This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 697.72 395.35 8299.51 287.38 12797.70 697.54 10598.16 298.94 299.33 297.84 499.08 9290.73 11999.73 1499.59 12
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6494.15 4898.93 399.07 588.07 17799.57 1395.86 999.69 1599.46 18
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 397.01 1298.92 498.78 1495.22 3798.61 16896.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet-Re94.20 11894.58 10393.04 16895.91 20383.13 19893.79 12899.19 292.00 8798.84 598.04 3593.64 6999.02 10381.28 26398.54 14796.96 211
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 10995.57 6897.88 7788.72 16798.81 698.86 1090.77 13999.60 895.43 1199.53 3499.57 13
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10087.57 19398.80 798.90 996.50 1099.59 1296.15 799.47 3899.40 21
Anonymous2023121196.60 2597.13 1295.00 9897.46 11786.35 15497.11 1498.24 2797.58 798.72 898.97 793.15 8399.15 8393.18 6499.74 1399.50 16
ACMH88.36 1296.59 2797.43 594.07 13498.56 3685.33 17096.33 3998.30 2094.66 3998.72 898.30 3097.51 598.00 22294.87 1499.59 2698.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11386.96 20298.71 1098.72 1795.36 3199.56 1695.92 899.45 4299.32 26
wuyk23d87.83 26090.79 19978.96 33790.46 32488.63 10392.72 15390.67 30091.65 10998.68 1197.64 5296.06 1677.53 35759.84 35299.41 5170.73 354
DTE-MVSNet96.74 1797.43 594.67 10999.13 584.68 17596.51 2897.94 7698.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
PS-CasMVS96.69 2097.43 594.49 12299.13 584.09 18596.61 2497.97 7097.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11199.16 384.50 17696.54 2798.05 5598.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
SixPastTwentyTwo94.91 8695.21 8193.98 13698.52 4483.19 19695.93 5594.84 23394.86 3898.49 1598.74 1681.45 24899.60 894.69 1699.39 5399.15 37
WR-MVS_H96.60 2597.05 1495.24 9099.02 1186.44 15096.78 2198.08 4897.42 898.48 1697.86 4491.76 11599.63 694.23 2699.84 399.66 6
v7n96.82 1097.31 1095.33 8498.54 4186.81 14096.83 1898.07 5196.59 1998.46 1798.43 2792.91 8999.52 1796.25 699.76 1199.65 8
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10087.68 19098.45 1898.77 1594.20 6599.50 1996.70 399.40 5299.53 14
CP-MVSNet96.19 4696.80 1794.38 12898.99 1383.82 18996.31 4197.53 10797.60 698.34 1997.52 5891.98 11199.63 693.08 7099.81 999.70 3
test_part194.39 10794.55 10493.92 14196.14 18582.86 20195.54 6998.09 4795.36 3598.27 2098.36 2875.91 28699.44 2393.41 5499.84 399.47 17
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11588.98 16198.26 2198.86 1093.35 7799.60 896.41 499.45 4299.66 6
ACMH+88.43 1196.48 3096.82 1695.47 8098.54 4189.06 9495.65 6598.61 696.10 2598.16 2297.52 5896.90 798.62 16790.30 13199.60 2498.72 89
pmmvs696.80 1397.36 995.15 9499.12 787.82 12396.68 2297.86 7896.10 2598.14 2399.28 397.94 398.21 20591.38 11399.69 1599.42 19
ANet_high94.83 9396.28 3690.47 25196.65 14973.16 31794.33 11498.74 596.39 2298.09 2498.93 893.37 7698.70 15990.38 12699.68 1899.53 14
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10795.77 6198.29 2392.68 6998.03 2597.91 4295.13 4098.95 11593.85 3399.49 3799.36 24
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9596.23 4696.87 15893.73 5697.87 2698.49 2490.73 14399.05 9786.43 21199.60 2499.10 44
TransMVSNet (Re)95.27 7896.04 5192.97 17198.37 5981.92 20995.07 8796.76 16593.97 5297.77 2798.57 1995.72 1897.90 22788.89 16899.23 7599.08 45
DPE-MVS95.89 5395.88 5795.92 6297.93 8989.83 8293.46 13798.30 2092.37 7697.75 2896.95 9295.14 3999.51 1891.74 10299.28 6998.41 116
