This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
PMVScopyleft87.21 1494.97 8695.33 7893.91 14998.97 1597.16 295.54 7595.85 21296.47 2193.40 20297.46 6695.31 3395.47 32786.18 22898.78 13689.11 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 26096.67 394.00 13295.41 22989.94 14991.93 24992.13 29590.12 15998.97 11987.68 20297.48 23997.67 187
RPSCF95.58 6594.89 9297.62 897.58 11496.30 495.97 5897.53 11292.42 7893.41 20097.78 4991.21 13697.77 25491.06 12097.06 25098.80 80
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
mvs-test193.07 15191.80 18196.89 3994.74 26095.83 692.17 19095.41 22989.94 14989.85 28490.59 32290.12 15998.88 12987.68 20295.66 28495.97 259
abl_697.31 597.12 1397.86 398.54 4295.32 796.61 2698.35 1995.81 3197.55 3697.44 6796.51 999.40 4394.06 3099.23 7998.85 76
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9594.85 5299.42 2993.49 4898.84 12498.00 152
RE-MVS-def96.66 2098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9595.40 2793.49 4898.84 12498.00 152
test117296.79 1596.52 2797.60 998.03 8494.87 1096.07 5498.06 5995.76 3296.89 6396.85 10694.85 5299.42 2993.35 6198.81 13298.53 112
SR-MVS96.70 1996.42 2997.54 1198.05 8094.69 1196.13 5198.07 5695.17 3796.82 6796.73 11795.09 4499.43 2892.99 7798.71 14198.50 114
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
mPP-MVS96.46 3296.05 5197.69 598.62 3194.65 1396.45 3497.74 9692.59 7695.47 12896.68 12094.50 6199.42 2993.10 7299.26 7598.99 53
CP-MVS96.44 3596.08 4997.54 1198.29 6394.62 1496.80 2198.08 5392.67 7595.08 15096.39 14094.77 5499.42 2993.17 6999.44 4598.58 110
FPMVS84.50 30483.28 30888.16 30596.32 18394.49 1585.76 33185.47 34683.09 26385.20 33394.26 23763.79 34286.58 36763.72 36391.88 34483.40 362
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5894.31 1696.79 2298.32 2096.69 1796.86 6597.56 5995.48 2598.77 15590.11 14999.44 4598.31 127
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 9994.12 12296.50 4898.00 8794.23 1791.48 22198.17 4090.72 13495.30 13796.47 13087.94 18796.98 28891.41 11797.61 23698.30 128
LS3D96.11 4895.83 6296.95 3794.75 25894.20 1897.34 1197.98 7297.31 1195.32 13696.77 11193.08 8999.20 8391.79 10598.16 20197.44 201
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4798.10 7694.07 1992.46 17498.13 4590.69 13593.75 19196.25 15198.03 297.02 28792.08 9695.55 28698.45 119
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2494.06 2096.10 5297.78 9592.73 7293.48 19996.72 11894.23 6699.42 2991.99 9999.29 6899.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PM-MVS93.33 13892.67 16195.33 8896.58 16294.06 2092.26 18792.18 29485.92 22996.22 9596.61 12585.64 22395.99 31990.35 13698.23 19495.93 261
MSP-MVS95.34 7494.63 10597.48 1498.67 2894.05 2296.41 3898.18 3691.26 12195.12 14695.15 20286.60 21299.50 1993.43 5796.81 26098.89 70
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2293.69 14197.62 10294.46 4596.29 8996.94 9993.56 7399.37 5694.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2295.88 6297.62 10294.46 4596.29 8996.94 9993.56 7399.37 5694.29 2499.42 4798.99 53
anonymousdsp96.74 1796.42 2997.68 798.00 8794.03 2596.97 1797.61 10587.68 20298.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
XVS96.49 2996.18 4297.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17396.49 12994.56 5999.39 4893.57 4499.05 10098.93 63
X-MVStestdata90.70 20788.45 24997.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17326.89 37194.56 5999.39 4893.57 4499.05 10098.93 63
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2897.16 1298.17 4093.11 7096.48 7997.36 7496.92 699.34 6294.31 2399.38 5598.92 67
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3393.88 2996.95 1898.18 3692.26 8596.33 8596.84 10995.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.35 497.24 1197.69 598.22 6993.87 3098.42 698.19 3596.95 1495.46 13099.23 493.45 7599.57 1395.34 1299.89 299.63 9
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2493.86 3199.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17996.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PGM-MVS96.32 4195.94 5597.43 1998.59 3693.84 3295.33 8198.30 2391.40 11895.76 11696.87 10595.26 3599.45 2392.77 8099.21 8299.00 51
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9193.82 3396.31 4498.25 2795.51 3596.99 6097.05 9495.63 2199.39 4893.31 6298.88 11998.75 85
ACMMPR96.46 3296.14 4597.41 2198.60 3493.82 3396.30 4697.96 7692.35 8295.57 12596.61 12594.93 5199.41 3693.78 3899.15 9099.00 51
region2R96.41 3796.09 4897.38 2398.62 3193.81 3596.32 4397.96 7692.26 8595.28 13996.57 12795.02 4799.41 3693.63 4299.11 9598.94 62
N_pmnet88.90 25287.25 27293.83 15394.40 27393.81 3584.73 33887.09 33179.36 29593.26 20892.43 29079.29 26891.68 35877.50 31297.22 24796.00 258
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9393.58 3794.09 12996.99 15391.05 12692.40 23595.22 20191.03 14299.25 7792.11 9498.69 14497.90 166
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3897.51 998.44 1292.35 8295.95 10796.41 13596.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS96.39 3996.17 4497.04 3198.51 4693.37 3996.30 4697.98 7292.35 8295.63 12296.47 13095.37 2899.27 7593.78 3899.14 9198.48 116
#test#95.89 5495.51 7197.04 3198.51 4693.37 3995.14 9097.98 7289.34 16395.63 12296.47 13095.37 2899.27 7591.99 9999.14 9198.48 116
ITE_SJBPF95.95 5797.34 12793.36 4196.55 18591.93 9494.82 16095.39 19791.99 11497.08 28585.53 23297.96 21897.41 202
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5693.04 4294.54 11798.05 6090.45 14296.31 8796.76 11392.91 9498.72 16191.19 11999.42 4798.32 125
CPTT-MVS94.74 9894.12 12296.60 4498.15 7393.01 4395.84 6397.66 10089.21 16993.28 20695.46 19188.89 17398.98 11589.80 15698.82 13097.80 177
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5195.96 21292.96 4489.48 27597.46 11685.14 24196.23 9495.42 19493.19 8498.08 22690.37 13598.76 13897.38 208
ACMM88.83 996.30 4396.07 5096.97 3598.39 5792.95 4594.74 10498.03 6590.82 13297.15 5196.85 10696.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL89.18 24488.02 26292.64 19195.90 21792.87 4688.67 29691.06 30780.34 28390.03 28091.67 30483.34 23394.42 34176.35 32094.84 30390.64 351
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2692.79 4796.08 5398.16 4391.74 10995.34 13596.36 14395.68 1999.44 2494.41 2199.28 7398.97 59
GST-MVS96.24 4495.99 5497.00 3498.65 2992.71 4895.69 6998.01 6992.08 9095.74 11896.28 14895.22 3799.42 2993.17 6999.06 9798.88 72
mvs_tets96.83 996.71 1997.17 2798.83 2292.51 4996.58 2897.61 10587.57 20598.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
jajsoiax96.59 2796.42 2997.12 2998.76 2792.49 5096.44 3697.42 11886.96 21498.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
AllTest94.88 9194.51 11096.00 5598.02 8592.17 5195.26 8498.43 1390.48 14095.04 15296.74 11592.54 10497.86 24585.11 23998.98 10897.98 156
TestCases96.00 5598.02 8592.17 5198.43 1390.48 14095.04 15296.74 11592.54 10497.86 24585.11 23998.98 10897.98 156
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6192.13 5395.33 8198.25 2791.78 10597.07 5397.22 8596.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6192.13 5398.25 2791.78 10597.07 5397.22 8596.38 1399.28 7392.07 9799.59 2799.11 41
LF4IMVS92.72 16392.02 17494.84 10895.65 23191.99 5592.92 15796.60 18085.08 24592.44 23393.62 25986.80 20896.35 31086.81 21498.25 19196.18 252
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3091.96 5695.70 6798.01 6993.34 6796.64 7496.57 12794.99 4999.36 5893.48 5199.34 5898.82 78
Skip Steuart: Steuart Systems R&D Blog.
