This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
PMVScopyleft87.21 1494.97 8495.33 7693.91 14398.97 1497.16 295.54 6995.85 20496.47 2093.40 19397.46 6395.31 3395.47 31686.18 21798.78 13089.11 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Effi-MVS+-dtu93.90 12592.60 15997.77 494.74 24996.67 394.00 12495.41 22189.94 14491.93 23992.13 28690.12 15498.97 11387.68 19297.48 22997.67 179
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10792.42 7493.41 19197.78 4691.21 13197.77 24491.06 11697.06 24098.80 79
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 497.41 997.28 4698.46 2594.62 5698.84 13194.64 1799.53 3598.99 53
mvs-test193.07 14791.80 17796.89 3994.74 24995.83 692.17 18295.41 22189.94 14489.85 27490.59 31190.12 15498.88 12387.68 19295.66 27395.97 250
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3597.44 6496.51 999.40 4094.06 3099.23 7698.85 75
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9094.85 5199.42 2893.49 4498.84 11898.00 144
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9095.40 2793.49 4498.84 11898.00 144
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5495.76 3196.89 6096.85 10194.85 5199.42 2893.35 5798.81 12698.53 107
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5195.17 3696.82 6496.73 11295.09 4399.43 2792.99 7398.71 13598.50 109
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9192.59 7295.47 12396.68 11594.50 5999.42 2893.10 6899.26 7298.99 53
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 4892.67 7195.08 14396.39 13594.77 5399.42 2893.17 6599.44 4598.58 105
FPMVS84.50 29683.28 30088.16 29696.32 17394.49 1485.76 32285.47 33683.09 25385.20 32294.26 22963.79 33386.58 35663.72 35291.88 33383.40 351
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1796.69 1696.86 6297.56 5695.48 2598.77 14890.11 14199.44 4598.31 122
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 9794.12 11996.50 4898.00 8494.23 1691.48 21298.17 3590.72 12995.30 13196.47 12587.94 18196.98 27891.41 11397.61 22698.30 123
LS3D96.11 4895.83 6196.95 3794.75 24794.20 1797.34 997.98 6797.31 1095.32 13096.77 10693.08 8599.20 7991.79 10198.16 19097.44 192
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16698.13 4090.69 13093.75 18396.25 14698.03 297.02 27792.08 9295.55 27598.45 114
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9092.73 6893.48 19096.72 11394.23 6499.42 2891.99 9599.29 6599.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PM-MVS93.33 13592.67 15795.33 8596.58 15594.06 1992.26 17992.18 28685.92 21996.22 9296.61 12085.64 21795.99 30890.35 13098.23 18395.93 252
MSP-MVS95.34 7294.63 10297.48 1498.67 2794.05 2196.41 3598.18 3291.26 11795.12 13995.15 19586.60 20699.50 1993.43 5396.81 25098.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13397.62 9794.46 4496.29 8696.94 9493.56 7099.37 5294.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9794.46 4496.29 8696.94 9493.56 7099.37 5294.29 2499.42 4798.99 53
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10087.68 19298.45 1898.77 1594.20 6599.50 1996.70 399.40 5399.53 14
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16696.49 12494.56 5799.39 4593.57 4099.05 9498.93 63
X-MVStestdata90.70 20288.45 24297.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16626.89 36094.56 5799.39 4593.57 4099.05 9498.93 63
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3593.11 6696.48 7697.36 7196.92 699.34 5994.31 2399.38 5598.92 67
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3292.26 8196.33 8296.84 10495.10 4299.40 4093.47 4899.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3196.95 1395.46 12599.23 493.45 7299.57 1395.34 1299.89 299.63 9
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 397.01 1298.92 498.78 1495.22 3798.61 16996.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7598.30 2091.40 11495.76 11196.87 10095.26 3599.45 2292.77 7699.21 7899.00 51
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2495.51 3496.99 5897.05 8995.63 2199.39 4593.31 5898.88 11398.75 84
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7192.35 7895.57 12096.61 12094.93 5099.41 3593.78 3599.15 8499.00 51
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7192.26 8195.28 13396.57 12295.02 4699.41 3593.63 3999.11 8998.94 62
N_pmnet88.90 24587.25 26593.83 14794.40 26193.81 3484.73 32987.09 32179.36 28593.26 19992.43 28179.29 26291.68 34777.50 30197.22 23796.00 249
HPM-MVS++copyleft95.02 8294.39 10996.91 3897.88 9093.58 3694.09 12196.99 14791.05 12292.40 22595.22 19491.03 13799.25 7492.11 9098.69 13897.90 158
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 992.35 7895.95 10496.41 13096.71 899.42 2893.99 3199.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6792.35 7895.63 11796.47 12595.37 2899.27 7293.78 3599.14 8598.48 111
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8497.98 6789.34 15795.63 11796.47 12595.37 2899.27 7291.99 9599.14 8598.48 111
ITE_SJBPF95.95 5797.34 12293.36 4096.55 17791.93 9094.82 15395.39 19091.99 11097.08 27585.53 22197.96 20897.41 193
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11098.05 5590.45 13796.31 8496.76 10892.91 8998.72 15491.19 11599.42 4798.32 120
CPTT-MVS94.74 9694.12 11996.60 4498.15 7193.01 4295.84 5997.66 9589.21 16293.28 19795.46 18488.89 16798.98 10989.80 14898.82 12497.80 169
DeepPCF-MVS90.46 694.20 11893.56 13596.14 5195.96 20192.96 4389.48 26697.46 11185.14 23196.23 9195.42 18793.19 8198.08 21690.37 12998.76 13297.38 199
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9898.03 6090.82 12797.15 4996.85 10196.25 1599.00 10893.10 6899.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL89.18 23788.02 25592.64 18595.90 20692.87 4588.67 28791.06 29880.34 27390.03 27091.67 29383.34 22794.42 33076.35 30994.84 29290.64 340
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 3891.74 10595.34 12996.36 13895.68 1999.44 2394.41 2199.28 7098.97 59
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6492.08 8695.74 11396.28 14395.22 3799.42 2893.17 6599.06 9198.88 71
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10087.57 19598.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11386.96 20498.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
AllTest94.88 8994.51 10796.00 5598.02 8292.17 5095.26 7898.43 1090.48 13595.04 14596.74 11092.54 9997.86 23585.11 22898.98 10297.98 148
TestCases96.00 5598.02 8292.17 5098.43 1090.48 13595.04 14596.74 11092.54 9997.86 23585.11 22898.98 10297.98 148
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7598.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
