LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
PMVS |  | 87.21 14 | 94.97 84 | 95.33 76 | 93.91 143 | 98.97 14 | 97.16 2 | 95.54 69 | 95.85 204 | 96.47 20 | 93.40 193 | 97.46 63 | 95.31 33 | 95.47 316 | 86.18 217 | 98.78 130 | 89.11 343 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Effi-MVS+-dtu | | | 93.90 125 | 92.60 159 | 97.77 4 | 94.74 249 | 96.67 3 | 94.00 124 | 95.41 221 | 89.94 144 | 91.93 239 | 92.13 286 | 90.12 154 | 98.97 113 | 87.68 192 | 97.48 229 | 97.67 179 |
|
RPSCF | | | 95.58 64 | 94.89 90 | 97.62 8 | 97.58 109 | 96.30 4 | 95.97 54 | 97.53 107 | 92.42 74 | 93.41 191 | 97.78 46 | 91.21 131 | 97.77 244 | 91.06 116 | 97.06 240 | 98.80 79 |
|
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 11 | 95.95 5 | 98.61 3 | 98.81 4 | 97.41 9 | 97.28 46 | 98.46 25 | 94.62 56 | 98.84 131 | 94.64 17 | 99.53 35 | 98.99 53 |
|
mvs-test1 | | | 93.07 147 | 91.80 177 | 96.89 39 | 94.74 249 | 95.83 6 | 92.17 182 | 95.41 221 | 89.94 144 | 89.85 274 | 90.59 311 | 90.12 154 | 98.88 123 | 87.68 192 | 95.66 273 | 95.97 250 |
|
abl_6 | | | 97.31 5 | 97.12 13 | 97.86 3 | 98.54 41 | 95.32 7 | 96.61 24 | 98.35 16 | 95.81 30 | 97.55 35 | 97.44 64 | 96.51 9 | 99.40 40 | 94.06 30 | 99.23 76 | 98.85 75 |
|
SR-MVS-dyc-post | | | 96.84 8 | 96.60 25 | 97.56 10 | 98.07 76 | 95.27 8 | 96.37 36 | 98.12 41 | 95.66 32 | 97.00 56 | 97.03 90 | 94.85 51 | 99.42 28 | 93.49 44 | 98.84 118 | 98.00 144 |
|
RE-MVS-def | | | | 96.66 20 | | 98.07 76 | 95.27 8 | 96.37 36 | 98.12 41 | 95.66 32 | 97.00 56 | 97.03 90 | 95.40 27 | | 93.49 44 | 98.84 118 | 98.00 144 |
|
test1172 | | | 96.79 15 | 96.52 27 | 97.60 9 | 98.03 81 | 94.87 10 | 96.07 50 | 98.06 54 | 95.76 31 | 96.89 60 | 96.85 101 | 94.85 51 | 99.42 28 | 93.35 57 | 98.81 126 | 98.53 107 |
|
SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 78 | 94.69 11 | 96.13 47 | 98.07 51 | 95.17 36 | 96.82 64 | 96.73 112 | 95.09 43 | 99.43 27 | 92.99 73 | 98.71 135 | 98.50 109 |
|
mPP-MVS | | | 96.46 32 | 96.05 50 | 97.69 5 | 98.62 30 | 94.65 12 | 96.45 31 | 97.74 91 | 92.59 72 | 95.47 123 | 96.68 115 | 94.50 59 | 99.42 28 | 93.10 68 | 99.26 72 | 98.99 53 |
|
CP-MVS | | | 96.44 35 | 96.08 48 | 97.54 11 | 98.29 62 | 94.62 13 | 96.80 19 | 98.08 48 | 92.67 71 | 95.08 143 | 96.39 135 | 94.77 53 | 99.42 28 | 93.17 65 | 99.44 45 | 98.58 105 |
|
FPMVS | | | 84.50 296 | 83.28 300 | 88.16 296 | 96.32 173 | 94.49 14 | 85.76 322 | 85.47 336 | 83.09 253 | 85.20 322 | 94.26 229 | 63.79 333 | 86.58 356 | 63.72 352 | 91.88 333 | 83.40 351 |
|
COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 23 | 97.13 28 | 98.38 57 | 94.31 15 | 96.79 20 | 98.32 17 | 96.69 16 | 96.86 62 | 97.56 56 | 95.48 25 | 98.77 148 | 90.11 141 | 99.44 45 | 98.31 122 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
XVG-OURS | | | 94.72 97 | 94.12 119 | 96.50 48 | 98.00 84 | 94.23 16 | 91.48 212 | 98.17 35 | 90.72 129 | 95.30 131 | 96.47 125 | 87.94 181 | 96.98 278 | 91.41 113 | 97.61 226 | 98.30 123 |
|
LS3D | | | 96.11 48 | 95.83 61 | 96.95 37 | 94.75 247 | 94.20 17 | 97.34 9 | 97.98 67 | 97.31 10 | 95.32 130 | 96.77 106 | 93.08 85 | 99.20 79 | 91.79 101 | 98.16 190 | 97.44 192 |
|
XVG-OURS-SEG-HR | | | 95.38 70 | 95.00 87 | 96.51 47 | 98.10 74 | 94.07 18 | 92.46 166 | 98.13 40 | 90.69 130 | 93.75 183 | 96.25 146 | 98.03 2 | 97.02 277 | 92.08 92 | 95.55 275 | 98.45 114 |
|
MP-MVS |  | | 96.14 47 | 95.68 66 | 97.51 13 | 98.81 23 | 94.06 19 | 96.10 48 | 97.78 90 | 92.73 68 | 93.48 190 | 96.72 113 | 94.23 64 | 99.42 28 | 91.99 95 | 99.29 65 | 99.05 48 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PM-MVS | | | 93.33 135 | 92.67 157 | 95.33 85 | 96.58 155 | 94.06 19 | 92.26 179 | 92.18 286 | 85.92 219 | 96.22 92 | 96.61 120 | 85.64 217 | 95.99 308 | 90.35 130 | 98.23 183 | 95.93 252 |
|
MSP-MVS | | | 95.34 72 | 94.63 102 | 97.48 14 | 98.67 27 | 94.05 21 | 96.41 35 | 98.18 32 | 91.26 117 | 95.12 139 | 95.15 195 | 86.60 206 | 99.50 19 | 93.43 53 | 96.81 250 | 98.89 69 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
zzz-MVS | | | 96.47 31 | 96.14 44 | 97.47 15 | 98.95 15 | 94.05 21 | 93.69 133 | 97.62 97 | 94.46 44 | 96.29 86 | 96.94 94 | 93.56 70 | 99.37 52 | 94.29 24 | 99.42 47 | 98.99 53 |
|
MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 15 | 94.05 21 | 95.88 58 | 97.62 97 | 94.46 44 | 96.29 86 | 96.94 94 | 93.56 70 | 99.37 52 | 94.29 24 | 99.42 47 | 98.99 53 |
|
anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 7 | 98.00 84 | 94.03 24 | 96.97 15 | 97.61 100 | 87.68 192 | 98.45 18 | 98.77 15 | 94.20 65 | 99.50 19 | 96.70 3 | 99.40 53 | 99.53 14 |
|
XVS | | | 96.49 29 | 96.18 41 | 97.44 17 | 98.56 36 | 93.99 25 | 96.50 29 | 97.95 73 | 94.58 40 | 94.38 166 | 96.49 124 | 94.56 57 | 99.39 45 | 93.57 40 | 99.05 94 | 98.93 63 |
|
X-MVStestdata | | | 90.70 202 | 88.45 242 | 97.44 17 | 98.56 36 | 93.99 25 | 96.50 29 | 97.95 73 | 94.58 40 | 94.38 166 | 26.89 360 | 94.56 57 | 99.39 45 | 93.57 40 | 99.05 94 | 98.93 63 |
|
HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 22 | 99.12 7 | 93.92 27 | 97.16 10 | 98.17 35 | 93.11 66 | 96.48 76 | 97.36 71 | 96.92 6 | 99.34 59 | 94.31 23 | 99.38 55 | 98.92 67 |
|
ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 19 | 98.61 32 | 93.88 28 | 96.95 16 | 98.18 32 | 92.26 81 | 96.33 82 | 96.84 104 | 95.10 42 | 99.40 40 | 93.47 48 | 99.33 60 | 99.02 50 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 5 | 98.22 67 | 93.87 29 | 98.42 4 | 98.19 31 | 96.95 13 | 95.46 125 | 99.23 4 | 93.45 72 | 99.57 13 | 95.34 12 | 99.89 2 | 99.63 9 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 23 | 93.86 30 | 99.07 2 | 98.98 3 | 97.01 12 | 98.92 4 | 98.78 14 | 95.22 37 | 98.61 169 | 96.85 2 | 99.77 10 | 99.31 27 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PGM-MVS | | | 96.32 41 | 95.94 54 | 97.43 19 | 98.59 35 | 93.84 31 | 95.33 75 | 98.30 20 | 91.40 114 | 95.76 111 | 96.87 100 | 95.26 35 | 99.45 22 | 92.77 76 | 99.21 78 | 99.00 51 |
|
APD-MVS_3200maxsize | | | 96.82 10 | 96.65 21 | 97.32 25 | 97.95 88 | 93.82 32 | 96.31 41 | 98.25 24 | 95.51 34 | 96.99 58 | 97.05 89 | 95.63 21 | 99.39 45 | 93.31 58 | 98.88 113 | 98.75 84 |
|
ACMMPR | | | 96.46 32 | 96.14 44 | 97.41 21 | 98.60 33 | 93.82 32 | 96.30 43 | 97.96 71 | 92.35 78 | 95.57 120 | 96.61 120 | 94.93 50 | 99.41 35 | 93.78 35 | 99.15 84 | 99.00 51 |
|
region2R | | | 96.41 37 | 96.09 47 | 97.38 23 | 98.62 30 | 93.81 34 | 96.32 40 | 97.96 71 | 92.26 81 | 95.28 133 | 96.57 122 | 95.02 46 | 99.41 35 | 93.63 39 | 99.11 89 | 98.94 62 |
|
N_pmnet | | | 88.90 245 | 87.25 265 | 93.83 147 | 94.40 261 | 93.81 34 | 84.73 329 | 87.09 321 | 79.36 285 | 93.26 199 | 92.43 281 | 79.29 262 | 91.68 347 | 77.50 301 | 97.22 237 | 96.00 249 |
|
HPM-MVS++ |  | | 95.02 82 | 94.39 109 | 96.91 38 | 97.88 90 | 93.58 36 | 94.09 121 | 96.99 147 | 91.05 122 | 92.40 225 | 95.22 194 | 91.03 137 | 99.25 74 | 92.11 90 | 98.69 138 | 97.90 158 |
|
HPM-MVS |  | | 96.81 12 | 96.62 23 | 97.36 24 | 98.89 18 | 93.53 37 | 97.51 7 | 98.44 9 | 92.35 78 | 95.95 104 | 96.41 130 | 96.71 8 | 99.42 28 | 93.99 31 | 99.36 56 | 99.13 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HFP-MVS | | | 96.39 39 | 96.17 43 | 97.04 31 | 98.51 45 | 93.37 38 | 96.30 43 | 97.98 67 | 92.35 78 | 95.63 117 | 96.47 125 | 95.37 28 | 99.27 72 | 93.78 35 | 99.14 85 | 98.48 111 |
|
#test# | | | 95.89 53 | 95.51 69 | 97.04 31 | 98.51 45 | 93.37 38 | 95.14 84 | 97.98 67 | 89.34 157 | 95.63 117 | 96.47 125 | 95.37 28 | 99.27 72 | 91.99 95 | 99.14 85 | 98.48 111 |
|
ITE_SJBPF | | | | | 95.95 57 | 97.34 122 | 93.36 40 | | 96.55 177 | 91.93 90 | 94.82 153 | 95.39 190 | 91.99 110 | 97.08 275 | 85.53 221 | 97.96 208 | 97.41 193 |
|
XVG-ACMP-BASELINE | | | 95.68 61 | 95.34 75 | 96.69 43 | 98.40 55 | 93.04 41 | 94.54 110 | 98.05 55 | 90.45 137 | 96.31 84 | 96.76 108 | 92.91 89 | 98.72 154 | 91.19 115 | 99.42 47 | 98.32 120 |
|
CPTT-MVS | | | 94.74 96 | 94.12 119 | 96.60 44 | 98.15 71 | 93.01 42 | 95.84 59 | 97.66 95 | 89.21 162 | 93.28 197 | 95.46 184 | 88.89 167 | 98.98 109 | 89.80 148 | 98.82 124 | 97.80 169 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 118 | 93.56 135 | 96.14 51 | 95.96 201 | 92.96 43 | 89.48 266 | 97.46 111 | 85.14 231 | 96.23 91 | 95.42 187 | 93.19 81 | 98.08 216 | 90.37 129 | 98.76 132 | 97.38 199 |
|
ACMM | | 88.83 9 | 96.30 43 | 96.07 49 | 96.97 35 | 98.39 56 | 92.95 44 | 94.74 98 | 98.03 60 | 90.82 127 | 97.15 49 | 96.85 101 | 96.25 15 | 99.00 108 | 93.10 68 | 99.33 60 | 98.95 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PatchMatch-RL | | | 89.18 237 | 88.02 255 | 92.64 185 | 95.90 206 | 92.87 45 | 88.67 287 | 91.06 298 | 80.34 273 | 90.03 270 | 91.67 293 | 83.34 227 | 94.42 330 | 76.35 309 | 94.84 292 | 90.64 340 |
|
ZNCC-MVS | | | 96.42 36 | 96.20 40 | 97.07 30 | 98.80 25 | 92.79 46 | 96.08 49 | 98.16 38 | 91.74 105 | 95.34 129 | 96.36 138 | 95.68 19 | 99.44 23 | 94.41 21 | 99.28 70 | 98.97 59 |
|
GST-MVS | | | 96.24 44 | 95.99 53 | 97.00 34 | 98.65 28 | 92.71 47 | 95.69 64 | 98.01 64 | 92.08 86 | 95.74 113 | 96.28 143 | 95.22 37 | 99.42 28 | 93.17 65 | 99.06 91 | 98.88 71 |
|
mvs_tets | | | 96.83 9 | 96.71 19 | 97.17 27 | 98.83 21 | 92.51 48 | 96.58 26 | 97.61 100 | 87.57 195 | 98.80 7 | 98.90 9 | 96.50 10 | 99.59 12 | 96.15 7 | 99.47 39 | 99.40 21 |
|
jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 26 | 92.49 49 | 96.44 33 | 97.42 113 | 86.96 204 | 98.71 10 | 98.72 17 | 95.36 31 | 99.56 16 | 95.92 8 | 99.45 43 | 99.32 26 |