F-COLMAP92.28 17691.06 20095.95 5797.52 11791.90 5793.53 14497.18 14083.98 25588.70 30694.04 24588.41 17898.55 18980.17 28795.99 27797.39 206
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 6994.15 5098.93 399.07 588.07 18399.57 1395.86 999.69 1599.46 18
MAR-MVS90.32 22188.87 24494.66 11694.82 25491.85 5894.22 12494.75 24680.91 27987.52 32188.07 34486.63 21197.87 24476.67 31796.21 27394.25 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_djsdf96.62 2396.49 2897.01 3398.55 4091.77 6097.15 1397.37 12088.98 17298.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
ACMP88.15 1395.71 6195.43 7596.54 4698.17 7291.73 6194.24 12398.08 5389.46 15996.61 7696.47 13095.85 1799.12 9390.45 13199.56 3398.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PHI-MVS94.34 11493.80 12795.95 5795.65 23191.67 6294.82 10197.86 8387.86 19693.04 21794.16 24291.58 12498.78 15190.27 14298.96 11497.41 202
ACMMP_NAP96.21 4596.12 4796.49 4998.90 1891.42 6394.57 11298.03 6590.42 14396.37 8297.35 7795.68 1999.25 7794.44 2099.34 5898.80 80
OMC-MVS94.22 12093.69 13295.81 6797.25 12991.27 6492.27 18697.40 11987.10 21394.56 16895.42 19493.74 7198.11 22586.62 21998.85 12398.06 144
MP-MVS-pluss96.08 4995.92 5796.57 4599.06 1091.21 6593.25 15098.32 2087.89 19596.86 6597.38 7095.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft95.77 5995.54 7096.47 5098.27 6591.19 6695.09 9197.79 9486.48 21897.42 4597.51 6494.47 6399.29 7193.55 4699.29 6898.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNLPA91.72 18791.20 19693.26 17196.17 19591.02 6791.14 22895.55 22590.16 14790.87 26393.56 26286.31 21494.40 34279.92 29397.12 24994.37 304
OPM-MVS95.61 6495.45 7396.08 5398.49 5491.00 6892.65 16697.33 12990.05 14896.77 7096.85 10695.04 4598.56 18792.77 8099.06 9798.70 94
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_LR93.66 13193.28 14794.80 10996.25 19090.95 6990.21 25395.43 22887.91 19393.74 19394.40 23392.88 9696.38 30890.39 13398.28 18697.07 216
Gipumacopyleft95.31 7795.80 6493.81 15497.99 9090.91 7096.42 3797.95 7896.69 1791.78 25198.85 1291.77 11995.49 32691.72 10899.08 9695.02 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVScopyleft95.00 8594.69 10095.93 6097.38 12590.88 7194.59 10997.81 9089.22 16895.46 13096.17 15693.42 7899.34 6289.30 16598.87 12297.56 194
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.93.07 15192.41 16895.06 10195.82 21990.87 7290.97 23292.61 28888.04 19294.61 16793.79 25688.08 18297.81 24989.41 16498.39 17196.50 239
3Dnovator+92.74 295.86 5795.77 6596.13 5296.81 15390.79 7396.30 4697.82 8996.13 2594.74 16497.23 8491.33 13099.16 8693.25 6698.30 18598.46 118
hse-mvs292.24 17891.20 19695.38 8596.16 19690.65 7492.52 16992.01 30189.23 16693.95 18592.99 27476.88 29098.69 16991.02 12196.03 27596.81 228
h-mvs3392.89 15691.99 17595.58 7996.97 14290.55 7593.94 13594.01 26489.23 16693.95 18596.19 15376.88 29099.14 8991.02 12195.71 28397.04 219
AUN-MVS90.05 23188.30 25295.32 9196.09 20290.52 7692.42 17792.05 30082.08 27588.45 30992.86 27665.76 33198.69 16988.91 17796.07 27496.75 232
testtj94.81 9694.42 11196.01 5497.23 13090.51 7794.77 10397.85 8691.29 12094.92 15795.66 17991.71 12199.40 4388.07 19598.25 19198.11 143
ZD-MVS97.23 13090.32 7897.54 11084.40 25394.78 16295.79 17192.76 9999.39 4888.72 18398.40 168
DeepC-MVS91.39 495.43 7095.33 7895.71 7597.67 10990.17 7993.86 13798.02 6787.35 20796.22 9597.99 4194.48 6299.05 10492.73 8399.68 1897.93 162
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft85.34 1590.40 21588.92 24194.85 10796.53 16990.02 8091.58 21996.48 18880.16 28586.14 32992.18 29385.73 22098.25 21476.87 31694.61 30996.30 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Regformer-294.86 9294.55 10795.77 7192.83 30289.98 8191.87 20896.40 19094.38 4796.19 9995.04 20992.47 10799.04 10793.49 4898.31 18398.28 129
ETH3D cwj APD-0.1693.99 12693.38 14495.80 6996.82 15189.92 8292.72 16298.02 6784.73 25193.65 19595.54 18891.68 12299.22 8188.78 18098.49 16498.26 131
test_prior489.91 8390.74 237
NCCC94.08 12493.54 13995.70 7696.49 17189.90 8492.39 17996.91 16090.64 13792.33 24194.60 22790.58 15298.96 12090.21 14697.70 23198.23 132
DPE-MVScopyleft95.89 5495.88 5895.92 6297.93 9289.83 8593.46 14698.30 2392.37 8097.75 2996.95 9895.14 3999.51 1891.74 10799.28 7398.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETH3D-3000-0.194.86 9294.55 10795.81 6797.61 11289.72 8694.05 13098.37 1788.09 19195.06 15195.85 16692.58 10299.10 9790.33 13998.99 10798.62 105
TAPA-MVS88.58 1092.49 17191.75 18394.73 11296.50 17089.69 8792.91 15897.68 9978.02 30792.79 22394.10 24390.85 14397.96 23784.76 24598.16 20196.54 234
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SF-MVS95.88 5695.88 5895.87 6698.12 7489.65 8895.58 7398.56 1191.84 10196.36 8396.68 12094.37 6499.32 6892.41 9199.05 10098.64 101
MSC_two_6792asdad95.90 6396.54 16689.57 8996.87 16499.41 3694.06 3099.30 6598.72 91
No_MVS95.90 6396.54 16689.57 8996.87 16499.41 3694.06 3099.30 6598.72 91
TEST996.45 17389.46 9190.60 24196.92 15879.09 29890.49 26994.39 23491.31 13198.88 129
train_agg92.71 16491.83 17995.35 8696.45 17389.46 9190.60 24196.92 15879.37 29390.49 26994.39 23491.20 13798.88 12988.66 18498.43 16697.72 183
OPU-MVS95.15 9896.84 15089.43 9395.21 8595.66 17993.12 8798.06 22786.28 22798.61 15097.95 160
test_part298.21 7089.41 9496.72 71
Vis-MVSNetpermissive95.50 6795.48 7295.56 8198.11 7589.40 9595.35 7998.22 3292.36 8194.11 17798.07 3692.02 11299.44 2493.38 6097.67 23397.85 172
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APDe-MVS96.46 3296.64 2295.93 6097.68 10889.38 9696.90 1998.41 1692.52 7797.43 4397.92 4495.11 4299.50 1994.45 1999.30 6598.92 67
CNVR-MVS94.58 10494.29 11695.46 8496.94 14489.35 9791.81 21496.80 16989.66 15593.90 18895.44 19392.80 9898.72 16192.74 8298.52 15998.32 125
test_896.37 17589.14 9890.51 24496.89 16179.37 29390.42 27194.36 23691.20 13798.82 139
ACMH+88.43 1196.48 3096.82 1695.47 8398.54 4289.06 9995.65 7098.61 996.10 2698.16 2397.52 6296.90 798.62 17890.30 14099.60 2598.72 91
Regformer-494.90 8994.67 10395.59 7892.78 30489.02 10092.39 17995.91 20994.50 4396.41 8095.56 18692.10 11199.01 11294.23 2698.14 20398.74 88
MIMVSNet195.52 6695.45 7395.72 7499.14 589.02 10096.23 4996.87 16493.73 5997.87 2798.49 2490.73 14899.05 10486.43 22499.60 2599.10 44
UniMVSNet (Re)95.32 7595.15 8595.80 6997.79 9888.91 10292.91 15898.07 5693.46 6596.31 8795.97 16390.14 15899.34 6292.11 9499.64 2399.16 36
agg_prior192.60 16791.76 18295.10 10096.20 19288.89 10390.37 24896.88 16279.67 29090.21 27494.41 23291.30 13298.78 15188.46 18798.37 17897.64 189
agg_prior96.20 19288.89 10396.88 16290.21 27498.78 151
SD-MVS95.19 8195.73 6693.55 16096.62 16088.88 10594.67 10698.05 6091.26 12197.25 5096.40 13695.42 2694.36 34392.72 8499.19 8497.40 205
