 5992.11 8899.64 2299.16 36
DU-MVS95.28 7795.12 8695.75 7297.75 9688.59 10692.58 15897.81 8593.99 5096.80 6595.90 15790.10 15899.41 3591.60 10799.58 3099.26 29
NR-MVSNet95.28 7795.28 8095.26 9097.75 9687.21 13295.08 8697.37 11593.92 5497.65 3095.90 15790.10 15899.33 6490.11 13999.66 2099.26 29
ETH3D-3000-0.194.86 9194.55 10495.81 6697.61 10789.72 8494.05 12098.37 1588.09 17995.06 14395.85 15992.58 9899.10 9190.33 13098.99 9998.62 99
EI-MVSNet92.99 14993.26 14492.19 19992.12 29879.21 25492.32 17494.67 24291.77 10395.24 13595.85 15987.14 19598.49 18291.99 9398.26 17598.86 73
CVMVSNet85.16 28884.72 28786.48 30592.12 29870.19 32992.32 17488.17 30956.15 35290.64 25495.85 15967.97 30696.69 28588.78 16990.52 33292.56 321
EI-MVSNet-UG-set94.35 11094.27 11694.59 11792.46 29185.87 16492.42 16794.69 24093.67 6196.13 9895.84 16291.20 13398.86 12693.78 3698.23 18199.03 49
EI-MVSNet-Vis-set94.36 10994.28 11494.61 11292.55 29085.98 16292.44 16594.69 24093.70 5796.12 9995.81 16391.24 13098.86 12693.76 3998.22 18398.98 58
ZD-MVS97.23 12590.32 7697.54 10584.40 23994.78 15495.79 16492.76 9599.39 4588.72 17298.40 156
MDA-MVSNet-bldmvs91.04 19390.88 19591.55 21894.68 25080.16 22885.49 32192.14 28690.41 13994.93 14895.79 16485.10 21996.93 27885.15 22294.19 30297.57 183
MVSTER89.32 23288.75 23491.03 23490.10 32576.62 28890.85 22394.67 24282.27 25795.24 13595.79 16461.09 34098.49 18290.49 12298.26 17597.97 150
UniMVSNet_NR-MVSNet95.35 7295.21 8295.76 7197.69 10388.59 10692.26 17797.84 8294.91 3796.80 6595.78 16790.42 15099.41 3591.60 10799.58 3099.29 28
new-patchmatchnet88.97 23990.79 19983.50 32494.28 25955.83 35685.34 32293.56 25986.18 21195.47 12295.73 16883.10 23096.51 29085.40 21998.06 19898.16 130
UnsupCasMVSNet_eth90.33 21290.34 20890.28 25494.64 25280.24 22789.69 26095.88 20285.77 21993.94 17795.69 16981.99 24492.98 33784.21 23691.30 32897.62 181
RRT_MVS91.36 18990.05 21495.29 8989.21 33588.15 11592.51 16394.89 23186.73 20495.54 12095.68 17061.82 33799.30 6794.91 1499.13 8598.43 114
OPU-MVS95.15 9596.84 14289.43 8995.21 7995.66 17193.12 8598.06 21586.28 21398.61 14097.95 151
testtj94.81 9594.42 10796.01 5597.23 12590.51 7594.77 9697.85 8191.29 11694.92 14995.66 17191.71 11799.40 4088.07 18298.25 17898.11 136
MVP-Stereo90.07 22188.92 23093.54 15596.31 17386.49 14890.93 22295.59 21379.80 27091.48 23995.59 17380.79 25497.39 26378.57 28991.19 32996.76 217
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP_MVS94.26 11593.93 12195.23 9297.71 10088.12 11694.56 10697.81 8591.74 10593.31 19195.59 17386.93 19998.95 11489.26 15998.51 15098.60 102
plane_prior495.59 173
Anonymous2023120688.77 24488.29 24290.20 25996.31 17378.81 26089.56 26393.49 26174.26 30892.38 22295.58 17682.21 24095.43 31272.07 32498.75 13296.34 231
旧先验196.20 18184.17 18494.82 23495.57 17789.57 16397.89 20996.32 232
Regformer-394.28 11394.23 11894.46 12592.78 28886.28 15792.39 16994.70 23993.69 6095.97 10295.56 17891.34 12598.48 18693.45 5098.14 19098.62 99
Regformer-494.90 8894.67 10095.59 7792.78 28889.02 9692.39 16995.91 20194.50 4296.41 7795.56 17892.10 10799.01 10594.23 2798.14 19098.74 86
ETH3D cwj APD-0.1693.99 12393.38 13995.80 6896.82 14389.92 8092.72 15398.02 6284.73 23793.65 18495.54 18091.68 11899.22 7788.78 16998.49 15398.26 125
MVS_030490.96 19590.15 21293.37 15993.17 27887.06 13493.62 13292.43 28189.60 15282.25 33595.50 18182.56 23997.83 23584.41 23597.83 21295.22 269
CPTT-MVS94.74 9794.12 11996.60 4598.15 7293.01 4295.84 6097.66 9589.21 15993.28 19495.46 18288.89 16898.98 10789.80 14698.82 12297.80 168
DeepC-MVS_fast89.96 793.73 12793.44 13794.60 11696.14 18687.90 12193.36 13997.14 13685.53 22293.90 17895.45 18391.30 12898.59 17289.51 15298.62 13997.31 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS94.58 10394.29 11395.46 8296.94 13789.35 9391.81 20396.80 16189.66 15093.90 17895.44 18492.80 9498.72 15292.74 7898.52 14898.32 119
testdata91.03 23496.87 14182.01 20794.28 24871.55 32192.46 21895.42 18585.65 21797.38 26582.64 24897.27 23293.70 306
