This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 697.72 395.35 8499.51 287.38 12997.70 697.54 10798.16 298.94 299.33 297.84 499.08 9590.73 12499.73 1499.59 12
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6694.15 4898.93 399.07 588.07 18099.57 1395.86 999.69 1599.46 18
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 497.01 1298.92 498.78 1495.22 3798.61 17396.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet-Re94.20 12094.58 10593.04 17195.91 20883.13 20193.79 13299.19 292.00 8798.84 598.04 3593.64 7099.02 10781.28 26998.54 15096.96 215
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 11195.57 6897.88 7988.72 17198.81 698.86 1090.77 14099.60 895.43 1199.53 3599.57 13
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10287.57 19898.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
Anonymous2023121196.60 2597.13 1295.00 10097.46 11786.35 15697.11 1498.24 2997.58 798.72 898.97 793.15 8599.15 8393.18 6499.74 1399.50 16
ACMH88.36 1296.59 2797.43 594.07 13798.56 3685.33 17296.33 3998.30 2294.66 3998.72 898.30 3097.51 598.00 22794.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11586.96 20798.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
wuyk23d87.83 26690.79 20578.96 34390.46 33088.63 10592.72 15690.67 30691.65 11098.68 1197.64 5396.06 1677.53 36359.84 35899.41 5270.73 361
DTE-MVSNet96.74 1797.43 594.67 11199.13 584.68 17996.51 2897.94 7898.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
PS-CasMVS96.69 2097.43 594.49 12499.13 584.09 18996.61 2497.97 7297.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11399.16 384.50 18096.54 2798.05 5798.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
SixPastTwentyTwo94.91 8695.21 8193.98 13998.52 4483.19 19995.93 5594.84 23794.86 3898.49 1598.74 1681.45 25199.60 894.69 1699.39 5499.15 37
WR-MVS_H96.60 2597.05 1495.24 9299.02 1186.44 15296.78 2198.08 5097.42 898.48 1697.86 4591.76 11699.63 694.23 2699.84 399.66 6
v7n96.82 1097.31 1095.33 8698.54 4186.81 14296.83 1898.07 5396.59 1998.46 1798.43 2792.91 9199.52 1796.25 699.76 1199.65 8
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10287.68 19598.45 1898.77 1594.20 6699.50 1996.70 399.40 5399.53 14
CP-MVSNet96.19 4696.80 1794.38 13098.99 1383.82 19296.31 4197.53 10997.60 698.34 1997.52 5991.98 11299.63 693.08 7099.81 999.70 3
test_part194.39 10994.55 10693.92 14496.14 19082.86 20495.54 7098.09 4995.36 3598.27 2098.36 2875.91 29299.44 2393.41 5499.84 399.47 17
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11788.98 16598.26 2198.86 1093.35 7899.60 896.41 499.45 4399.66 6
ACMH+88.43 1196.48 3096.82 1695.47 8198.54 4189.06 9695.65 6598.61 796.10 2598.16 2297.52 5996.90 798.62 17290.30 13799.60 2598.72 90
pmmvs696.80 1397.36 995.15 9699.12 787.82 12596.68 2297.86 8096.10 2598.14 2399.28 397.94 398.21 21091.38 11599.69 1599.42 19
ANet_high94.83 9396.28 3690.47 25796.65 15173.16 32394.33 11598.74 696.39 2298.09 2498.93 893.37 7798.70 16390.38 13199.68 1899.53 14
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10995.77 6198.29 2592.68 6998.03 2597.91 4295.13 4098.95 11993.85 3399.49 3899.36 24
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9796.23 4696.87 16193.73 5697.87 2698.49 2490.73 14499.05 10186.43 21799.60 2599.10 44
TransMVSNet (Re)95.27 7896.04 5192.97 17498.37 5981.92 21295.07 8896.76 16893.97 5297.77 2798.57 1995.72 1897.90 23388.89 17499.23 7699.08 45
DPE-MVScopyleft95.89 5395.88 5795.92 6297.93 8989.83 8493.46 14098.30 2292.37 7697.75 2896.95 9395.14 3999.51 1891.74 10499.28 7098.41 117
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040295.73 5996.22 3994.26 13298.19 6985.77 16793.24 14597.24 13496.88 1597.69 2997.77 4894.12 6799.13 8791.54 11299.29 6597.88 161
NR-MVSNet95.28 7695.28 7995.26 9197.75 9587.21 13395.08 8797.37 11793.92 5497.65 3095.90 15990.10 15899.33 6490.11 14599.66 2199.26 29
SED-MVS96.00 5296.41 3294.76 10898.51 4586.97 13895.21 8098.10 4691.95 8897.63 3197.25 7796.48 1199.35 5693.29 5999.29 6597.95 153
test_241102_ONE98.51 4586.97 13898.10 4691.85 9597.63 3197.03 9096.48 1198.95 119
test072698.51 4586.69 14595.34 7598.18 3491.85 9597.63 3197.37 6895.58 22
Anonymous2024052995.50 6695.83 6194.50 12297.33 12385.93 16495.19 8496.77 16796.64 1897.61 3498.05 3493.23 8198.79 14388.60 18199.04 10098.78 81
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1895.81 3097.55 3597.44 6496.51 999.40 4194.06 3099.23 7698.85 75
test_241102_TWO98.10 4691.95 8897.54 3697.25 7795.37 2899.35 5693.29 5999.25 7398.49 110
FC-MVSNet-test95.32 7395.88 5793.62 15498.49 5381.77 21395.90 5798.32 1993.93 5397.53 3797.56 5688.48 17399.40 4192.91 7599.83 699.68 4
K. test v393.37 13693.27 14693.66 15398.05 7882.62 20694.35 11486.62 32996.05 2797.51 3898.85 1276.59 29099.65 393.21 6398.20 19198.73 89
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 8098.26 6587.69 12693.75 13397.86 8095.96 2997.48 3997.14 8495.33 3299.44 2390.79 12399.76 1199.38 22
v894.65 10095.29 7892.74 18496.65 15179.77 24794.59 10497.17 13891.86 9497.47 4097.93 4088.16 17899.08 9594.32 2299.47 3999.38 22
v1094.68 9995.27 8092.90 17996.57 15780.15 23294.65 10397.57 10590.68 13297.43 4198.00 3788.18 17799.15 8394.84 1599.55 3499.41 20
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9396.90 1798.41 1492.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6498.92 67
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8697.79 9186.48 21197.42 4397.51 6194.47 6299.29 6893.55 4299.29 6598.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS95.82 5796.18 4194.72 11098.51 4586.69 14595.20 8297.00 14891.85 9597.40 4497.35 7295.58 2299.34 5993.44 5199.31 6298.13 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 6597.40 4497.35 7294.69 5499.34 5993.88 3299.42 4798.89 69
pm-mvs195.43 6895.94 5493.93 14398.38 5785.08 17695.46 7397.12 14291.84 9897.28 4698.46 2595.30 3497.71 25390.17 14399.42 4798.99 53
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 597.41 997.28 4698.46 2594.62 5798.84 13494.64 1799.53 3598.99 53
SD-MVS95.19 7995.73 6593.55 15796.62 15488.88 10294.67 10198.05 5791.26 11897.25 4896.40 13195.42 2694.36 33692.72 8199.19 8097.40 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9998.03 6290.82 12897.15 4996.85 10196.25 1599.00 11193.10 6899.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v093.87 14898.05 7883.77 19380.32 36197.13 5097.91 4277.49 27899.11 9192.62 8398.08 20398.74 87
FIs94.90 8795.35 7493.55 15798.28 6381.76 21495.33 7698.14 4193.05 6797.07 5197.18 8287.65 18799.29 6891.72 10599.69 1599.61 11
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7698.25 2691.78 10297.07 5197.22 8096.38 1399.28 7092.07 9499.59 2799.11 41
