LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
PMVS |  | 87.21 14 | 94.97 86 | 95.33 78 | 93.91 149 | 98.97 15 | 97.16 2 | 95.54 75 | 95.85 212 | 96.47 21 | 93.40 202 | 97.46 66 | 95.31 33 | 95.47 327 | 86.18 228 | 98.78 136 | 89.11 354 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Effi-MVS+-dtu | | | 93.90 128 | 92.60 164 | 97.77 4 | 94.74 260 | 96.67 3 | 94.00 132 | 95.41 229 | 89.94 149 | 91.93 249 | 92.13 295 | 90.12 159 | 98.97 119 | 87.68 202 | 97.48 239 | 97.67 187 |
|
RPSCF | | | 95.58 65 | 94.89 92 | 97.62 8 | 97.58 114 | 96.30 4 | 95.97 58 | 97.53 112 | 92.42 78 | 93.41 200 | 97.78 49 | 91.21 136 | 97.77 254 | 91.06 120 | 97.06 250 | 98.80 80 |
|
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 5 | 98.61 3 | 98.81 6 | 97.41 10 | 97.28 48 | 98.46 25 | 94.62 58 | 98.84 137 | 94.64 17 | 99.53 35 | 98.99 53 |
|
mvs-test1 | | | 93.07 151 | 91.80 181 | 96.89 39 | 94.74 260 | 95.83 6 | 92.17 190 | 95.41 229 | 89.94 149 | 89.85 284 | 90.59 322 | 90.12 159 | 98.88 129 | 87.68 202 | 95.66 284 | 95.97 259 |
|
abl_6 | | | 97.31 5 | 97.12 13 | 97.86 3 | 98.54 42 | 95.32 7 | 96.61 26 | 98.35 19 | 95.81 31 | 97.55 36 | 97.44 67 | 96.51 9 | 99.40 43 | 94.06 30 | 99.23 79 | 98.85 76 |
|
SR-MVS-dyc-post | | | 96.84 8 | 96.60 25 | 97.56 10 | 98.07 78 | 95.27 8 | 96.37 39 | 98.12 46 | 95.66 33 | 97.00 58 | 97.03 95 | 94.85 52 | 99.42 29 | 93.49 48 | 98.84 124 | 98.00 152 |
|
RE-MVS-def | | | | 96.66 20 | | 98.07 78 | 95.27 8 | 96.37 39 | 98.12 46 | 95.66 33 | 97.00 58 | 97.03 95 | 95.40 27 | | 93.49 48 | 98.84 124 | 98.00 152 |
|
test1172 | | | 96.79 15 | 96.52 27 | 97.60 9 | 98.03 84 | 94.87 10 | 96.07 54 | 98.06 59 | 95.76 32 | 96.89 63 | 96.85 106 | 94.85 52 | 99.42 29 | 93.35 61 | 98.81 132 | 98.53 112 |
|
SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 80 | 94.69 11 | 96.13 51 | 98.07 56 | 95.17 37 | 96.82 67 | 96.73 117 | 95.09 44 | 99.43 28 | 92.99 77 | 98.71 141 | 98.50 114 |
|
FOURS1 | | | | | | 99.21 3 | 94.68 12 | 98.45 4 | 98.81 6 | 97.73 6 | 98.27 20 | | | | | | |
|
mPP-MVS | | | 96.46 32 | 96.05 51 | 97.69 5 | 98.62 31 | 94.65 13 | 96.45 34 | 97.74 96 | 92.59 76 | 95.47 128 | 96.68 120 | 94.50 61 | 99.42 29 | 93.10 72 | 99.26 75 | 98.99 53 |
|
CP-MVS | | | 96.44 35 | 96.08 49 | 97.54 11 | 98.29 63 | 94.62 14 | 96.80 21 | 98.08 53 | 92.67 75 | 95.08 150 | 96.39 140 | 94.77 54 | 99.42 29 | 93.17 69 | 99.44 45 | 98.58 110 |
|
FPMVS | | | 84.50 304 | 83.28 308 | 88.16 305 | 96.32 183 | 94.49 15 | 85.76 331 | 85.47 346 | 83.09 263 | 85.20 333 | 94.26 237 | 63.79 342 | 86.58 367 | 63.72 363 | 91.88 344 | 83.40 362 |
|
COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 23 | 97.13 28 | 98.38 58 | 94.31 16 | 96.79 22 | 98.32 20 | 96.69 17 | 96.86 65 | 97.56 59 | 95.48 25 | 98.77 155 | 90.11 149 | 99.44 45 | 98.31 127 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
XVG-OURS | | | 94.72 99 | 94.12 122 | 96.50 48 | 98.00 87 | 94.23 17 | 91.48 221 | 98.17 40 | 90.72 134 | 95.30 137 | 96.47 130 | 87.94 187 | 96.98 288 | 91.41 117 | 97.61 236 | 98.30 128 |
|
LS3D | | | 96.11 48 | 95.83 62 | 96.95 37 | 94.75 258 | 94.20 18 | 97.34 11 | 97.98 72 | 97.31 11 | 95.32 136 | 96.77 111 | 93.08 89 | 99.20 83 | 91.79 105 | 98.16 201 | 97.44 201 |
|
XVG-OURS-SEG-HR | | | 95.38 72 | 95.00 89 | 96.51 47 | 98.10 76 | 94.07 19 | 92.46 174 | 98.13 45 | 90.69 135 | 93.75 191 | 96.25 151 | 98.03 2 | 97.02 287 | 92.08 96 | 95.55 286 | 98.45 119 |
|
MP-MVS |  | | 96.14 47 | 95.68 67 | 97.51 13 | 98.81 24 | 94.06 20 | 96.10 52 | 97.78 95 | 92.73 72 | 93.48 199 | 96.72 118 | 94.23 66 | 99.42 29 | 91.99 99 | 99.29 68 | 99.05 48 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PM-MVS | | | 93.33 138 | 92.67 161 | 95.33 88 | 96.58 162 | 94.06 20 | 92.26 187 | 92.18 294 | 85.92 229 | 96.22 95 | 96.61 125 | 85.64 223 | 95.99 319 | 90.35 136 | 98.23 194 | 95.93 261 |
|
MSP-MVS | | | 95.34 74 | 94.63 105 | 97.48 14 | 98.67 28 | 94.05 22 | 96.41 38 | 98.18 36 | 91.26 121 | 95.12 146 | 95.15 202 | 86.60 212 | 99.50 19 | 93.43 57 | 96.81 260 | 98.89 70 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
zzz-MVS | | | 96.47 31 | 96.14 45 | 97.47 15 | 98.95 16 | 94.05 22 | 93.69 141 | 97.62 102 | 94.46 45 | 96.29 89 | 96.94 99 | 93.56 73 | 99.37 56 | 94.29 24 | 99.42 47 | 98.99 53 |
|
MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 16 | 94.05 22 | 95.88 62 | 97.62 102 | 94.46 45 | 96.29 89 | 96.94 99 | 93.56 73 | 99.37 56 | 94.29 24 | 99.42 47 | 98.99 53 |
|
anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 7 | 98.00 87 | 94.03 25 | 96.97 17 | 97.61 105 | 87.68 202 | 98.45 18 | 98.77 15 | 94.20 67 | 99.50 19 | 96.70 3 | 99.40 53 | 99.53 14 |
|
XVS | | | 96.49 29 | 96.18 42 | 97.44 17 | 98.56 37 | 93.99 26 | 96.50 31 | 97.95 78 | 94.58 41 | 94.38 173 | 96.49 129 | 94.56 59 | 99.39 48 | 93.57 44 | 99.05 100 | 98.93 63 |
|
X-MVStestdata | | | 90.70 207 | 88.45 249 | 97.44 17 | 98.56 37 | 93.99 26 | 96.50 31 | 97.95 78 | 94.58 41 | 94.38 173 | 26.89 371 | 94.56 59 | 99.39 48 | 93.57 44 | 99.05 100 | 98.93 63 |
|
HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 22 | 99.12 8 | 93.92 28 | 97.16 12 | 98.17 40 | 93.11 70 | 96.48 79 | 97.36 74 | 96.92 6 | 99.34 62 | 94.31 23 | 99.38 55 | 98.92 67 |
|
ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 19 | 98.61 33 | 93.88 29 | 96.95 18 | 98.18 36 | 92.26 85 | 96.33 85 | 96.84 109 | 95.10 43 | 99.40 43 | 93.47 52 | 99.33 60 | 99.02 50 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 5 | 98.22 69 | 93.87 30 | 98.42 6 | 98.19 35 | 96.95 14 | 95.46 130 | 99.23 4 | 93.45 75 | 99.57 13 | 95.34 12 | 99.89 2 | 99.63 9 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 24 | 93.86 31 | 99.07 2 | 98.98 4 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 37 | 98.61 179 | 96.85 2 | 99.77 10 | 99.31 27 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PGM-MVS | | | 96.32 41 | 95.94 55 | 97.43 19 | 98.59 36 | 93.84 32 | 95.33 81 | 98.30 23 | 91.40 118 | 95.76 116 | 96.87 105 | 95.26 35 | 99.45 23 | 92.77 80 | 99.21 82 | 99.00 51 |
|
APD-MVS_3200maxsize | | | 96.82 10 | 96.65 21 | 97.32 25 | 97.95 91 | 93.82 33 | 96.31 44 | 98.25 27 | 95.51 35 | 96.99 60 | 97.05 94 | 95.63 21 | 99.39 48 | 93.31 62 | 98.88 119 | 98.75 85 |
|
ACMMPR | | | 96.46 32 | 96.14 45 | 97.41 21 | 98.60 34 | 93.82 33 | 96.30 46 | 97.96 76 | 92.35 82 | 95.57 125 | 96.61 125 | 94.93 51 | 99.41 36 | 93.78 38 | 99.15 90 | 99.00 51 |
|
region2R | | | 96.41 37 | 96.09 48 | 97.38 23 | 98.62 31 | 93.81 35 | 96.32 43 | 97.96 76 | 92.26 85 | 95.28 139 | 96.57 127 | 95.02 47 | 99.41 36 | 93.63 42 | 99.11 95 | 98.94 62 |
|
N_pmnet | | | 88.90 252 | 87.25 272 | 93.83 153 | 94.40 273 | 93.81 35 | 84.73 338 | 87.09 331 | 79.36 295 | 93.26 208 | 92.43 290 | 79.29 268 | 91.68 358 | 77.50 312 | 97.22 247 | 96.00 258 |
|
HPM-MVS++ |  | | 95.02 84 | 94.39 112 | 96.91 38 | 97.88 93 | 93.58 37 | 94.09 129 | 96.99 153 | 91.05 126 | 92.40 235 | 95.22 201 | 91.03 142 | 99.25 77 | 92.11 94 | 98.69 144 | 97.90 166 |
|
HPM-MVS |  | | 96.81 12 | 96.62 23 | 97.36 24 | 98.89 19 | 93.53 38 | 97.51 9 | 98.44 12 | 92.35 82 | 95.95 107 | 96.41 135 | 96.71 8 | 99.42 29 | 93.99 33 | 99.36 56 | 99.13 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HFP-MVS | | | 96.39 39 | 96.17 44 | 97.04 31 | 98.51 46 | 93.37 39 | 96.30 46 | 97.98 72 | 92.35 82 | 95.63 122 | 96.47 130 | 95.37 28 | 99.27 75 | 93.78 38 | 99.14 91 | 98.48 116 |
|
#test# | | | 95.89 54 | 95.51 71 | 97.04 31 | 98.51 46 | 93.37 39 | 95.14 90 | 97.98 72 | 89.34 163 | 95.63 122 | 96.47 130 | 95.37 28 | 99.27 75 | 91.99 99 | 99.14 91 | 98.48 116 |
|
ITE_SJBPF | | | | | 95.95 57 | 97.34 127 | 93.36 41 | | 96.55 185 | 91.93 94 | 94.82 160 | 95.39 197 | 91.99 114 | 97.08 285 | 85.53 232 | 97.96 218 | 97.41 202 |
|
XVG-ACMP-BASELINE | | | 95.68 62 | 95.34 77 | 96.69 43 | 98.40 56 | 93.04 42 | 94.54 117 | 98.05 60 | 90.45 142 | 96.31 87 | 96.76 113 | 92.91 94 | 98.72 161 | 91.19 119 | 99.42 47 | 98.32 125 |
|
CPTT-MVS | | | 94.74 98 | 94.12 122 | 96.60 44 | 98.15 73 | 93.01 43 | 95.84 63 | 97.66 100 | 89.21 169 | 93.28 206 | 95.46 191 | 88.89 173 | 98.98 115 | 89.80 156 | 98.82 130 | 97.80 177 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 121 | 93.56 138 | 96.14 51 | 95.96 212 | 92.96 44 | 89.48 275 | 97.46 116 | 85.14 241 | 96.23 94 | 95.42 194 | 93.19 84 | 98.08 226 | 90.37 135 | 98.76 138 | 97.38 208 |
|
ACMM | | 88.83 9 | 96.30 43 | 96.07 50 | 96.97 35 | 98.39 57 | 92.95 45 | 94.74 104 | 98.03 65 | 90.82 132 | 97.15 51 | 96.85 106 | 96.25 15 | 99.00 114 | 93.10 72 | 99.33 60 | 98.95 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PatchMatch-RL | | | 89.18 244 | 88.02 262 | 92.64 191 | 95.90 217 | 92.87 46 | 88.67 296 | 91.06 307 | 80.34 283 | 90.03 280 | 91.67 304 | 83.34 233 | 94.42 341 | 76.35 320 | 94.84 303 | 90.64 351 |
|
ZNCC-MVS | | | 96.42 36 | 96.20 41 | 97.07 30 | 98.80 26 | 92.79 47 | 96.08 53 | 98.16 43 | 91.74 109 | 95.34 135 | 96.36 143 | 95.68 19 | 99.44 24 | 94.41 21 | 99.28 73 | 98.97 59 |
|
GST-MVS | | | 96.24 44 | 95.99 54 | 97.00 34 | 98.65 29 | 92.71 48 | 95.69 69 | 98.01 69 | 92.08 90 | 95.74 118 | 96.28 148 | 95.22 37 | 99.42 29 | 93.17 69 | 99.06 97 | 98.88 72 |
|
mvs_tets | | | 96.83 9 | 96.71 19 | 97.17 27 | 98.83 22 | 92.51 49 | 96.58 28 | 97.61 105 | 87.57 205 | 98.80 7 | 98.90 9 | 96.50 10 | 99.59 12 | 96.15 7 | 99.47 39 | 99.40 21 |
|
jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 27 | 92.49 50 | 96.44 36 | 97.42 118 | 86.96 214 | 98.71 10 | 98.72 17 | 95.36 31 | 99.56 16 | 95.92 8 | 99.45 43 | 99.32 26 |
|
AllTest | | | 94.88 91 | 94.51 110 | 96.00 55 | 98.02 85 | 92.17 51 | 95.26 84 | 98.43 13 | 90.48 140 | 95.04 152 | 96.74 115 | 92.54 104 | 97.86 245 | 85.11 239 | 98.98 108 | 97.98 156 |