DeepPCF-MVS90.46 694.20 11893.56 13496.14 5295.96 19992.96 4389.48 26497.46 11185.14 22896.23 9195.42 18593.19 8298.08 21490.37 12798.76 13097.38 197
OMC-MVS94.22 11793.69 12995.81 6697.25 12491.27 6392.27 17697.40 11487.10 20094.56 16095.42 18593.74 6998.11 21386.62 20598.85 11598.06 137
WR-MVS93.49 13193.72 12792.80 18197.57 11080.03 23590.14 24695.68 20893.70 5796.62 7295.39 18887.21 19399.04 10087.50 19299.64 2299.33 25
ITE_SJBPF95.95 5897.34 12293.36 4096.55 17791.93 9094.82 15295.39 18891.99 11197.08 27285.53 21897.96 20597.41 191
RRT_test8_iter0588.21 25288.17 24788.33 29091.62 30766.82 34191.73 20696.60 17286.34 20894.14 16895.38 19047.72 35799.11 8991.78 10098.26 17599.06 47
MSLP-MVS++93.25 14193.88 12291.37 22296.34 17082.81 20293.11 14297.74 9189.37 15494.08 17195.29 19190.40 15396.35 29790.35 12898.25 17894.96 276
HPM-MVS++copyleft95.02 8394.39 10896.91 3897.88 9193.58 3694.09 11996.99 14691.05 12292.40 22195.22 19291.03 13999.25 7492.11 8898.69 13697.90 157
MSP-MVS95.34 7394.63 10297.48 1498.67 2894.05 2196.41 3698.18 3391.26 11795.12 13895.15 19386.60 20799.50 2093.43 5496.81 24798.89 69
MDA-MVSNet_test_wron88.16 25488.23 24587.93 29492.22 29473.71 31180.71 34388.84 30182.52 25494.88 15195.14 19482.70 23693.61 33283.28 24293.80 30596.46 227
Vis-MVSNet (Re-imp)90.42 20790.16 21091.20 23097.66 10677.32 27894.33 11387.66 31291.20 11992.99 20595.13 19575.40 28798.28 19777.86 29199.19 7797.99 146
YYNet188.17 25388.24 24487.93 29492.21 29573.62 31280.75 34288.77 30282.51 25594.99 14695.11 19682.70 23693.70 33183.33 24193.83 30496.48 226
D2MVS89.93 22389.60 22290.92 23994.03 26578.40 26488.69 28394.85 23278.96 28493.08 20195.09 19774.57 28896.94 27688.19 17898.96 10697.41 191
CDPH-MVS92.67 15991.83 17395.18 9496.94 13788.46 11190.70 22897.07 14177.38 29392.34 22695.08 19892.67 9798.88 12185.74 21698.57 14298.20 129
PVSNet_BlendedMVS90.35 21189.96 21591.54 21994.81 24178.80 26190.14 24696.93 15079.43 27688.68 29095.06 19986.27 21098.15 21180.27 27098.04 20197.68 177
Regformer-194.55 10494.33 11295.19 9392.83 28688.54 10991.87 19795.84 20593.99 5095.95 10495.04 20092.00 10998.79 13893.14 6798.31 17098.23 126
Regformer-294.86 9194.55 10495.77 7092.83 28689.98 7991.87 19796.40 18294.38 4696.19 9695.04 20092.47 10399.04 10093.49 4598.31 17098.28 123
tpm84.38 29384.08 29285.30 31490.47 32163.43 35189.34 26885.63 32877.24 29687.62 30295.03 20261.00 34197.30 26679.26 28491.09 33195.16 270
PVSNet_Blended_VisFu91.63 18291.20 19092.94 17597.73 9983.95 18992.14 18197.46 11178.85 28692.35 22494.98 20384.16 22599.08 9286.36 21196.77 24995.79 255
miper_lstm_enhance89.90 22489.80 21790.19 26091.37 31177.50 27583.82 33695.00 22784.84 23593.05 20394.96 20476.53 28595.20 31889.96 14498.67 13797.86 161
新几何193.17 16797.16 12987.29 12994.43 24467.95 33691.29 24294.94 20586.97 19898.23 20381.06 26797.75 21393.98 299
112190.26 21589.23 22393.34 16097.15 13187.40 12791.94 19194.39 24567.88 33791.02 24894.91 20686.91 20198.59 17281.17 26597.71 21794.02 298
cl-mvsnet_90.65 20290.56 20490.91 24191.85 30276.98 28486.75 31195.36 22385.53 22294.06 17394.89 20777.36 27897.98 22490.27 13398.98 10097.76 171
cl-mvsnet190.65 20290.56 20490.91 24191.85 30276.99 28386.75 31195.36 22385.52 22494.06 17394.89 20777.37 27797.99 22390.28 13298.97 10497.76 171
test22296.95 13685.27 17288.83 27993.61 25765.09 34490.74 25294.85 20984.62 22397.36 23093.91 300
test_prior393.29 13692.85 14994.61 11295.95 20087.23 13090.21 24297.36 12089.33 15690.77 25094.81 21090.41 15198.68 16288.21 17698.55 14397.93 153
test_prior290.21 24289.33 15690.77 25094.81 21090.41 15188.21 17698.55 143
CHOSEN 1792x268887.19 27585.92 28391.00 23797.13 13279.41 24884.51 33095.60 21064.14 34590.07 26394.81 21078.26 27097.14 27173.34 31795.38 27896.46 227
114514_t90.51 20489.80 21792.63 18798.00 8582.24 20693.40 13897.29 12765.84 34289.40 27694.80 21386.99 19798.75 14783.88 23898.61 14096.89 212