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2691.78 10297.07 5197.22 8096.38 1399.28 7092.07 9499.59 2799.11 41
VPA-MVSNet95.14 8095.67 6793.58 15697.76 9483.15 20094.58 10697.58 10493.39 6397.05 5498.04 3593.25 8098.51 18689.75 15599.59 2799.08 45
FMVSNet194.84 9295.13 8493.97 14097.60 10884.29 18295.99 5196.56 17792.38 7597.03 5598.53 2190.12 15598.98 11288.78 17699.16 8398.65 92
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4395.66 3297.00 5697.03 9094.85 5199.42 2893.49 4498.84 11998.00 145
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4395.66 3297.00 5697.03 9095.40 2793.49 4498.84 11998.00 145
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2695.51 3496.99 5897.05 8995.63 2199.39 4693.31 5898.88 11498.75 84
EG-PatchMatch MVS94.54 10694.67 10294.14 13597.87 9186.50 14892.00 19296.74 16988.16 18396.93 5997.61 5493.04 8997.90 23391.60 10998.12 19898.03 143
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5695.76 3196.89 6096.85 10194.85 5199.42 2893.35 5798.81 12798.53 107
DIV-MVS_2432*160094.10 12294.73 9892.19 20297.66 10579.49 25294.86 9597.12 14289.59 15496.87 6197.65 5290.40 15298.34 20089.08 17099.35 5798.75 84
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14498.32 1987.89 18896.86 6297.38 6795.55 2499.39 4695.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1996.69 1696.86 6297.56 5695.48 2598.77 15190.11 14599.44 4598.31 122
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5395.17 3696.82 6496.73 11295.09 4399.43 2792.99 7398.71 13698.50 109
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10792.26 18197.84 8494.91 3796.80 6595.78 16990.42 14999.41 3691.60 10999.58 3199.29 28
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10792.58 16197.81 8793.99 5096.80 6595.90 15990.10 15899.41 3691.60 10999.58 3199.26 29
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 16097.33 12690.05 14496.77 6796.85 10195.04 4498.56 18192.77 7799.06 9298.70 91
test_part298.21 6889.41 9196.72 68
v124093.29 13893.71 13092.06 20996.01 20277.89 27791.81 20897.37 11785.12 23796.69 6996.40 13186.67 20799.07 9994.51 1898.76 13399.22 32
tfpnnormal94.27 11694.87 9192.48 19697.71 9980.88 22794.55 11095.41 22493.70 5796.67 7097.72 4991.40 12498.18 21487.45 20099.18 8298.36 118
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6693.34 6496.64 7196.57 12294.99 4899.36 5593.48 4799.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
WR-MVS93.49 13393.72 12992.80 18397.57 11080.03 23890.14 25295.68 21193.70 5796.62 7295.39 19187.21 19599.04 10487.50 19999.64 2399.33 25
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11798.08 5089.46 15596.61 7396.47 12595.85 1799.12 8990.45 12899.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DP-MVS95.62 6295.84 6094.97 10197.16 13088.62 10694.54 11197.64 9896.94 1496.58 7497.32 7593.07 8898.72 15790.45 12898.84 11997.57 185
IterMVS-LS93.78 12894.28 11692.27 19996.27 17979.21 25991.87 20296.78 16591.77 10496.57 7597.07 8787.15 19698.74 15591.99 9699.03 10198.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3793.11 6696.48 7697.36 7196.92 699.34 5994.31 2399.38 5598.92 67
ambc92.98 17396.88 14283.01 20395.92 5696.38 18796.41 7797.48 6288.26 17697.80 24489.96 15098.93 11198.12 137
Regformer-494.90 8794.67 10295.59 7692.78 29689.02 9792.39 17395.91 20494.50 4296.41 7795.56 18092.10 10899.01 10994.23 2698.14 19598.74 87
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10798.03 6290.42 13996.37 7997.35 7295.68 1999.25 7494.44 2099.34 5898.80 79
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8697.46 11788.05 11992.04 18998.42 1387.63 19696.36 8096.68 11594.37 6399.32 6592.41 8899.05 9598.64 96
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8795.58 6798.56 991.84 9896.36 8096.68 11594.37 6399.32 6592.41 8899.05 9598.64 96
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3492.26 8196.33 8296.84 10495.10 4299.40 4193.47 4899.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VDDNet94.03 12494.27 11893.31 16698.87 1982.36 20895.51 7291.78 29897.19 1196.32 8398.60 1884.24 22698.75 15287.09 20598.83 12498.81 78
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9992.91 15298.07 5393.46 6296.31 8495.97 15890.14 15499.34 5992.11 9199.64 2399.16 36
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11198.05 5790.45 13896.31 8496.76 10892.91 9198.72 15791.19 11699.42 4798.32 120
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13597.62 9994.46 4496.29 8696.94 9493.56 7199.37 5394.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9994.46 4496.29 8696.94 9493.56 7199.37 5394.29 2499.42 4798.99 53
Baseline_NR-MVSNet94.47 10895.09 8692.60 19198.50 5280.82 22892.08 18796.68 17193.82 5596.29 8698.56 2090.10 15897.75 25190.10 14799.66 2199.24 31
IS-MVSNet94.49 10794.35 11394.92 10298.25 6686.46 15197.13 1394.31 25196.24 2396.28 8996.36 13882.88 23599.35 5688.19 18699.52 3798.96 60
VDD-MVS94.37 11094.37 11294.40 12997.49 11486.07 16293.97 12893.28 26894.49 4396.24 9097.78 4687.99 18398.79 14388.92 17299.14 8598.34 119
DeepPCF-MVS90.46 694.20 12093.56 13796.14 5195.96 20492.96 4389.48 27097.46 11385.14 23596.23 9195.42 18893.19 8298.08 22090.37 13298.76 13397.38 200
PM-MVS93.33 13792.67 15995.33 8696.58 15694.06 1992.26 18192.18 28985.92 22396.22 9296.61 12085.64 22095.99 31290.35 13398.23 18695.93 254
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7893.86 13198.02 6487.35 20096.22 9297.99 3894.48 6199.05 10192.73 8099.68 1897.93 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
V4293.43 13593.58 13592.97 17495.34 23581.22 22292.67 15996.49 18287.25 20296.20 9496.37 13787.32 19398.85 13392.39 9098.21 18998.85 75
CSCG94.69 9894.75 9694.52 12197.55 11187.87 12395.01 9197.57 10592.68 6996.20 9493.44 25891.92 11398.78 14789.11 16999.24 7596.92 216
v192192093.26 14193.61 13492.19 20296.04 20178.31 27091.88 20197.24 13485.17 23496.19 9696.19 14886.76 20699.05 10194.18 2898.84 11999.22 32
Regformer-294.86 9094.55 10695.77 6992.83 29489.98 8091.87 20296.40 18594.38 4696.19 9695.04 20392.47 10499.04 10493.49 4498.31 17598.28 124
EI-MVSNet-UG-set94.35 11294.27 11894.59 11892.46 29985.87 16592.42 17194.69 24493.67 6196.13 9895.84 16491.20 13398.86 13193.78 3598.23 18699.03 49
EI-MVSNet-Vis-set94.36 11194.28 11694.61 11392.55 29885.98 16392.44 16994.69 24493.70 5796.12 9995.81 16591.24 13098.86 13193.76 3898.22 18898.98 58
v119293.49 13393.78 12792.62 19096.16 18879.62 24991.83 20797.22 13686.07 22096.10 10096.38 13687.22 19499.02 10794.14 2998.88 11499.22 32
FMVSNet292.78 15992.73 15892.95 17695.40 23181.98 21194.18 11995.53 22188.63 17396.05 10197.37 6881.31 25398.81 14187.38 20398.67 14098.06 139
Regformer-394.28 11594.23 12094.46 12692.78 29686.28 15892.39 17394.70 24393.69 6095.97 10295.56 18091.34 12598.48 19193.45 4998.14 19598.62 100