LF4IMVS92.72 15992.02 17094.84 10495.65 22091.99 5492.92 15096.60 17285.08 23592.44 22393.62 25186.80 20296.35 30086.81 20398.25 18096.18 243
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6493.34 6496.64 7196.57 12294.99 4899.36 5493.48 4799.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
F-COLMAP92.28 17391.06 19595.95 5797.52 11291.90 5693.53 13797.18 13483.98 24588.70 29594.04 23788.41 17298.55 17980.17 27695.99 26697.39 197
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6494.15 4898.93 399.07 588.07 17799.57 1395.86 999.69 1599.46 18
MAR-MVS90.32 21588.87 23794.66 11194.82 24391.85 5794.22 11794.75 23880.91 26987.52 31088.07 33386.63 20597.87 23476.67 30696.21 26394.25 296
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11588.98 16398.26 2198.86 1093.35 7799.60 896.41 499.45 4399.66 6
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11698.08 4889.46 15496.61 7396.47 12595.85 1799.12 8990.45 12599.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PHI-MVS94.34 11193.80 12495.95 5795.65 22091.67 6194.82 9597.86 7887.86 18793.04 20894.16 23491.58 11998.78 14490.27 13598.96 10897.41 193
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10698.03 6090.42 13896.37 7997.35 7295.68 1999.25 7494.44 2099.34 5898.80 79
OMC-MVS94.22 11793.69 12995.81 6597.25 12491.27 6392.27 17897.40 11487.10 20394.56 16195.42 18793.74 6898.11 21586.62 20898.85 11798.06 138
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14398.32 1787.89 18696.86 6297.38 6795.55 2499.39 4595.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8597.79 8986.48 20897.42 4397.51 6194.47 6199.29 6893.55 4299.29 6598.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNLPA91.72 18291.20 19293.26 16596.17 18591.02 6691.14 21995.55 21790.16 14290.87 25393.56 25486.31 20894.40 33179.92 28297.12 23994.37 293
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 15997.33 12390.05 14396.77 6796.85 10195.04 4498.56 17792.77 7699.06 9198.70 91
MVS_111021_LR93.66 12893.28 14394.80 10596.25 18090.95 6890.21 24495.43 22087.91 18493.74 18594.40 22592.88 9196.38 29890.39 12798.28 17597.07 207
Gipumacopyleft95.31 7595.80 6393.81 14897.99 8790.91 6996.42 3497.95 7396.69 1691.78 24198.85 1291.77 11495.49 31591.72 10499.08 9095.02 279
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVScopyleft95.00 8394.69 9895.93 6097.38 12090.88 7094.59 10397.81 8589.22 16195.46 12596.17 15193.42 7599.34 5989.30 15798.87 11697.56 186
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.93.07 14792.41 16395.06 9895.82 20990.87 7190.97 22392.61 28088.04 18394.61 16093.79 24888.08 17697.81 23989.41 15698.39 16096.50 229
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14690.79 7296.30 4397.82 8496.13 2494.74 15797.23 7991.33 12599.16 8293.25 6298.30 17498.46 113
hse-mvs392.89 15291.99 17195.58 7796.97 13690.55 7393.94 12794.01 25689.23 16093.95 17896.19 14876.88 28499.14 8591.02 11795.71 27297.04 210
AUN-MVS90.05 22488.30 24595.32 8896.09 19190.52 7492.42 16992.05 29282.08 26588.45 29892.86 26765.76 32298.69 16288.91 16996.07 26496.75 222
testtj94.81 9494.42 10896.01 5497.23 12590.51 7594.77 9797.85 8191.29 11694.92 15095.66 17391.71 11699.40 4088.07 18598.25 18098.11 137
ZD-MVS97.23 12590.32 7697.54 10584.40 24394.78 15595.79 16692.76 9499.39 4588.72 17598.40 158
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7793.86 12998.02 6287.35 19796.22 9297.99 3894.48 6099.05 9892.73 7999.68 1897.93 154
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft85.34 1590.40 21088.92 23494.85 10396.53 15990.02 7891.58 21096.48 18080.16 27586.14 31892.18 28485.73 21498.25 20476.87 30594.61 29896.30 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Regformer-294.86 9094.55 10495.77 6992.83 29089.98 7991.87 19996.40 18294.38 4696.19 9695.04 20292.47 10299.04 10193.49 4498.31 17298.28 124
ETH3D cwj APD-0.1693.99 12393.38 14095.80 6796.82 14489.92 8092.72 15598.02 6284.73 24193.65 18795.54 18291.68 11799.22 7788.78 17298.49 15598.26 126
test_prior489.91 8190.74 228
NCCC94.08 12193.54 13695.70 7496.49 16189.90 8292.39 17196.91 15490.64 13292.33 23194.60 22090.58 14798.96 11490.21 13897.70 22198.23 127
DPE-MVScopyleft95.89 5395.88 5795.92 6297.93 8989.83 8393.46 13998.30 2092.37 7697.75 2896.95 9395.14 3999.51 1891.74 10399.28 7098.41 117
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETH3D-3000-0.194.86 9094.55 10495.81 6597.61 10789.72 8494.05 12298.37 1488.09 18295.06 14495.85 16192.58 9799.10 9290.33 13298.99 10198.62 100
TAPA-MVS88.58 1092.49 16891.75 17994.73 10896.50 16089.69 8592.91 15197.68 9478.02 29792.79 21494.10 23590.85 13897.96 22784.76 23498.16 19096.54 224
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8695.58 6798.56 791.84 9796.36 8096.68 11594.37 6299.32 6592.41 8799.05 9498.64 96
TEST996.45 16389.46 8790.60 23296.92 15279.09 28890.49 25994.39 22691.31 12698.88 123
train_agg92.71 16091.83 17595.35 8396.45 16389.46 8790.60 23296.92 15279.37 28390.49 25994.39 22691.20 13298.88 12388.66 17698.43 15797.72 175
OPU-MVS95.15 9596.84 14389.43 8995.21 7995.66 17393.12 8498.06 21786.28 21698.61 14297.95 152
test_part298.21 6889.41 9096.72 68
Vis-MVSNetpermissive95.50 6695.48 7095.56 7998.11 7389.40 9195.35 7398.22 2992.36 7794.11 17098.07 3392.02 10799.44 2393.38 5697.67 22397.85 164
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9296.90 1798.41 1392.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6498.92 67
CNVR-MVS94.58 10294.29 11395.46 8296.94 13889.35 9391.81 20596.80 16189.66 15093.90 18095.44 18692.80 9398.72 15492.74 7898.52 15098.32 120
test_896.37 16589.14 9490.51 23596.89 15579.37 28390.42 26194.36 22891.20 13298.82 133
ACMH+88.43 1196.48 3096.82 1695.47 8198.54 4189.06 9595.65 6598.61 696.10 2598.16 2297.52 5996.90 798.62 16890.30 13399.60 2598.72 90
Regformer-494.90 8794.67 10095.59 7692.78 29289.02 9692.39 17195.91 20194.50 4296.41 7795.56 18092.10 10699.01 10694.23 2698.14 19298.74 87
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9696.23 4696.87 15893.73 5697.87 2698.49 2490.73 14399.05 9886.43 21399.60 2599.10 44
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9892.91 15198.07 5193.46 6296.31 8495.97 15890.14 15399.34 5992.11 9099.64 2399.16 36
agg_prior192.60 16391.76 17895.10 9796.20 18288.89 9990.37 23996.88 15679.67 28090.21 26594.41 22491.30 12798.78 14488.46 17898.37 16797.64 181
agg_prior96.20 18288.89 9996.88 15690.21 26598.78 144
SD-MVS95.19 7995.73 6593.55 15496.62 15388.88 10194.67 10098.05 5591.26 11797.25 4896.40 13195.42 2694.36 33292.72 8099.19 8097.40 196
