This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 697.72 395.35 8799.51 287.38 13497.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12899.73 1499.59 12
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 6994.15 5098.93 399.07 588.07 18499.57 1395.86 999.69 1599.46 18
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2593.86 3299.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17996.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet-Re94.20 12194.58 10693.04 17595.91 21783.13 20793.79 13999.19 292.00 9198.84 598.04 3993.64 7299.02 11081.28 27798.54 15896.96 223
PS-MVSNAJss96.01 5196.04 5295.89 6698.82 2488.51 11595.57 7597.88 8288.72 17898.81 698.86 1090.77 14599.60 895.43 1199.53 3599.57 13
mvs_tets96.83 996.71 1997.17 2798.83 2392.51 5096.58 2997.61 10587.57 20598.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
Anonymous2023121196.60 2597.13 1295.00 10397.46 12386.35 16397.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
ACMH88.36 1296.59 2797.43 594.07 14298.56 3885.33 17996.33 4398.30 2394.66 4098.72 898.30 3097.51 598.00 23494.87 1499.59 2798.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax96.59 2796.42 2997.12 2998.76 2892.49 5196.44 3797.42 11886.96 21498.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
wuyk23d87.83 26990.79 20678.96 35090.46 33988.63 10992.72 16390.67 31291.65 11398.68 1197.64 5796.06 1677.53 37159.84 36699.41 5270.73 369
DTE-MVSNet96.74 1797.43 594.67 11699.13 684.68 18596.51 3197.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
PS-CasMVS96.69 2097.43 594.49 12999.13 684.09 19596.61 2797.97 7597.91 598.64 1398.13 3495.24 3699.65 393.39 5999.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 18696.54 3098.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
SixPastTwentyTwo94.91 8895.21 8393.98 14498.52 4683.19 20595.93 6094.84 24394.86 3998.49 1598.74 1681.45 25599.60 894.69 1699.39 5499.15 37
WR-MVS_H96.60 2597.05 1495.24 9599.02 1286.44 15996.78 2498.08 5397.42 998.48 1697.86 4991.76 12199.63 694.23 2699.84 399.66 6
v7n96.82 1097.31 1095.33 8998.54 4386.81 14896.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
anonymousdsp96.74 1796.42 2997.68 798.00 8894.03 2696.97 1797.61 10587.68 20298.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
CP-MVSNet96.19 4696.80 1794.38 13598.99 1483.82 19896.31 4597.53 11297.60 798.34 1997.52 6391.98 11699.63 693.08 7499.81 999.70 3
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
test_part194.39 11094.55 10793.92 14996.14 19982.86 21195.54 7698.09 5295.36 3698.27 2098.36 2875.91 29699.44 2493.41 5899.84 399.47 17
test_djsdf96.62 2396.49 2897.01 3398.55 4191.77 6197.15 1397.37 12088.98 17298.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
ACMH+88.43 1196.48 3096.82 1695.47 8498.54 4389.06 10095.65 7198.61 996.10 2698.16 2397.52 6396.90 798.62 17890.30 14199.60 2598.72 91
pmmvs696.80 1397.36 995.15 9999.12 887.82 12996.68 2597.86 8396.10 2698.14 2499.28 397.94 398.21 21691.38 11999.69 1599.42 19
ANet_high94.83 9596.28 3790.47 26196.65 15873.16 32994.33 12298.74 896.39 2398.09 2598.93 893.37 7998.70 16790.38 13599.68 1899.53 14
nrg03096.32 4196.55 2695.62 7897.83 9688.55 11395.77 6698.29 2692.68 7398.03 2697.91 4695.13 4098.95 12293.85 3699.49 3899.36 24
MIMVSNet195.52 6695.45 7395.72 7599.14 589.02 10196.23 5096.87 16493.73 5997.87 2798.49 2490.73 14999.05 10486.43 22599.60 2599.10 44
TransMVSNet (Re)95.27 8096.04 5292.97 17898.37 6181.92 21995.07 9496.76 17393.97 5497.77 2898.57 1995.72 1897.90 24088.89 17999.23 7999.08 45
DPE-MVScopyleft95.89 5495.88 5895.92 6397.93 9389.83 8693.46 14798.30 2392.37 8097.75 2996.95 9995.14 3999.51 1891.74 10899.28 7398.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040295.73 6096.22 4094.26 13798.19 7285.77 17493.24 15297.24 13796.88 1697.69 3097.77 5294.12 6899.13 9191.54 11699.29 6897.88 168
NR-MVSNet95.28 7895.28 8195.26 9497.75 10187.21 13895.08 9397.37 12093.92 5797.65 3195.90 16590.10 16399.33 6790.11 15099.66 2199.26 29
SED-MVS96.00 5296.41 3294.76 11298.51 4786.97 14495.21 8698.10 4991.95 9297.63 3297.25 8396.48 1199.35 5993.29 6399.29 6897.95 160
test_241102_ONE98.51 4786.97 14498.10 4991.85 9897.63 3297.03 9696.48 1198.95 122
test072698.51 4786.69 15195.34 8198.18 3691.85 9897.63 3297.37 7295.58 22
Anonymous2024052995.50 6795.83 6294.50 12797.33 12985.93 17195.19 9096.77 17296.64 1997.61 3598.05 3893.23 8398.79 14788.60 18699.04 10698.78 82
abl_697.31 597.12 1397.86 398.54 4395.32 796.61 2798.35 1995.81 3197.55 3697.44 6896.51 999.40 4394.06 3099.23 7998.85 76
DVP-MVS++95.93 5396.34 3494.70 11596.54 16786.66 15398.45 498.22 3293.26 6897.54 3797.36 7593.12 8799.38 5493.88 3498.68 14698.04 147
test_241102_TWO98.10 4991.95 9297.54 3797.25 8395.37 2899.35 5993.29 6399.25 7698.49 115
FC-MVSNet-test95.32 7595.88 5893.62 15898.49 5581.77 22095.90 6298.32 2093.93 5597.53 3997.56 6088.48 17799.40 4392.91 7999.83 699.68 4
K. test v393.37 13793.27 14893.66 15798.05 8182.62 21394.35 12186.62 33596.05 2897.51 4098.85 1276.59 29499.65 393.21 6798.20 20098.73 90
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8398.26 6787.69 13093.75 14097.86 8395.96 3097.48 4197.14 9095.33 3299.44 2490.79 12799.76 1199.38 22
v894.65 10295.29 8092.74 18896.65 15879.77 25394.59 11097.17 14191.86 9797.47 4297.93 4488.16 18299.08 9994.32 2299.47 3999.38 22
v1094.68 10195.27 8292.90 18396.57 16480.15 23994.65 10997.57 10890.68 13697.43 4398.00 4188.18 18199.15 8794.84 1599.55 3499.41 20
APDe-MVS96.46 3296.64 2295.93 6197.68 10989.38 9796.90 1998.41 1692.52 7797.43 4397.92 4595.11 4299.50 1994.45 1999.30 6598.92 67
SMA-MVScopyleft95.77 5995.54 7096.47 5198.27 6691.19 6795.09 9297.79 9486.48 21897.42 4597.51 6594.47 6399.29 7193.55 4699.29 6898.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVScopyleft95.82 5896.18 4294.72 11498.51 4786.69 15195.20 8897.00 15191.85 9897.40 4697.35 7895.58 2299.34 6293.44 5599.31 6398.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 6897.40 4697.35 7894.69 5599.34 6293.88 3499.42 4798.89 70
pm-mvs195.43 7095.94 5593.93 14898.38 5985.08 18295.46 7997.12 14591.84 10197.28 4898.46 2595.30 3497.71 26090.17 14899.42 4798.99 53
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
SD-MVS95.19 8195.73 6693.55 16196.62 16188.88 10694.67 10798.05 6091.26 12197.25 5096.40 13795.42 2694.36 34492.72 8499.19 8597.40 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMM88.83 996.30 4396.07 5096.97 3598.39 5892.95 4694.74 10598.03 6590.82 13297.15 5196.85 10796.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v093.87 15398.05 8183.77 19980.32 36797.13 5297.91 4677.49 28299.11 9592.62 8698.08 21198.74 88
FIs94.90 8995.35 7693.55 16198.28 6581.76 22195.33 8298.14 4493.05 7197.07 5397.18 8887.65 19199.29 7191.72 10999.69 1599.61 11