v14419293.20 14693.54 13892.16 20696.05 19778.26 27191.95 19497.14 13984.98 24195.96 10396.11 15287.08 19899.04 10493.79 3498.84 11999.17 35
Regformer-194.55 10494.33 11495.19 9492.83 29488.54 11091.87 20295.84 20893.99 5095.95 10495.04 20392.00 11098.79 14393.14 6798.31 17598.23 127
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 1092.35 7895.95 10496.41 13096.71 899.42 2893.99 3199.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14892.87 15693.29 14391.62 22096.25 18277.72 28091.28 22195.05 23089.69 15095.93 10696.04 15487.34 19298.38 19690.05 14897.99 21098.78 81
v114493.50 13293.81 12592.57 19296.28 17879.61 25091.86 20696.96 15186.95 20895.91 10796.32 14087.65 18798.96 11793.51 4398.88 11499.13 39
Anonymous2024052192.86 15793.57 13690.74 24996.57 15775.50 30794.15 12095.60 21389.38 15695.90 10897.90 4480.39 26097.96 23192.60 8499.68 1898.75 84
IU-MVS98.51 4586.66 14796.83 16272.74 32795.83 10993.00 7299.29 6598.64 96
Patchmatch-RL test88.81 25188.52 24489.69 27595.33 23679.94 24186.22 32592.71 27978.46 29895.80 11094.18 23466.25 32495.33 32589.22 16798.53 15193.78 310
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7698.30 2291.40 11595.76 11196.87 10095.26 3599.45 2292.77 7799.21 7899.00 51
casdiffmvs94.32 11494.80 9492.85 18196.05 19781.44 21992.35 17698.05 5791.53 11395.75 11296.80 10593.35 7898.49 18791.01 12098.32 17498.64 96
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6692.08 8695.74 11396.28 14395.22 3799.42 2893.17 6599.06 9298.88 71
VPNet93.08 14793.76 12891.03 23898.60 3375.83 30591.51 21495.62 21291.84 9895.74 11397.10 8689.31 16698.32 20185.07 23499.06 9298.93 63
EU-MVSNet87.39 27786.71 28089.44 27793.40 28276.11 30094.93 9490.00 30957.17 36195.71 11597.37 6864.77 33297.68 25592.67 8294.37 30594.52 293
v2v48293.29 13893.63 13392.29 19896.35 17278.82 26491.77 21096.28 18988.45 17795.70 11696.26 14586.02 21598.90 12393.02 7198.81 12799.14 38
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6992.35 7895.63 11796.47 12595.37 2899.27 7293.78 3599.14 8598.48 111
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8597.98 6989.34 15895.63 11796.47 12595.37 2899.27 7291.99 9699.14 8598.48 111
Anonymous20240521192.58 16692.50 16492.83 18296.55 15983.22 19892.43 17091.64 29994.10 4995.59 11996.64 11881.88 25097.50 26185.12 23198.52 15297.77 172
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7392.35 7895.57 12096.61 12094.93 5099.41 3693.78 3599.15 8499.00 51
RRT_MVS91.36 19490.05 22095.29 9089.21 34388.15 11692.51 16794.89 23586.73 21095.54 12195.68 17261.82 34599.30 6794.91 1399.13 8898.43 115
XXY-MVS92.58 16693.16 14890.84 24797.75 9579.84 24391.87 20296.22 19585.94 22295.53 12297.68 5092.69 9794.48 33283.21 25097.51 23198.21 130
new-patchmatchnet88.97 24790.79 20583.50 33494.28 26655.83 36685.34 32993.56 26486.18 21895.47 12395.73 17083.10 23396.51 29785.40 22698.06 20498.16 132
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9392.59 7295.47 12396.68 11594.50 6099.42 2893.10 6899.26 7298.99 53
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3396.95 1395.46 12599.23 493.45 7399.57 1395.34 1299.89 299.63 9
APD-MVScopyleft95.00 8394.69 9995.93 6097.38 12090.88 7094.59 10497.81 8789.22 16395.46 12596.17 15193.42 7699.34 5989.30 16198.87 11797.56 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1494.81 9397.49 11494.11 12298.37 1687.56 19995.38 12796.03 15594.66 5599.08 9590.70 12598.97 107
IterMVS-SCA-FT91.65 18691.55 18391.94 21193.89 27679.22 25887.56 30093.51 26591.53 11395.37 12896.62 11978.65 26998.90 12391.89 10194.95 29397.70 177
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 4091.74 10695.34 12996.36 13895.68 1999.44 2394.41 2199.28 7098.97 59
LS3D96.11 4895.83 6196.95 3794.75 24994.20 1797.34 997.98 6997.31 1095.32 13096.77 10693.08 8799.20 7991.79 10298.16 19397.44 193
tttt051789.81 23488.90 24092.55 19397.00 13679.73 24895.03 9083.65 35289.88 14895.30 13194.79 21753.64 36099.39 4691.99 9698.79 13098.54 106
XVG-OURS94.72 9794.12 12196.50 4898.00 8494.23 1691.48 21598.17 3790.72 13095.30 13196.47 12587.94 18496.98 28291.41 11497.61 22998.30 123
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7392.26 8195.28 13396.57 12295.02 4699.41 3693.63 3999.11 8998.94 62
GeoE94.55 10494.68 10194.15 13497.23 12585.11 17594.14 12197.34 12588.71 17295.26 13495.50 18394.65 5699.12 8990.94 12198.40 16098.23 127
TinyColmap92.00 18192.76 15589.71 27495.62 22577.02 28890.72 23396.17 19887.70 19495.26 13496.29 14292.54 10196.45 29981.77 26498.77 13295.66 267
alignmvs93.26 14192.85 15294.50 12295.70 21887.45 12793.45 14195.76 20991.58 11195.25 13692.42 28581.96 24898.72 15791.61 10897.87 21697.33 202
EI-MVSNet92.99 15193.26 14792.19 20292.12 30679.21 25992.32 17894.67 24691.77 10495.24 13795.85 16187.14 19798.49 18791.99 9698.26 18098.86 72
MVSTER89.32 24088.75 24291.03 23890.10 33376.62 29590.85 22994.67 24682.27 26795.24 13795.79 16661.09 34898.49 18790.49 12798.26 18097.97 152
canonicalmvs94.59 10194.69 9994.30 13195.60 22687.03 13795.59 6698.24 2991.56 11295.21 13992.04 29194.95 4998.66 16991.45 11397.57 23097.20 207
MSP-MVS95.34 7294.63 10497.48 1498.67 2794.05 2196.41 3598.18 3491.26 11895.12 14095.15 19686.60 20999.50 1993.43 5396.81 25398.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GBi-Net93.21 14492.96 14993.97 14095.40 23184.29 18295.99 5196.56 17788.63 17395.10 14198.53 2181.31 25398.98 11286.74 20898.38 16598.65 92
test193.21 14492.96 14993.97 14095.40 23184.29 18295.99 5196.56 17788.63 17395.10 14198.53 2181.31 25398.98 11286.74 20898.38 16598.65 92
FMVSNet390.78 20490.32 21592.16 20693.03 29179.92 24292.54 16294.95 23386.17 21995.10 14196.01 15669.97 31098.75 15286.74 20898.38 16597.82 168
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 5092.67 7195.08 14496.39 13594.77 5399.42 2893.17 6599.44 4598.58 105
ETH3D-3000-0.194.86 9094.55 10695.81 6597.61 10789.72 8594.05 12498.37 1688.09 18495.06 14595.85 16192.58 9999.10 9390.33 13698.99 10298.62 100
AllTest94.88 8994.51 10996.00 5598.02 8292.17 5095.26 7998.43 1190.48 13695.04 14696.74 11092.54 10197.86 23985.11 23298.98 10397.98 149
TestCases96.00 5598.02 8292.17 5098.43 1190.48 13695.04 14696.74 11092.54 10197.86 23985.11 23298.98 10397.98 149
YYNet188.17 26188.24 25287.93 30292.21 30373.62 32080.75 35288.77 31282.51 26594.99 14895.11 19982.70 23993.70 34183.33 24893.83 31296.48 233
EPP-MVSNet93.91 12693.68 13294.59 11898.08 7585.55 17097.44 894.03 25694.22 4794.94 14996.19 14882.07 24699.57 1387.28 20498.89 11298.65 92
MDA-MVSNet-bldmvs91.04 19990.88 20191.55 22294.68 25680.16 23185.49 32892.14 29290.41 14094.93 15095.79 16685.10 22196.93 28585.15 22994.19 31097.57 185