|
AllTest | | | 94.88 89 | 94.51 107 | 96.00 55 | 98.02 82 | 92.17 50 | 95.26 78 | 98.43 10 | 90.48 135 | 95.04 145 | 96.74 110 | 92.54 99 | 97.86 235 | 85.11 228 | 98.98 102 | 97.98 148 |
|
TestCases | | | | | 96.00 55 | 98.02 82 | 92.17 50 | | 98.43 10 | 90.48 135 | 95.04 145 | 96.74 110 | 92.54 99 | 97.86 235 | 85.11 228 | 98.98 102 | 97.98 148 |
|
LPG-MVS_test | | | 96.38 40 | 96.23 38 | 96.84 40 | 98.36 60 | 92.13 52 | 95.33 75 | 98.25 24 | 91.78 101 | 97.07 51 | 97.22 80 | 96.38 13 | 99.28 70 | 92.07 93 | 99.59 27 | 99.11 41 |
|
LGP-MVS_train | | | | | 96.84 40 | 98.36 60 | 92.13 52 | | 98.25 24 | 91.78 101 | 97.07 51 | 97.22 80 | 96.38 13 | 99.28 70 | 92.07 93 | 99.59 27 | 99.11 41 |
|
LF4IMVS | | | 92.72 159 | 92.02 170 | 94.84 104 | 95.65 220 | 91.99 54 | 92.92 150 | 96.60 172 | 85.08 235 | 92.44 223 | 93.62 251 | 86.80 202 | 96.35 300 | 86.81 203 | 98.25 180 | 96.18 243 |
|
SteuartSystems-ACMMP | | | 96.40 38 | 96.30 35 | 96.71 42 | 98.63 29 | 91.96 55 | 95.70 62 | 98.01 64 | 93.34 64 | 96.64 71 | 96.57 122 | 94.99 48 | 99.36 54 | 93.48 47 | 99.34 58 | 98.82 77 |
Skip Steuart: Steuart Systems R&D Blog. |
F-COLMAP | | | 92.28 173 | 91.06 195 | 95.95 57 | 97.52 112 | 91.90 56 | 93.53 137 | 97.18 134 | 83.98 245 | 88.70 295 | 94.04 237 | 88.41 172 | 98.55 179 | 80.17 276 | 95.99 266 | 97.39 197 |
|
OurMVSNet-221017-0 | | | 96.80 13 | 96.75 18 | 96.96 36 | 99.03 10 | 91.85 57 | 97.98 5 | 98.01 64 | 94.15 48 | 98.93 3 | 99.07 5 | 88.07 177 | 99.57 13 | 95.86 9 | 99.69 15 | 99.46 18 |
|
MAR-MVS | | | 90.32 215 | 88.87 237 | 94.66 111 | 94.82 243 | 91.85 57 | 94.22 117 | 94.75 238 | 80.91 269 | 87.52 310 | 88.07 333 | 86.63 205 | 97.87 234 | 76.67 306 | 96.21 263 | 94.25 296 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
test_djsdf | | | 96.62 23 | 96.49 28 | 97.01 33 | 98.55 39 | 91.77 59 | 97.15 11 | 97.37 115 | 88.98 163 | 98.26 21 | 98.86 10 | 93.35 77 | 99.60 8 | 96.41 4 | 99.45 43 | 99.66 6 |
|
ACMP | | 88.15 13 | 95.71 60 | 95.43 73 | 96.54 46 | 98.17 70 | 91.73 60 | 94.24 116 | 98.08 48 | 89.46 154 | 96.61 73 | 96.47 125 | 95.85 17 | 99.12 89 | 90.45 125 | 99.56 33 | 98.77 83 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PHI-MVS | | | 94.34 111 | 93.80 124 | 95.95 57 | 95.65 220 | 91.67 61 | 94.82 95 | 97.86 78 | 87.86 187 | 93.04 208 | 94.16 234 | 91.58 119 | 98.78 144 | 90.27 135 | 98.96 108 | 97.41 193 |
|
ACMMP_NAP | | | 96.21 45 | 96.12 46 | 96.49 49 | 98.90 17 | 91.42 62 | 94.57 106 | 98.03 60 | 90.42 138 | 96.37 79 | 97.35 72 | 95.68 19 | 99.25 74 | 94.44 20 | 99.34 58 | 98.80 79 |
|
OMC-MVS | | | 94.22 117 | 93.69 129 | 95.81 65 | 97.25 124 | 91.27 63 | 92.27 178 | 97.40 114 | 87.10 203 | 94.56 161 | 95.42 187 | 93.74 68 | 98.11 215 | 86.62 208 | 98.85 117 | 98.06 138 |
|
MP-MVS-pluss | | | 96.08 49 | 95.92 56 | 96.57 45 | 99.06 9 | 91.21 64 | 93.25 143 | 98.32 17 | 87.89 186 | 96.86 62 | 97.38 67 | 95.55 24 | 99.39 45 | 95.47 10 | 99.47 39 | 99.11 41 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SMA-MVS |  | | 95.77 58 | 95.54 68 | 96.47 50 | 98.27 64 | 91.19 65 | 95.09 85 | 97.79 89 | 86.48 208 | 97.42 43 | 97.51 61 | 94.47 61 | 99.29 68 | 93.55 42 | 99.29 65 | 98.93 63 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CNLPA | | | 91.72 182 | 91.20 192 | 93.26 165 | 96.17 185 | 91.02 66 | 91.14 219 | 95.55 217 | 90.16 142 | 90.87 253 | 93.56 254 | 86.31 208 | 94.40 331 | 79.92 282 | 97.12 239 | 94.37 293 |
|
OPM-MVS | | | 95.61 63 | 95.45 71 | 96.08 53 | 98.49 53 | 91.00 67 | 92.65 159 | 97.33 123 | 90.05 143 | 96.77 67 | 96.85 101 | 95.04 44 | 98.56 177 | 92.77 76 | 99.06 91 | 98.70 91 |
|
MVS_111021_LR | | | 93.66 128 | 93.28 143 | 94.80 105 | 96.25 180 | 90.95 68 | 90.21 244 | 95.43 220 | 87.91 184 | 93.74 185 | 94.40 225 | 92.88 91 | 96.38 298 | 90.39 127 | 98.28 175 | 97.07 207 |
|
Gipuma |  | | 95.31 75 | 95.80 63 | 93.81 148 | 97.99 87 | 90.91 69 | 96.42 34 | 97.95 73 | 96.69 16 | 91.78 241 | 98.85 12 | 91.77 114 | 95.49 315 | 91.72 104 | 99.08 90 | 95.02 279 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
APD-MVS |  | | 95.00 83 | 94.69 98 | 95.93 60 | 97.38 120 | 90.88 70 | 94.59 103 | 97.81 85 | 89.22 161 | 95.46 125 | 96.17 151 | 93.42 75 | 99.34 59 | 89.30 157 | 98.87 116 | 97.56 186 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + GP. | | | 93.07 147 | 92.41 163 | 95.06 98 | 95.82 209 | 90.87 71 | 90.97 223 | 92.61 280 | 88.04 183 | 94.61 160 | 93.79 248 | 88.08 176 | 97.81 239 | 89.41 156 | 98.39 160 | 96.50 229 |
|
3Dnovator+ | | 92.74 2 | 95.86 56 | 95.77 64 | 96.13 52 | 96.81 146 | 90.79 72 | 96.30 43 | 97.82 84 | 96.13 24 | 94.74 157 | 97.23 79 | 91.33 125 | 99.16 82 | 93.25 62 | 98.30 174 | 98.46 113 |
|
hse-mvs3 | | | 92.89 152 | 91.99 171 | 95.58 77 | 96.97 136 | 90.55 73 | 93.94 127 | 94.01 256 | 89.23 160 | 93.95 178 | 96.19 148 | 76.88 284 | 99.14 85 | 91.02 117 | 95.71 272 | 97.04 210 |
|
AUN-MVS | | | 90.05 224 | 88.30 245 | 95.32 88 | 96.09 191 | 90.52 74 | 92.42 169 | 92.05 292 | 82.08 265 | 88.45 298 | 92.86 267 | 65.76 322 | 98.69 162 | 88.91 169 | 96.07 264 | 96.75 222 |
|
testtj | | | 94.81 94 | 94.42 108 | 96.01 54 | 97.23 125 | 90.51 75 | 94.77 97 | 97.85 81 | 91.29 116 | 94.92 150 | 95.66 173 | 91.71 116 | 99.40 40 | 88.07 185 | 98.25 180 | 98.11 137 |
|
ZD-MVS | | | | | | 97.23 125 | 90.32 76 | | 97.54 105 | 84.40 243 | 94.78 155 | 95.79 166 | 92.76 94 | 99.39 45 | 88.72 175 | 98.40 158 | |
|
DeepC-MVS | | 91.39 4 | 95.43 68 | 95.33 76 | 95.71 73 | 97.67 104 | 90.17 77 | 93.86 129 | 98.02 62 | 87.35 197 | 96.22 92 | 97.99 38 | 94.48 60 | 99.05 98 | 92.73 79 | 99.68 18 | 97.93 154 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PLC |  | 85.34 15 | 90.40 210 | 88.92 234 | 94.85 103 | 96.53 159 | 90.02 78 | 91.58 210 | 96.48 180 | 80.16 275 | 86.14 318 | 92.18 284 | 85.73 214 | 98.25 204 | 76.87 305 | 94.61 298 | 96.30 237 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Regformer-2 | | | 94.86 90 | 94.55 104 | 95.77 69 | 92.83 290 | 89.98 79 | 91.87 199 | 96.40 182 | 94.38 46 | 96.19 96 | 95.04 202 | 92.47 102 | 99.04 101 | 93.49 44 | 98.31 172 | 98.28 124 |
|
ETH3D cwj APD-0.16 | | | 93.99 123 | 93.38 140 | 95.80 67 | 96.82 144 | 89.92 80 | 92.72 155 | 98.02 62 | 84.73 241 | 93.65 187 | 95.54 182 | 91.68 117 | 99.22 77 | 88.78 172 | 98.49 155 | 98.26 126 |
|
test_prior4 | | | | | | | 89.91 81 | 90.74 228 | | | | | | | | | |
|
NCCC | | | 94.08 121 | 93.54 136 | 95.70 74 | 96.49 161 | 89.90 82 | 92.39 171 | 96.91 154 | 90.64 132 | 92.33 231 | 94.60 220 | 90.58 147 | 98.96 114 | 90.21 138 | 97.70 221 | 98.23 127 |
|
DPE-MVS |  | | 95.89 53 | 95.88 57 | 95.92 62 | 97.93 89 | 89.83 83 | 93.46 139 | 98.30 20 | 92.37 76 | 97.75 28 | 96.95 93 | 95.14 39 | 99.51 18 | 91.74 103 | 99.28 70 | 98.41 117 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ETH3D-3000-0.1 | | | 94.86 90 | 94.55 104 | 95.81 65 | 97.61 107 | 89.72 84 | 94.05 122 | 98.37 14 | 88.09 182 | 95.06 144 | 95.85 161 | 92.58 97 | 99.10 92 | 90.33 132 | 98.99 101 | 98.62 100 |
|
TAPA-MVS | | 88.58 10 | 92.49 168 | 91.75 179 | 94.73 108 | 96.50 160 | 89.69 85 | 92.91 151 | 97.68 94 | 78.02 297 | 92.79 214 | 94.10 235 | 90.85 138 | 97.96 227 | 84.76 234 | 98.16 190 | 96.54 224 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SF-MVS | | | 95.88 55 | 95.88 57 | 95.87 64 | 98.12 72 | 89.65 86 | 95.58 67 | 98.56 7 | 91.84 97 | 96.36 80 | 96.68 115 | 94.37 62 | 99.32 65 | 92.41 87 | 99.05 94 | 98.64 96 |
|
TEST9 | | | | | | 96.45 163 | 89.46 87 | 90.60 232 | 96.92 152 | 79.09 288 | 90.49 259 | 94.39 226 | 91.31 126 | 98.88 123 | | | |
|
train_agg | | | 92.71 160 | 91.83 175 | 95.35 83 | 96.45 163 | 89.46 87 | 90.60 232 | 96.92 152 | 79.37 283 | 90.49 259 | 94.39 226 | 91.20 132 | 98.88 123 | 88.66 176 | 98.43 157 | 97.72 175 |
|
OPU-MVS | | | | | 95.15 95 | 96.84 143 | 89.43 89 | 95.21 79 | | | | 95.66 173 | 93.12 84 | 98.06 217 | 86.28 216 | 98.61 142 | 97.95 152 |
|
test_part2 | | | | | | 98.21 68 | 89.41 90 | | | | 96.72 68 | | | | | | |
|
Vis-MVSNet |  | | 95.50 66 | 95.48 70 | 95.56 79 | 98.11 73 | 89.40 91 | 95.35 73 | 98.22 29 | 92.36 77 | 94.11 170 | 98.07 33 | 92.02 107 | 99.44 23 | 93.38 56 | 97.67 223 | 97.85 164 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
APDe-MVS | | | 96.46 32 | 96.64 22 | 95.93 60 | 97.68 103 | 89.38 92 | 96.90 17 | 98.41 13 | 92.52 73 | 97.43 41 | 97.92 41 | 95.11 41 | 99.50 19 | 94.45 19 | 99.30 64 | 98.92 67 |
|
CNVR-MVS | | | 94.58 102 | 94.29 113 | 95.46 82 | 96.94 138 | 89.35 93 | 91.81 205 | 96.80 161 | 89.66 150 | 93.90 180 | 95.44 186 | 92.80 93 | 98.72 154 | 92.74 78 | 98.52 150 | 98.32 120 |
|
test_8 | | | | | | 96.37 165 | 89.14 94 | 90.51 235 | 96.89 155 | 79.37 283 | 90.42 261 | 94.36 228 | 91.20 132 | 98.82 133 | | | |
|
ACMH+ | | 88.43 11 | 96.48 30 | 96.82 16 | 95.47 81 | 98.54 41 | 89.06 95 | 95.65 65 | 98.61 6 | 96.10 25 | 98.16 22 | 97.52 59 | 96.90 7 | 98.62 168 | 90.30 133 | 99.60 25 | 98.72 90 |
|
Regformer-4 | | | 94.90 87 | 94.67 100 | 95.59 76 | 92.78 292 | 89.02 96 | 92.39 171 | 95.91 201 | 94.50 42 | 96.41 77 | 95.56 180 | 92.10 106 | 99.01 106 | 94.23 26 | 98.14 192 | 98.74 87 |
|
MIMVSNet1 | | | 95.52 65 | 95.45 71 | 95.72 72 | 99.14 4 | 89.02 96 | 96.23 46 | 96.87 158 | 93.73 56 | 97.87 26 | 98.49 24 | 90.73 143 | 99.05 98 | 86.43 213 | 99.60 25 | 99.10 44 |