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.96 8794.75 9795.57 8098.86 2188.69 10696.37 3996.81 16885.23 23894.75 16397.12 9091.85 11799.40 4393.45 5398.33 18098.62 105
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
plane_prior797.71 10488.68 107
wuyk23d87.83 26990.79 20678.96 34990.46 33888.63 10892.72 16290.67 31191.65 11398.68 1197.64 5696.06 1677.53 37059.84 36599.41 5270.73 368
DP-MVS95.62 6395.84 6194.97 10397.16 13588.62 10994.54 11797.64 10196.94 1596.58 7797.32 8093.07 9098.72 16190.45 13198.84 12497.57 192
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7297.69 10788.59 11092.26 18797.84 8794.91 3896.80 6895.78 17490.42 15399.41 3691.60 11299.58 3199.29 28
DU-MVS95.28 7895.12 8795.75 7397.75 10088.59 11092.58 16797.81 9093.99 5296.80 6895.90 16490.10 16299.41 3691.60 11299.58 3199.26 29
nrg03096.32 4196.55 2695.62 7797.83 9588.55 11295.77 6598.29 2692.68 7398.03 2697.91 4595.13 4098.95 12293.85 3699.49 3899.36 24
Regformer-194.55 10594.33 11595.19 9692.83 30288.54 11391.87 20895.84 21393.99 5295.95 10795.04 20992.00 11398.79 14793.14 7198.31 18398.23 132
PS-MVSNAJss96.01 5196.04 5295.89 6598.82 2388.51 11495.57 7497.88 8288.72 17898.81 698.86 1090.77 14499.60 895.43 1199.53 3599.57 13
CDPH-MVS92.67 16591.83 17995.18 9796.94 14488.46 11590.70 23997.07 14877.38 30992.34 24095.08 20792.67 10198.88 12985.74 23098.57 15398.20 136
plane_prior388.43 11690.35 14593.31 203
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12494.66 26688.25 11792.05 19496.65 17889.62 15690.08 27791.23 30992.56 10398.60 18186.30 22696.27 27296.90 224
plane_prior697.21 13388.23 11886.93 204
RRT_MVS91.36 19690.05 22395.29 9289.21 35188.15 11992.51 17394.89 24086.73 21795.54 12695.68 17861.82 35099.30 7094.91 1399.13 9498.43 120
HQP_MVS94.26 11893.93 12495.23 9597.71 10488.12 12094.56 11397.81 9091.74 10993.31 20395.59 18186.93 20498.95 12289.26 16998.51 16198.60 108
plane_prior88.12 12093.01 15488.98 17298.06 211
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8897.46 12288.05 12292.04 19598.42 1587.63 20396.36 8396.68 12094.37 6499.32 6892.41 9199.05 10098.64 101
save fliter97.46 12288.05 12292.04 19597.08 14787.63 203
UGNet93.08 14992.50 16694.79 11093.87 28587.99 12495.07 9394.26 25890.64 13787.33 32397.67 5486.89 20798.49 19388.10 19398.71 14197.91 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12196.14 19887.90 12593.36 14997.14 14285.53 23593.90 18895.45 19291.30 13298.59 18389.51 16298.62 14997.31 211
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG94.69 10094.75 9794.52 12597.55 11687.87 12695.01 9697.57 10892.68 7396.20 9793.44 26491.92 11698.78 15189.11 17399.24 7896.92 223
pmmvs-eth3d91.54 19190.73 20893.99 14295.76 22487.86 12790.83 23593.98 26578.23 30694.02 18496.22 15282.62 24496.83 29486.57 22098.33 18097.29 212
pmmvs696.80 1397.36 995.15 9899.12 887.82 12896.68 2497.86 8396.10 2698.14 2499.28 397.94 398.21 21691.38 11899.69 1599.42 19
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8298.26 6687.69 12993.75 13997.86 8395.96 3097.48 4197.14 8995.33 3299.44 2490.79 12699.76 1199.38 22
DROMVSNet95.44 6995.62 6994.89 10596.93 14687.69 12996.48 3399.14 393.93 5592.77 22494.52 23093.95 7099.49 2293.62 4399.22 8197.51 197
alignmvs93.26 14392.85 15494.50 12695.70 22787.45 13193.45 14795.76 21491.58 11495.25 14292.42 29181.96 25198.72 16191.61 11197.87 22397.33 210
112190.26 22389.23 23393.34 16797.15 13787.40 13291.94 20294.39 25467.88 35491.02 26294.91 21586.91 20698.59 18381.17 27997.71 23094.02 313
UniMVSNet_ETH3D97.13 697.72 395.35 8699.51 287.38 13397.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12799.73 1499.59 12
新几何193.17 17397.16 13587.29 13494.43 25367.95 35391.29 25694.94 21486.97 20398.23 21581.06 28197.75 22693.98 314
test_prior393.29 14092.85 15494.61 11795.95 21387.23 13590.21 25397.36 12589.33 16490.77 26494.81 21990.41 15498.68 17188.21 18898.55 15497.93 162
test_prior94.61 11795.95 21387.23 13597.36 12598.68 17197.93 162
NR-MVSNet95.28 7895.28 8195.26 9397.75 10087.21 13795.08 9297.37 12093.92 5797.65 3195.90 16490.10 16299.33 6790.11 14999.66 2199.26 29
test_one_060198.26 6687.14 13898.18 3694.25 4896.99 6097.36 7495.13 40
NP-MVS96.82 15187.10 13993.40 265
MVS_030490.96 20290.15 22193.37 16693.17 29487.06 14093.62 14392.43 29289.60 15782.25 35295.50 18982.56 24597.83 24884.41 24997.83 22595.22 283
3Dnovator92.54 394.80 9794.90 9194.47 12995.47 23887.06 14096.63 2597.28 13591.82 10494.34 17597.41 6890.60 15198.65 17692.47 8998.11 20797.70 184
canonicalmvs94.59 10394.69 10094.30 13595.60 23587.03 14295.59 7198.24 3091.56 11595.21 14592.04 29794.95 5098.66 17491.45 11697.57 23797.20 215
SED-MVS96.00 5296.41 3294.76 11198.51 4686.97 14395.21 8598.10 4991.95 9297.63 3297.25 8296.48 1199.35 5993.29 6399.29 6897.95 160
test_241102_ONE98.51 4686.97 14398.10 4991.85 9897.63 3297.03 9596.48 1198.95 122
MVS_111021_HR93.63 13293.42 14394.26 13696.65 15786.96 14589.30 28196.23 19888.36 18793.57 19794.60 22793.45 7597.77 25490.23 14498.38 17398.03 150
DP-MVS Recon92.31 17591.88 17893.60 15897.18 13486.87 14691.10 23097.37 12084.92 24892.08 24694.08 24488.59 17598.20 21783.50 25498.14 20395.73 271
v7n96.82 1097.31 1095.33 8898.54 4286.81 14796.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
test1294.43 13295.95 21386.75 14896.24 19789.76 28889.79 16698.79 14797.95 21997.75 182
test_0728_SECOND94.88 10698.55 4086.72 14995.20 8798.22 3299.38 5493.44 5599.31 6398.53 112
DVP-MVScopyleft95.82 5896.18 4294.72 11398.51 4686.69 15095.20 8797.00 15191.85 9897.40 4697.35 7795.58 2299.34 6293.44 5599.31 6398.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4686.69 15095.34 8098.18 3691.85 9897.63 3297.37 7195.58 22
DVP-MVS++95.93 5396.34 3494.70 11496.54 16686.66 15298.45 498.22 3293.26 6897.54 3797.36 7493.12 8799.38 5493.88 3498.68 14598.04 147
IU-MVS98.51 4686.66 15296.83 16772.74 33495.83 11493.00 7699.29 6898.64 101
EG-PatchMatch MVS94.54 10794.67 10394.14 13997.87 9486.50 15492.00 19896.74 17488.16 19096.93 6297.61 5793.04 9197.90 23991.60 11298.12 20698.03 150
MVP-Stereo90.07 23088.92 24193.54 16296.31 18486.49 15590.93 23395.59 22279.80 28691.48 25395.59 18180.79 26097.39 27678.57 30491.19 34696.76 231
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet89.55 23988.22 25793.53 16395.37 24386.49 15589.26 28293.59 26879.76 28891.15 26092.31 29277.12 28698.38 20277.51 31197.92 22195.71 272
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet94.49 10894.35 11494.92 10498.25 6886.46 15797.13 1594.31 25696.24 2496.28 9296.36 14382.88 23899.35 5988.19 19099.52 3798.96 60
WR-MVS_H96.60 2597.05 1495.24 9499.02 1286.44 15896.78 2398.08 5397.42 998.48 1697.86 4891.76 12099.63 694.23 2699.84 399.66 6
PMMVS83.00 31281.11 32088.66 29783.81 37386.44 15882.24 35485.65 34361.75 36682.07 35485.64 35779.75 26591.59 35975.99 32293.09 32987.94 358
