This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
PMVScopyleft87.21 1494.97 8695.33 7893.91 15098.97 1597.16 295.54 7695.85 21396.47 2193.40 20297.46 6795.31 3395.47 32886.18 22998.78 13789.11 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 26196.67 394.00 13395.41 23089.94 14991.93 24992.13 29690.12 16098.97 11987.68 20397.48 24097.67 187
RPSCF95.58 6594.89 9297.62 897.58 11596.30 495.97 5997.53 11292.42 7893.41 20097.78 5091.21 13797.77 25591.06 12197.06 25198.80 80
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
mvs-test193.07 15191.80 18196.89 3994.74 26195.83 692.17 19195.41 23089.94 14989.85 28490.59 32390.12 16098.88 12987.68 20395.66 28595.97 260
abl_697.31 597.12 1397.86 398.54 4395.32 796.61 2798.35 1995.81 3197.55 3697.44 6896.51 999.40 4394.06 3099.23 7998.85 76
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7995.27 896.37 4098.12 4695.66 3397.00 5897.03 9694.85 5299.42 2993.49 4898.84 12598.00 152
RE-MVS-def96.66 2098.07 7995.27 896.37 4098.12 4695.66 3397.00 5897.03 9695.40 2793.49 4898.84 12598.00 152
test117296.79 1596.52 2797.60 998.03 8594.87 1096.07 5598.06 5995.76 3296.89 6396.85 10794.85 5299.42 2993.35 6198.81 13398.53 112
SR-MVS96.70 1996.42 2997.54 1198.05 8194.69 1196.13 5298.07 5695.17 3796.82 6796.73 11895.09 4499.43 2892.99 7798.71 14298.50 114
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
mPP-MVS96.46 3296.05 5197.69 598.62 3294.65 1396.45 3597.74 9692.59 7695.47 12896.68 12194.50 6199.42 2993.10 7299.26 7598.99 53
CP-MVS96.44 3596.08 4997.54 1198.29 6494.62 1496.80 2298.08 5392.67 7595.08 15096.39 14194.77 5499.42 2993.17 6999.44 4598.58 110
EGC-MVSNET80.97 32775.73 33996.67 4498.85 2294.55 1596.83 2096.60 1802.44 3745.32 37598.25 3192.24 10898.02 23291.85 10599.21 8297.45 200
FPMVS84.50 30483.28 30888.16 30696.32 18494.49 1685.76 33285.47 34783.09 26385.20 33394.26 23863.79 34386.58 36863.72 36491.88 34583.40 363
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5994.31 1796.79 2398.32 2096.69 1796.86 6597.56 6095.48 2598.77 15590.11 15099.44 4598.31 127
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 9994.12 12296.50 4998.00 8894.23 1891.48 22298.17 4090.72 13495.30 13796.47 13187.94 18896.98 28991.41 11897.61 23798.30 128
LS3D96.11 4895.83 6296.95 3794.75 25994.20 1997.34 1197.98 7297.31 1195.32 13696.77 11293.08 8999.20 8391.79 10698.16 20297.44 202
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4898.10 7794.07 2092.46 17598.13 4590.69 13593.75 19196.25 15298.03 297.02 28892.08 9695.55 28798.45 119
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2594.06 2196.10 5397.78 9592.73 7293.48 19996.72 11994.23 6699.42 2991.99 9999.29 6899.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PM-MVS93.33 13892.67 16195.33 8996.58 16394.06 2192.26 18892.18 29585.92 22996.22 9596.61 12685.64 22495.99 32090.35 13798.23 19595.93 262
MSP-MVS95.34 7494.63 10597.48 1498.67 2994.05 2396.41 3998.18 3691.26 12195.12 14695.15 20386.60 21399.50 1993.43 5796.81 26198.89 70
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2393.69 14297.62 10294.46 4596.29 8996.94 10093.56 7399.37 5694.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6397.62 10294.46 4596.29 8996.94 10093.56 7399.37 5694.29 2499.42 4798.99 53
anonymousdsp96.74 1796.42 2997.68 798.00 8894.03 2696.97 1797.61 10587.68 20298.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
XVS96.49 2996.18 4297.44 1798.56 3893.99 2796.50 3297.95 7894.58 4194.38 17396.49 13094.56 5999.39 4893.57 4499.05 10198.93 63
X-MVStestdata90.70 20788.45 24997.44 1798.56 3893.99 2796.50 3297.95 7894.58 4194.38 17326.89 37294.56 5999.39 4893.57 4499.05 10198.93 63
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1298.17 4093.11 7096.48 7997.36 7596.92 699.34 6294.31 2399.38 5598.92 67
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3493.88 3096.95 1898.18 3692.26 8596.33 8596.84 11095.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.35 497.24 1197.69 598.22 7093.87 3198.42 698.19 3596.95 1495.46 13099.23 493.45 7599.57 1395.34 1299.89 299.63 9
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2593.86 3299.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17996.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PGM-MVS96.32 4195.94 5597.43 1998.59 3793.84 3395.33 8298.30 2391.40 11895.76 11696.87 10695.26 3599.45 2392.77 8099.21 8299.00 51
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9293.82 3496.31 4598.25 2795.51 3596.99 6097.05 9595.63 2199.39 4893.31 6298.88 12098.75 85
ACMMPR96.46 3296.14 4597.41 2198.60 3593.82 3496.30 4797.96 7692.35 8295.57 12596.61 12694.93 5199.41 3693.78 3899.15 9199.00 51
region2R96.41 3796.09 4897.38 2398.62 3293.81 3696.32 4497.96 7692.26 8595.28 13996.57 12895.02 4799.41 3693.63 4299.11 9698.94 62
N_pmnet88.90 25287.25 27293.83 15494.40 27493.81 3684.73 33987.09 33279.36 29593.26 20892.43 29179.29 26991.68 35977.50 31397.22 24896.00 259
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9493.58 3894.09 13096.99 15391.05 12692.40 23595.22 20291.03 14399.25 7792.11 9498.69 14597.90 166
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1292.35 8295.95 10796.41 13696.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS96.39 3996.17 4497.04 3198.51 4793.37 4096.30 4797.98 7292.35 8295.63 12296.47 13195.37 2899.27 7593.78 3899.14 9298.48 116
#test#95.89 5495.51 7197.04 3198.51 4793.37 4095.14 9197.98 7289.34 16395.63 12296.47 13195.37 2899.27 7591.99 9999.14 9298.48 116
ITE_SJBPF95.95 5897.34 12893.36 4296.55 18691.93 9494.82 16095.39 19891.99 11597.08 28685.53 23397.96 21997.41 203
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5793.04 4394.54 11898.05 6090.45 14296.31 8796.76 11492.91 9498.72 16191.19 12099.42 4798.32 125
CPTT-MVS94.74 9894.12 12296.60 4598.15 7493.01 4495.84 6497.66 10089.21 16993.28 20695.46 19288.89 17498.98 11589.80 15798.82 13197.80 177
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5295.96 21392.96 4589.48 27697.46 11685.14 24196.23 9495.42 19593.19 8498.08 22690.37 13698.76 13997.38 209
ACMM88.83 996.30 4396.07 5096.97 3598.39 5892.95 4694.74 10598.03 6590.82 13297.15 5196.85 10796.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL89.18 24488.02 26292.64 19295.90 21892.87 4788.67 29791.06 30880.34 28390.03 28091.67 30583.34 23494.42 34276.35 32194.84 30490.64 352
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2792.79 4896.08 5498.16 4391.74 10995.34 13596.36 14495.68 1999.44 2494.41 2199.28 7398.97 59
GST-MVS96.24 4495.99 5497.00 3498.65 3092.71 4995.69 7098.01 6992.08 9095.74 11896.28 14995.22 3799.42 2993.17 6999.06 9898.88 72
mvs_tets96.83 996.71 1997.17 2798.83 2392.51 5096.58 2997.61 10587.57 20598.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
jajsoiax96.59 2796.42 2997.12 2998.76 2892.49 5196.44 3797.42 11886.96 21498.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
AllTest94.88 9194.51 11096.00 5698.02 8692.17 5295.26 8598.43 1390.48 14095.04 15296.74 11692.54 10497.86 24685.11 24098.98 10997.98 156
TestCases96.00 5698.02 8692.17 5298.43 1390.48 14095.04 15296.74 11692.54 10497.86 24685.11 24098.98 10997.98 156
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6292.13 5495.33 8298.25 2791.78 10597.07 5397.22 8696.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6292.13 5498.25 2791.78 10597.07 5397.22 8696.38 1399.28 7392.07 9799.59 2799.11 41
LF4IMVS92.72 16392.02 17494.84 10995.65 23291.99 5692.92 15896.60 18085.08 24592.44 23393.62 26086.80 20996.35 31186.81 21598.25 19296.18 253
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3191.96 5795.70 6898.01 6993.34 6796.64 7496.57 12894.99 4999.36 5893.48 5199.34 5898.82 78
Skip Steuart: Steuart Systems R&D Blog.