tttt051789.81 22688.90 23292.55 19197.00 13579.73 24495.03 8983.65 34189.88 14795.30 13094.79 21453.64 35199.39 4591.99 9398.79 12798.54 105
EPNet89.80 22788.25 24394.45 12683.91 35686.18 15993.87 12587.07 31691.16 12180.64 34494.72 21578.83 26398.89 12085.17 22098.89 10998.28 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS281.31 30983.44 29574.92 33590.52 32046.49 35869.19 35085.23 33584.30 24087.95 29994.71 21676.95 28284.36 35264.07 34598.09 19693.89 301
testgi90.38 20991.34 18787.50 29997.49 11471.54 32489.43 26595.16 22588.38 17494.54 16194.68 21792.88 9293.09 33671.60 32897.85 21197.88 159
NCCC94.08 12093.54 13595.70 7596.49 16089.90 8292.39 16996.91 15490.64 13292.33 22794.60 21890.58 14998.96 11290.21 13697.70 21898.23 126
MVS_111021_HR93.63 12993.42 13894.26 13196.65 15086.96 13989.30 27096.23 19088.36 17593.57 18694.60 21893.45 7397.77 24190.23 13598.38 16098.03 141
TAMVS90.16 21789.05 22793.49 15896.49 16086.37 15390.34 23992.55 27880.84 26692.99 20594.57 22081.94 24698.20 20573.51 31698.21 18495.90 251
原ACMM192.87 17896.91 13984.22 18297.01 14376.84 29889.64 27494.46 22188.00 18098.70 15981.53 26098.01 20395.70 259
agg_prior192.60 16191.76 17695.10 9796.20 18188.89 9990.37 23796.88 15679.67 27490.21 25994.41 22291.30 12898.78 14288.46 17598.37 16597.64 180
MVS_111021_LR93.66 12893.28 14294.80 10596.25 17990.95 6890.21 24295.43 21987.91 18193.74 18294.40 22392.88 9296.38 29590.39 12598.28 17397.07 204
TEST996.45 16289.46 8790.60 23096.92 15279.09 28290.49 25594.39 22491.31 12798.88 121
train_agg92.71 15891.83 17395.35 8396.45 16289.46 8790.60 23096.92 15279.37 27790.49 25594.39 22491.20 13398.88 12188.66 17398.43 15597.72 174
test_896.37 16489.14 9490.51 23396.89 15579.37 27790.42 25794.36 22691.20 13398.82 131
FPMVS84.50 29283.28 29688.16 29296.32 17294.49 1485.76 31985.47 33083.09 24985.20 31694.26 22763.79 32986.58 35063.72 34691.88 32783.40 345
MCST-MVS92.91 15192.51 15994.10 13497.52 11285.72 16791.36 21497.13 13880.33 26892.91 20894.24 22891.23 13198.72 15289.99 14397.93 20797.86 161
BH-RMVSNet90.47 20690.44 20690.56 24995.21 23378.65 26389.15 27493.94 25688.21 17692.74 21194.22 22986.38 20897.88 22878.67 28895.39 27795.14 272
pmmvs488.95 24087.70 25592.70 18394.30 25885.60 16887.22 30092.16 28574.62 30689.75 27394.19 23077.97 27296.41 29382.71 24796.36 25896.09 241
Patchmatch-RL test88.81 24388.52 23689.69 26795.33 23279.94 23786.22 31892.71 27478.46 28895.80 10994.18 23166.25 31695.33 31589.22 16198.53 14793.78 303
PHI-MVS94.34 11193.80 12495.95 5895.65 21891.67 6194.82 9497.86 7887.86 18493.04 20494.16 23291.58 12098.78 14290.27 13398.96 10697.41 191
TAPA-MVS88.58 1092.49 16691.75 17794.73 10896.50 15989.69 8592.91 14897.68 9478.02 29192.79 21094.10 23390.85 14097.96 22584.76 23198.16 18896.54 220
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DP-MVS Recon92.31 17091.88 17293.60 15197.18 12886.87 14091.10 21997.37 11584.92 23492.08 23294.08 23488.59 17098.20 20583.50 24098.14 19095.73 257
CANet92.38 16891.99 17093.52 15793.82 27183.46 19391.14 21797.00 14489.81 14886.47 31094.04 23587.90 18399.21 7889.50 15398.27 17497.90 157
F-COLMAP92.28 17191.06 19395.95 5897.52 11291.90 5693.53 13497.18 13483.98 24188.70 28994.04 23588.41 17398.55 17880.17 27395.99 26397.39 195
UnsupCasMVSNet_bld88.50 24888.03 25089.90 26495.52 22478.88 25887.39 29894.02 25479.32 28093.06 20294.02 23780.72 25594.27 32775.16 31193.08 31596.54 220
MDTV_nov1_ep1383.88 29489.42 33361.52 35288.74 28287.41 31373.99 31084.96 31994.01 23865.25 32195.53 30678.02 29093.16 312
OpenMVS_ROBcopyleft85.12 1689.52 23089.05 22790.92 23994.58 25381.21 22091.10 21993.41 26277.03 29793.41 18893.99 23983.23 22997.80 23779.93 27794.80 28993.74 305
diffmvs91.74 17991.93 17191.15 23293.06 28178.17 26788.77 28197.51 11086.28 20992.42 22093.96 24088.04 17997.46 25790.69 12196.67 25297.82 166
eth_miper_zixun_eth90.72 19990.61 20391.05 23392.04 30076.84 28686.91 30696.67 16985.21 22694.41 16393.92 24179.53 26098.26 20189.76 14897.02 23998.06 137