TAMVS90.16 22589.05 23893.49 16596.49 17186.37 16090.34 25092.55 28980.84 28292.99 21894.57 22981.94 25298.20 21773.51 33398.21 19795.90 264
AdaColmapbinary91.63 18991.36 19292.47 20195.56 23686.36 16192.24 18996.27 19588.88 17689.90 28392.69 28291.65 12398.32 20777.38 31397.64 23492.72 337
Anonymous2023121196.60 2597.13 1295.00 10297.46 12286.35 16297.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
ETV-MVS92.99 15392.74 15893.72 15595.86 21886.30 16392.33 18397.84 8791.70 11292.81 22286.17 35592.22 10899.19 8488.03 19697.73 22795.66 275
Regformer-394.28 11694.23 12194.46 13092.78 30486.28 16492.39 17994.70 24893.69 6395.97 10595.56 18691.34 12998.48 19793.45 5398.14 20398.62 105
API-MVS91.52 19291.61 18491.26 23494.16 27686.26 16594.66 10794.82 24391.17 12492.13 24591.08 31290.03 16597.06 28679.09 30197.35 24490.45 352
EPNet89.80 23888.25 25494.45 13183.91 37286.18 16693.87 13687.07 33291.16 12580.64 36194.72 22478.83 27098.89 12885.17 23498.89 11798.28 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM85.08 30183.04 31091.19 23987.56 35886.14 16789.40 27884.44 35588.98 17282.20 35397.95 4256.82 36096.15 31376.55 31983.45 36291.30 347
VDD-MVS94.37 11194.37 11394.40 13397.49 11986.07 16893.97 13493.28 27394.49 4496.24 9397.78 4987.99 18698.79 14788.92 17699.14 9198.34 124
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11792.55 30685.98 16992.44 17594.69 24993.70 6096.12 10295.81 17091.24 13498.86 13493.76 4198.22 19698.98 58
Anonymous2024052995.50 6795.83 6294.50 12697.33 12885.93 17095.19 8996.77 17296.64 1997.61 3598.05 3793.23 8398.79 14788.60 18599.04 10598.78 82
EI-MVSNet-UG-set94.35 11394.27 11994.59 12292.46 30785.87 17192.42 17794.69 24993.67 6496.13 10195.84 16991.20 13798.86 13493.78 3898.23 19499.03 49
PCF-MVS84.52 1789.12 24687.71 26593.34 16796.06 20485.84 17286.58 32997.31 13068.46 35293.61 19693.89 25387.51 19398.52 19167.85 35698.11 20795.66 275
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_040295.73 6096.22 4094.26 13698.19 7185.77 17393.24 15197.24 13796.88 1697.69 3097.77 5194.12 6899.13 9191.54 11599.29 6897.88 168
MCST-MVS92.91 15592.51 16594.10 14097.52 11785.72 17491.36 22597.13 14480.33 28492.91 22194.24 23891.23 13598.72 16189.99 15397.93 22097.86 170
pmmvs488.95 25187.70 26692.70 18994.30 27485.60 17587.22 31192.16 29674.62 32389.75 28994.19 24077.97 27996.41 30682.71 26196.36 27196.09 254
EPP-MVSNet93.91 12793.68 13394.59 12298.08 7785.55 17697.44 1094.03 26194.22 4994.94 15596.19 15382.07 24999.57 1387.28 20998.89 11798.65 97
CMPMVSbinary68.83 2287.28 28285.67 29592.09 21288.77 35585.42 17790.31 25194.38 25570.02 34788.00 31593.30 26773.78 30294.03 34775.96 32396.54 26796.83 227
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMH88.36 1296.59 2797.43 594.07 14198.56 3785.33 17896.33 4298.30 2394.66 4098.72 898.30 3097.51 598.00 23394.87 1499.59 2798.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22296.95 14385.27 17988.83 29093.61 26765.09 36190.74 26694.85 21884.62 22897.36 24393.91 315
GeoE94.55 10594.68 10294.15 13897.23 13085.11 18094.14 12797.34 12888.71 17995.26 14095.50 18994.65 5799.12 9390.94 12498.40 16898.23 132
pm-mvs195.43 7095.94 5593.93 14798.38 5885.08 18195.46 7897.12 14591.84 10197.28 4898.46 2595.30 3497.71 25990.17 14799.42 4798.99 53
HQP5-MVS84.89 182
HQP-MVS92.09 18191.49 18993.88 15196.36 17784.89 18291.37 22297.31 13087.16 21088.81 30093.40 26584.76 22698.60 18186.55 22197.73 22798.14 139
DTE-MVSNet96.74 1797.43 594.67 11599.13 684.68 18496.51 3097.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 18596.54 2998.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
ETH3 D test640091.91 18491.25 19593.89 15096.59 16184.41 18692.10 19297.72 9878.52 30391.82 25093.78 25788.70 17499.13 9183.61 25398.39 17198.14 139
GBi-Net93.21 14692.96 15193.97 14495.40 24084.29 18795.99 5596.56 18288.63 18095.10 14798.53 2181.31 25698.98 11586.74 21598.38 17398.65 97
test193.21 14692.96 15193.97 14495.40 24084.29 18795.99 5596.56 18288.63 18095.10 14798.53 2181.31 25698.98 11586.74 21598.38 17398.65 97
FMVSNet194.84 9495.13 8693.97 14497.60 11384.29 18795.99 5596.56 18292.38 7997.03 5798.53 2190.12 15998.98 11588.78 18099.16 8998.65 97
原ACMM192.87 18396.91 14784.22 19097.01 15076.84 31489.64 29094.46 23188.00 18598.70 16781.53 27498.01 21695.70 273
DPM-MVS89.35 24288.40 25092.18 20996.13 20184.20 19186.96 31696.15 20475.40 32087.36 32291.55 30783.30 23498.01 23282.17 26996.62 26694.32 306
旧先验196.20 19284.17 19294.82 24395.57 18589.57 16897.89 22296.32 246
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19094.53 27084.10 19395.70 6797.03 14982.44 27291.14 26196.42 13488.47 17798.38 20285.95 22997.47 24095.55 279
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 19496.61 2697.97 7597.91 598.64 1398.13 3395.24 3699.65 393.39 5999.84 399.72 2
EIA-MVS92.35 17492.03 17393.30 17095.81 22183.97 19592.80 16198.17 4087.71 20089.79 28787.56 34591.17 14099.18 8587.97 19797.27 24596.77 230
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18097.73 10383.95 19692.14 19197.46 11678.85 30292.35 23894.98 21284.16 23099.08 9986.36 22596.77 26295.79 269
CP-MVSNet96.19 4696.80 1794.38 13498.99 1483.82 19796.31 4497.53 11297.60 798.34 1997.52 6291.98 11599.63 693.08 7499.81 999.70 3
lessismore_v093.87 15298.05 8083.77 19880.32 36697.13 5297.91 4577.49 28199.11 9592.62 8698.08 21098.74 88
CLD-MVS91.82 18591.41 19193.04 17496.37 17583.65 19986.82 32197.29 13384.65 25292.27 24289.67 33192.20 10997.85 24783.95 25199.47 3997.62 190
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet92.38 17391.99 17593.52 16493.82 28783.46 20091.14 22897.00 15189.81 15386.47 32794.04 24587.90 18899.21 8289.50 16398.27 18797.90 166
QAPM92.88 15792.77 15693.22 17295.82 21983.31 20196.45 3497.35 12783.91 25693.75 19196.77 11189.25 17198.88 12984.56 24797.02 25297.49 198
Effi-MVS+92.79 16092.74 15892.94 18095.10 24883.30 20294.00 13297.53 11291.36 11989.35 29390.65 32194.01 6998.66 17487.40 20795.30 29496.88 226
Anonymous20240521192.58 16892.50 16692.83 18596.55 16583.22 20392.43 17691.64 30494.10 5195.59 12496.64 12381.88 25397.50 26785.12 23898.52 15997.77 179
SixPastTwentyTwo94.91 8895.21 8393.98 14398.52 4583.19 20495.93 5994.84 24294.86 3998.49 1598.74 1681.45 25499.60 894.69 1699.39 5499.15 37
VPA-MVSNet95.14 8295.67 6893.58 15997.76 9983.15 20594.58 11197.58 10793.39 6697.05 5698.04 3893.25 8298.51 19289.75 15999.59 2799.08 45
LCM-MVSNet-Re94.20 12194.58 10693.04 17495.91 21683.13 20693.79 13899.19 292.00 9198.84 598.04 3893.64 7299.02 11081.28 27698.54 15796.96 222
CS-MVS-test93.33 13893.53 14192.71 18895.74 22583.08 20794.55 11598.85 591.02 12789.30 29491.91 29891.79 11899.23 8090.23 14498.41 16795.82 267
MSDG90.82 20390.67 20991.26 23494.16 27683.08 20786.63 32696.19 20190.60 13991.94 24891.89 29989.16 17295.75 32180.96 28294.51 31094.95 291
ambc92.98 17696.88 14883.01 20995.92 6096.38 19296.41 8097.48 6588.26 17997.80 25089.96 15498.93 11698.12 142