|
UniMVSNet (Re) | | | 95.32 73 | 95.15 83 | 95.80 67 | 97.79 93 | 88.91 98 | 92.91 151 | 98.07 51 | 93.46 62 | 96.31 84 | 95.97 158 | 90.14 153 | 99.34 59 | 92.11 90 | 99.64 23 | 99.16 36 |
|
agg_prior1 | | | 92.60 163 | 91.76 178 | 95.10 97 | 96.20 182 | 88.89 99 | 90.37 239 | 96.88 156 | 79.67 280 | 90.21 265 | 94.41 224 | 91.30 127 | 98.78 144 | 88.46 178 | 98.37 167 | 97.64 181 |
|
agg_prior | | | | | | 96.20 182 | 88.89 99 | | 96.88 156 | | 90.21 265 | | | 98.78 144 | | | |
|
SD-MVS | | | 95.19 79 | 95.73 65 | 93.55 154 | 96.62 153 | 88.88 101 | 94.67 100 | 98.05 55 | 91.26 117 | 97.25 48 | 96.40 131 | 95.42 26 | 94.36 332 | 92.72 80 | 99.19 80 | 97.40 196 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 94.96 85 | 94.75 95 | 95.57 78 | 98.86 20 | 88.69 102 | 96.37 36 | 96.81 160 | 85.23 228 | 94.75 156 | 97.12 85 | 91.85 113 | 99.40 40 | 93.45 49 | 98.33 169 | 98.62 100 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
plane_prior7 | | | | | | 97.71 99 | 88.68 103 | | | | | | | | | | |
|
wuyk23d | | | 87.83 262 | 90.79 201 | 78.96 339 | 90.46 326 | 88.63 104 | 92.72 155 | 90.67 302 | 91.65 109 | 98.68 11 | 97.64 53 | 96.06 16 | 77.53 359 | 59.84 354 | 99.41 52 | 70.73 356 |
|
DP-MVS | | | 95.62 62 | 95.84 60 | 94.97 100 | 97.16 129 | 88.62 105 | 94.54 110 | 97.64 96 | 96.94 14 | 96.58 74 | 97.32 75 | 93.07 86 | 98.72 154 | 90.45 125 | 98.84 118 | 97.57 184 |
|
UniMVSNet_NR-MVSNet | | | 95.35 71 | 95.21 81 | 95.76 70 | 97.69 102 | 88.59 106 | 92.26 179 | 97.84 82 | 94.91 37 | 96.80 65 | 95.78 169 | 90.42 148 | 99.41 35 | 91.60 108 | 99.58 31 | 99.29 28 |
|
DU-MVS | | | 95.28 76 | 95.12 85 | 95.75 71 | 97.75 95 | 88.59 106 | 92.58 160 | 97.81 85 | 93.99 50 | 96.80 65 | 95.90 159 | 90.10 157 | 99.41 35 | 91.60 108 | 99.58 31 | 99.26 29 |
|
nrg030 | | | 96.32 41 | 96.55 26 | 95.62 75 | 97.83 92 | 88.55 108 | 95.77 61 | 98.29 23 | 92.68 69 | 98.03 25 | 97.91 42 | 95.13 40 | 98.95 116 | 93.85 33 | 99.49 38 | 99.36 24 |
|
Regformer-1 | | | 94.55 103 | 94.33 112 | 95.19 93 | 92.83 290 | 88.54 109 | 91.87 199 | 95.84 205 | 93.99 50 | 95.95 104 | 95.04 202 | 92.00 108 | 98.79 140 | 93.14 67 | 98.31 172 | 98.23 127 |
|
PS-MVSNAJss | | | 96.01 51 | 96.04 51 | 95.89 63 | 98.82 22 | 88.51 110 | 95.57 68 | 97.88 77 | 88.72 169 | 98.81 6 | 98.86 10 | 90.77 139 | 99.60 8 | 95.43 11 | 99.53 35 | 99.57 13 |
|
CDPH-MVS | | | 92.67 161 | 91.83 175 | 95.18 94 | 96.94 138 | 88.46 111 | 90.70 230 | 97.07 142 | 77.38 299 | 92.34 230 | 95.08 200 | 92.67 96 | 98.88 123 | 85.74 219 | 98.57 144 | 98.20 130 |
|
plane_prior3 | | | | | | | 88.43 112 | | | 90.35 140 | 93.31 194 | | | | | | |
|
Fast-Effi-MVS+-dtu | | | 92.77 158 | 92.16 166 | 94.58 119 | 94.66 255 | 88.25 113 | 92.05 186 | 96.65 170 | 89.62 151 | 90.08 268 | 91.23 298 | 92.56 98 | 98.60 171 | 86.30 215 | 96.27 262 | 96.90 215 |
|
plane_prior6 | | | | | | 97.21 127 | 88.23 114 | | | | | | 86.93 198 | | | | |
|
RRT_MVS | | | 91.36 191 | 90.05 216 | 95.29 89 | 89.21 339 | 88.15 115 | 92.51 165 | 94.89 232 | 86.73 207 | 95.54 121 | 95.68 172 | 61.82 341 | 99.30 67 | 94.91 13 | 99.13 88 | 98.43 115 |
|
HQP_MVS | | | 94.26 115 | 93.93 121 | 95.23 92 | 97.71 99 | 88.12 116 | 94.56 107 | 97.81 85 | 91.74 105 | 93.31 194 | 95.59 175 | 86.93 198 | 98.95 116 | 89.26 161 | 98.51 152 | 98.60 103 |
|
plane_prior | | | | | | | 88.12 116 | 93.01 147 | | 88.98 163 | | | | | | 98.06 200 | |
|
xxxxxxxxxxxxxcwj | | | 95.03 81 | 94.93 88 | 95.33 85 | 97.46 117 | 88.05 118 | 92.04 187 | 98.42 12 | 87.63 193 | 96.36 80 | 96.68 115 | 94.37 62 | 99.32 65 | 92.41 87 | 99.05 94 | 98.64 96 |
|
save fliter | | | | | | 97.46 117 | 88.05 118 | 92.04 187 | 97.08 141 | 87.63 193 | | | | | | | |
|
UGNet | | | 93.08 145 | 92.50 161 | 94.79 106 | 93.87 273 | 87.99 120 | 95.07 87 | 94.26 250 | 90.64 132 | 87.33 312 | 97.67 51 | 86.89 201 | 98.49 183 | 88.10 184 | 98.71 135 | 97.91 157 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DeepC-MVS_fast | | 89.96 7 | 93.73 127 | 93.44 138 | 94.60 116 | 96.14 187 | 87.90 121 | 93.36 142 | 97.14 136 | 85.53 225 | 93.90 180 | 95.45 185 | 91.30 127 | 98.59 173 | 89.51 154 | 98.62 141 | 97.31 202 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CSCG | | | 94.69 98 | 94.75 95 | 94.52 120 | 97.55 111 | 87.87 122 | 95.01 90 | 97.57 103 | 92.68 69 | 96.20 94 | 93.44 256 | 91.92 112 | 98.78 144 | 89.11 165 | 99.24 75 | 96.92 214 |
|
pmmvs-eth3d | | | 91.54 186 | 90.73 203 | 93.99 136 | 95.76 214 | 87.86 123 | 90.83 226 | 93.98 257 | 78.23 296 | 94.02 177 | 96.22 147 | 82.62 238 | 96.83 284 | 86.57 209 | 98.33 169 | 97.29 203 |
|
pmmvs6 | | | 96.80 13 | 97.36 9 | 95.15 95 | 99.12 7 | 87.82 124 | 96.68 22 | 97.86 78 | 96.10 25 | 98.14 23 | 99.28 3 | 97.94 3 | 98.21 206 | 91.38 114 | 99.69 15 | 99.42 19 |
|
TranMVSNet+NR-MVSNet | | | 96.07 50 | 96.26 37 | 95.50 80 | 98.26 65 | 87.69 125 | 93.75 131 | 97.86 78 | 95.96 29 | 97.48 39 | 97.14 84 | 95.33 32 | 99.44 23 | 90.79 120 | 99.76 11 | 99.38 22 |
|
alignmvs | | | 93.26 139 | 92.85 150 | 94.50 121 | 95.70 216 | 87.45 126 | 93.45 140 | 95.76 206 | 91.58 110 | 95.25 135 | 92.42 282 | 81.96 245 | 98.72 154 | 91.61 107 | 97.87 213 | 97.33 201 |
|
1121 | | | 90.26 217 | 89.23 226 | 93.34 161 | 97.15 131 | 87.40 127 | 91.94 193 | 94.39 246 | 67.88 343 | 91.02 252 | 94.91 208 | 86.91 200 | 98.59 173 | 81.17 268 | 97.71 220 | 94.02 302 |
|
UniMVSNet_ETH3D | | | 97.13 6 | 97.72 3 | 95.35 83 | 99.51 2 | 87.38 128 | 97.70 6 | 97.54 105 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 93 | 90.73 121 | 99.73 14 | 99.59 12 |
|
新几何1 | | | | | 93.17 168 | 97.16 129 | 87.29 129 | | 94.43 245 | 67.95 342 | 91.29 246 | 94.94 207 | 86.97 197 | 98.23 205 | 81.06 270 | 97.75 216 | 93.98 303 |
|
test_prior3 | | | 93.29 136 | 92.85 150 | 94.61 112 | 95.95 202 | 87.23 130 | 90.21 244 | 97.36 120 | 89.33 158 | 90.77 254 | 94.81 212 | 90.41 149 | 98.68 163 | 88.21 179 | 98.55 145 | 97.93 154 |
|
test_prior | | | | | 94.61 112 | 95.95 202 | 87.23 130 | | 97.36 120 | | | | | 98.68 163 | | | 97.93 154 |
|
NR-MVSNet | | | 95.28 76 | 95.28 79 | 95.26 90 | 97.75 95 | 87.21 132 | 95.08 86 | 97.37 115 | 93.92 54 | 97.65 30 | 95.90 159 | 90.10 157 | 99.33 64 | 90.11 141 | 99.66 21 | 99.26 29 |
|
NP-MVS | | | | | | 96.82 144 | 87.10 133 | | | | | 93.40 257 | | | | | |
|
MVS_0304 | | | 90.96 197 | 90.15 214 | 93.37 160 | 93.17 282 | 87.06 134 | 93.62 135 | 92.43 284 | 89.60 152 | 82.25 341 | 95.50 183 | 82.56 239 | 97.83 238 | 84.41 238 | 97.83 215 | 95.22 273 |
|
3Dnovator | | 92.54 3 | 94.80 95 | 94.90 89 | 94.47 124 | 95.47 227 | 87.06 134 | 96.63 23 | 97.28 129 | 91.82 100 | 94.34 168 | 97.41 65 | 90.60 146 | 98.65 167 | 92.47 85 | 98.11 196 | 97.70 176 |
|
canonicalmvs | | | 94.59 101 | 94.69 98 | 94.30 130 | 95.60 224 | 87.03 136 | 95.59 66 | 98.24 27 | 91.56 111 | 95.21 138 | 92.04 288 | 94.95 49 | 98.66 165 | 91.45 112 | 97.57 227 | 97.20 206 |
|
SED-MVS | | | 96.00 52 | 96.41 32 | 94.76 107 | 98.51 45 | 86.97 137 | 95.21 79 | 98.10 44 | 91.95 88 | 97.63 31 | 97.25 77 | 96.48 11 | 99.35 55 | 93.29 59 | 99.29 65 | 97.95 152 |
|
test_241102_ONE | | | | | | 98.51 45 | 86.97 137 | | 98.10 44 | 91.85 94 | 97.63 31 | 97.03 90 | 96.48 11 | 98.95 116 | | | |
|
MVS_111021_HR | | | 93.63 129 | 93.42 139 | 94.26 131 | 96.65 150 | 86.96 139 | 89.30 272 | 96.23 190 | 88.36 178 | 93.57 189 | 94.60 220 | 93.45 72 | 97.77 244 | 90.23 137 | 98.38 162 | 98.03 142 |
|
DP-MVS Recon | | | 92.31 172 | 91.88 174 | 93.60 152 | 97.18 128 | 86.87 140 | 91.10 221 | 97.37 115 | 84.92 238 | 92.08 236 | 94.08 236 | 88.59 169 | 98.20 207 | 83.50 243 | 98.14 192 | 95.73 261 |
|
v7n | | | 96.82 10 | 97.31 10 | 95.33 85 | 98.54 41 | 86.81 141 | 96.83 18 | 98.07 51 | 96.59 19 | 98.46 17 | 98.43 27 | 92.91 89 | 99.52 17 | 96.25 6 | 99.76 11 | 99.65 8 |
|
test12 | | | | | 94.43 127 | 95.95 202 | 86.75 142 | | 96.24 189 | | 89.76 278 | | 89.79 161 | 98.79 140 | | 97.95 209 | 97.75 174 |
|
test_0728_SECOND | | | | | 94.88 102 | 98.55 39 | 86.72 143 | 95.20 81 | 98.22 29 | | | | | 99.38 51 | 93.44 51 | 99.31 62 | 98.53 107 |
|
DVP-MVS | | | 95.82 57 | 96.18 41 | 94.72 109 | 98.51 45 | 86.69 144 | 95.20 81 | 97.00 145 | 91.85 94 | 97.40 44 | 97.35 72 | 95.58 22 | 99.34 59 | 93.44 51 | 99.31 62 | 98.13 135 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 98.51 45 | 86.69 144 | 95.34 74 | 98.18 32 | 91.85 94 | 97.63 31 | 97.37 68 | 95.58 22 | | | | |
|
IU-MVS | | | | | | 98.51 45 | 86.66 146 | | 96.83 159 | 72.74 323 | 95.83 109 | | | | 93.00 72 | 99.29 65 | 98.64 96 |
|
EG-PatchMatch MVS | | | 94.54 104 | 94.67 100 | 94.14 133 | 97.87 91 | 86.50 147 | 92.00 190 | 96.74 166 | 88.16 181 | 96.93 59 | 97.61 54 | 93.04 87 | 97.90 229 | 91.60 108 | 98.12 195 | 98.03 142 |
|
MVP-Stereo | | | 90.07 223 | 88.92 234 | 93.54 156 | 96.31 174 | 86.49 148 | 90.93 224 | 95.59 214 | 79.80 276 | 91.48 243 | 95.59 175 | 80.79 254 | 97.39 266 | 78.57 293 | 91.19 335 | 96.76 221 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CDS-MVSNet | | | 89.55 232 | 88.22 250 | 93.53 157 | 95.37 232 | 86.49 148 | 89.26 273 | 93.59 260 | 79.76 278 | 91.15 250 | 92.31 283 | 77.12 280 | 98.38 192 | 77.51 300 | 97.92 211 | 95.71 262 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IS-MVSNet | | | 94.49 105 | 94.35 111 | 94.92 101 | 98.25 66 | 86.46 150 | 97.13 13 | 94.31 248 | 96.24 23 | 96.28 89 | 96.36 138 | 82.88 232 | 99.35 55 | 88.19 181 | 99.52 37 | 98.96 60 |