testtj94.81 9494.42 11096.01 5497.23 12590.51 7694.77 9897.85 8391.29 11794.92 15195.66 17391.71 11799.40 4188.07 19098.25 18398.11 138
baseline94.26 11794.80 9492.64 18796.08 19580.99 22593.69 13598.04 6190.80 12994.89 15296.32 14093.19 8298.48 19191.68 10798.51 15498.43 115
MDA-MVSNet_test_wron88.16 26288.23 25387.93 30292.22 30273.71 31980.71 35388.84 31182.52 26494.88 15395.14 19782.70 23993.61 34283.28 24993.80 31396.46 234
LFMVS91.33 19591.16 19891.82 21396.27 17979.36 25495.01 9185.61 34096.04 2894.82 15497.06 8872.03 30698.46 19384.96 23598.70 13897.65 181
ITE_SJBPF95.95 5797.34 12293.36 4096.55 18091.93 9094.82 15495.39 19191.99 11197.08 27985.53 22597.96 21197.41 194
ZD-MVS97.23 12590.32 7797.54 10784.40 24794.78 15695.79 16692.76 9699.39 4688.72 17998.40 160
TSAR-MVS + MP.94.96 8594.75 9695.57 7898.86 2088.69 10396.37 3696.81 16385.23 23294.75 15797.12 8591.85 11499.40 4193.45 4998.33 17298.62 100
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Patchmtry90.11 22489.92 22290.66 25290.35 33177.00 28992.96 15092.81 27590.25 14294.74 15896.93 9667.11 31697.52 26085.17 22798.98 10397.46 191
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14790.79 7296.30 4397.82 8696.13 2494.74 15897.23 7991.33 12699.16 8293.25 6298.30 17798.46 113
cl_fuxian91.32 19691.42 18891.00 24192.29 30176.79 29487.52 30396.42 18485.76 22694.72 16093.89 24682.73 23898.16 21690.93 12298.55 14798.04 142
TSAR-MVS + GP.93.07 14992.41 16695.06 9995.82 21190.87 7190.97 22792.61 28388.04 18594.61 16193.79 24988.08 17997.81 24389.41 16098.39 16396.50 232
OMC-MVS94.22 11993.69 13195.81 6597.25 12491.27 6392.27 18097.40 11687.10 20694.56 16295.42 18893.74 6998.11 21986.62 21298.85 11898.06 139
testgi90.38 21591.34 19187.50 30797.49 11471.54 33289.43 27195.16 22988.38 17994.54 16394.68 22092.88 9393.09 34671.60 33897.85 21797.88 161
VNet92.67 16392.96 14991.79 21496.27 17980.15 23291.95 19494.98 23292.19 8494.52 16496.07 15387.43 19197.39 27084.83 23698.38 16597.83 166
eth_miper_zixun_eth90.72 20590.61 20991.05 23792.04 30876.84 29386.91 31296.67 17285.21 23394.41 16593.92 24479.53 26498.26 20789.76 15497.02 24598.06 139
test20.0390.80 20390.85 20390.63 25395.63 22479.24 25789.81 26492.87 27489.90 14794.39 16696.40 13185.77 21695.27 32773.86 32599.05 9597.39 198
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7594.58 4094.38 16796.49 12494.56 5899.39 4693.57 4099.05 9598.93 63
X-MVStestdata90.70 20688.45 24697.44 1798.56 3693.99 2596.50 2997.95 7594.58 4094.38 16726.89 36594.56 5899.39 4693.57 4099.05 9598.93 63
3Dnovator92.54 394.80 9594.90 8994.47 12595.47 22987.06 13596.63 2397.28 13291.82 10194.34 16997.41 6590.60 14798.65 17192.47 8698.11 19997.70 177
RRT_test8_iter0588.21 26088.17 25588.33 29891.62 31566.82 35191.73 21196.60 17586.34 21494.14 17095.38 19347.72 36699.11 9191.78 10398.26 18099.06 47
Vis-MVSNetpermissive95.50 6695.48 7095.56 7998.11 7389.40 9295.35 7498.22 3192.36 7794.11 17198.07 3392.02 10999.44 2393.38 5697.67 22697.85 165
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS90.18 22290.16 21690.21 26693.15 28775.98 30287.56 30092.97 27386.43 21394.09 17296.40 13178.32 27397.43 26687.87 19494.69 30097.23 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++93.25 14393.88 12491.37 22696.34 17382.81 20593.11 14697.74 9389.37 15794.08 17395.29 19490.40 15296.35 30490.35 13398.25 18394.96 282
BH-untuned90.68 20790.90 20090.05 27195.98 20379.57 25190.04 25594.94 23487.91 18694.07 17493.00 26787.76 18697.78 24779.19 29395.17 29092.80 328
miper_ehance_all_eth90.48 21190.42 21390.69 25191.62 31576.57 29686.83 31596.18 19783.38 25294.06 17592.66 27882.20 24498.04 22289.79 15397.02 24597.45 192
cl-mvsnet____90.65 20890.56 21090.91 24591.85 31076.98 29186.75 31795.36 22785.53 22994.06 17594.89 21077.36 28297.98 23090.27 13998.98 10397.76 173
cl-mvsnet190.65 20890.56 21090.91 24591.85 31076.99 29086.75 31795.36 22785.52 23194.06 17594.89 21077.37 28197.99 22990.28 13898.97 10797.76 173
pmmvs-eth3d91.54 18990.73 20793.99 13895.76 21687.86 12490.83 23093.98 26078.23 30094.02 17896.22 14782.62 24196.83 28886.57 21398.33 17297.29 204
hse-mvs392.89 15491.99 17395.58 7796.97 13790.55 7493.94 12994.01 25989.23 16193.95 17996.19 14876.88 28799.14 8591.02 11895.71 27697.04 211
hse-mvs292.24 17691.20 19595.38 8396.16 18890.65 7392.52 16392.01 29689.23 16193.95 17992.99 26876.88 28798.69 16591.02 11896.03 26896.81 221
UnsupCasMVSNet_eth90.33 21890.34 21490.28 26294.64 25880.24 23089.69 26695.88 20585.77 22593.94 18195.69 17181.99 24792.98 34784.21 24391.30 33897.62 183
CNVR-MVS94.58 10294.29 11595.46 8296.94 13989.35 9491.81 20896.80 16489.66 15193.90 18295.44 18792.80 9598.72 15792.74 7998.52 15298.32 120
DeepC-MVS_fast89.96 793.73 12993.44 14094.60 11796.14 19087.90 12293.36 14397.14 13985.53 22993.90 18295.45 18691.30 12898.59 17789.51 15898.62 14297.31 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
bset_n11_16_dypcd89.99 23089.15 23392.53 19494.75 24981.34 22084.19 34087.56 32385.13 23693.77 18492.46 28072.82 30199.01 10992.46 8799.21 7897.23 205
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16898.13 4290.69 13193.75 18596.25 14698.03 297.02 28192.08 9395.55 27998.45 114
QAPM92.88 15592.77 15493.22 16995.82 21183.31 19696.45 3197.35 12483.91 25093.75 18596.77 10689.25 16798.88 12684.56 24097.02 24597.49 190
MVS_111021_LR93.66 13093.28 14594.80 10696.25 18290.95 6890.21 24895.43 22387.91 18693.74 18794.40 22692.88 9396.38 30290.39 13098.28 17897.07 208
thisisatest053088.69 25487.52 26592.20 20196.33 17479.36 25492.81 15484.01 35186.44 21293.67 18892.68 27753.62 36199.25 7489.65 15798.45 15898.00 145
ETH3D cwj APD-0.1693.99 12593.38 14295.80 6796.82 14589.92 8192.72 15698.02 6484.73 24593.65 18995.54 18291.68 11899.22 7788.78 17698.49 15798.26 126
PCF-MVS84.52 1789.12 24387.71 26293.34 16496.06 19685.84 16686.58 32497.31 12768.46 34593.61 19093.89 24687.51 19098.52 18567.85 34998.11 19995.66 267
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR93.63 13193.42 14194.26 13296.65 15186.96 14089.30 27696.23 19388.36 18093.57 19194.60 22193.45 7397.77 24890.23 14198.38 16598.03 143
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9292.73 6893.48 19296.72 11394.23 6599.42 2891.99 9699.29 6599.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10992.42 7493.41 19397.78 4691.21 13297.77 24891.06 11797.06 24398.80 79
OpenMVS_ROBcopyleft85.12 1689.52 23889.05 23590.92 24394.58 25981.21 22391.10 22593.41 26777.03 30793.41 19393.99 24283.23 23297.80 24479.93 28494.80 29793.74 312
PMVScopyleft87.21 1494.97 8495.33 7693.91 14598.97 1497.16 295.54 7095.85 20796.47 2093.40 19597.46 6395.31 3395.47 32086.18 22198.78 13189.11 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HQP_MVS94.26 11793.93 12395.23 9397.71 9988.12 11794.56 10897.81 8791.74 10693.31 19695.59 17586.93 20198.95 11989.26 16598.51 15498.60 103