test_part194.39 11094.55 10793.92 14896.14 19882.86 21095.54 7598.09 5295.36 3698.27 2098.36 2875.91 29599.44 2493.41 5899.84 399.47 17
MSLP-MVS++93.25 14593.88 12591.37 23096.34 18182.81 21193.11 15297.74 9689.37 16294.08 17995.29 20090.40 15696.35 31090.35 13698.25 19194.96 290
K. test v393.37 13793.27 14893.66 15698.05 8082.62 21294.35 12086.62 33496.05 2897.51 4098.85 1276.59 29399.65 393.21 6798.20 19998.73 90
Fast-Effi-MVS+91.28 19990.86 20392.53 19895.45 23982.53 21389.25 28496.52 18685.00 24689.91 28288.55 34192.94 9298.84 13784.72 24695.44 29096.22 250
VDDNet94.03 12594.27 11993.31 16998.87 2082.36 21495.51 7791.78 30397.19 1296.32 8698.60 1884.24 22998.75 15687.09 21298.83 12998.81 79
114514_t90.51 21189.80 22792.63 19398.00 8782.24 21593.40 14897.29 13365.84 35989.40 29294.80 22286.99 20298.75 15683.88 25298.61 15096.89 225
testdata91.03 24296.87 14982.01 21694.28 25771.55 33892.46 23295.42 19485.65 22297.38 27882.64 26297.27 24593.70 321
FMVSNet292.78 16192.73 16092.95 17995.40 24081.98 21794.18 12595.53 22688.63 18096.05 10497.37 7181.31 25698.81 14487.38 20898.67 14798.06 144
TransMVSNet (Re)95.27 8096.04 5292.97 17798.37 6081.92 21895.07 9396.76 17393.97 5497.77 2898.57 1995.72 1897.90 23988.89 17899.23 7999.08 45
FC-MVSNet-test95.32 7595.88 5893.62 15798.49 5481.77 21995.90 6198.32 2093.93 5597.53 3997.56 5988.48 17699.40 4392.91 7999.83 699.68 4
FIs94.90 8995.35 7693.55 16098.28 6481.76 22095.33 8198.14 4493.05 7197.07 5397.18 8787.65 19099.29 7191.72 10899.69 1599.61 11
ab-mvs92.40 17292.62 16291.74 22097.02 14081.65 22195.84 6395.50 22786.95 21592.95 22097.56 5990.70 14997.50 26779.63 29497.43 24196.06 256
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23195.69 22881.56 22289.92 26496.05 20683.22 26091.26 25790.74 31691.55 12598.82 13989.29 16695.91 27893.62 323
xiu_mvs_v1_base91.47 19391.52 18691.33 23195.69 22881.56 22289.92 26496.05 20683.22 26091.26 25790.74 31691.55 12598.82 13989.29 16695.91 27893.62 323
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23195.69 22881.56 22289.92 26496.05 20683.22 26091.26 25790.74 31691.55 12598.82 13989.29 16695.91 27893.62 323
casdiffmvs94.32 11594.80 9592.85 18496.05 20581.44 22592.35 18298.05 6091.53 11695.75 11796.80 11093.35 8098.49 19391.01 12398.32 18298.64 101
bset_n11_16_dypcd89.99 23389.15 23692.53 19894.75 25881.34 22684.19 34587.56 32885.13 24293.77 19092.46 28672.82 30499.01 11292.46 9099.21 8297.23 213
ET-MVSNet_ETH3D86.15 29484.27 30391.79 21893.04 29881.28 22787.17 31386.14 33779.57 29183.65 34388.66 33957.10 35898.18 22087.74 20195.40 29195.90 264
V4293.43 13693.58 13692.97 17795.34 24481.22 22892.67 16596.49 18787.25 20996.20 9796.37 14287.32 19698.85 13692.39 9398.21 19798.85 76
OpenMVS_ROBcopyleft85.12 1689.52 24189.05 23890.92 24794.58 26881.21 22991.10 23093.41 27277.03 31393.41 20093.99 24983.23 23597.80 25079.93 29194.80 30493.74 320
PAPM_NR91.03 20190.81 20591.68 22396.73 15581.10 23093.72 14096.35 19388.19 18988.77 30492.12 29685.09 22597.25 28082.40 26693.90 31896.68 233
baseline94.26 11894.80 9592.64 19196.08 20380.99 23193.69 14198.04 6490.80 13394.89 15896.32 14593.19 8498.48 19791.68 11098.51 16198.43 120
1112_ss88.42 26087.41 26991.45 22896.69 15680.99 23189.72 27096.72 17573.37 33087.00 32590.69 31977.38 28398.20 21781.38 27593.72 32195.15 285
tfpnnormal94.27 11794.87 9392.48 20097.71 10480.88 23394.55 11595.41 22993.70 6096.67 7397.72 5291.40 12898.18 22087.45 20599.18 8698.36 123
Baseline_NR-MVSNet94.47 10995.09 8892.60 19598.50 5380.82 23492.08 19396.68 17693.82 5896.29 8998.56 2090.10 16297.75 25790.10 15199.66 2199.24 31
HyFIR lowres test87.19 28685.51 29692.24 20497.12 13980.51 23585.03 33696.06 20566.11 35891.66 25292.98 27570.12 31499.14 8975.29 32595.23 29697.07 216
UnsupCasMVSNet_eth90.33 22090.34 21690.28 26594.64 26780.24 23689.69 27195.88 21085.77 23193.94 18795.69 17781.99 25092.98 35484.21 25091.30 34597.62 190
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22694.68 26580.16 23785.49 33392.14 29790.41 14494.93 15695.79 17185.10 22496.93 29185.15 23694.19 31797.57 192
v1094.68 10195.27 8292.90 18296.57 16380.15 23894.65 10897.57 10890.68 13697.43 4398.00 4088.18 18099.15 8794.84 1599.55 3499.41 20
VNet92.67 16592.96 15191.79 21896.27 18780.15 23891.95 20094.98 23792.19 8894.52 17096.07 15887.43 19497.39 27684.83 24398.38 17397.83 173
DELS-MVS92.05 18292.16 17091.72 22194.44 27180.13 24087.62 30297.25 13687.34 20892.22 24393.18 27189.54 16998.73 16089.67 16098.20 19996.30 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason89.17 24588.32 25191.70 22295.73 22680.07 24188.10 29993.22 27471.98 33790.09 27692.79 27978.53 27598.56 18787.43 20697.06 25096.46 241
jason: jason.
MVSFormer92.18 17992.23 16992.04 21494.74 26080.06 24297.15 1397.37 12088.98 17288.83 29892.79 27977.02 28799.60 896.41 496.75 26396.46 241
lupinMVS88.34 26287.31 27091.45 22894.74 26080.06 24287.23 31092.27 29371.10 34188.83 29891.15 31077.02 28798.53 19086.67 21896.75 26395.76 270
WR-MVS93.49 13493.72 13092.80 18697.57 11580.03 24490.14 25795.68 21693.70 6096.62 7595.39 19787.21 19899.04 10787.50 20499.64 2399.33 25
CANet_DTU89.85 23689.17 23591.87 21692.20 31280.02 24590.79 23695.87 21186.02 22782.53 35191.77 30280.01 26498.57 18685.66 23197.70 23197.01 220
Patchmatch-RL test88.81 25488.52 24789.69 28095.33 24579.94 24686.22 33092.71 28478.46 30495.80 11594.18 24166.25 32995.33 33289.22 17198.53 15893.78 318
FMVSNet390.78 20590.32 21792.16 21093.03 29979.92 24792.54 16894.95 23886.17 22595.10 14796.01 16169.97 31598.75 15686.74 21598.38 17397.82 175
XXY-MVS92.58 16893.16 15090.84 25197.75 10079.84 24891.87 20896.22 20085.94 22895.53 12797.68 5392.69 10094.48 33983.21 25797.51 23898.21 135
test_yl90.11 22789.73 23091.26 23494.09 27979.82 24990.44 24592.65 28590.90 12893.19 21293.30 26773.90 30098.03 22982.23 26796.87 25895.93 261
DCV-MVSNet90.11 22789.73 23091.26 23494.09 27979.82 24990.44 24592.65 28590.90 12893.19 21293.30 26773.90 30098.03 22982.23 26796.87 25895.93 261
FMVSNet587.82 27086.56 28591.62 22492.31 30879.81 25193.49 14594.81 24583.26 25991.36 25596.93 10152.77 36797.49 26976.07 32198.03 21497.55 195
v894.65 10295.29 8092.74 18796.65 15779.77 25294.59 10997.17 14191.86 9797.47 4297.93 4388.16 18199.08 9994.32 2299.47 3999.38 22
tttt051789.81 23788.90 24392.55 19797.00 14179.73 25395.03 9583.65 35789.88 15295.30 13794.79 22353.64 36599.39 4891.99 9998.79 13598.54 111
v119293.49 13493.78 12892.62 19496.16 19679.62 25491.83 21397.22 13986.07 22696.10 10396.38 14187.22 19799.02 11094.14 2998.88 11999.22 32
v114493.50 13393.81 12692.57 19696.28 18679.61 25591.86 21296.96 15486.95 21595.91 11196.32 14587.65 19098.96 12093.51 4798.88 11999.13 39
BH-untuned90.68 20890.90 20190.05 27495.98 21179.57 25690.04 26094.94 23987.91 19394.07 18093.00 27387.76 18997.78 25379.19 30095.17 29792.80 335