cl_fuxian91.32 19191.42 18491.00 23792.29 29376.79 28787.52 29796.42 18185.76 22094.72 15893.89 24282.73 23598.16 21090.93 11798.55 14398.04 140
pmmvs587.87 25787.14 26490.07 26193.26 27776.97 28588.89 27892.18 28373.71 31288.36 29393.89 24276.86 28396.73 28480.32 26996.81 24796.51 222
PCF-MVS84.52 1789.12 23587.71 25493.34 16096.06 19185.84 16586.58 31797.31 12468.46 33593.61 18593.89 24287.51 18898.52 18067.85 33998.11 19495.66 261
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + GP.93.07 14792.41 16295.06 9895.82 20790.87 7190.97 22192.61 27788.04 18094.61 15993.79 24588.08 17797.81 23689.41 15498.39 15896.50 225
ETH3 D test640091.91 17791.25 18993.89 14396.59 15484.41 17892.10 18297.72 9378.52 28791.82 23693.78 24688.70 16999.13 8683.61 23998.39 15898.14 132
HY-MVS82.50 1886.81 28185.93 28289.47 26893.63 27277.93 26994.02 12191.58 29375.68 30083.64 32793.64 24777.40 27597.42 26071.70 32792.07 32493.05 315
LF4IMVS92.72 15792.02 16994.84 10495.65 21891.99 5492.92 14796.60 17285.08 23192.44 21993.62 24886.80 20396.35 29786.81 20098.25 17896.18 239
Test_1112_low_res87.50 26786.58 27390.25 25696.80 14677.75 27287.53 29696.25 18869.73 33186.47 31093.61 24975.67 28697.88 22879.95 27593.20 31195.11 273
MS-PatchMatch88.05 25587.75 25388.95 27793.28 27577.93 26987.88 29092.49 27975.42 30392.57 21693.59 25080.44 25694.24 32981.28 26292.75 31894.69 284
CNLPA91.72 18091.20 19093.26 16496.17 18491.02 6691.14 21795.55 21690.16 14290.87 24993.56 25186.31 20994.40 32579.92 27897.12 23694.37 289
ppachtmachnet_test88.61 24788.64 23588.50 28691.76 30470.99 32784.59 32992.98 26779.30 28192.38 22293.53 25279.57 25997.45 25886.50 20997.17 23597.07 204
CSCG94.69 9994.75 9694.52 12097.55 11187.87 12295.01 9097.57 10392.68 6996.20 9493.44 25391.92 11398.78 14289.11 16399.24 7396.92 210
NP-MVS96.82 14387.10 13393.40 254
HQP-MVS92.09 17491.49 18393.88 14496.36 16684.89 17491.37 21197.31 12487.16 19788.81 28393.40 25484.76 22198.60 17086.55 20797.73 21498.14 132
test_yl90.11 21889.73 22091.26 22694.09 26379.82 24090.44 23492.65 27590.90 12393.19 19993.30 25673.90 29098.03 21782.23 25396.87 24595.93 248
DCV-MVSNet90.11 21889.73 22091.26 22694.09 26379.82 24090.44 23492.65 27590.90 12393.19 19993.30 25673.90 29098.03 21782.23 25396.87 24595.93 248
CMPMVSbinary68.83 2287.28 27185.67 28492.09 20488.77 33985.42 17090.31 24094.38 24670.02 33088.00 29893.30 25673.78 29294.03 33075.96 30896.54 25496.83 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CostFormer83.09 29982.21 30285.73 30989.27 33467.01 33690.35 23886.47 31970.42 32883.52 32993.23 25961.18 33996.85 28077.21 29988.26 33893.34 313
DELS-MVS92.05 17592.16 16591.72 21394.44 25580.13 23187.62 29197.25 13087.34 19592.22 22993.18 26089.54 16498.73 15189.67 15098.20 18696.30 233
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 26487.31 25988.54 28594.71 24974.27 30993.10 14388.20 30886.20 21092.18 23093.04 26173.21 29395.52 30779.32 28385.82 34195.83 253
BH-untuned90.68 20190.90 19490.05 26395.98 19879.57 24790.04 24994.94 23087.91 18194.07 17293.00 26287.76 18497.78 24079.19 28595.17 28292.80 318
HyFIR lowres test87.19 27585.51 28592.24 19797.12 13380.51 22685.03 32496.06 19766.11 34191.66 23892.98 26370.12 30199.14 8575.29 31095.23 28197.07 204
AUN-MVS90.05 22288.30 24195.32 8896.09 18990.52 7492.42 16792.05 28982.08 25988.45 29292.86 26465.76 31898.69 16188.91 16696.07 26196.75 218
SCA87.43 26887.21 26288.10 29392.01 30171.98 32389.43 26588.11 31082.26 25888.71 28892.83 26578.65 26597.59 25079.61 28093.30 31094.75 281
Patchmatch-test86.10 28486.01 28186.38 30790.63 31874.22 31089.57 26286.69 31785.73 22189.81 27092.83 26565.24 32291.04 34377.82 29495.78 26893.88 302
MVSFormer92.18 17392.23 16492.04 20694.74 24580.06 23397.15 1297.37 11588.98 16088.83 28192.79 26777.02 28099.60 996.41 496.75 25096.46 227
jason89.17 23488.32 24091.70 21495.73 21380.07 23288.10 28893.22 26471.98 32090.09 26192.79 26778.53 26898.56 17687.43 19497.06 23796.46 227
jason: jason.