|
TestCases | | | | | 96.00 55 | 98.02 85 | 92.17 51 | | 98.43 13 | 90.48 140 | 95.04 152 | 96.74 115 | 92.54 104 | 97.86 245 | 85.11 239 | 98.98 108 | 97.98 156 |
|
LPG-MVS_test | | | 96.38 40 | 96.23 39 | 96.84 40 | 98.36 61 | 92.13 53 | 95.33 81 | 98.25 27 | 91.78 105 | 97.07 53 | 97.22 85 | 96.38 13 | 99.28 73 | 92.07 97 | 99.59 27 | 99.11 41 |
|
LGP-MVS_train | | | | | 96.84 40 | 98.36 61 | 92.13 53 | | 98.25 27 | 91.78 105 | 97.07 53 | 97.22 85 | 96.38 13 | 99.28 73 | 92.07 97 | 99.59 27 | 99.11 41 |
|
LF4IMVS | | | 92.72 163 | 92.02 174 | 94.84 108 | 95.65 231 | 91.99 55 | 92.92 157 | 96.60 180 | 85.08 245 | 92.44 233 | 93.62 259 | 86.80 208 | 96.35 310 | 86.81 214 | 98.25 191 | 96.18 252 |
|
SteuartSystems-ACMMP | | | 96.40 38 | 96.30 36 | 96.71 42 | 98.63 30 | 91.96 56 | 95.70 67 | 98.01 69 | 93.34 67 | 96.64 74 | 96.57 127 | 94.99 49 | 99.36 58 | 93.48 51 | 99.34 58 | 98.82 78 |
Skip Steuart: Steuart Systems R&D Blog. |
F-COLMAP | | | 92.28 176 | 91.06 200 | 95.95 57 | 97.52 117 | 91.90 57 | 93.53 144 | 97.18 140 | 83.98 255 | 88.70 306 | 94.04 245 | 88.41 178 | 98.55 189 | 80.17 287 | 95.99 277 | 97.39 206 |
|
OurMVSNet-221017-0 | | | 96.80 13 | 96.75 18 | 96.96 36 | 99.03 11 | 91.85 58 | 97.98 7 | 98.01 69 | 94.15 50 | 98.93 3 | 99.07 5 | 88.07 183 | 99.57 13 | 95.86 9 | 99.69 15 | 99.46 18 |
|
MAR-MVS | | | 90.32 221 | 88.87 244 | 94.66 116 | 94.82 254 | 91.85 58 | 94.22 124 | 94.75 246 | 80.91 279 | 87.52 321 | 88.07 344 | 86.63 211 | 97.87 244 | 76.67 317 | 96.21 273 | 94.25 307 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
test_djsdf | | | 96.62 23 | 96.49 28 | 97.01 33 | 98.55 40 | 91.77 60 | 97.15 13 | 97.37 120 | 88.98 172 | 98.26 22 | 98.86 10 | 93.35 80 | 99.60 8 | 96.41 4 | 99.45 43 | 99.66 6 |
|
ACMP | | 88.15 13 | 95.71 61 | 95.43 75 | 96.54 46 | 98.17 72 | 91.73 61 | 94.24 123 | 98.08 53 | 89.46 159 | 96.61 76 | 96.47 130 | 95.85 17 | 99.12 93 | 90.45 131 | 99.56 33 | 98.77 84 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PHI-MVS | | | 94.34 114 | 93.80 127 | 95.95 57 | 95.65 231 | 91.67 62 | 94.82 101 | 97.86 83 | 87.86 196 | 93.04 217 | 94.16 242 | 91.58 124 | 98.78 151 | 90.27 142 | 98.96 114 | 97.41 202 |
|
ACMMP_NAP | | | 96.21 45 | 96.12 47 | 96.49 49 | 98.90 18 | 91.42 63 | 94.57 112 | 98.03 65 | 90.42 143 | 96.37 82 | 97.35 77 | 95.68 19 | 99.25 77 | 94.44 20 | 99.34 58 | 98.80 80 |
|
OMC-MVS | | | 94.22 120 | 93.69 132 | 95.81 67 | 97.25 129 | 91.27 64 | 92.27 186 | 97.40 119 | 87.10 213 | 94.56 168 | 95.42 194 | 93.74 71 | 98.11 225 | 86.62 219 | 98.85 123 | 98.06 144 |
|
MP-MVS-pluss | | | 96.08 49 | 95.92 57 | 96.57 45 | 99.06 10 | 91.21 65 | 93.25 150 | 98.32 20 | 87.89 195 | 96.86 65 | 97.38 70 | 95.55 24 | 99.39 48 | 95.47 10 | 99.47 39 | 99.11 41 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SMA-MVS |  | | 95.77 59 | 95.54 70 | 96.47 50 | 98.27 65 | 91.19 66 | 95.09 91 | 97.79 94 | 86.48 218 | 97.42 45 | 97.51 64 | 94.47 63 | 99.29 71 | 93.55 46 | 99.29 68 | 98.93 63 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CNLPA | | | 91.72 187 | 91.20 196 | 93.26 171 | 96.17 195 | 91.02 67 | 91.14 228 | 95.55 225 | 90.16 147 | 90.87 263 | 93.56 262 | 86.31 214 | 94.40 342 | 79.92 293 | 97.12 249 | 94.37 304 |
|
OPM-MVS | | | 95.61 64 | 95.45 73 | 96.08 53 | 98.49 54 | 91.00 68 | 92.65 166 | 97.33 129 | 90.05 148 | 96.77 70 | 96.85 106 | 95.04 45 | 98.56 187 | 92.77 80 | 99.06 97 | 98.70 94 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MVS_111021_LR | | | 93.66 131 | 93.28 147 | 94.80 109 | 96.25 190 | 90.95 69 | 90.21 253 | 95.43 228 | 87.91 193 | 93.74 193 | 94.40 233 | 92.88 96 | 96.38 308 | 90.39 133 | 98.28 186 | 97.07 216 |
|
Gipuma |  | | 95.31 77 | 95.80 64 | 93.81 154 | 97.99 90 | 90.91 70 | 96.42 37 | 97.95 78 | 96.69 17 | 91.78 251 | 98.85 12 | 91.77 119 | 95.49 326 | 91.72 108 | 99.08 96 | 95.02 289 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
APD-MVS |  | | 95.00 85 | 94.69 100 | 95.93 60 | 97.38 125 | 90.88 71 | 94.59 109 | 97.81 90 | 89.22 168 | 95.46 130 | 96.17 156 | 93.42 78 | 99.34 62 | 89.30 165 | 98.87 122 | 97.56 194 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + GP. | | | 93.07 151 | 92.41 168 | 95.06 101 | 95.82 219 | 90.87 72 | 90.97 232 | 92.61 288 | 88.04 192 | 94.61 167 | 93.79 256 | 88.08 182 | 97.81 249 | 89.41 164 | 98.39 171 | 96.50 239 |
|
3Dnovator+ | | 92.74 2 | 95.86 57 | 95.77 65 | 96.13 52 | 96.81 153 | 90.79 73 | 96.30 46 | 97.82 89 | 96.13 25 | 94.74 164 | 97.23 84 | 91.33 130 | 99.16 86 | 93.25 66 | 98.30 185 | 98.46 118 |
|
hse-mvs2 | | | 92.24 178 | 91.20 196 | 95.38 85 | 96.16 196 | 90.65 74 | 92.52 169 | 92.01 301 | 89.23 166 | 93.95 185 | 92.99 274 | 76.88 290 | 98.69 169 | 91.02 121 | 96.03 275 | 96.81 228 |
|
h-mvs33 | | | 92.89 156 | 91.99 175 | 95.58 79 | 96.97 142 | 90.55 75 | 93.94 135 | 94.01 264 | 89.23 166 | 93.95 185 | 96.19 153 | 76.88 290 | 99.14 89 | 91.02 121 | 95.71 283 | 97.04 219 |
|
AUN-MVS | | | 90.05 231 | 88.30 252 | 95.32 91 | 96.09 202 | 90.52 76 | 92.42 177 | 92.05 300 | 82.08 275 | 88.45 309 | 92.86 276 | 65.76 331 | 98.69 169 | 88.91 177 | 96.07 274 | 96.75 232 |
|
testtj | | | 94.81 96 | 94.42 111 | 96.01 54 | 97.23 130 | 90.51 77 | 94.77 103 | 97.85 86 | 91.29 120 | 94.92 157 | 95.66 179 | 91.71 121 | 99.40 43 | 88.07 195 | 98.25 191 | 98.11 143 |
|
ZD-MVS | | | | | | 97.23 130 | 90.32 78 | | 97.54 110 | 84.40 253 | 94.78 162 | 95.79 171 | 92.76 99 | 99.39 48 | 88.72 183 | 98.40 168 | |
|
DeepC-MVS | | 91.39 4 | 95.43 70 | 95.33 78 | 95.71 75 | 97.67 109 | 90.17 79 | 93.86 137 | 98.02 67 | 87.35 207 | 96.22 95 | 97.99 41 | 94.48 62 | 99.05 104 | 92.73 83 | 99.68 18 | 97.93 162 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PLC |  | 85.34 15 | 90.40 215 | 88.92 241 | 94.85 107 | 96.53 169 | 90.02 80 | 91.58 219 | 96.48 188 | 80.16 285 | 86.14 329 | 92.18 293 | 85.73 220 | 98.25 214 | 76.87 316 | 94.61 309 | 96.30 247 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Regformer-2 | | | 94.86 92 | 94.55 107 | 95.77 71 | 92.83 302 | 89.98 81 | 91.87 208 | 96.40 190 | 94.38 47 | 96.19 99 | 95.04 209 | 92.47 107 | 99.04 107 | 93.49 48 | 98.31 183 | 98.28 129 |
|
ETH3D cwj APD-0.16 | | | 93.99 126 | 93.38 144 | 95.80 69 | 96.82 151 | 89.92 82 | 92.72 162 | 98.02 67 | 84.73 251 | 93.65 195 | 95.54 188 | 91.68 122 | 99.22 81 | 88.78 180 | 98.49 164 | 98.26 131 |
|
test_prior4 | | | | | | | 89.91 83 | 90.74 237 | | | | | | | | | |
|
NCCC | | | 94.08 124 | 93.54 139 | 95.70 76 | 96.49 171 | 89.90 84 | 92.39 179 | 96.91 160 | 90.64 137 | 92.33 241 | 94.60 227 | 90.58 152 | 98.96 120 | 90.21 146 | 97.70 231 | 98.23 132 |
|
DPE-MVS |  | | 95.89 54 | 95.88 58 | 95.92 62 | 97.93 92 | 89.83 85 | 93.46 146 | 98.30 23 | 92.37 80 | 97.75 29 | 96.95 98 | 95.14 39 | 99.51 18 | 91.74 107 | 99.28 73 | 98.41 122 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ETH3D-3000-0.1 | | | 94.86 92 | 94.55 107 | 95.81 67 | 97.61 112 | 89.72 86 | 94.05 130 | 98.37 17 | 88.09 191 | 95.06 151 | 95.85 166 | 92.58 102 | 99.10 97 | 90.33 139 | 98.99 107 | 98.62 105 |
|
TAPA-MVS | | 88.58 10 | 92.49 171 | 91.75 183 | 94.73 112 | 96.50 170 | 89.69 87 | 92.91 158 | 97.68 99 | 78.02 307 | 92.79 223 | 94.10 243 | 90.85 143 | 97.96 237 | 84.76 245 | 98.16 201 | 96.54 234 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SF-MVS | | | 95.88 56 | 95.88 58 | 95.87 66 | 98.12 74 | 89.65 88 | 95.58 73 | 98.56 11 | 91.84 101 | 96.36 83 | 96.68 120 | 94.37 64 | 99.32 68 | 92.41 91 | 99.05 100 | 98.64 101 |
|
MSC_two_6792asdad | | | | | 95.90 63 | 96.54 166 | 89.57 89 | | 96.87 164 | | | | | 99.41 36 | 94.06 30 | 99.30 65 | 98.72 91 |
|
No_MVS | | | | | 95.90 63 | 96.54 166 | 89.57 89 | | 96.87 164 | | | | | 99.41 36 | 94.06 30 | 99.30 65 | 98.72 91 |
|
TEST9 | | | | | | 96.45 173 | 89.46 91 | 90.60 241 | 96.92 158 | 79.09 298 | 90.49 269 | 94.39 234 | 91.31 131 | 98.88 129 | | | |
|
train_agg | | | 92.71 164 | 91.83 179 | 95.35 86 | 96.45 173 | 89.46 91 | 90.60 241 | 96.92 158 | 79.37 293 | 90.49 269 | 94.39 234 | 91.20 137 | 98.88 129 | 88.66 184 | 98.43 166 | 97.72 183 |
|
OPU-MVS | | | | | 95.15 98 | 96.84 150 | 89.43 93 | 95.21 85 | | | | 95.66 179 | 93.12 87 | 98.06 227 | 86.28 227 | 98.61 150 | 97.95 160 |
|
test_part2 | | | | | | 98.21 70 | 89.41 94 | | | | 96.72 71 | | | | | | |
|
Vis-MVSNet |  | | 95.50 67 | 95.48 72 | 95.56 81 | 98.11 75 | 89.40 95 | 95.35 79 | 98.22 32 | 92.36 81 | 94.11 177 | 98.07 36 | 92.02 112 | 99.44 24 | 93.38 60 | 97.67 233 | 97.85 172 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
APDe-MVS | | | 96.46 32 | 96.64 22 | 95.93 60 | 97.68 108 | 89.38 96 | 96.90 19 | 98.41 16 | 92.52 77 | 97.43 43 | 97.92 44 | 95.11 42 | 99.50 19 | 94.45 19 | 99.30 65 | 98.92 67 |
|
CNVR-MVS | | | 94.58 104 | 94.29 116 | 95.46 84 | 96.94 144 | 89.35 97 | 91.81 214 | 96.80 169 | 89.66 155 | 93.90 188 | 95.44 193 | 92.80 98 | 98.72 161 | 92.74 82 | 98.52 159 | 98.32 125 |
|
test_8 | | | | | | 96.37 175 | 89.14 98 | 90.51 244 | 96.89 161 | 79.37 293 | 90.42 271 | 94.36 236 | 91.20 137 | 98.82 139 | | | |
|
ACMH+ | | 88.43 11 | 96.48 30 | 96.82 16 | 95.47 83 | 98.54 42 | 89.06 99 | 95.65 70 | 98.61 9 | 96.10 26 | 98.16 23 | 97.52 62 | 96.90 7 | 98.62 178 | 90.30 140 | 99.60 25 | 98.72 91 |
|
Regformer-4 | | | 94.90 89 | 94.67 103 | 95.59 78 | 92.78 304 | 89.02 100 | 92.39 179 | 95.91 209 | 94.50 43 | 96.41 80 | 95.56 186 | 92.10 111 | 99.01 112 | 94.23 26 | 98.14 203 | 98.74 88 |
|
MIMVSNet1 | | | 95.52 66 | 95.45 73 | 95.72 74 | 99.14 5 | 89.02 100 | 96.23 49 | 96.87 164 | 93.73 59 | 97.87 27 | 98.49 24 | 90.73 148 | 99.05 104 | 86.43 224 | 99.60 25 | 99.10 44 |
|