test_040295.73 5996.22 3994.26 13098.19 6985.77 16593.24 14297.24 13196.88 1597.69 2997.77 4794.12 6699.13 8691.54 11099.29 6497.88 159
NR-MVSNet95.28 7695.28 7995.26 8997.75 9587.21 13195.08 8697.37 11593.92 5497.65 3095.90 15790.10 15799.33 6490.11 13999.66 2099.26 29
SED-MVS96.00 5296.41 3294.76 10698.51 4586.97 13695.21 7998.10 4491.95 8897.63 3197.25 7696.48 1199.35 5593.29 5999.29 6497.95 151
test_241102_ONE98.51 4586.97 13698.10 4491.85 9497.63 3197.03 8996.48 1198.95 115
test072698.51 4586.69 14395.34 7498.18 3291.85 9497.63 3197.37 6795.58 22
Anonymous2024052995.50 6695.83 6194.50 12097.33 12385.93 16295.19 8396.77 16496.64 1897.61 3498.05 3493.23 8098.79 13988.60 17599.04 9898.78 81
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3597.44 6396.51 999.40 4094.06 3099.23 7598.85 75
test_241102_TWO98.10 4491.95 8897.54 3697.25 7695.37 2899.35 5593.29 5999.25 7298.49 109
FC-MVSNet-test95.32 7395.88 5793.62 15098.49 5381.77 21095.90 5798.32 1793.93 5397.53 3797.56 5588.48 17099.40 4092.91 7599.83 699.68 4
K. test v393.37 13493.27 14393.66 14998.05 7882.62 20394.35 11386.62 32296.05 2797.51 3898.85 1276.59 28499.65 393.21 6398.20 18798.73 88
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 7998.26 6587.69 12493.75 12997.86 7895.96 2997.48 3997.14 8395.33 3299.44 2390.79 11899.76 1199.38 22
v894.65 10095.29 7892.74 18196.65 14979.77 24394.59 10397.17 13591.86 9397.47 4097.93 4088.16 17599.08 9294.32 2299.47 3899.38 22
v1094.68 9995.27 8092.90 17696.57 15580.15 22994.65 10297.57 10390.68 13197.43 4198.00 3788.18 17499.15 8394.84 1599.55 3399.41 20
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9196.90 1798.41 1392.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6398.92 67
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8597.79 8986.48 20697.42 4397.51 6094.47 6199.29 6893.55 4299.29 6498.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS95.82 5796.18 4194.72 10898.51 4586.69 14395.20 8197.00 14591.85 9497.40 4497.35 7195.58 2299.34 5993.44 5199.31 6198.13 134
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 6597.40 4497.35 7194.69 5499.34 5993.88 3299.42 4698.89 69
pm-mvs195.43 6895.94 5493.93 14098.38 5785.08 17295.46 7297.12 13991.84 9797.28 4698.46 2595.30 3497.71 24790.17 13799.42 4698.99 53
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 497.41 997.28 4698.46 2594.62 5698.84 13094.64 1799.53 3498.99 53
SD-MVS95.19 7995.73 6593.55 15396.62 15288.88 10094.67 10098.05 5591.26 11797.25 4896.40 13095.42 2694.36 33092.72 8099.19 7997.40 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9898.03 6090.82 12797.15 4996.85 10096.25 1599.00 10793.10 6899.33 5998.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v093.87 14598.05 7883.77 19080.32 35497.13 5097.91 4277.49 27499.11 8992.62 8298.08 19898.74 86
FIs94.90 8795.35 7493.55 15398.28 6381.76 21195.33 7598.14 3993.05 6797.07 5197.18 8187.65 18499.29 6891.72 10399.69 1599.61 11
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7598.25 2491.78 10197.07 5197.22 7996.38 1399.28 7092.07 9299.59 2699.11 41
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2491.78 10197.07 5197.22 7996.38 1399.28 7092.07 9299.59 2699.11 41
VPA-MVSNet95.14 8095.67 6793.58 15297.76 9483.15 19794.58 10597.58 10293.39 6397.05 5498.04 3593.25 7998.51 18189.75 14999.59 2699.08 45
FMVSNet194.84 9295.13 8493.97 13797.60 10884.29 17895.99 5196.56 17492.38 7597.03 5598.53 2190.12 15498.98 10888.78 17099.16 8298.65 91