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6292.13 5495.33 8298.25 2791.78 10597.07 5397.22 8696.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6292.13 5498.25 2791.78 10597.07 5397.22 8696.38 1399.28 7392.07 9799.59 2799.11 41
VPA-MVSNet95.14 8295.67 6893.58 16097.76 10083.15 20694.58 11297.58 10793.39 6697.05 5698.04 3993.25 8298.51 19289.75 16099.59 2799.08 45
FMVSNet194.84 9495.13 8693.97 14597.60 11484.29 18895.99 5696.56 18392.38 7997.03 5798.53 2190.12 16098.98 11588.78 18199.16 9098.65 97
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7995.27 896.37 4098.12 4695.66 3397.00 5897.03 9694.85 5299.42 2993.49 4898.84 12598.00 152
RE-MVS-def96.66 2098.07 7995.27 896.37 4098.12 4695.66 3397.00 5897.03 9695.40 2793.49 4898.84 12598.00 152
test_one_060198.26 6787.14 13998.18 3694.25 4896.99 6097.36 7595.13 40
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9293.82 3496.31 4598.25 2795.51 3596.99 6097.05 9595.63 2199.39 4893.31 6298.88 12098.75 85
EG-PatchMatch MVS94.54 10794.67 10394.14 14097.87 9586.50 15592.00 19996.74 17488.16 19096.93 6297.61 5893.04 9197.90 24091.60 11398.12 20798.03 150
test117296.79 1596.52 2797.60 998.03 8594.87 1096.07 5598.06 5995.76 3296.89 6396.85 10794.85 5299.42 2993.35 6198.81 13398.53 112
KD-MVS_self_test94.10 12394.73 9992.19 20797.66 11179.49 25894.86 10197.12 14589.59 15896.87 6497.65 5690.40 15798.34 20689.08 17599.35 5798.75 85
MP-MVS-pluss96.08 4995.92 5796.57 4699.06 1091.21 6693.25 15198.32 2087.89 19596.86 6597.38 7195.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5994.31 1796.79 2398.32 2096.69 1796.86 6597.56 6095.48 2598.77 15590.11 15099.44 4598.31 127
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS96.70 1996.42 2997.54 1198.05 8194.69 1196.13 5298.07 5695.17 3796.82 6796.73 11895.09 4499.43 2892.99 7798.71 14298.50 114
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7397.69 10888.59 11192.26 18897.84 8794.91 3896.80 6895.78 17590.42 15499.41 3691.60 11399.58 3199.29 28
DU-MVS95.28 7895.12 8795.75 7497.75 10188.59 11192.58 16897.81 9093.99 5296.80 6895.90 16590.10 16399.41 3691.60 11399.58 3199.26 29
OPM-MVS95.61 6495.45 7396.08 5498.49 5591.00 6992.65 16797.33 12990.05 14896.77 7096.85 10795.04 4598.56 18792.77 8099.06 9898.70 94
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_part298.21 7189.41 9596.72 71
v124093.29 14093.71 13192.06 21496.01 21177.89 28391.81 21597.37 12085.12 24396.69 7296.40 13786.67 21199.07 10394.51 1898.76 13999.22 32
tfpnnormal94.27 11794.87 9392.48 20197.71 10580.88 23494.55 11695.41 23093.70 6096.67 7397.72 5391.40 12998.18 22087.45 20699.18 8798.36 123
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3191.96 5795.70 6898.01 6993.34 6796.64 7496.57 12894.99 4999.36 5893.48 5199.34 5898.82 78
Skip Steuart: Steuart Systems R&D Blog.
WR-MVS93.49 13493.72 13092.80 18797.57 11680.03 24590.14 25895.68 21793.70 6096.62 7595.39 19887.21 19999.04 10787.50 20599.64 2399.33 25
ACMP88.15 1395.71 6195.43 7596.54 4798.17 7391.73 6294.24 12498.08 5389.46 15996.61 7696.47 13195.85 1799.12 9390.45 13299.56 3398.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DP-MVS95.62 6395.84 6194.97 10497.16 13688.62 11094.54 11897.64 10196.94 1596.58 7797.32 8193.07 9098.72 16190.45 13298.84 12597.57 192
IterMVS-LS93.78 12994.28 11792.27 20496.27 18879.21 26591.87 20996.78 17091.77 10796.57 7897.07 9387.15 20098.74 15991.99 9999.03 10798.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1298.17 4093.11 7096.48 7997.36 7596.92 699.34 6294.31 2399.38 5598.92 67
ambc92.98 17796.88 14983.01 21095.92 6196.38 19396.41 8097.48 6688.26 18097.80 25189.96 15598.93 11798.12 142
Regformer-494.90 8994.67 10395.59 7992.78 30589.02 10192.39 18095.91 21094.50 4396.41 8095.56 18792.10 11299.01 11294.23 2698.14 20498.74 88
ACMMP_NAP96.21 4596.12 4796.49 5098.90 1891.42 6494.57 11398.03 6590.42 14396.37 8297.35 7895.68 1999.25 7794.44 2099.34 5898.80 80
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8997.46 12388.05 12392.04 19698.42 1587.63 20396.36 8396.68 12194.37 6499.32 6892.41 9199.05 10198.64 101
SF-MVS95.88 5695.88 5895.87 6798.12 7589.65 8995.58 7498.56 1191.84 10196.36 8396.68 12194.37 6499.32 6892.41 9199.05 10198.64 101
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3493.88 3096.95 1898.18 3692.26 8596.33 8596.84 11095.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VDDNet94.03 12594.27 11993.31 17098.87 2082.36 21595.51 7891.78 30497.19 1296.32 8698.60 1884.24 23098.75 15687.09 21398.83 13098.81 79
UniMVSNet (Re)95.32 7595.15 8595.80 7097.79 9988.91 10392.91 15998.07 5693.46 6596.31 8795.97 16490.14 15999.34 6292.11 9499.64 2399.16 36
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5793.04 4394.54 11898.05 6090.45 14296.31 8796.76 11492.91 9498.72 16191.19 12099.42 4798.32 125
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2393.69 14297.62 10294.46 4596.29 8996.94 10093.56 7399.37 5694.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6397.62 10294.46 4596.29 8996.94 10093.56 7399.37 5694.29 2499.42 4798.99 53
Baseline_NR-MVSNet94.47 10995.09 8892.60 19698.50 5480.82 23592.08 19496.68 17693.82 5896.29 8998.56 2090.10 16397.75 25890.10 15299.66 2199.24 31
IS-MVSNet94.49 10894.35 11494.92 10598.25 6986.46 15897.13 1594.31 25796.24 2496.28 9296.36 14482.88 23999.35 5988.19 19199.52 3798.96 60
VDD-MVS94.37 11194.37 11394.40 13497.49 12086.07 16993.97 13593.28 27494.49 4496.24 9397.78 5087.99 18798.79 14788.92 17799.14 9298.34 124
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5295.96 21392.96 4589.48 27697.46 11685.14 24196.23 9495.42 19593.19 8498.08 22690.37 13698.76 13997.38 209
PM-MVS93.33 13892.67 16195.33 8996.58 16394.06 2192.26 18892.18 29585.92 22996.22 9596.61 12685.64 22495.99 32090.35 13798.23 19595.93 262
DeepC-MVS91.39 495.43 7095.33 7895.71 7697.67 11090.17 8093.86 13898.02 6787.35 20796.22 9597.99 4294.48 6299.05 10492.73 8399.68 1897.93 162
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
V4293.43 13693.58 13692.97 17895.34 24581.22 22992.67 16696.49 18887.25 20996.20 9796.37 14387.32 19798.85 13692.39 9398.21 19898.85 76
CSCG94.69 10094.75 9794.52 12697.55 11787.87 12795.01 9797.57 10892.68 7396.20 9793.44 26591.92 11798.78 15189.11 17499.24 7896.92 224
v192192093.26 14393.61 13592.19 20796.04 21078.31 27691.88 20897.24 13785.17 24096.19 9996.19 15486.76 21099.05 10494.18 2898.84 12599.22 32
Regformer-294.86 9294.55 10795.77 7292.83 30389.98 8291.87 20996.40 19194.38 4796.19 9995.04 21092.47 10799.04 10793.49 4898.31 18498.28 129
EI-MVSNet-UG-set94.35 11394.27 11994.59 12392.46 30885.87 17292.42 17894.69 25093.67 6496.13 10195.84 17091.20 13898.86 13493.78 3898.23 19599.03 49
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11892.55 30785.98 17092.44 17694.69 25093.70 6096.12 10295.81 17191.24 13598.86 13493.76 4198.22 19798.98 58
v119293.49 13493.78 12892.62 19596.16 19779.62 25591.83 21497.22 13986.07 22696.10 10396.38 14287.22 19899.02 11094.14 2998.88 12099.22 32