PatchmatchNetpermissive85.22 28784.64 28886.98 30389.51 33269.83 33290.52 23287.34 31478.87 28587.22 30792.74 26966.91 31096.53 28881.77 25786.88 34094.58 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AdaColmapbinary91.63 18291.36 18692.47 19495.56 22386.36 15492.24 17996.27 18788.88 16489.90 26792.69 27091.65 11998.32 19577.38 29897.64 22192.72 320
thisisatest053088.69 24687.52 25792.20 19896.33 17179.36 24992.81 15184.01 34086.44 20693.67 18392.68 27153.62 35299.25 7489.65 15198.45 15498.00 143
miper_ehance_all_eth90.48 20590.42 20790.69 24591.62 30776.57 28986.83 30996.18 19483.38 24494.06 17392.66 27282.20 24198.04 21689.79 14797.02 23997.45 189
cl-mvsnet289.02 23688.50 23790.59 24889.76 32776.45 29086.62 31694.03 25282.98 25292.65 21392.49 27372.05 29797.53 25288.93 16497.02 23997.78 169
ADS-MVSNet284.01 29582.20 30389.41 27089.04 33676.37 29287.57 29290.98 29672.71 31884.46 32192.45 27468.08 30496.48 29170.58 33483.97 34395.38 267
ADS-MVSNet82.25 30481.55 30584.34 32089.04 33665.30 34387.57 29285.13 33672.71 31884.46 32192.45 27468.08 30492.33 33970.58 33483.97 34395.38 267
tpm281.46 30880.35 31584.80 31689.90 32665.14 34590.44 23485.36 33165.82 34382.05 33892.44 27657.94 34496.69 28570.71 33388.49 33792.56 321
N_pmnet88.90 24187.25 26193.83 14694.40 25793.81 3484.73 32687.09 31579.36 27993.26 19692.43 27779.29 26191.68 34177.50 29797.22 23496.00 245
alignmvs93.26 13992.85 14994.50 12195.70 21487.45 12693.45 13795.76 20691.58 11095.25 13492.42 27881.96 24598.72 15291.61 10697.87 21097.33 199
CDS-MVSNet89.55 22888.22 24693.53 15695.37 23086.49 14889.26 27193.59 25879.76 27291.15 24692.31 27977.12 27998.38 19177.51 29697.92 20895.71 258
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PLCcopyleft85.34 1590.40 20888.92 23094.85 10396.53 15890.02 7891.58 20896.48 18080.16 26986.14 31292.18 28085.73 21598.25 20276.87 30194.61 29496.30 233
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
our_test_387.55 26587.59 25687.44 30091.76 30470.48 32883.83 33590.55 29879.79 27192.06 23392.17 28178.63 26795.63 30584.77 23094.73 29096.22 237
Effi-MVS+-dtu93.90 12592.60 15897.77 494.74 24596.67 394.00 12295.41 22089.94 14491.93 23592.13 28290.12 15598.97 11187.68 18997.48 22697.67 178
PAPM_NR91.03 19490.81 19891.68 21596.73 14881.10 22193.72 12996.35 18588.19 17788.77 28792.12 28385.09 22097.25 26782.40 25293.90 30396.68 219
canonicalmvs94.59 10294.69 9894.30 13095.60 22287.03 13695.59 6798.24 2891.56 11195.21 13792.04 28494.95 5098.66 16491.45 11197.57 22497.20 203
MSDG90.82 19690.67 20291.26 22694.16 26083.08 20086.63 31596.19 19390.60 13491.94 23491.89 28589.16 16795.75 30480.96 26894.51 29594.95 277
sss87.23 27286.82 26988.46 28893.96 26677.94 26886.84 30892.78 27377.59 29287.61 30391.83 28678.75 26491.92 34077.84 29294.20 30195.52 266
CANet_DTU89.85 22589.17 22591.87 20892.20 29680.02 23690.79 22595.87 20386.02 21482.53 33491.77 28780.01 25798.57 17585.66 21797.70 21897.01 207
patchmatchnet-post91.71 28866.22 31797.59 250
PatchMatch-RL89.18 23388.02 25192.64 18595.90 20492.87 4588.67 28591.06 29580.34 26790.03 26491.67 28983.34 22794.42 32476.35 30594.84 28890.64 334
tpmrst82.85 30282.93 30082.64 32687.65 34158.99 35490.14 24687.90 31175.54 30283.93 32591.63 29066.79 31395.36 31381.21 26481.54 34993.57 311
WTY-MVS86.93 28086.50 27888.24 29194.96 23674.64 30287.19 30192.07 28878.29 28988.32 29491.59 29178.06 27194.27 32774.88 31293.15 31395.80 254
DPM-MVS89.35 23188.40 23992.18 20196.13 18884.20 18386.96 30596.15 19675.40 30487.36 30591.55 29283.30 22898.01 22082.17 25596.62 25394.32 291
EPMVS81.17 31280.37 31483.58 32385.58 35265.08 34690.31 24071.34 35477.31 29585.80 31491.30 29359.38 34292.70 33879.99 27482.34 34892.96 316
Fast-Effi-MVS+-dtu92.77 15692.16 16594.58 11994.66 25188.25 11392.05 18496.65 17089.62 15190.08 26291.23 29492.56 9998.60 17086.30 21296.27 25996.90 211