|
WR-MVS_H | | | 96.60 25 | 97.05 14 | 95.24 91 | 99.02 11 | 86.44 151 | 96.78 21 | 98.08 48 | 97.42 8 | 98.48 16 | 97.86 45 | 91.76 115 | 99.63 6 | 94.23 26 | 99.84 3 | 99.66 6 |
|
PMMVS | | | 83.00 304 | 81.11 312 | 88.66 288 | 83.81 361 | 86.44 151 | 82.24 345 | 85.65 333 | 61.75 355 | 82.07 343 | 85.64 347 | 79.75 259 | 91.59 348 | 75.99 311 | 93.09 318 | 87.94 347 |
|
TAMVS | | | 90.16 219 | 89.05 231 | 93.49 159 | 96.49 161 | 86.37 153 | 90.34 241 | 92.55 281 | 80.84 272 | 92.99 209 | 94.57 222 | 81.94 246 | 98.20 207 | 73.51 322 | 98.21 186 | 95.90 255 |
|
AdaColmap |  | | 91.63 184 | 91.36 188 | 92.47 195 | 95.56 225 | 86.36 154 | 92.24 181 | 96.27 187 | 88.88 167 | 89.90 273 | 92.69 273 | 91.65 118 | 98.32 197 | 77.38 302 | 97.64 224 | 92.72 326 |
|
Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 99 | 97.46 117 | 86.35 155 | 97.11 14 | 98.24 27 | 97.58 7 | 98.72 8 | 98.97 7 | 93.15 83 | 99.15 83 | 93.18 64 | 99.74 13 | 99.50 16 |
|
ETV-MVS | | | 92.99 149 | 92.74 154 | 93.72 149 | 95.86 208 | 86.30 156 | 92.33 175 | 97.84 82 | 91.70 108 | 92.81 213 | 86.17 345 | 92.22 103 | 99.19 80 | 88.03 186 | 97.73 217 | 95.66 265 |
|
Regformer-3 | | | 94.28 113 | 94.23 118 | 94.46 125 | 92.78 292 | 86.28 157 | 92.39 171 | 94.70 240 | 93.69 60 | 95.97 102 | 95.56 180 | 91.34 124 | 98.48 187 | 93.45 49 | 98.14 192 | 98.62 100 |
|
API-MVS | | | 91.52 187 | 91.61 180 | 91.26 228 | 94.16 264 | 86.26 158 | 94.66 101 | 94.82 235 | 91.17 120 | 92.13 235 | 91.08 301 | 90.03 160 | 97.06 276 | 79.09 290 | 97.35 234 | 90.45 341 |
|
EPNet | | | 89.80 231 | 88.25 247 | 94.45 126 | 83.91 360 | 86.18 159 | 93.87 128 | 87.07 322 | 91.16 121 | 80.64 350 | 94.72 217 | 78.83 264 | 98.89 122 | 85.17 223 | 98.89 111 | 98.28 124 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
JIA-IIPM | | | 85.08 293 | 83.04 302 | 91.19 233 | 87.56 346 | 86.14 160 | 89.40 269 | 84.44 345 | 88.98 163 | 82.20 342 | 97.95 39 | 56.82 351 | 96.15 302 | 76.55 308 | 83.45 351 | 91.30 336 |
|
VDD-MVS | | | 94.37 108 | 94.37 110 | 94.40 128 | 97.49 114 | 86.07 161 | 93.97 126 | 93.28 265 | 94.49 43 | 96.24 90 | 97.78 46 | 87.99 180 | 98.79 140 | 88.92 168 | 99.14 85 | 98.34 119 |
|
EI-MVSNet-Vis-set | | | 94.36 109 | 94.28 114 | 94.61 112 | 92.55 294 | 85.98 162 | 92.44 167 | 94.69 241 | 93.70 57 | 96.12 99 | 95.81 165 | 91.24 129 | 98.86 128 | 93.76 38 | 98.22 185 | 98.98 58 |
|
Anonymous20240529 | | | 95.50 66 | 95.83 61 | 94.50 121 | 97.33 123 | 85.93 163 | 95.19 83 | 96.77 164 | 96.64 18 | 97.61 34 | 98.05 34 | 93.23 80 | 98.79 140 | 88.60 177 | 99.04 99 | 98.78 81 |
|
EI-MVSNet-UG-set | | | 94.35 110 | 94.27 116 | 94.59 117 | 92.46 295 | 85.87 164 | 92.42 169 | 94.69 241 | 93.67 61 | 96.13 98 | 95.84 164 | 91.20 132 | 98.86 128 | 93.78 35 | 98.23 183 | 99.03 49 |
|
PCF-MVS | | 84.52 17 | 89.12 239 | 87.71 258 | 93.34 161 | 96.06 193 | 85.84 165 | 86.58 320 | 97.31 124 | 68.46 341 | 93.61 188 | 93.89 245 | 87.51 187 | 98.52 181 | 67.85 345 | 98.11 196 | 95.66 265 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test_0402 | | | 95.73 59 | 96.22 39 | 94.26 131 | 98.19 69 | 85.77 166 | 93.24 144 | 97.24 131 | 96.88 15 | 97.69 29 | 97.77 48 | 94.12 66 | 99.13 87 | 91.54 111 | 99.29 65 | 97.88 160 |
|
MCST-MVS | | | 92.91 151 | 92.51 160 | 94.10 134 | 97.52 112 | 85.72 167 | 91.36 216 | 97.13 138 | 80.33 274 | 92.91 212 | 94.24 230 | 91.23 130 | 98.72 154 | 89.99 145 | 97.93 210 | 97.86 162 |
|
pmmvs4 | | | 88.95 244 | 87.70 259 | 92.70 183 | 94.30 262 | 85.60 168 | 87.22 302 | 92.16 288 | 74.62 312 | 89.75 279 | 94.19 232 | 77.97 273 | 96.41 296 | 82.71 250 | 96.36 261 | 96.09 245 |
|
EPP-MVSNet | | | 93.91 124 | 93.68 130 | 94.59 117 | 98.08 75 | 85.55 169 | 97.44 8 | 94.03 253 | 94.22 47 | 94.94 148 | 96.19 148 | 82.07 243 | 99.57 13 | 87.28 200 | 98.89 111 | 98.65 92 |
|
CMPMVS |  | 68.83 22 | 87.28 275 | 85.67 288 | 92.09 206 | 88.77 343 | 85.42 170 | 90.31 242 | 94.38 247 | 70.02 336 | 88.00 304 | 93.30 259 | 73.78 295 | 94.03 336 | 75.96 312 | 96.54 257 | 96.83 218 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 135 | 98.56 36 | 85.33 171 | 96.33 39 | 98.30 20 | 94.66 39 | 98.72 8 | 98.30 30 | 97.51 5 | 98.00 223 | 94.87 14 | 99.59 27 | 98.86 72 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test222 | | | | | | 96.95 137 | 85.27 172 | 88.83 281 | 93.61 259 | 65.09 350 | 90.74 256 | 94.85 211 | 84.62 222 | | | 97.36 233 | 93.91 304 |
|
pm-mvs1 | | | 95.43 68 | 95.94 54 | 93.93 141 | 98.38 57 | 85.08 173 | 95.46 72 | 97.12 139 | 91.84 97 | 97.28 46 | 98.46 25 | 95.30 34 | 97.71 249 | 90.17 139 | 99.42 47 | 98.99 53 |
|
HQP5-MVS | | | | | | | 84.89 174 | | | | | | | | | | |
|
HQP-MVS | | | 92.09 176 | 91.49 185 | 93.88 145 | 96.36 167 | 84.89 174 | 91.37 213 | 97.31 124 | 87.16 200 | 88.81 289 | 93.40 257 | 84.76 220 | 98.60 171 | 86.55 210 | 97.73 217 | 98.14 133 |
|
DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 110 | 99.13 5 | 84.68 176 | 96.51 28 | 97.94 76 | 98.14 3 | 98.67 12 | 98.32 29 | 95.04 44 | 99.69 2 | 93.27 61 | 99.82 8 | 99.62 10 |
|
PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 112 | 99.16 3 | 84.50 177 | 96.54 27 | 98.05 55 | 98.06 4 | 98.64 13 | 98.25 31 | 95.01 47 | 99.65 3 | 92.95 74 | 99.83 6 | 99.68 4 |
|
ETH3 D test6400 | | | 91.91 179 | 91.25 191 | 93.89 144 | 96.59 154 | 84.41 178 | 92.10 184 | 97.72 93 | 78.52 293 | 91.82 240 | 93.78 249 | 88.70 168 | 99.13 87 | 83.61 242 | 98.39 160 | 98.14 133 |
|
GBi-Net | | | 93.21 142 | 92.96 147 | 93.97 138 | 95.40 229 | 84.29 179 | 95.99 51 | 96.56 174 | 88.63 170 | 95.10 140 | 98.53 21 | 81.31 250 | 98.98 109 | 86.74 204 | 98.38 162 | 98.65 92 |
|
test1 | | | 93.21 142 | 92.96 147 | 93.97 138 | 95.40 229 | 84.29 179 | 95.99 51 | 96.56 174 | 88.63 170 | 95.10 140 | 98.53 21 | 81.31 250 | 98.98 109 | 86.74 204 | 98.38 162 | 98.65 92 |
|
FMVSNet1 | | | 94.84 92 | 95.13 84 | 93.97 138 | 97.60 108 | 84.29 179 | 95.99 51 | 96.56 174 | 92.38 75 | 97.03 55 | 98.53 21 | 90.12 154 | 98.98 109 | 88.78 172 | 99.16 83 | 98.65 92 |
|
原ACMM1 | | | | | 92.87 178 | 96.91 140 | 84.22 182 | | 97.01 144 | 76.84 304 | 89.64 280 | 94.46 223 | 88.00 179 | 98.70 160 | 81.53 263 | 98.01 206 | 95.70 263 |
|
DPM-MVS | | | 89.35 235 | 88.40 243 | 92.18 203 | 96.13 190 | 84.20 183 | 86.96 307 | 96.15 196 | 75.40 310 | 87.36 311 | 91.55 296 | 83.30 228 | 98.01 222 | 82.17 258 | 96.62 256 | 94.32 295 |
|
旧先验1 | | | | | | 96.20 182 | 84.17 184 | | 94.82 235 | | | 95.57 179 | 89.57 162 | | | 97.89 212 | 96.32 236 |
|
OpenMVS |  | 89.45 8 | 92.27 174 | 92.13 168 | 92.68 184 | 94.53 258 | 84.10 185 | 95.70 62 | 97.03 143 | 82.44 262 | 91.14 251 | 96.42 129 | 88.47 171 | 98.38 192 | 85.95 218 | 97.47 230 | 95.55 269 |
|
PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 123 | 99.13 5 | 84.09 186 | 96.61 24 | 97.97 70 | 97.91 5 | 98.64 13 | 98.13 32 | 95.24 36 | 99.65 3 | 93.39 55 | 99.84 3 | 99.72 2 |
|
CS-MVS | | | 92.54 167 | 92.31 164 | 93.23 166 | 95.89 207 | 84.07 187 | 93.58 136 | 98.48 8 | 88.60 173 | 90.41 262 | 86.23 344 | 92.00 108 | 99.35 55 | 87.54 194 | 98.06 200 | 96.26 239 |
|
EIA-MVS | | | 92.35 171 | 92.03 169 | 93.30 164 | 95.81 211 | 83.97 188 | 92.80 154 | 98.17 35 | 87.71 190 | 89.79 277 | 87.56 334 | 91.17 135 | 99.18 81 | 87.97 187 | 97.27 235 | 96.77 220 |
|
PVSNet_Blended_VisFu | | | 91.63 184 | 91.20 192 | 92.94 175 | 97.73 98 | 83.95 189 | 92.14 183 | 97.46 111 | 78.85 292 | 92.35 228 | 94.98 205 | 84.16 224 | 99.08 93 | 86.36 214 | 96.77 252 | 95.79 259 |
|
CP-MVSNet | | | 96.19 46 | 96.80 17 | 94.38 129 | 98.99 13 | 83.82 190 | 96.31 41 | 97.53 107 | 97.60 6 | 98.34 19 | 97.52 59 | 91.98 111 | 99.63 6 | 93.08 70 | 99.81 9 | 99.70 3 |
|
lessismore_v0 | | | | | 93.87 146 | 98.05 78 | 83.77 191 | | 80.32 356 | | 97.13 50 | 97.91 42 | 77.49 275 | 99.11 90 | 92.62 82 | 98.08 199 | 98.74 87 |
|
CLD-MVS | | | 91.82 180 | 91.41 187 | 93.04 169 | 96.37 165 | 83.65 192 | 86.82 312 | 97.29 127 | 84.65 242 | 92.27 232 | 89.67 320 | 92.20 104 | 97.85 237 | 83.95 240 | 99.47 39 | 97.62 182 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 92.38 170 | 91.99 171 | 93.52 158 | 93.82 275 | 83.46 193 | 91.14 219 | 97.00 145 | 89.81 148 | 86.47 316 | 94.04 237 | 87.90 182 | 99.21 78 | 89.50 155 | 98.27 176 | 97.90 158 |
|
QAPM | | | 92.88 153 | 92.77 152 | 93.22 167 | 95.82 209 | 83.31 194 | 96.45 31 | 97.35 122 | 83.91 246 | 93.75 183 | 96.77 106 | 89.25 165 | 98.88 123 | 84.56 236 | 97.02 242 | 97.49 189 |
|
Effi-MVS+ | | | 92.79 156 | 92.74 154 | 92.94 175 | 95.10 237 | 83.30 195 | 94.00 124 | 97.53 107 | 91.36 115 | 89.35 283 | 90.65 310 | 94.01 67 | 98.66 165 | 87.40 198 | 95.30 283 | 96.88 217 |
|
Anonymous202405211 | | | 92.58 164 | 92.50 161 | 92.83 180 | 96.55 158 | 83.22 196 | 92.43 168 | 91.64 295 | 94.10 49 | 95.59 119 | 96.64 118 | 81.88 247 | 97.50 257 | 85.12 227 | 98.52 150 | 97.77 171 |
|
SixPastTwentyTwo | | | 94.91 86 | 95.21 81 | 93.98 137 | 98.52 44 | 83.19 197 | 95.93 55 | 94.84 234 | 94.86 38 | 98.49 15 | 98.74 16 | 81.45 248 | 99.60 8 | 94.69 16 | 99.39 54 | 99.15 37 |
|
VPA-MVSNet | | | 95.14 80 | 95.67 67 | 93.58 153 | 97.76 94 | 83.15 198 | 94.58 105 | 97.58 102 | 93.39 63 | 97.05 54 | 98.04 35 | 93.25 79 | 98.51 182 | 89.75 151 | 99.59 27 | 99.08 45 |