FMVSNet292.78 16192.73 16092.95 18095.40 24181.98 21894.18 12695.53 22788.63 18096.05 10497.37 7281.31 25798.81 14487.38 20998.67 14898.06 144
Regformer-394.28 11694.23 12194.46 13192.78 30586.28 16592.39 18094.70 24993.69 6395.97 10595.56 18791.34 13098.48 19793.45 5398.14 20498.62 105
v14419293.20 14893.54 13992.16 21196.05 20678.26 27791.95 20197.14 14284.98 24795.96 10696.11 15887.08 20299.04 10793.79 3798.84 12599.17 35
Regformer-194.55 10594.33 11595.19 9792.83 30388.54 11491.87 20995.84 21493.99 5295.95 10795.04 21092.00 11498.79 14793.14 7198.31 18498.23 132
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1292.35 8295.95 10796.41 13696.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test111190.39 21690.61 21089.74 27998.04 8471.50 34095.59 7279.72 36989.41 16095.94 10998.14 3370.79 31398.81 14488.52 18799.32 6298.90 69
v14892.87 15893.29 14591.62 22596.25 19177.72 28691.28 22795.05 23689.69 15495.93 11096.04 16087.34 19698.38 20290.05 15397.99 21898.78 82
v114493.50 13393.81 12692.57 19796.28 18779.61 25691.86 21396.96 15486.95 21595.91 11196.32 14687.65 19198.96 12093.51 4798.88 12099.13 39
Anonymous2024052192.86 15993.57 13790.74 25496.57 16475.50 31394.15 12795.60 21989.38 16195.90 11297.90 4880.39 26497.96 23892.60 8799.68 1898.75 85
PC_three_145275.31 32195.87 11395.75 17692.93 9396.34 31387.18 21198.68 14698.04 147
IU-MVS98.51 4786.66 15396.83 16772.74 33495.83 11493.00 7699.29 6898.64 101
Patchmatch-RL test88.81 25488.52 24789.69 28195.33 24679.94 24786.22 33192.71 28578.46 30495.80 11594.18 24266.25 33095.33 33389.22 17298.53 15993.78 319
PGM-MVS96.32 4195.94 5597.43 1998.59 3793.84 3395.33 8298.30 2391.40 11895.76 11696.87 10695.26 3599.45 2392.77 8099.21 8299.00 51
casdiffmvs94.32 11594.80 9592.85 18596.05 20681.44 22692.35 18398.05 6091.53 11695.75 11796.80 11193.35 8098.49 19391.01 12498.32 18398.64 101
GST-MVS96.24 4495.99 5497.00 3498.65 3092.71 4995.69 7098.01 6992.08 9095.74 11896.28 14995.22 3799.42 2993.17 6999.06 9898.88 72
VPNet93.08 14993.76 12991.03 24398.60 3575.83 31191.51 22195.62 21891.84 10195.74 11897.10 9289.31 17198.32 20785.07 24299.06 9898.93 63
EU-MVSNet87.39 28086.71 28389.44 28393.40 29176.11 30694.93 10090.00 31557.17 36895.71 12097.37 7264.77 33897.68 26292.67 8594.37 31394.52 302
v2v48293.29 14093.63 13492.29 20396.35 18178.82 27091.77 21796.28 19588.45 18495.70 12196.26 15186.02 21998.90 12693.02 7598.81 13399.14 38
HFP-MVS96.39 3996.17 4497.04 3198.51 4793.37 4096.30 4797.98 7292.35 8295.63 12296.47 13195.37 2899.27 7593.78 3899.14 9298.48 116
#test#95.89 5495.51 7197.04 3198.51 4793.37 4095.14 9197.98 7289.34 16395.63 12296.47 13195.37 2899.27 7591.99 9999.14 9298.48 116
Anonymous20240521192.58 16892.50 16692.83 18696.55 16683.22 20492.43 17791.64 30594.10 5195.59 12496.64 12481.88 25497.50 26885.12 23998.52 16097.77 179
ACMMPR96.46 3296.14 4597.41 2198.60 3593.82 3496.30 4797.96 7692.35 8295.57 12596.61 12694.93 5199.41 3693.78 3899.15 9199.00 51
RRT_MVS91.36 19690.05 22395.29 9389.21 35288.15 12092.51 17494.89 24186.73 21795.54 12695.68 17961.82 35199.30 7094.91 1399.13 9598.43 120
XXY-MVS92.58 16893.16 15090.84 25297.75 10179.84 24991.87 20996.22 20185.94 22895.53 12797.68 5492.69 10094.48 34083.21 25897.51 23998.21 135
new-patchmatchnet88.97 25090.79 20683.50 34194.28 27655.83 37585.34 33593.56 27086.18 22495.47 12895.73 17783.10 23796.51 30485.40 23498.06 21298.16 137
mPP-MVS96.46 3296.05 5197.69 598.62 3294.65 1396.45 3597.74 9692.59 7695.47 12896.68 12194.50 6199.42 2993.10 7299.26 7598.99 53
UA-Net97.35 497.24 1197.69 598.22 7093.87 3198.42 698.19 3596.95 1495.46 13099.23 493.45 7599.57 1395.34 1299.89 299.63 9
APD-MVScopyleft95.00 8594.69 10095.93 6197.38 12690.88 7294.59 11097.81 9089.22 16895.46 13096.17 15793.42 7899.34 6289.30 16698.87 12397.56 194
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1494.81 9497.49 12094.11 12998.37 1787.56 20695.38 13296.03 16194.66 5699.08 9990.70 12998.97 113
IterMVS-SCA-FT91.65 18891.55 18591.94 21693.89 28579.22 26487.56 30693.51 27191.53 11695.37 13396.62 12578.65 27398.90 12691.89 10494.95 30197.70 184
ECVR-MVScopyleft90.12 22690.16 21890.00 27697.81 9772.68 33495.76 6778.54 37089.04 17095.36 13498.10 3570.51 31498.64 17787.10 21299.18 8798.67 95
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2792.79 4896.08 5498.16 4391.74 10995.34 13596.36 14495.68 1999.44 2494.41 2199.28 7398.97 59
LS3D96.11 4895.83 6296.95 3794.75 25994.20 1997.34 1197.98 7297.31 1195.32 13696.77 11293.08 8999.20 8391.79 10698.16 20297.44 202
tttt051789.81 23788.90 24392.55 19897.00 14279.73 25495.03 9683.65 35889.88 15295.30 13794.79 22453.64 36699.39 4891.99 9998.79 13698.54 111
XVG-OURS94.72 9994.12 12296.50 4998.00 8894.23 1891.48 22298.17 4090.72 13495.30 13796.47 13187.94 18896.98 28991.41 11897.61 23798.30 128
region2R96.41 3796.09 4897.38 2398.62 3293.81 3696.32 4497.96 7692.26 8595.28 13996.57 12895.02 4799.41 3693.63 4299.11 9698.94 62
GeoE94.55 10594.68 10294.15 13997.23 13185.11 18194.14 12897.34 12888.71 17995.26 14095.50 19094.65 5799.12 9390.94 12598.40 16998.23 132
TinyColmap92.00 18392.76 15789.71 28095.62 23577.02 29490.72 23996.17 20487.70 20195.26 14096.29 14892.54 10496.45 30681.77 27298.77 13895.66 276
alignmvs93.26 14392.85 15494.50 12795.70 22887.45 13293.45 14895.76 21591.58 11495.25 14292.42 29281.96 25298.72 16191.61 11297.87 22497.33 211
EI-MVSNet92.99 15393.26 14992.19 20792.12 31579.21 26592.32 18594.67 25291.77 10795.24 14395.85 16787.14 20198.49 19391.99 9998.26 18998.86 73
MVSTER89.32 24388.75 24591.03 24390.10 34276.62 30190.85 23594.67 25282.27 27395.24 14395.79 17261.09 35498.49 19390.49 13198.26 18997.97 159
canonicalmvs94.59 10394.69 10094.30 13695.60 23687.03 14395.59 7298.24 3091.56 11595.21 14592.04 29894.95 5098.66 17491.45 11797.57 23897.20 216
MSP-MVS95.34 7494.63 10597.48 1498.67 2994.05 2396.41 3998.18 3691.26 12195.12 14695.15 20386.60 21399.50 1993.43 5796.81 26198.89 70
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GBi-Net93.21 14692.96 15193.97 14595.40 24184.29 18895.99 5696.56 18388.63 18095.10 14798.53 2181.31 25798.98 11586.74 21698.38 17498.65 97
test193.21 14692.96 15193.97 14595.40 24184.29 18895.99 5696.56 18388.63 18095.10 14798.53 2181.31 25798.98 11586.74 21698.38 17498.65 97
FMVSNet390.78 20590.32 21792.16 21193.03 30079.92 24892.54 16994.95 23986.17 22595.10 14796.01 16269.97 31698.75 15686.74 21698.38 17497.82 175
CP-MVS96.44 3596.08 4997.54 1198.29 6494.62 1496.80 2298.08 5392.67 7595.08 15096.39 14194.77 5499.42 2993.17 6999.44 4598.58 110
ETH3D-3000-0.194.86 9294.55 10795.81 6897.61 11389.72 8794.05 13198.37 1788.09 19195.06 15195.85 16792.58 10299.10 9790.33 14098.99 10898.62 105
AllTest94.88 9194.51 11096.00 5698.02 8692.17 5295.26 8598.43 1390.48 14095.04 15296.74 11692.54 10497.86 24685.11 24098.98 10997.98 156