cdsmvs_eth3d_5k23.35 32531.13 3280.00 3410.00 3620.00 3630.00 35395.58 2150.00 3580.00 35991.15 29593.43 750.00 3590.00 3570.00 3570.00 355
lupinMVS88.34 25187.31 25991.45 22094.74 24580.06 23387.23 29992.27 28271.10 32488.83 28191.15 29577.02 28098.53 17986.67 20496.75 25095.76 256
API-MVS91.52 18591.61 17891.26 22694.16 26086.26 15894.66 10094.82 23491.17 12092.13 23191.08 29790.03 16197.06 27379.09 28697.35 23190.45 335
thres600view787.66 26287.10 26689.36 27296.05 19273.17 31492.72 15385.31 33291.89 9293.29 19390.97 29863.42 33098.39 18973.23 31896.99 24496.51 222
thres100view90087.35 27086.89 26888.72 28296.14 18673.09 31693.00 14585.31 33292.13 8593.26 19690.96 29963.42 33098.28 19771.27 33096.54 25494.79 279
tpmvs84.22 29483.97 29384.94 31587.09 34765.18 34491.21 21688.35 30582.87 25385.21 31590.96 29965.24 32296.75 28379.60 28285.25 34292.90 317
xiu_mvs_v1_base_debu91.47 18691.52 18091.33 22395.69 21581.56 21389.92 25396.05 19883.22 24691.26 24390.74 30191.55 12198.82 13189.29 15695.91 26493.62 308
xiu_mvs_v1_base91.47 18691.52 18091.33 22395.69 21581.56 21389.92 25396.05 19883.22 24691.26 24390.74 30191.55 12198.82 13189.29 15695.91 26493.62 308
xiu_mvs_v1_base_debi91.47 18691.52 18091.33 22395.69 21581.56 21389.92 25396.05 19883.22 24691.26 24390.74 30191.55 12198.82 13189.29 15695.91 26493.62 308
1112_ss88.42 24987.41 25891.45 22096.69 14980.99 22289.72 25996.72 16773.37 31387.00 30890.69 30477.38 27698.20 20581.38 26193.72 30695.15 271
ab-mvs-re7.56 32810.08 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 35990.69 3040.00 3640.00 3590.00 3570.00 3570.00 355
Effi-MVS+92.79 15492.74 15392.94 17595.10 23483.30 19594.00 12297.53 10791.36 11589.35 27790.65 30694.01 6898.66 16487.40 19595.30 27996.88 213
mvs-test193.07 14791.80 17596.89 3994.74 24595.83 692.17 18095.41 22089.94 14489.85 26890.59 30790.12 15598.88 12187.68 18995.66 26995.97 246
GA-MVS87.70 26086.82 26990.31 25393.27 27677.22 28084.72 32892.79 27285.11 23089.82 26990.07 30866.80 31197.76 24384.56 23394.27 30095.96 247
EPNet_dtu85.63 28684.37 28989.40 27186.30 35074.33 30891.64 20788.26 30684.84 23572.96 35389.85 30971.27 30097.69 24776.60 30397.62 22296.18 239
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM81.91 30780.11 31787.31 30193.87 26972.32 32284.02 33493.22 26469.47 33276.13 35189.84 31072.15 29697.23 26853.27 35289.02 33592.37 323
tfpn200view987.05 27886.52 27688.67 28395.77 21072.94 31791.89 19486.00 32490.84 12592.61 21489.80 31163.93 32798.28 19771.27 33096.54 25494.79 279
thres40087.20 27486.52 27689.24 27695.77 21072.94 31791.89 19486.00 32490.84 12592.61 21489.80 31163.93 32798.28 19771.27 33096.54 25496.51 222
TR-MVS87.70 26087.17 26389.27 27494.11 26279.26 25188.69 28391.86 29081.94 26090.69 25389.79 31382.82 23497.42 26072.65 32291.98 32591.14 331
new_pmnet81.22 31081.01 31181.86 32890.92 31670.15 33084.03 33380.25 35170.83 32685.97 31389.78 31467.93 30784.65 35167.44 34091.90 32690.78 333
PAPR87.65 26386.77 27190.27 25592.85 28577.38 27788.56 28696.23 19076.82 29984.98 31889.75 31586.08 21297.16 27072.33 32393.35 30996.26 235
CLD-MVS91.82 17891.41 18593.04 16896.37 16483.65 19286.82 31097.29 12784.65 23892.27 22889.67 31692.20 10597.85 23483.95 23799.47 3897.62 181
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat180.61 31679.46 31984.07 32288.78 33865.06 34789.26 27188.23 30762.27 34881.90 34089.66 31762.70 33595.29 31671.72 32680.60 35091.86 328
pmmvs380.83 31378.96 32186.45 30687.23 34677.48 27684.87 32582.31 34463.83 34685.03 31789.50 31849.66 35493.10 33573.12 32095.10 28388.78 340
miper_enhance_ethall88.42 24987.87 25290.07 26188.67 34075.52 29985.10 32395.59 21375.68 30092.49 21789.45 31978.96 26297.88 22887.86 18797.02 23996.81 215