F-COLMAP92.28 17691.06 20095.95 5897.52 11891.90 5893.53 14597.18 14083.98 25588.70 30694.04 24688.41 17998.55 18980.17 28895.99 27897.39 207
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 6994.15 5098.93 399.07 588.07 18499.57 1395.86 999.69 1599.46 18
MAR-MVS90.32 22188.87 24494.66 11794.82 25591.85 5994.22 12594.75 24780.91 27987.52 32188.07 34586.63 21297.87 24576.67 31896.21 27494.25 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_djsdf96.62 2396.49 2897.01 3398.55 4191.77 6197.15 1397.37 12088.98 17298.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
ACMP88.15 1395.71 6195.43 7596.54 4798.17 7391.73 6294.24 12498.08 5389.46 15996.61 7696.47 13195.85 1799.12 9390.45 13299.56 3398.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PHI-MVS94.34 11493.80 12795.95 5895.65 23291.67 6394.82 10297.86 8387.86 19693.04 21794.16 24391.58 12598.78 15190.27 14398.96 11597.41 203
ACMMP_NAP96.21 4596.12 4796.49 5098.90 1891.42 6494.57 11398.03 6590.42 14396.37 8297.35 7895.68 1999.25 7794.44 2099.34 5898.80 80
OMC-MVS94.22 12093.69 13295.81 6897.25 13091.27 6592.27 18797.40 11987.10 21394.56 16895.42 19593.74 7198.11 22586.62 22098.85 12498.06 144
MP-MVS-pluss96.08 4995.92 5796.57 4699.06 1091.21 6693.25 15198.32 2087.89 19596.86 6597.38 7195.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft95.77 5995.54 7096.47 5198.27 6691.19 6795.09 9297.79 9486.48 21897.42 4597.51 6594.47 6399.29 7193.55 4699.29 6898.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNLPA91.72 18791.20 19693.26 17296.17 19691.02 6891.14 22995.55 22690.16 14790.87 26393.56 26386.31 21594.40 34379.92 29497.12 25094.37 305
OPM-MVS95.61 6495.45 7396.08 5498.49 5591.00 6992.65 16797.33 12990.05 14896.77 7096.85 10795.04 4598.56 18792.77 8099.06 9898.70 94
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_LR93.66 13193.28 14794.80 11096.25 19190.95 7090.21 25495.43 22987.91 19393.74 19394.40 23492.88 9696.38 30990.39 13498.28 18797.07 217
Gipumacopyleft95.31 7795.80 6493.81 15597.99 9190.91 7196.42 3897.95 7896.69 1791.78 25198.85 1291.77 12095.49 32791.72 10999.08 9795.02 290
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVScopyleft95.00 8594.69 10095.93 6197.38 12690.88 7294.59 11097.81 9089.22 16895.46 13096.17 15793.42 7899.34 6289.30 16698.87 12397.56 194
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + GP.93.07 15192.41 16895.06 10295.82 22090.87 7390.97 23392.61 28988.04 19294.61 16793.79 25788.08 18397.81 25089.41 16598.39 17296.50 240
3Dnovator+92.74 295.86 5795.77 6596.13 5396.81 15490.79 7496.30 4797.82 8996.13 2594.74 16497.23 8591.33 13199.16 8693.25 6698.30 18698.46 118
hse-mvs292.24 17891.20 19695.38 8696.16 19790.65 7592.52 17092.01 30289.23 16693.95 18592.99 27576.88 29198.69 16991.02 12296.03 27696.81 229
h-mvs3392.89 15691.99 17595.58 8096.97 14390.55 7693.94 13694.01 26589.23 16693.95 18596.19 15476.88 29199.14 8991.02 12295.71 28497.04 220
AUN-MVS90.05 23188.30 25295.32 9296.09 20390.52 7792.42 17892.05 30182.08 27588.45 30992.86 27765.76 33298.69 16988.91 17896.07 27596.75 233
testtj94.81 9694.42 11196.01 5597.23 13190.51 7894.77 10497.85 8691.29 12094.92 15795.66 18091.71 12299.40 4388.07 19698.25 19298.11 143
ZD-MVS97.23 13190.32 7997.54 11084.40 25394.78 16295.79 17292.76 9999.39 4888.72 18498.40 169
DeepC-MVS91.39 495.43 7095.33 7895.71 7697.67 11090.17 8093.86 13898.02 6787.35 20796.22 9597.99 4294.48 6299.05 10492.73 8399.68 1897.93 162
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft85.34 1590.40 21588.92 24194.85 10896.53 17090.02 8191.58 22096.48 18980.16 28586.14 32992.18 29485.73 22198.25 21476.87 31794.61 31096.30 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Regformer-294.86 9294.55 10795.77 7292.83 30389.98 8291.87 20996.40 19194.38 4796.19 9995.04 21092.47 10799.04 10793.49 4898.31 18498.28 129
ETH3D cwj APD-0.1693.99 12693.38 14495.80 7096.82 15289.92 8392.72 16398.02 6784.73 25193.65 19595.54 18991.68 12399.22 8188.78 18198.49 16598.26 131
test_prior489.91 8490.74 238
NCCC94.08 12493.54 13995.70 7796.49 17289.90 8592.39 18096.91 16090.64 13792.33 24194.60 22890.58 15398.96 12090.21 14797.70 23298.23 132
DPE-MVScopyleft95.89 5495.88 5895.92 6397.93 9389.83 8693.46 14798.30 2392.37 8097.75 2996.95 9995.14 3999.51 1891.74 10899.28 7398.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETH3D-3000-0.194.86 9294.55 10795.81 6897.61 11389.72 8794.05 13198.37 1788.09 19195.06 15195.85 16792.58 10299.10 9790.33 14098.99 10898.62 105
TAPA-MVS88.58 1092.49 17191.75 18394.73 11396.50 17189.69 8892.91 15997.68 9978.02 30792.79 22394.10 24490.85 14497.96 23884.76 24698.16 20296.54 235
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SF-MVS95.88 5695.88 5895.87 6798.12 7589.65 8995.58 7498.56 1191.84 10196.36 8396.68 12194.37 6499.32 6892.41 9199.05 10198.64 101
MSC_two_6792asdad95.90 6496.54 16789.57 9096.87 16499.41 3694.06 3099.30 6598.72 91
No_MVS95.90 6496.54 16789.57 9096.87 16499.41 3694.06 3099.30 6598.72 91
TEST996.45 17489.46 9290.60 24296.92 15879.09 29890.49 26994.39 23591.31 13298.88 129
train_agg92.71 16491.83 17995.35 8796.45 17489.46 9290.60 24296.92 15879.37 29390.49 26994.39 23591.20 13898.88 12988.66 18598.43 16797.72 183
OPU-MVS95.15 9996.84 15189.43 9495.21 8695.66 18093.12 8798.06 22786.28 22898.61 15197.95 160
test_part298.21 7189.41 9596.72 71
Vis-MVSNetpermissive95.50 6795.48 7295.56 8298.11 7689.40 9695.35 8098.22 3292.36 8194.11 17798.07 3792.02 11399.44 2493.38 6097.67 23497.85 172
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APDe-MVS96.46 3296.64 2295.93 6197.68 10989.38 9796.90 1998.41 1692.52 7797.43 4397.92 4595.11 4299.50 1994.45 1999.30 6598.92 67
CNVR-MVS94.58 10494.29 11695.46 8596.94 14589.35 9891.81 21596.80 16989.66 15593.90 18895.44 19492.80 9898.72 16192.74 8298.52 16098.32 125
test_896.37 17689.14 9990.51 24596.89 16179.37 29390.42 27194.36 23791.20 13898.82 139
ACMH+88.43 1196.48 3096.82 1695.47 8498.54 4389.06 10095.65 7198.61 996.10 2698.16 2397.52 6396.90 798.62 17890.30 14199.60 2598.72 91
Regformer-494.90 8994.67 10395.59 7992.78 30589.02 10192.39 18095.91 21094.50 4396.41 8095.56 18792.10 11299.01 11294.23 2698.14 20498.74 88
MIMVSNet195.52 6695.45 7395.72 7599.14 589.02 10196.23 5096.87 16493.73 5997.87 2798.49 2490.73 14999.05 10486.43 22599.60 2599.10 44
UniMVSNet (Re)95.32 7595.15 8595.80 7097.79 9988.91 10392.91 15998.07 5693.46 6596.31 8795.97 16490.14 15999.34 6292.11 9499.64 2399.16 36
agg_prior192.60 16791.76 18295.10 10196.20 19388.89 10490.37 24996.88 16279.67 29090.21 27494.41 23391.30 13398.78 15188.46 18898.37 17997.64 189
agg_prior96.20 19388.89 10496.88 16290.21 27498.78 151