TestCases96.00 5698.02 8692.17 5298.43 1390.48 14095.04 15296.74 11692.54 10497.86 24685.11 24098.98 10997.98 156
YYNet188.17 26488.24 25587.93 30992.21 31273.62 32680.75 35888.77 31882.51 27194.99 15495.11 20682.70 24393.70 34983.33 25693.83 32096.48 241
EPP-MVSNet93.91 12793.68 13394.59 12398.08 7885.55 17797.44 1094.03 26294.22 4994.94 15596.19 15482.07 25099.57 1387.28 21098.89 11898.65 97
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22794.68 26680.16 23885.49 33492.14 29890.41 14494.93 15695.79 17285.10 22596.93 29285.15 23794.19 31897.57 192
testtj94.81 9694.42 11196.01 5597.23 13190.51 7894.77 10497.85 8691.29 12094.92 15795.66 18091.71 12299.40 4388.07 19698.25 19298.11 143
baseline94.26 11894.80 9592.64 19296.08 20480.99 23293.69 14298.04 6490.80 13394.89 15896.32 14693.19 8498.48 19791.68 11198.51 16298.43 120
MDA-MVSNet_test_wron88.16 26588.23 25687.93 30992.22 31173.71 32580.71 35988.84 31782.52 27094.88 15995.14 20482.70 24393.61 35083.28 25793.80 32196.46 242
LFMVS91.33 19791.16 19991.82 21896.27 18879.36 26095.01 9785.61 34696.04 2994.82 16097.06 9472.03 31098.46 19984.96 24398.70 14497.65 188
ITE_SJBPF95.95 5897.34 12893.36 4296.55 18691.93 9494.82 16095.39 19891.99 11597.08 28685.53 23397.96 21997.41 203
ZD-MVS97.23 13190.32 7997.54 11084.40 25394.78 16295.79 17292.76 9999.39 4888.72 18498.40 169
TSAR-MVS + MP.94.96 8794.75 9795.57 8198.86 2188.69 10796.37 4096.81 16885.23 23894.75 16397.12 9191.85 11899.40 4393.45 5398.33 18198.62 105
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Patchmtry90.11 22789.92 22590.66 25690.35 34077.00 29592.96 15792.81 28190.25 14694.74 16496.93 10267.11 32297.52 26785.17 23598.98 10997.46 199
3Dnovator+92.74 295.86 5795.77 6596.13 5396.81 15490.79 7496.30 4797.82 8996.13 2594.74 16497.23 8591.33 13199.16 8693.25 6698.30 18698.46 118
c3_l91.32 19891.42 19091.00 24692.29 31076.79 30087.52 30996.42 19085.76 23294.72 16693.89 25482.73 24298.16 22290.93 12698.55 15598.04 147
TSAR-MVS + GP.93.07 15192.41 16895.06 10295.82 22090.87 7390.97 23392.61 28988.04 19294.61 16793.79 25788.08 18397.81 25089.41 16598.39 17296.50 240
OMC-MVS94.22 12093.69 13295.81 6897.25 13091.27 6592.27 18797.40 11987.10 21394.56 16895.42 19593.74 7198.11 22586.62 22098.85 12498.06 144
testgi90.38 21791.34 19387.50 31497.49 12071.54 33989.43 27795.16 23588.38 18694.54 16994.68 22792.88 9693.09 35471.60 34697.85 22597.88 168
VNet92.67 16592.96 15191.79 21996.27 18880.15 23991.95 20194.98 23892.19 8894.52 17096.07 15987.43 19597.39 27784.83 24498.38 17497.83 173
eth_miper_zixun_eth90.72 20690.61 21091.05 24292.04 31776.84 29986.91 31896.67 17785.21 23994.41 17193.92 25279.53 26898.26 21389.76 15997.02 25398.06 144
test20.0390.80 20490.85 20490.63 25795.63 23479.24 26389.81 27092.87 28089.90 15194.39 17296.40 13785.77 22095.27 33573.86 33399.05 10197.39 207
XVS96.49 2996.18 4297.44 1798.56 3893.99 2796.50 3297.95 7894.58 4194.38 17396.49 13094.56 5999.39 4893.57 4499.05 10198.93 63
X-MVStestdata90.70 20788.45 24997.44 1798.56 3893.99 2796.50 3297.95 7894.58 4194.38 17326.89 37294.56 5999.39 4893.57 4499.05 10198.93 63
3Dnovator92.54 394.80 9794.90 9194.47 13095.47 23987.06 14196.63 2697.28 13591.82 10494.34 17597.41 6990.60 15298.65 17692.47 8998.11 20897.70 184
RRT_test8_iter0588.21 26388.17 25888.33 30491.62 32466.82 35991.73 21896.60 18086.34 22194.14 17695.38 20047.72 37299.11 9591.78 10798.26 18999.06 47
Vis-MVSNetpermissive95.50 6795.48 7295.56 8298.11 7689.40 9695.35 8098.22 3292.36 8194.11 17798.07 3792.02 11399.44 2493.38 6097.67 23497.85 172
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS90.18 22490.16 21890.21 27093.15 29675.98 30887.56 30692.97 27986.43 22094.09 17896.40 13778.32 27797.43 27387.87 20094.69 30897.23 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++93.25 14593.88 12591.37 23196.34 18282.81 21293.11 15397.74 9689.37 16294.08 17995.29 20190.40 15796.35 31190.35 13798.25 19294.96 291
BH-untuned90.68 20890.90 20190.05 27595.98 21279.57 25790.04 26194.94 24087.91 19394.07 18093.00 27487.76 19097.78 25479.19 30195.17 29892.80 336
miper_ehance_all_eth90.48 21290.42 21590.69 25591.62 32476.57 30286.83 32196.18 20383.38 25894.06 18192.66 28582.20 24898.04 22889.79 15897.02 25397.45 200
cl____90.65 20990.56 21290.91 25091.85 31976.98 29786.75 32395.36 23385.53 23594.06 18194.89 21777.36 28697.98 23790.27 14398.98 10997.76 180
DIV-MVS_self_test90.65 20990.56 21290.91 25091.85 31976.99 29686.75 32395.36 23385.52 23794.06 18194.89 21777.37 28597.99 23690.28 14298.97 11397.76 180
pmmvs-eth3d91.54 19190.73 20893.99 14395.76 22587.86 12890.83 23693.98 26678.23 30694.02 18496.22 15382.62 24596.83 29586.57 22198.33 18197.29 213
h-mvs3392.89 15691.99 17595.58 8096.97 14390.55 7693.94 13694.01 26589.23 16693.95 18596.19 15476.88 29199.14 8991.02 12295.71 28497.04 220
hse-mvs292.24 17891.20 19695.38 8696.16 19790.65 7592.52 17092.01 30289.23 16693.95 18592.99 27576.88 29198.69 16991.02 12296.03 27696.81 229
UnsupCasMVSNet_eth90.33 22090.34 21690.28 26694.64 26880.24 23789.69 27295.88 21185.77 23193.94 18795.69 17881.99 25192.98 35584.21 25191.30 34697.62 190
CNVR-MVS94.58 10494.29 11695.46 8596.94 14589.35 9891.81 21596.80 16989.66 15593.90 18895.44 19492.80 9898.72 16192.74 8298.52 16098.32 125
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12296.14 19987.90 12693.36 15097.14 14285.53 23593.90 18895.45 19391.30 13398.59 18389.51 16398.62 15097.31 212
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
bset_n11_16_dypcd89.99 23389.15 23692.53 19994.75 25981.34 22784.19 34687.56 32985.13 24293.77 19092.46 28772.82 30599.01 11292.46 9099.21 8297.23 214
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4898.10 7794.07 2092.46 17598.13 4590.69 13593.75 19196.25 15298.03 297.02 28892.08 9695.55 28798.45 119
QAPM92.88 15792.77 15693.22 17395.82 22083.31 20296.45 3597.35 12783.91 25693.75 19196.77 11289.25 17298.88 12984.56 24897.02 25397.49 198
MVS_111021_LR93.66 13193.28 14794.80 11096.25 19190.95 7090.21 25495.43 22987.91 19393.74 19394.40 23492.88 9696.38 30990.39 13498.28 18797.07 217
thisisatest053088.69 25787.52 26892.20 20696.33 18379.36 26092.81 16184.01 35786.44 21993.67 19492.68 28453.62 36799.25 7789.65 16298.45 16698.00 152
ETH3D cwj APD-0.1693.99 12693.38 14495.80 7096.82 15289.92 8392.72 16398.02 6784.73 25193.65 19595.54 18991.68 12399.22 8188.78 18198.49 16598.26 131
PCF-MVS84.52 1789.12 24687.71 26593.34 16896.06 20585.84 17386.58 33097.31 13068.46 35293.61 19693.89 25487.51 19498.52 19167.85 35798.11 20895.66 276
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR93.63 13293.42 14394.26 13796.65 15886.96 14689.30 28296.23 19988.36 18793.57 19794.60 22893.45 7597.77 25590.23 14598.38 17498.03 150
test250685.42 29884.57 30087.96 30897.81 9766.53 36096.14 5156.35 37789.04 17093.55 19898.10 3542.88 37998.68 17188.09 19599.18 8798.67 95