|
LCM-MVSNet-Re | | | 94.20 118 | 94.58 103 | 93.04 169 | 95.91 205 | 83.13 199 | 93.79 130 | 99.19 2 | 92.00 87 | 98.84 5 | 98.04 35 | 93.64 69 | 99.02 104 | 81.28 265 | 98.54 148 | 96.96 213 |
|
MSDG | | | 90.82 198 | 90.67 204 | 91.26 228 | 94.16 264 | 83.08 200 | 86.63 317 | 96.19 193 | 90.60 134 | 91.94 238 | 91.89 289 | 89.16 166 | 95.75 310 | 80.96 271 | 94.51 299 | 94.95 281 |
|
ambc | | | | | 92.98 171 | 96.88 141 | 83.01 201 | 95.92 56 | 96.38 184 | | 96.41 77 | 97.48 62 | 88.26 173 | 97.80 240 | 89.96 146 | 98.93 110 | 98.12 136 |
|
test_part1 | | | 94.39 107 | 94.55 104 | 93.92 142 | 96.14 187 | 82.86 202 | 95.54 69 | 98.09 47 | 95.36 35 | 98.27 20 | 98.36 28 | 75.91 288 | 99.44 23 | 93.41 54 | 99.84 3 | 99.47 17 |
|
MSLP-MVS++ | | | 93.25 141 | 93.88 122 | 91.37 224 | 96.34 171 | 82.81 203 | 93.11 145 | 97.74 91 | 89.37 156 | 94.08 172 | 95.29 193 | 90.40 151 | 96.35 300 | 90.35 130 | 98.25 180 | 94.96 280 |
|
K. test v3 | | | 93.37 134 | 93.27 144 | 93.66 150 | 98.05 78 | 82.62 204 | 94.35 113 | 86.62 324 | 96.05 27 | 97.51 38 | 98.85 12 | 76.59 286 | 99.65 3 | 93.21 63 | 98.20 188 | 98.73 89 |
|
Fast-Effi-MVS+ | | | 91.28 194 | 90.86 198 | 92.53 192 | 95.45 228 | 82.53 205 | 89.25 275 | 96.52 178 | 85.00 236 | 89.91 272 | 88.55 330 | 92.94 88 | 98.84 131 | 84.72 235 | 95.44 279 | 96.22 241 |
|
VDDNet | | | 94.03 122 | 94.27 116 | 93.31 163 | 98.87 19 | 82.36 206 | 95.51 71 | 91.78 294 | 97.19 11 | 96.32 83 | 98.60 18 | 84.24 223 | 98.75 149 | 87.09 201 | 98.83 123 | 98.81 78 |
|
114514_t | | | 90.51 206 | 89.80 220 | 92.63 187 | 98.00 84 | 82.24 207 | 93.40 141 | 97.29 127 | 65.84 348 | 89.40 282 | 94.80 215 | 86.99 196 | 98.75 149 | 83.88 241 | 98.61 142 | 96.89 216 |
|
testdata | | | | | 91.03 236 | 96.87 142 | 82.01 208 | | 94.28 249 | 71.55 327 | 92.46 222 | 95.42 187 | 85.65 216 | 97.38 268 | 82.64 251 | 97.27 235 | 93.70 310 |
|
FMVSNet2 | | | 92.78 157 | 92.73 156 | 92.95 174 | 95.40 229 | 81.98 209 | 94.18 118 | 95.53 218 | 88.63 170 | 96.05 101 | 97.37 68 | 81.31 250 | 98.81 138 | 87.38 199 | 98.67 139 | 98.06 138 |
|
TransMVSNet (Re) | | | 95.27 78 | 96.04 51 | 92.97 172 | 98.37 59 | 81.92 210 | 95.07 87 | 96.76 165 | 93.97 52 | 97.77 27 | 98.57 19 | 95.72 18 | 97.90 229 | 88.89 170 | 99.23 76 | 99.08 45 |
|
FC-MVSNet-test | | | 95.32 73 | 95.88 57 | 93.62 151 | 98.49 53 | 81.77 211 | 95.90 57 | 98.32 17 | 93.93 53 | 97.53 37 | 97.56 56 | 88.48 170 | 99.40 40 | 92.91 75 | 99.83 6 | 99.68 4 |
|
FIs | | | 94.90 87 | 95.35 74 | 93.55 154 | 98.28 63 | 81.76 212 | 95.33 75 | 98.14 39 | 93.05 67 | 97.07 51 | 97.18 82 | 87.65 184 | 99.29 68 | 91.72 104 | 99.69 15 | 99.61 11 |
|
ab-mvs | | | 92.40 169 | 92.62 158 | 91.74 214 | 97.02 134 | 81.65 213 | 95.84 59 | 95.50 219 | 86.95 205 | 92.95 211 | 97.56 56 | 90.70 144 | 97.50 257 | 79.63 283 | 97.43 231 | 96.06 247 |
|
xiu_mvs_v1_base_debu | | | 91.47 188 | 91.52 182 | 91.33 225 | 95.69 217 | 81.56 214 | 89.92 255 | 96.05 198 | 83.22 250 | 91.26 247 | 90.74 305 | 91.55 120 | 98.82 133 | 89.29 158 | 95.91 267 | 93.62 312 |
|
xiu_mvs_v1_base | | | 91.47 188 | 91.52 182 | 91.33 225 | 95.69 217 | 81.56 214 | 89.92 255 | 96.05 198 | 83.22 250 | 91.26 247 | 90.74 305 | 91.55 120 | 98.82 133 | 89.29 158 | 95.91 267 | 93.62 312 |
|
xiu_mvs_v1_base_debi | | | 91.47 188 | 91.52 182 | 91.33 225 | 95.69 217 | 81.56 214 | 89.92 255 | 96.05 198 | 83.22 250 | 91.26 247 | 90.74 305 | 91.55 120 | 98.82 133 | 89.29 158 | 95.91 267 | 93.62 312 |
|
casdiffmvs | | | 94.32 112 | 94.80 93 | 92.85 179 | 96.05 194 | 81.44 217 | 92.35 174 | 98.05 55 | 91.53 112 | 95.75 112 | 96.80 105 | 93.35 77 | 98.49 183 | 91.01 118 | 98.32 171 | 98.64 96 |
|
bset_n11_16_dypcd | | | 89.99 226 | 89.15 229 | 92.53 192 | 94.75 247 | 81.34 218 | 84.19 336 | 87.56 318 | 85.13 232 | 93.77 182 | 92.46 277 | 72.82 297 | 99.01 106 | 92.46 86 | 99.21 78 | 97.23 204 |
|
ET-MVSNet_ETH3D | | | 86.15 287 | 84.27 295 | 91.79 212 | 93.04 286 | 81.28 219 | 87.17 304 | 86.14 327 | 79.57 281 | 83.65 332 | 88.66 328 | 57.10 349 | 98.18 210 | 87.74 191 | 95.40 280 | 95.90 255 |
|
V42 | | | 93.43 133 | 93.58 133 | 92.97 172 | 95.34 233 | 81.22 220 | 92.67 158 | 96.49 179 | 87.25 199 | 96.20 94 | 96.37 137 | 87.32 190 | 98.85 130 | 92.39 89 | 98.21 186 | 98.85 75 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 234 | 89.05 231 | 90.92 241 | 94.58 257 | 81.21 221 | 91.10 221 | 93.41 264 | 77.03 303 | 93.41 191 | 93.99 241 | 83.23 229 | 97.80 240 | 79.93 280 | 94.80 293 | 93.74 309 |
|
PAPM_NR | | | 91.03 196 | 90.81 200 | 91.68 217 | 96.73 148 | 81.10 222 | 93.72 132 | 96.35 185 | 88.19 180 | 88.77 293 | 92.12 287 | 85.09 219 | 97.25 270 | 82.40 255 | 93.90 307 | 96.68 223 |
|
baseline | | | 94.26 115 | 94.80 93 | 92.64 185 | 96.08 192 | 80.99 223 | 93.69 133 | 98.04 59 | 90.80 128 | 94.89 151 | 96.32 140 | 93.19 81 | 98.48 187 | 91.68 106 | 98.51 152 | 98.43 115 |
|
1112_ss | | | 88.42 253 | 87.41 262 | 91.45 222 | 96.69 149 | 80.99 223 | 89.72 261 | 96.72 167 | 73.37 319 | 87.00 314 | 90.69 308 | 77.38 277 | 98.20 207 | 81.38 264 | 93.72 310 | 95.15 275 |
|
tfpnnormal | | | 94.27 114 | 94.87 91 | 92.48 194 | 97.71 99 | 80.88 225 | 94.55 109 | 95.41 221 | 93.70 57 | 96.67 70 | 97.72 49 | 91.40 123 | 98.18 210 | 87.45 196 | 99.18 82 | 98.36 118 |
|
Baseline_NR-MVSNet | | | 94.47 106 | 95.09 86 | 92.60 189 | 98.50 52 | 80.82 226 | 92.08 185 | 96.68 168 | 93.82 55 | 96.29 86 | 98.56 20 | 90.10 157 | 97.75 247 | 90.10 143 | 99.66 21 | 99.24 31 |
|
HyFIR lowres test | | | 87.19 279 | 85.51 289 | 92.24 198 | 97.12 133 | 80.51 227 | 85.03 327 | 96.06 197 | 66.11 347 | 91.66 242 | 92.98 266 | 70.12 305 | 99.14 85 | 75.29 314 | 95.23 285 | 97.07 207 |
|
UnsupCasMVSNet_eth | | | 90.33 214 | 90.34 210 | 90.28 258 | 94.64 256 | 80.24 228 | 89.69 262 | 95.88 202 | 85.77 221 | 93.94 179 | 95.69 171 | 81.99 244 | 92.98 343 | 84.21 239 | 91.30 334 | 97.62 182 |
|
MDA-MVSNet-bldmvs | | | 91.04 195 | 90.88 197 | 91.55 220 | 94.68 254 | 80.16 229 | 85.49 324 | 92.14 289 | 90.41 139 | 94.93 149 | 95.79 166 | 85.10 218 | 96.93 281 | 85.15 225 | 94.19 306 | 97.57 184 |
|
v10 | | | 94.68 99 | 95.27 80 | 92.90 177 | 96.57 156 | 80.15 230 | 94.65 102 | 97.57 103 | 90.68 131 | 97.43 41 | 98.00 37 | 88.18 174 | 99.15 83 | 94.84 15 | 99.55 34 | 99.41 20 |
|
VNet | | | 92.67 161 | 92.96 147 | 91.79 212 | 96.27 177 | 80.15 230 | 91.95 191 | 94.98 229 | 92.19 84 | 94.52 163 | 96.07 153 | 87.43 188 | 97.39 266 | 84.83 232 | 98.38 162 | 97.83 165 |
|
DELS-MVS | | | 92.05 177 | 92.16 166 | 91.72 215 | 94.44 259 | 80.13 232 | 87.62 293 | 97.25 130 | 87.34 198 | 92.22 233 | 93.18 263 | 89.54 163 | 98.73 153 | 89.67 152 | 98.20 188 | 96.30 237 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
jason | | | 89.17 238 | 88.32 244 | 91.70 216 | 95.73 215 | 80.07 233 | 88.10 290 | 93.22 266 | 71.98 326 | 90.09 267 | 92.79 270 | 78.53 269 | 98.56 177 | 87.43 197 | 97.06 240 | 96.46 231 |
jason: jason. |
MVSFormer | | | 92.18 175 | 92.23 165 | 92.04 208 | 94.74 249 | 80.06 234 | 97.15 11 | 97.37 115 | 88.98 163 | 88.83 287 | 92.79 270 | 77.02 281 | 99.60 8 | 96.41 4 | 96.75 253 | 96.46 231 |
|
lupinMVS | | | 88.34 255 | 87.31 263 | 91.45 222 | 94.74 249 | 80.06 234 | 87.23 301 | 92.27 285 | 71.10 330 | 88.83 287 | 91.15 299 | 77.02 281 | 98.53 180 | 86.67 207 | 96.75 253 | 95.76 260 |
|
WR-MVS | | | 93.49 131 | 93.72 127 | 92.80 181 | 97.57 110 | 80.03 236 | 90.14 248 | 95.68 208 | 93.70 57 | 96.62 72 | 95.39 190 | 87.21 192 | 99.04 101 | 87.50 195 | 99.64 23 | 99.33 25 |
|
CANet_DTU | | | 89.85 229 | 89.17 228 | 91.87 210 | 92.20 300 | 80.02 237 | 90.79 227 | 95.87 203 | 86.02 217 | 82.53 340 | 91.77 291 | 80.01 258 | 98.57 176 | 85.66 220 | 97.70 221 | 97.01 211 |
|
Patchmatch-RL test | | | 88.81 247 | 88.52 240 | 89.69 271 | 95.33 234 | 79.94 238 | 86.22 321 | 92.71 276 | 78.46 294 | 95.80 110 | 94.18 233 | 66.25 320 | 95.33 321 | 89.22 163 | 98.53 149 | 93.78 307 |
|
FMVSNet3 | | | 90.78 200 | 90.32 211 | 92.16 204 | 93.03 287 | 79.92 239 | 92.54 161 | 94.95 230 | 86.17 215 | 95.10 140 | 96.01 156 | 69.97 306 | 98.75 149 | 86.74 204 | 98.38 162 | 97.82 167 |
|
XXY-MVS | | | 92.58 164 | 93.16 146 | 90.84 245 | 97.75 95 | 79.84 240 | 91.87 199 | 96.22 192 | 85.94 218 | 95.53 122 | 97.68 50 | 92.69 95 | 94.48 328 | 83.21 246 | 97.51 228 | 98.21 129 |
|
test_yl | | | 90.11 220 | 89.73 223 | 91.26 228 | 94.09 267 | 79.82 241 | 90.44 236 | 92.65 277 | 90.90 123 | 93.19 203 | 93.30 259 | 73.90 293 | 98.03 219 | 82.23 256 | 96.87 248 | 95.93 252 |
|
DCV-MVSNet | | | 90.11 220 | 89.73 223 | 91.26 228 | 94.09 267 | 79.82 241 | 90.44 236 | 92.65 277 | 90.90 123 | 93.19 203 | 93.30 259 | 73.90 293 | 98.03 219 | 82.23 256 | 96.87 248 | 95.93 252 |
|
FMVSNet5 | | | 87.82 263 | 86.56 278 | 91.62 218 | 92.31 296 | 79.81 243 | 93.49 138 | 94.81 237 | 83.26 249 | 91.36 245 | 96.93 96 | 52.77 357 | 97.49 259 | 76.07 310 | 98.03 204 | 97.55 187 |
|
v8 | | | 94.65 100 | 95.29 78 | 92.74 182 | 96.65 150 | 79.77 244 | 94.59 103 | 97.17 135 | 91.86 93 | 97.47 40 | 97.93 40 | 88.16 175 | 99.08 93 | 94.32 22 | 99.47 39 | 99.38 22 |
|
tttt0517 | | | 89.81 230 | 88.90 236 | 92.55 191 | 97.00 135 | 79.73 245 | 95.03 89 | 83.65 347 | 89.88 147 | 95.30 131 | 94.79 216 | 53.64 355 | 99.39 45 | 91.99 95 | 98.79 129 | 98.54 106 |
|