plane_prior388.43 11390.35 14193.31 196
thres600view787.66 27087.10 27489.36 28096.05 19773.17 32292.72 15685.31 34391.89 9393.29 19890.97 30663.42 33898.39 19473.23 32896.99 25096.51 229
CPTT-MVS94.74 9694.12 12196.60 4498.15 7193.01 4295.84 5997.66 9789.21 16493.28 19995.46 18588.89 16998.98 11289.80 15298.82 12597.80 170
USDC89.02 24489.08 23488.84 28895.07 24074.50 31488.97 28296.39 18673.21 32493.27 20096.28 14382.16 24596.39 30177.55 30398.80 12995.62 270
thres100view90087.35 27886.89 27688.72 29096.14 19073.09 32493.00 14985.31 34392.13 8593.26 20190.96 30763.42 33898.28 20371.27 34096.54 26094.79 285
N_pmnet88.90 24987.25 26993.83 15094.40 26493.81 3484.73 33387.09 32679.36 28993.26 20192.43 28479.29 26591.68 35177.50 30597.22 24096.00 251
CL-MVSNet_2432*160090.04 22989.90 22390.47 25795.24 23777.81 27886.60 32392.62 28285.64 22893.25 20393.92 24483.84 22896.06 31079.93 28498.03 20797.53 189
mvs_anonymous90.37 21691.30 19387.58 30692.17 30568.00 34589.84 26394.73 24283.82 25193.22 20497.40 6687.54 18997.40 26987.94 19395.05 29297.34 201
test_yl90.11 22489.73 22791.26 23094.09 27179.82 24490.44 24092.65 28090.90 12493.19 20593.30 26173.90 29798.03 22382.23 26096.87 25195.93 254
DCV-MVSNet90.11 22489.73 22791.26 23094.09 27179.82 24490.44 24092.65 28090.90 12493.19 20593.30 26173.90 29798.03 22382.23 26096.87 25195.93 254
D2MVS89.93 23189.60 22990.92 24394.03 27378.40 26988.69 28994.85 23678.96 29493.08 20795.09 20074.57 29596.94 28388.19 18698.96 10997.41 194
UnsupCasMVSNet_bld88.50 25688.03 25889.90 27295.52 22878.88 26387.39 30494.02 25879.32 29093.06 20894.02 24080.72 25894.27 33775.16 31993.08 32396.54 227
miper_lstm_enhance89.90 23289.80 22490.19 26891.37 31977.50 28283.82 34495.00 23184.84 24393.05 20994.96 20776.53 29195.20 32889.96 15098.67 14097.86 163
PHI-MVS94.34 11393.80 12695.95 5795.65 22291.67 6194.82 9697.86 8087.86 18993.04 21094.16 23591.58 12098.78 14790.27 13998.96 10997.41 194
TAMVS90.16 22389.05 23593.49 16296.49 16286.37 15490.34 24592.55 28480.84 27692.99 21194.57 22381.94 24998.20 21173.51 32698.21 18995.90 257
Vis-MVSNet (Re-imp)90.42 21390.16 21691.20 23497.66 10577.32 28594.33 11587.66 32291.20 12092.99 21195.13 19875.40 29498.28 20377.86 29999.19 8097.99 148
ab-mvs92.40 17092.62 16091.74 21697.02 13581.65 21595.84 5995.50 22286.95 20892.95 21397.56 5690.70 14597.50 26179.63 28797.43 23496.06 249
MCST-MVS92.91 15392.51 16394.10 13697.52 11285.72 16891.36 22097.13 14180.33 27892.91 21494.24 23191.23 13198.72 15789.99 14997.93 21397.86 163
ETV-MVS92.99 15192.74 15693.72 15295.86 21086.30 15792.33 17797.84 8491.70 10992.81 21586.17 34992.22 10599.19 8088.03 19197.73 22095.66 267
TAPA-MVS88.58 1092.49 16991.75 18194.73 10996.50 16189.69 8692.91 15297.68 9678.02 30192.79 21694.10 23690.85 13997.96 23184.76 23898.16 19396.54 227
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-RMVSNet90.47 21290.44 21290.56 25695.21 23878.65 26889.15 28093.94 26188.21 18192.74 21794.22 23286.38 21097.88 23578.67 29695.39 28595.14 278
旧先验290.00 25768.65 34492.71 21896.52 29685.15 229
cl-mvsnet289.02 24488.50 24590.59 25589.76 33576.45 29786.62 32294.03 25682.98 26092.65 21992.49 27972.05 30597.53 25988.93 17197.02 24597.78 171
tfpn200view987.05 28686.52 28488.67 29195.77 21472.94 32591.89 19986.00 33590.84 12692.61 22089.80 31963.93 33598.28 20371.27 34096.54 26094.79 285
thres40087.20 28286.52 28489.24 28495.77 21472.94 32591.89 19986.00 33590.84 12692.61 22089.80 31963.93 33598.28 20371.27 34096.54 26096.51 229
MS-PatchMatch88.05 26387.75 26188.95 28593.28 28377.93 27587.88 29692.49 28575.42 31392.57 22293.59 25580.44 25994.24 33981.28 26992.75 32694.69 290
miper_enhance_ethall88.42 25787.87 26090.07 26988.67 34875.52 30685.10 33095.59 21775.68 31092.49 22389.45 32778.96 26697.88 23587.86 19597.02 24596.81 221
testdata91.03 23896.87 14382.01 21094.28 25271.55 33192.46 22495.42 18885.65 21997.38 27282.64 25597.27 23893.70 313
LF4IMVS92.72 16192.02 17294.84 10595.65 22291.99 5492.92 15196.60 17585.08 23992.44 22593.62 25386.80 20596.35 30486.81 20798.25 18396.18 245
diffmvs91.74 18491.93 17591.15 23693.06 28978.17 27288.77 28797.51 11286.28 21692.42 22693.96 24388.04 18197.46 26490.69 12696.67 25897.82 168
HPM-MVS++copyleft95.02 8294.39 11196.91 3897.88 9093.58 3694.09 12396.99 15091.05 12392.40 22795.22 19591.03 13899.25 7492.11 9198.69 13997.90 159
ppachtmachnet_test88.61 25588.64 24388.50 29491.76 31270.99 33584.59 33692.98 27279.30 29192.38 22893.53 25779.57 26397.45 26586.50 21697.17 24197.07 208
Anonymous2023120688.77 25288.29 25090.20 26796.31 17678.81 26589.56 26993.49 26674.26 31892.38 22895.58 17882.21 24395.43 32272.07 33498.75 13596.34 238
MVS_Test92.57 16893.29 14390.40 26093.53 28175.85 30392.52 16396.96 15188.73 17092.35 23096.70 11490.77 14098.37 19992.53 8595.49 28196.99 213
PVSNet_Blended_VisFu91.63 18791.20 19592.94 17797.73 9883.95 19192.14 18597.46 11378.85 29692.35 23094.98 20684.16 22799.08 9586.36 21896.77 25595.79 261
CDPH-MVS92.67 16391.83 17795.18 9596.94 13988.46 11290.70 23497.07 14577.38 30392.34 23295.08 20192.67 9898.88 12685.74 22398.57 14698.20 131
NCCC94.08 12393.54 13895.70 7496.49 16289.90 8392.39 17396.91 15790.64 13392.33 23394.60 22190.58 14898.96 11790.21 14297.70 22498.23 127
CLD-MVS91.82 18391.41 18993.04 17196.37 16683.65 19486.82 31697.29 13084.65 24692.27 23489.67 32492.20 10697.85 24183.95 24499.47 3997.62 183
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS92.05 18092.16 16891.72 21794.44 26280.13 23487.62 29797.25 13387.34 20192.22 23593.18 26589.54 16598.73 15689.67 15698.20 19196.30 240
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 27287.31 26788.54 29394.71 25574.27 31793.10 14788.20 31886.20 21792.18 23693.04 26673.21 30095.52 31779.32 29185.82 35195.83 259
API-MVS91.52 19091.61 18291.26 23094.16 26886.26 15994.66 10294.82 23891.17 12192.13 23791.08 30590.03 16197.06 28079.09 29497.35 23790.45 345
DP-MVS Recon92.31 17391.88 17693.60 15597.18 12986.87 14191.10 22597.37 11784.92 24292.08 23894.08 23788.59 17298.20 21183.50 24798.14 19595.73 263
our_test_387.55 27387.59 26487.44 30891.76 31270.48 33683.83 34390.55 30779.79 28192.06 23992.17 28878.63 27195.63 31584.77 23794.73 29896.22 243
MSDG90.82 20290.67 20891.26 23094.16 26883.08 20286.63 32196.19 19690.60 13591.94 24091.89 29289.16 16895.75 31480.96 27594.51 30394.95 283
Effi-MVS+-dtu93.90 12792.60 16297.77 494.74 25196.67 394.00 12695.41 22489.94 14591.93 24192.13 28990.12 15598.97 11687.68 19797.48 23297.67 180
ETH3 D test640091.91 18291.25 19493.89 14696.59 15584.41 18192.10 18697.72 9578.52 29791.82 24293.78 25088.70 17099.13 8783.61 24698.39 16398.14 134