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.96 8594.75 9595.57 7898.86 2088.69 10296.37 3696.81 16085.23 22894.75 15697.12 8591.85 11399.40 4093.45 4998.33 16998.62 100
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
plane_prior797.71 9988.68 103
wuyk23d87.83 26290.79 20178.96 33990.46 32688.63 10492.72 15590.67 30291.65 10998.68 1197.64 5396.06 1677.53 35959.84 35499.41 5270.73 356
DP-MVS95.62 6295.84 6094.97 10097.16 12988.62 10594.54 11097.64 9696.94 1496.58 7497.32 7593.07 8698.72 15490.45 12598.84 11897.57 184
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10692.26 17997.84 8294.91 3796.80 6595.78 16990.42 14899.41 3591.60 10899.58 3199.29 28
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10692.58 16097.81 8593.99 5096.80 6595.90 15990.10 15799.41 3591.60 10899.58 3199.26 29
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10895.77 6198.29 2392.68 6998.03 2597.91 4295.13 4098.95 11693.85 3399.49 3899.36 24
Regformer-194.55 10394.33 11295.19 9392.83 29088.54 10991.87 19995.84 20593.99 5095.95 10495.04 20292.00 10898.79 14093.14 6798.31 17298.23 127
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 11095.57 6897.88 7788.72 16998.81 698.86 1090.77 13999.60 895.43 1199.53 3599.57 13
CDPH-MVS92.67 16191.83 17595.18 9496.94 13888.46 11190.70 23097.07 14277.38 29992.34 23095.08 20092.67 9698.88 12385.74 21998.57 14498.20 130
plane_prior388.43 11290.35 14093.31 194
Fast-Effi-MVS+-dtu92.77 15892.16 16694.58 11994.66 25588.25 11392.05 18696.65 17089.62 15190.08 26891.23 29892.56 9898.60 17186.30 21596.27 26296.90 215
plane_prior697.21 12788.23 11486.93 198
RRT_MVS91.36 19190.05 21695.29 8989.21 33988.15 11592.51 16594.89 23286.73 20795.54 12195.68 17261.82 34199.30 6794.91 1399.13 8898.43 115
HQP_MVS94.26 11593.93 12195.23 9297.71 9988.12 11694.56 10797.81 8591.74 10593.31 19495.59 17586.93 19898.95 11689.26 16198.51 15298.60 103
plane_prior88.12 11693.01 14788.98 16398.06 200
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8597.46 11788.05 11892.04 18798.42 1287.63 19396.36 8096.68 11594.37 6299.32 6592.41 8799.05 9498.64 96
save fliter97.46 11788.05 11892.04 18797.08 14187.63 193
UGNet93.08 14592.50 16194.79 10693.87 27387.99 12095.07 8794.26 25090.64 13287.33 31297.67 5186.89 20198.49 18388.10 18498.71 13597.91 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DeepC-MVS_fast89.96 793.73 12793.44 13894.60 11696.14 18787.90 12193.36 14297.14 13685.53 22593.90 18095.45 18591.30 12798.59 17389.51 15498.62 14197.31 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG94.69 9894.75 9594.52 12097.55 11187.87 12295.01 9097.57 10392.68 6996.20 9493.44 25691.92 11298.78 14489.11 16599.24 7596.92 214
pmmvs-eth3d91.54 18690.73 20393.99 13695.76 21487.86 12390.83 22693.98 25778.23 29694.02 17796.22 14782.62 23896.83 28486.57 20998.33 16997.29 203
pmmvs696.80 1397.36 995.15 9599.12 787.82 12496.68 2297.86 7896.10 2598.14 2399.28 397.94 398.21 20691.38 11499.69 1599.42 19
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 8098.26 6587.69 12593.75 13197.86 7895.96 2997.48 3997.14 8495.33 3299.44 2390.79 12099.76 1199.38 22
alignmvs93.26 13992.85 15094.50 12195.70 21687.45 12693.45 14095.76 20691.58 11095.25 13592.42 28281.96 24598.72 15491.61 10797.87 21397.33 201
112190.26 21789.23 22693.34 16197.15 13187.40 12791.94 19394.39 24667.88 34391.02 25294.91 20886.91 20098.59 17381.17 26897.71 22094.02 302
UniMVSNet_ETH3D97.13 697.72 395.35 8399.51 287.38 12897.70 697.54 10598.16 298.94 299.33 297.84 499.08 9390.73 12199.73 1499.59 12
新几何193.17 16897.16 12987.29 12994.43 24567.95 34291.29 24694.94 20786.97 19798.23 20581.06 27097.75 21693.98 303
test_prior393.29 13692.85 15094.61 11295.95 20287.23 13090.21 24497.36 12089.33 15890.77 25494.81 21290.41 14998.68 16388.21 17998.55 14597.93 154
test_prior94.61 11295.95 20287.23 13097.36 12098.68 16397.93 154
NR-MVSNet95.28 7695.28 7995.26 9097.75 9587.21 13295.08 8697.37 11593.92 5497.65 3095.90 15990.10 15799.33 6490.11 14199.66 2199.26 29
NP-MVS96.82 14487.10 13393.40 257
MVS_030490.96 19790.15 21493.37 16093.17 28287.06 13493.62 13592.43 28489.60 15282.25 34195.50 18382.56 23997.83 23884.41 23897.83 21595.22 273
3Dnovator92.54 394.80 9594.90 8994.47 12495.47 22787.06 13496.63 2397.28 12991.82 10094.34 16897.41 6590.60 14698.65 16792.47 8598.11 19697.70 176
canonicalmvs94.59 10194.69 9894.30 13095.60 22487.03 13695.59 6698.24 2791.56 11195.21 13892.04 28894.95 4998.66 16591.45 11297.57 22797.20 206
SED-MVS96.00 5296.41 3294.76 10798.51 4586.97 13795.21 7998.10 4491.95 8897.63 3197.25 7796.48 1199.35 5593.29 5999.29 6597.95 152
test_241102_ONE98.51 4586.97 13798.10 4491.85 9497.63 3197.03 9096.48 1198.95 116
MVS_111021_HR93.63 12993.42 13994.26 13196.65 15086.96 13989.30 27296.23 19088.36 17893.57 18994.60 22093.45 7297.77 24490.23 13798.38 16298.03 142
DP-MVS Recon92.31 17291.88 17493.60 15297.18 12886.87 14091.10 22197.37 11584.92 23892.08 23694.08 23688.59 16998.20 20783.50 24398.14 19295.73 261
v7n96.82 1097.31 1095.33 8598.54 4186.81 14196.83 1898.07 5196.59 1998.46 1798.43 2792.91 8999.52 1796.25 699.76 1199.65 8
test1294.43 12795.95 20286.75 14296.24 18989.76 27889.79 16198.79 14097.95 20997.75 174
test_0728_SECOND94.88 10298.55 3986.72 14395.20 8198.22 2999.38 5193.44 5199.31 6298.53 107
DVP-MVS95.82 5796.18 4194.72 10998.51 4586.69 14495.20 8197.00 14591.85 9497.40 4497.35 7295.58 2299.34 5993.44 5199.31 6298.13 135
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4586.69 14495.34 7498.18 3291.85 9497.63 3197.37 6895.58 22
IU-MVS98.51 4586.66 14696.83 15972.74 32395.83 10993.00 7299.29 6598.64 96
EG-PatchMatch MVS94.54 10494.67 10094.14 13397.87 9186.50 14792.00 19096.74 16688.16 18196.93 5997.61 5493.04 8797.90 22991.60 10898.12 19598.03 142
MVP-Stereo90.07 22388.92 23493.54 15696.31 17486.49 14890.93 22495.59 21479.80 27691.48 24395.59 17580.79 25497.39 26678.57 29391.19 33596.76 221
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet89.55 23288.22 25093.53 15795.37 23286.49 14889.26 27393.59 26079.76 27891.15 25092.31 28377.12 28098.38 19277.51 30097.92 21195.71 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet94.49 10594.35 11194.92 10198.25 6686.46 15097.13 1394.31 24896.24 2396.28 8996.36 13882.88 23299.35 5588.19 18199.52 3798.96 60
WR-MVS_H96.60 2597.05 1495.24 9199.02 1186.44 15196.78 2198.08 4897.42 898.48 1697.86 4591.76 11599.63 694.23 2699.84 399.66 6
PMMVS83.00 30481.11 31288.66 28883.81 36186.44 15182.24 34585.65 33361.75 35582.07 34385.64 34779.75 25991.59 34875.99 31193.09 31887.94 347
TAMVS90.16 21989.05 23193.49 15996.49 16186.37 15390.34 24192.55 28180.84 27292.99 20994.57 22281.94 24698.20 20773.51 32298.21 18695.90 255