v1192 | | | 93.49 131 | 93.78 125 | 92.62 188 | 96.16 186 | 79.62 246 | 91.83 204 | 97.22 133 | 86.07 216 | 96.10 100 | 96.38 136 | 87.22 191 | 99.02 104 | 94.14 29 | 98.88 113 | 99.22 32 |
|
v1144 | | | 93.50 130 | 93.81 123 | 92.57 190 | 96.28 176 | 79.61 247 | 91.86 203 | 96.96 148 | 86.95 205 | 95.91 107 | 96.32 140 | 87.65 184 | 98.96 114 | 93.51 43 | 98.88 113 | 99.13 39 |
|
BH-untuned | | | 90.68 203 | 90.90 196 | 90.05 267 | 95.98 200 | 79.57 248 | 90.04 251 | 94.94 231 | 87.91 184 | 94.07 173 | 93.00 265 | 87.76 183 | 97.78 243 | 79.19 289 | 95.17 286 | 92.80 324 |
|
DIV-MVS_2432*1600 | | | 94.10 120 | 94.73 97 | 92.19 200 | 97.66 105 | 79.49 249 | 94.86 94 | 97.12 139 | 89.59 153 | 96.87 61 | 97.65 52 | 90.40 151 | 98.34 196 | 89.08 166 | 99.35 57 | 98.75 84 |
|
CHOSEN 1792x2688 | | | 87.19 279 | 85.92 287 | 91.00 239 | 97.13 132 | 79.41 250 | 84.51 333 | 95.60 210 | 64.14 351 | 90.07 269 | 94.81 212 | 78.26 271 | 97.14 274 | 73.34 323 | 95.38 282 | 96.46 231 |
|
thisisatest0530 | | | 88.69 250 | 87.52 261 | 92.20 199 | 96.33 172 | 79.36 251 | 92.81 153 | 84.01 346 | 86.44 209 | 93.67 186 | 92.68 274 | 53.62 356 | 99.25 74 | 89.65 153 | 98.45 156 | 98.00 144 |
|
LFMVS | | | 91.33 192 | 91.16 194 | 91.82 211 | 96.27 177 | 79.36 251 | 95.01 90 | 85.61 335 | 96.04 28 | 94.82 153 | 97.06 88 | 72.03 302 | 98.46 189 | 84.96 231 | 98.70 137 | 97.65 180 |
|
TR-MVS | | | 87.70 264 | 87.17 267 | 89.27 278 | 94.11 266 | 79.26 253 | 88.69 285 | 91.86 293 | 81.94 266 | 90.69 257 | 89.79 317 | 82.82 234 | 97.42 263 | 72.65 328 | 91.98 331 | 91.14 337 |
|
test20.03 | | | 90.80 199 | 90.85 199 | 90.63 250 | 95.63 222 | 79.24 254 | 89.81 260 | 92.87 271 | 89.90 146 | 94.39 165 | 96.40 131 | 85.77 213 | 95.27 323 | 73.86 321 | 99.05 94 | 97.39 197 |
|
IterMVS-SCA-FT | | | 91.65 183 | 91.55 181 | 91.94 209 | 93.89 272 | 79.22 255 | 87.56 296 | 93.51 262 | 91.53 112 | 95.37 128 | 96.62 119 | 78.65 266 | 98.90 120 | 91.89 100 | 94.95 289 | 97.70 176 |
|
EI-MVSNet | | | 92.99 149 | 93.26 145 | 92.19 200 | 92.12 302 | 79.21 256 | 92.32 176 | 94.67 243 | 91.77 103 | 95.24 136 | 95.85 161 | 87.14 194 | 98.49 183 | 91.99 95 | 98.26 177 | 98.86 72 |
|
IterMVS-LS | | | 93.78 126 | 94.28 114 | 92.27 197 | 96.27 177 | 79.21 256 | 91.87 199 | 96.78 162 | 91.77 103 | 96.57 75 | 97.07 87 | 87.15 193 | 98.74 152 | 91.99 95 | 99.03 100 | 98.86 72 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CR-MVSNet | | | 87.89 260 | 87.12 269 | 90.22 261 | 91.01 318 | 78.93 258 | 92.52 162 | 92.81 272 | 73.08 321 | 89.10 284 | 96.93 96 | 67.11 312 | 97.64 252 | 88.80 171 | 92.70 323 | 94.08 297 |
|
RPMNet | | | 90.31 216 | 90.14 215 | 90.81 246 | 91.01 318 | 78.93 258 | 92.52 162 | 98.12 41 | 91.91 91 | 89.10 284 | 96.89 99 | 68.84 307 | 99.41 35 | 90.17 139 | 92.70 323 | 94.08 297 |
|
UnsupCasMVSNet_bld | | | 88.50 252 | 88.03 254 | 89.90 268 | 95.52 226 | 78.88 260 | 87.39 300 | 94.02 255 | 79.32 286 | 93.06 206 | 94.02 239 | 80.72 255 | 94.27 333 | 75.16 315 | 93.08 319 | 96.54 224 |
|
v2v482 | | | 93.29 136 | 93.63 131 | 92.29 196 | 96.35 170 | 78.82 261 | 91.77 207 | 96.28 186 | 88.45 175 | 95.70 116 | 96.26 145 | 86.02 212 | 98.90 120 | 93.02 71 | 98.81 126 | 99.14 38 |
|
Anonymous20231206 | | | 88.77 248 | 88.29 246 | 90.20 263 | 96.31 174 | 78.81 262 | 89.56 265 | 93.49 263 | 74.26 314 | 92.38 226 | 95.58 178 | 82.21 240 | 95.43 318 | 72.07 330 | 98.75 134 | 96.34 235 |
|
PVSNet_BlendedMVS | | | 90.35 213 | 89.96 217 | 91.54 221 | 94.81 244 | 78.80 263 | 90.14 248 | 96.93 150 | 79.43 282 | 88.68 296 | 95.06 201 | 86.27 209 | 98.15 213 | 80.27 273 | 98.04 203 | 97.68 178 |
|
PVSNet_Blended | | | 88.74 249 | 88.16 253 | 90.46 255 | 94.81 244 | 78.80 263 | 86.64 316 | 96.93 150 | 74.67 311 | 88.68 296 | 89.18 326 | 86.27 209 | 98.15 213 | 80.27 273 | 96.00 265 | 94.44 292 |
|
BH-RMVSNet | | | 90.47 208 | 90.44 208 | 90.56 252 | 95.21 236 | 78.65 265 | 89.15 276 | 93.94 258 | 88.21 179 | 92.74 215 | 94.22 231 | 86.38 207 | 97.88 231 | 78.67 292 | 95.39 281 | 95.14 276 |
|
D2MVS | | | 89.93 227 | 89.60 225 | 90.92 241 | 94.03 269 | 78.40 266 | 88.69 285 | 94.85 233 | 78.96 290 | 93.08 205 | 95.09 199 | 74.57 291 | 96.94 279 | 88.19 181 | 98.96 108 | 97.41 193 |
|
v1921920 | | | 93.26 139 | 93.61 132 | 92.19 200 | 96.04 198 | 78.31 267 | 91.88 198 | 97.24 131 | 85.17 230 | 96.19 96 | 96.19 148 | 86.76 203 | 99.05 98 | 94.18 28 | 98.84 118 | 99.22 32 |
|
v144192 | | | 93.20 144 | 93.54 136 | 92.16 204 | 96.05 194 | 78.26 268 | 91.95 191 | 97.14 136 | 84.98 237 | 95.96 103 | 96.11 152 | 87.08 195 | 99.04 101 | 93.79 34 | 98.84 118 | 99.17 35 |
|
diffmvs | | | 91.74 181 | 91.93 173 | 91.15 234 | 93.06 285 | 78.17 269 | 88.77 283 | 97.51 110 | 86.28 212 | 92.42 224 | 93.96 242 | 88.04 178 | 97.46 260 | 90.69 123 | 96.67 255 | 97.82 167 |
|
sss | | | 87.23 276 | 86.82 273 | 88.46 292 | 93.96 270 | 77.94 270 | 86.84 310 | 92.78 275 | 77.59 298 | 87.61 309 | 91.83 290 | 78.75 265 | 91.92 346 | 77.84 296 | 94.20 305 | 95.52 270 |
|
MS-PatchMatch | | | 88.05 259 | 87.75 257 | 88.95 281 | 93.28 279 | 77.93 271 | 87.88 292 | 92.49 282 | 75.42 309 | 92.57 220 | 93.59 253 | 80.44 256 | 94.24 335 | 81.28 265 | 92.75 322 | 94.69 288 |
|
HY-MVS | | 82.50 18 | 86.81 285 | 85.93 286 | 89.47 272 | 93.63 276 | 77.93 271 | 94.02 123 | 91.58 296 | 75.68 306 | 83.64 333 | 93.64 250 | 77.40 276 | 97.42 263 | 71.70 333 | 92.07 330 | 93.05 321 |
|
v1240 | | | 93.29 136 | 93.71 128 | 92.06 207 | 96.01 199 | 77.89 273 | 91.81 205 | 97.37 115 | 85.12 233 | 96.69 69 | 96.40 131 | 86.67 204 | 99.07 97 | 94.51 18 | 98.76 132 | 99.22 32 |
|
CL-MVSNet_2432*1600 | | | 90.04 225 | 89.90 219 | 90.47 253 | 95.24 235 | 77.81 274 | 86.60 319 | 92.62 279 | 85.64 224 | 93.25 201 | 93.92 243 | 83.84 225 | 96.06 306 | 79.93 280 | 98.03 204 | 97.53 188 |
|
Test_1112_low_res | | | 87.50 271 | 86.58 277 | 90.25 260 | 96.80 147 | 77.75 275 | 87.53 298 | 96.25 188 | 69.73 337 | 86.47 316 | 93.61 252 | 75.67 289 | 97.88 231 | 79.95 278 | 93.20 315 | 95.11 277 |
|
v148 | | | 92.87 154 | 93.29 141 | 91.62 218 | 96.25 180 | 77.72 276 | 91.28 217 | 95.05 227 | 89.69 149 | 95.93 106 | 96.04 154 | 87.34 189 | 98.38 192 | 90.05 144 | 97.99 207 | 98.78 81 |
|
MVS | | | 84.98 294 | 84.30 294 | 87.01 306 | 91.03 317 | 77.69 277 | 91.94 193 | 94.16 251 | 59.36 356 | 84.23 330 | 87.50 336 | 85.66 215 | 96.80 285 | 71.79 331 | 93.05 320 | 86.54 348 |
|
miper_lstm_enhance | | | 89.90 228 | 89.80 220 | 90.19 264 | 91.37 315 | 77.50 278 | 83.82 340 | 95.00 228 | 84.84 239 | 93.05 207 | 94.96 206 | 76.53 287 | 95.20 324 | 89.96 146 | 98.67 139 | 97.86 162 |
|
pmmvs3 | | | 80.83 319 | 78.96 327 | 86.45 310 | 87.23 350 | 77.48 279 | 84.87 328 | 82.31 350 | 63.83 352 | 85.03 323 | 89.50 322 | 49.66 358 | 93.10 341 | 73.12 326 | 95.10 287 | 88.78 346 |
|
PAPR | | | 87.65 267 | 86.77 275 | 90.27 259 | 92.85 289 | 77.38 280 | 88.56 288 | 96.23 190 | 76.82 305 | 84.98 324 | 89.75 319 | 86.08 211 | 97.16 273 | 72.33 329 | 93.35 313 | 96.26 239 |
|
Vis-MVSNet (Re-imp) | | | 90.42 209 | 90.16 212 | 91.20 232 | 97.66 105 | 77.32 281 | 94.33 114 | 87.66 317 | 91.20 119 | 92.99 209 | 95.13 197 | 75.40 290 | 98.28 199 | 77.86 295 | 99.19 80 | 97.99 147 |
|
BH-w/o | | | 87.21 277 | 87.02 271 | 87.79 301 | 94.77 246 | 77.27 282 | 87.90 291 | 93.21 268 | 81.74 267 | 89.99 271 | 88.39 332 | 83.47 226 | 96.93 281 | 71.29 335 | 92.43 327 | 89.15 342 |
|
GA-MVS | | | 87.70 264 | 86.82 273 | 90.31 257 | 93.27 280 | 77.22 283 | 84.72 331 | 92.79 274 | 85.11 234 | 89.82 275 | 90.07 312 | 66.80 315 | 97.76 246 | 84.56 236 | 94.27 304 | 95.96 251 |
|
TinyColmap | | | 92.00 178 | 92.76 153 | 89.71 270 | 95.62 223 | 77.02 284 | 90.72 229 | 96.17 195 | 87.70 191 | 95.26 134 | 96.29 142 | 92.54 99 | 96.45 295 | 81.77 260 | 98.77 131 | 95.66 265 |
|
Patchmtry | | | 90.11 220 | 89.92 218 | 90.66 249 | 90.35 327 | 77.00 285 | 92.96 149 | 92.81 272 | 90.25 141 | 94.74 157 | 96.93 96 | 67.11 312 | 97.52 256 | 85.17 223 | 98.98 102 | 97.46 190 |
|
cl-mvsnet1 | | | 90.65 204 | 90.56 206 | 90.91 243 | 91.85 306 | 76.99 286 | 86.75 313 | 95.36 224 | 85.52 227 | 94.06 174 | 94.89 209 | 77.37 278 | 97.99 225 | 90.28 134 | 98.97 106 | 97.76 172 |
|
cl-mvsnet_ | | | 90.65 204 | 90.56 206 | 90.91 243 | 91.85 306 | 76.98 287 | 86.75 313 | 95.36 224 | 85.53 225 | 94.06 174 | 94.89 209 | 77.36 279 | 97.98 226 | 90.27 135 | 98.98 102 | 97.76 172 |
|
pmmvs5 | | | 87.87 261 | 87.14 268 | 90.07 265 | 93.26 281 | 76.97 288 | 88.89 280 | 92.18 286 | 73.71 318 | 88.36 299 | 93.89 245 | 76.86 285 | 96.73 287 | 80.32 272 | 96.81 250 | 96.51 226 |
|
eth_miper_zixun_eth | | | 90.72 201 | 90.61 205 | 91.05 235 | 92.04 304 | 76.84 289 | 86.91 308 | 96.67 169 | 85.21 229 | 94.41 164 | 93.92 243 | 79.53 261 | 98.26 203 | 89.76 150 | 97.02 242 | 98.06 138 |
|
cl_fuxian | | | 91.32 193 | 91.42 186 | 91.00 239 | 92.29 297 | 76.79 290 | 87.52 299 | 96.42 181 | 85.76 222 | 94.72 159 | 93.89 245 | 82.73 235 | 98.16 212 | 90.93 119 | 98.55 145 | 98.04 141 |
|
MVSTER | | | 89.32 236 | 88.75 238 | 91.03 236 | 90.10 329 | 76.62 291 | 90.85 225 | 94.67 243 | 82.27 263 | 95.24 136 | 95.79 166 | 61.09 344 | 98.49 183 | 90.49 124 | 98.26 177 | 97.97 151 |
|
miper_ehance_all_eth | | | 90.48 207 | 90.42 209 | 90.69 248 | 91.62 311 | 76.57 292 | 86.83 311 | 96.18 194 | 83.38 248 | 94.06 174 | 92.66 275 | 82.20 241 | 98.04 218 | 89.79 149 | 97.02 242 | 97.45 191 |