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 8994.85 5199.42 2893.49 4498.84 11798.00 143
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 8995.40 2793.49 4498.84 11798.00 143
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2495.51 3496.99 5897.05 8895.63 2199.39 4593.31 5898.88 11298.75 84
EG-PatchMatch MVS94.54 10494.67 10094.14 13297.87 9186.50 14692.00 18896.74 16688.16 17996.93 5997.61 5393.04 8797.90 22791.60 10798.12 19498.03 141
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5495.76 3196.89 6096.85 10094.85 5199.42 2893.35 5798.81 12598.53 106
DIV-MVS_2432*160094.10 12094.73 9792.19 19997.66 10579.49 24894.86 9497.12 13989.59 15396.87 6197.65 5190.40 15198.34 19589.08 16499.35 5698.75 84
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14198.32 1787.89 18496.86 6297.38 6695.55 2499.39 4595.47 1099.47 3899.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1796.69 1696.86 6297.56 5595.48 2598.77 14790.11 13999.44 4498.31 121
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5195.17 3696.82 6496.73 11195.09 4399.43 2792.99 7398.71 13498.50 108
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10592.26 17797.84 8294.91 3796.80 6595.78 16790.42 14899.41 3591.60 10799.58 3099.29 28
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10592.58 15897.81 8593.99 5096.80 6595.90 15790.10 15799.41 3591.60 10799.58 3099.26 29
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 15797.33 12390.05 14396.77 6796.85 10095.04 4498.56 17692.77 7699.06 9098.70 90
test_part298.21 6889.41 8996.72 68
v124093.29 13693.71 12892.06 20696.01 19777.89 27291.81 20397.37 11585.12 23196.69 6996.40 13086.67 20499.07 9694.51 1898.76 13199.22 32
tfpnnormal94.27 11494.87 9192.48 19397.71 9980.88 22494.55 10995.41 22093.70 5796.67 7097.72 4891.40 12398.18 20987.45 19499.18 8198.36 117
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6493.34 6496.64 7196.57 12194.99 4899.36 5493.48 4799.34 5798.82 77
Skip Steuart: Steuart Systems R&D Blog.
WR-MVS93.49 13193.72 12792.80 18097.57 11080.03 23590.14 24695.68 20893.70 5796.62 7295.39 18887.21 19299.04 10087.50 19399.64 2299.33 25
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11698.08 4889.46 15496.61 7396.47 12495.85 1799.12 8890.45 12399.56 3298.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DP-MVS95.62 6295.84 6094.97 9997.16 12988.62 10494.54 11097.64 9696.94 1496.58 7497.32 7493.07 8698.72 15390.45 12398.84 11797.57 183
IterMVS-LS93.78 12694.28 11492.27 19696.27 17579.21 25591.87 19796.78 16291.77 10396.57 7597.07 8687.15 19398.74 15191.99 9499.03 9998.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3593.11 6696.48 7697.36 7096.92 699.34 5994.31 2399.38 5498.92 67
ambc92.98 17096.88 14083.01 20095.92 5696.38 18496.41 7797.48 6188.26 17397.80 23889.96 14498.93 10998.12 135
Regformer-494.90 8794.67 10095.59 7692.78 29089.02 9592.39 16995.91 20194.50 4296.41 7795.56 17892.10 10699.01 10594.23 2698.14 19198.74 86
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10698.03 6090.42 13896.37 7997.35 7195.68 1999.25 7494.44 2099.34 5798.80 79
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8497.46 11788.05 11792.04 18598.42 1287.63 19196.36 8096.68 11494.37 6299.32 6592.41 8699.05 9398.64 95
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8595.58 6798.56 791.84 9796.36 8096.68 11494.37 6299.32 6592.41 8699.05 9398.64 95