AdaColmapbinary91.63 18491.36 18892.47 19595.56 22586.36 15492.24 18196.27 18788.88 16789.90 27392.69 27391.65 11898.32 19777.38 30297.64 22492.72 326
Anonymous2023121196.60 2597.13 1295.00 9997.46 11786.35 15597.11 1498.24 2797.58 798.72 898.97 793.15 8399.15 8393.18 6499.74 1399.50 16
ETV-MVS92.99 14992.74 15493.72 14995.86 20886.30 15692.33 17597.84 8291.70 10892.81 21386.17 34592.22 10399.19 8088.03 18697.73 21795.66 265
Regformer-394.28 11394.23 11894.46 12592.78 29286.28 15792.39 17194.70 24093.69 6095.97 10295.56 18091.34 12498.48 18793.45 4998.14 19298.62 100
API-MVS91.52 18791.61 18091.26 22894.16 26486.26 15894.66 10194.82 23591.17 12092.13 23591.08 30190.03 16097.06 27679.09 29097.35 23490.45 341
EPNet89.80 23188.25 24794.45 12683.91 36086.18 15993.87 12887.07 32291.16 12180.64 35094.72 21778.83 26498.89 12285.17 22398.89 11198.28 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM85.08 29383.04 30291.19 23387.56 34686.14 16089.40 26984.44 34588.98 16382.20 34297.95 3956.82 35196.15 30276.55 30883.45 35191.30 336
VDD-MVS94.37 10894.37 11094.40 12897.49 11486.07 16193.97 12693.28 26594.49 4396.24 9097.78 4687.99 18098.79 14088.92 16899.14 8598.34 119
EI-MVSNet-Vis-set94.36 10994.28 11494.61 11292.55 29485.98 16292.44 16794.69 24193.70 5796.12 9995.81 16591.24 12998.86 12893.76 3898.22 18598.98 58
Anonymous2024052995.50 6695.83 6194.50 12197.33 12385.93 16395.19 8396.77 16496.64 1897.61 3498.05 3493.23 8098.79 14088.60 17799.04 9998.78 81
EI-MVSNet-UG-set94.35 11094.27 11694.59 11792.46 29585.87 16492.42 16994.69 24193.67 6196.13 9895.84 16491.20 13298.86 12893.78 3598.23 18399.03 49
PCF-MVS84.52 1789.12 23987.71 25893.34 16196.06 19385.84 16586.58 32097.31 12468.46 34193.61 18893.89 24587.51 18798.52 18167.85 34598.11 19695.66 265
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_040295.73 5996.22 3994.26 13198.19 6985.77 16693.24 14497.24 13196.88 1597.69 2997.77 4894.12 6699.13 8791.54 11199.29 6597.88 160
MCST-MVS92.91 15192.51 16094.10 13497.52 11285.72 16791.36 21697.13 13880.33 27492.91 21294.24 23091.23 13098.72 15489.99 14597.93 21097.86 162
pmmvs488.95 24487.70 25992.70 18394.30 26285.60 16887.22 30292.16 28874.62 31289.75 27994.19 23277.97 27396.41 29682.71 25096.36 26196.09 245
EPP-MVSNet93.91 12493.68 13094.59 11798.08 7585.55 16997.44 894.03 25394.22 4794.94 14896.19 14882.07 24399.57 1387.28 20098.89 11198.65 92
CMPMVSbinary68.83 2287.28 27585.67 28892.09 20688.77 34385.42 17090.31 24294.38 24770.02 33688.00 30493.30 25973.78 29594.03 33675.96 31296.54 25796.83 218
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMH88.36 1296.59 2797.43 594.07 13598.56 3685.33 17196.33 3998.30 2094.66 3998.72 898.30 3097.51 598.00 22394.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22296.95 13785.27 17288.83 28193.61 25965.09 35090.74 25694.85 21184.62 22297.36 23393.91 304
pm-mvs195.43 6895.94 5493.93 14198.38 5785.08 17395.46 7297.12 13991.84 9797.28 4698.46 2595.30 3497.71 24990.17 13999.42 4798.99 53
HQP5-MVS84.89 174
HQP-MVS92.09 17691.49 18593.88 14596.36 16784.89 17491.37 21397.31 12487.16 20088.81 28993.40 25784.76 22098.60 17186.55 21097.73 21798.14 133
DTE-MVSNet96.74 1797.43 594.67 11099.13 584.68 17696.51 2897.94 7698.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
PEN-MVS96.69 2097.39 894.61 11299.16 384.50 17796.54 2798.05 5598.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
ETH3 D test640091.91 17991.25 19193.89 14496.59 15484.41 17892.10 18497.72 9378.52 29391.82 24093.78 24988.70 16899.13 8783.61 24298.39 16098.14 133
GBi-Net93.21 14292.96 14793.97 13895.40 22984.29 17995.99 5196.56 17488.63 17095.10 14098.53 2181.31 25098.98 10986.74 20498.38 16298.65 92
test193.21 14292.96 14793.97 13895.40 22984.29 17995.99 5196.56 17488.63 17095.10 14098.53 2181.31 25098.98 10986.74 20498.38 16298.65 92
FMVSNet194.84 9295.13 8493.97 13897.60 10884.29 17995.99 5196.56 17492.38 7597.03 5598.53 2190.12 15498.98 10988.78 17299.16 8398.65 92
原ACMM192.87 17896.91 14084.22 18297.01 14476.84 30489.64 28094.46 22388.00 17998.70 16081.53 26398.01 20695.70 263
DPM-MVS89.35 23588.40 24392.18 20396.13 19084.20 18386.96 30796.15 19675.40 31087.36 31191.55 29683.30 22898.01 22282.17 25896.62 25694.32 295
旧先验196.20 18284.17 18494.82 23595.57 17989.57 16297.89 21296.32 236
OpenMVScopyleft89.45 892.27 17492.13 16892.68 18494.53 25884.10 18595.70 6297.03 14382.44 26291.14 25196.42 12988.47 17198.38 19285.95 21897.47 23095.55 269
PS-CasMVS96.69 2097.43 594.49 12399.13 584.09 18696.61 2497.97 7097.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
CS-MVS92.54 16792.31 16493.23 16695.89 20784.07 18793.58 13698.48 888.60 17390.41 26286.23 34492.00 10899.35 5587.54 19498.06 20096.26 239
EIA-MVS92.35 17192.03 16993.30 16495.81 21183.97 18892.80 15498.17 3587.71 19089.79 27787.56 33491.17 13599.18 8187.97 18797.27 23596.77 220
PVSNet_Blended_VisFu91.63 18491.20 19292.94 17597.73 9883.95 18992.14 18397.46 11178.85 29292.35 22894.98 20584.16 22499.08 9386.36 21496.77 25295.79 259
CP-MVSNet96.19 4696.80 1794.38 12998.99 1383.82 19096.31 4197.53 10797.60 698.34 1997.52 5991.98 11199.63 693.08 7099.81 999.70 3
lessismore_v093.87 14698.05 7883.77 19180.32 35697.13 5097.91 4277.49 27599.11 9092.62 8298.08 19998.74 87
CLD-MVS91.82 18091.41 18793.04 16996.37 16583.65 19286.82 31297.29 12784.65 24292.27 23289.67 32092.20 10497.85 23783.95 24099.47 3997.62 182
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet92.38 17091.99 17193.52 15893.82 27583.46 19391.14 21997.00 14589.81 14886.47 31694.04 23787.90 18299.21 7889.50 15598.27 17697.90 158
QAPM92.88 15392.77 15293.22 16795.82 20983.31 19496.45 3197.35 12283.91 24693.75 18396.77 10689.25 16598.88 12384.56 23697.02 24297.49 189
Effi-MVS+92.79 15692.74 15492.94 17595.10 23783.30 19594.00 12497.53 10791.36 11589.35 28390.65 31094.01 6798.66 16587.40 19895.30 28396.88 217
Anonymous20240521192.58 16492.50 16192.83 18096.55 15883.22 19692.43 16891.64 29594.10 4995.59 11996.64 11881.88 24797.50 25785.12 22798.52 15097.77 171
SixPastTwentyTwo94.91 8695.21 8193.98 13798.52 4483.19 19795.93 5594.84 23494.86 3898.49 1598.74 1681.45 24899.60 894.69 1699.39 5499.15 37
VPA-MVSNet95.14 8095.67 6793.58 15397.76 9483.15 19894.58 10597.58 10293.39 6397.05 5498.04 3593.25 7998.51 18289.75 15199.59 2799.08 45
LCM-MVSNet-Re94.20 11894.58 10393.04 16995.91 20583.13 19993.79 13099.19 292.00 8798.84 598.04 3593.64 6999.02 10481.28 26598.54 14896.96 213
MSDG90.82 19890.67 20491.26 22894.16 26483.08 20086.63 31796.19 19390.60 13491.94 23891.89 28989.16 16695.75 31080.96 27194.51 29994.95 281