|
cl-mvsnet2 | | | 89.02 240 | 88.50 241 | 90.59 251 | 89.76 331 | 76.45 293 | 86.62 318 | 94.03 253 | 82.98 256 | 92.65 217 | 92.49 276 | 72.05 301 | 97.53 255 | 88.93 167 | 97.02 242 | 97.78 170 |
|
cascas | | | 87.02 283 | 86.28 284 | 89.25 279 | 91.56 313 | 76.45 293 | 84.33 335 | 96.78 162 | 71.01 331 | 86.89 315 | 85.91 346 | 81.35 249 | 96.94 279 | 83.09 247 | 95.60 274 | 94.35 294 |
|
ADS-MVSNet2 | | | 84.01 299 | 82.20 307 | 89.41 274 | 89.04 340 | 76.37 295 | 87.57 294 | 90.98 299 | 72.71 324 | 84.46 327 | 92.45 278 | 68.08 308 | 96.48 294 | 70.58 340 | 83.97 349 | 95.38 271 |
|
EU-MVSNet | | | 87.39 273 | 86.71 276 | 89.44 273 | 93.40 278 | 76.11 296 | 94.93 93 | 90.00 304 | 57.17 357 | 95.71 115 | 97.37 68 | 64.77 328 | 97.68 251 | 92.67 81 | 94.37 301 | 94.52 290 |
|
MIMVSNet | | | 87.13 281 | 86.54 279 | 88.89 283 | 96.05 194 | 76.11 296 | 94.39 112 | 88.51 309 | 81.37 268 | 88.27 301 | 96.75 109 | 72.38 299 | 95.52 313 | 65.71 350 | 95.47 278 | 95.03 278 |
|
IterMVS | | | 90.18 218 | 90.16 212 | 90.21 262 | 93.15 283 | 75.98 298 | 87.56 296 | 92.97 270 | 86.43 210 | 94.09 171 | 96.40 131 | 78.32 270 | 97.43 262 | 87.87 189 | 94.69 296 | 97.23 204 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS_Test | | | 92.57 166 | 93.29 141 | 90.40 256 | 93.53 277 | 75.85 299 | 92.52 162 | 96.96 148 | 88.73 168 | 92.35 228 | 96.70 114 | 90.77 139 | 98.37 195 | 92.53 84 | 95.49 277 | 96.99 212 |
|
IB-MVS | | 77.21 19 | 83.11 302 | 81.05 313 | 89.29 277 | 91.15 316 | 75.85 299 | 85.66 323 | 86.00 330 | 79.70 279 | 82.02 345 | 86.61 340 | 48.26 360 | 98.39 190 | 77.84 296 | 92.22 328 | 93.63 311 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
VPNet | | | 93.08 145 | 93.76 126 | 91.03 236 | 98.60 33 | 75.83 301 | 91.51 211 | 95.62 209 | 91.84 97 | 95.74 113 | 97.10 86 | 89.31 164 | 98.32 197 | 85.07 230 | 99.06 91 | 98.93 63 |
|
miper_enhance_ethall | | | 88.42 253 | 87.87 256 | 90.07 265 | 88.67 344 | 75.52 302 | 85.10 326 | 95.59 214 | 75.68 306 | 92.49 221 | 89.45 323 | 78.96 263 | 97.88 231 | 87.86 190 | 97.02 242 | 96.81 219 |
|
Anonymous20240521 | | | 92.86 155 | 93.57 134 | 90.74 247 | 96.57 156 | 75.50 303 | 94.15 119 | 95.60 210 | 89.38 155 | 95.90 108 | 97.90 44 | 80.39 257 | 97.96 227 | 92.60 83 | 99.68 18 | 98.75 84 |
|
thisisatest0515 | | | 84.72 295 | 82.99 303 | 89.90 268 | 92.96 288 | 75.33 304 | 84.36 334 | 83.42 348 | 77.37 300 | 88.27 301 | 86.65 339 | 53.94 354 | 98.72 154 | 82.56 252 | 97.40 232 | 95.67 264 |
|
PS-MVSNAJ | | | 88.86 246 | 88.99 233 | 88.48 291 | 94.88 240 | 74.71 305 | 86.69 315 | 95.60 210 | 80.88 270 | 87.83 306 | 87.37 337 | 90.77 139 | 98.82 133 | 82.52 253 | 94.37 301 | 91.93 332 |
|
WTY-MVS | | | 86.93 284 | 86.50 282 | 88.24 295 | 94.96 239 | 74.64 306 | 87.19 303 | 92.07 291 | 78.29 295 | 88.32 300 | 91.59 295 | 78.06 272 | 94.27 333 | 74.88 316 | 93.15 317 | 95.80 258 |
|
xiu_mvs_v2_base | | | 89.00 242 | 89.19 227 | 88.46 292 | 94.86 242 | 74.63 307 | 86.97 306 | 95.60 210 | 80.88 270 | 87.83 306 | 88.62 329 | 91.04 136 | 98.81 138 | 82.51 254 | 94.38 300 | 91.93 332 |
|
1314 | | | 86.46 286 | 86.33 283 | 86.87 308 | 91.65 310 | 74.54 308 | 91.94 193 | 94.10 252 | 74.28 313 | 84.78 326 | 87.33 338 | 83.03 231 | 95.00 325 | 78.72 291 | 91.16 336 | 91.06 338 |
|
CHOSEN 280x420 | | | 80.04 324 | 77.97 330 | 86.23 314 | 90.13 328 | 74.53 309 | 72.87 354 | 89.59 305 | 66.38 346 | 76.29 356 | 85.32 348 | 56.96 350 | 95.36 319 | 69.49 343 | 94.72 295 | 88.79 345 |
|
USDC | | | 89.02 240 | 89.08 230 | 88.84 284 | 95.07 238 | 74.50 310 | 88.97 278 | 96.39 183 | 73.21 320 | 93.27 198 | 96.28 143 | 82.16 242 | 96.39 297 | 77.55 299 | 98.80 128 | 95.62 268 |
|
MVE |  | 59.87 23 | 73.86 329 | 72.65 332 | 77.47 340 | 87.00 353 | 74.35 311 | 61.37 358 | 60.93 363 | 67.27 344 | 69.69 360 | 86.49 342 | 81.24 253 | 72.33 360 | 56.45 357 | 83.45 351 | 85.74 349 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EPNet_dtu | | | 85.63 290 | 84.37 293 | 89.40 275 | 86.30 354 | 74.33 312 | 91.64 209 | 88.26 311 | 84.84 239 | 72.96 359 | 89.85 313 | 71.27 304 | 97.69 250 | 76.60 307 | 97.62 225 | 96.18 243 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline1 | | | 87.62 268 | 87.31 263 | 88.54 289 | 94.71 253 | 74.27 313 | 93.10 146 | 88.20 313 | 86.20 213 | 92.18 234 | 93.04 264 | 73.21 296 | 95.52 313 | 79.32 287 | 85.82 347 | 95.83 257 |
|
Patchmatch-test | | | 86.10 288 | 86.01 285 | 86.38 313 | 90.63 322 | 74.22 314 | 89.57 264 | 86.69 323 | 85.73 223 | 89.81 276 | 92.83 268 | 65.24 326 | 91.04 349 | 77.82 298 | 95.78 271 | 93.88 306 |
|
MDA-MVSNet_test_wron | | | 88.16 258 | 88.23 249 | 87.93 298 | 92.22 298 | 73.71 315 | 80.71 349 | 88.84 306 | 82.52 260 | 94.88 152 | 95.14 196 | 82.70 236 | 93.61 338 | 83.28 245 | 93.80 309 | 96.46 231 |
|
YYNet1 | | | 88.17 257 | 88.24 248 | 87.93 298 | 92.21 299 | 73.62 316 | 80.75 348 | 88.77 307 | 82.51 261 | 94.99 147 | 95.11 198 | 82.70 236 | 93.70 337 | 83.33 244 | 93.83 308 | 96.48 230 |
|
test0.0.03 1 | | | 82.48 307 | 81.47 311 | 85.48 317 | 89.70 332 | 73.57 317 | 84.73 329 | 81.64 352 | 83.07 254 | 88.13 303 | 86.61 340 | 62.86 337 | 89.10 355 | 66.24 349 | 90.29 339 | 93.77 308 |
|
thres600view7 | | | 87.66 266 | 87.10 270 | 89.36 276 | 96.05 194 | 73.17 318 | 92.72 155 | 85.31 338 | 91.89 92 | 93.29 196 | 90.97 302 | 63.42 334 | 98.39 190 | 73.23 324 | 96.99 247 | 96.51 226 |
|
ANet_high | | | 94.83 93 | 96.28 36 | 90.47 253 | 96.65 150 | 73.16 319 | 94.33 114 | 98.74 5 | 96.39 22 | 98.09 24 | 98.93 8 | 93.37 76 | 98.70 160 | 90.38 128 | 99.68 18 | 99.53 14 |
|
thres100view900 | | | 87.35 274 | 86.89 272 | 88.72 286 | 96.14 187 | 73.09 320 | 93.00 148 | 85.31 338 | 92.13 85 | 93.26 199 | 90.96 303 | 63.42 334 | 98.28 199 | 71.27 336 | 96.54 257 | 94.79 283 |
|
tfpn200view9 | | | 87.05 282 | 86.52 280 | 88.67 287 | 95.77 212 | 72.94 321 | 91.89 196 | 86.00 330 | 90.84 125 | 92.61 218 | 89.80 315 | 63.93 331 | 98.28 199 | 71.27 336 | 96.54 257 | 94.79 283 |
|
thres400 | | | 87.20 278 | 86.52 280 | 89.24 280 | 95.77 212 | 72.94 321 | 91.89 196 | 86.00 330 | 90.84 125 | 92.61 218 | 89.80 315 | 63.93 331 | 98.28 199 | 71.27 336 | 96.54 257 | 96.51 226 |
|
baseline2 | | | 83.38 301 | 81.54 310 | 88.90 282 | 91.38 314 | 72.84 323 | 88.78 282 | 81.22 353 | 78.97 289 | 79.82 352 | 87.56 334 | 61.73 342 | 97.80 240 | 74.30 319 | 90.05 340 | 96.05 248 |
|
thres200 | | | 85.85 289 | 85.18 290 | 87.88 300 | 94.44 259 | 72.52 324 | 89.08 277 | 86.21 326 | 88.57 174 | 91.44 244 | 88.40 331 | 64.22 329 | 98.00 223 | 68.35 344 | 95.88 270 | 93.12 318 |
|
MG-MVS | | | 89.54 233 | 89.80 220 | 88.76 285 | 94.88 240 | 72.47 325 | 89.60 263 | 92.44 283 | 85.82 220 | 89.48 281 | 95.98 157 | 82.85 233 | 97.74 248 | 81.87 259 | 95.27 284 | 96.08 246 |
|
PAPM | | | 81.91 313 | 80.11 323 | 87.31 305 | 93.87 273 | 72.32 326 | 84.02 338 | 93.22 266 | 69.47 338 | 76.13 357 | 89.84 314 | 72.15 300 | 97.23 271 | 53.27 358 | 89.02 341 | 92.37 329 |
|
SCA | | | 87.43 272 | 87.21 266 | 88.10 297 | 92.01 305 | 71.98 327 | 89.43 267 | 88.11 315 | 82.26 264 | 88.71 294 | 92.83 268 | 78.65 266 | 97.59 253 | 79.61 284 | 93.30 314 | 94.75 285 |
|
testgi | | | 90.38 211 | 91.34 189 | 87.50 303 | 97.49 114 | 71.54 328 | 89.43 267 | 95.16 226 | 88.38 177 | 94.54 162 | 94.68 219 | 92.88 91 | 93.09 342 | 71.60 334 | 97.85 214 | 97.88 160 |
|
gg-mvs-nofinetune | | | 82.10 312 | 81.02 314 | 85.34 319 | 87.46 349 | 71.04 329 | 94.74 98 | 67.56 361 | 96.44 21 | 79.43 353 | 98.99 6 | 45.24 362 | 96.15 302 | 67.18 347 | 92.17 329 | 88.85 344 |
|
GG-mvs-BLEND | | | | | 83.24 331 | 85.06 358 | 71.03 330 | 94.99 92 | 65.55 362 | | 74.09 358 | 75.51 357 | 44.57 363 | 94.46 329 | 59.57 355 | 87.54 345 | 84.24 350 |
|
ppachtmachnet_test | | | 88.61 251 | 88.64 239 | 88.50 290 | 91.76 308 | 70.99 331 | 84.59 332 | 92.98 269 | 79.30 287 | 92.38 226 | 93.53 255 | 79.57 260 | 97.45 261 | 86.50 212 | 97.17 238 | 97.07 207 |
|
our_test_3 | | | 87.55 269 | 87.59 260 | 87.44 304 | 91.76 308 | 70.48 332 | 83.83 339 | 90.55 303 | 79.79 277 | 92.06 237 | 92.17 285 | 78.63 268 | 95.63 311 | 84.77 233 | 94.73 294 | 96.22 241 |
|
CVMVSNet | | | 85.16 292 | 84.72 291 | 86.48 309 | 92.12 302 | 70.19 333 | 92.32 176 | 88.17 314 | 56.15 358 | 90.64 258 | 95.85 161 | 67.97 310 | 96.69 288 | 88.78 172 | 90.52 338 | 92.56 327 |
|
new_pmnet | | | 81.22 316 | 81.01 315 | 81.86 334 | 90.92 320 | 70.15 334 | 84.03 337 | 80.25 357 | 70.83 332 | 85.97 319 | 89.78 318 | 67.93 311 | 84.65 357 | 67.44 346 | 91.90 332 | 90.78 339 |
|
KD-MVS_2432*1600 | | | 82.17 310 | 80.75 317 | 86.42 311 | 82.04 362 | 70.09 335 | 81.75 346 | 90.80 300 | 82.56 258 | 90.37 263 | 89.30 324 | 42.90 366 | 96.11 304 | 74.47 317 | 92.55 325 | 93.06 319 |
|
miper_refine_blended | | | 82.17 310 | 80.75 317 | 86.42 311 | 82.04 362 | 70.09 335 | 81.75 346 | 90.80 300 | 82.56 258 | 90.37 263 | 89.30 324 | 42.90 366 | 96.11 304 | 74.47 317 | 92.55 325 | 93.06 319 |
|
DSMNet-mixed | | | 82.21 309 | 81.56 308 | 84.16 327 | 89.57 335 | 70.00 337 | 90.65 231 | 77.66 359 | 54.99 359 | 83.30 336 | 97.57 55 | 77.89 274 | 90.50 351 | 66.86 348 | 95.54 276 | 91.97 331 |
|