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2594.06 2196.10 5397.78 9592.73 7293.48 19996.72 11994.23 6699.42 2991.99 9999.29 6899.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
RPSCF95.58 6594.89 9297.62 897.58 11596.30 495.97 5997.53 11292.42 7893.41 20097.78 5091.21 13797.77 25591.06 12197.06 25198.80 80
OpenMVS_ROBcopyleft85.12 1689.52 24189.05 23890.92 24894.58 26981.21 23091.10 23193.41 27377.03 31393.41 20093.99 25083.23 23697.80 25179.93 29294.80 30593.74 321
PMVScopyleft87.21 1494.97 8695.33 7893.91 15098.97 1597.16 295.54 7695.85 21396.47 2193.40 20297.46 6795.31 3395.47 32886.18 22998.78 13789.11 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HQP_MVS94.26 11893.93 12495.23 9697.71 10588.12 12194.56 11497.81 9091.74 10993.31 20395.59 18286.93 20598.95 12289.26 17098.51 16298.60 108
plane_prior388.43 11790.35 14593.31 203
thres600view787.66 27387.10 27789.36 28696.05 20673.17 32892.72 16385.31 34991.89 9693.29 20590.97 31463.42 34498.39 20073.23 33696.99 25896.51 237
CPTT-MVS94.74 9894.12 12296.60 4598.15 7493.01 4495.84 6497.66 10089.21 16993.28 20695.46 19288.89 17498.98 11589.80 15798.82 13197.80 177
USDC89.02 24789.08 23788.84 29495.07 25074.50 32088.97 28896.39 19273.21 33193.27 20796.28 14982.16 24996.39 30877.55 31198.80 13595.62 279
thres100view90087.35 28186.89 27988.72 29696.14 19973.09 33093.00 15685.31 34992.13 8993.26 20890.96 31563.42 34498.28 20971.27 34896.54 26894.79 294
N_pmnet88.90 25287.25 27293.83 15494.40 27493.81 3684.73 33987.09 33279.36 29593.26 20892.43 29179.29 26991.68 35977.50 31397.22 24896.00 259
CL-MVSNet_self_test90.04 23289.90 22690.47 26195.24 24777.81 28486.60 32992.62 28885.64 23493.25 21093.92 25283.84 23296.06 31879.93 29298.03 21597.53 196
mvs_anonymous90.37 21891.30 19487.58 31392.17 31468.00 35389.84 26994.73 24883.82 25793.22 21197.40 7087.54 19397.40 27687.94 19995.05 30097.34 210
test_yl90.11 22789.73 23091.26 23594.09 28079.82 25090.44 24692.65 28690.90 12893.19 21293.30 26873.90 30198.03 22982.23 26896.87 25995.93 262
DCV-MVSNet90.11 22789.73 23091.26 23594.09 28079.82 25090.44 24692.65 28690.90 12893.19 21293.30 26873.90 30198.03 22982.23 26896.87 25995.93 262
D2MVS89.93 23489.60 23290.92 24894.03 28278.40 27588.69 29594.85 24278.96 30093.08 21495.09 20774.57 29996.94 29088.19 19198.96 11597.41 203
UnsupCasMVSNet_bld88.50 25988.03 26189.90 27795.52 23878.88 26987.39 31094.02 26479.32 29693.06 21594.02 24880.72 26294.27 34575.16 32793.08 33196.54 235
miper_lstm_enhance89.90 23589.80 22790.19 27291.37 32877.50 28883.82 35095.00 23784.84 24993.05 21694.96 21476.53 29595.20 33689.96 15598.67 14897.86 170
PHI-MVS94.34 11493.80 12795.95 5895.65 23291.67 6394.82 10297.86 8387.86 19693.04 21794.16 24391.58 12598.78 15190.27 14398.96 11597.41 203
TAMVS90.16 22589.05 23893.49 16696.49 17286.37 16190.34 25192.55 29080.84 28292.99 21894.57 23081.94 25398.20 21773.51 33498.21 19895.90 265
Vis-MVSNet (Re-imp)90.42 21490.16 21891.20 23997.66 11177.32 29194.33 12287.66 32891.20 12392.99 21895.13 20575.40 29898.28 20977.86 30799.19 8597.99 155
ab-mvs92.40 17292.62 16291.74 22197.02 14181.65 22295.84 6495.50 22886.95 21592.95 22097.56 6090.70 15097.50 26879.63 29597.43 24296.06 257
MCST-MVS92.91 15592.51 16594.10 14197.52 11885.72 17591.36 22697.13 14480.33 28492.91 22194.24 23991.23 13698.72 16189.99 15497.93 22197.86 170
ETV-MVS92.99 15392.74 15893.72 15695.86 21986.30 16492.33 18497.84 8791.70 11292.81 22286.17 35692.22 10999.19 8488.03 19797.73 22895.66 276
TAPA-MVS88.58 1092.49 17191.75 18394.73 11396.50 17189.69 8892.91 15997.68 9978.02 30792.79 22394.10 24490.85 14497.96 23884.76 24698.16 20296.54 235
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DROMVSNet95.44 6995.62 6994.89 10696.93 14787.69 13096.48 3499.14 393.93 5592.77 22494.52 23193.95 7099.49 2293.62 4399.22 8197.51 197
BH-RMVSNet90.47 21390.44 21490.56 26095.21 24878.65 27489.15 28693.94 26788.21 18892.74 22594.22 24086.38 21497.88 24278.67 30495.39 29395.14 287
旧先验290.00 26368.65 35192.71 22696.52 30385.15 237
cl2289.02 24788.50 24890.59 25989.76 34476.45 30386.62 32894.03 26282.98 26692.65 22792.49 28672.05 30997.53 26688.93 17697.02 25397.78 178
tfpn200view987.05 28986.52 28788.67 29795.77 22372.94 33191.89 20686.00 34190.84 13092.61 22889.80 32763.93 34198.28 20971.27 34896.54 26894.79 294
thres40087.20 28586.52 28789.24 29095.77 22372.94 33191.89 20686.00 34190.84 13092.61 22889.80 32763.93 34198.28 20971.27 34896.54 26896.51 237
MS-PatchMatch88.05 26687.75 26488.95 29193.28 29277.93 28187.88 30292.49 29175.42 31992.57 23093.59 26280.44 26394.24 34781.28 27792.75 33494.69 299
miper_enhance_ethall88.42 26087.87 26390.07 27388.67 35775.52 31285.10 33695.59 22375.68 31692.49 23189.45 33578.96 27097.88 24287.86 20197.02 25396.81 229
testdata91.03 24396.87 15082.01 21794.28 25871.55 33892.46 23295.42 19585.65 22397.38 27982.64 26397.27 24693.70 322
LF4IMVS92.72 16392.02 17494.84 10995.65 23291.99 5692.92 15896.60 18085.08 24592.44 23393.62 26086.80 20996.35 31186.81 21598.25 19296.18 253
diffmvs91.74 18691.93 17791.15 24193.06 29878.17 27888.77 29397.51 11586.28 22292.42 23493.96 25188.04 18597.46 27190.69 13096.67 26697.82 175
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9493.58 3894.09 13096.99 15391.05 12692.40 23595.22 20291.03 14399.25 7792.11 9498.69 14597.90 166
ppachtmachnet_test88.61 25888.64 24688.50 30091.76 32170.99 34384.59 34292.98 27879.30 29792.38 23693.53 26479.57 26797.45 27286.50 22497.17 24997.07 217
Anonymous2023120688.77 25588.29 25390.20 27196.31 18578.81 27189.56 27593.49 27274.26 32592.38 23695.58 18582.21 24795.43 33072.07 34298.75 14196.34 246
MVS_Test92.57 17093.29 14590.40 26493.53 29075.85 30992.52 17096.96 15488.73 17792.35 23896.70 12090.77 14598.37 20592.53 8895.49 28996.99 222
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18197.73 10483.95 19792.14 19297.46 11678.85 30292.35 23894.98 21384.16 23199.08 9986.36 22696.77 26395.79 270
CDPH-MVS92.67 16591.83 17995.18 9896.94 14588.46 11690.70 24097.07 14877.38 30992.34 24095.08 20892.67 10198.88 12985.74 23198.57 15498.20 136
NCCC94.08 12493.54 13995.70 7796.49 17289.90 8592.39 18096.91 16090.64 13792.33 24194.60 22890.58 15398.96 12090.21 14797.70 23298.23 132
CLD-MVS91.82 18591.41 19193.04 17596.37 17683.65 20086.82 32297.29 13384.65 25292.27 24289.67 33292.20 11097.85 24883.95 25299.47 3997.62 190
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS92.05 18292.16 17091.72 22294.44 27280.13 24187.62 30397.25 13687.34 20892.22 24393.18 27289.54 17098.73 16089.67 16198.20 20096.30 248
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 27587.31 27088.54 29994.71 26574.27 32393.10 15488.20 32486.20 22392.18 24493.04 27373.21 30495.52 32579.32 29985.82 35995.83 267
API-MVS91.52 19291.61 18491.26 23594.16 27786.26 16694.66 10894.82 24491.17 12492.13 24591.08 31390.03 16697.06 28779.09 30297.35 24590.45 353