ambc92.98 17196.88 14183.01 20195.92 5696.38 18496.41 7797.48 6288.26 17397.80 24089.96 14698.93 11098.12 136
test_part194.39 10794.55 10493.92 14296.14 18782.86 20295.54 6998.09 4795.36 3598.27 2098.36 2875.91 28899.44 2393.41 5499.84 399.47 17
MSLP-MVS++93.25 14193.88 12291.37 22496.34 17182.81 20393.11 14597.74 9189.37 15694.08 17295.29 19390.40 15196.35 30090.35 13098.25 18094.96 280
K. test v393.37 13493.27 14493.66 15098.05 7882.62 20494.35 11386.62 32496.05 2797.51 3898.85 1276.59 28699.65 393.21 6398.20 18898.73 89
Fast-Effi-MVS+91.28 19490.86 19892.53 19295.45 22882.53 20589.25 27596.52 17885.00 23689.91 27288.55 33092.94 8898.84 13184.72 23595.44 27996.22 241
VDDNet94.03 12294.27 11693.31 16398.87 1982.36 20695.51 7191.78 29497.19 1196.32 8398.60 1884.24 22398.75 14987.09 20198.83 12398.81 78
114514_t90.51 20689.80 22092.63 18798.00 8482.24 20793.40 14197.29 12765.84 34889.40 28294.80 21586.99 19698.75 14983.88 24198.61 14296.89 216
testdata91.03 23696.87 14282.01 20894.28 24971.55 32792.46 22295.42 18785.65 21697.38 26882.64 25197.27 23593.70 310
FMVSNet292.78 15792.73 15692.95 17495.40 22981.98 20994.18 11895.53 21888.63 17096.05 10197.37 6881.31 25098.81 13887.38 19998.67 13998.06 138
TransMVSNet (Re)95.27 7896.04 5192.97 17298.37 5981.92 21095.07 8796.76 16593.97 5297.77 2798.57 1995.72 1897.90 22988.89 17099.23 7699.08 45
FC-MVSNet-test95.32 7395.88 5793.62 15198.49 5381.77 21195.90 5798.32 1793.93 5397.53 3797.56 5688.48 17099.40 4092.91 7599.83 699.68 4
FIs94.90 8795.35 7493.55 15498.28 6381.76 21295.33 7598.14 3993.05 6797.07 5197.18 8287.65 18499.29 6891.72 10499.69 1599.61 11
ab-mvs92.40 16992.62 15891.74 21497.02 13481.65 21395.84 5995.50 21986.95 20592.95 21197.56 5690.70 14497.50 25779.63 28397.43 23196.06 247
xiu_mvs_v1_base_debu91.47 18891.52 18291.33 22595.69 21781.56 21489.92 25596.05 19883.22 25091.26 24790.74 30591.55 12098.82 13389.29 15895.91 26793.62 312
xiu_mvs_v1_base91.47 18891.52 18291.33 22595.69 21781.56 21489.92 25596.05 19883.22 25091.26 24790.74 30591.55 12098.82 13389.29 15895.91 26793.62 312
xiu_mvs_v1_base_debi91.47 18891.52 18291.33 22595.69 21781.56 21489.92 25596.05 19883.22 25091.26 24790.74 30591.55 12098.82 13389.29 15895.91 26793.62 312
casdiffmvs94.32 11294.80 9392.85 17996.05 19481.44 21792.35 17498.05 5591.53 11295.75 11296.80 10593.35 7798.49 18391.01 11898.32 17198.64 96
bset_n11_16_dypcd89.99 22689.15 22992.53 19294.75 24781.34 21884.19 33687.56 31885.13 23293.77 18292.46 27772.82 29799.01 10692.46 8699.21 7897.23 204
ET-MVSNet_ETH3D86.15 28784.27 29591.79 21293.04 28681.28 21987.17 30486.14 32779.57 28183.65 33288.66 32857.10 34998.18 21087.74 19195.40 28095.90 255
V4293.43 13393.58 13392.97 17295.34 23381.22 22092.67 15896.49 17987.25 19996.20 9496.37 13787.32 19098.85 13092.39 8998.21 18698.85 75
OpenMVS_ROBcopyleft85.12 1689.52 23489.05 23190.92 24194.58 25781.21 22191.10 22193.41 26477.03 30393.41 19193.99 24183.23 22997.80 24079.93 28094.80 29393.74 309
PAPM_NR91.03 19690.81 20091.68 21796.73 14881.10 22293.72 13296.35 18588.19 18088.77 29392.12 28785.09 21997.25 27082.40 25593.90 30796.68 223
baseline94.26 11594.80 9392.64 18596.08 19280.99 22393.69 13398.04 5990.80 12894.89 15196.32 14093.19 8198.48 18791.68 10698.51 15298.43 115
1112_ss88.42 25387.41 26291.45 22296.69 14980.99 22389.72 26196.72 16773.37 31987.00 31490.69 30877.38 27798.20 20781.38 26493.72 31095.15 275
tfpnnormal94.27 11494.87 9192.48 19497.71 9980.88 22594.55 10995.41 22193.70 5796.67 7097.72 4991.40 12398.18 21087.45 19699.18 8298.36 118
Baseline_NR-MVSNet94.47 10695.09 8692.60 18998.50 5280.82 22692.08 18596.68 16893.82 5596.29 8698.56 2090.10 15797.75 24790.10 14399.66 2199.24 31
HyFIR lowres test87.19 27985.51 28992.24 19897.12 13380.51 22785.03 32796.06 19766.11 34791.66 24292.98 26670.12 30599.14 8575.29 31495.23 28597.07 207
UnsupCasMVSNet_eth90.33 21490.34 21090.28 25894.64 25680.24 22889.69 26295.88 20285.77 22193.94 17995.69 17181.99 24492.98 34384.21 23991.30 33497.62 182
MDA-MVSNet-bldmvs91.04 19590.88 19791.55 22094.68 25480.16 22985.49 32492.14 28990.41 13994.93 14995.79 16685.10 21896.93 28185.15 22594.19 30697.57 184
v1094.68 9995.27 8092.90 17796.57 15680.15 23094.65 10297.57 10390.68 13197.43 4198.00 3788.18 17499.15 8394.84 1599.55 3499.41 20
VNet92.67 16192.96 14791.79 21296.27 17780.15 23091.95 19194.98 22992.19 8494.52 16396.07 15387.43 18897.39 26684.83 23298.38 16297.83 165
DELS-MVS92.05 17792.16 16691.72 21594.44 25980.13 23287.62 29397.25 13087.34 19892.22 23393.18 26389.54 16398.73 15389.67 15298.20 18896.30 237
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason89.17 23888.32 24491.70 21695.73 21580.07 23388.10 29093.22 26671.98 32690.09 26792.79 27078.53 26998.56 17787.43 19797.06 24096.46 231
jason: jason.
MVSFormer92.18 17592.23 16592.04 20894.74 24980.06 23497.15 1197.37 11588.98 16388.83 28792.79 27077.02 28199.60 896.41 496.75 25396.46 231
lupinMVS88.34 25587.31 26391.45 22294.74 24980.06 23487.23 30192.27 28571.10 33088.83 28791.15 29977.02 28198.53 18086.67 20796.75 25395.76 260
WR-MVS93.49 13193.72 12792.80 18197.57 11080.03 23690.14 24895.68 20893.70 5796.62 7295.39 19087.21 19299.04 10187.50 19599.64 2399.33 25
CANet_DTU89.85 22989.17 22891.87 21092.20 30080.02 23790.79 22795.87 20386.02 21782.53 34091.77 29180.01 25898.57 17685.66 22097.70 22197.01 211
Patchmatch-RL test88.81 24788.52 24089.69 27195.33 23479.94 23886.22 32192.71 27678.46 29495.80 11094.18 23366.25 32095.33 32189.22 16398.53 14993.78 307
FMVSNet390.78 20090.32 21192.16 20493.03 28779.92 23992.54 16194.95 23086.17 21595.10 14096.01 15669.97 30698.75 14986.74 20498.38 16297.82 167
XXY-MVS92.58 16493.16 14690.84 24597.75 9579.84 24091.87 19996.22 19285.94 21895.53 12297.68 5092.69 9594.48 32883.21 24697.51 22898.21 129
test_yl90.11 22089.73 22391.26 22894.09 26779.82 24190.44 23692.65 27790.90 12393.19 20393.30 25973.90 29398.03 21982.23 25696.87 24895.93 252
DCV-MVSNet90.11 22089.73 22391.26 22894.09 26779.82 24190.44 23692.65 27790.90 12393.19 20393.30 25973.90 29398.03 21982.23 25696.87 24895.93 252
FMVSNet587.82 26386.56 27891.62 21892.31 29679.81 24393.49 13894.81 23783.26 24991.36 24596.93 9652.77 35797.49 25976.07 31098.03 20497.55 187
v894.65 10095.29 7892.74 18296.65 15079.77 24494.59 10397.17 13591.86 9397.47 4097.93 4088.16 17599.08 9394.32 2299.47 3999.38 22
tttt051789.81 23088.90 23692.55 19197.00 13579.73 24595.03 8983.65 34789.88 14795.30 13194.79 21653.64 35599.39 4591.99 9598.79 12998.54 106