Gipumacopyleft95.31 7595.80 6393.81 15197.99 8790.91 6996.42 3497.95 7596.69 1691.78 24398.85 1291.77 11595.49 31991.72 10599.08 9195.02 281
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DROMVSNet94.58 10294.82 9293.86 14996.36 16885.20 17495.56 6999.01 391.91 9191.67 24493.78 25093.18 8499.42 2892.78 7699.11 8996.97 214
HyFIR lowres test87.19 28385.51 29392.24 20097.12 13480.51 22985.03 33196.06 20066.11 35191.66 24592.98 26970.12 30999.14 8575.29 31895.23 28997.07 208
MVP-Stereo90.07 22788.92 23893.54 15996.31 17686.49 14990.93 22895.59 21779.80 28091.48 24695.59 17580.79 25797.39 27078.57 29791.19 33996.76 224
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20085.85 29385.18 29487.88 30494.44 26272.52 32889.08 28186.21 33188.57 17691.44 24788.40 33664.22 33398.00 22768.35 34895.88 27493.12 322
FMVSNet587.82 26786.56 28291.62 22092.31 30079.81 24693.49 13994.81 24083.26 25391.36 24896.93 9652.77 36297.49 26376.07 31498.03 20797.55 188
新几何193.17 17097.16 13087.29 13094.43 24867.95 34691.29 24994.94 20886.97 20098.23 20981.06 27497.75 21993.98 306
xiu_mvs_v1_base_debu91.47 19191.52 18491.33 22795.69 21981.56 21689.92 25996.05 20183.22 25491.26 25090.74 30991.55 12198.82 13689.29 16295.91 27193.62 315
xiu_mvs_v1_base91.47 19191.52 18491.33 22795.69 21981.56 21689.92 25996.05 20183.22 25491.26 25090.74 30991.55 12198.82 13689.29 16295.91 27193.62 315
xiu_mvs_v1_base_debi91.47 19191.52 18491.33 22795.69 21981.56 21689.92 25996.05 20183.22 25491.26 25090.74 30991.55 12198.82 13689.29 16295.91 27193.62 315
CDS-MVSNet89.55 23688.22 25493.53 16095.37 23486.49 14989.26 27793.59 26379.76 28291.15 25392.31 28677.12 28398.38 19677.51 30497.92 21495.71 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 17592.13 17092.68 18694.53 26184.10 18895.70 6297.03 14682.44 26691.14 25496.42 12988.47 17498.38 19685.95 22297.47 23395.55 271
112190.26 22189.23 23093.34 16497.15 13287.40 12891.94 19694.39 24967.88 34791.02 25594.91 20986.91 20398.59 17781.17 27297.71 22394.02 305
CNLPA91.72 18591.20 19593.26 16896.17 18791.02 6691.14 22395.55 22090.16 14390.87 25693.56 25686.31 21194.40 33579.92 28697.12 24294.37 296
test_prior393.29 13892.85 15294.61 11395.95 20587.23 13190.21 24897.36 12289.33 15990.77 25794.81 21390.41 15098.68 16788.21 18398.55 14797.93 155
test_prior290.21 24889.33 15990.77 25794.81 21390.41 15088.21 18398.55 147
test22296.95 13885.27 17388.83 28593.61 26265.09 35490.74 25994.85 21284.62 22597.36 23693.91 307
TR-MVS87.70 26887.17 27189.27 28294.11 27079.26 25688.69 28991.86 29781.94 27090.69 26089.79 32182.82 23797.42 26772.65 33291.98 33591.14 341
CVMVSNet85.16 29684.72 29586.48 31392.12 30670.19 33792.32 17888.17 31956.15 36290.64 26195.85 16167.97 31496.69 29288.78 17690.52 34292.56 331
TEST996.45 16489.46 8890.60 23696.92 15579.09 29290.49 26294.39 22791.31 12798.88 126
train_agg92.71 16291.83 17795.35 8496.45 16489.46 8890.60 23696.92 15579.37 28790.49 26294.39 22791.20 13398.88 12688.66 18098.43 15997.72 176
test_896.37 16689.14 9590.51 23996.89 15879.37 28790.42 26494.36 22991.20 13398.82 136
KD-MVS_2432*160082.17 31480.75 32186.42 31582.04 36670.09 33981.75 35090.80 30482.56 26290.37 26589.30 32842.90 37196.11 30874.47 32192.55 32993.06 323
miper_refine_blended82.17 31480.75 32186.42 31582.04 36670.09 33981.75 35090.80 30482.56 26290.37 26589.30 32842.90 37196.11 30874.47 32192.55 32993.06 323
agg_prior192.60 16591.76 18095.10 9896.20 18488.89 10090.37 24396.88 15979.67 28490.21 26794.41 22591.30 12898.78 14788.46 18298.37 17097.64 182
agg_prior96.20 18488.89 10096.88 15990.21 26798.78 147
jason89.17 24288.32 24891.70 21895.73 21780.07 23588.10 29493.22 26971.98 33090.09 26992.79 27378.53 27298.56 18187.43 20197.06 24396.46 234
jason: jason.
CS-MVS92.12 17892.62 16090.60 25494.57 26078.12 27392.00 19298.58 887.75 19290.08 27091.88 29389.79 16299.10 9390.35 13398.60 14594.58 291
Fast-Effi-MVS+-dtu92.77 16092.16 16894.58 12094.66 25788.25 11492.05 18896.65 17389.62 15290.08 27091.23 30292.56 10098.60 17586.30 21996.27 26596.90 217
CHOSEN 1792x268887.19 28385.92 29191.00 24197.13 13379.41 25384.51 33795.60 21364.14 35590.07 27294.81 21378.26 27497.14 27873.34 32795.38 28696.46 234
PatchMatch-RL89.18 24188.02 25992.64 18795.90 20992.87 4588.67 29191.06 30280.34 27790.03 27391.67 29783.34 23094.42 33476.35 31394.84 29690.64 344
BH-w/o87.21 28187.02 27587.79 30594.77 24877.27 28687.90 29593.21 27181.74 27189.99 27488.39 33783.47 22996.93 28571.29 33992.43 33189.15 346
Fast-Effi-MVS+91.28 19790.86 20292.53 19495.45 23082.53 20789.25 27996.52 18185.00 24089.91 27588.55 33592.94 9098.84 13484.72 23995.44 28396.22 243
AdaColmapbinary91.63 18791.36 19092.47 19795.56 22786.36 15592.24 18396.27 19088.88 16989.90 27692.69 27691.65 11998.32 20177.38 30697.64 22792.72 330
mvs-test193.07 14991.80 17996.89 3994.74 25195.83 692.17 18495.41 22489.94 14589.85 27790.59 31590.12 15598.88 12687.68 19795.66 27795.97 252
GA-MVS87.70 26886.82 27790.31 26193.27 28477.22 28784.72 33592.79 27785.11 23889.82 27890.07 31666.80 31997.76 25084.56 24094.27 30895.96 253
Patchmatch-test86.10 29286.01 28986.38 31790.63 32674.22 31889.57 26886.69 32885.73 22789.81 27992.83 27165.24 33091.04 35377.82 30295.78 27593.88 309
EIA-MVS92.35 17292.03 17193.30 16795.81 21383.97 19092.80 15598.17 3787.71 19389.79 28087.56 33991.17 13699.18 8187.97 19297.27 23896.77 223
test1294.43 12895.95 20586.75 14396.24 19289.76 28189.79 16298.79 14397.95 21297.75 175
pmmvs488.95 24887.70 26392.70 18594.30 26585.60 16987.22 30692.16 29174.62 31689.75 28294.19 23377.97 27696.41 30082.71 25496.36 26496.09 247
原ACMM192.87 18096.91 14184.22 18597.01 14776.84 30889.64 28394.46 22488.00 18298.70 16381.53 26798.01 20995.70 265
MG-MVS89.54 23789.80 22488.76 28994.88 24272.47 32989.60 26792.44 28685.82 22489.48 28495.98 15782.85 23697.74 25281.87 26395.27 28896.08 248
114514_t90.51 21089.80 22492.63 18998.00 8482.24 20993.40 14297.29 13065.84 35289.40 28594.80 21686.99 19998.75 15283.88 24598.61 14396.89 218
Effi-MVS+92.79 15892.74 15692.94 17795.10 23983.30 19794.00 12697.53 10991.36 11689.35 28690.65 31494.01 6898.66 16987.40 20295.30 28796.88 219
CR-MVSNet87.89 26487.12 27390.22 26591.01 32278.93 26192.52 16392.81 27573.08 32589.10 28796.93 9667.11 31697.64 25688.80 17592.70 32794.08 300
RPMNet90.31 22090.14 21990.81 24891.01 32278.93 26192.52 16398.12 4391.91 9189.10 28796.89 9968.84 31199.41 3690.17 14392.70 32794.08 300
PatchT87.51 27488.17 25585.55 32090.64 32566.91 34792.02 19186.09 33392.20 8389.05 28997.16 8364.15 33496.37 30389.21 16892.98 32593.37 319
MVSFormer92.18 17792.23 16792.04 21094.74 25180.06 23697.15 1197.37 11788.98 16588.83 29092.79 27377.02 28499.60 896.41 496.75 25696.46 234