UniMVSNet (Re) | | | 95.32 75 | 95.15 85 | 95.80 69 | 97.79 98 | 88.91 102 | 92.91 158 | 98.07 56 | 93.46 65 | 96.31 87 | 95.97 163 | 90.14 158 | 99.34 62 | 92.11 94 | 99.64 23 | 99.16 36 |
|
agg_prior1 | | | 92.60 167 | 91.76 182 | 95.10 100 | 96.20 192 | 88.89 103 | 90.37 248 | 96.88 162 | 79.67 290 | 90.21 274 | 94.41 232 | 91.30 132 | 98.78 151 | 88.46 187 | 98.37 178 | 97.64 189 |
|
agg_prior | | | | | | 96.20 192 | 88.89 103 | | 96.88 162 | | 90.21 274 | | | 98.78 151 | | | |
|
SD-MVS | | | 95.19 81 | 95.73 66 | 93.55 160 | 96.62 160 | 88.88 105 | 94.67 106 | 98.05 60 | 91.26 121 | 97.25 50 | 96.40 136 | 95.42 26 | 94.36 343 | 92.72 84 | 99.19 84 | 97.40 205 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 94.96 87 | 94.75 97 | 95.57 80 | 98.86 21 | 88.69 106 | 96.37 39 | 96.81 168 | 85.23 238 | 94.75 163 | 97.12 90 | 91.85 117 | 99.40 43 | 93.45 53 | 98.33 180 | 98.62 105 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
plane_prior7 | | | | | | 97.71 104 | 88.68 107 | | | | | | | | | | |
|
wuyk23d | | | 87.83 269 | 90.79 206 | 78.96 349 | 90.46 338 | 88.63 108 | 92.72 162 | 90.67 311 | 91.65 113 | 98.68 11 | 97.64 56 | 96.06 16 | 77.53 370 | 59.84 365 | 99.41 52 | 70.73 368 |
|
DP-MVS | | | 95.62 63 | 95.84 61 | 94.97 103 | 97.16 135 | 88.62 109 | 94.54 117 | 97.64 101 | 96.94 15 | 96.58 77 | 97.32 80 | 93.07 90 | 98.72 161 | 90.45 131 | 98.84 124 | 97.57 192 |
|
UniMVSNet_NR-MVSNet | | | 95.35 73 | 95.21 83 | 95.76 72 | 97.69 107 | 88.59 110 | 92.26 187 | 97.84 87 | 94.91 38 | 96.80 68 | 95.78 174 | 90.42 153 | 99.41 36 | 91.60 112 | 99.58 31 | 99.29 28 |
|
DU-MVS | | | 95.28 78 | 95.12 87 | 95.75 73 | 97.75 100 | 88.59 110 | 92.58 167 | 97.81 90 | 93.99 52 | 96.80 68 | 95.90 164 | 90.10 162 | 99.41 36 | 91.60 112 | 99.58 31 | 99.26 29 |
|
nrg030 | | | 96.32 41 | 96.55 26 | 95.62 77 | 97.83 95 | 88.55 112 | 95.77 65 | 98.29 26 | 92.68 73 | 98.03 26 | 97.91 45 | 95.13 40 | 98.95 122 | 93.85 36 | 99.49 38 | 99.36 24 |
|
Regformer-1 | | | 94.55 105 | 94.33 115 | 95.19 96 | 92.83 302 | 88.54 113 | 91.87 208 | 95.84 213 | 93.99 52 | 95.95 107 | 95.04 209 | 92.00 113 | 98.79 147 | 93.14 71 | 98.31 183 | 98.23 132 |
|
PS-MVSNAJss | | | 96.01 51 | 96.04 52 | 95.89 65 | 98.82 23 | 88.51 114 | 95.57 74 | 97.88 82 | 88.72 178 | 98.81 6 | 98.86 10 | 90.77 144 | 99.60 8 | 95.43 11 | 99.53 35 | 99.57 13 |
|
CDPH-MVS | | | 92.67 165 | 91.83 179 | 95.18 97 | 96.94 144 | 88.46 115 | 90.70 239 | 97.07 148 | 77.38 309 | 92.34 240 | 95.08 207 | 92.67 101 | 98.88 129 | 85.74 230 | 98.57 153 | 98.20 136 |
|
plane_prior3 | | | | | | | 88.43 116 | | | 90.35 145 | 93.31 203 | | | | | | |
|
Fast-Effi-MVS+-dtu | | | 92.77 162 | 92.16 170 | 94.58 124 | 94.66 266 | 88.25 117 | 92.05 194 | 96.65 178 | 89.62 156 | 90.08 277 | 91.23 309 | 92.56 103 | 98.60 181 | 86.30 226 | 96.27 272 | 96.90 224 |
|
plane_prior6 | | | | | | 97.21 133 | 88.23 118 | | | | | | 86.93 204 | | | | |
|
RRT_MVS | | | 91.36 196 | 90.05 223 | 95.29 92 | 89.21 351 | 88.15 119 | 92.51 173 | 94.89 240 | 86.73 217 | 95.54 126 | 95.68 178 | 61.82 350 | 99.30 70 | 94.91 13 | 99.13 94 | 98.43 120 |
|
HQP_MVS | | | 94.26 118 | 93.93 124 | 95.23 95 | 97.71 104 | 88.12 120 | 94.56 113 | 97.81 90 | 91.74 109 | 93.31 203 | 95.59 181 | 86.93 204 | 98.95 122 | 89.26 169 | 98.51 161 | 98.60 108 |
|
plane_prior | | | | | | | 88.12 120 | 93.01 154 | | 88.98 172 | | | | | | 98.06 211 | |
|
xxxxxxxxxxxxxcwj | | | 95.03 83 | 94.93 90 | 95.33 88 | 97.46 122 | 88.05 122 | 92.04 195 | 98.42 15 | 87.63 203 | 96.36 83 | 96.68 120 | 94.37 64 | 99.32 68 | 92.41 91 | 99.05 100 | 98.64 101 |
|
save fliter | | | | | | 97.46 122 | 88.05 122 | 92.04 195 | 97.08 147 | 87.63 203 | | | | | | | |
|
UGNet | | | 93.08 149 | 92.50 166 | 94.79 110 | 93.87 285 | 87.99 124 | 95.07 93 | 94.26 258 | 90.64 137 | 87.33 323 | 97.67 54 | 86.89 207 | 98.49 193 | 88.10 193 | 98.71 141 | 97.91 165 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DeepC-MVS_fast | | 89.96 7 | 93.73 130 | 93.44 142 | 94.60 121 | 96.14 198 | 87.90 125 | 93.36 149 | 97.14 142 | 85.53 235 | 93.90 188 | 95.45 192 | 91.30 132 | 98.59 183 | 89.51 162 | 98.62 149 | 97.31 211 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CSCG | | | 94.69 100 | 94.75 97 | 94.52 125 | 97.55 116 | 87.87 126 | 95.01 96 | 97.57 108 | 92.68 73 | 96.20 97 | 93.44 264 | 91.92 116 | 98.78 151 | 89.11 173 | 99.24 78 | 96.92 223 |
|
pmmvs-eth3d | | | 91.54 191 | 90.73 208 | 93.99 142 | 95.76 224 | 87.86 127 | 90.83 235 | 93.98 265 | 78.23 306 | 94.02 184 | 96.22 152 | 82.62 244 | 96.83 294 | 86.57 220 | 98.33 180 | 97.29 212 |
|
pmmvs6 | | | 96.80 13 | 97.36 9 | 95.15 98 | 99.12 8 | 87.82 128 | 96.68 24 | 97.86 83 | 96.10 26 | 98.14 24 | 99.28 3 | 97.94 3 | 98.21 216 | 91.38 118 | 99.69 15 | 99.42 19 |
|
TranMVSNet+NR-MVSNet | | | 96.07 50 | 96.26 38 | 95.50 82 | 98.26 66 | 87.69 129 | 93.75 139 | 97.86 83 | 95.96 30 | 97.48 41 | 97.14 89 | 95.33 32 | 99.44 24 | 90.79 126 | 99.76 11 | 99.38 22 |
|
DROMVSNet | | | 95.44 69 | 95.62 69 | 94.89 105 | 96.93 146 | 87.69 129 | 96.48 33 | 99.14 3 | 93.93 55 | 92.77 224 | 94.52 230 | 93.95 70 | 99.49 22 | 93.62 43 | 99.22 81 | 97.51 197 |
|
alignmvs | | | 93.26 143 | 92.85 154 | 94.50 126 | 95.70 227 | 87.45 131 | 93.45 147 | 95.76 214 | 91.58 114 | 95.25 142 | 92.42 291 | 81.96 251 | 98.72 161 | 91.61 111 | 97.87 223 | 97.33 210 |
|
1121 | | | 90.26 223 | 89.23 233 | 93.34 167 | 97.15 137 | 87.40 132 | 91.94 202 | 94.39 254 | 67.88 354 | 91.02 262 | 94.91 215 | 86.91 206 | 98.59 183 | 81.17 279 | 97.71 230 | 94.02 313 |
|
UniMVSNet_ETH3D | | | 97.13 6 | 97.72 3 | 95.35 86 | 99.51 2 | 87.38 133 | 97.70 8 | 97.54 110 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 99 | 90.73 127 | 99.73 14 | 99.59 12 |
|
新几何1 | | | | | 93.17 173 | 97.16 135 | 87.29 134 | | 94.43 253 | 67.95 353 | 91.29 256 | 94.94 214 | 86.97 203 | 98.23 215 | 81.06 281 | 97.75 226 | 93.98 314 |
|
test_prior3 | | | 93.29 140 | 92.85 154 | 94.61 117 | 95.95 213 | 87.23 135 | 90.21 253 | 97.36 125 | 89.33 164 | 90.77 264 | 94.81 219 | 90.41 154 | 98.68 171 | 88.21 188 | 98.55 154 | 97.93 162 |
|
test_prior | | | | | 94.61 117 | 95.95 213 | 87.23 135 | | 97.36 125 | | | | | 98.68 171 | | | 97.93 162 |
|
NR-MVSNet | | | 95.28 78 | 95.28 81 | 95.26 93 | 97.75 100 | 87.21 137 | 95.08 92 | 97.37 120 | 93.92 57 | 97.65 31 | 95.90 164 | 90.10 162 | 99.33 67 | 90.11 149 | 99.66 21 | 99.26 29 |
|
test_one_0601 | | | | | | 98.26 66 | 87.14 138 | | 98.18 36 | 94.25 48 | 96.99 60 | 97.36 74 | 95.13 40 | | | | |
|
NP-MVS | | | | | | 96.82 151 | 87.10 139 | | | | | 93.40 265 | | | | | |
|
MVS_0304 | | | 90.96 202 | 90.15 221 | 93.37 166 | 93.17 294 | 87.06 140 | 93.62 143 | 92.43 292 | 89.60 157 | 82.25 352 | 95.50 189 | 82.56 245 | 97.83 248 | 84.41 249 | 97.83 225 | 95.22 283 |
|
3Dnovator | | 92.54 3 | 94.80 97 | 94.90 91 | 94.47 129 | 95.47 238 | 87.06 140 | 96.63 25 | 97.28 135 | 91.82 104 | 94.34 175 | 97.41 68 | 90.60 151 | 98.65 176 | 92.47 89 | 98.11 207 | 97.70 184 |
|
canonicalmvs | | | 94.59 103 | 94.69 100 | 94.30 135 | 95.60 235 | 87.03 142 | 95.59 71 | 98.24 30 | 91.56 115 | 95.21 145 | 92.04 297 | 94.95 50 | 98.66 174 | 91.45 116 | 97.57 237 | 97.20 215 |
|
SED-MVS | | | 96.00 52 | 96.41 32 | 94.76 111 | 98.51 46 | 86.97 143 | 95.21 85 | 98.10 49 | 91.95 92 | 97.63 32 | 97.25 82 | 96.48 11 | 99.35 59 | 93.29 63 | 99.29 68 | 97.95 160 |
|
test_241102_ONE | | | | | | 98.51 46 | 86.97 143 | | 98.10 49 | 91.85 98 | 97.63 32 | 97.03 95 | 96.48 11 | 98.95 122 | | | |
|
MVS_111021_HR | | | 93.63 132 | 93.42 143 | 94.26 136 | 96.65 157 | 86.96 145 | 89.30 281 | 96.23 198 | 88.36 187 | 93.57 197 | 94.60 227 | 93.45 75 | 97.77 254 | 90.23 144 | 98.38 173 | 98.03 150 |
|
DP-MVS Recon | | | 92.31 175 | 91.88 178 | 93.60 158 | 97.18 134 | 86.87 146 | 91.10 230 | 97.37 120 | 84.92 248 | 92.08 246 | 94.08 244 | 88.59 175 | 98.20 217 | 83.50 254 | 98.14 203 | 95.73 271 |
|
v7n | | | 96.82 10 | 97.31 10 | 95.33 88 | 98.54 42 | 86.81 147 | 96.83 20 | 98.07 56 | 96.59 20 | 98.46 17 | 98.43 27 | 92.91 94 | 99.52 17 | 96.25 6 | 99.76 11 | 99.65 8 |
|
test12 | | | | | 94.43 132 | 95.95 213 | 86.75 148 | | 96.24 197 | | 89.76 288 | | 89.79 166 | 98.79 147 | | 97.95 219 | 97.75 182 |
|
test_0728_SECOND | | | | | 94.88 106 | 98.55 40 | 86.72 149 | 95.20 87 | 98.22 32 | | | | | 99.38 54 | 93.44 55 | 99.31 63 | 98.53 112 |
|
DVP-MVS |  | | 95.82 58 | 96.18 42 | 94.72 113 | 98.51 46 | 86.69 150 | 95.20 87 | 97.00 151 | 91.85 98 | 97.40 46 | 97.35 77 | 95.58 22 | 99.34 62 | 93.44 55 | 99.31 63 | 98.13 141 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 98.51 46 | 86.69 150 | 95.34 80 | 98.18 36 | 91.85 98 | 97.63 32 | 97.37 71 | 95.58 22 | | | | |
|
DVP-MVS++ | | | 95.93 53 | 96.34 34 | 94.70 114 | 96.54 166 | 86.66 152 | 98.45 4 | 98.22 32 | 93.26 68 | 97.54 37 | 97.36 74 | 93.12 87 | 99.38 54 | 93.88 34 | 98.68 145 | 98.04 147 |
|
IU-MVS | | | | | | 98.51 46 | 86.66 152 | | 96.83 167 | 72.74 334 | 95.83 114 | | | | 93.00 76 | 99.29 68 | 98.64 101 |
|
EG-PatchMatch MVS | | | 94.54 107 | 94.67 103 | 94.14 139 | 97.87 94 | 86.50 154 | 92.00 198 | 96.74 174 | 88.16 190 | 96.93 62 | 97.61 57 | 93.04 91 | 97.90 239 | 91.60 112 | 98.12 206 | 98.03 150 |
|
MVP-Stereo | | | 90.07 230 | 88.92 241 | 93.54 162 | 96.31 184 | 86.49 155 | 90.93 233 | 95.59 222 | 79.80 286 | 91.48 253 | 95.59 181 | 80.79 260 | 97.39 276 | 78.57 304 | 91.19 346 | 96.76 231 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CDS-MVSNet | | | 89.55 239 | 88.22 257 | 93.53 163 | 95.37 243 | 86.49 155 | 89.26 282 | 93.59 268 | 79.76 288 | 91.15 260 | 92.31 292 | 77.12 286 | 98.38 202 | 77.51 311 | 97.92 221 | 95.71 272 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IS-MVSNet | | | 94.49 108 | 94.35 114 | 94.92 104 | 98.25 68 | 86.46 157 | 97.13 15 | 94.31 256 | 96.24 24 | 96.28 92 | 96.36 143 | 82.88 238 | 99.35 59 | 88.19 190 | 99.52 37 | 98.96 60 |