v119293.49 13193.78 12592.62 18896.16 18679.62 24691.83 20497.22 13386.07 21696.10 10096.38 13687.22 19199.02 10494.14 2998.88 11399.22 32
v114493.50 13093.81 12392.57 19096.28 17679.61 24791.86 20396.96 14886.95 20595.91 10796.32 14087.65 18498.96 11493.51 4398.88 11399.13 39
BH-untuned90.68 20390.90 19690.05 26795.98 20079.57 24890.04 25194.94 23187.91 18494.07 17393.00 26587.76 18397.78 24379.19 28995.17 28692.80 324
DIV-MVS_2432*160094.10 12094.73 9792.19 20097.66 10579.49 24994.86 9497.12 13989.59 15396.87 6197.65 5290.40 15198.34 19689.08 16699.35 5798.75 84
CHOSEN 1792x268887.19 27985.92 28791.00 23997.13 13279.41 25084.51 33395.60 21064.14 35190.07 26994.81 21278.26 27197.14 27473.34 32395.38 28296.46 231
thisisatest053088.69 25087.52 26192.20 19996.33 17279.36 25192.81 15384.01 34686.44 20993.67 18692.68 27453.62 35699.25 7489.65 15398.45 15698.00 144
LFMVS91.33 19291.16 19491.82 21196.27 17779.36 25195.01 9085.61 33596.04 2894.82 15397.06 8872.03 30298.46 18984.96 23198.70 13797.65 180
TR-MVS87.70 26487.17 26789.27 27894.11 26679.26 25388.69 28591.86 29381.94 26690.69 25789.79 31782.82 23497.42 26372.65 32891.98 33191.14 337
test20.0390.80 19990.85 19990.63 25095.63 22279.24 25489.81 26092.87 27189.90 14694.39 16596.40 13185.77 21395.27 32373.86 32199.05 9497.39 197
IterMVS-SCA-FT91.65 18391.55 18191.94 20993.89 27279.22 25587.56 29693.51 26291.53 11295.37 12896.62 11978.65 26698.90 12091.89 10094.95 28997.70 176
EI-MVSNet92.99 14993.26 14592.19 20092.12 30279.21 25692.32 17694.67 24391.77 10395.24 13695.85 16187.14 19498.49 18391.99 9598.26 17798.86 72
IterMVS-LS93.78 12694.28 11492.27 19796.27 17779.21 25691.87 19996.78 16291.77 10396.57 7597.07 8787.15 19398.74 15291.99 9599.03 10098.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet87.89 26087.12 26990.22 26191.01 31878.93 25892.52 16292.81 27273.08 32189.10 28496.93 9667.11 31297.64 25288.80 17192.70 32394.08 297
RPMNet90.31 21690.14 21590.81 24691.01 31878.93 25892.52 16298.12 4191.91 9189.10 28496.89 9968.84 30799.41 3590.17 13992.70 32394.08 297
UnsupCasMVSNet_bld88.50 25288.03 25489.90 26895.52 22678.88 26087.39 30094.02 25579.32 28693.06 20694.02 23980.72 25594.27 33375.16 31593.08 31996.54 224
v2v48293.29 13693.63 13192.29 19696.35 17078.82 26191.77 20796.28 18688.45 17595.70 11696.26 14586.02 21298.90 12093.02 7198.81 12699.14 38
Anonymous2023120688.77 24888.29 24690.20 26396.31 17478.81 26289.56 26593.49 26374.26 31492.38 22695.58 17882.21 24095.43 31872.07 33098.75 13496.34 235
PVSNet_BlendedMVS90.35 21389.96 21791.54 22194.81 24478.80 26390.14 24896.93 15079.43 28288.68 29695.06 20186.27 20998.15 21380.27 27398.04 20397.68 178
PVSNet_Blended88.74 24988.16 25390.46 25594.81 24478.80 26386.64 31696.93 15074.67 31188.68 29689.18 32686.27 20998.15 21380.27 27396.00 26594.44 292
BH-RMVSNet90.47 20890.44 20890.56 25295.21 23678.65 26589.15 27693.94 25888.21 17992.74 21594.22 23186.38 20797.88 23178.67 29295.39 28195.14 276
D2MVS89.93 22789.60 22590.92 24194.03 26978.40 26688.69 28594.85 23378.96 29093.08 20595.09 19974.57 29196.94 27988.19 18198.96 10897.41 193
v192192093.26 13993.61 13292.19 20096.04 19878.31 26791.88 19897.24 13185.17 23096.19 9696.19 14886.76 20399.05 9894.18 2898.84 11899.22 32
v14419293.20 14493.54 13692.16 20496.05 19478.26 26891.95 19197.14 13684.98 23795.96 10396.11 15287.08 19599.04 10193.79 3498.84 11899.17 35
diffmvs91.74 18191.93 17391.15 23493.06 28578.17 26988.77 28397.51 11086.28 21292.42 22493.96 24288.04 17897.46 26090.69 12396.67 25597.82 167
sss87.23 27686.82 27388.46 29293.96 27077.94 27086.84 31092.78 27577.59 29887.61 30991.83 29078.75 26591.92 34677.84 29694.20 30595.52 270
MS-PatchMatch88.05 25987.75 25788.95 28193.28 27977.93 27187.88 29292.49 28275.42 30992.57 22093.59 25380.44 25694.24 33581.28 26592.75 32294.69 288
HY-MVS82.50 1886.81 28585.93 28689.47 27293.63 27677.93 27194.02 12391.58 29675.68 30683.64 33393.64 25077.40 27697.42 26371.70 33392.07 33093.05 321
v124093.29 13693.71 12892.06 20796.01 19977.89 27391.81 20597.37 11585.12 23396.69 6996.40 13186.67 20499.07 9794.51 1898.76 13299.22 32
CL-MVSNet_2432*160090.04 22589.90 21990.47 25395.24 23577.81 27486.60 31992.62 27985.64 22493.25 20193.92 24383.84 22596.06 30679.93 28098.03 20497.53 188
Test_1112_low_res87.50 27186.58 27790.25 26096.80 14777.75 27587.53 29896.25 18869.73 33786.47 31693.61 25275.67 28997.88 23179.95 27893.20 31595.11 277
v14892.87 15493.29 14191.62 21896.25 18077.72 27691.28 21795.05 22789.69 14995.93 10696.04 15487.34 18998.38 19290.05 14497.99 20798.78 81
MVS84.98 29484.30 29487.01 30691.03 31777.69 27791.94 19394.16 25159.36 35684.23 33087.50 33685.66 21596.80 28571.79 33193.05 32086.54 348
miper_lstm_enhance89.90 22889.80 22090.19 26491.37 31577.50 27883.82 34095.00 22884.84 23993.05 20794.96 20676.53 28795.20 32489.96 14698.67 13997.86 162
pmmvs380.83 31978.96 32786.45 31087.23 35077.48 27984.87 32882.31 35063.83 35285.03 32389.50 32249.66 35893.10 34173.12 32695.10 28788.78 346
PAPR87.65 26786.77 27590.27 25992.85 28977.38 28088.56 28896.23 19076.82 30584.98 32489.75 31986.08 21197.16 27372.33 32993.35 31396.26 239
Vis-MVSNet (Re-imp)90.42 20990.16 21291.20 23297.66 10577.32 28194.33 11487.66 31791.20 11992.99 20995.13 19775.40 29098.28 19977.86 29599.19 8097.99 147
BH-w/o87.21 27787.02 27187.79 30194.77 24677.27 28287.90 29193.21 26881.74 26789.99 27188.39 33283.47 22696.93 28171.29 33592.43 32789.15 342
GA-MVS87.70 26486.82 27390.31 25793.27 28077.22 28384.72 33192.79 27485.11 23489.82 27590.07 31266.80 31597.76 24684.56 23694.27 30495.96 251
TinyColmap92.00 17892.76 15389.71 27095.62 22377.02 28490.72 22996.17 19587.70 19195.26 13496.29 14292.54 9996.45 29581.77 26098.77 13195.66 265
Patchmtry90.11 22089.92 21890.66 24990.35 32777.00 28592.96 14992.81 27290.25 14194.74 15796.93 9667.11 31297.52 25685.17 22398.98 10297.46 190
cl-mvsnet190.65 20490.56 20690.91 24391.85 30676.99 28686.75 31395.36 22485.52 22794.06 17494.89 20977.37 27897.99 22590.28 13498.97 10697.76 172
cl-mvsnet_90.65 20490.56 20690.91 24391.85 30676.98 28786.75 31395.36 22485.53 22594.06 17494.89 20977.36 27997.98 22690.27 13598.98 10297.76 172
pmmvs587.87 26187.14 26890.07 26593.26 28176.97 28888.89 28092.18 28673.71 31888.36 29993.89 24576.86 28596.73 28780.32 27296.81 25096.51 226
eth_miper_zixun_eth90.72 20190.61 20591.05 23592.04 30476.84 28986.91 30896.67 16985.21 22994.41 16493.92 24379.53 26198.26 20389.76 15097.02 24298.06 138
cl_fuxian91.32 19391.42 18691.00 23992.29 29776.79 29087.52 29996.42 18185.76 22294.72 15993.89 24582.73 23598.16 21290.93 11998.55 14598.04 141