SD-MVS95.19 8195.73 6693.55 16196.62 16188.88 10694.67 10798.05 6091.26 12197.25 5096.40 13795.42 2694.36 34492.72 8499.19 8597.40 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.96 8794.75 9795.57 8198.86 2188.69 10796.37 4096.81 16885.23 23894.75 16397.12 9191.85 11899.40 4393.45 5398.33 18198.62 105
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
plane_prior797.71 10588.68 108
wuyk23d87.83 26990.79 20678.96 35090.46 33988.63 10992.72 16390.67 31291.65 11398.68 1197.64 5796.06 1677.53 37159.84 36699.41 5270.73 369
DP-MVS95.62 6395.84 6194.97 10497.16 13688.62 11094.54 11897.64 10196.94 1596.58 7797.32 8193.07 9098.72 16190.45 13298.84 12597.57 192
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7397.69 10888.59 11192.26 18897.84 8794.91 3896.80 6895.78 17590.42 15499.41 3691.60 11399.58 3199.29 28
DU-MVS95.28 7895.12 8795.75 7497.75 10188.59 11192.58 16897.81 9093.99 5296.80 6895.90 16590.10 16399.41 3691.60 11399.58 3199.26 29
nrg03096.32 4196.55 2695.62 7897.83 9688.55 11395.77 6698.29 2692.68 7398.03 2697.91 4695.13 4098.95 12293.85 3699.49 3899.36 24
Regformer-194.55 10594.33 11595.19 9792.83 30388.54 11491.87 20995.84 21493.99 5295.95 10795.04 21092.00 11498.79 14793.14 7198.31 18498.23 132
PS-MVSNAJss96.01 5196.04 5295.89 6698.82 2488.51 11595.57 7597.88 8288.72 17898.81 698.86 1090.77 14599.60 895.43 1199.53 3599.57 13
CDPH-MVS92.67 16591.83 17995.18 9896.94 14588.46 11690.70 24097.07 14877.38 30992.34 24095.08 20892.67 10198.88 12985.74 23198.57 15498.20 136
plane_prior388.43 11790.35 14593.31 203
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12594.66 26788.25 11892.05 19596.65 17889.62 15690.08 27791.23 31092.56 10398.60 18186.30 22796.27 27396.90 225
plane_prior697.21 13488.23 11986.93 205
RRT_MVS91.36 19690.05 22395.29 9389.21 35288.15 12092.51 17494.89 24186.73 21795.54 12695.68 17961.82 35199.30 7094.91 1399.13 9598.43 120
HQP_MVS94.26 11893.93 12495.23 9697.71 10588.12 12194.56 11497.81 9091.74 10993.31 20395.59 18286.93 20598.95 12289.26 17098.51 16298.60 108
plane_prior88.12 12193.01 15588.98 17298.06 212
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8997.46 12388.05 12392.04 19698.42 1587.63 20396.36 8396.68 12194.37 6499.32 6892.41 9199.05 10198.64 101
save fliter97.46 12388.05 12392.04 19697.08 14787.63 203
UGNet93.08 14992.50 16694.79 11193.87 28687.99 12595.07 9494.26 25990.64 13787.33 32397.67 5586.89 20898.49 19388.10 19498.71 14297.91 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12296.14 19987.90 12693.36 15097.14 14285.53 23593.90 18895.45 19391.30 13398.59 18389.51 16398.62 15097.31 212
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CSCG94.69 10094.75 9794.52 12697.55 11787.87 12795.01 9797.57 10892.68 7396.20 9793.44 26591.92 11798.78 15189.11 17499.24 7896.92 224
pmmvs-eth3d91.54 19190.73 20893.99 14395.76 22587.86 12890.83 23693.98 26678.23 30694.02 18496.22 15382.62 24596.83 29586.57 22198.33 18197.29 213
pmmvs696.80 1397.36 995.15 9999.12 887.82 12996.68 2597.86 8396.10 2698.14 2499.28 397.94 398.21 21691.38 11999.69 1599.42 19
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8398.26 6787.69 13093.75 14097.86 8395.96 3097.48 4197.14 9095.33 3299.44 2490.79 12799.76 1199.38 22
DROMVSNet95.44 6995.62 6994.89 10696.93 14787.69 13096.48 3499.14 393.93 5592.77 22494.52 23193.95 7099.49 2293.62 4399.22 8197.51 197
alignmvs93.26 14392.85 15494.50 12795.70 22887.45 13293.45 14895.76 21591.58 11495.25 14292.42 29281.96 25298.72 16191.61 11297.87 22497.33 211
112190.26 22389.23 23393.34 16897.15 13887.40 13391.94 20394.39 25567.88 35491.02 26294.91 21686.91 20798.59 18381.17 28097.71 23194.02 314
UniMVSNet_ETH3D97.13 697.72 395.35 8799.51 287.38 13497.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12899.73 1499.59 12
新几何193.17 17497.16 13687.29 13594.43 25467.95 35391.29 25694.94 21586.97 20498.23 21581.06 28297.75 22793.98 315
test_prior393.29 14092.85 15494.61 11895.95 21487.23 13690.21 25497.36 12589.33 16490.77 26494.81 22090.41 15598.68 17188.21 18998.55 15597.93 162
test_prior94.61 11895.95 21487.23 13697.36 12598.68 17197.93 162
NR-MVSNet95.28 7895.28 8195.26 9497.75 10187.21 13895.08 9397.37 12093.92 5797.65 3195.90 16590.10 16399.33 6790.11 15099.66 2199.26 29
test_one_060198.26 6787.14 13998.18 3694.25 4896.99 6097.36 7595.13 40
NP-MVS96.82 15287.10 14093.40 266
MVS_030490.96 20290.15 22193.37 16793.17 29587.06 14193.62 14492.43 29389.60 15782.25 35295.50 19082.56 24697.83 24984.41 25097.83 22695.22 284
3Dnovator92.54 394.80 9794.90 9194.47 13095.47 23987.06 14196.63 2697.28 13591.82 10494.34 17597.41 6990.60 15298.65 17692.47 8998.11 20897.70 184
canonicalmvs94.59 10394.69 10094.30 13695.60 23687.03 14395.59 7298.24 3091.56 11595.21 14592.04 29894.95 5098.66 17491.45 11797.57 23897.20 216
SED-MVS96.00 5296.41 3294.76 11298.51 4786.97 14495.21 8698.10 4991.95 9297.63 3297.25 8396.48 1199.35 5993.29 6399.29 6897.95 160
test_241102_ONE98.51 4786.97 14498.10 4991.85 9897.63 3297.03 9696.48 1198.95 122
MVS_111021_HR93.63 13293.42 14394.26 13796.65 15886.96 14689.30 28296.23 19988.36 18793.57 19794.60 22893.45 7597.77 25590.23 14598.38 17498.03 150
DP-MVS Recon92.31 17591.88 17893.60 15997.18 13586.87 14791.10 23197.37 12084.92 24892.08 24694.08 24588.59 17698.20 21783.50 25598.14 20495.73 272
v7n96.82 1097.31 1095.33 8998.54 4386.81 14896.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
test1294.43 13395.95 21486.75 14996.24 19889.76 28889.79 16798.79 14797.95 22097.75 182
test_0728_SECOND94.88 10798.55 4186.72 15095.20 8898.22 3299.38 5493.44 5599.31 6398.53 112
DVP-MVScopyleft95.82 5896.18 4294.72 11498.51 4786.69 15195.20 8897.00 15191.85 9897.40 4697.35 7895.58 2299.34 6293.44 5599.31 6398.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4786.69 15195.34 8198.18 3691.85 9897.63 3297.37 7295.58 22
DVP-MVS++95.93 5396.34 3494.70 11596.54 16786.66 15398.45 498.22 3293.26 6897.54 3797.36 7593.12 8799.38 5493.88 3498.68 14698.04 147
IU-MVS98.51 4786.66 15396.83 16772.74 33495.83 11493.00 7699.29 6898.64 101
EG-PatchMatch MVS94.54 10794.67 10394.14 14097.87 9586.50 15592.00 19996.74 17488.16 19096.93 6297.61 5893.04 9197.90 24091.60 11398.12 20798.03 150
MVP-Stereo90.07 23088.92 24193.54 16396.31 18586.49 15690.93 23495.59 22379.80 28691.48 25395.59 18280.79 26197.39 27778.57 30591.19 34796.76 232
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet89.55 23988.22 25793.53 16495.37 24486.49 15689.26 28393.59 26979.76 28891.15 26092.31 29377.12 28798.38 20277.51 31297.92 22295.71 273
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet94.49 10894.35 11494.92 10598.25 6986.46 15897.13 1594.31 25796.24 2496.28 9296.36 14482.88 23999.35 5988.19 19199.52 3798.96 60
WR-MVS_H96.60 2597.05 1495.24 9599.02 1286.44 15996.78 2498.08 5397.42 998.48 1697.86 4991.76 12199.63 694.23 2699.84 399.66 6