|
WR-MVS_H | | | 96.60 25 | 97.05 14 | 95.24 94 | 99.02 12 | 86.44 158 | 96.78 23 | 98.08 53 | 97.42 9 | 98.48 16 | 97.86 48 | 91.76 120 | 99.63 6 | 94.23 26 | 99.84 3 | 99.66 6 |
|
PMMVS | | | 83.00 312 | 81.11 320 | 88.66 297 | 83.81 373 | 86.44 158 | 82.24 354 | 85.65 343 | 61.75 366 | 82.07 354 | 85.64 357 | 79.75 265 | 91.59 359 | 75.99 322 | 93.09 329 | 87.94 358 |
|
TAMVS | | | 90.16 225 | 89.05 238 | 93.49 165 | 96.49 171 | 86.37 160 | 90.34 250 | 92.55 289 | 80.84 282 | 92.99 218 | 94.57 229 | 81.94 252 | 98.20 217 | 73.51 333 | 98.21 197 | 95.90 264 |
|
AdaColmap |  | | 91.63 189 | 91.36 192 | 92.47 201 | 95.56 236 | 86.36 161 | 92.24 189 | 96.27 195 | 88.88 176 | 89.90 283 | 92.69 282 | 91.65 123 | 98.32 207 | 77.38 313 | 97.64 234 | 92.72 337 |
|
Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 102 | 97.46 122 | 86.35 162 | 97.11 16 | 98.24 30 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 86 | 99.15 87 | 93.18 68 | 99.74 13 | 99.50 16 |
|
ETV-MVS | | | 92.99 153 | 92.74 158 | 93.72 155 | 95.86 218 | 86.30 163 | 92.33 183 | 97.84 87 | 91.70 112 | 92.81 222 | 86.17 355 | 92.22 108 | 99.19 84 | 88.03 196 | 97.73 227 | 95.66 275 |
|
Regformer-3 | | | 94.28 116 | 94.23 121 | 94.46 130 | 92.78 304 | 86.28 164 | 92.39 179 | 94.70 248 | 93.69 63 | 95.97 105 | 95.56 186 | 91.34 129 | 98.48 197 | 93.45 53 | 98.14 203 | 98.62 105 |
|
API-MVS | | | 91.52 192 | 91.61 184 | 91.26 234 | 94.16 276 | 86.26 165 | 94.66 107 | 94.82 243 | 91.17 124 | 92.13 245 | 91.08 312 | 90.03 165 | 97.06 286 | 79.09 301 | 97.35 244 | 90.45 352 |
|
EPNet | | | 89.80 238 | 88.25 254 | 94.45 131 | 83.91 372 | 86.18 166 | 93.87 136 | 87.07 332 | 91.16 125 | 80.64 361 | 94.72 224 | 78.83 270 | 98.89 128 | 85.17 234 | 98.89 117 | 98.28 129 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
JIA-IIPM | | | 85.08 301 | 83.04 310 | 91.19 239 | 87.56 358 | 86.14 167 | 89.40 278 | 84.44 355 | 88.98 172 | 82.20 353 | 97.95 42 | 56.82 360 | 96.15 313 | 76.55 319 | 83.45 362 | 91.30 347 |
|
VDD-MVS | | | 94.37 111 | 94.37 113 | 94.40 133 | 97.49 119 | 86.07 168 | 93.97 134 | 93.28 273 | 94.49 44 | 96.24 93 | 97.78 49 | 87.99 186 | 98.79 147 | 88.92 176 | 99.14 91 | 98.34 124 |
|
EI-MVSNet-Vis-set | | | 94.36 112 | 94.28 117 | 94.61 117 | 92.55 306 | 85.98 169 | 92.44 175 | 94.69 249 | 93.70 60 | 96.12 102 | 95.81 170 | 91.24 134 | 98.86 134 | 93.76 41 | 98.22 196 | 98.98 58 |
|
Anonymous20240529 | | | 95.50 67 | 95.83 62 | 94.50 126 | 97.33 128 | 85.93 170 | 95.19 89 | 96.77 172 | 96.64 19 | 97.61 35 | 98.05 37 | 93.23 83 | 98.79 147 | 88.60 185 | 99.04 105 | 98.78 82 |
|
EI-MVSNet-UG-set | | | 94.35 113 | 94.27 119 | 94.59 122 | 92.46 307 | 85.87 171 | 92.42 177 | 94.69 249 | 93.67 64 | 96.13 101 | 95.84 169 | 91.20 137 | 98.86 134 | 93.78 38 | 98.23 194 | 99.03 49 |
|
PCF-MVS | | 84.52 17 | 89.12 246 | 87.71 265 | 93.34 167 | 96.06 204 | 85.84 172 | 86.58 329 | 97.31 130 | 68.46 352 | 93.61 196 | 93.89 253 | 87.51 193 | 98.52 191 | 67.85 356 | 98.11 207 | 95.66 275 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test_0402 | | | 95.73 60 | 96.22 40 | 94.26 136 | 98.19 71 | 85.77 173 | 93.24 151 | 97.24 137 | 96.88 16 | 97.69 30 | 97.77 51 | 94.12 68 | 99.13 91 | 91.54 115 | 99.29 68 | 97.88 168 |
|
MCST-MVS | | | 92.91 155 | 92.51 165 | 94.10 140 | 97.52 117 | 85.72 174 | 91.36 225 | 97.13 144 | 80.33 284 | 92.91 221 | 94.24 238 | 91.23 135 | 98.72 161 | 89.99 153 | 97.93 220 | 97.86 170 |
|
pmmvs4 | | | 88.95 251 | 87.70 266 | 92.70 189 | 94.30 274 | 85.60 175 | 87.22 311 | 92.16 296 | 74.62 323 | 89.75 289 | 94.19 240 | 77.97 279 | 96.41 306 | 82.71 261 | 96.36 271 | 96.09 254 |
|
EPP-MVSNet | | | 93.91 127 | 93.68 133 | 94.59 122 | 98.08 77 | 85.55 176 | 97.44 10 | 94.03 261 | 94.22 49 | 94.94 155 | 96.19 153 | 82.07 249 | 99.57 13 | 87.28 209 | 98.89 117 | 98.65 97 |
|
CMPMVS |  | 68.83 22 | 87.28 282 | 85.67 295 | 92.09 212 | 88.77 355 | 85.42 177 | 90.31 251 | 94.38 255 | 70.02 347 | 88.00 315 | 93.30 267 | 73.78 302 | 94.03 347 | 75.96 323 | 96.54 267 | 96.83 227 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 141 | 98.56 37 | 85.33 178 | 96.33 42 | 98.30 23 | 94.66 40 | 98.72 8 | 98.30 30 | 97.51 5 | 98.00 233 | 94.87 14 | 99.59 27 | 98.86 73 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test222 | | | | | | 96.95 143 | 85.27 179 | 88.83 290 | 93.61 267 | 65.09 361 | 90.74 266 | 94.85 218 | 84.62 228 | | | 97.36 243 | 93.91 315 |
|
GeoE | | | 94.55 105 | 94.68 102 | 94.15 138 | 97.23 130 | 85.11 180 | 94.14 127 | 97.34 128 | 88.71 179 | 95.26 140 | 95.50 189 | 94.65 57 | 99.12 93 | 90.94 124 | 98.40 168 | 98.23 132 |
|
pm-mvs1 | | | 95.43 70 | 95.94 55 | 93.93 147 | 98.38 58 | 85.08 181 | 95.46 78 | 97.12 145 | 91.84 101 | 97.28 48 | 98.46 25 | 95.30 34 | 97.71 259 | 90.17 147 | 99.42 47 | 98.99 53 |
|
HQP5-MVS | | | | | | | 84.89 182 | | | | | | | | | | |
|
HQP-MVS | | | 92.09 181 | 91.49 189 | 93.88 151 | 96.36 177 | 84.89 182 | 91.37 222 | 97.31 130 | 87.16 210 | 88.81 300 | 93.40 265 | 84.76 226 | 98.60 181 | 86.55 221 | 97.73 227 | 98.14 139 |
|
DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 115 | 99.13 6 | 84.68 184 | 96.51 30 | 97.94 81 | 98.14 3 | 98.67 12 | 98.32 29 | 95.04 45 | 99.69 2 | 93.27 65 | 99.82 8 | 99.62 10 |
|
PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 117 | 99.16 4 | 84.50 185 | 96.54 29 | 98.05 60 | 98.06 4 | 98.64 13 | 98.25 31 | 95.01 48 | 99.65 3 | 92.95 78 | 99.83 6 | 99.68 4 |
|
ETH3 D test6400 | | | 91.91 184 | 91.25 195 | 93.89 150 | 96.59 161 | 84.41 186 | 92.10 192 | 97.72 98 | 78.52 303 | 91.82 250 | 93.78 257 | 88.70 174 | 99.13 91 | 83.61 253 | 98.39 171 | 98.14 139 |
|
GBi-Net | | | 93.21 146 | 92.96 151 | 93.97 144 | 95.40 240 | 84.29 187 | 95.99 55 | 96.56 182 | 88.63 180 | 95.10 147 | 98.53 21 | 81.31 256 | 98.98 115 | 86.74 215 | 98.38 173 | 98.65 97 |
|
test1 | | | 93.21 146 | 92.96 151 | 93.97 144 | 95.40 240 | 84.29 187 | 95.99 55 | 96.56 182 | 88.63 180 | 95.10 147 | 98.53 21 | 81.31 256 | 98.98 115 | 86.74 215 | 98.38 173 | 98.65 97 |
|
FMVSNet1 | | | 94.84 94 | 95.13 86 | 93.97 144 | 97.60 113 | 84.29 187 | 95.99 55 | 96.56 182 | 92.38 79 | 97.03 57 | 98.53 21 | 90.12 159 | 98.98 115 | 88.78 180 | 99.16 89 | 98.65 97 |
|
原ACMM1 | | | | | 92.87 183 | 96.91 147 | 84.22 190 | | 97.01 150 | 76.84 314 | 89.64 290 | 94.46 231 | 88.00 185 | 98.70 167 | 81.53 274 | 98.01 216 | 95.70 273 |
|
DPM-MVS | | | 89.35 242 | 88.40 250 | 92.18 209 | 96.13 201 | 84.20 191 | 86.96 316 | 96.15 204 | 75.40 320 | 87.36 322 | 91.55 307 | 83.30 234 | 98.01 232 | 82.17 269 | 96.62 266 | 94.32 306 |
|
旧先验1 | | | | | | 96.20 192 | 84.17 192 | | 94.82 243 | | | 95.57 185 | 89.57 168 | | | 97.89 222 | 96.32 246 |
|
OpenMVS |  | 89.45 8 | 92.27 177 | 92.13 172 | 92.68 190 | 94.53 270 | 84.10 193 | 95.70 67 | 97.03 149 | 82.44 272 | 91.14 261 | 96.42 134 | 88.47 177 | 98.38 202 | 85.95 229 | 97.47 240 | 95.55 279 |
|
PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 128 | 99.13 6 | 84.09 194 | 96.61 26 | 97.97 75 | 97.91 5 | 98.64 13 | 98.13 33 | 95.24 36 | 99.65 3 | 93.39 59 | 99.84 3 | 99.72 2 |
|
EIA-MVS | | | 92.35 174 | 92.03 173 | 93.30 170 | 95.81 221 | 83.97 195 | 92.80 161 | 98.17 40 | 87.71 200 | 89.79 287 | 87.56 345 | 91.17 140 | 99.18 85 | 87.97 197 | 97.27 245 | 96.77 230 |
|
PVSNet_Blended_VisFu | | | 91.63 189 | 91.20 196 | 92.94 180 | 97.73 103 | 83.95 196 | 92.14 191 | 97.46 116 | 78.85 302 | 92.35 238 | 94.98 212 | 84.16 230 | 99.08 99 | 86.36 225 | 96.77 262 | 95.79 269 |
|
CP-MVSNet | | | 96.19 46 | 96.80 17 | 94.38 134 | 98.99 14 | 83.82 197 | 96.31 44 | 97.53 112 | 97.60 7 | 98.34 19 | 97.52 62 | 91.98 115 | 99.63 6 | 93.08 74 | 99.81 9 | 99.70 3 |
|
lessismore_v0 | | | | | 93.87 152 | 98.05 80 | 83.77 198 | | 80.32 366 | | 97.13 52 | 97.91 45 | 77.49 281 | 99.11 95 | 92.62 86 | 98.08 210 | 98.74 88 |
|
CLD-MVS | | | 91.82 185 | 91.41 191 | 93.04 174 | 96.37 175 | 83.65 199 | 86.82 321 | 97.29 133 | 84.65 252 | 92.27 242 | 89.67 331 | 92.20 109 | 97.85 247 | 83.95 251 | 99.47 39 | 97.62 190 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 92.38 173 | 91.99 175 | 93.52 164 | 93.82 287 | 83.46 200 | 91.14 228 | 97.00 151 | 89.81 153 | 86.47 327 | 94.04 245 | 87.90 188 | 99.21 82 | 89.50 163 | 98.27 187 | 97.90 166 |
|
QAPM | | | 92.88 157 | 92.77 156 | 93.22 172 | 95.82 219 | 83.31 201 | 96.45 34 | 97.35 127 | 83.91 256 | 93.75 191 | 96.77 111 | 89.25 171 | 98.88 129 | 84.56 247 | 97.02 252 | 97.49 198 |
|
Effi-MVS+ | | | 92.79 160 | 92.74 158 | 92.94 180 | 95.10 248 | 83.30 202 | 94.00 132 | 97.53 112 | 91.36 119 | 89.35 293 | 90.65 321 | 94.01 69 | 98.66 174 | 87.40 207 | 95.30 294 | 96.88 226 |
|
Anonymous202405211 | | | 92.58 168 | 92.50 166 | 92.83 185 | 96.55 165 | 83.22 203 | 92.43 176 | 91.64 304 | 94.10 51 | 95.59 124 | 96.64 123 | 81.88 253 | 97.50 267 | 85.12 238 | 98.52 159 | 97.77 179 |
|
SixPastTwentyTwo | | | 94.91 88 | 95.21 83 | 93.98 143 | 98.52 45 | 83.19 204 | 95.93 59 | 94.84 242 | 94.86 39 | 98.49 15 | 98.74 16 | 81.45 254 | 99.60 8 | 94.69 16 | 99.39 54 | 99.15 37 |
|
VPA-MVSNet | | | 95.14 82 | 95.67 68 | 93.58 159 | 97.76 99 | 83.15 205 | 94.58 111 | 97.58 107 | 93.39 66 | 97.05 56 | 98.04 38 | 93.25 82 | 98.51 192 | 89.75 159 | 99.59 27 | 99.08 45 |
|
LCM-MVSNet-Re | | | 94.20 121 | 94.58 106 | 93.04 174 | 95.91 216 | 83.13 206 | 93.79 138 | 99.19 2 | 92.00 91 | 98.84 5 | 98.04 38 | 93.64 72 | 99.02 110 | 81.28 276 | 98.54 157 | 96.96 222 |
|
CS-MVS-test | | | 93.33 138 | 93.53 141 | 92.71 188 | 95.74 225 | 83.08 207 | 94.55 115 | 98.85 5 | 91.02 127 | 89.30 294 | 91.91 298 | 91.79 118 | 99.23 80 | 90.23 144 | 98.41 167 | 95.82 267 |