MVSTER89.32 23688.75 23891.03 23690.10 32976.62 29190.85 22594.67 24382.27 26395.24 13695.79 16661.09 34498.49 18390.49 12498.26 17797.97 151
miper_ehance_all_eth90.48 20790.42 20990.69 24891.62 31176.57 29286.83 31196.18 19483.38 24894.06 17492.66 27582.20 24198.04 21889.79 14997.02 24297.45 191
cl-mvsnet289.02 24088.50 24190.59 25189.76 33176.45 29386.62 31894.03 25382.98 25692.65 21792.49 27672.05 30197.53 25588.93 16797.02 24297.78 170
cascas87.02 28386.28 28489.25 27991.56 31376.45 29384.33 33596.78 16271.01 33186.89 31585.91 34681.35 24996.94 27983.09 24795.60 27494.35 294
ADS-MVSNet284.01 29982.20 30789.41 27489.04 34076.37 29587.57 29490.98 29972.71 32484.46 32792.45 27868.08 30896.48 29470.58 34083.97 34995.38 271
EU-MVSNet87.39 27386.71 27689.44 27393.40 27876.11 29694.93 9390.00 30457.17 35795.71 11597.37 6864.77 32897.68 25192.67 8194.37 30194.52 290
MIMVSNet87.13 28186.54 27988.89 28396.05 19476.11 29694.39 11288.51 30981.37 26888.27 30196.75 10972.38 29995.52 31365.71 35095.47 27895.03 278
IterMVS90.18 21890.16 21290.21 26293.15 28375.98 29887.56 29692.97 27086.43 21094.09 17196.40 13178.32 27097.43 26287.87 18994.69 29697.23 204
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_Test92.57 16693.29 14190.40 25693.53 27775.85 29992.52 16296.96 14888.73 16892.35 22896.70 11490.77 13998.37 19592.53 8495.49 27796.99 212
IB-MVS77.21 1983.11 30281.05 31389.29 27791.15 31675.85 29985.66 32386.00 33079.70 27982.02 34586.61 34048.26 36098.39 19077.84 29692.22 32893.63 311
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VPNet93.08 14593.76 12691.03 23698.60 3375.83 30191.51 21195.62 20991.84 9795.74 11397.10 8689.31 16498.32 19785.07 23099.06 9198.93 63
miper_enhance_ethall88.42 25387.87 25690.07 26588.67 34475.52 30285.10 32695.59 21475.68 30692.49 22189.45 32378.96 26397.88 23187.86 19097.02 24296.81 219
Anonymous2024052192.86 15593.57 13490.74 24796.57 15675.50 30394.15 11995.60 21089.38 15595.90 10897.90 4480.39 25797.96 22792.60 8399.68 1898.75 84
thisisatest051584.72 29582.99 30389.90 26892.96 28875.33 30484.36 33483.42 34877.37 30088.27 30186.65 33953.94 35498.72 15482.56 25297.40 23295.67 264
PS-MVSNAJ88.86 24688.99 23388.48 29194.88 24074.71 30586.69 31595.60 21080.88 27087.83 30687.37 33790.77 13998.82 13382.52 25394.37 30191.93 332
WTY-MVS86.93 28486.50 28288.24 29594.96 23974.64 30687.19 30392.07 29178.29 29588.32 30091.59 29578.06 27294.27 33374.88 31693.15 31795.80 258
xiu_mvs_v2_base89.00 24289.19 22788.46 29294.86 24274.63 30786.97 30695.60 21080.88 27087.83 30688.62 32991.04 13698.81 13882.51 25494.38 30091.93 332
131486.46 28686.33 28386.87 30891.65 31074.54 30891.94 19394.10 25274.28 31384.78 32687.33 33883.03 23195.00 32578.72 29191.16 33691.06 338
CHOSEN 280x42080.04 32477.97 33086.23 31490.13 32874.53 30972.87 35489.59 30566.38 34676.29 35685.32 34856.96 35095.36 31969.49 34394.72 29588.79 345
USDC89.02 24089.08 23088.84 28495.07 23874.50 31088.97 27896.39 18373.21 32093.27 19896.28 14382.16 24296.39 29777.55 29998.80 12895.62 268
MVEpermissive59.87 2373.86 32972.65 33277.47 34087.00 35374.35 31161.37 35860.93 36367.27 34469.69 36086.49 34281.24 25372.33 36056.45 35783.45 35185.74 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 29084.37 29389.40 27586.30 35474.33 31291.64 20988.26 31184.84 23972.96 35989.85 31371.27 30497.69 25076.60 30797.62 22596.18 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline187.62 26887.31 26388.54 28994.71 25374.27 31393.10 14688.20 31386.20 21392.18 23493.04 26473.21 29695.52 31379.32 28785.82 34795.83 257
Patchmatch-test86.10 28886.01 28586.38 31390.63 32274.22 31489.57 26486.69 32385.73 22389.81 27692.83 26865.24 32691.04 34977.82 29895.78 27193.88 306
MDA-MVSNet_test_wron88.16 25888.23 24987.93 29892.22 29873.71 31580.71 34988.84 30682.52 26094.88 15295.14 19682.70 23693.61 33883.28 24593.80 30996.46 231
YYNet188.17 25788.24 24887.93 29892.21 29973.62 31680.75 34888.77 30782.51 26194.99 14795.11 19882.70 23693.70 33783.33 24493.83 30896.48 230
test0.0.03 182.48 30781.47 31185.48 31789.70 33273.57 31784.73 32981.64 35283.07 25488.13 30386.61 34062.86 33789.10 35566.24 34990.29 33993.77 308
thres600view787.66 26687.10 27089.36 27696.05 19473.17 31892.72 15585.31 33891.89 9293.29 19690.97 30263.42 33498.39 19073.23 32496.99 24796.51 226
ANet_high94.83 9396.28 3690.47 25396.65 15073.16 31994.33 11498.74 596.39 2298.09 2498.93 893.37 7698.70 16090.38 12899.68 1899.53 14
thres100view90087.35 27486.89 27288.72 28696.14 18773.09 32093.00 14885.31 33892.13 8593.26 19990.96 30363.42 33498.28 19971.27 33696.54 25794.79 283
tfpn200view987.05 28286.52 28088.67 28795.77 21272.94 32191.89 19686.00 33090.84 12592.61 21889.80 31563.93 33198.28 19971.27 33696.54 25794.79 283
thres40087.20 27886.52 28089.24 28095.77 21272.94 32191.89 19686.00 33090.84 12592.61 21889.80 31563.93 33198.28 19971.27 33696.54 25796.51 226
baseline283.38 30181.54 31088.90 28291.38 31472.84 32388.78 28281.22 35378.97 28979.82 35287.56 33461.73 34297.80 24074.30 31990.05 34096.05 248
thres20085.85 28985.18 29087.88 30094.44 25972.52 32489.08 27786.21 32688.57 17491.44 24488.40 33164.22 32998.00 22368.35 34495.88 27093.12 318
MG-MVS89.54 23389.80 22088.76 28594.88 24072.47 32589.60 26392.44 28385.82 22089.48 28195.98 15782.85 23397.74 24881.87 25995.27 28496.08 246
PAPM81.91 31380.11 32387.31 30593.87 27372.32 32684.02 33893.22 26669.47 33876.13 35789.84 31472.15 30097.23 27153.27 35889.02 34192.37 329
SCA87.43 27287.21 26688.10 29792.01 30571.98 32789.43 26788.11 31582.26 26488.71 29492.83 26878.65 26697.59 25379.61 28493.30 31494.75 285
testgi90.38 21191.34 18987.50 30397.49 11471.54 32889.43 26795.16 22688.38 17794.54 16294.68 21992.88 9193.09 34271.60 33497.85 21497.88 160
gg-mvs-nofinetune82.10 31281.02 31485.34 31987.46 34971.04 32994.74 9867.56 36196.44 2179.43 35398.99 645.24 36296.15 30267.18 34792.17 32988.85 344
GG-mvs-BLEND83.24 33185.06 35871.03 33094.99 9265.55 36274.09 35875.51 35744.57 36394.46 32959.57 35587.54 34584.24 350
ppachtmachnet_test88.61 25188.64 23988.50 29091.76 30870.99 33184.59 33292.98 26979.30 28792.38 22693.53 25579.57 26097.45 26186.50 21297.17 23897.07 207
our_test_387.55 26987.59 26087.44 30491.76 30870.48 33283.83 33990.55 30379.79 27792.06 23792.17 28578.63 26895.63 31184.77 23394.73 29496.22 241
CVMVSNet85.16 29284.72 29186.48 30992.12 30270.19 33392.32 17688.17 31456.15 35890.64 25895.85 16167.97 31096.69 28888.78 17290.52 33892.56 327
new_pmnet81.22 31681.01 31581.86 33490.92 32070.15 33484.03 33780.25 35770.83 33285.97 31989.78 31867.93 31184.65 35767.44 34691.90 33290.78 339