PMMVS83.00 31281.11 32088.66 29883.81 37486.44 15982.24 35585.65 34461.75 36682.07 35485.64 35879.75 26691.59 36075.99 32393.09 33087.94 359
TAMVS90.16 22589.05 23893.49 16696.49 17286.37 16190.34 25192.55 29080.84 28292.99 21894.57 23081.94 25398.20 21773.51 33498.21 19895.90 265
AdaColmapbinary91.63 18991.36 19292.47 20295.56 23786.36 16292.24 19096.27 19688.88 17689.90 28392.69 28391.65 12498.32 20777.38 31497.64 23592.72 338
Anonymous2023121196.60 2597.13 1295.00 10397.46 12386.35 16397.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
ETV-MVS92.99 15392.74 15893.72 15695.86 21986.30 16492.33 18497.84 8791.70 11292.81 22286.17 35692.22 10999.19 8488.03 19797.73 22895.66 276
Regformer-394.28 11694.23 12194.46 13192.78 30586.28 16592.39 18094.70 24993.69 6395.97 10595.56 18791.34 13098.48 19793.45 5398.14 20498.62 105
API-MVS91.52 19291.61 18491.26 23594.16 27786.26 16694.66 10894.82 24491.17 12492.13 24591.08 31390.03 16697.06 28779.09 30297.35 24590.45 353
EPNet89.80 23888.25 25494.45 13283.91 37386.18 16793.87 13787.07 33391.16 12580.64 36194.72 22578.83 27198.89 12885.17 23598.89 11898.28 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM85.08 30183.04 31091.19 24087.56 35986.14 16889.40 27984.44 35688.98 17282.20 35397.95 4356.82 36196.15 31476.55 32083.45 36391.30 348
VDD-MVS94.37 11194.37 11394.40 13497.49 12086.07 16993.97 13593.28 27494.49 4496.24 9397.78 5087.99 18798.79 14788.92 17799.14 9298.34 124
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11892.55 30785.98 17092.44 17694.69 25093.70 6096.12 10295.81 17191.24 13598.86 13493.76 4198.22 19798.98 58
Anonymous2024052995.50 6795.83 6294.50 12797.33 12985.93 17195.19 9096.77 17296.64 1997.61 3598.05 3893.23 8398.79 14788.60 18699.04 10698.78 82
EI-MVSNet-UG-set94.35 11394.27 11994.59 12392.46 30885.87 17292.42 17894.69 25093.67 6496.13 10195.84 17091.20 13898.86 13493.78 3898.23 19599.03 49
PCF-MVS84.52 1789.12 24687.71 26593.34 16896.06 20585.84 17386.58 33097.31 13068.46 35293.61 19693.89 25487.51 19498.52 19167.85 35798.11 20895.66 276
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_040295.73 6096.22 4094.26 13798.19 7285.77 17493.24 15297.24 13796.88 1697.69 3097.77 5294.12 6899.13 9191.54 11699.29 6897.88 168
MCST-MVS92.91 15592.51 16594.10 14197.52 11885.72 17591.36 22697.13 14480.33 28492.91 22194.24 23991.23 13698.72 16189.99 15497.93 22197.86 170
pmmvs488.95 25187.70 26692.70 19094.30 27585.60 17687.22 31292.16 29774.62 32389.75 28994.19 24177.97 28096.41 30782.71 26296.36 27296.09 255
EPP-MVSNet93.91 12793.68 13394.59 12398.08 7885.55 17797.44 1094.03 26294.22 4994.94 15596.19 15482.07 25099.57 1387.28 21098.89 11898.65 97
CMPMVSbinary68.83 2287.28 28285.67 29592.09 21388.77 35685.42 17890.31 25294.38 25670.02 34788.00 31593.30 26873.78 30394.03 34875.96 32496.54 26896.83 228
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMH88.36 1296.59 2797.43 594.07 14298.56 3885.33 17996.33 4398.30 2394.66 4098.72 898.30 3097.51 598.00 23494.87 1499.59 2798.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22296.95 14485.27 18088.83 29193.61 26865.09 36190.74 26694.85 21984.62 22997.36 24493.91 316
GeoE94.55 10594.68 10294.15 13997.23 13185.11 18194.14 12897.34 12888.71 17995.26 14095.50 19094.65 5799.12 9390.94 12598.40 16998.23 132
pm-mvs195.43 7095.94 5593.93 14898.38 5985.08 18295.46 7997.12 14591.84 10197.28 4898.46 2595.30 3497.71 26090.17 14899.42 4798.99 53
HQP5-MVS84.89 183
HQP-MVS92.09 18191.49 18993.88 15296.36 17884.89 18391.37 22397.31 13087.16 21088.81 30093.40 26684.76 22798.60 18186.55 22297.73 22898.14 139
DTE-MVSNet96.74 1797.43 594.67 11699.13 684.68 18596.51 3197.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 18696.54 3098.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
ETH3 D test640091.91 18491.25 19593.89 15196.59 16284.41 18792.10 19397.72 9878.52 30391.82 25093.78 25888.70 17599.13 9183.61 25498.39 17298.14 139
GBi-Net93.21 14692.96 15193.97 14595.40 24184.29 18895.99 5696.56 18388.63 18095.10 14798.53 2181.31 25798.98 11586.74 21698.38 17498.65 97
test193.21 14692.96 15193.97 14595.40 24184.29 18895.99 5696.56 18388.63 18095.10 14798.53 2181.31 25798.98 11586.74 21698.38 17498.65 97
FMVSNet194.84 9495.13 8693.97 14597.60 11484.29 18895.99 5696.56 18392.38 7997.03 5798.53 2190.12 16098.98 11588.78 18199.16 9098.65 97
原ACMM192.87 18496.91 14884.22 19197.01 15076.84 31489.64 29094.46 23288.00 18698.70 16781.53 27598.01 21795.70 274
DPM-MVS89.35 24288.40 25092.18 21096.13 20284.20 19286.96 31796.15 20575.40 32087.36 32291.55 30883.30 23598.01 23382.17 27096.62 26794.32 307
旧先验196.20 19384.17 19394.82 24495.57 18689.57 16997.89 22396.32 247
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19194.53 27184.10 19495.70 6897.03 14982.44 27291.14 26196.42 13588.47 17898.38 20285.95 23097.47 24195.55 280
PS-CasMVS96.69 2097.43 594.49 12999.13 684.09 19596.61 2797.97 7597.91 598.64 1398.13 3495.24 3699.65 393.39 5999.84 399.72 2
EIA-MVS92.35 17492.03 17393.30 17195.81 22283.97 19692.80 16298.17 4087.71 20089.79 28787.56 34691.17 14199.18 8587.97 19897.27 24696.77 231
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18197.73 10483.95 19792.14 19297.46 11678.85 30292.35 23894.98 21384.16 23199.08 9986.36 22696.77 26395.79 270
CP-MVSNet96.19 4696.80 1794.38 13598.99 1483.82 19896.31 4597.53 11297.60 798.34 1997.52 6391.98 11699.63 693.08 7499.81 999.70 3
lessismore_v093.87 15398.05 8183.77 19980.32 36797.13 5297.91 4677.49 28299.11 9592.62 8698.08 21198.74 88
CLD-MVS91.82 18591.41 19193.04 17596.37 17683.65 20086.82 32297.29 13384.65 25292.27 24289.67 33292.20 11097.85 24883.95 25299.47 3997.62 190
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet92.38 17391.99 17593.52 16593.82 28883.46 20191.14 22997.00 15189.81 15386.47 32794.04 24687.90 18999.21 8289.50 16498.27 18897.90 166
QAPM92.88 15792.77 15693.22 17395.82 22083.31 20296.45 3597.35 12783.91 25693.75 19196.77 11289.25 17298.88 12984.56 24897.02 25397.49 198
Effi-MVS+92.79 16092.74 15892.94 18195.10 24983.30 20394.00 13397.53 11291.36 11989.35 29390.65 32294.01 6998.66 17487.40 20895.30 29596.88 227
Anonymous20240521192.58 16892.50 16692.83 18696.55 16683.22 20492.43 17791.64 30594.10 5195.59 12496.64 12481.88 25497.50 26885.12 23998.52 16097.77 179
SixPastTwentyTwo94.91 8895.21 8393.98 14498.52 4683.19 20595.93 6094.84 24394.86 3998.49 1598.74 1681.45 25599.60 894.69 1699.39 5499.15 37
VPA-MVSNet95.14 8295.67 6893.58 16097.76 10083.15 20694.58 11297.58 10793.39 6697.05 5698.04 3993.25 8298.51 19289.75 16099.59 2799.08 45
LCM-MVSNet-Re94.20 12194.58 10693.04 17595.91 21783.13 20793.79 13999.19 292.00 9198.84 598.04 3993.64 7299.02 11081.28 27798.54 15896.96 223
CS-MVS-test93.33 13893.53 14192.71 18995.74 22683.08 20894.55 11698.85 591.02 12789.30 29491.91 29991.79 11999.23 8090.23 14598.41 16895.82 268