|
MSDG | | | 90.82 203 | 90.67 209 | 91.26 234 | 94.16 276 | 83.08 207 | 86.63 326 | 96.19 201 | 90.60 139 | 91.94 248 | 91.89 299 | 89.16 172 | 95.75 321 | 80.96 282 | 94.51 310 | 94.95 291 |
|
ambc | | | | | 92.98 176 | 96.88 148 | 83.01 209 | 95.92 60 | 96.38 192 | | 96.41 80 | 97.48 65 | 88.26 179 | 97.80 250 | 89.96 154 | 98.93 116 | 98.12 142 |
|
test_part1 | | | 94.39 110 | 94.55 107 | 93.92 148 | 96.14 198 | 82.86 210 | 95.54 75 | 98.09 52 | 95.36 36 | 98.27 20 | 98.36 28 | 75.91 295 | 99.44 24 | 93.41 58 | 99.84 3 | 99.47 17 |
|
MSLP-MVS++ | | | 93.25 145 | 93.88 125 | 91.37 230 | 96.34 181 | 82.81 211 | 93.11 152 | 97.74 96 | 89.37 162 | 94.08 179 | 95.29 200 | 90.40 156 | 96.35 310 | 90.35 136 | 98.25 191 | 94.96 290 |
|
K. test v3 | | | 93.37 137 | 93.27 148 | 93.66 156 | 98.05 80 | 82.62 212 | 94.35 120 | 86.62 334 | 96.05 28 | 97.51 40 | 98.85 12 | 76.59 293 | 99.65 3 | 93.21 67 | 98.20 199 | 98.73 90 |
|
Fast-Effi-MVS+ | | | 91.28 199 | 90.86 203 | 92.53 198 | 95.45 239 | 82.53 213 | 89.25 284 | 96.52 186 | 85.00 246 | 89.91 282 | 88.55 341 | 92.94 92 | 98.84 137 | 84.72 246 | 95.44 290 | 96.22 250 |
|
VDDNet | | | 94.03 125 | 94.27 119 | 93.31 169 | 98.87 20 | 82.36 214 | 95.51 77 | 91.78 303 | 97.19 12 | 96.32 86 | 98.60 18 | 84.24 229 | 98.75 156 | 87.09 212 | 98.83 129 | 98.81 79 |
|
114514_t | | | 90.51 211 | 89.80 227 | 92.63 193 | 98.00 87 | 82.24 215 | 93.40 148 | 97.29 133 | 65.84 359 | 89.40 292 | 94.80 222 | 86.99 202 | 98.75 156 | 83.88 252 | 98.61 150 | 96.89 225 |
|
testdata | | | | | 91.03 242 | 96.87 149 | 82.01 216 | | 94.28 257 | 71.55 338 | 92.46 232 | 95.42 194 | 85.65 222 | 97.38 278 | 82.64 262 | 97.27 245 | 93.70 321 |
|
FMVSNet2 | | | 92.78 161 | 92.73 160 | 92.95 179 | 95.40 240 | 81.98 217 | 94.18 125 | 95.53 226 | 88.63 180 | 96.05 104 | 97.37 71 | 81.31 256 | 98.81 144 | 87.38 208 | 98.67 147 | 98.06 144 |
|
TransMVSNet (Re) | | | 95.27 80 | 96.04 52 | 92.97 177 | 98.37 60 | 81.92 218 | 95.07 93 | 96.76 173 | 93.97 54 | 97.77 28 | 98.57 19 | 95.72 18 | 97.90 239 | 88.89 178 | 99.23 79 | 99.08 45 |
|
FC-MVSNet-test | | | 95.32 75 | 95.88 58 | 93.62 157 | 98.49 54 | 81.77 219 | 95.90 61 | 98.32 20 | 93.93 55 | 97.53 39 | 97.56 59 | 88.48 176 | 99.40 43 | 92.91 79 | 99.83 6 | 99.68 4 |
|
FIs | | | 94.90 89 | 95.35 76 | 93.55 160 | 98.28 64 | 81.76 220 | 95.33 81 | 98.14 44 | 93.05 71 | 97.07 53 | 97.18 87 | 87.65 190 | 99.29 71 | 91.72 108 | 99.69 15 | 99.61 11 |
|
ab-mvs | | | 92.40 172 | 92.62 162 | 91.74 220 | 97.02 140 | 81.65 221 | 95.84 63 | 95.50 227 | 86.95 215 | 92.95 220 | 97.56 59 | 90.70 149 | 97.50 267 | 79.63 294 | 97.43 241 | 96.06 256 |
|
xiu_mvs_v1_base_debu | | | 91.47 193 | 91.52 186 | 91.33 231 | 95.69 228 | 81.56 222 | 89.92 264 | 96.05 206 | 83.22 260 | 91.26 257 | 90.74 316 | 91.55 125 | 98.82 139 | 89.29 166 | 95.91 278 | 93.62 323 |
|
xiu_mvs_v1_base | | | 91.47 193 | 91.52 186 | 91.33 231 | 95.69 228 | 81.56 222 | 89.92 264 | 96.05 206 | 83.22 260 | 91.26 257 | 90.74 316 | 91.55 125 | 98.82 139 | 89.29 166 | 95.91 278 | 93.62 323 |
|
xiu_mvs_v1_base_debi | | | 91.47 193 | 91.52 186 | 91.33 231 | 95.69 228 | 81.56 222 | 89.92 264 | 96.05 206 | 83.22 260 | 91.26 257 | 90.74 316 | 91.55 125 | 98.82 139 | 89.29 166 | 95.91 278 | 93.62 323 |
|
casdiffmvs | | | 94.32 115 | 94.80 95 | 92.85 184 | 96.05 205 | 81.44 225 | 92.35 182 | 98.05 60 | 91.53 116 | 95.75 117 | 96.80 110 | 93.35 80 | 98.49 193 | 91.01 123 | 98.32 182 | 98.64 101 |
|
bset_n11_16_dypcd | | | 89.99 233 | 89.15 236 | 92.53 198 | 94.75 258 | 81.34 226 | 84.19 345 | 87.56 328 | 85.13 242 | 93.77 190 | 92.46 286 | 72.82 304 | 99.01 112 | 92.46 90 | 99.21 82 | 97.23 213 |
|
ET-MVSNet_ETH3D | | | 86.15 294 | 84.27 303 | 91.79 218 | 93.04 298 | 81.28 227 | 87.17 313 | 86.14 337 | 79.57 291 | 83.65 343 | 88.66 339 | 57.10 358 | 98.18 220 | 87.74 201 | 95.40 291 | 95.90 264 |
|
V42 | | | 93.43 136 | 93.58 136 | 92.97 177 | 95.34 244 | 81.22 228 | 92.67 165 | 96.49 187 | 87.25 209 | 96.20 97 | 96.37 142 | 87.32 196 | 98.85 136 | 92.39 93 | 98.21 197 | 98.85 76 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 241 | 89.05 238 | 90.92 247 | 94.58 268 | 81.21 229 | 91.10 230 | 93.41 272 | 77.03 313 | 93.41 200 | 93.99 249 | 83.23 235 | 97.80 250 | 79.93 291 | 94.80 304 | 93.74 320 |
|
PAPM_NR | | | 91.03 201 | 90.81 205 | 91.68 223 | 96.73 155 | 81.10 230 | 93.72 140 | 96.35 193 | 88.19 189 | 88.77 304 | 92.12 296 | 85.09 225 | 97.25 280 | 82.40 266 | 93.90 318 | 96.68 233 |
|
baseline | | | 94.26 118 | 94.80 95 | 92.64 191 | 96.08 203 | 80.99 231 | 93.69 141 | 98.04 64 | 90.80 133 | 94.89 158 | 96.32 145 | 93.19 84 | 98.48 197 | 91.68 110 | 98.51 161 | 98.43 120 |
|
1112_ss | | | 88.42 260 | 87.41 269 | 91.45 228 | 96.69 156 | 80.99 231 | 89.72 270 | 96.72 175 | 73.37 330 | 87.00 325 | 90.69 319 | 77.38 283 | 98.20 217 | 81.38 275 | 93.72 321 | 95.15 285 |
|
tfpnnormal | | | 94.27 117 | 94.87 93 | 92.48 200 | 97.71 104 | 80.88 233 | 94.55 115 | 95.41 229 | 93.70 60 | 96.67 73 | 97.72 52 | 91.40 128 | 98.18 220 | 87.45 205 | 99.18 86 | 98.36 123 |
|
Baseline_NR-MVSNet | | | 94.47 109 | 95.09 88 | 92.60 195 | 98.50 53 | 80.82 234 | 92.08 193 | 96.68 176 | 93.82 58 | 96.29 89 | 98.56 20 | 90.10 162 | 97.75 257 | 90.10 151 | 99.66 21 | 99.24 31 |
|
HyFIR lowres test | | | 87.19 286 | 85.51 296 | 92.24 204 | 97.12 139 | 80.51 235 | 85.03 336 | 96.06 205 | 66.11 358 | 91.66 252 | 92.98 275 | 70.12 314 | 99.14 89 | 75.29 325 | 95.23 296 | 97.07 216 |
|
UnsupCasMVSNet_eth | | | 90.33 220 | 90.34 216 | 90.28 265 | 94.64 267 | 80.24 236 | 89.69 271 | 95.88 210 | 85.77 231 | 93.94 187 | 95.69 177 | 81.99 250 | 92.98 354 | 84.21 250 | 91.30 345 | 97.62 190 |
|
MDA-MVSNet-bldmvs | | | 91.04 200 | 90.88 202 | 91.55 226 | 94.68 265 | 80.16 237 | 85.49 333 | 92.14 297 | 90.41 144 | 94.93 156 | 95.79 171 | 85.10 224 | 96.93 291 | 85.15 236 | 94.19 317 | 97.57 192 |
|
v10 | | | 94.68 101 | 95.27 82 | 92.90 182 | 96.57 163 | 80.15 238 | 94.65 108 | 97.57 108 | 90.68 136 | 97.43 43 | 98.00 40 | 88.18 180 | 99.15 87 | 94.84 15 | 99.55 34 | 99.41 20 |
|
VNet | | | 92.67 165 | 92.96 151 | 91.79 218 | 96.27 187 | 80.15 238 | 91.95 200 | 94.98 237 | 92.19 88 | 94.52 170 | 96.07 158 | 87.43 194 | 97.39 276 | 84.83 243 | 98.38 173 | 97.83 173 |
|
DELS-MVS | | | 92.05 182 | 92.16 170 | 91.72 221 | 94.44 271 | 80.13 240 | 87.62 302 | 97.25 136 | 87.34 208 | 92.22 243 | 93.18 271 | 89.54 169 | 98.73 160 | 89.67 160 | 98.20 199 | 96.30 247 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
jason | | | 89.17 245 | 88.32 251 | 91.70 222 | 95.73 226 | 80.07 241 | 88.10 299 | 93.22 274 | 71.98 337 | 90.09 276 | 92.79 279 | 78.53 275 | 98.56 187 | 87.43 206 | 97.06 250 | 96.46 241 |
jason: jason. |
MVSFormer | | | 92.18 179 | 92.23 169 | 92.04 214 | 94.74 260 | 80.06 242 | 97.15 13 | 97.37 120 | 88.98 172 | 88.83 298 | 92.79 279 | 77.02 287 | 99.60 8 | 96.41 4 | 96.75 263 | 96.46 241 |
|
lupinMVS | | | 88.34 262 | 87.31 270 | 91.45 228 | 94.74 260 | 80.06 242 | 87.23 310 | 92.27 293 | 71.10 341 | 88.83 298 | 91.15 310 | 77.02 287 | 98.53 190 | 86.67 218 | 96.75 263 | 95.76 270 |
|
WR-MVS | | | 93.49 134 | 93.72 130 | 92.80 186 | 97.57 115 | 80.03 244 | 90.14 257 | 95.68 216 | 93.70 60 | 96.62 75 | 95.39 197 | 87.21 198 | 99.04 107 | 87.50 204 | 99.64 23 | 99.33 25 |
|
CANet_DTU | | | 89.85 236 | 89.17 235 | 91.87 216 | 92.20 312 | 80.02 245 | 90.79 236 | 95.87 211 | 86.02 227 | 82.53 351 | 91.77 302 | 80.01 264 | 98.57 186 | 85.66 231 | 97.70 231 | 97.01 220 |
|
Patchmatch-RL test | | | 88.81 254 | 88.52 247 | 89.69 280 | 95.33 245 | 79.94 246 | 86.22 330 | 92.71 284 | 78.46 304 | 95.80 115 | 94.18 241 | 66.25 329 | 95.33 332 | 89.22 171 | 98.53 158 | 93.78 318 |
|
FMVSNet3 | | | 90.78 205 | 90.32 217 | 92.16 210 | 93.03 299 | 79.92 247 | 92.54 168 | 94.95 238 | 86.17 225 | 95.10 147 | 96.01 161 | 69.97 315 | 98.75 156 | 86.74 215 | 98.38 173 | 97.82 175 |
|
XXY-MVS | | | 92.58 168 | 93.16 150 | 90.84 251 | 97.75 100 | 79.84 248 | 91.87 208 | 96.22 200 | 85.94 228 | 95.53 127 | 97.68 53 | 92.69 100 | 94.48 339 | 83.21 257 | 97.51 238 | 98.21 135 |
|
test_yl | | | 90.11 227 | 89.73 230 | 91.26 234 | 94.09 279 | 79.82 249 | 90.44 245 | 92.65 285 | 90.90 128 | 93.19 212 | 93.30 267 | 73.90 300 | 98.03 229 | 82.23 267 | 96.87 258 | 95.93 261 |
|
DCV-MVSNet | | | 90.11 227 | 89.73 230 | 91.26 234 | 94.09 279 | 79.82 249 | 90.44 245 | 92.65 285 | 90.90 128 | 93.19 212 | 93.30 267 | 73.90 300 | 98.03 229 | 82.23 267 | 96.87 258 | 95.93 261 |
|
FMVSNet5 | | | 87.82 270 | 86.56 285 | 91.62 224 | 92.31 308 | 79.81 251 | 93.49 145 | 94.81 245 | 83.26 259 | 91.36 255 | 96.93 101 | 52.77 367 | 97.49 269 | 76.07 321 | 98.03 214 | 97.55 195 |
|
v8 | | | 94.65 102 | 95.29 80 | 92.74 187 | 96.65 157 | 79.77 252 | 94.59 109 | 97.17 141 | 91.86 97 | 97.47 42 | 97.93 43 | 88.16 181 | 99.08 99 | 94.32 22 | 99.47 39 | 99.38 22 |
|
tttt0517 | | | 89.81 237 | 88.90 243 | 92.55 197 | 97.00 141 | 79.73 253 | 95.03 95 | 83.65 357 | 89.88 152 | 95.30 137 | 94.79 223 | 53.64 365 | 99.39 48 | 91.99 99 | 98.79 135 | 98.54 111 |
|
v1192 | | | 93.49 134 | 93.78 128 | 92.62 194 | 96.16 196 | 79.62 254 | 91.83 213 | 97.22 139 | 86.07 226 | 96.10 103 | 96.38 141 | 87.22 197 | 99.02 110 | 94.14 29 | 98.88 119 | 99.22 32 |
|
v1144 | | | 93.50 133 | 93.81 126 | 92.57 196 | 96.28 186 | 79.61 255 | 91.86 212 | 96.96 154 | 86.95 215 | 95.91 111 | 96.32 145 | 87.65 190 | 98.96 120 | 93.51 47 | 98.88 119 | 99.13 39 |
|
BH-untuned | | | 90.68 208 | 90.90 201 | 90.05 274 | 95.98 211 | 79.57 256 | 90.04 260 | 94.94 239 | 87.91 193 | 94.07 180 | 93.00 273 | 87.76 189 | 97.78 253 | 79.19 300 | 95.17 297 | 92.80 335 |