DP-MVS Recon92.31 17591.88 17893.60 15997.18 13586.87 14791.10 23197.37 12084.92 24892.08 24694.08 24588.59 17698.20 21783.50 25598.14 20495.73 272
our_test_387.55 27687.59 26787.44 31591.76 32170.48 34483.83 34990.55 31379.79 28792.06 24792.17 29578.63 27595.63 32384.77 24594.73 30696.22 251
MSDG90.82 20390.67 20991.26 23594.16 27783.08 20886.63 32796.19 20290.60 13991.94 24891.89 30089.16 17395.75 32280.96 28394.51 31194.95 292
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 26196.67 394.00 13395.41 23089.94 14991.93 24992.13 29690.12 16098.97 11987.68 20397.48 24097.67 187
ETH3 D test640091.91 18491.25 19593.89 15196.59 16284.41 18792.10 19397.72 9878.52 30391.82 25093.78 25888.70 17599.13 9183.61 25498.39 17298.14 139
Gipumacopyleft95.31 7795.80 6493.81 15597.99 9190.91 7196.42 3897.95 7896.69 1791.78 25198.85 1291.77 12095.49 32791.72 10999.08 9795.02 290
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
HyFIR lowres test87.19 28685.51 29692.24 20597.12 14080.51 23685.03 33796.06 20666.11 35891.66 25292.98 27670.12 31599.14 8975.29 32695.23 29797.07 217
MVP-Stereo90.07 23088.92 24193.54 16396.31 18586.49 15690.93 23495.59 22379.80 28691.48 25395.59 18280.79 26197.39 27778.57 30591.19 34796.76 232
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20085.85 29685.18 29787.88 31194.44 27272.52 33589.08 28786.21 33788.57 18391.44 25488.40 34364.22 33998.00 23468.35 35695.88 28293.12 330
FMVSNet587.82 27086.56 28591.62 22592.31 30979.81 25293.49 14694.81 24683.26 25991.36 25596.93 10252.77 36897.49 27076.07 32298.03 21597.55 195
新几何193.17 17497.16 13687.29 13594.43 25467.95 35391.29 25694.94 21586.97 20498.23 21581.06 28297.75 22793.98 315
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
xiu_mvs_v1_base91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
CDS-MVSNet89.55 23988.22 25793.53 16495.37 24486.49 15689.26 28393.59 26979.76 28891.15 26092.31 29377.12 28798.38 20277.51 31297.92 22295.71 273
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19194.53 27184.10 19495.70 6897.03 14982.44 27291.14 26196.42 13588.47 17898.38 20285.95 23097.47 24195.55 280
112190.26 22389.23 23393.34 16897.15 13887.40 13391.94 20394.39 25567.88 35491.02 26294.91 21686.91 20798.59 18381.17 28097.71 23194.02 314
CNLPA91.72 18791.20 19693.26 17296.17 19691.02 6891.14 22995.55 22690.16 14790.87 26393.56 26386.31 21594.40 34379.92 29497.12 25094.37 305
test_prior393.29 14092.85 15494.61 11895.95 21487.23 13690.21 25497.36 12589.33 16490.77 26494.81 22090.41 15598.68 17188.21 18998.55 15597.93 162
test_prior290.21 25489.33 16490.77 26494.81 22090.41 15588.21 18998.55 155
test22296.95 14485.27 18088.83 29193.61 26865.09 36190.74 26694.85 21984.62 22997.36 24493.91 316
TR-MVS87.70 27187.17 27489.27 28894.11 27979.26 26288.69 29591.86 30381.94 27690.69 26789.79 32982.82 24197.42 27472.65 34091.98 34391.14 349
CVMVSNet85.16 30084.72 29886.48 32092.12 31570.19 34592.32 18588.17 32556.15 36990.64 26895.85 16767.97 32096.69 29988.78 18190.52 35092.56 339
TEST996.45 17489.46 9290.60 24296.92 15879.09 29890.49 26994.39 23591.31 13298.88 129
train_agg92.71 16491.83 17995.35 8796.45 17489.46 9290.60 24296.92 15879.37 29390.49 26994.39 23591.20 13898.88 12988.66 18598.43 16797.72 183
test_896.37 17689.14 9990.51 24596.89 16179.37 29390.42 27194.36 23791.20 13898.82 139
KD-MVS_2432*160082.17 31880.75 32586.42 32282.04 37570.09 34781.75 35690.80 31082.56 26890.37 27289.30 33642.90 37796.11 31674.47 32992.55 33793.06 331
miper_refine_blended82.17 31880.75 32586.42 32282.04 37570.09 34781.75 35690.80 31082.56 26890.37 27289.30 33642.90 37796.11 31674.47 32992.55 33793.06 331
agg_prior192.60 16791.76 18295.10 10196.20 19388.89 10490.37 24996.88 16279.67 29090.21 27494.41 23391.30 13398.78 15188.46 18898.37 17997.64 189
agg_prior96.20 19388.89 10496.88 16290.21 27498.78 151
jason89.17 24588.32 25191.70 22395.73 22780.07 24288.10 30093.22 27571.98 33790.09 27692.79 28078.53 27698.56 18787.43 20797.06 25196.46 242
jason: jason.
CS-MVS92.12 18092.62 16290.60 25894.57 27078.12 27992.00 19998.58 1087.75 19990.08 27791.88 30189.79 16799.10 9790.35 13798.60 15394.58 300
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12594.66 26788.25 11892.05 19596.65 17889.62 15690.08 27791.23 31092.56 10398.60 18186.30 22796.27 27396.90 225
CHOSEN 1792x268887.19 28685.92 29491.00 24697.13 13979.41 25984.51 34395.60 21964.14 36290.07 27994.81 22078.26 27897.14 28573.34 33595.38 29496.46 242
PatchMatch-RL89.18 24488.02 26292.64 19295.90 21892.87 4788.67 29791.06 30880.34 28390.03 28091.67 30583.34 23494.42 34276.35 32194.84 30490.64 352
BH-w/o87.21 28487.02 27887.79 31294.77 25877.27 29287.90 30193.21 27781.74 27789.99 28188.39 34483.47 23396.93 29271.29 34792.43 33989.15 354
Fast-Effi-MVS+91.28 19990.86 20392.53 19995.45 24082.53 21489.25 28596.52 18785.00 24689.91 28288.55 34292.94 9298.84 13784.72 24795.44 29196.22 251
AdaColmapbinary91.63 18991.36 19292.47 20295.56 23786.36 16292.24 19096.27 19688.88 17689.90 28392.69 28391.65 12498.32 20777.38 31497.64 23592.72 338
mvs-test193.07 15191.80 18196.89 3994.74 26195.83 692.17 19195.41 23089.94 14989.85 28490.59 32390.12 16098.88 12987.68 20395.66 28595.97 260
GA-MVS87.70 27186.82 28090.31 26593.27 29377.22 29384.72 34192.79 28385.11 24489.82 28590.07 32466.80 32597.76 25784.56 24894.27 31695.96 261
Patchmatch-test86.10 29586.01 29286.38 32490.63 33574.22 32489.57 27486.69 33485.73 23389.81 28692.83 27865.24 33691.04 36177.82 31095.78 28393.88 318
EIA-MVS92.35 17492.03 17393.30 17195.81 22283.97 19692.80 16298.17 4087.71 20089.79 28787.56 34691.17 14199.18 8587.97 19897.27 24696.77 231
test1294.43 13395.95 21486.75 14996.24 19889.76 28889.79 16798.79 14797.95 22097.75 182
pmmvs488.95 25187.70 26692.70 19094.30 27585.60 17687.22 31292.16 29774.62 32389.75 28994.19 24177.97 28096.41 30782.71 26296.36 27296.09 255
原ACMM192.87 18496.91 14884.22 19197.01 15076.84 31489.64 29094.46 23288.00 18698.70 16781.53 27598.01 21795.70 274
MG-MVS89.54 24089.80 22788.76 29594.88 25272.47 33689.60 27392.44 29285.82 23089.48 29195.98 16382.85 24097.74 25981.87 27195.27 29696.08 256
114514_t90.51 21189.80 22792.63 19498.00 8882.24 21693.40 14997.29 13365.84 35989.40 29294.80 22386.99 20398.75 15683.88 25398.61 15196.89 226
Effi-MVS+92.79 16092.74 15892.94 18195.10 24983.30 20394.00 13397.53 11291.36 11989.35 29390.65 32294.01 6998.66 17487.40 20895.30 29596.88 227
CS-MVS-test93.33 13893.53 14192.71 18995.74 22683.08 20894.55 11698.85 591.02 12789.30 29491.91 29991.79 11999.23 8090.23 14598.41 16895.82 268
CR-MVSNet87.89 26787.12 27690.22 26991.01 33178.93 26792.52 17092.81 28173.08 33289.10 29596.93 10267.11 32297.64 26388.80 18092.70 33594.08 309
RPMNet90.31 22290.14 22290.81 25391.01 33178.93 26792.52 17098.12 4691.91 9589.10 29596.89 10568.84 31799.41 3690.17 14892.70 33594.08 309