PVSNet_Blended88.74 24588.16 24990.46 25194.81 24178.80 26186.64 31496.93 15074.67 30588.68 29089.18 32086.27 21098.15 21180.27 27096.00 26294.44 288
dp79.28 31978.62 32281.24 32985.97 35156.45 35586.91 30685.26 33472.97 31681.45 34289.17 32156.01 34995.45 31173.19 31976.68 35191.82 329
ET-MVSNet_ETH3D86.15 28384.27 29191.79 21093.04 28281.28 21887.17 30286.14 32179.57 27583.65 32688.66 32257.10 34598.18 20887.74 18895.40 27695.90 251
xiu_mvs_v2_base89.00 23889.19 22488.46 28894.86 23974.63 30386.97 30495.60 21080.88 26487.83 30088.62 32391.04 13898.81 13682.51 25194.38 29691.93 326
Fast-Effi-MVS+91.28 19290.86 19692.53 19295.45 22682.53 20489.25 27396.52 17885.00 23289.91 26688.55 32492.94 8998.84 12984.72 23295.44 27596.22 237
thres20085.85 28585.18 28687.88 29694.44 25572.52 32089.08 27586.21 32088.57 17191.44 24088.40 32564.22 32598.00 22168.35 33895.88 26793.12 314
BH-w/o87.21 27387.02 26787.79 29794.77 24377.27 27987.90 28993.21 26681.74 26189.99 26588.39 32683.47 22696.93 27871.29 32992.43 32189.15 336
MAR-MVS90.32 21388.87 23394.66 11194.82 24091.85 5794.22 11694.75 23780.91 26387.52 30488.07 32786.63 20697.87 23176.67 30296.21 26094.25 292
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EIA-MVS92.35 16992.03 16893.30 16395.81 20983.97 18892.80 15298.17 3687.71 18789.79 27187.56 32891.17 13799.18 8187.97 18497.27 23296.77 216
baseline283.38 29781.54 30688.90 27891.38 31072.84 31988.78 28081.22 34778.97 28379.82 34687.56 32861.73 33897.80 23774.30 31390.05 33496.05 244
MVS84.98 29084.30 29087.01 30291.03 31377.69 27491.94 19194.16 25059.36 35084.23 32487.50 33085.66 21696.80 28271.79 32593.05 31686.54 342
PS-MVSNAJ88.86 24288.99 22988.48 28794.88 23774.71 30186.69 31395.60 21080.88 26487.83 30087.37 33190.77 14198.82 13182.52 25094.37 29791.93 326
131486.46 28286.33 27986.87 30491.65 30674.54 30491.94 19194.10 25174.28 30784.78 32087.33 33283.03 23195.00 31978.72 28791.16 33091.06 332
thisisatest051584.72 29182.99 29989.90 26492.96 28475.33 30084.36 33183.42 34277.37 29488.27 29586.65 33353.94 35098.72 15282.56 24997.40 22995.67 260
test0.0.03 182.48 30381.47 30785.48 31189.70 32873.57 31384.73 32681.64 34683.07 25088.13 29786.61 33462.86 33389.10 34966.24 34390.29 33393.77 304
IB-MVS77.21 1983.11 29881.05 30989.29 27391.15 31275.85 29685.66 32086.00 32479.70 27382.02 33986.61 33448.26 35698.39 18977.84 29292.22 32293.63 307
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVEpermissive59.87 2373.86 32372.65 32677.47 33487.00 34974.35 30761.37 35260.93 35767.27 33869.69 35486.49 33681.24 25372.33 35456.45 35183.45 34585.74 343
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet76.22 2082.89 30182.37 30184.48 31993.96 26664.38 34978.60 34588.61 30371.50 32284.43 32386.36 33774.27 28994.60 32169.87 33693.69 30794.46 287
CS-MVS92.54 16592.31 16393.23 16595.89 20584.07 18793.58 13398.48 988.60 17090.41 25886.23 33892.00 10999.35 5587.54 19198.06 19896.26 235
ETV-MVS92.99 14992.74 15393.72 14895.86 20686.30 15692.33 17397.84 8291.70 10892.81 20986.17 33992.22 10499.19 8088.03 18397.73 21495.66 261
cascas87.02 27986.28 28089.25 27591.56 30976.45 29084.33 33296.78 16271.01 32586.89 30985.91 34081.35 24996.94 27683.09 24495.60 27094.35 290
PMMVS83.00 30081.11 30888.66 28483.81 35786.44 15182.24 34185.65 32761.75 34982.07 33785.64 34179.75 25891.59 34275.99 30793.09 31487.94 341
CHOSEN 280x42080.04 31877.97 32486.23 30890.13 32474.53 30572.87 34889.59 30066.38 34076.29 35085.32 34256.96 34695.36 31369.49 33794.72 29188.79 339
test-LLR83.58 29683.17 29784.79 31789.68 32966.86 33983.08 33784.52 33783.07 25082.85 33284.78 34362.86 33393.49 33382.85 24594.86 28694.03 296
test-mter81.21 31180.01 31884.79 31789.68 32966.86 33983.08 33784.52 33773.85 31182.85 33284.78 34343.66 36193.49 33382.85 24594.86 28694.03 296