MSDG90.82 20390.67 20991.26 23594.16 27783.08 20886.63 32796.19 20290.60 13991.94 24891.89 30089.16 17395.75 32280.96 28394.51 31194.95 292
ambc92.98 17796.88 14983.01 21095.92 6196.38 19396.41 8097.48 6688.26 18097.80 25189.96 15598.93 11798.12 142
test_part194.39 11094.55 10793.92 14996.14 19982.86 21195.54 7698.09 5295.36 3698.27 2098.36 2875.91 29699.44 2493.41 5899.84 399.47 17
MSLP-MVS++93.25 14593.88 12591.37 23196.34 18282.81 21293.11 15397.74 9689.37 16294.08 17995.29 20190.40 15796.35 31190.35 13798.25 19294.96 291
K. test v393.37 13793.27 14893.66 15798.05 8182.62 21394.35 12186.62 33596.05 2897.51 4098.85 1276.59 29499.65 393.21 6798.20 20098.73 90
Fast-Effi-MVS+91.28 19990.86 20392.53 19995.45 24082.53 21489.25 28596.52 18785.00 24689.91 28288.55 34292.94 9298.84 13784.72 24795.44 29196.22 251
VDDNet94.03 12594.27 11993.31 17098.87 2082.36 21595.51 7891.78 30497.19 1296.32 8698.60 1884.24 23098.75 15687.09 21398.83 13098.81 79
114514_t90.51 21189.80 22792.63 19498.00 8882.24 21693.40 14997.29 13365.84 35989.40 29294.80 22386.99 20398.75 15683.88 25398.61 15196.89 226
testdata91.03 24396.87 15082.01 21794.28 25871.55 33892.46 23295.42 19585.65 22397.38 27982.64 26397.27 24693.70 322
FMVSNet292.78 16192.73 16092.95 18095.40 24181.98 21894.18 12695.53 22788.63 18096.05 10497.37 7281.31 25798.81 14487.38 20998.67 14898.06 144
TransMVSNet (Re)95.27 8096.04 5292.97 17898.37 6181.92 21995.07 9496.76 17393.97 5497.77 2898.57 1995.72 1897.90 24088.89 17999.23 7999.08 45
FC-MVSNet-test95.32 7595.88 5893.62 15898.49 5581.77 22095.90 6298.32 2093.93 5597.53 3997.56 6088.48 17799.40 4392.91 7999.83 699.68 4
FIs94.90 8995.35 7693.55 16198.28 6581.76 22195.33 8298.14 4493.05 7197.07 5397.18 8887.65 19199.29 7191.72 10999.69 1599.61 11
ab-mvs92.40 17292.62 16291.74 22197.02 14181.65 22295.84 6495.50 22886.95 21592.95 22097.56 6090.70 15097.50 26879.63 29597.43 24296.06 257
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
xiu_mvs_v1_base91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
casdiffmvs94.32 11594.80 9592.85 18596.05 20681.44 22692.35 18398.05 6091.53 11695.75 11796.80 11193.35 8098.49 19391.01 12498.32 18398.64 101
bset_n11_16_dypcd89.99 23389.15 23692.53 19994.75 25981.34 22784.19 34687.56 32985.13 24293.77 19092.46 28772.82 30599.01 11292.46 9099.21 8297.23 214
ET-MVSNet_ETH3D86.15 29484.27 30391.79 21993.04 29981.28 22887.17 31486.14 33879.57 29183.65 34388.66 34057.10 35998.18 22087.74 20295.40 29295.90 265
V4293.43 13693.58 13692.97 17895.34 24581.22 22992.67 16696.49 18887.25 20996.20 9796.37 14387.32 19798.85 13692.39 9398.21 19898.85 76
OpenMVS_ROBcopyleft85.12 1689.52 24189.05 23890.92 24894.58 26981.21 23091.10 23193.41 27377.03 31393.41 20093.99 25083.23 23697.80 25179.93 29294.80 30593.74 321
PAPM_NR91.03 20190.81 20591.68 22496.73 15681.10 23193.72 14196.35 19488.19 18988.77 30492.12 29785.09 22697.25 28182.40 26793.90 31996.68 234
baseline94.26 11894.80 9592.64 19296.08 20480.99 23293.69 14298.04 6490.80 13394.89 15896.32 14693.19 8498.48 19791.68 11198.51 16298.43 120
1112_ss88.42 26087.41 26991.45 22996.69 15780.99 23289.72 27196.72 17573.37 33087.00 32590.69 32077.38 28498.20 21781.38 27693.72 32295.15 286
tfpnnormal94.27 11794.87 9392.48 20197.71 10580.88 23494.55 11695.41 23093.70 6096.67 7397.72 5391.40 12998.18 22087.45 20699.18 8798.36 123
Baseline_NR-MVSNet94.47 10995.09 8892.60 19698.50 5480.82 23592.08 19496.68 17693.82 5896.29 8998.56 2090.10 16397.75 25890.10 15299.66 2199.24 31
HyFIR lowres test87.19 28685.51 29692.24 20597.12 14080.51 23685.03 33796.06 20666.11 35891.66 25292.98 27670.12 31599.14 8975.29 32695.23 29797.07 217
UnsupCasMVSNet_eth90.33 22090.34 21690.28 26694.64 26880.24 23789.69 27295.88 21185.77 23193.94 18795.69 17881.99 25192.98 35584.21 25191.30 34697.62 190
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22794.68 26680.16 23885.49 33492.14 29890.41 14494.93 15695.79 17285.10 22596.93 29285.15 23794.19 31897.57 192
v1094.68 10195.27 8292.90 18396.57 16480.15 23994.65 10997.57 10890.68 13697.43 4398.00 4188.18 18199.15 8794.84 1599.55 3499.41 20
VNet92.67 16592.96 15191.79 21996.27 18880.15 23991.95 20194.98 23892.19 8894.52 17096.07 15987.43 19597.39 27784.83 24498.38 17497.83 173
DELS-MVS92.05 18292.16 17091.72 22294.44 27280.13 24187.62 30397.25 13687.34 20892.22 24393.18 27289.54 17098.73 16089.67 16198.20 20096.30 248
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason89.17 24588.32 25191.70 22395.73 22780.07 24288.10 30093.22 27571.98 33790.09 27692.79 28078.53 27698.56 18787.43 20797.06 25196.46 242
jason: jason.
MVSFormer92.18 17992.23 16992.04 21594.74 26180.06 24397.15 1397.37 12088.98 17288.83 29892.79 28077.02 28899.60 896.41 496.75 26496.46 242
lupinMVS88.34 26287.31 27091.45 22994.74 26180.06 24387.23 31192.27 29471.10 34188.83 29891.15 31177.02 28898.53 19086.67 21996.75 26495.76 271
WR-MVS93.49 13493.72 13092.80 18797.57 11680.03 24590.14 25895.68 21793.70 6096.62 7595.39 19887.21 19999.04 10787.50 20599.64 2399.33 25
CANet_DTU89.85 23689.17 23591.87 21792.20 31380.02 24690.79 23795.87 21286.02 22782.53 35191.77 30380.01 26598.57 18685.66 23297.70 23297.01 221
Patchmatch-RL test88.81 25488.52 24789.69 28195.33 24679.94 24786.22 33192.71 28578.46 30495.80 11594.18 24266.25 33095.33 33389.22 17298.53 15993.78 319
FMVSNet390.78 20590.32 21792.16 21193.03 30079.92 24892.54 16994.95 23986.17 22595.10 14796.01 16269.97 31698.75 15686.74 21698.38 17497.82 175
XXY-MVS92.58 16893.16 15090.84 25297.75 10179.84 24991.87 20996.22 20185.94 22895.53 12797.68 5492.69 10094.48 34083.21 25897.51 23998.21 135
test_yl90.11 22789.73 23091.26 23594.09 28079.82 25090.44 24692.65 28690.90 12893.19 21293.30 26873.90 30198.03 22982.23 26896.87 25995.93 262
DCV-MVSNet90.11 22789.73 23091.26 23594.09 28079.82 25090.44 24692.65 28690.90 12893.19 21293.30 26873.90 30198.03 22982.23 26896.87 25995.93 262
FMVSNet587.82 27086.56 28591.62 22592.31 30979.81 25293.49 14694.81 24683.26 25991.36 25596.93 10252.77 36897.49 27076.07 32298.03 21597.55 195
v894.65 10295.29 8092.74 18896.65 15879.77 25394.59 11097.17 14191.86 9797.47 4297.93 4488.16 18299.08 9994.32 2299.47 3999.38 22
tttt051789.81 23788.90 24392.55 19897.00 14279.73 25495.03 9683.65 35889.88 15295.30 13794.79 22453.64 36699.39 4891.99 9998.79 13698.54 111
v119293.49 13493.78 12892.62 19596.16 19779.62 25591.83 21497.22 13986.07 22696.10 10396.38 14287.22 19899.02 11094.14 2998.88 12099.22 32
v114493.50 13393.81 12692.57 19796.28 18779.61 25691.86 21396.96 15486.95 21595.91 11196.32 14687.65 19198.96 12093.51 4798.88 12099.13 39
BH-untuned90.68 20890.90 20190.05 27595.98 21279.57 25790.04 26194.94 24087.91 19394.07 18093.00 27487.76 19097.78 25479.19 30195.17 29892.80 336