PatchT87.51 27788.17 25885.55 32790.64 33466.91 35592.02 19886.09 33992.20 8789.05 29797.16 8964.15 34096.37 31089.21 17392.98 33393.37 328
MVSFormer92.18 17992.23 16992.04 21594.74 26180.06 24397.15 1397.37 12088.98 17288.83 29892.79 28077.02 28899.60 896.41 496.75 26496.46 242
lupinMVS88.34 26287.31 27091.45 22994.74 26180.06 24387.23 31192.27 29471.10 34188.83 29891.15 31177.02 28898.53 19086.67 21996.75 26495.76 271
HQP-NCC96.36 17891.37 22387.16 21088.81 300
ACMP_Plane96.36 17891.37 22387.16 21088.81 300
HQP4-MVS88.81 30098.61 17998.15 138
HQP-MVS92.09 18191.49 18993.88 15296.36 17884.89 18391.37 22397.31 13087.16 21088.81 30093.40 26684.76 22798.60 18186.55 22297.73 22898.14 139
PAPM_NR91.03 20190.81 20591.68 22496.73 15681.10 23193.72 14196.35 19488.19 18988.77 30492.12 29785.09 22697.25 28182.40 26793.90 31996.68 234
SCA87.43 27987.21 27388.10 30792.01 31871.98 33889.43 27788.11 32682.26 27488.71 30592.83 27878.65 27397.59 26479.61 29693.30 32694.75 296
F-COLMAP92.28 17691.06 20095.95 5897.52 11891.90 5893.53 14597.18 14083.98 25588.70 30694.04 24688.41 17998.55 18980.17 28895.99 27897.39 207
PVSNet_BlendedMVS90.35 21989.96 22491.54 22894.81 25678.80 27290.14 25896.93 15679.43 29288.68 30795.06 20986.27 21698.15 22380.27 28598.04 21497.68 186
PVSNet_Blended88.74 25688.16 26090.46 26394.81 25678.80 27286.64 32696.93 15674.67 32288.68 30789.18 33886.27 21698.15 22380.27 28596.00 27794.44 304
AUN-MVS90.05 23188.30 25295.32 9296.09 20390.52 7792.42 17892.05 30182.08 27588.45 30992.86 27765.76 33298.69 16988.91 17896.07 27596.75 233
pmmvs587.87 26887.14 27590.07 27393.26 29476.97 29888.89 29092.18 29573.71 32988.36 31093.89 25476.86 29396.73 29880.32 28496.81 26196.51 237
WTY-MVS86.93 29186.50 28988.24 30594.96 25174.64 31687.19 31392.07 30078.29 30588.32 31191.59 30778.06 27994.27 34574.88 32893.15 32995.80 269
thisisatest051584.72 30382.99 31189.90 27792.96 30175.33 31484.36 34483.42 35977.37 31088.27 31286.65 35153.94 36598.72 16182.56 26497.40 24395.67 275
MIMVSNet87.13 28886.54 28688.89 29396.05 20676.11 30694.39 12088.51 32081.37 27888.27 31296.75 11572.38 30795.52 32565.71 36295.47 29095.03 289
test0.0.03 182.48 31581.47 31985.48 32889.70 34573.57 32784.73 33981.64 36383.07 26488.13 31486.61 35262.86 34789.10 36766.24 36190.29 35193.77 320
CMPMVSbinary68.83 2287.28 28285.67 29592.09 21388.77 35685.42 17890.31 25294.38 25670.02 34788.00 31593.30 26873.78 30394.03 34875.96 32496.54 26896.83 228
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS281.31 32383.44 30774.92 35290.52 33746.49 37769.19 36685.23 35284.30 25487.95 31694.71 22676.95 29084.36 37064.07 36398.09 21093.89 317
xiu_mvs_v2_base89.00 24989.19 23488.46 30294.86 25474.63 31786.97 31695.60 21980.88 28087.83 31788.62 34191.04 14298.81 14482.51 26694.38 31291.93 344
PS-MVSNAJ88.86 25388.99 24088.48 30194.88 25274.71 31586.69 32595.60 21980.88 28087.83 31787.37 34990.77 14598.82 13982.52 26594.37 31391.93 344
tpm84.38 30584.08 30485.30 33190.47 33863.43 37089.34 28085.63 34577.24 31287.62 31995.03 21261.00 35597.30 28079.26 30091.09 34995.16 285
sss87.23 28386.82 28088.46 30293.96 28377.94 28086.84 32092.78 28477.59 30887.61 32091.83 30278.75 27291.92 35877.84 30894.20 31795.52 281
MAR-MVS90.32 22188.87 24494.66 11794.82 25591.85 5994.22 12594.75 24780.91 27987.52 32188.07 34586.63 21297.87 24576.67 31896.21 27494.25 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS89.35 24288.40 25092.18 21096.13 20284.20 19286.96 31796.15 20575.40 32087.36 32291.55 30883.30 23598.01 23382.17 27096.62 26794.32 307
UGNet93.08 14992.50 16694.79 11193.87 28687.99 12595.07 9494.26 25990.64 13787.33 32397.67 5586.89 20898.49 19388.10 19498.71 14297.91 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive85.22 29984.64 29986.98 31889.51 34969.83 35090.52 24487.34 33178.87 30187.22 32492.74 28266.91 32496.53 30281.77 27286.88 35894.58 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
1112_ss88.42 26087.41 26991.45 22996.69 15780.99 23289.72 27196.72 17573.37 33087.00 32590.69 32077.38 28498.20 21781.38 27693.72 32295.15 286
cascas87.02 29086.28 29189.25 28991.56 32676.45 30384.33 34596.78 17071.01 34286.89 32685.91 35781.35 25696.94 29083.09 25995.60 28694.35 306
CANet92.38 17391.99 17593.52 16593.82 28883.46 20191.14 22997.00 15189.81 15386.47 32794.04 24687.90 18999.21 8289.50 16498.27 18897.90 166
Test_1112_low_res87.50 27886.58 28490.25 26896.80 15577.75 28587.53 30896.25 19769.73 34886.47 32793.61 26175.67 29797.88 24279.95 29093.20 32795.11 288
PLCcopyleft85.34 1590.40 21588.92 24194.85 10896.53 17090.02 8191.58 22096.48 18980.16 28586.14 32992.18 29485.73 22198.25 21476.87 31794.61 31096.30 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
new_pmnet81.22 32481.01 32381.86 34590.92 33370.15 34684.03 34780.25 36870.83 34385.97 33089.78 33067.93 32184.65 36967.44 35891.90 34490.78 351
EPMVS81.17 32680.37 32883.58 34085.58 36965.08 36590.31 25271.34 37377.31 31185.80 33191.30 30959.38 35692.70 35679.99 28982.34 36692.96 334
tpmvs84.22 30683.97 30584.94 33287.09 36465.18 36391.21 22888.35 32182.87 26785.21 33290.96 31565.24 33696.75 29779.60 29885.25 36092.90 335
FPMVS84.50 30483.28 30888.16 30696.32 18494.49 1685.76 33285.47 34783.09 26385.20 33394.26 23863.79 34386.58 36863.72 36491.88 34583.40 363
pmmvs380.83 32878.96 33586.45 32187.23 36377.48 28984.87 33882.31 36163.83 36385.03 33489.50 33449.66 36993.10 35373.12 33895.10 29988.78 358
PAPR87.65 27486.77 28290.27 26792.85 30277.38 29088.56 29896.23 19976.82 31584.98 33589.75 33186.08 21897.16 28472.33 34193.35 32596.26 250
MDTV_nov1_ep1383.88 30689.42 35061.52 37188.74 29487.41 33073.99 32784.96 33694.01 24965.25 33595.53 32478.02 30693.16 328
131486.46 29386.33 29086.87 31991.65 32374.54 31891.94 20394.10 26174.28 32484.78 33787.33 35083.03 23895.00 33778.72 30391.16 34891.06 350
ADS-MVSNet284.01 30782.20 31589.41 28489.04 35376.37 30587.57 30490.98 30972.71 33584.46 33892.45 28868.08 31896.48 30570.58 35283.97 36195.38 282
ADS-MVSNet82.25 31681.55 31784.34 33789.04 35365.30 36287.57 30485.13 35372.71 33584.46 33892.45 28868.08 31892.33 35770.58 35283.97 36195.38 282
PVSNet76.22 2082.89 31382.37 31384.48 33693.96 28364.38 36878.60 36188.61 31971.50 33984.43 34086.36 35574.27 30094.60 33969.87 35493.69 32394.46 303
MVS84.98 30284.30 30287.01 31791.03 33077.69 28791.94 20394.16 26059.36 36784.23 34187.50 34885.66 22296.80 29671.79 34393.05 33286.54 360
tpmrst82.85 31482.93 31282.64 34387.65 35858.99 37390.14 25887.90 32775.54 31883.93 34291.63 30666.79 32795.36 33181.21 27981.54 36793.57 327
ET-MVSNet_ETH3D86.15 29484.27 30391.79 21993.04 29981.28 22887.17 31486.14 33879.57 29183.65 34388.66 34057.10 35998.18 22087.74 20295.40 29295.90 265
HY-MVS82.50 1886.81 29285.93 29389.47 28293.63 28977.93 28194.02 13291.58 30675.68 31683.64 34493.64 25977.40 28397.42 27471.70 34592.07 34293.05 333
MDTV_nov1_ep13_2view42.48 37888.45 29967.22 35683.56 34566.80 32572.86 33994.06 311