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3292.26 8196.33 8296.84 10395.10 4299.40 4093.47 4899.33 5999.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VDDNet94.03 12294.27 11693.31 16298.87 1982.36 20595.51 7191.78 29297.19 1196.32 8398.60 1884.24 22398.75 14887.09 19998.83 12298.81 78
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9792.91 14998.07 5193.46 6296.31 8495.97 15690.14 15399.34 5992.11 8999.64 2299.16 36
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11098.05 5590.45 13796.31 8496.76 10792.91 8998.72 15391.19 11499.42 4698.32 119
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13197.62 9794.46 4496.29 8696.94 9393.56 7099.37 5294.29 2499.42 4698.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9794.46 4496.29 8696.94 9393.56 7099.37 5294.29 2499.42 4698.99 53
Baseline_NR-MVSNet94.47 10695.09 8692.60 18898.50 5280.82 22592.08 18396.68 16893.82 5596.29 8698.56 2090.10 15797.75 24590.10 14199.66 2099.24 31
IS-MVSNet94.49 10594.35 11194.92 10098.25 6686.46 14997.13 1394.31 24796.24 2396.28 8996.36 13782.88 23299.35 5588.19 17999.52 3698.96 60
VDD-MVS94.37 10894.37 11094.40 12797.49 11486.07 16093.97 12593.28 26394.49 4396.24 9097.78 4587.99 18098.79 13988.92 16699.14 8498.34 118
DeepPCF-MVS90.46 694.20 11893.56 13496.14 5195.96 19992.96 4389.48 26497.46 11185.14 22996.23 9195.42 18593.19 8198.08 21590.37 12798.76 13197.38 198
PM-MVS93.33 13592.67 15695.33 8496.58 15494.06 1992.26 17792.18 28485.92 21796.22 9296.61 11985.64 21795.99 30690.35 12898.23 18295.93 250
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7693.86 12798.02 6287.35 19596.22 9297.99 3894.48 6099.05 9792.73 7999.68 1897.93 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
V4293.43 13393.58 13392.97 17195.34 23181.22 21992.67 15696.49 17987.25 19796.20 9496.37 13687.32 19098.85 12992.39 8898.21 18598.85 75
CSCG94.69 9894.75 9594.52 11997.55 11187.87 12195.01 9097.57 10392.68 6996.20 9493.44 25491.92 11298.78 14389.11 16399.24 7496.92 212
v192192093.26 13993.61 13292.19 19996.04 19678.31 26691.88 19697.24 13185.17 22896.19 9696.19 14786.76 20399.05 9794.18 2898.84 11799.22 32
Regformer-294.86 9094.55 10495.77 6992.83 28889.98 7891.87 19796.40 18294.38 4696.19 9695.04 20092.47 10299.04 10093.49 4498.31 17198.28 123
EI-MVSNet-UG-set94.35 11094.27 11694.59 11692.46 29385.87 16392.42 16794.69 24093.67 6196.13 9895.84 16291.20 13298.86 12793.78 3598.23 18299.03 49
EI-MVSNet-Vis-set94.36 10994.28 11494.61 11192.55 29285.98 16192.44 16594.69 24093.70 5796.12 9995.81 16391.24 12998.86 12793.76 3898.22 18498.98 58
v119293.49 13193.78 12592.62 18796.16 18479.62 24591.83 20297.22 13386.07 21496.10 10096.38 13587.22 19199.02 10394.14 2998.88 11299.22 32
FMVSNet292.78 15592.73 15592.95 17395.40 22781.98 20894.18 11895.53 21788.63 16896.05 10197.37 6781.31 25098.81 13787.38 19798.67 13898.06 137
Regformer-394.28 11394.23 11894.46 12492.78 29086.28 15692.39 16994.70 23993.69 6095.97 10295.56 17891.34 12498.48 18693.45 4998.14 19198.62 99
v14419293.20 14493.54 13592.16 20396.05 19278.26 26791.95 18997.14 13684.98 23595.96 10396.11 15087.08 19599.04 10093.79 3498.84 11799.17 35
Regformer-194.55 10394.33 11295.19 9292.83 28888.54 10891.87 19795.84 20593.99 5095.95 10495.04 20092.00 10898.79 13993.14 6798.31 17198.23 126
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 992.35 7895.95 10496.41 12996.71 899.42 2893.99 3199.36 5599.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14892.87 15393.29 14091.62 21796.25 17877.72 27591.28 21595.05 22689.69 14995.93 10696.04 15287.34 18998.38 19190.05 14297.99 20698.78 81