KD-MVS_self_test94.10 12394.73 9992.19 20797.66 11179.49 25894.86 10197.12 14589.59 15896.87 6497.65 5690.40 15798.34 20689.08 17599.35 5798.75 85
CHOSEN 1792x268887.19 28685.92 29491.00 24697.13 13979.41 25984.51 34395.60 21964.14 36290.07 27994.81 22078.26 27897.14 28573.34 33595.38 29496.46 242
thisisatest053088.69 25787.52 26892.20 20696.33 18379.36 26092.81 16184.01 35786.44 21993.67 19492.68 28453.62 36799.25 7789.65 16298.45 16698.00 152
LFMVS91.33 19791.16 19991.82 21896.27 18879.36 26095.01 9785.61 34696.04 2994.82 16097.06 9472.03 31098.46 19984.96 24398.70 14497.65 188
TR-MVS87.70 27187.17 27489.27 28894.11 27979.26 26288.69 29591.86 30381.94 27690.69 26789.79 32982.82 24197.42 27472.65 34091.98 34391.14 349
test20.0390.80 20490.85 20490.63 25795.63 23479.24 26389.81 27092.87 28089.90 15194.39 17296.40 13785.77 22095.27 33573.86 33399.05 10197.39 207
IterMVS-SCA-FT91.65 18891.55 18591.94 21693.89 28579.22 26487.56 30693.51 27191.53 11695.37 13396.62 12578.65 27398.90 12691.89 10494.95 30197.70 184
EI-MVSNet92.99 15393.26 14992.19 20792.12 31579.21 26592.32 18594.67 25291.77 10795.24 14395.85 16787.14 20198.49 19391.99 9998.26 18998.86 73
IterMVS-LS93.78 12994.28 11792.27 20496.27 18879.21 26591.87 20996.78 17091.77 10796.57 7897.07 9387.15 20098.74 15991.99 9999.03 10798.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet87.89 26787.12 27690.22 26991.01 33178.93 26792.52 17092.81 28173.08 33289.10 29596.93 10267.11 32297.64 26388.80 18092.70 33594.08 309
RPMNet90.31 22290.14 22290.81 25391.01 33178.93 26792.52 17098.12 4691.91 9589.10 29596.89 10568.84 31799.41 3690.17 14892.70 33594.08 309
UnsupCasMVSNet_bld88.50 25988.03 26189.90 27795.52 23878.88 26987.39 31094.02 26479.32 29693.06 21594.02 24880.72 26294.27 34575.16 32793.08 33196.54 235
v2v48293.29 14093.63 13492.29 20396.35 18178.82 27091.77 21796.28 19588.45 18495.70 12196.26 15186.02 21998.90 12693.02 7598.81 13399.14 38
Anonymous2023120688.77 25588.29 25390.20 27196.31 18578.81 27189.56 27593.49 27274.26 32592.38 23695.58 18582.21 24795.43 33072.07 34298.75 14196.34 246
PVSNet_BlendedMVS90.35 21989.96 22491.54 22894.81 25678.80 27290.14 25896.93 15679.43 29288.68 30795.06 20986.27 21698.15 22380.27 28598.04 21497.68 186
PVSNet_Blended88.74 25688.16 26090.46 26394.81 25678.80 27286.64 32696.93 15674.67 32288.68 30789.18 33886.27 21698.15 22380.27 28596.00 27794.44 304
BH-RMVSNet90.47 21390.44 21490.56 26095.21 24878.65 27489.15 28693.94 26788.21 18892.74 22594.22 24086.38 21497.88 24278.67 30495.39 29395.14 287
D2MVS89.93 23489.60 23290.92 24894.03 28278.40 27588.69 29594.85 24278.96 30093.08 21495.09 20774.57 29996.94 29088.19 19198.96 11597.41 203
v192192093.26 14393.61 13592.19 20796.04 21078.31 27691.88 20897.24 13785.17 24096.19 9996.19 15486.76 21099.05 10494.18 2898.84 12599.22 32
v14419293.20 14893.54 13992.16 21196.05 20678.26 27791.95 20197.14 14284.98 24795.96 10696.11 15887.08 20299.04 10793.79 3798.84 12599.17 35
diffmvs91.74 18691.93 17791.15 24193.06 29878.17 27888.77 29397.51 11586.28 22292.42 23493.96 25188.04 18597.46 27190.69 13096.67 26697.82 175
CS-MVS92.12 18092.62 16290.60 25894.57 27078.12 27992.00 19998.58 1087.75 19990.08 27791.88 30189.79 16799.10 9790.35 13798.60 15394.58 300
sss87.23 28386.82 28088.46 30293.96 28377.94 28086.84 32092.78 28477.59 30887.61 32091.83 30278.75 27291.92 35877.84 30894.20 31795.52 281
MS-PatchMatch88.05 26687.75 26488.95 29193.28 29277.93 28187.88 30292.49 29175.42 31992.57 23093.59 26280.44 26394.24 34781.28 27792.75 33494.69 299
HY-MVS82.50 1886.81 29285.93 29389.47 28293.63 28977.93 28194.02 13291.58 30675.68 31683.64 34493.64 25977.40 28397.42 27471.70 34592.07 34293.05 333
v124093.29 14093.71 13192.06 21496.01 21177.89 28391.81 21597.37 12085.12 24396.69 7296.40 13786.67 21199.07 10394.51 1898.76 13999.22 32
CL-MVSNet_self_test90.04 23289.90 22690.47 26195.24 24777.81 28486.60 32992.62 28885.64 23493.25 21093.92 25283.84 23296.06 31879.93 29298.03 21597.53 196
Test_1112_low_res87.50 27886.58 28490.25 26896.80 15577.75 28587.53 30896.25 19769.73 34886.47 32793.61 26175.67 29797.88 24279.95 29093.20 32795.11 288
v14892.87 15893.29 14591.62 22596.25 19177.72 28691.28 22795.05 23689.69 15495.93 11096.04 16087.34 19698.38 20290.05 15397.99 21898.78 82
MVS84.98 30284.30 30287.01 31791.03 33077.69 28791.94 20394.16 26059.36 36784.23 34187.50 34885.66 22296.80 29671.79 34393.05 33286.54 360
miper_lstm_enhance89.90 23589.80 22790.19 27291.37 32877.50 28883.82 35095.00 23784.84 24993.05 21694.96 21476.53 29595.20 33689.96 15598.67 14897.86 170
pmmvs380.83 32878.96 33586.45 32187.23 36377.48 28984.87 33882.31 36163.83 36385.03 33489.50 33449.66 36993.10 35373.12 33895.10 29988.78 358
PAPR87.65 27486.77 28290.27 26792.85 30277.38 29088.56 29896.23 19976.82 31584.98 33589.75 33186.08 21897.16 28472.33 34193.35 32596.26 250
Vis-MVSNet (Re-imp)90.42 21490.16 21891.20 23997.66 11177.32 29194.33 12287.66 32891.20 12392.99 21895.13 20575.40 29898.28 20977.86 30799.19 8597.99 155
BH-w/o87.21 28487.02 27887.79 31294.77 25877.27 29287.90 30193.21 27781.74 27789.99 28188.39 34483.47 23396.93 29271.29 34792.43 33989.15 354
GA-MVS87.70 27186.82 28090.31 26593.27 29377.22 29384.72 34192.79 28385.11 24489.82 28590.07 32466.80 32597.76 25784.56 24894.27 31695.96 261
TinyColmap92.00 18392.76 15789.71 28095.62 23577.02 29490.72 23996.17 20487.70 20195.26 14096.29 14892.54 10496.45 30681.77 27298.77 13895.66 276
Patchmtry90.11 22789.92 22590.66 25690.35 34077.00 29592.96 15792.81 28190.25 14694.74 16496.93 10267.11 32297.52 26785.17 23598.98 10997.46 199
DIV-MVS_self_test90.65 20990.56 21290.91 25091.85 31976.99 29686.75 32395.36 23385.52 23794.06 18194.89 21777.37 28597.99 23690.28 14298.97 11397.76 180
cl____90.65 20990.56 21290.91 25091.85 31976.98 29786.75 32395.36 23385.53 23594.06 18194.89 21777.36 28697.98 23790.27 14398.98 10997.76 180
pmmvs587.87 26887.14 27590.07 27393.26 29476.97 29888.89 29092.18 29573.71 32988.36 31093.89 25476.86 29396.73 29880.32 28496.81 26196.51 237
eth_miper_zixun_eth90.72 20690.61 21091.05 24292.04 31776.84 29986.91 31896.67 17785.21 23994.41 17193.92 25279.53 26898.26 21389.76 15997.02 25398.06 144
c3_l91.32 19891.42 19091.00 24692.29 31076.79 30087.52 30996.42 19085.76 23294.72 16693.89 25482.73 24298.16 22290.93 12698.55 15598.04 147
MVSTER89.32 24388.75 24591.03 24390.10 34276.62 30190.85 23594.67 25282.27 27395.24 14395.79 17261.09 35498.49 19390.49 13198.26 18997.97 159
miper_ehance_all_eth90.48 21290.42 21590.69 25591.62 32476.57 30286.83 32196.18 20383.38 25894.06 18192.66 28582.20 24898.04 22889.79 15897.02 25397.45 200
cl2289.02 24788.50 24890.59 25989.76 34476.45 30386.62 32894.03 26282.98 26692.65 22792.49 28672.05 30997.53 26688.93 17697.02 25397.78 178