KD-MVS_self_test94.10 12394.73 9992.19 20697.66 11079.49 25794.86 10097.12 14589.59 15896.87 6497.65 5590.40 15698.34 20689.08 17499.35 5798.75 85
CHOSEN 1792x268887.19 28685.92 29491.00 24597.13 13879.41 25884.51 34295.60 21864.14 36290.07 27994.81 21978.26 27797.14 28473.34 33495.38 29396.46 241
thisisatest053088.69 25787.52 26892.20 20596.33 18279.36 25992.81 16084.01 35686.44 21993.67 19492.68 28353.62 36699.25 7789.65 16198.45 16598.00 152
LFMVS91.33 19791.16 19991.82 21796.27 18779.36 25995.01 9685.61 34596.04 2994.82 16097.06 9372.03 30998.46 19984.96 24298.70 14397.65 188
TR-MVS87.70 27187.17 27489.27 28794.11 27879.26 26188.69 29491.86 30281.94 27690.69 26789.79 32882.82 24097.42 27372.65 33991.98 34291.14 348
test20.0390.80 20490.85 20490.63 25695.63 23379.24 26289.81 26992.87 27989.90 15194.39 17296.40 13685.77 21995.27 33473.86 33299.05 10097.39 206
IterMVS-SCA-FT91.65 18891.55 18591.94 21593.89 28479.22 26387.56 30593.51 27091.53 11695.37 13396.62 12478.65 27298.90 12691.89 10494.95 30097.70 184
EI-MVSNet92.99 15393.26 14992.19 20692.12 31479.21 26492.32 18494.67 25191.77 10795.24 14395.85 16687.14 20098.49 19391.99 9998.26 18898.86 73
IterMVS-LS93.78 12994.28 11792.27 20396.27 18779.21 26491.87 20896.78 17091.77 10796.57 7897.07 9287.15 19998.74 15991.99 9999.03 10698.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet87.89 26787.12 27690.22 26891.01 33078.93 26692.52 16992.81 28073.08 33289.10 29596.93 10167.11 32197.64 26288.80 17992.70 33494.08 308
RPMNet90.31 22290.14 22290.81 25291.01 33078.93 26692.52 16998.12 4691.91 9589.10 29596.89 10468.84 31699.41 3690.17 14792.70 33494.08 308
UnsupCasMVSNet_bld88.50 25988.03 26189.90 27695.52 23778.88 26887.39 30994.02 26379.32 29693.06 21594.02 24780.72 26194.27 34475.16 32693.08 33096.54 234
v2v48293.29 14093.63 13492.29 20296.35 18078.82 26991.77 21696.28 19488.45 18495.70 12196.26 15086.02 21898.90 12693.02 7598.81 13299.14 38
Anonymous2023120688.77 25588.29 25390.20 27096.31 18478.81 27089.56 27493.49 27174.26 32592.38 23695.58 18482.21 24695.43 32972.07 34198.75 14096.34 245
PVSNet_BlendedMVS90.35 21989.96 22491.54 22794.81 25578.80 27190.14 25796.93 15679.43 29288.68 30795.06 20886.27 21598.15 22380.27 28498.04 21397.68 186
PVSNet_Blended88.74 25688.16 26090.46 26294.81 25578.80 27186.64 32596.93 15674.67 32288.68 30789.18 33786.27 21598.15 22380.27 28496.00 27694.44 303
BH-RMVSNet90.47 21390.44 21490.56 25995.21 24778.65 27389.15 28593.94 26688.21 18892.74 22594.22 23986.38 21397.88 24178.67 30395.39 29295.14 286
D2MVS89.93 23489.60 23290.92 24794.03 28178.40 27488.69 29494.85 24178.96 30093.08 21495.09 20674.57 29896.94 28988.19 19098.96 11497.41 202
v192192093.26 14393.61 13592.19 20696.04 20978.31 27591.88 20797.24 13785.17 24096.19 9996.19 15386.76 20999.05 10494.18 2898.84 12499.22 32
v14419293.20 14893.54 13992.16 21096.05 20578.26 27691.95 20097.14 14284.98 24795.96 10696.11 15787.08 20199.04 10793.79 3798.84 12499.17 35
diffmvs91.74 18691.93 17791.15 24093.06 29778.17 27788.77 29297.51 11586.28 22292.42 23493.96 25088.04 18497.46 27090.69 12996.67 26597.82 175
CS-MVS92.12 18092.62 16290.60 25794.57 26978.12 27892.00 19898.58 1087.75 19990.08 27791.88 30089.79 16699.10 9790.35 13698.60 15294.58 299
sss87.23 28386.82 28088.46 30193.96 28277.94 27986.84 31992.78 28377.59 30887.61 32091.83 30178.75 27191.92 35777.84 30794.20 31695.52 280
MS-PatchMatch88.05 26687.75 26488.95 29093.28 29177.93 28087.88 30192.49 29075.42 31992.57 23093.59 26180.44 26294.24 34681.28 27692.75 33394.69 298
HY-MVS82.50 1886.81 29285.93 29389.47 28193.63 28877.93 28094.02 13191.58 30575.68 31683.64 34493.64 25877.40 28297.42 27371.70 34492.07 34193.05 332
v124093.29 14093.71 13192.06 21396.01 21077.89 28291.81 21497.37 12085.12 24396.69 7296.40 13686.67 21099.07 10394.51 1898.76 13899.22 32
CL-MVSNet_self_test90.04 23289.90 22690.47 26095.24 24677.81 28386.60 32892.62 28785.64 23493.25 21093.92 25183.84 23196.06 31779.93 29198.03 21497.53 196
Test_1112_low_res87.50 27886.58 28490.25 26796.80 15477.75 28487.53 30796.25 19669.73 34886.47 32793.61 26075.67 29697.88 24179.95 28993.20 32695.11 287
v14892.87 15893.29 14591.62 22496.25 19077.72 28591.28 22695.05 23589.69 15495.93 11096.04 15987.34 19598.38 20290.05 15297.99 21798.78 82
MVS84.98 30284.30 30287.01 31691.03 32977.69 28691.94 20294.16 25959.36 36784.23 34187.50 34785.66 22196.80 29571.79 34293.05 33186.54 359
miper_lstm_enhance89.90 23589.80 22790.19 27191.37 32777.50 28783.82 34995.00 23684.84 24993.05 21694.96 21376.53 29495.20 33589.96 15498.67 14797.86 170
pmmvs380.83 32778.96 33586.45 32087.23 36277.48 28884.87 33782.31 36063.83 36385.03 33489.50 33349.66 36893.10 35273.12 33795.10 29888.78 357
PAPR87.65 27486.77 28290.27 26692.85 30177.38 28988.56 29796.23 19876.82 31584.98 33589.75 33086.08 21797.16 28372.33 34093.35 32496.26 249
Vis-MVSNet (Re-imp)90.42 21490.16 21891.20 23897.66 11077.32 29094.33 12187.66 32791.20 12392.99 21895.13 20475.40 29798.28 20977.86 30699.19 8497.99 155
BH-w/o87.21 28487.02 27887.79 31194.77 25777.27 29187.90 30093.21 27681.74 27789.99 28188.39 34383.47 23296.93 29171.29 34692.43 33889.15 353
GA-MVS87.70 27186.82 28090.31 26493.27 29277.22 29284.72 34092.79 28285.11 24489.82 28590.07 32366.80 32497.76 25684.56 24794.27 31595.96 260
TinyColmap92.00 18392.76 15789.71 27995.62 23477.02 29390.72 23896.17 20387.70 20195.26 14096.29 14792.54 10496.45 30581.77 27198.77 13795.66 275
Patchmtry90.11 22789.92 22590.66 25590.35 33977.00 29492.96 15692.81 28090.25 14694.74 16496.93 10167.11 32197.52 26685.17 23498.98 10897.46 199
DIV-MVS_self_test90.65 20990.56 21290.91 24991.85 31876.99 29586.75 32295.36 23285.52 23794.06 18194.89 21677.37 28497.99 23590.28 14198.97 11297.76 180
cl____90.65 20990.56 21290.91 24991.85 31876.98 29686.75 32295.36 23285.53 23594.06 18194.89 21677.36 28597.98 23690.27 14298.98 10897.76 180
pmmvs587.87 26887.14 27590.07 27293.26 29376.97 29788.89 28992.18 29473.71 32988.36 31093.89 25376.86 29296.73 29780.32 28396.81 26096.51 236
eth_miper_zixun_eth90.72 20690.61 21091.05 24192.04 31676.84 29886.91 31796.67 17785.21 23994.41 17193.92 25179.53 26798.26 21389.76 15897.02 25298.06 144
c3_l91.32 19891.42 19091.00 24592.29 30976.79 29987.52 30896.42 18985.76 23294.72 16693.89 25382.73 24198.16 22290.93 12598.55 15498.04 147
MVSTER89.32 24388.75 24591.03 24290.10 34176.62 30090.85 23494.67 25182.27 27395.24 14395.79 17161.09 35398.49 19390.49 13098.26 18897.97 159
miper_ehance_all_eth90.48 21290.42 21590.69 25491.62 32376.57 30186.83 32096.18 20283.38 25894.06 18192.66 28482.20 24798.04 22889.79 15797.02 25297.45 200
cl2289.02 24788.50 24890.59 25889.76 34376.45 30286.62 32794.03 26182.98 26692.65 22792.49 28572.05 30897.53 26588.93 17597.02 25297.78 178