v114493.50 13093.81 12392.57 18996.28 17479.61 24691.86 20196.96 14886.95 20395.91 10796.32 13987.65 18498.96 11393.51 4398.88 11299.13 39
IU-MVS98.51 4586.66 14596.83 15972.74 32195.83 10893.00 7299.29 6498.64 95
Patchmatch-RL test88.81 24588.52 23889.69 26995.33 23279.94 23786.22 31992.71 27478.46 29295.80 10994.18 23166.25 31895.33 31989.22 16198.53 14893.78 305
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7598.30 2091.40 11495.76 11096.87 9995.26 3599.45 2292.77 7699.21 7799.00 51
casdiffmvs94.32 11294.80 9392.85 17896.05 19281.44 21692.35 17298.05 5591.53 11295.75 11196.80 10493.35 7798.49 18291.01 11698.32 17098.64 95
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6492.08 8695.74 11296.28 14295.22 3799.42 2893.17 6599.06 9098.88 71
VPNet93.08 14593.76 12691.03 23598.60 3375.83 30091.51 20995.62 20991.84 9795.74 11297.10 8589.31 16498.32 19685.07 22899.06 9098.93 63
EU-MVSNet87.39 27186.71 27489.44 27193.40 27676.11 29594.93 9390.00 30257.17 35595.71 11497.37 6764.77 32697.68 24992.67 8194.37 29994.52 288
v2v48293.29 13693.63 13192.29 19596.35 16878.82 26091.77 20596.28 18688.45 17395.70 11596.26 14486.02 21298.90 11993.02 7198.81 12599.14 38
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6792.35 7895.63 11696.47 12495.37 2899.27 7293.78 3599.14 8498.48 110
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8497.98 6789.34 15695.63 11696.47 12495.37 2899.27 7291.99 9499.14 8498.48 110
Anonymous20240521192.58 16292.50 16092.83 17996.55 15683.22 19592.43 16691.64 29394.10 4995.59 11896.64 11781.88 24797.50 25585.12 22598.52 14997.77 170
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7192.35 7895.57 11996.61 11994.93 5099.41 3593.78 3599.15 8399.00 51
RRT_MVS91.36 18990.05 21495.29 8889.21 33788.15 11492.51 16394.89 23186.73 20595.54 12095.68 17061.82 33999.30 6794.91 1399.13 8798.43 114
XXY-MVS92.58 16293.16 14590.84 24497.75 9579.84 23991.87 19796.22 19285.94 21695.53 12197.68 4992.69 9594.48 32683.21 24497.51 22798.21 128
new-patchmatchnet88.97 24190.79 19983.50 32894.28 26155.83 36085.34 32393.56 25986.18 21295.47 12295.73 16883.10 23096.51 29185.40 22098.06 19998.16 130
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9192.59 7295.47 12296.68 11494.50 5999.42 2893.10 6899.26 7198.99 53
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3196.95 1395.46 12499.23 493.45 7299.57 1395.34 1299.89 299.63 9
APD-MVScopyleft95.00 8394.69 9895.93 6097.38 12090.88 7094.59 10397.81 8589.22 15995.46 12496.17 14993.42 7599.34 5989.30 15598.87 11597.56 185
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1494.81 9297.49 11494.11 11998.37 1487.56 19495.38 12696.03 15394.66 5599.08 9290.70 12098.97 105
IterMVS-SCA-FT91.65 18191.55 17991.94 20893.89 27079.22 25487.56 29493.51 26091.53 11295.37 12796.62 11878.65 26598.90 11991.89 9994.95 28797.70 175
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 3891.74 10595.34 12896.36 13795.68 1999.44 2394.41 2199.28 6998.97 59
LS3D96.11 4895.83 6196.95 3794.75 24594.20 1797.34 997.98 6797.31 1095.32 12996.77 10593.08 8599.20 7991.79 10098.16 18997.44 191
tttt051789.81 22888.90 23492.55 19097.00 13579.73 24495.03 8983.65 34589.88 14795.30 13094.79 21453.64 35399.39 4591.99 9498.79 12898.54 105
XVG-OURS94.72 9794.12 11996.50 4898.00 8494.23 1691.48 21098.17 3590.72 12995.30 13096.47 12487.94 18196.98 27691.41 11297.61 22598.30 122
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7192.26 8195.28 13296.57 12195.02 4699.41 3593.63 3999.11 8898.94 62