CostFormer83.09 31182.21 31485.73 32689.27 35167.01 35490.35 25086.47 33670.42 34583.52 34693.23 27161.18 35396.85 29477.21 31588.26 35693.34 329
DSMNet-mixed82.21 31781.56 31684.16 33889.57 34870.00 34990.65 24177.66 37254.99 37083.30 34797.57 5977.89 28190.50 36366.86 36095.54 28891.97 343
E-PMN80.72 33080.86 32480.29 34885.11 37068.77 35272.96 36381.97 36287.76 19883.25 34883.01 36462.22 35089.17 36677.15 31694.31 31582.93 364
test-LLR83.58 30883.17 30984.79 33489.68 34666.86 35783.08 35184.52 35483.07 26482.85 34984.78 36062.86 34793.49 35182.85 26094.86 30294.03 312
test-mter81.21 32580.01 33284.79 33489.68 34666.86 35783.08 35184.52 35473.85 32882.85 34984.78 36043.66 37693.49 35182.85 26094.86 30294.03 312
CANet_DTU89.85 23689.17 23591.87 21792.20 31380.02 24690.79 23795.87 21286.02 22782.53 35191.77 30380.01 26598.57 18685.66 23297.70 23297.01 221
MVS_030490.96 20290.15 22193.37 16793.17 29587.06 14193.62 14492.43 29389.60 15782.25 35295.50 19082.56 24697.83 24984.41 25097.83 22695.22 284
JIA-IIPM85.08 30183.04 31091.19 24087.56 35986.14 16889.40 27984.44 35688.98 17282.20 35397.95 4356.82 36196.15 31476.55 32083.45 36391.30 348
PMMVS83.00 31281.11 32088.66 29883.81 37486.44 15982.24 35585.65 34461.75 36682.07 35485.64 35879.75 26691.59 36075.99 32393.09 33087.94 359
tpm281.46 32280.35 32984.80 33389.90 34365.14 36490.44 24685.36 34865.82 36082.05 35592.44 29057.94 35896.69 29970.71 35188.49 35592.56 339
IB-MVS77.21 1983.11 31081.05 32189.29 28791.15 32975.85 30985.66 33386.00 34179.70 28982.02 35686.61 35248.26 37198.39 20077.84 30892.22 34093.63 323
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat180.61 33179.46 33384.07 33988.78 35565.06 36689.26 28388.23 32362.27 36581.90 35789.66 33362.70 34995.29 33471.72 34480.60 36891.86 346
EMVS80.35 33280.28 33080.54 34784.73 37269.07 35172.54 36580.73 36587.80 19781.66 35881.73 36562.89 34689.84 36475.79 32594.65 30982.71 365
dp79.28 33478.62 33681.24 34685.97 36856.45 37486.91 31885.26 35172.97 33381.45 35989.17 33956.01 36395.45 32973.19 33776.68 36991.82 347
DWT-MVSNet_test80.74 32979.18 33485.43 32987.51 36166.87 35689.87 26886.01 34074.20 32680.86 36080.62 36648.84 37096.68 30181.54 27483.14 36592.75 337
EPNet89.80 23888.25 25494.45 13283.91 37386.18 16793.87 13787.07 33391.16 12580.64 36194.72 22578.83 27198.89 12885.17 23598.89 11898.28 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TESTMET0.1,179.09 33578.04 33782.25 34487.52 36064.03 36983.08 35180.62 36670.28 34680.16 36283.22 36344.13 37590.56 36279.95 29093.36 32492.15 342
baseline283.38 30981.54 31888.90 29291.38 32772.84 33388.78 29281.22 36478.97 29979.82 36387.56 34661.73 35297.80 25174.30 33190.05 35296.05 258
gg-mvs-nofinetune82.10 32081.02 32285.34 33087.46 36271.04 34194.74 10567.56 37496.44 2279.43 36498.99 645.24 37396.15 31467.18 35992.17 34188.85 356
PVSNet_070.34 2174.58 33772.96 34079.47 34990.63 33566.24 36173.26 36283.40 36063.67 36478.02 36578.35 36872.53 30689.59 36556.68 36860.05 37282.57 366
MVS-HIRNet78.83 33680.60 32773.51 35393.07 29747.37 37687.10 31578.00 37168.94 35077.53 36697.26 8271.45 31194.62 33863.28 36588.74 35478.55 368
CHOSEN 280x42080.04 33377.97 33886.23 32590.13 34174.53 31972.87 36489.59 31666.38 35776.29 36785.32 35956.96 36095.36 33169.49 35594.72 30788.79 357
PAPM81.91 32180.11 33187.31 31693.87 28672.32 33784.02 34893.22 27569.47 34976.13 36889.84 32672.15 30897.23 28253.27 37089.02 35392.37 341
GG-mvs-BLEND83.24 34285.06 37171.03 34294.99 9965.55 37574.09 36975.51 36944.57 37494.46 34159.57 36787.54 35784.24 362
EPNet_dtu85.63 29784.37 30189.40 28586.30 36774.33 32291.64 21988.26 32284.84 24972.96 37089.85 32571.27 31297.69 26176.60 31997.62 23696.18 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVEpermissive59.87 2373.86 33872.65 34177.47 35187.00 36674.35 32161.37 36860.93 37667.27 35569.69 37186.49 35481.24 26072.33 37256.45 36983.45 36385.74 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft53.83 35570.38 37764.56 36748.52 37933.01 37165.50 37274.21 37056.19 36246.64 37438.45 37370.07 37050.30 370
tmp_tt37.97 34044.33 34318.88 35611.80 37921.54 37963.51 36745.66 3804.23 37351.34 37350.48 37159.08 35722.11 37544.50 37268.35 37113.00 371
test_method50.44 33948.94 34254.93 35439.68 37812.38 38028.59 36990.09 3146.82 37241.10 37478.41 36754.41 36470.69 37350.12 37151.26 37381.72 367
EGC-MVSNET80.97 32775.73 33996.67 4498.85 2294.55 1596.83 2096.60 1802.44 3745.32 37598.25 3192.24 10898.02 23291.85 10599.21 8297.45 200
test1239.49 34212.01 3451.91 3572.87 3801.30 38182.38 3541.34 3821.36 3752.84 3766.56 3742.45 3800.97 3762.73 3745.56 3743.47 372
testmvs9.02 34311.42 3461.81 3582.77 3811.13 38279.44 3601.90 3811.18 3762.65 3776.80 3731.95 3810.87 3772.62 3753.45 3753.44 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.35 34131.13 3440.00 3590.00 3820.00 3830.00 37095.58 2250.00 3770.00 37891.15 31193.43 770.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.56 34410.09 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37790.77 1450.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.56 34410.08 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37890.69 3200.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
MSC_two_6792asdad95.90 6496.54 16789.57 9096.87 16499.41 3694.06 3099.30 6598.72 91
No_MVS95.90 6496.54 16789.57 9096.87 16499.41 3694.06 3099.30 6598.72 91
eth-test20.00 382
eth-test0.00 382
OPU-MVS95.15 9996.84 15189.43 9495.21 8695.66 18093.12 8798.06 22786.28 22898.61 15197.95 160
save fliter97.46 12388.05 12392.04 19697.08 14787.63 203
test_0728_SECOND94.88 10798.55 4186.72 15095.20 8898.22 3299.38 5493.44 5599.31 6398.53 112
GSMVS94.75 296
sam_mvs166.64 32894.75 296
sam_mvs66.41 329
MTGPAbinary97.62 102
test_post190.21 2545.85 37665.36 33496.00 31979.61 296
test_post6.07 37565.74 33395.84 321
patchmatchnet-post91.71 30466.22 33197.59 264
MTMP94.82 10254.62 378
gm-plane-assit87.08 36559.33 37271.22 34083.58 36297.20 28373.95 332
test9_res88.16 19398.40 16997.83 173
agg_prior287.06 21498.36 18097.98 156
test_prior489.91 8490.74 238
test_prior94.61 11895.95 21487.23 13697.36 12598.68 17197.93 162
新几何290.02 262
旧先验196.20 19384.17 19394.82 24495.57 18689.57 16997.89 22396.32 247
无先验89.94 26495.75 21670.81 34498.59 18381.17 28094.81 293
原ACMM289.34 280
testdata298.03 22980.24 287
segment_acmp92.14 111
testdata188.96 28988.44 185
plane_prior797.71 10588.68 108
plane_prior697.21 13488.23 11986.93 205
plane_prior597.81 9098.95 12289.26 17098.51 16298.60 108
plane_prior495.59 182
plane_prior294.56 11491.74 109
plane_prior197.38 126
plane_prior88.12 12193.01 15588.98 17298.06 212
n20.00 383
nn0.00 383
door-mid92.13 299
test1196.65 178
door91.26 307
HQP5-MVS84.89 183
BP-MVS86.55 222
HQP3-MVS97.31 13097.73 228
HQP2-MVS84.76 227
NP-MVS96.82 15287.10 14093.40 266
ACMMP++_ref98.82 131
ACMMP++99.25 76
Test By Simon90.61 151