cascas87.02 29086.28 29189.25 28991.56 32676.45 30384.33 34596.78 17071.01 34286.89 32685.91 35781.35 25696.94 29083.09 25995.60 28694.35 306
ADS-MVSNet284.01 30782.20 31589.41 28489.04 35376.37 30587.57 30490.98 30972.71 33584.46 33892.45 28868.08 31896.48 30570.58 35283.97 36195.38 282
EU-MVSNet87.39 28086.71 28389.44 28393.40 29176.11 30694.93 10090.00 31557.17 36895.71 12097.37 7264.77 33897.68 26292.67 8594.37 31394.52 302
MIMVSNet87.13 28886.54 28688.89 29396.05 20676.11 30694.39 12088.51 32081.37 27888.27 31296.75 11572.38 30795.52 32565.71 36295.47 29095.03 289
IterMVS90.18 22490.16 21890.21 27093.15 29675.98 30887.56 30692.97 27986.43 22094.09 17896.40 13778.32 27797.43 27387.87 20094.69 30897.23 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_Test92.57 17093.29 14590.40 26493.53 29075.85 30992.52 17096.96 15488.73 17792.35 23896.70 12090.77 14598.37 20592.53 8895.49 28996.99 222
IB-MVS77.21 1983.11 31081.05 32189.29 28791.15 32975.85 30985.66 33386.00 34179.70 28982.02 35686.61 35248.26 37198.39 20077.84 30892.22 34093.63 323
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VPNet93.08 14993.76 12991.03 24398.60 3575.83 31191.51 22195.62 21891.84 10195.74 11897.10 9289.31 17198.32 20785.07 24299.06 9898.93 63
miper_enhance_ethall88.42 26087.87 26390.07 27388.67 35775.52 31285.10 33695.59 22375.68 31692.49 23189.45 33578.96 27097.88 24287.86 20197.02 25396.81 229
Anonymous2024052192.86 15993.57 13790.74 25496.57 16475.50 31394.15 12795.60 21989.38 16195.90 11297.90 4880.39 26497.96 23892.60 8799.68 1898.75 85
thisisatest051584.72 30382.99 31189.90 27792.96 30175.33 31484.36 34483.42 35977.37 31088.27 31286.65 35153.94 36598.72 16182.56 26497.40 24395.67 275
PS-MVSNAJ88.86 25388.99 24088.48 30194.88 25274.71 31586.69 32595.60 21980.88 28087.83 31787.37 34990.77 14598.82 13982.52 26594.37 31391.93 344
WTY-MVS86.93 29186.50 28988.24 30594.96 25174.64 31687.19 31392.07 30078.29 30588.32 31191.59 30778.06 27994.27 34574.88 32893.15 32995.80 269
xiu_mvs_v2_base89.00 24989.19 23488.46 30294.86 25474.63 31786.97 31695.60 21980.88 28087.83 31788.62 34191.04 14298.81 14482.51 26694.38 31291.93 344
131486.46 29386.33 29086.87 31991.65 32374.54 31891.94 20394.10 26174.28 32484.78 33787.33 35083.03 23895.00 33778.72 30391.16 34891.06 350
CHOSEN 280x42080.04 33377.97 33886.23 32590.13 34174.53 31972.87 36489.59 31666.38 35776.29 36785.32 35956.96 36095.36 33169.49 35594.72 30788.79 357
USDC89.02 24789.08 23788.84 29495.07 25074.50 32088.97 28896.39 19273.21 33193.27 20796.28 14982.16 24996.39 30877.55 31198.80 13595.62 279
MVEpermissive59.87 2373.86 33872.65 34177.47 35187.00 36674.35 32161.37 36860.93 37667.27 35569.69 37186.49 35481.24 26072.33 37256.45 36983.45 36385.74 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 29784.37 30189.40 28586.30 36774.33 32291.64 21988.26 32284.84 24972.96 37089.85 32571.27 31297.69 26176.60 31997.62 23696.18 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline187.62 27587.31 27088.54 29994.71 26574.27 32393.10 15488.20 32486.20 22392.18 24493.04 27373.21 30495.52 32579.32 29985.82 35995.83 267
Patchmatch-test86.10 29586.01 29286.38 32490.63 33574.22 32489.57 27486.69 33485.73 23389.81 28692.83 27865.24 33691.04 36177.82 31095.78 28393.88 318
MDA-MVSNet_test_wron88.16 26588.23 25687.93 30992.22 31173.71 32580.71 35988.84 31782.52 27094.88 15995.14 20482.70 24393.61 35083.28 25793.80 32196.46 242
YYNet188.17 26488.24 25587.93 30992.21 31273.62 32680.75 35888.77 31882.51 27194.99 15495.11 20682.70 24393.70 34983.33 25693.83 32096.48 241
test0.0.03 182.48 31581.47 31985.48 32889.70 34573.57 32784.73 33981.64 36383.07 26488.13 31486.61 35262.86 34789.10 36766.24 36190.29 35193.77 320
thres600view787.66 27387.10 27789.36 28696.05 20673.17 32892.72 16385.31 34991.89 9693.29 20590.97 31463.42 34498.39 20073.23 33696.99 25896.51 237
ANet_high94.83 9596.28 3790.47 26196.65 15873.16 32994.33 12298.74 896.39 2398.09 2598.93 893.37 7998.70 16790.38 13599.68 1899.53 14
thres100view90087.35 28186.89 27988.72 29696.14 19973.09 33093.00 15685.31 34992.13 8993.26 20890.96 31563.42 34498.28 20971.27 34896.54 26894.79 294
tfpn200view987.05 28986.52 28788.67 29795.77 22372.94 33191.89 20686.00 34190.84 13092.61 22889.80 32763.93 34198.28 20971.27 34896.54 26894.79 294
thres40087.20 28586.52 28789.24 29095.77 22372.94 33191.89 20686.00 34190.84 13092.61 22889.80 32763.93 34198.28 20971.27 34896.54 26896.51 237
baseline283.38 30981.54 31888.90 29291.38 32772.84 33388.78 29281.22 36478.97 29979.82 36387.56 34661.73 35297.80 25174.30 33190.05 35296.05 258
ECVR-MVScopyleft90.12 22690.16 21890.00 27697.81 9772.68 33495.76 6778.54 37089.04 17095.36 13498.10 3570.51 31498.64 17787.10 21299.18 8798.67 95
thres20085.85 29685.18 29787.88 31194.44 27272.52 33589.08 28786.21 33788.57 18391.44 25488.40 34364.22 33998.00 23468.35 35695.88 28293.12 330
MG-MVS89.54 24089.80 22788.76 29594.88 25272.47 33689.60 27392.44 29285.82 23089.48 29195.98 16382.85 24097.74 25981.87 27195.27 29696.08 256
PAPM81.91 32180.11 33187.31 31693.87 28672.32 33784.02 34893.22 27569.47 34976.13 36889.84 32672.15 30897.23 28253.27 37089.02 35392.37 341
SCA87.43 27987.21 27388.10 30792.01 31871.98 33889.43 27788.11 32682.26 27488.71 30592.83 27878.65 27397.59 26479.61 29693.30 32694.75 296
testgi90.38 21791.34 19387.50 31497.49 12071.54 33989.43 27795.16 23588.38 18694.54 16994.68 22792.88 9693.09 35471.60 34697.85 22597.88 168
test111190.39 21690.61 21089.74 27998.04 8471.50 34095.59 7279.72 36989.41 16095.94 10998.14 3370.79 31398.81 14488.52 18799.32 6298.90 69
gg-mvs-nofinetune82.10 32081.02 32285.34 33087.46 36271.04 34194.74 10567.56 37496.44 2279.43 36498.99 645.24 37396.15 31467.18 35992.17 34188.85 356
GG-mvs-BLEND83.24 34285.06 37171.03 34294.99 9965.55 37574.09 36975.51 36944.57 37494.46 34159.57 36787.54 35784.24 362
ppachtmachnet_test88.61 25888.64 24688.50 30091.76 32170.99 34384.59 34292.98 27879.30 29792.38 23693.53 26479.57 26797.45 27286.50 22497.17 24997.07 217
our_test_387.55 27687.59 26787.44 31591.76 32170.48 34483.83 34990.55 31379.79 28792.06 24792.17 29578.63 27595.63 32384.77 24594.73 30696.22 251
CVMVSNet85.16 30084.72 29886.48 32092.12 31570.19 34592.32 18588.17 32556.15 36990.64 26895.85 16767.97 32096.69 29988.78 18190.52 35092.56 339
new_pmnet81.22 32481.01 32381.86 34590.92 33370.15 34684.03 34780.25 36870.83 34385.97 33089.78 33067.93 32184.65 36967.44 35891.90 34490.78 351
KD-MVS_2432*160082.17 31880.75 32586.42 32282.04 37570.09 34781.75 35690.80 31082.56 26890.37 27289.30 33642.90 37796.11 31674.47 32992.55 33793.06 331
miper_refine_blended82.17 31880.75 32586.42 32282.04 37570.09 34781.75 35690.80 31082.56 26890.37 27289.30 33642.90 37796.11 31674.47 32992.55 33793.06 331