cascas87.02 29086.28 29189.25 28891.56 32576.45 30284.33 34496.78 17071.01 34286.89 32685.91 35681.35 25596.94 28983.09 25895.60 28594.35 305
ADS-MVSNet284.01 30782.20 31589.41 28389.04 35276.37 30487.57 30390.98 30872.71 33584.46 33892.45 28768.08 31796.48 30470.58 35183.97 36095.38 281
EU-MVSNet87.39 28086.71 28389.44 28293.40 29076.11 30594.93 9990.00 31457.17 36895.71 12097.37 7164.77 33797.68 26192.67 8594.37 31294.52 301
MIMVSNet87.13 28886.54 28688.89 29296.05 20576.11 30594.39 11988.51 31981.37 27888.27 31296.75 11472.38 30695.52 32465.71 36195.47 28995.03 288
IterMVS90.18 22490.16 21890.21 26993.15 29575.98 30787.56 30592.97 27886.43 22094.09 17896.40 13678.32 27697.43 27287.87 19994.69 30797.23 213
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_Test92.57 17093.29 14590.40 26393.53 28975.85 30892.52 16996.96 15488.73 17792.35 23896.70 11990.77 14498.37 20592.53 8895.49 28896.99 221
IB-MVS77.21 1983.11 31081.05 32189.29 28691.15 32875.85 30885.66 33286.00 34079.70 28982.02 35686.61 35148.26 37098.39 20077.84 30792.22 33993.63 322
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VPNet93.08 14993.76 12991.03 24298.60 3475.83 31091.51 22095.62 21791.84 10195.74 11897.10 9189.31 17098.32 20785.07 24199.06 9798.93 63
miper_enhance_ethall88.42 26087.87 26390.07 27288.67 35675.52 31185.10 33595.59 22275.68 31692.49 23189.45 33478.96 26997.88 24187.86 20097.02 25296.81 228
Anonymous2024052192.86 15993.57 13790.74 25396.57 16375.50 31294.15 12695.60 21889.38 16195.90 11297.90 4780.39 26397.96 23792.60 8799.68 1898.75 85
thisisatest051584.72 30382.99 31189.90 27692.96 30075.33 31384.36 34383.42 35877.37 31088.27 31286.65 35053.94 36498.72 16182.56 26397.40 24295.67 274
PS-MVSNAJ88.86 25388.99 24088.48 30094.88 25174.71 31486.69 32495.60 21880.88 28087.83 31787.37 34890.77 14498.82 13982.52 26494.37 31291.93 343
WTY-MVS86.93 29186.50 28988.24 30494.96 25074.64 31587.19 31292.07 29978.29 30588.32 31191.59 30678.06 27894.27 34474.88 32793.15 32895.80 268
xiu_mvs_v2_base89.00 24989.19 23488.46 30194.86 25374.63 31686.97 31595.60 21880.88 28087.83 31788.62 34091.04 14198.81 14482.51 26594.38 31191.93 343
131486.46 29386.33 29086.87 31891.65 32274.54 31791.94 20294.10 26074.28 32484.78 33787.33 34983.03 23795.00 33678.72 30291.16 34791.06 349
CHOSEN 280x42080.04 33277.97 33886.23 32490.13 34074.53 31872.87 36389.59 31566.38 35776.29 36785.32 35856.96 35995.36 33069.49 35494.72 30688.79 356
USDC89.02 24789.08 23788.84 29395.07 24974.50 31988.97 28796.39 19173.21 33193.27 20796.28 14882.16 24896.39 30777.55 31098.80 13495.62 278
MVEpermissive59.87 2373.86 33772.65 34077.47 35087.00 36574.35 32061.37 36760.93 37567.27 35569.69 37186.49 35381.24 25972.33 37156.45 36883.45 36285.74 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 29784.37 30189.40 28486.30 36674.33 32191.64 21888.26 32184.84 24972.96 37089.85 32471.27 31197.69 26076.60 31897.62 23596.18 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline187.62 27587.31 27088.54 29894.71 26474.27 32293.10 15388.20 32386.20 22392.18 24493.04 27273.21 30395.52 32479.32 29885.82 35895.83 266
Patchmatch-test86.10 29586.01 29286.38 32390.63 33474.22 32389.57 27386.69 33385.73 23389.81 28692.83 27765.24 33591.04 36077.82 30995.78 28293.88 317
MDA-MVSNet_test_wron88.16 26588.23 25687.93 30892.22 31073.71 32480.71 35888.84 31682.52 27094.88 15995.14 20382.70 24293.61 34983.28 25693.80 32096.46 241
YYNet188.17 26488.24 25587.93 30892.21 31173.62 32580.75 35788.77 31782.51 27194.99 15495.11 20582.70 24293.70 34883.33 25593.83 31996.48 240
test0.0.03 182.48 31581.47 31985.48 32789.70 34473.57 32684.73 33881.64 36283.07 26488.13 31486.61 35162.86 34689.10 36666.24 36090.29 35093.77 319
thres600view787.66 27387.10 27789.36 28596.05 20573.17 32792.72 16285.31 34891.89 9693.29 20590.97 31363.42 34398.39 20073.23 33596.99 25796.51 236
ANet_high94.83 9596.28 3790.47 26096.65 15773.16 32894.33 12198.74 896.39 2398.09 2598.93 893.37 7998.70 16790.38 13499.68 1899.53 14
thres100view90087.35 28186.89 27988.72 29596.14 19873.09 32993.00 15585.31 34892.13 8993.26 20890.96 31463.42 34398.28 20971.27 34796.54 26794.79 293
tfpn200view987.05 28986.52 28788.67 29695.77 22272.94 33091.89 20586.00 34090.84 13092.61 22889.80 32663.93 34098.28 20971.27 34796.54 26794.79 293
thres40087.20 28586.52 28789.24 28995.77 22272.94 33091.89 20586.00 34090.84 13092.61 22889.80 32663.93 34098.28 20971.27 34796.54 26796.51 236
baseline283.38 30981.54 31888.90 29191.38 32672.84 33288.78 29181.22 36378.97 29979.82 36387.56 34561.73 35197.80 25074.30 33090.05 35196.05 257
ECVR-MVScopyleft90.12 22690.16 21890.00 27597.81 9672.68 33395.76 6678.54 36989.04 17095.36 13498.10 3470.51 31398.64 17787.10 21199.18 8698.67 95
thres20085.85 29685.18 29787.88 31094.44 27172.52 33489.08 28686.21 33688.57 18391.44 25488.40 34264.22 33898.00 23368.35 35595.88 28193.12 329
MG-MVS89.54 24089.80 22788.76 29494.88 25172.47 33589.60 27292.44 29185.82 23089.48 29195.98 16282.85 23997.74 25881.87 27095.27 29596.08 255
PAPM81.91 32180.11 33187.31 31593.87 28572.32 33684.02 34793.22 27469.47 34976.13 36889.84 32572.15 30797.23 28153.27 36989.02 35292.37 340
SCA87.43 27987.21 27388.10 30692.01 31771.98 33789.43 27688.11 32582.26 27488.71 30592.83 27778.65 27297.59 26379.61 29593.30 32594.75 295
testgi90.38 21791.34 19387.50 31397.49 11971.54 33889.43 27695.16 23488.38 18694.54 16994.68 22692.88 9693.09 35371.60 34597.85 22497.88 168
test111190.39 21690.61 21089.74 27898.04 8371.50 33995.59 7179.72 36889.41 16095.94 10998.14 3270.79 31298.81 14488.52 18699.32 6298.90 69
gg-mvs-nofinetune82.10 32081.02 32285.34 32987.46 36171.04 34094.74 10467.56 37396.44 2279.43 36498.99 645.24 37296.15 31367.18 35892.17 34088.85 355
GG-mvs-BLEND83.24 34185.06 37071.03 34194.99 9865.55 37474.09 36975.51 36844.57 37394.46 34059.57 36687.54 35684.24 361
ppachtmachnet_test88.61 25888.64 24688.50 29991.76 32070.99 34284.59 34192.98 27779.30 29792.38 23693.53 26379.57 26697.45 27186.50 22397.17 24897.07 216
our_test_387.55 27687.59 26787.44 31491.76 32070.48 34383.83 34890.55 31279.79 28792.06 24792.17 29478.63 27495.63 32284.77 24494.73 30596.22 250
CVMVSNet85.16 30084.72 29886.48 31992.12 31470.19 34492.32 18488.17 32456.15 36990.64 26895.85 16667.97 31996.69 29888.78 18090.52 34992.56 338
new_pmnet81.22 32481.01 32381.86 34490.92 33270.15 34584.03 34680.25 36770.83 34385.97 33089.78 32967.93 32084.65 36867.44 35791.90 34390.78 350
KD-MVS_2432*160082.17 31880.75 32586.42 32182.04 37470.09 34681.75 35590.80 30982.56 26890.37 27289.30 33542.90 37696.11 31574.47 32892.55 33693.06 330
miper_refine_blended82.17 31880.75 32586.42 32182.04 37470.09 34681.75 35590.80 30982.56 26890.37 27289.30 33542.90 37696.11 31574.47 32892.55 33693.06 330
DSMNet-mixed82.21 31781.56 31684.16 33789.57 34770.00 34890.65 24077.66 37154.99 37083.30 34797.57 5877.89 28090.50 36266.86 35995.54 28791.97 342