TinyColmap92.00 17692.76 15289.71 26895.62 22177.02 28390.72 22796.17 19587.70 18995.26 13396.29 14192.54 9996.45 29381.77 25898.77 13095.66 263
alignmvs93.26 13992.85 14994.50 12095.70 21487.45 12593.45 13895.76 20691.58 11095.25 13492.42 28081.96 24598.72 15391.61 10697.87 21297.33 200
EI-MVSNet92.99 14993.26 14492.19 19992.12 30079.21 25592.32 17494.67 24291.77 10395.24 13595.85 15987.14 19498.49 18291.99 9498.26 17698.86 72
MVSTER89.32 23488.75 23691.03 23590.10 32776.62 29090.85 22394.67 24282.27 26195.24 13595.79 16461.09 34298.49 18290.49 12298.26 17697.97 150
canonicalmvs94.59 10194.69 9894.30 12995.60 22287.03 13595.59 6698.24 2791.56 11195.21 13792.04 28694.95 4998.66 16491.45 11197.57 22697.20 205
MSP-MVS95.34 7294.63 10297.48 1498.67 2794.05 2196.41 3598.18 3291.26 11795.12 13895.15 19386.60 20699.50 1993.43 5396.81 24998.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GBi-Net93.21 14292.96 14693.97 13795.40 22784.29 17895.99 5196.56 17488.63 16895.10 13998.53 2181.31 25098.98 10886.74 20298.38 16198.65 91
test193.21 14292.96 14693.97 13795.40 22784.29 17895.99 5196.56 17488.63 16895.10 13998.53 2181.31 25098.98 10886.74 20298.38 16198.65 91
FMVSNet390.78 19890.32 20992.16 20393.03 28579.92 23892.54 15994.95 22986.17 21395.10 13996.01 15469.97 30498.75 14886.74 20298.38 16197.82 166
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 4892.67 7195.08 14296.39 13494.77 5399.42 2893.17 6599.44 4498.58 104
ETH3D-3000-0.194.86 9094.55 10495.81 6597.61 10789.72 8394.05 12198.37 1488.09 18095.06 14395.85 15992.58 9799.10 9190.33 13098.99 10098.62 99
AllTest94.88 8994.51 10796.00 5598.02 8292.17 5095.26 7898.43 1090.48 13595.04 14496.74 10992.54 9997.86 23385.11 22698.98 10197.98 147
TestCases96.00 5598.02 8292.17 5098.43 1090.48 13595.04 14496.74 10992.54 9997.86 23385.11 22698.98 10197.98 147
YYNet188.17 25588.24 24687.93 29692.21 29773.62 31480.75 34688.77 30582.51 25994.99 14695.11 19682.70 23693.70 33583.33 24293.83 30696.48 228
EPP-MVSNet93.91 12493.68 13094.59 11698.08 7585.55 16897.44 894.03 25294.22 4794.94 14796.19 14782.07 24399.57 1387.28 19898.89 11098.65 91
MDA-MVSNet-bldmvs91.04 19390.88 19591.55 21994.68 25280.16 22885.49 32292.14 28790.41 13994.93 14895.79 16485.10 21896.93 27985.15 22394.19 30497.57 183
testtj94.81 9494.42 10896.01 5497.23 12590.51 7494.77 9797.85 8191.29 11694.92 14995.66 17191.71 11699.40 4088.07 18398.25 17998.11 136
baseline94.26 11594.80 9392.64 18496.08 19080.99 22293.69 13198.04 5990.80 12894.89 15096.32 13993.19 8198.48 18691.68 10598.51 15198.43 114
MDA-MVSNet_test_wron88.16 25688.23 24787.93 29692.22 29673.71 31380.71 34788.84 30482.52 25894.88 15195.14 19482.70 23693.61 33683.28 24393.80 30796.46 229
LFMVS91.33 19091.16 19291.82 21096.27 17579.36 25095.01 9085.61 33396.04 2894.82 15297.06 8772.03 30098.46 18884.96 22998.70 13697.65 179
ITE_SJBPF95.95 5797.34 12293.36 4096.55 17791.93 9094.82 15295.39 18891.99 11097.08 27385.53 21997.96 20797.41 192
ZD-MVS97.23 12590.32 7597.54 10584.40 24194.78 15495.79 16492.76 9499.39 4588.72 17398.40 157
TSAR-MVS + MP.94.96 8594.75 9595.57 7798.86 2088.69 10196.37 3696.81 16085.23 22694.75 15597.12 8491.85 11399.40 4093.45 4998.33 16898.62 99
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Patchmtry90.11 21889.92 21690.66 24790.35 32577.00 28492.96 14792.81 27090.25 14194.74 15696.93 9567.11 31097.52 25485.17 22198.98 10197.46 189
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14590.79 7296.30 4397.82 8496.13 2494.74 15697.23 7891.33 12599.16 8293.25 6298.30 17398.46 112