gm-plane-assit87.08 34859.33 35371.22 32383.58 34597.20 26973.95 314
TESTMET0.1,179.09 32078.04 32382.25 32787.52 34364.03 35083.08 33780.62 34970.28 32980.16 34583.22 34644.13 36090.56 34479.95 27593.36 30892.15 324
E-PMN80.72 31580.86 31280.29 33185.11 35368.77 33472.96 34781.97 34587.76 18683.25 33183.01 34762.22 33689.17 34877.15 30094.31 29982.93 346
EMVS80.35 31780.28 31680.54 33084.73 35569.07 33372.54 34980.73 34887.80 18581.66 34181.73 34862.89 33289.84 34675.79 30994.65 29382.71 347
DWT-MVSNet_test80.74 31479.18 32085.43 31287.51 34466.87 33889.87 25686.01 32374.20 30980.86 34380.62 34948.84 35596.68 28781.54 25983.14 34792.75 319
PVSNet_070.34 2174.58 32272.96 32579.47 33290.63 31866.24 34273.26 34683.40 34363.67 34778.02 34878.35 35072.53 29489.59 34756.68 35060.05 35482.57 348
GG-mvs-BLEND83.24 32585.06 35471.03 32694.99 9265.55 35674.09 35275.51 35144.57 35994.46 32359.57 34987.54 33984.24 344
DeepMVS_CXcopyleft53.83 33770.38 35864.56 34848.52 35933.01 35465.50 35574.21 35256.19 34846.64 35538.45 35470.07 35250.30 351
tmp_tt37.97 32444.33 32718.88 33811.80 35921.54 36063.51 35145.66 3604.23 35551.34 35650.48 35359.08 34322.11 35644.50 35368.35 35313.00 352
X-MVStestdata90.70 20088.45 23897.44 1798.56 3793.99 2596.50 3097.95 7394.58 4094.38 16526.89 35494.56 5899.39 4593.57 4199.05 9198.93 63
testmvs9.02 32711.42 3301.81 3402.77 3611.13 36279.44 3441.90 3611.18 3572.65 3586.80 3551.95 3630.87 3582.62 3563.45 3563.44 354
test1239.49 32612.01 3291.91 3392.87 3601.30 36182.38 3401.34 3621.36 3562.84 3576.56 3562.45 3620.97 3572.73 3555.56 3553.47 353
test_post6.07 35765.74 31995.84 303
test_post190.21 2425.85 35865.36 32096.00 30179.61 280
uanet_test0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
pcd_1.5k_mvsjas7.56 32810.09 3310.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 35990.77 1410.00 3590.00 3570.00 3570.00 355
sosnet-low-res0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
sosnet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
uncertanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
Regformer0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
uanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
IU-MVS98.51 4686.66 14696.83 15972.74 31795.83 10893.00 7299.29 6398.64 95
save fliter97.46 11788.05 11892.04 18597.08 14087.63 190
test_0728_SECOND94.88 10298.55 4086.72 14395.20 8198.22 3099.38 5193.44 5299.31 6098.53 106
GSMVS94.75 281
test_part298.21 6989.41 9096.72 68
sam_mvs166.64 31494.75 281
sam_mvs66.41 315
MTGPAbinary97.62 97
MTMP94.82 9454.62 358
test9_res88.16 18098.40 15697.83 164
agg_prior287.06 19998.36 16697.98 147
agg_prior96.20 18188.89 9996.88 15690.21 25998.78 142
test_prior489.91 8190.74 226
test_prior94.61 11295.95 20087.23 13097.36 12098.68 16297.93 153
旧先验290.00 25168.65 33492.71 21296.52 28985.15 222
新几何290.02 250
无先验89.94 25295.75 20770.81 32798.59 17281.17 26594.81 278
原ACMM289.34 268
testdata298.03 21780.24 272
segment_acmp92.14 106
testdata188.96 27788.44 173
test1294.43 12795.95 20086.75 14296.24 18989.76 27289.79 16298.79 13897.95 20697.75 173
plane_prior797.71 10088.68 103
plane_prior697.21 12788.23 11486.93 199
plane_prior597.81 8598.95 11489.26 15998.51 15098.60 102
plane_prior388.43 11290.35 14093.31 191
plane_prior294.56 10691.74 105
plane_prior197.38 120
plane_prior88.12 11693.01 14488.98 16098.06 198
n20.00 363
nn0.00 363
door-mid92.13 287
test1196.65 170
door91.26 294
HQP5-MVS84.89 174
HQP-NCC96.36 16691.37 21187.16 19788.81 283
ACMP_Plane96.36 16691.37 21187.16 19788.81 283
BP-MVS86.55 207
HQP4-MVS88.81 28398.61 16898.15 131
HQP3-MVS97.31 12497.73 214
HQP2-MVS84.76 221
MDTV_nov1_ep13_2view42.48 35988.45 28767.22 33983.56 32866.80 31172.86 32194.06 295
ACMMP++_ref98.82 122
ACMMP++99.25 71
Test By Simon90.61 147