PatchmatchNetpermissive85.22 29984.64 29986.98 31789.51 34869.83 34990.52 24387.34 33078.87 30187.22 32492.74 28166.91 32396.53 30181.77 27186.88 35794.58 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EMVS80.35 33180.28 33080.54 34684.73 37169.07 35072.54 36480.73 36487.80 19781.66 35881.73 36462.89 34589.84 36375.79 32494.65 30882.71 364
E-PMN80.72 32980.86 32480.29 34785.11 36968.77 35172.96 36281.97 36187.76 19883.25 34883.01 36362.22 34989.17 36577.15 31594.31 31482.93 363
mvs_anonymous90.37 21891.30 19487.58 31292.17 31368.00 35289.84 26894.73 24783.82 25793.22 21197.40 6987.54 19297.40 27587.94 19895.05 29997.34 209
CostFormer83.09 31182.21 31485.73 32589.27 35067.01 35390.35 24986.47 33570.42 34583.52 34693.23 27061.18 35296.85 29377.21 31488.26 35593.34 328
PatchT87.51 27788.17 25885.55 32690.64 33366.91 35492.02 19786.09 33892.20 8789.05 29797.16 8864.15 33996.37 30989.21 17292.98 33293.37 327
DWT-MVSNet_test80.74 32879.18 33485.43 32887.51 36066.87 35589.87 26786.01 33974.20 32680.86 36080.62 36548.84 36996.68 30081.54 27383.14 36492.75 336
test-LLR83.58 30883.17 30984.79 33389.68 34566.86 35683.08 35084.52 35383.07 26482.85 34984.78 35962.86 34693.49 35082.85 25994.86 30194.03 311
test-mter81.21 32580.01 33284.79 33389.68 34566.86 35683.08 35084.52 35373.85 32882.85 34984.78 35943.66 37593.49 35082.85 25994.86 30194.03 311
RRT_test8_iter0588.21 26388.17 25888.33 30391.62 32366.82 35891.73 21796.60 18086.34 22194.14 17695.38 19947.72 37199.11 9591.78 10698.26 18899.06 47
test250685.42 29884.57 30087.96 30797.81 9666.53 35996.14 5056.35 37689.04 17093.55 19898.10 3442.88 37898.68 17188.09 19499.18 8698.67 95
PVSNet_070.34 2174.58 33672.96 33979.47 34890.63 33466.24 36073.26 36183.40 35963.67 36478.02 36578.35 36772.53 30589.59 36456.68 36760.05 37182.57 365
ADS-MVSNet82.25 31681.55 31784.34 33689.04 35265.30 36187.57 30385.13 35272.71 33584.46 33892.45 28768.08 31792.33 35670.58 35183.97 36095.38 281
tpmvs84.22 30683.97 30584.94 33187.09 36365.18 36291.21 22788.35 32082.87 26785.21 33290.96 31465.24 33596.75 29679.60 29785.25 35992.90 334
tpm281.46 32280.35 32984.80 33289.90 34265.14 36390.44 24585.36 34765.82 36082.05 35592.44 28957.94 35796.69 29870.71 35088.49 35492.56 338
EPMVS81.17 32680.37 32883.58 33985.58 36865.08 36490.31 25171.34 37277.31 31185.80 33191.30 30859.38 35592.70 35579.99 28882.34 36592.96 333
tpm cat180.61 33079.46 33384.07 33888.78 35465.06 36589.26 28288.23 32262.27 36581.90 35789.66 33262.70 34895.29 33371.72 34380.60 36791.86 345
DeepMVS_CXcopyleft53.83 35470.38 37664.56 36648.52 37833.01 37165.50 37274.21 36956.19 36146.64 37338.45 37270.07 36950.30 369
PVSNet76.22 2082.89 31382.37 31384.48 33593.96 28264.38 36778.60 36088.61 31871.50 33984.43 34086.36 35474.27 29994.60 33869.87 35393.69 32294.46 302
TESTMET0.1,179.09 33478.04 33782.25 34387.52 35964.03 36883.08 35080.62 36570.28 34680.16 36283.22 36244.13 37490.56 36179.95 28993.36 32392.15 341
tpm84.38 30584.08 30485.30 33090.47 33763.43 36989.34 27985.63 34477.24 31287.62 31995.03 21161.00 35497.30 27979.26 29991.09 34895.16 284
MDTV_nov1_ep1383.88 30689.42 34961.52 37088.74 29387.41 32973.99 32784.96 33694.01 24865.25 33495.53 32378.02 30593.16 327
gm-plane-assit87.08 36459.33 37171.22 34083.58 36197.20 28273.95 331
tpmrst82.85 31482.93 31282.64 34287.65 35758.99 37290.14 25787.90 32675.54 31883.93 34291.63 30566.79 32695.36 33081.21 27881.54 36693.57 326
dp79.28 33378.62 33681.24 34585.97 36756.45 37386.91 31785.26 35072.97 33381.45 35989.17 33856.01 36295.45 32873.19 33676.68 36891.82 346
new-patchmatchnet88.97 25090.79 20683.50 34094.28 27555.83 37485.34 33493.56 26986.18 22495.47 12895.73 17683.10 23696.51 30385.40 23398.06 21198.16 137
MVS-HIRNet78.83 33580.60 32773.51 35293.07 29647.37 37587.10 31478.00 37068.94 35077.53 36697.26 8171.45 31094.62 33763.28 36488.74 35378.55 367
PMMVS281.31 32383.44 30774.92 35190.52 33646.49 37669.19 36585.23 35184.30 25487.95 31694.71 22576.95 28984.36 36964.07 36298.09 20993.89 316
MDTV_nov1_ep13_2view42.48 37788.45 29867.22 35683.56 34566.80 32472.86 33894.06 310
tmp_tt37.97 33944.33 34218.88 35511.80 37821.54 37863.51 36645.66 3794.23 37351.34 37350.48 37059.08 35622.11 37444.50 37168.35 37013.00 370
test_method50.44 33848.94 34154.93 35339.68 37712.38 37928.59 36890.09 3136.82 37241.10 37478.41 36654.41 36370.69 37250.12 37051.26 37281.72 366
test1239.49 34112.01 3441.91 3562.87 3791.30 38082.38 3531.34 3811.36 3742.84 3756.56 3732.45 3790.97 3752.73 3735.56 3733.47 371
testmvs9.02 34211.42 3451.81 3572.77 3801.13 38179.44 3591.90 3801.18 3752.65 3766.80 3721.95 3800.87 3762.62 3743.45 3743.44 372
test_blank0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
cdsmvs_eth3d_5k23.35 34031.13 3430.00 3580.00 3810.00 3820.00 36995.58 2240.00 3760.00 37791.15 31093.43 770.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas7.56 34310.09 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 37690.77 1440.00 3770.00 3750.00 3750.00 373
sosnet-low-res0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
sosnet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
Regformer0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re7.56 34310.08 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37790.69 3190.00 3810.00 3770.00 3750.00 3750.00 373
uanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
PC_three_145275.31 32195.87 11395.75 17592.93 9396.34 31287.18 21098.68 14598.04 147
eth-test20.00 381
eth-test0.00 381
test_241102_TWO98.10 4991.95 9297.54 3797.25 8295.37 2899.35 5993.29 6399.25 7698.49 115
9.1494.81 9497.49 11994.11 12898.37 1787.56 20695.38 13296.03 16094.66 5699.08 9990.70 12898.97 112
test_0728_THIRD93.26 6897.40 4697.35 7794.69 5599.34 6293.88 3499.42 4798.89 70
GSMVS94.75 295
sam_mvs166.64 32794.75 295
sam_mvs66.41 328
MTGPAbinary97.62 102
test_post190.21 2535.85 37565.36 33396.00 31879.61 295
test_post6.07 37465.74 33295.84 320
patchmatchnet-post91.71 30366.22 33097.59 263
MTMP94.82 10154.62 377
test9_res88.16 19298.40 16897.83 173
agg_prior287.06 21398.36 17997.98 156
test_prior290.21 25389.33 16490.77 26494.81 21990.41 15488.21 18898.55 154
旧先验290.00 26268.65 35192.71 22696.52 30285.15 236
新几何290.02 261
无先验89.94 26395.75 21570.81 34498.59 18381.17 27994.81 292
原ACMM289.34 279
testdata298.03 22980.24 286
segment_acmp92.14 110
testdata188.96 28888.44 185
plane_prior597.81 9098.95 12289.26 16998.51 16198.60 108
plane_prior495.59 181
plane_prior294.56 11391.74 109
plane_prior197.38 125
n20.00 382
nn0.00 382
door-mid92.13 298
test1196.65 178
door91.26 306
HQP-NCC96.36 17791.37 22287.16 21088.81 300
ACMP_Plane96.36 17791.37 22287.16 21088.81 300
BP-MVS86.55 221
HQP4-MVS88.81 30098.61 17998.15 138
HQP3-MVS97.31 13097.73 227
HQP2-MVS84.76 226
ACMMP++_ref98.82 130
ACMMP++99.25 76
Test By Simon90.61 150