cl_fuxian91.32 19191.42 18491.00 23892.29 29576.79 28987.52 29796.42 18185.76 22094.72 15893.89 24382.73 23598.16 21190.93 11798.55 14498.04 140
TSAR-MVS + GP.93.07 14792.41 16295.06 9795.82 20790.87 7190.97 22192.61 27888.04 18194.61 15993.79 24688.08 17697.81 23789.41 15498.39 15996.50 227
OMC-MVS94.22 11793.69 12995.81 6597.25 12491.27 6392.27 17697.40 11487.10 20194.56 16095.42 18593.74 6898.11 21486.62 20698.85 11698.06 137
testgi90.38 20991.34 18787.50 30197.49 11471.54 32689.43 26595.16 22588.38 17594.54 16194.68 21792.88 9193.09 34071.60 33297.85 21397.88 159
VNet92.67 15992.96 14691.79 21196.27 17580.15 22991.95 18994.98 22892.19 8494.52 16296.07 15187.43 18897.39 26484.83 23098.38 16197.83 164
eth_miper_zixun_eth90.72 19990.61 20391.05 23492.04 30276.84 28886.91 30696.67 16985.21 22794.41 16393.92 24179.53 26098.26 20289.76 14897.02 24198.06 137
test20.0390.80 19790.85 19790.63 24895.63 22079.24 25389.81 25892.87 26989.90 14694.39 16496.40 13085.77 21395.27 32173.86 31999.05 9397.39 196
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16596.49 12394.56 5799.39 4593.57 4099.05 9398.93 63
X-MVStestdata90.70 20088.45 24097.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16526.89 35894.56 5799.39 4593.57 4099.05 9398.93 63
3Dnovator92.54 394.80 9594.90 8994.47 12395.47 22587.06 13396.63 2397.28 12991.82 10094.34 16797.41 6490.60 14698.65 16692.47 8498.11 19597.70 175
RRT_test8_iter0588.21 25488.17 24988.33 29291.62 30966.82 34591.73 20696.60 17286.34 20994.14 16895.38 19047.72 35999.11 8991.78 10198.26 17699.06 47
Vis-MVSNetpermissive95.50 6695.48 7095.56 7898.11 7389.40 9095.35 7398.22 2992.36 7794.11 16998.07 3392.02 10799.44 2393.38 5697.67 22297.85 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS90.18 21690.16 21090.21 26093.15 28175.98 29787.56 29492.97 26886.43 20894.09 17096.40 13078.32 26997.43 26087.87 18794.69 29497.23 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++93.25 14193.88 12291.37 22396.34 16982.81 20293.11 14397.74 9189.37 15594.08 17195.29 19190.40 15196.35 29890.35 12898.25 17994.96 278
BH-untuned90.68 20190.90 19490.05 26595.98 19879.57 24790.04 24994.94 23087.91 18294.07 17293.00 26387.76 18397.78 24179.19 28795.17 28492.80 322
miper_ehance_all_eth90.48 20590.42 20790.69 24691.62 30976.57 29186.83 30996.18 19483.38 24694.06 17392.66 27382.20 24198.04 21789.79 14797.02 24197.45 190
cl-mvsnet_90.65 20290.56 20490.91 24291.85 30476.98 28686.75 31195.36 22385.53 22394.06 17394.89 20777.36 27897.98 22590.27 13398.98 10197.76 171
cl-mvsnet190.65 20290.56 20490.91 24291.85 30476.99 28586.75 31195.36 22385.52 22594.06 17394.89 20777.37 27797.99 22490.28 13298.97 10597.76 171
pmmvs-eth3d91.54 18490.73 20193.99 13595.76 21287.86 12290.83 22493.98 25578.23 29494.02 17696.22 14682.62 23896.83 28286.57 20798.33 16897.29 202
UnsupCasMVSNet_eth90.33 21290.34 20890.28 25694.64 25480.24 22789.69 26095.88 20285.77 21993.94 17795.69 16981.99 24492.98 34184.21 23791.30 33297.62 181
CNVR-MVS94.58 10294.29 11395.46 8196.94 13789.35 9291.81 20396.80 16189.66 15093.90 17895.44 18492.80 9398.72 15392.74 7898.52 14998.32 119
DeepC-MVS_fast89.96 793.73 12793.44 13794.60 11596.14 18587.90 12093.36 14097.14 13685.53 22393.90 17895.45 18391.30 12798.59 17289.51 15298.62 14097.31 201
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
bset_n11_16_dypcd89.99 22489.15 22792.53 19194.75 24581.34 21784.19 33487.56 31685.13 23093.77 18092.46 27572.82 29599.01 10592.46 8599.21 7797.23 203