|
KD-MVS_self_test | | | 94.10 123 | 94.73 99 | 92.19 206 | 97.66 110 | 79.49 257 | 94.86 100 | 97.12 145 | 89.59 158 | 96.87 64 | 97.65 55 | 90.40 156 | 98.34 206 | 89.08 174 | 99.35 57 | 98.75 85 |
|
CHOSEN 1792x2688 | | | 87.19 286 | 85.92 294 | 91.00 245 | 97.13 138 | 79.41 258 | 84.51 342 | 95.60 218 | 64.14 362 | 90.07 279 | 94.81 219 | 78.26 277 | 97.14 284 | 73.34 334 | 95.38 293 | 96.46 241 |
|
thisisatest0530 | | | 88.69 257 | 87.52 268 | 92.20 205 | 96.33 182 | 79.36 259 | 92.81 160 | 84.01 356 | 86.44 219 | 93.67 194 | 92.68 283 | 53.62 366 | 99.25 77 | 89.65 161 | 98.45 165 | 98.00 152 |
|
LFMVS | | | 91.33 197 | 91.16 199 | 91.82 217 | 96.27 187 | 79.36 259 | 95.01 96 | 85.61 345 | 96.04 29 | 94.82 160 | 97.06 93 | 72.03 309 | 98.46 199 | 84.96 242 | 98.70 143 | 97.65 188 |
|
TR-MVS | | | 87.70 271 | 87.17 274 | 89.27 287 | 94.11 278 | 79.26 261 | 88.69 294 | 91.86 302 | 81.94 276 | 90.69 267 | 89.79 328 | 82.82 240 | 97.42 273 | 72.65 339 | 91.98 342 | 91.14 348 |
|
test20.03 | | | 90.80 204 | 90.85 204 | 90.63 256 | 95.63 233 | 79.24 262 | 89.81 269 | 92.87 279 | 89.90 151 | 94.39 172 | 96.40 136 | 85.77 219 | 95.27 334 | 73.86 332 | 99.05 100 | 97.39 206 |
|
IterMVS-SCA-FT | | | 91.65 188 | 91.55 185 | 91.94 215 | 93.89 284 | 79.22 263 | 87.56 305 | 93.51 270 | 91.53 116 | 95.37 133 | 96.62 124 | 78.65 272 | 98.90 126 | 91.89 104 | 94.95 300 | 97.70 184 |
|
EI-MVSNet | | | 92.99 153 | 93.26 149 | 92.19 206 | 92.12 314 | 79.21 264 | 92.32 184 | 94.67 251 | 91.77 107 | 95.24 143 | 95.85 166 | 87.14 200 | 98.49 193 | 91.99 99 | 98.26 188 | 98.86 73 |
|
IterMVS-LS | | | 93.78 129 | 94.28 117 | 92.27 203 | 96.27 187 | 79.21 264 | 91.87 208 | 96.78 170 | 91.77 107 | 96.57 78 | 97.07 92 | 87.15 199 | 98.74 159 | 91.99 99 | 99.03 106 | 98.86 73 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CR-MVSNet | | | 87.89 267 | 87.12 276 | 90.22 268 | 91.01 330 | 78.93 266 | 92.52 169 | 92.81 280 | 73.08 332 | 89.10 295 | 96.93 101 | 67.11 321 | 97.64 262 | 88.80 179 | 92.70 334 | 94.08 308 |
|
RPMNet | | | 90.31 222 | 90.14 222 | 90.81 252 | 91.01 330 | 78.93 266 | 92.52 169 | 98.12 46 | 91.91 95 | 89.10 295 | 96.89 104 | 68.84 316 | 99.41 36 | 90.17 147 | 92.70 334 | 94.08 308 |
|
UnsupCasMVSNet_bld | | | 88.50 259 | 88.03 261 | 89.90 276 | 95.52 237 | 78.88 268 | 87.39 309 | 94.02 263 | 79.32 296 | 93.06 215 | 94.02 247 | 80.72 261 | 94.27 344 | 75.16 326 | 93.08 330 | 96.54 234 |
|
v2v482 | | | 93.29 140 | 93.63 134 | 92.29 202 | 96.35 180 | 78.82 269 | 91.77 216 | 96.28 194 | 88.45 184 | 95.70 121 | 96.26 150 | 86.02 218 | 98.90 126 | 93.02 75 | 98.81 132 | 99.14 38 |
|
Anonymous20231206 | | | 88.77 255 | 88.29 253 | 90.20 270 | 96.31 184 | 78.81 270 | 89.56 274 | 93.49 271 | 74.26 325 | 92.38 236 | 95.58 184 | 82.21 246 | 95.43 329 | 72.07 341 | 98.75 140 | 96.34 245 |
|
PVSNet_BlendedMVS | | | 90.35 219 | 89.96 224 | 91.54 227 | 94.81 255 | 78.80 271 | 90.14 257 | 96.93 156 | 79.43 292 | 88.68 307 | 95.06 208 | 86.27 215 | 98.15 223 | 80.27 284 | 98.04 213 | 97.68 186 |
|
PVSNet_Blended | | | 88.74 256 | 88.16 260 | 90.46 262 | 94.81 255 | 78.80 271 | 86.64 325 | 96.93 156 | 74.67 322 | 88.68 307 | 89.18 337 | 86.27 215 | 98.15 223 | 80.27 284 | 96.00 276 | 94.44 303 |
|
BH-RMVSNet | | | 90.47 213 | 90.44 214 | 90.56 259 | 95.21 247 | 78.65 273 | 89.15 285 | 93.94 266 | 88.21 188 | 92.74 225 | 94.22 239 | 86.38 213 | 97.88 241 | 78.67 303 | 95.39 292 | 95.14 286 |
|
D2MVS | | | 89.93 234 | 89.60 232 | 90.92 247 | 94.03 281 | 78.40 274 | 88.69 294 | 94.85 241 | 78.96 300 | 93.08 214 | 95.09 206 | 74.57 298 | 96.94 289 | 88.19 190 | 98.96 114 | 97.41 202 |
|
v1921920 | | | 93.26 143 | 93.61 135 | 92.19 206 | 96.04 209 | 78.31 275 | 91.88 207 | 97.24 137 | 85.17 240 | 96.19 99 | 96.19 153 | 86.76 209 | 99.05 104 | 94.18 28 | 98.84 124 | 99.22 32 |
|
v144192 | | | 93.20 148 | 93.54 139 | 92.16 210 | 96.05 205 | 78.26 276 | 91.95 200 | 97.14 142 | 84.98 247 | 95.96 106 | 96.11 157 | 87.08 201 | 99.04 107 | 93.79 37 | 98.84 124 | 99.17 35 |
|
diffmvs | | | 91.74 186 | 91.93 177 | 91.15 240 | 93.06 297 | 78.17 277 | 88.77 292 | 97.51 115 | 86.28 222 | 92.42 234 | 93.96 250 | 88.04 184 | 97.46 270 | 90.69 129 | 96.67 265 | 97.82 175 |
|
CS-MVS | | | 92.12 180 | 92.62 162 | 90.60 257 | 94.57 269 | 78.12 278 | 92.00 198 | 98.58 10 | 87.75 199 | 90.08 277 | 91.88 300 | 89.79 166 | 99.10 97 | 90.35 136 | 98.60 152 | 94.58 299 |
|
sss | | | 87.23 283 | 86.82 280 | 88.46 301 | 93.96 282 | 77.94 279 | 86.84 319 | 92.78 283 | 77.59 308 | 87.61 320 | 91.83 301 | 78.75 271 | 91.92 357 | 77.84 307 | 94.20 316 | 95.52 280 |
|
MS-PatchMatch | | | 88.05 266 | 87.75 264 | 88.95 290 | 93.28 291 | 77.93 280 | 87.88 301 | 92.49 290 | 75.42 319 | 92.57 230 | 93.59 261 | 80.44 262 | 94.24 346 | 81.28 276 | 92.75 333 | 94.69 298 |
|
HY-MVS | | 82.50 18 | 86.81 292 | 85.93 293 | 89.47 281 | 93.63 288 | 77.93 280 | 94.02 131 | 91.58 305 | 75.68 316 | 83.64 344 | 93.64 258 | 77.40 282 | 97.42 273 | 71.70 344 | 92.07 341 | 93.05 332 |
|
v1240 | | | 93.29 140 | 93.71 131 | 92.06 213 | 96.01 210 | 77.89 282 | 91.81 214 | 97.37 120 | 85.12 243 | 96.69 72 | 96.40 136 | 86.67 210 | 99.07 103 | 94.51 18 | 98.76 138 | 99.22 32 |
|
CL-MVSNet_self_test | | | 90.04 232 | 89.90 226 | 90.47 260 | 95.24 246 | 77.81 283 | 86.60 328 | 92.62 287 | 85.64 234 | 93.25 210 | 93.92 251 | 83.84 231 | 96.06 317 | 79.93 291 | 98.03 214 | 97.53 196 |
|
Test_1112_low_res | | | 87.50 278 | 86.58 284 | 90.25 267 | 96.80 154 | 77.75 284 | 87.53 307 | 96.25 196 | 69.73 348 | 86.47 327 | 93.61 260 | 75.67 296 | 97.88 241 | 79.95 289 | 93.20 326 | 95.11 287 |
|
v148 | | | 92.87 158 | 93.29 145 | 91.62 224 | 96.25 190 | 77.72 285 | 91.28 226 | 95.05 235 | 89.69 154 | 95.93 110 | 96.04 159 | 87.34 195 | 98.38 202 | 90.05 152 | 97.99 217 | 98.78 82 |
|
MVS | | | 84.98 302 | 84.30 302 | 87.01 316 | 91.03 329 | 77.69 286 | 91.94 202 | 94.16 259 | 59.36 367 | 84.23 341 | 87.50 347 | 85.66 221 | 96.80 295 | 71.79 342 | 93.05 331 | 86.54 359 |
|
miper_lstm_enhance | | | 89.90 235 | 89.80 227 | 90.19 271 | 91.37 327 | 77.50 287 | 83.82 349 | 95.00 236 | 84.84 249 | 93.05 216 | 94.96 213 | 76.53 294 | 95.20 335 | 89.96 154 | 98.67 147 | 97.86 170 |
|
pmmvs3 | | | 80.83 327 | 78.96 335 | 86.45 320 | 87.23 362 | 77.48 288 | 84.87 337 | 82.31 360 | 63.83 363 | 85.03 334 | 89.50 333 | 49.66 368 | 93.10 352 | 73.12 337 | 95.10 298 | 88.78 357 |
|
PAPR | | | 87.65 274 | 86.77 282 | 90.27 266 | 92.85 301 | 77.38 289 | 88.56 297 | 96.23 198 | 76.82 315 | 84.98 335 | 89.75 330 | 86.08 217 | 97.16 283 | 72.33 340 | 93.35 324 | 96.26 249 |
|
Vis-MVSNet (Re-imp) | | | 90.42 214 | 90.16 218 | 91.20 238 | 97.66 110 | 77.32 290 | 94.33 121 | 87.66 327 | 91.20 123 | 92.99 218 | 95.13 204 | 75.40 297 | 98.28 209 | 77.86 306 | 99.19 84 | 97.99 155 |
|
BH-w/o | | | 87.21 284 | 87.02 278 | 87.79 311 | 94.77 257 | 77.27 291 | 87.90 300 | 93.21 276 | 81.74 277 | 89.99 281 | 88.39 343 | 83.47 232 | 96.93 291 | 71.29 346 | 92.43 338 | 89.15 353 |
|
GA-MVS | | | 87.70 271 | 86.82 280 | 90.31 264 | 93.27 292 | 77.22 292 | 84.72 340 | 92.79 282 | 85.11 244 | 89.82 285 | 90.07 323 | 66.80 324 | 97.76 256 | 84.56 247 | 94.27 315 | 95.96 260 |
|
TinyColmap | | | 92.00 183 | 92.76 157 | 89.71 279 | 95.62 234 | 77.02 293 | 90.72 238 | 96.17 203 | 87.70 201 | 95.26 140 | 96.29 147 | 92.54 104 | 96.45 305 | 81.77 271 | 98.77 137 | 95.66 275 |
|
Patchmtry | | | 90.11 227 | 89.92 225 | 90.66 255 | 90.35 339 | 77.00 294 | 92.96 156 | 92.81 280 | 90.25 146 | 94.74 164 | 96.93 101 | 67.11 321 | 97.52 266 | 85.17 234 | 98.98 108 | 97.46 199 |
|
DIV-MVS_self_test | | | 90.65 209 | 90.56 212 | 90.91 249 | 91.85 318 | 76.99 295 | 86.75 322 | 95.36 232 | 85.52 237 | 94.06 181 | 94.89 216 | 77.37 284 | 97.99 235 | 90.28 141 | 98.97 112 | 97.76 180 |
|
cl____ | | | 90.65 209 | 90.56 212 | 90.91 249 | 91.85 318 | 76.98 296 | 86.75 322 | 95.36 232 | 85.53 235 | 94.06 181 | 94.89 216 | 77.36 285 | 97.98 236 | 90.27 142 | 98.98 108 | 97.76 180 |
|
pmmvs5 | | | 87.87 268 | 87.14 275 | 90.07 272 | 93.26 293 | 76.97 297 | 88.89 289 | 92.18 294 | 73.71 329 | 88.36 310 | 93.89 253 | 76.86 292 | 96.73 297 | 80.32 283 | 96.81 260 | 96.51 236 |
|
eth_miper_zixun_eth | | | 90.72 206 | 90.61 210 | 91.05 241 | 92.04 316 | 76.84 298 | 86.91 317 | 96.67 177 | 85.21 239 | 94.41 171 | 93.92 251 | 79.53 267 | 98.26 213 | 89.76 158 | 97.02 252 | 98.06 144 |
|
c3_l | | | 91.32 198 | 91.42 190 | 91.00 245 | 92.29 309 | 76.79 299 | 87.52 308 | 96.42 189 | 85.76 232 | 94.72 166 | 93.89 253 | 82.73 241 | 98.16 222 | 90.93 125 | 98.55 154 | 98.04 147 |
|
MVSTER | | | 89.32 243 | 88.75 245 | 91.03 242 | 90.10 341 | 76.62 300 | 90.85 234 | 94.67 251 | 82.27 273 | 95.24 143 | 95.79 171 | 61.09 353 | 98.49 193 | 90.49 130 | 98.26 188 | 97.97 159 |
|
miper_ehance_all_eth | | | 90.48 212 | 90.42 215 | 90.69 254 | 91.62 323 | 76.57 301 | 86.83 320 | 96.18 202 | 83.38 258 | 94.06 181 | 92.66 284 | 82.20 247 | 98.04 228 | 89.79 157 | 97.02 252 | 97.45 200 |
|
cl22 | | | 89.02 247 | 88.50 248 | 90.59 258 | 89.76 343 | 76.45 302 | 86.62 327 | 94.03 261 | 82.98 266 | 92.65 227 | 92.49 285 | 72.05 308 | 97.53 265 | 88.93 175 | 97.02 252 | 97.78 178 |
|
cascas | | | 87.02 290 | 86.28 291 | 89.25 288 | 91.56 325 | 76.45 302 | 84.33 344 | 96.78 170 | 71.01 342 | 86.89 326 | 85.91 356 | 81.35 255 | 96.94 289 | 83.09 258 | 95.60 285 | 94.35 305 |
|
ADS-MVSNet2 | | | 84.01 307 | 82.20 315 | 89.41 283 | 89.04 352 | 76.37 304 | 87.57 303 | 90.98 308 | 72.71 335 | 84.46 338 | 92.45 287 | 68.08 317 | 96.48 304 | 70.58 351 | 83.97 360 | 95.38 281 |
|