lupinMVS88.34 25987.31 26791.45 22494.74 25180.06 23687.23 30592.27 28871.10 33488.83 29091.15 30377.02 28498.53 18486.67 21196.75 25695.76 262
HQP-NCC96.36 16891.37 21787.16 20388.81 292
ACMP_Plane96.36 16891.37 21787.16 20388.81 292
HQP4-MVS88.81 29298.61 17398.15 133
HQP-MVS92.09 17991.49 18793.88 14796.36 16884.89 17791.37 21797.31 12787.16 20388.81 29293.40 25984.76 22398.60 17586.55 21497.73 22098.14 134
PAPM_NR91.03 20090.81 20491.68 21996.73 14981.10 22493.72 13496.35 18888.19 18288.77 29692.12 29085.09 22297.25 27482.40 25993.90 31196.68 226
SCA87.43 27687.21 27088.10 30192.01 30971.98 33189.43 27188.11 32082.26 26888.71 29792.83 27178.65 26997.59 25779.61 28893.30 31894.75 287
F-COLMAP92.28 17491.06 19995.95 5797.52 11291.90 5693.53 13897.18 13783.98 24988.70 29894.04 23888.41 17598.55 18380.17 28095.99 27097.39 198
PVSNet_BlendedMVS90.35 21789.96 22191.54 22394.81 24678.80 26690.14 25296.93 15379.43 28688.68 29995.06 20286.27 21298.15 21780.27 27798.04 20697.68 179
PVSNet_Blended88.74 25388.16 25790.46 25994.81 24678.80 26686.64 32096.93 15374.67 31588.68 29989.18 33086.27 21298.15 21780.27 27796.00 26994.44 295
AUN-MVS90.05 22888.30 24995.32 8996.09 19490.52 7592.42 17192.05 29582.08 26988.45 30192.86 27065.76 32698.69 16588.91 17396.07 26796.75 225
pmmvs587.87 26587.14 27290.07 26993.26 28576.97 29288.89 28492.18 28973.71 32288.36 30293.89 24676.86 28996.73 29180.32 27696.81 25396.51 229
WTY-MVS86.93 28886.50 28688.24 29994.96 24174.64 31087.19 30792.07 29478.29 29988.32 30391.59 29978.06 27594.27 33774.88 32093.15 32195.80 260
thisisatest051584.72 29982.99 30789.90 27292.96 29275.33 30884.36 33883.42 35377.37 30488.27 30486.65 34453.94 35998.72 15782.56 25697.40 23595.67 266
MIMVSNet87.13 28586.54 28388.89 28796.05 19776.11 30094.39 11388.51 31481.37 27288.27 30496.75 10972.38 30395.52 31765.71 35495.47 28295.03 280
test0.0.03 182.48 31181.47 31585.48 32189.70 33673.57 32184.73 33381.64 35783.07 25888.13 30686.61 34562.86 34189.10 35966.24 35390.29 34393.77 311
CMPMVSbinary68.83 2287.28 27985.67 29292.09 20888.77 34785.42 17190.31 24694.38 25070.02 34088.00 30793.30 26173.78 29994.03 34075.96 31696.54 26096.83 220
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS281.31 31983.44 30374.92 34590.52 32846.49 36869.19 36085.23 34684.30 24887.95 30894.71 21976.95 28684.36 36264.07 35598.09 20193.89 308
xiu_mvs_v2_base89.00 24689.19 23188.46 29694.86 24474.63 31186.97 31095.60 21380.88 27487.83 30988.62 33491.04 13798.81 14182.51 25894.38 30491.93 336
PS-MVSNAJ88.86 25088.99 23788.48 29594.88 24274.71 30986.69 31995.60 21380.88 27487.83 30987.37 34290.77 14098.82 13682.52 25794.37 30591.93 336
tpm84.38 30184.08 30085.30 32490.47 32963.43 36189.34 27485.63 33977.24 30687.62 31195.03 20561.00 34997.30 27379.26 29291.09 34195.16 276
sss87.23 28086.82 27788.46 29693.96 27477.94 27486.84 31492.78 27877.59 30287.61 31291.83 29478.75 26891.92 35077.84 30094.20 30995.52 272
MAR-MVS90.32 21988.87 24194.66 11294.82 24591.85 5794.22 11894.75 24180.91 27387.52 31388.07 33886.63 20897.87 23876.67 31096.21 26694.25 299
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS-test91.17 19891.31 19290.74 24994.24 26779.99 24091.46 21698.39 1586.29 21587.43 31489.06 33288.63 17199.07 9988.20 18598.09 20193.17 321
DPM-MVS89.35 23988.40 24792.18 20596.13 19384.20 18686.96 31196.15 19975.40 31487.36 31591.55 30083.30 23198.01 22682.17 26296.62 25994.32 298
UGNet93.08 14792.50 16494.79 10793.87 27787.99 12195.07 8894.26 25390.64 13387.33 31697.67 5186.89 20498.49 18788.10 18998.71 13697.91 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive85.22 29584.64 29686.98 31189.51 34069.83 34290.52 23887.34 32578.87 29587.22 31792.74 27566.91 31896.53 29581.77 26486.88 35094.58 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
1112_ss88.42 25787.41 26691.45 22496.69 15080.99 22589.72 26596.72 17073.37 32387.00 31890.69 31277.38 28098.20 21181.38 26893.72 31495.15 277
cascas87.02 28786.28 28889.25 28391.56 31776.45 29784.33 33996.78 16571.01 33586.89 31985.91 35081.35 25296.94 28383.09 25195.60 27894.35 297
CANet92.38 17191.99 17393.52 16193.82 27983.46 19591.14 22397.00 14889.81 14986.47 32094.04 23887.90 18599.21 7889.50 15998.27 17997.90 159
Test_1112_low_res87.50 27586.58 28190.25 26496.80 14877.75 27987.53 30296.25 19169.73 34186.47 32093.61 25475.67 29397.88 23579.95 28293.20 31995.11 279
PLCcopyleft85.34 1590.40 21488.92 23894.85 10496.53 16090.02 7991.58 21396.48 18380.16 27986.14 32292.18 28785.73 21798.25 20876.87 30994.61 30296.30 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
new_pmnet81.22 32081.01 31981.86 33890.92 32470.15 33884.03 34180.25 36270.83 33685.97 32389.78 32267.93 31584.65 36167.44 35091.90 33690.78 343
EPMVS81.17 32280.37 32483.58 33385.58 36065.08 35690.31 24671.34 36577.31 30585.80 32491.30 30159.38 35092.70 34879.99 28182.34 35892.96 326
tpmvs84.22 30283.97 30184.94 32587.09 35565.18 35491.21 22288.35 31582.87 26185.21 32590.96 30765.24 33096.75 29079.60 29085.25 35292.90 327
FPMVS84.50 30083.28 30488.16 30096.32 17594.49 1485.76 32685.47 34183.09 25785.20 32694.26 23063.79 33786.58 36063.72 35691.88 33783.40 355
pmmvs380.83 32378.96 33186.45 31487.23 35477.48 28384.87 33282.31 35563.83 35685.03 32789.50 32649.66 36393.10 34573.12 33095.10 29188.78 350
PAPR87.65 27186.77 27990.27 26392.85 29377.38 28488.56 29296.23 19376.82 30984.98 32889.75 32386.08 21497.16 27772.33 33393.35 31796.26 242
MDTV_nov1_ep1383.88 30289.42 34161.52 36288.74 28887.41 32473.99 32084.96 32994.01 24165.25 32995.53 31678.02 29893.16 320
131486.46 29086.33 28786.87 31291.65 31474.54 31291.94 19694.10 25574.28 31784.78 33087.33 34383.03 23495.00 32978.72 29591.16 34091.06 342
ADS-MVSNet284.01 30382.20 31189.41 27889.04 34476.37 29987.57 29890.98 30372.71 32884.46 33192.45 28168.08 31296.48 29870.58 34483.97 35395.38 273
ADS-MVSNet82.25 31281.55 31384.34 33089.04 34465.30 35387.57 29885.13 34772.71 32884.46 33192.45 28168.08 31292.33 34970.58 34483.97 35395.38 273
PVSNet76.22 2082.89 30982.37 30984.48 32993.96 27464.38 35978.60 35588.61 31371.50 33284.43 33386.36 34874.27 29694.60 33169.87 34693.69 31594.46 294
MVS84.98 29884.30 29887.01 31091.03 32177.69 28191.94 19694.16 25459.36 36084.23 33487.50 34185.66 21896.80 28971.79 33593.05 32486.54 352
tpmrst82.85 31082.93 30882.64 33687.65 34958.99 36490.14 25287.90 32175.54 31283.93 33591.63 29866.79 32195.36 32381.21 27181.54 35993.57 318
ET-MVSNet_ETH3D86.15 29184.27 29991.79 21493.04 29081.28 22187.17 30886.14 33279.57 28583.65 33688.66 33357.10 35398.18 21487.74 19695.40 28495.90 257