PatchmatchNet |  | | 85.22 291 | 84.64 292 | 86.98 307 | 89.51 336 | 69.83 338 | 90.52 234 | 87.34 320 | 78.87 291 | 87.22 313 | 92.74 272 | 66.91 314 | 96.53 291 | 81.77 260 | 86.88 346 | 94.58 289 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EMVS | | | 80.35 323 | 80.28 322 | 80.54 336 | 84.73 359 | 69.07 339 | 72.54 355 | 80.73 354 | 87.80 188 | 81.66 347 | 81.73 354 | 62.89 336 | 89.84 352 | 75.79 313 | 94.65 297 | 82.71 353 |
|
E-PMN | | | 80.72 321 | 80.86 316 | 80.29 337 | 85.11 357 | 68.77 340 | 72.96 353 | 81.97 351 | 87.76 189 | 83.25 337 | 83.01 353 | 62.22 340 | 89.17 354 | 77.15 304 | 94.31 303 | 82.93 352 |
|
mvs_anonymous | | | 90.37 212 | 91.30 190 | 87.58 302 | 92.17 301 | 68.00 341 | 89.84 259 | 94.73 239 | 83.82 247 | 93.22 202 | 97.40 66 | 87.54 186 | 97.40 265 | 87.94 188 | 95.05 288 | 97.34 200 |
|
CostFormer | | | 83.09 303 | 82.21 306 | 85.73 315 | 89.27 338 | 67.01 342 | 90.35 240 | 86.47 325 | 70.42 334 | 83.52 335 | 93.23 262 | 61.18 343 | 96.85 283 | 77.21 303 | 88.26 344 | 93.34 317 |
|
PatchT | | | 87.51 270 | 88.17 251 | 85.55 316 | 90.64 321 | 66.91 343 | 92.02 189 | 86.09 328 | 92.20 83 | 89.05 286 | 97.16 83 | 64.15 330 | 96.37 299 | 89.21 164 | 92.98 321 | 93.37 316 |
|
DWT-MVSNet_test | | | 80.74 320 | 79.18 326 | 85.43 318 | 87.51 348 | 66.87 344 | 89.87 258 | 86.01 329 | 74.20 315 | 80.86 349 | 80.62 355 | 48.84 359 | 96.68 290 | 81.54 262 | 83.14 353 | 92.75 325 |
|
test-LLR | | | 83.58 300 | 83.17 301 | 84.79 323 | 89.68 333 | 66.86 345 | 83.08 341 | 84.52 343 | 83.07 254 | 82.85 338 | 84.78 349 | 62.86 337 | 93.49 339 | 82.85 248 | 94.86 290 | 94.03 300 |
|
test-mter | | | 81.21 317 | 80.01 324 | 84.79 323 | 89.68 333 | 66.86 345 | 83.08 341 | 84.52 343 | 73.85 317 | 82.85 338 | 84.78 349 | 43.66 365 | 93.49 339 | 82.85 248 | 94.86 290 | 94.03 300 |
|
RRT_test8_iter05 | | | 88.21 256 | 88.17 251 | 88.33 294 | 91.62 311 | 66.82 347 | 91.73 208 | 96.60 172 | 86.34 211 | 94.14 169 | 95.38 192 | 47.72 361 | 99.11 90 | 91.78 102 | 98.26 177 | 99.06 47 |
|
PVSNet_0 | | 70.34 21 | 74.58 328 | 72.96 331 | 79.47 338 | 90.63 322 | 66.24 348 | 73.26 352 | 83.40 349 | 63.67 353 | 78.02 354 | 78.35 356 | 72.53 298 | 89.59 353 | 56.68 356 | 60.05 360 | 82.57 354 |
|
ADS-MVSNet | | | 82.25 308 | 81.55 309 | 84.34 326 | 89.04 340 | 65.30 349 | 87.57 294 | 85.13 342 | 72.71 324 | 84.46 327 | 92.45 278 | 68.08 308 | 92.33 345 | 70.58 340 | 83.97 349 | 95.38 271 |
|
tpmvs | | | 84.22 298 | 83.97 297 | 84.94 321 | 87.09 351 | 65.18 350 | 91.21 218 | 88.35 310 | 82.87 257 | 85.21 321 | 90.96 303 | 65.24 326 | 96.75 286 | 79.60 286 | 85.25 348 | 92.90 323 |
|
tpm2 | | | 81.46 314 | 80.35 321 | 84.80 322 | 89.90 330 | 65.14 351 | 90.44 236 | 85.36 337 | 65.82 349 | 82.05 344 | 92.44 280 | 57.94 348 | 96.69 288 | 70.71 339 | 88.49 343 | 92.56 327 |
|
EPMVS | | | 81.17 318 | 80.37 320 | 83.58 329 | 85.58 356 | 65.08 352 | 90.31 242 | 71.34 360 | 77.31 301 | 85.80 320 | 91.30 297 | 59.38 346 | 92.70 344 | 79.99 277 | 82.34 354 | 92.96 322 |
|
tpm cat1 | | | 80.61 322 | 79.46 325 | 84.07 328 | 88.78 342 | 65.06 353 | 89.26 273 | 88.23 312 | 62.27 354 | 81.90 346 | 89.66 321 | 62.70 339 | 95.29 322 | 71.72 332 | 80.60 356 | 91.86 334 |
|
DeepMVS_CX |  | | | | 53.83 343 | 70.38 364 | 64.56 354 | | 48.52 365 | 33.01 360 | 65.50 361 | 74.21 358 | 56.19 352 | 46.64 361 | 38.45 360 | 70.07 358 | 50.30 357 |
|
PVSNet | | 76.22 20 | 82.89 305 | 82.37 305 | 84.48 325 | 93.96 270 | 64.38 355 | 78.60 351 | 88.61 308 | 71.50 328 | 84.43 329 | 86.36 343 | 74.27 292 | 94.60 327 | 69.87 342 | 93.69 311 | 94.46 291 |
|
TESTMET0.1,1 | | | 79.09 326 | 78.04 329 | 82.25 333 | 87.52 347 | 64.03 356 | 83.08 341 | 80.62 355 | 70.28 335 | 80.16 351 | 83.22 352 | 44.13 364 | 90.56 350 | 79.95 278 | 93.36 312 | 92.15 330 |
|
tpm | | | 84.38 297 | 84.08 296 | 85.30 320 | 90.47 325 | 63.43 357 | 89.34 270 | 85.63 334 | 77.24 302 | 87.62 308 | 95.03 204 | 61.00 345 | 97.30 269 | 79.26 288 | 91.09 337 | 95.16 274 |
|
MDTV_nov1_ep13 | | | | 83.88 298 | | 89.42 337 | 61.52 358 | 88.74 284 | 87.41 319 | 73.99 316 | 84.96 325 | 94.01 240 | 65.25 325 | 95.53 312 | 78.02 294 | 93.16 316 | |
|
gm-plane-assit | | | | | | 87.08 352 | 59.33 359 | | | 71.22 329 | | 83.58 351 | | 97.20 272 | 73.95 320 | | |
|
tpmrst | | | 82.85 306 | 82.93 304 | 82.64 332 | 87.65 345 | 58.99 360 | 90.14 248 | 87.90 316 | 75.54 308 | 83.93 331 | 91.63 294 | 66.79 317 | 95.36 319 | 81.21 267 | 81.54 355 | 93.57 315 |
|
dp | | | 79.28 325 | 78.62 328 | 81.24 335 | 85.97 355 | 56.45 361 | 86.91 308 | 85.26 340 | 72.97 322 | 81.45 348 | 89.17 327 | 56.01 353 | 95.45 317 | 73.19 325 | 76.68 357 | 91.82 335 |
|
new-patchmatchnet | | | 88.97 243 | 90.79 201 | 83.50 330 | 94.28 263 | 55.83 362 | 85.34 325 | 93.56 261 | 86.18 214 | 95.47 123 | 95.73 170 | 83.10 230 | 96.51 293 | 85.40 222 | 98.06 200 | 98.16 131 |
|
MVS-HIRNet | | | 78.83 327 | 80.60 319 | 73.51 342 | 93.07 284 | 47.37 363 | 87.10 305 | 78.00 358 | 68.94 339 | 77.53 355 | 97.26 76 | 71.45 303 | 94.62 326 | 63.28 353 | 88.74 342 | 78.55 355 |
|
PMMVS2 | | | 81.31 315 | 83.44 299 | 74.92 341 | 90.52 324 | 46.49 364 | 69.19 356 | 85.23 341 | 84.30 244 | 87.95 305 | 94.71 218 | 76.95 283 | 84.36 358 | 64.07 351 | 98.09 198 | 93.89 305 |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 365 | 88.45 289 | | 67.22 345 | 83.56 334 | | 66.80 315 | | 72.86 327 | | 94.06 299 |
|
tmp_tt | | | 37.97 330 | 44.33 333 | 18.88 344 | 11.80 365 | 21.54 366 | 63.51 357 | 45.66 366 | 4.23 361 | 51.34 362 | 50.48 359 | 59.08 347 | 22.11 362 | 44.50 359 | 68.35 359 | 13.00 358 |
|
test123 | | | 9.49 332 | 12.01 335 | 1.91 345 | 2.87 366 | 1.30 367 | 82.38 344 | 1.34 368 | 1.36 362 | 2.84 363 | 6.56 362 | 2.45 368 | 0.97 363 | 2.73 361 | 5.56 361 | 3.47 359 |
|
testmvs | | | 9.02 333 | 11.42 336 | 1.81 346 | 2.77 367 | 1.13 368 | 79.44 350 | 1.90 367 | 1.18 363 | 2.65 364 | 6.80 361 | 1.95 369 | 0.87 364 | 2.62 362 | 3.45 362 | 3.44 360 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
cdsmvs_eth3d_5k | | | 23.35 331 | 31.13 334 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 95.58 216 | 0.00 364 | 0.00 365 | 91.15 299 | 93.43 74 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 7.56 334 | 10.09 337 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 90.77 139 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
ab-mvs-re | | | 7.56 334 | 10.08 338 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 90.69 308 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
test_241102_TWO | | | | | | | | | 98.10 44 | 91.95 88 | 97.54 36 | 97.25 77 | 95.37 28 | 99.35 55 | 93.29 59 | 99.25 73 | 98.49 110 |
|
9.14 | | | | 94.81 92 | | 97.49 114 | | 94.11 120 | 98.37 14 | 87.56 196 | 95.38 127 | 96.03 155 | 94.66 55 | 99.08 93 | 90.70 122 | 98.97 106 | |
|
test_0728_THIRD | | | | | | | | | | 93.26 65 | 97.40 44 | 97.35 72 | 94.69 54 | 99.34 59 | 93.88 32 | 99.42 47 | 98.89 69 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 285 |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 318 | | | | 94.75 285 |
|
sam_mvs | | | | | | | | | | | | | 66.41 319 | | | | |
|
MTGPA |  | | | | | | | | 97.62 97 | | | | | | | | |
|
test_post1 | | | | | | | | 90.21 244 | | | | 5.85 364 | 65.36 324 | 96.00 307 | 79.61 284 | | |
|
test_post | | | | | | | | | | | | 6.07 363 | 65.74 323 | 95.84 309 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 292 | 66.22 321 | 97.59 253 | | | |
|
MTMP | | | | | | | | 94.82 95 | 54.62 364 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 183 | 98.40 158 | 97.83 165 |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 202 | 98.36 168 | 97.98 148 |
|
test_prior2 | | | | | | | | 90.21 244 | | 89.33 158 | 90.77 254 | 94.81 212 | 90.41 149 | | 88.21 179 | 98.55 145 | |
|
旧先验2 | | | | | | | | 90.00 253 | | 68.65 340 | 92.71 216 | | | 96.52 292 | 85.15 225 | | |
|
新几何2 | | | | | | | | 90.02 252 | | | | | | | | | |
|
无先验 | | | | | | | | 89.94 254 | 95.75 207 | 70.81 333 | | | | 98.59 173 | 81.17 268 | | 94.81 282 |
|
原ACMM2 | | | | | | | | 89.34 270 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.03 219 | 80.24 275 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 105 | | | | |
|
testdata1 | | | | | | | | 88.96 279 | | 88.44 176 | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.81 85 | | | | | 98.95 116 | 89.26 161 | 98.51 152 | 98.60 103 |
|
plane_prior4 | | | | | | | | | | | | 95.59 175 | | | | | |
|
plane_prior2 | | | | | | | | 94.56 107 | | 91.74 105 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 120 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 369 | | | | | | | | |
|
nn | | | | | | | | | 0.00 369 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 290 | | | | | | | | |
|
test11 | | | | | | | | | 96.65 170 | | | | | | | | |
|
door | | | | | | | | | 91.26 297 | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 167 | | 91.37 213 | | 87.16 200 | 88.81 289 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 167 | | 91.37 213 | | 87.16 200 | 88.81 289 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 210 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 289 | | | 98.61 169 | | | 98.15 132 |
|
HQP3-MVS | | | | | | | | | 97.31 124 | | | | | | | 97.73 217 | |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 220 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 124 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 73 | |
|
Test By Simon | | | | | | | | | | | | | 90.61 145 | | | | |
|