EU-MVSNet | | | 87.39 280 | 86.71 283 | 89.44 282 | 93.40 290 | 76.11 305 | 94.93 99 | 90.00 314 | 57.17 368 | 95.71 120 | 97.37 71 | 64.77 337 | 97.68 261 | 92.67 85 | 94.37 312 | 94.52 301 |
|
MIMVSNet | | | 87.13 288 | 86.54 286 | 88.89 292 | 96.05 205 | 76.11 305 | 94.39 119 | 88.51 319 | 81.37 278 | 88.27 312 | 96.75 114 | 72.38 306 | 95.52 324 | 65.71 361 | 95.47 289 | 95.03 288 |
|
IterMVS | | | 90.18 224 | 90.16 218 | 90.21 269 | 93.15 295 | 75.98 307 | 87.56 305 | 92.97 278 | 86.43 220 | 94.09 178 | 96.40 136 | 78.32 276 | 97.43 272 | 87.87 199 | 94.69 307 | 97.23 213 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS_Test | | | 92.57 170 | 93.29 145 | 90.40 263 | 93.53 289 | 75.85 308 | 92.52 169 | 96.96 154 | 88.73 177 | 92.35 238 | 96.70 119 | 90.77 144 | 98.37 205 | 92.53 88 | 95.49 288 | 96.99 221 |
|
IB-MVS | | 77.21 19 | 83.11 310 | 81.05 321 | 89.29 286 | 91.15 328 | 75.85 308 | 85.66 332 | 86.00 340 | 79.70 289 | 82.02 356 | 86.61 351 | 48.26 370 | 98.39 200 | 77.84 307 | 92.22 339 | 93.63 322 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
VPNet | | | 93.08 149 | 93.76 129 | 91.03 242 | 98.60 34 | 75.83 310 | 91.51 220 | 95.62 217 | 91.84 101 | 95.74 118 | 97.10 91 | 89.31 170 | 98.32 207 | 85.07 241 | 99.06 97 | 98.93 63 |
|
miper_enhance_ethall | | | 88.42 260 | 87.87 263 | 90.07 272 | 88.67 356 | 75.52 311 | 85.10 335 | 95.59 222 | 75.68 316 | 92.49 231 | 89.45 334 | 78.96 269 | 97.88 241 | 87.86 200 | 97.02 252 | 96.81 228 |
|
Anonymous20240521 | | | 92.86 159 | 93.57 137 | 90.74 253 | 96.57 163 | 75.50 312 | 94.15 126 | 95.60 218 | 89.38 161 | 95.90 112 | 97.90 47 | 80.39 263 | 97.96 237 | 92.60 87 | 99.68 18 | 98.75 85 |
|
thisisatest0515 | | | 84.72 303 | 82.99 311 | 89.90 276 | 92.96 300 | 75.33 313 | 84.36 343 | 83.42 358 | 77.37 310 | 88.27 312 | 86.65 350 | 53.94 364 | 98.72 161 | 82.56 263 | 97.40 242 | 95.67 274 |
|
PS-MVSNAJ | | | 88.86 253 | 88.99 240 | 88.48 300 | 94.88 251 | 74.71 314 | 86.69 324 | 95.60 218 | 80.88 280 | 87.83 317 | 87.37 348 | 90.77 144 | 98.82 139 | 82.52 264 | 94.37 312 | 91.93 343 |
|
WTY-MVS | | | 86.93 291 | 86.50 289 | 88.24 304 | 94.96 250 | 74.64 315 | 87.19 312 | 92.07 299 | 78.29 305 | 88.32 311 | 91.59 306 | 78.06 278 | 94.27 344 | 74.88 327 | 93.15 328 | 95.80 268 |
|
xiu_mvs_v2_base | | | 89.00 249 | 89.19 234 | 88.46 301 | 94.86 253 | 74.63 316 | 86.97 315 | 95.60 218 | 80.88 280 | 87.83 317 | 88.62 340 | 91.04 141 | 98.81 144 | 82.51 265 | 94.38 311 | 91.93 343 |
|
1314 | | | 86.46 293 | 86.33 290 | 86.87 318 | 91.65 322 | 74.54 317 | 91.94 202 | 94.10 260 | 74.28 324 | 84.78 337 | 87.33 349 | 83.03 237 | 95.00 336 | 78.72 302 | 91.16 347 | 91.06 349 |
|
CHOSEN 280x420 | | | 80.04 332 | 77.97 338 | 86.23 324 | 90.13 340 | 74.53 318 | 72.87 363 | 89.59 315 | 66.38 357 | 76.29 367 | 85.32 358 | 56.96 359 | 95.36 330 | 69.49 354 | 94.72 306 | 88.79 356 |
|
USDC | | | 89.02 247 | 89.08 237 | 88.84 293 | 95.07 249 | 74.50 319 | 88.97 287 | 96.39 191 | 73.21 331 | 93.27 207 | 96.28 148 | 82.16 248 | 96.39 307 | 77.55 310 | 98.80 134 | 95.62 278 |
|
MVE |  | 59.87 23 | 73.86 337 | 72.65 340 | 77.47 350 | 87.00 365 | 74.35 320 | 61.37 367 | 60.93 375 | 67.27 355 | 69.69 371 | 86.49 353 | 81.24 259 | 72.33 371 | 56.45 368 | 83.45 362 | 85.74 360 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EPNet_dtu | | | 85.63 297 | 84.37 301 | 89.40 284 | 86.30 366 | 74.33 321 | 91.64 218 | 88.26 321 | 84.84 249 | 72.96 370 | 89.85 324 | 71.27 311 | 97.69 260 | 76.60 318 | 97.62 235 | 96.18 252 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline1 | | | 87.62 275 | 87.31 270 | 88.54 298 | 94.71 264 | 74.27 322 | 93.10 153 | 88.20 323 | 86.20 223 | 92.18 244 | 93.04 272 | 73.21 303 | 95.52 324 | 79.32 298 | 85.82 358 | 95.83 266 |
|
Patchmatch-test | | | 86.10 295 | 86.01 292 | 86.38 323 | 90.63 334 | 74.22 323 | 89.57 273 | 86.69 333 | 85.73 233 | 89.81 286 | 92.83 277 | 65.24 335 | 91.04 360 | 77.82 309 | 95.78 282 | 93.88 317 |
|
MDA-MVSNet_test_wron | | | 88.16 265 | 88.23 256 | 87.93 308 | 92.22 310 | 73.71 324 | 80.71 358 | 88.84 316 | 82.52 270 | 94.88 159 | 95.14 203 | 82.70 242 | 93.61 349 | 83.28 256 | 93.80 320 | 96.46 241 |
|
YYNet1 | | | 88.17 264 | 88.24 255 | 87.93 308 | 92.21 311 | 73.62 325 | 80.75 357 | 88.77 317 | 82.51 271 | 94.99 154 | 95.11 205 | 82.70 242 | 93.70 348 | 83.33 255 | 93.83 319 | 96.48 240 |
|
test0.0.03 1 | | | 82.48 315 | 81.47 319 | 85.48 327 | 89.70 344 | 73.57 326 | 84.73 338 | 81.64 362 | 83.07 264 | 88.13 314 | 86.61 351 | 62.86 346 | 89.10 366 | 66.24 360 | 90.29 350 | 93.77 319 |
|
thres600view7 | | | 87.66 273 | 87.10 277 | 89.36 285 | 96.05 205 | 73.17 327 | 92.72 162 | 85.31 348 | 91.89 96 | 93.29 205 | 90.97 313 | 63.42 343 | 98.39 200 | 73.23 335 | 96.99 257 | 96.51 236 |
|
ANet_high | | | 94.83 95 | 96.28 37 | 90.47 260 | 96.65 157 | 73.16 328 | 94.33 121 | 98.74 8 | 96.39 23 | 98.09 25 | 98.93 8 | 93.37 79 | 98.70 167 | 90.38 134 | 99.68 18 | 99.53 14 |
|
thres100view900 | | | 87.35 281 | 86.89 279 | 88.72 295 | 96.14 198 | 73.09 329 | 93.00 155 | 85.31 348 | 92.13 89 | 93.26 208 | 90.96 314 | 63.42 343 | 98.28 209 | 71.27 347 | 96.54 267 | 94.79 293 |
|
tfpn200view9 | | | 87.05 289 | 86.52 287 | 88.67 296 | 95.77 222 | 72.94 330 | 91.89 205 | 86.00 340 | 90.84 130 | 92.61 228 | 89.80 326 | 63.93 340 | 98.28 209 | 71.27 347 | 96.54 267 | 94.79 293 |
|
thres400 | | | 87.20 285 | 86.52 287 | 89.24 289 | 95.77 222 | 72.94 330 | 91.89 205 | 86.00 340 | 90.84 130 | 92.61 228 | 89.80 326 | 63.93 340 | 98.28 209 | 71.27 347 | 96.54 267 | 96.51 236 |
|
baseline2 | | | 83.38 309 | 81.54 318 | 88.90 291 | 91.38 326 | 72.84 332 | 88.78 291 | 81.22 363 | 78.97 299 | 79.82 363 | 87.56 345 | 61.73 351 | 97.80 250 | 74.30 330 | 90.05 351 | 96.05 257 |
|
ECVR-MVS |  | | 90.12 226 | 90.16 218 | 90.00 275 | 97.81 96 | 72.68 333 | 95.76 66 | 78.54 369 | 89.04 170 | 95.36 134 | 98.10 34 | 70.51 313 | 98.64 177 | 87.10 211 | 99.18 86 | 98.67 95 |
|
thres200 | | | 85.85 296 | 85.18 297 | 87.88 310 | 94.44 271 | 72.52 334 | 89.08 286 | 86.21 336 | 88.57 183 | 91.44 254 | 88.40 342 | 64.22 338 | 98.00 233 | 68.35 355 | 95.88 281 | 93.12 329 |
|
MG-MVS | | | 89.54 240 | 89.80 227 | 88.76 294 | 94.88 251 | 72.47 335 | 89.60 272 | 92.44 291 | 85.82 230 | 89.48 291 | 95.98 162 | 82.85 239 | 97.74 258 | 81.87 270 | 95.27 295 | 96.08 255 |
|
PAPM | | | 81.91 321 | 80.11 331 | 87.31 315 | 93.87 285 | 72.32 336 | 84.02 347 | 93.22 274 | 69.47 349 | 76.13 368 | 89.84 325 | 72.15 307 | 97.23 281 | 53.27 369 | 89.02 352 | 92.37 340 |
|
SCA | | | 87.43 279 | 87.21 273 | 88.10 306 | 92.01 317 | 71.98 337 | 89.43 276 | 88.11 325 | 82.26 274 | 88.71 305 | 92.83 277 | 78.65 272 | 97.59 263 | 79.61 295 | 93.30 325 | 94.75 295 |
|
testgi | | | 90.38 217 | 91.34 193 | 87.50 313 | 97.49 119 | 71.54 338 | 89.43 276 | 95.16 234 | 88.38 186 | 94.54 169 | 94.68 226 | 92.88 96 | 93.09 353 | 71.60 345 | 97.85 224 | 97.88 168 |
|
test1111 | | | 90.39 216 | 90.61 210 | 89.74 278 | 98.04 83 | 71.50 339 | 95.59 71 | 79.72 368 | 89.41 160 | 95.94 109 | 98.14 32 | 70.79 312 | 98.81 144 | 88.52 186 | 99.32 62 | 98.90 69 |
|
gg-mvs-nofinetune | | | 82.10 320 | 81.02 322 | 85.34 329 | 87.46 361 | 71.04 340 | 94.74 104 | 67.56 373 | 96.44 22 | 79.43 364 | 98.99 6 | 45.24 372 | 96.15 313 | 67.18 358 | 92.17 340 | 88.85 355 |
|
GG-mvs-BLEND | | | | | 83.24 341 | 85.06 370 | 71.03 341 | 94.99 98 | 65.55 374 | | 74.09 369 | 75.51 368 | 44.57 373 | 94.46 340 | 59.57 366 | 87.54 356 | 84.24 361 |
|
ppachtmachnet_test | | | 88.61 258 | 88.64 246 | 88.50 299 | 91.76 320 | 70.99 342 | 84.59 341 | 92.98 277 | 79.30 297 | 92.38 236 | 93.53 263 | 79.57 266 | 97.45 271 | 86.50 223 | 97.17 248 | 97.07 216 |
|
our_test_3 | | | 87.55 276 | 87.59 267 | 87.44 314 | 91.76 320 | 70.48 343 | 83.83 348 | 90.55 312 | 79.79 287 | 92.06 247 | 92.17 294 | 78.63 274 | 95.63 322 | 84.77 244 | 94.73 305 | 96.22 250 |
|
CVMVSNet | | | 85.16 300 | 84.72 298 | 86.48 319 | 92.12 314 | 70.19 344 | 92.32 184 | 88.17 324 | 56.15 369 | 90.64 268 | 95.85 166 | 67.97 319 | 96.69 298 | 88.78 180 | 90.52 349 | 92.56 338 |
|
new_pmnet | | | 81.22 324 | 81.01 323 | 81.86 344 | 90.92 332 | 70.15 345 | 84.03 346 | 80.25 367 | 70.83 343 | 85.97 330 | 89.78 329 | 67.93 320 | 84.65 368 | 67.44 357 | 91.90 343 | 90.78 350 |
|
KD-MVS_2432*1600 | | | 82.17 318 | 80.75 325 | 86.42 321 | 82.04 374 | 70.09 346 | 81.75 355 | 90.80 309 | 82.56 268 | 90.37 272 | 89.30 335 | 42.90 376 | 96.11 315 | 74.47 328 | 92.55 336 | 93.06 330 |
|
miper_refine_blended | | | 82.17 318 | 80.75 325 | 86.42 321 | 82.04 374 | 70.09 346 | 81.75 355 | 90.80 309 | 82.56 268 | 90.37 272 | 89.30 335 | 42.90 376 | 96.11 315 | 74.47 328 | 92.55 336 | 93.06 330 |
|
DSMNet-mixed | | | 82.21 317 | 81.56 316 | 84.16 337 | 89.57 347 | 70.00 348 | 90.65 240 | 77.66 371 | 54.99 370 | 83.30 347 | 97.57 58 | 77.89 280 | 90.50 362 | 66.86 359 | 95.54 287 | 91.97 342 |
|
PatchmatchNet |  | | 85.22 299 | 84.64 299 | 86.98 317 | 89.51 348 | 69.83 349 | 90.52 243 | 87.34 330 | 78.87 301 | 87.22 324 | 92.74 281 | 66.91 323 | 96.53 301 | 81.77 271 | 86.88 357 | 94.58 299 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EMVS | | | 80.35 331 | 80.28 330 | 80.54 346 | 84.73 371 | 69.07 350 | 72.54 364 | 80.73 364 | 87.80 197 | 81.66 358 | 81.73 364 | 62.89 345 | 89.84 363 | 75.79 324 | 94.65 308 | 82.71 364 |
|
E-PMN | | | 80.72 329 | 80.86 324 | 80.29 347 | 85.11 369 | 68.77 351 | 72.96 362 | 81.97 361 | 87.76 198 | 83.25 348 | 83.01 363 | 62.22 349 | 89.17 365 | 77.15 315 | 94.31 314 | 82.93 363 |
|
mvs_anonymous | | | 90.37 218 | 91.30 194 | 87.58 312 | 92.17 313 | 68.00 352 | 89.84 268 | 94.73 247 | 83.82 257 | 93.22 211 | 97.40 69 | 87.54 192 | 97.40 275 | 87.94 198 | 95.05 299 | 97.34 209 |