DSMNet-mixed82.21 31781.56 31684.16 33889.57 34870.00 34990.65 24177.66 37254.99 37083.30 34797.57 5977.89 28190.50 36366.86 36095.54 28891.97 343
PatchmatchNetpermissive85.22 29984.64 29986.98 31889.51 34969.83 35090.52 24487.34 33178.87 30187.22 32492.74 28266.91 32496.53 30281.77 27286.88 35894.58 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EMVS80.35 33280.28 33080.54 34784.73 37269.07 35172.54 36580.73 36587.80 19781.66 35881.73 36562.89 34689.84 36475.79 32594.65 30982.71 365
E-PMN80.72 33080.86 32480.29 34885.11 37068.77 35272.96 36381.97 36287.76 19883.25 34883.01 36462.22 35089.17 36677.15 31694.31 31582.93 364
mvs_anonymous90.37 21891.30 19487.58 31392.17 31468.00 35389.84 26994.73 24883.82 25793.22 21197.40 7087.54 19397.40 27687.94 19995.05 30097.34 210
CostFormer83.09 31182.21 31485.73 32689.27 35167.01 35490.35 25086.47 33670.42 34583.52 34693.23 27161.18 35396.85 29477.21 31588.26 35693.34 329
PatchT87.51 27788.17 25885.55 32790.64 33466.91 35592.02 19886.09 33992.20 8789.05 29797.16 8964.15 34096.37 31089.21 17392.98 33393.37 328
DWT-MVSNet_test80.74 32979.18 33485.43 32987.51 36166.87 35689.87 26886.01 34074.20 32680.86 36080.62 36648.84 37096.68 30181.54 27483.14 36592.75 337
test-LLR83.58 30883.17 30984.79 33489.68 34666.86 35783.08 35184.52 35483.07 26482.85 34984.78 36062.86 34793.49 35182.85 26094.86 30294.03 312
test-mter81.21 32580.01 33284.79 33489.68 34666.86 35783.08 35184.52 35473.85 32882.85 34984.78 36043.66 37693.49 35182.85 26094.86 30294.03 312
RRT_test8_iter0588.21 26388.17 25888.33 30491.62 32466.82 35991.73 21896.60 18086.34 22194.14 17695.38 20047.72 37299.11 9591.78 10798.26 18999.06 47
test250685.42 29884.57 30087.96 30897.81 9766.53 36096.14 5156.35 37789.04 17093.55 19898.10 3542.88 37998.68 17188.09 19599.18 8798.67 95
PVSNet_070.34 2174.58 33772.96 34079.47 34990.63 33566.24 36173.26 36283.40 36063.67 36478.02 36578.35 36872.53 30689.59 36556.68 36860.05 37282.57 366
ADS-MVSNet82.25 31681.55 31784.34 33789.04 35365.30 36287.57 30485.13 35372.71 33584.46 33892.45 28868.08 31892.33 35770.58 35283.97 36195.38 282
tpmvs84.22 30683.97 30584.94 33287.09 36465.18 36391.21 22888.35 32182.87 26785.21 33290.96 31565.24 33696.75 29779.60 29885.25 36092.90 335
tpm281.46 32280.35 32984.80 33389.90 34365.14 36490.44 24685.36 34865.82 36082.05 35592.44 29057.94 35896.69 29970.71 35188.49 35592.56 339
EPMVS81.17 32680.37 32883.58 34085.58 36965.08 36590.31 25271.34 37377.31 31185.80 33191.30 30959.38 35692.70 35679.99 28982.34 36692.96 334
tpm cat180.61 33179.46 33384.07 33988.78 35565.06 36689.26 28388.23 32362.27 36581.90 35789.66 33362.70 34995.29 33471.72 34480.60 36891.86 346
DeepMVS_CXcopyleft53.83 35570.38 37764.56 36748.52 37933.01 37165.50 37274.21 37056.19 36246.64 37438.45 37370.07 37050.30 370
PVSNet76.22 2082.89 31382.37 31384.48 33693.96 28364.38 36878.60 36188.61 31971.50 33984.43 34086.36 35574.27 30094.60 33969.87 35493.69 32394.46 303
TESTMET0.1,179.09 33578.04 33782.25 34487.52 36064.03 36983.08 35180.62 36670.28 34680.16 36283.22 36344.13 37590.56 36279.95 29093.36 32492.15 342
tpm84.38 30584.08 30485.30 33190.47 33863.43 37089.34 28085.63 34577.24 31287.62 31995.03 21261.00 35597.30 28079.26 30091.09 34995.16 285
MDTV_nov1_ep1383.88 30689.42 35061.52 37188.74 29487.41 33073.99 32784.96 33694.01 24965.25 33595.53 32478.02 30693.16 328
gm-plane-assit87.08 36559.33 37271.22 34083.58 36297.20 28373.95 332
tpmrst82.85 31482.93 31282.64 34387.65 35858.99 37390.14 25887.90 32775.54 31883.93 34291.63 30666.79 32795.36 33181.21 27981.54 36793.57 327
dp79.28 33478.62 33681.24 34685.97 36856.45 37486.91 31885.26 35172.97 33381.45 35989.17 33956.01 36395.45 32973.19 33776.68 36991.82 347
new-patchmatchnet88.97 25090.79 20683.50 34194.28 27655.83 37585.34 33593.56 27086.18 22495.47 12895.73 17783.10 23796.51 30485.40 23498.06 21298.16 137
MVS-HIRNet78.83 33680.60 32773.51 35393.07 29747.37 37687.10 31578.00 37168.94 35077.53 36697.26 8271.45 31194.62 33863.28 36588.74 35478.55 368
PMMVS281.31 32383.44 30774.92 35290.52 33746.49 37769.19 36685.23 35284.30 25487.95 31694.71 22676.95 29084.36 37064.07 36398.09 21093.89 317
MDTV_nov1_ep13_2view42.48 37888.45 29967.22 35683.56 34566.80 32572.86 33994.06 311
tmp_tt37.97 34044.33 34318.88 35611.80 37921.54 37963.51 36745.66 3804.23 37351.34 37350.48 37159.08 35722.11 37544.50 37268.35 37113.00 371
test_method50.44 33948.94 34254.93 35439.68 37812.38 38028.59 36990.09 3146.82 37241.10 37478.41 36754.41 36470.69 37350.12 37151.26 37381.72 367
test1239.49 34212.01 3451.91 3572.87 3801.30 38182.38 3541.34 3821.36 3752.84 3766.56 3742.45 3800.97 3762.73 3745.56 3743.47 372
testmvs9.02 34311.42 3461.81 3582.77 3811.13 38279.44 3601.90 3811.18 3762.65 3776.80 3731.95 3810.87 3772.62 3753.45 3753.44 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.35 34131.13 3440.00 3590.00 3820.00 3830.00 37095.58 2250.00 3770.00 37891.15 31193.43 770.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.56 34410.09 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37790.77 1450.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.56 34410.08 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37890.69 3200.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
PC_three_145275.31 32195.87 11395.75 17692.93 9396.34 31387.18 21198.68 14698.04 147
eth-test20.00 382
eth-test0.00 382
test_241102_TWO98.10 4991.95 9297.54 3797.25 8395.37 2899.35 5993.29 6399.25 7698.49 115
9.1494.81 9497.49 12094.11 12998.37 1787.56 20695.38 13296.03 16194.66 5699.08 9990.70 12998.97 113
test_0728_THIRD93.26 6897.40 4697.35 7894.69 5599.34 6293.88 3499.42 4798.89 70
GSMVS94.75 296
sam_mvs166.64 32894.75 296
sam_mvs66.41 329
MTGPAbinary97.62 102
test_post190.21 2545.85 37665.36 33496.00 31979.61 296
test_post6.07 37565.74 33395.84 321
patchmatchnet-post91.71 30466.22 33197.59 264
MTMP94.82 10254.62 378
test9_res88.16 19398.40 16997.83 173
agg_prior287.06 21498.36 18097.98 156
test_prior290.21 25489.33 16490.77 26494.81 22090.41 15588.21 18998.55 155
旧先验290.00 26368.65 35192.71 22696.52 30385.15 237
新几何290.02 262
无先验89.94 26495.75 21670.81 34498.59 18381.17 28094.81 293
原ACMM289.34 280
testdata298.03 22980.24 287
segment_acmp92.14 111
testdata188.96 28988.44 185
plane_prior597.81 9098.95 12289.26 17098.51 16298.60 108
plane_prior495.59 182
plane_prior294.56 11491.74 109
plane_prior197.38 126
n20.00 383
nn0.00 383
door-mid92.13 299
test1196.65 178
door91.26 307
HQP-NCC96.36 17891.37 22387.16 21088.81 300
ACMP_Plane96.36 17891.37 22387.16 21088.81 300
BP-MVS86.55 222
HQP4-MVS88.81 30098.61 17998.15 138
HQP3-MVS97.31 13097.73 228
HQP2-MVS84.76 227
ACMMP++_ref98.82 131
ACMMP++99.25 76
Test By Simon90.61 151