HY-MVS82.50 1886.81 28985.93 29089.47 27693.63 28077.93 27594.02 12591.58 30075.68 31083.64 33793.64 25277.40 27997.42 26771.70 33792.07 33493.05 325
MDTV_nov1_ep13_2view42.48 36988.45 29367.22 34983.56 33866.80 31972.86 33194.06 302
CostFormer83.09 30782.21 31085.73 31989.27 34267.01 34690.35 24486.47 33070.42 33883.52 33993.23 26461.18 34796.85 28777.21 30788.26 34893.34 320
DSMNet-mixed82.21 31381.56 31284.16 33189.57 33970.00 34190.65 23577.66 36454.99 36383.30 34097.57 5577.89 27790.50 35566.86 35295.54 28091.97 335
E-PMN80.72 32580.86 32080.29 34185.11 36168.77 34472.96 35781.97 35687.76 19183.25 34183.01 35762.22 34489.17 35877.15 30894.31 30782.93 356
test-LLR83.58 30483.17 30584.79 32789.68 33766.86 34983.08 34584.52 34883.07 25882.85 34284.78 35362.86 34193.49 34382.85 25294.86 29494.03 303
test-mter81.21 32180.01 32884.79 32789.68 33766.86 34983.08 34584.52 34873.85 32182.85 34284.78 35343.66 37093.49 34382.85 25294.86 29494.03 303
CANet_DTU89.85 23389.17 23291.87 21292.20 30480.02 23990.79 23195.87 20686.02 22182.53 34491.77 29580.01 26198.57 18085.66 22497.70 22497.01 212
MVS_030490.96 20190.15 21893.37 16393.17 28687.06 13593.62 13792.43 28789.60 15382.25 34595.50 18382.56 24297.83 24284.41 24297.83 21895.22 275
JIA-IIPM85.08 29783.04 30691.19 23587.56 35086.14 16189.40 27384.44 35088.98 16582.20 34697.95 3956.82 35596.15 30676.55 31283.45 35591.30 340
PMMVS83.00 30881.11 31688.66 29283.81 36586.44 15282.24 34985.65 33861.75 35982.07 34785.64 35179.75 26291.59 35275.99 31593.09 32287.94 351
tpm281.46 31880.35 32584.80 32689.90 33465.14 35590.44 24085.36 34265.82 35382.05 34892.44 28357.94 35296.69 29270.71 34388.49 34792.56 331
IB-MVS77.21 1983.11 30681.05 31789.29 28191.15 32075.85 30385.66 32786.00 33579.70 28382.02 34986.61 34548.26 36598.39 19477.84 30092.22 33293.63 314
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat180.61 32679.46 32984.07 33288.78 34665.06 35789.26 27788.23 31762.27 35881.90 35089.66 32562.70 34395.29 32671.72 33680.60 36091.86 338
EMVS80.35 32780.28 32680.54 34084.73 36369.07 34372.54 35980.73 35987.80 19081.66 35181.73 35862.89 34089.84 35675.79 31794.65 30182.71 357
dp79.28 32978.62 33281.24 33985.97 35956.45 36586.91 31285.26 34572.97 32681.45 35289.17 33156.01 35795.45 32173.19 32976.68 36191.82 339
DWT-MVSNet_test80.74 32479.18 33085.43 32287.51 35266.87 34889.87 26286.01 33474.20 31980.86 35380.62 35948.84 36496.68 29481.54 26683.14 35792.75 329
EPNet89.80 23588.25 25194.45 12783.91 36486.18 16093.87 13087.07 32791.16 12280.64 35494.72 21878.83 26798.89 12585.17 22798.89 11298.28 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TESTMET0.1,179.09 33078.04 33382.25 33787.52 35164.03 36083.08 34580.62 36070.28 33980.16 35583.22 35644.13 36990.56 35479.95 28293.36 31692.15 334
baseline283.38 30581.54 31488.90 28691.38 31872.84 32788.78 28681.22 35878.97 29379.82 35687.56 33961.73 34697.80 24474.30 32390.05 34496.05 250
gg-mvs-nofinetune82.10 31681.02 31885.34 32387.46 35371.04 33394.74 9967.56 36696.44 2179.43 35798.99 645.24 36796.15 30667.18 35192.17 33388.85 348
PVSNet_070.34 2174.58 33272.96 33579.47 34290.63 32666.24 35273.26 35683.40 35463.67 35778.02 35878.35 36172.53 30289.59 35756.68 36060.05 36482.57 358
MVS-HIRNet78.83 33180.60 32373.51 34693.07 28847.37 36787.10 30978.00 36368.94 34377.53 35997.26 7671.45 30794.62 33063.28 35788.74 34678.55 360
CHOSEN 280x42080.04 32877.97 33486.23 31890.13 33274.53 31372.87 35889.59 31066.38 35076.29 36085.32 35256.96 35495.36 32369.49 34794.72 29988.79 349
PAPM81.91 31780.11 32787.31 30993.87 27772.32 33084.02 34293.22 26969.47 34276.13 36189.84 31872.15 30497.23 27553.27 36289.02 34592.37 333
GG-mvs-BLEND83.24 33585.06 36271.03 33494.99 9365.55 36774.09 36275.51 36244.57 36894.46 33359.57 35987.54 34984.24 354
EPNet_dtu85.63 29484.37 29789.40 27986.30 35874.33 31691.64 21288.26 31684.84 24372.96 36389.85 31771.27 30897.69 25476.60 31197.62 22896.18 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVEpermissive59.87 2373.86 33372.65 33677.47 34487.00 35774.35 31561.37 36260.93 36867.27 34869.69 36486.49 34781.24 25672.33 36456.45 36183.45 35585.74 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft53.83 34870.38 36864.56 35848.52 37033.01 36465.50 36574.21 36356.19 35646.64 36638.45 36570.07 36250.30 362
tmp_tt37.97 33544.33 33818.88 34911.80 37021.54 37063.51 36145.66 3714.23 36651.34 36650.48 36459.08 35122.11 36744.50 36468.35 36313.00 363
test_method50.44 33448.94 33754.93 34739.68 36912.38 37128.59 36390.09 3086.82 36541.10 36778.41 36054.41 35870.69 36550.12 36351.26 36581.72 359
test1239.49 33712.01 3401.91 3502.87 3711.30 37282.38 3481.34 3731.36 3672.84 3686.56 3672.45 3730.97 3682.73 3665.56 3663.47 364
testmvs9.02 33811.42 3411.81 3512.77 3721.13 37379.44 3541.90 3721.18 3682.65 3696.80 3661.95 3740.87 3692.62 3673.45 3673.44 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.35 33631.13 3390.00 3520.00 3730.00 3740.00 36495.58 2190.00 3690.00 37091.15 30393.43 750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.56 33910.09 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37090.77 1400.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re7.56 33910.08 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37090.69 3120.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS95.15 9696.84 14489.43 9095.21 8095.66 17393.12 8698.06 22186.28 22098.61 14397.95 153
save fliter97.46 11788.05 11992.04 18997.08 14487.63 196
test_0728_SECOND94.88 10398.55 3986.72 14495.20 8298.22 3199.38 5293.44 5199.31 6298.53 107
GSMVS94.75 287
sam_mvs166.64 32294.75 287
sam_mvs66.41 323
MTGPAbinary97.62 99
test_post190.21 2485.85 36965.36 32896.00 31179.61 288
test_post6.07 36865.74 32795.84 313
patchmatchnet-post91.71 29666.22 32597.59 257
MTMP94.82 9654.62 369
gm-plane-assit87.08 35659.33 36371.22 33383.58 35597.20 27673.95 324
test9_res88.16 18898.40 16097.83 166
agg_prior287.06 20698.36 17197.98 149
test_prior489.91 8290.74 232
test_prior94.61 11395.95 20587.23 13197.36 12298.68 16797.93 155
新几何290.02 256
旧先验196.20 18484.17 18794.82 23895.57 17989.57 16497.89 21596.32 239
无先验89.94 25895.75 21070.81 33798.59 17781.17 27294.81 284
原ACMM289.34 274
testdata298.03 22380.24 279
segment_acmp92.14 107
testdata188.96 28388.44 178
plane_prior797.71 9988.68 104
plane_prior697.21 12888.23 11586.93 201
plane_prior597.81 8798.95 11989.26 16598.51 15498.60 103
plane_prior495.59 175
plane_prior294.56 10891.74 106
plane_prior197.38 120
plane_prior88.12 11793.01 14888.98 16598.06 204
n20.00 374
nn0.00 374
door-mid92.13 293
test1196.65 173
door91.26 301
HQP5-MVS84.89 177
BP-MVS86.55 214
HQP3-MVS97.31 12797.73 220
HQP2-MVS84.76 223
NP-MVS96.82 14587.10 13493.40 259
ACMMP++_ref98.82 125
ACMMP++99.25 73
Test By Simon90.61 146