KD-MVS_2432*160082.17 31080.75 31786.42 31182.04 36270.09 33581.75 34690.80 30082.56 25890.37 26389.30 32442.90 36696.11 30474.47 31792.55 32593.06 319
miper_refine_blended82.17 31080.75 31786.42 31182.04 36270.09 33581.75 34690.80 30082.56 25890.37 26389.30 32442.90 36696.11 30474.47 31792.55 32593.06 319
DSMNet-mixed82.21 30981.56 30884.16 32789.57 33570.00 33790.65 23177.66 35954.99 35983.30 33697.57 5577.89 27490.50 35166.86 34895.54 27691.97 331
PatchmatchNetpermissive85.22 29184.64 29286.98 30789.51 33669.83 33890.52 23487.34 32078.87 29187.22 31392.74 27266.91 31496.53 29181.77 26086.88 34694.58 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EMVS80.35 32380.28 32280.54 33684.73 35969.07 33972.54 35580.73 35487.80 18881.66 34781.73 35462.89 33689.84 35275.79 31394.65 29782.71 353
E-PMN80.72 32180.86 31680.29 33785.11 35768.77 34072.96 35381.97 35187.76 18983.25 33783.01 35362.22 34089.17 35477.15 30494.31 30382.93 352
mvs_anonymous90.37 21291.30 19087.58 30292.17 30168.00 34189.84 25994.73 23983.82 24793.22 20297.40 6687.54 18697.40 26587.94 18895.05 28897.34 200
CostFormer83.09 30382.21 30685.73 31589.27 33867.01 34290.35 24086.47 32570.42 33483.52 33593.23 26261.18 34396.85 28377.21 30388.26 34493.34 317
PatchT87.51 27088.17 25185.55 31690.64 32166.91 34392.02 18986.09 32892.20 8389.05 28697.16 8364.15 33096.37 29989.21 16492.98 32193.37 316
DWT-MVSNet_test80.74 32079.18 32685.43 31887.51 34866.87 34489.87 25886.01 32974.20 31580.86 34980.62 35548.84 35996.68 29081.54 26283.14 35392.75 325
test-LLR83.58 30083.17 30184.79 32389.68 33366.86 34583.08 34184.52 34383.07 25482.85 33884.78 34962.86 33793.49 33982.85 24894.86 29094.03 300
test-mter81.21 31780.01 32484.79 32389.68 33366.86 34583.08 34184.52 34373.85 31782.85 33884.78 34943.66 36593.49 33982.85 24894.86 29094.03 300
RRT_test8_iter0588.21 25688.17 25188.33 29491.62 31166.82 34791.73 20896.60 17286.34 21194.14 16995.38 19247.72 36199.11 9091.78 10298.26 17799.06 47
PVSNet_070.34 2174.58 32872.96 33179.47 33890.63 32266.24 34873.26 35283.40 34963.67 35378.02 35478.35 35672.53 29889.59 35356.68 35660.05 36082.57 354
ADS-MVSNet82.25 30881.55 30984.34 32689.04 34065.30 34987.57 29485.13 34272.71 32484.46 32792.45 27868.08 30892.33 34570.58 34083.97 34995.38 271
tpmvs84.22 29883.97 29784.94 32187.09 35165.18 35091.21 21888.35 31082.87 25785.21 32190.96 30365.24 32696.75 28679.60 28685.25 34892.90 323
tpm281.46 31480.35 32184.80 32289.90 33065.14 35190.44 23685.36 33765.82 34982.05 34492.44 28057.94 34896.69 28870.71 33988.49 34392.56 327
EPMVS81.17 31880.37 32083.58 32985.58 35665.08 35290.31 24271.34 36077.31 30185.80 32091.30 29759.38 34692.70 34479.99 27782.34 35492.96 322
tpm cat180.61 32279.46 32584.07 32888.78 34265.06 35389.26 27388.23 31262.27 35481.90 34689.66 32162.70 33995.29 32271.72 33280.60 35691.86 334
DeepMVS_CXcopyleft53.83 34370.38 36464.56 35448.52 36533.01 36065.50 36174.21 35856.19 35246.64 36138.45 36070.07 35850.30 357
PVSNet76.22 2082.89 30582.37 30584.48 32593.96 27064.38 35578.60 35188.61 30871.50 32884.43 32986.36 34374.27 29294.60 32769.87 34293.69 31194.46 291
TESTMET0.1,179.09 32678.04 32982.25 33387.52 34764.03 35683.08 34180.62 35570.28 33580.16 35183.22 35244.13 36490.56 35079.95 27893.36 31292.15 330
tpm84.38 29784.08 29685.30 32090.47 32563.43 35789.34 27085.63 33477.24 30287.62 30895.03 20461.00 34597.30 26979.26 28891.09 33795.16 274
MDTV_nov1_ep1383.88 29889.42 33761.52 35888.74 28487.41 31973.99 31684.96 32594.01 24065.25 32595.53 31278.02 29493.16 316
gm-plane-assit87.08 35259.33 35971.22 32983.58 35197.20 27273.95 320
tpmrst82.85 30682.93 30482.64 33287.65 34558.99 36090.14 24887.90 31675.54 30883.93 33191.63 29466.79 31795.36 31981.21 26781.54 35593.57 315
dp79.28 32578.62 32881.24 33585.97 35556.45 36186.91 30885.26 34072.97 32281.45 34889.17 32756.01 35395.45 31773.19 32576.68 35791.82 335
new-patchmatchnet88.97 24390.79 20183.50 33094.28 26355.83 36285.34 32593.56 26186.18 21495.47 12395.73 17083.10 23096.51 29385.40 22298.06 20098.16 131
MVS-HIRNet78.83 32780.60 31973.51 34293.07 28447.37 36387.10 30578.00 35868.94 33977.53 35597.26 7671.45 30394.62 32663.28 35388.74 34278.55 355
PMMVS281.31 31583.44 29974.92 34190.52 32446.49 36469.19 35685.23 34184.30 24487.95 30594.71 21876.95 28384.36 35864.07 35198.09 19893.89 305
MDTV_nov1_ep13_2view42.48 36588.45 28967.22 34583.56 33466.80 31572.86 32794.06 299
tmp_tt37.97 33044.33 33318.88 34411.80 36521.54 36663.51 35745.66 3664.23 36151.34 36250.48 35959.08 34722.11 36244.50 35968.35 35913.00 358
test1239.49 33212.01 3351.91 3452.87 3661.30 36782.38 3441.34 3681.36 3622.84 3636.56 3622.45 3680.97 3632.73 3615.56 3613.47 359
testmvs9.02 33311.42 3361.81 3462.77 3671.13 36879.44 3501.90 3671.18 3632.65 3646.80 3611.95 3690.87 3642.62 3623.45 3623.44 360
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k23.35 33131.13 3340.00 3470.00 3680.00 3690.00 35995.58 2160.00 3640.00 36591.15 29993.43 740.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas7.56 33410.09 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36590.77 1390.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re7.56 33410.08 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36590.69 3080.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
test_241102_TWO98.10 4491.95 8897.54 3697.25 7795.37 2899.35 5593.29 5999.25 7398.49 110
9.1494.81 9297.49 11494.11 12098.37 1487.56 19695.38 12796.03 15594.66 5599.08 9390.70 12298.97 106
test_0728_THIRD93.26 6597.40 4497.35 7294.69 5499.34 5993.88 3299.42 4798.89 69
GSMVS94.75 285
sam_mvs166.64 31894.75 285
sam_mvs66.41 319
MTGPAbinary97.62 97
test_post190.21 2445.85 36465.36 32496.00 30779.61 284
test_post6.07 36365.74 32395.84 309
patchmatchnet-post91.71 29266.22 32197.59 253
MTMP94.82 9554.62 364
test9_res88.16 18398.40 15897.83 165
agg_prior287.06 20298.36 16897.98 148
test_prior290.21 24489.33 15890.77 25494.81 21290.41 14988.21 17998.55 145
旧先验290.00 25368.65 34092.71 21696.52 29285.15 225
新几何290.02 252
无先验89.94 25495.75 20770.81 33398.59 17381.17 26894.81 282
原ACMM289.34 270
testdata298.03 21980.24 275
segment_acmp92.14 105
testdata188.96 27988.44 176
plane_prior597.81 8598.95 11689.26 16198.51 15298.60 103
plane_prior495.59 175
plane_prior294.56 10791.74 105
plane_prior197.38 120
n20.00 369
nn0.00 369
door-mid92.13 290
test1196.65 170
door91.26 297
HQP-NCC96.36 16791.37 21387.16 20088.81 289
ACMP_Plane96.36 16791.37 21387.16 20088.81 289
BP-MVS86.55 210
HQP4-MVS88.81 28998.61 16998.15 132
HQP3-MVS97.31 12497.73 217
HQP2-MVS84.76 220
ACMMP++_ref98.82 124
ACMMP++99.25 73
Test By Simon90.61 145