|
CostFormer | | | 83.09 311 | 82.21 314 | 85.73 325 | 89.27 350 | 67.01 353 | 90.35 249 | 86.47 335 | 70.42 345 | 83.52 346 | 93.23 270 | 61.18 352 | 96.85 293 | 77.21 314 | 88.26 355 | 93.34 328 |
|
PatchT | | | 87.51 277 | 88.17 258 | 85.55 326 | 90.64 333 | 66.91 354 | 92.02 197 | 86.09 338 | 92.20 87 | 89.05 297 | 97.16 88 | 64.15 339 | 96.37 309 | 89.21 172 | 92.98 332 | 93.37 327 |
|
DWT-MVSNet_test | | | 80.74 328 | 79.18 334 | 85.43 328 | 87.51 360 | 66.87 355 | 89.87 267 | 86.01 339 | 74.20 326 | 80.86 360 | 80.62 365 | 48.84 369 | 96.68 300 | 81.54 273 | 83.14 364 | 92.75 336 |
|
test-LLR | | | 83.58 308 | 83.17 309 | 84.79 333 | 89.68 345 | 66.86 356 | 83.08 350 | 84.52 353 | 83.07 264 | 82.85 349 | 84.78 359 | 62.86 346 | 93.49 350 | 82.85 259 | 94.86 301 | 94.03 311 |
|
test-mter | | | 81.21 325 | 80.01 332 | 84.79 333 | 89.68 345 | 66.86 356 | 83.08 350 | 84.52 353 | 73.85 328 | 82.85 349 | 84.78 359 | 43.66 375 | 93.49 350 | 82.85 259 | 94.86 301 | 94.03 311 |
|
RRT_test8_iter05 | | | 88.21 263 | 88.17 258 | 88.33 303 | 91.62 323 | 66.82 358 | 91.73 217 | 96.60 180 | 86.34 221 | 94.14 176 | 95.38 199 | 47.72 371 | 99.11 95 | 91.78 106 | 98.26 188 | 99.06 47 |
|
test2506 | | | 85.42 298 | 84.57 300 | 87.96 307 | 97.81 96 | 66.53 359 | 96.14 50 | 56.35 376 | 89.04 170 | 93.55 198 | 98.10 34 | 42.88 378 | 98.68 171 | 88.09 194 | 99.18 86 | 98.67 95 |
|
PVSNet_0 | | 70.34 21 | 74.58 336 | 72.96 339 | 79.47 348 | 90.63 334 | 66.24 360 | 73.26 361 | 83.40 359 | 63.67 364 | 78.02 365 | 78.35 367 | 72.53 305 | 89.59 364 | 56.68 367 | 60.05 371 | 82.57 365 |
|
ADS-MVSNet | | | 82.25 316 | 81.55 317 | 84.34 336 | 89.04 352 | 65.30 361 | 87.57 303 | 85.13 352 | 72.71 335 | 84.46 338 | 92.45 287 | 68.08 317 | 92.33 356 | 70.58 351 | 83.97 360 | 95.38 281 |
|
tpmvs | | | 84.22 306 | 83.97 305 | 84.94 331 | 87.09 363 | 65.18 362 | 91.21 227 | 88.35 320 | 82.87 267 | 85.21 332 | 90.96 314 | 65.24 335 | 96.75 296 | 79.60 297 | 85.25 359 | 92.90 334 |
|
tpm2 | | | 81.46 322 | 80.35 329 | 84.80 332 | 89.90 342 | 65.14 363 | 90.44 245 | 85.36 347 | 65.82 360 | 82.05 355 | 92.44 289 | 57.94 357 | 96.69 298 | 70.71 350 | 88.49 354 | 92.56 338 |
|
EPMVS | | | 81.17 326 | 80.37 328 | 83.58 339 | 85.58 368 | 65.08 364 | 90.31 251 | 71.34 372 | 77.31 311 | 85.80 331 | 91.30 308 | 59.38 355 | 92.70 355 | 79.99 288 | 82.34 365 | 92.96 333 |
|
tpm cat1 | | | 80.61 330 | 79.46 333 | 84.07 338 | 88.78 354 | 65.06 365 | 89.26 282 | 88.23 322 | 62.27 365 | 81.90 357 | 89.66 332 | 62.70 348 | 95.29 333 | 71.72 343 | 80.60 367 | 91.86 345 |
|
DeepMVS_CX |  | | | | 53.83 354 | 70.38 376 | 64.56 366 | | 48.52 378 | 33.01 371 | 65.50 372 | 74.21 369 | 56.19 361 | 46.64 373 | 38.45 372 | 70.07 369 | 50.30 369 |
|
PVSNet | | 76.22 20 | 82.89 313 | 82.37 313 | 84.48 335 | 93.96 282 | 64.38 367 | 78.60 360 | 88.61 318 | 71.50 339 | 84.43 340 | 86.36 354 | 74.27 299 | 94.60 338 | 69.87 353 | 93.69 322 | 94.46 302 |
|
TESTMET0.1,1 | | | 79.09 334 | 78.04 337 | 82.25 343 | 87.52 359 | 64.03 368 | 83.08 350 | 80.62 365 | 70.28 346 | 80.16 362 | 83.22 362 | 44.13 374 | 90.56 361 | 79.95 289 | 93.36 323 | 92.15 341 |
|
tpm | | | 84.38 305 | 84.08 304 | 85.30 330 | 90.47 337 | 63.43 369 | 89.34 279 | 85.63 344 | 77.24 312 | 87.62 319 | 95.03 211 | 61.00 354 | 97.30 279 | 79.26 299 | 91.09 348 | 95.16 284 |
|
MDTV_nov1_ep13 | | | | 83.88 306 | | 89.42 349 | 61.52 370 | 88.74 293 | 87.41 329 | 73.99 327 | 84.96 336 | 94.01 248 | 65.25 334 | 95.53 323 | 78.02 305 | 93.16 327 | |
|
gm-plane-assit | | | | | | 87.08 364 | 59.33 371 | | | 71.22 340 | | 83.58 361 | | 97.20 282 | 73.95 331 | | |
|
tpmrst | | | 82.85 314 | 82.93 312 | 82.64 342 | 87.65 357 | 58.99 372 | 90.14 257 | 87.90 326 | 75.54 318 | 83.93 342 | 91.63 305 | 66.79 326 | 95.36 330 | 81.21 278 | 81.54 366 | 93.57 326 |
|
dp | | | 79.28 333 | 78.62 336 | 81.24 345 | 85.97 367 | 56.45 373 | 86.91 317 | 85.26 350 | 72.97 333 | 81.45 359 | 89.17 338 | 56.01 362 | 95.45 328 | 73.19 336 | 76.68 368 | 91.82 346 |
|
new-patchmatchnet | | | 88.97 250 | 90.79 206 | 83.50 340 | 94.28 275 | 55.83 374 | 85.34 334 | 93.56 269 | 86.18 224 | 95.47 128 | 95.73 176 | 83.10 236 | 96.51 303 | 85.40 233 | 98.06 211 | 98.16 137 |
|
MVS-HIRNet | | | 78.83 335 | 80.60 327 | 73.51 352 | 93.07 296 | 47.37 375 | 87.10 314 | 78.00 370 | 68.94 350 | 77.53 366 | 97.26 81 | 71.45 310 | 94.62 337 | 63.28 364 | 88.74 353 | 78.55 367 |
|
PMMVS2 | | | 81.31 323 | 83.44 307 | 74.92 351 | 90.52 336 | 46.49 376 | 69.19 365 | 85.23 351 | 84.30 254 | 87.95 316 | 94.71 225 | 76.95 289 | 84.36 369 | 64.07 362 | 98.09 209 | 93.89 316 |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 377 | 88.45 298 | | 67.22 356 | 83.56 345 | | 66.80 324 | | 72.86 338 | | 94.06 310 |
|
tmp_tt | | | 37.97 339 | 44.33 342 | 18.88 355 | 11.80 378 | 21.54 378 | 63.51 366 | 45.66 379 | 4.23 373 | 51.34 373 | 50.48 370 | 59.08 356 | 22.11 374 | 44.50 371 | 68.35 370 | 13.00 370 |
|
test_method | | | 50.44 338 | 48.94 341 | 54.93 353 | 39.68 377 | 12.38 379 | 28.59 368 | 90.09 313 | 6.82 372 | 41.10 374 | 78.41 366 | 54.41 363 | 70.69 372 | 50.12 370 | 51.26 372 | 81.72 366 |
|
test123 | | | 9.49 341 | 12.01 344 | 1.91 356 | 2.87 379 | 1.30 380 | 82.38 353 | 1.34 381 | 1.36 374 | 2.84 375 | 6.56 373 | 2.45 379 | 0.97 375 | 2.73 373 | 5.56 373 | 3.47 371 |
|
testmvs | | | 9.02 342 | 11.42 345 | 1.81 357 | 2.77 380 | 1.13 381 | 79.44 359 | 1.90 380 | 1.18 375 | 2.65 376 | 6.80 372 | 1.95 380 | 0.87 376 | 2.62 374 | 3.45 374 | 3.44 372 |
|
test_blank | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uanet_test | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
cdsmvs_eth3d_5k | | | 23.35 340 | 31.13 343 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 95.58 224 | 0.00 376 | 0.00 377 | 91.15 310 | 93.43 77 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
pcd_1.5k_mvsjas | | | 7.56 343 | 10.09 346 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 90.77 144 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
sosnet-low-res | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
sosnet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uncertanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
Regformer | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
ab-mvs-re | | | 7.56 343 | 10.08 347 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 90.69 319 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
PC_three_1452 | | | | | | | | | | 75.31 321 | 95.87 113 | 95.75 175 | 92.93 93 | 96.34 312 | 87.18 210 | 98.68 145 | 98.04 147 |
|
eth-test2 | | | | | | 0.00 381 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 381 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 98.10 49 | 91.95 92 | 97.54 37 | 97.25 82 | 95.37 28 | 99.35 59 | 93.29 63 | 99.25 76 | 98.49 115 |
|
9.14 | | | | 94.81 94 | | 97.49 119 | | 94.11 128 | 98.37 17 | 87.56 206 | 95.38 132 | 96.03 160 | 94.66 56 | 99.08 99 | 90.70 128 | 98.97 112 | |
|
test_0728_THIRD | | | | | | | | | | 93.26 68 | 97.40 46 | 97.35 77 | 94.69 55 | 99.34 62 | 93.88 34 | 99.42 47 | 98.89 70 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 295 |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 327 | | | | 94.75 295 |
|
sam_mvs | | | | | | | | | | | | | 66.41 328 | | | | |
|
MTGPA |  | | | | | | | | 97.62 102 | | | | | | | | |
|
test_post1 | | | | | | | | 90.21 253 | | | | 5.85 375 | 65.36 333 | 96.00 318 | 79.61 295 | | |
|
test_post | | | | | | | | | | | | 6.07 374 | 65.74 332 | 95.84 320 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 303 | 66.22 330 | 97.59 263 | | | |
|
MTMP | | | | | | | | 94.82 101 | 54.62 377 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 192 | 98.40 168 | 97.83 173 |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 213 | 98.36 179 | 97.98 156 |
|
test_prior2 | | | | | | | | 90.21 253 | | 89.33 164 | 90.77 264 | 94.81 219 | 90.41 154 | | 88.21 188 | 98.55 154 | |
|
旧先验2 | | | | | | | | 90.00 262 | | 68.65 351 | 92.71 226 | | | 96.52 302 | 85.15 236 | | |
|
新几何2 | | | | | | | | 90.02 261 | | | | | | | | | |
|
无先验 | | | | | | | | 89.94 263 | 95.75 215 | 70.81 344 | | | | 98.59 183 | 81.17 279 | | 94.81 292 |
|
原ACMM2 | | | | | | | | 89.34 279 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.03 229 | 80.24 286 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 110 | | | | |
|
testdata1 | | | | | | | | 88.96 288 | | 88.44 185 | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.81 90 | | | | | 98.95 122 | 89.26 169 | 98.51 161 | 98.60 108 |
|
plane_prior4 | | | | | | | | | | | | 95.59 181 | | | | | |
|
plane_prior2 | | | | | | | | 94.56 113 | | 91.74 109 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 125 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 382 | | | | | | | | |
|
nn | | | | | | | | | 0.00 382 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 298 | | | | | | | | |
|
test11 | | | | | | | | | 96.65 178 | | | | | | | | |
|
door | | | | | | | | | 91.26 306 | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 177 | | 91.37 222 | | 87.16 210 | 88.81 300 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 177 | | 91.37 222 | | 87.16 210 | 88.81 300 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 221 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 300 | | | 98.61 179 | | | 98.15 138 |
|
HQP3-MVS | | | | | | | | | 97.31 130 | | | | | | | 97.73 227 | |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 226 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 130 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 76 | |
|
Test By Simon | | | | | | | | | | | | | 90.61 150 | | | | |
|