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16498.13 4090.69 13093.75 18196.25 14598.03 297.02 27592.08 9195.55 27398.45 113
QAPM92.88 15292.77 15193.22 16695.82 20783.31 19396.45 3197.35 12283.91 24493.75 18196.77 10589.25 16598.88 12284.56 23497.02 24197.49 188
MVS_111021_LR93.66 12893.28 14294.80 10496.25 17890.95 6890.21 24295.43 21987.91 18293.74 18394.40 22392.88 9196.38 29690.39 12598.28 17497.07 206
thisisatest053088.69 24887.52 25992.20 19896.33 17079.36 25092.81 15184.01 34486.44 20793.67 18492.68 27253.62 35499.25 7489.65 15198.45 15598.00 143
ETH3D cwj APD-0.1693.99 12393.38 13995.80 6796.82 14389.92 7992.72 15398.02 6284.73 23993.65 18595.54 18091.68 11799.22 7788.78 17098.49 15498.26 125
PCF-MVS84.52 1789.12 23787.71 25693.34 16096.06 19185.84 16486.58 31897.31 12468.46 33993.61 18693.89 24387.51 18798.52 18067.85 34398.11 19595.66 263
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR93.63 12993.42 13894.26 13096.65 14986.96 13889.30 27096.23 19088.36 17693.57 18794.60 21893.45 7297.77 24290.23 13598.38 16198.03 141
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9092.73 6893.48 18896.72 11294.23 6499.42 2891.99 9499.29 6499.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10792.42 7493.41 18997.78 4591.21 13197.77 24291.06 11597.06 23998.80 79
OpenMVS_ROBcopyleft85.12 1689.52 23289.05 22990.92 24094.58 25581.21 22091.10 21993.41 26277.03 30193.41 18993.99 23983.23 22997.80 23879.93 27894.80 29193.74 307
PMVScopyleft87.21 1494.97 8495.33 7693.91 14298.97 1497.16 295.54 6995.85 20496.47 2093.40 19197.46 6295.31 3395.47 31486.18 21598.78 12989.11 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HQP_MVS94.26 11593.93 12195.23 9197.71 9988.12 11594.56 10797.81 8591.74 10593.31 19295.59 17386.93 19898.95 11589.26 15998.51 15198.60 102
plane_prior388.43 11190.35 14093.31 192
thres600view787.66 26487.10 26889.36 27496.05 19273.17 31692.72 15385.31 33691.89 9293.29 19490.97 30063.42 33298.39 18973.23 32296.99 24696.51 224
CPTT-MVS94.74 9694.12 11996.60 4498.15 7193.01 4295.84 5997.66 9589.21 16093.28 19595.46 18288.89 16798.98 10889.80 14698.82 12397.80 168
USDC89.02 23889.08 22888.84 28295.07 23674.50 30888.97 27696.39 18373.21 31893.27 19696.28 14282.16 24296.39 29577.55 29798.80 12795.62 266
thres100view90087.35 27286.89 27088.72 28496.14 18573.09 31893.00 14685.31 33692.13 8593.26 19790.96 30163.42 33298.28 19871.27 33496.54 25694.79 281
N_pmnet88.90 24387.25 26393.83 14694.40 25993.81 3484.73 32787.09 31979.36 28393.26 19792.43 27979.29 26191.68 34577.50 29997.22 23696.00 247
CL-MVSNet_2432*160090.04 22389.90 21790.47 25195.24 23377.81 27386.60 31792.62 27785.64 22293.25 19993.92 24183.84 22596.06 30479.93 27898.03 20397.53 187
mvs_anonymous90.37 21091.30 18887.58 30092.17 29968.00 33989.84 25794.73 23883.82 24593.22 20097.40 6587.54 18697.40 26387.94 18695.05 28697.34 199
test_yl90.11 21889.73 22191.26 22794.09 26579.82 24090.44 23492.65 27590.90 12393.19 20193.30 25773.90 29198.03 21882.23 25496.87 24795.93 250
DCV-MVSNet90.11 21889.73 22191.26 22794.09 26579.82 24090.44 23492.65 27590.90 12393.19 20193.30 25773.90 29198.03 21882.23 25496.87 24795.93 250
D2MVS89.93 22589.60 22390.92 24094.03 26778.40 26588.69 28394.85 23278.96 28893.08 20395.09 19774.57 28996.94 27788.19 17998.96 10797.41 192
UnsupCasMVSNet_bld88.50 25088.03 25289.90 26695.52 22478.88 25987.39 29894.02 25479.32 28493.06 20494.02 23780.72 25594.27 33175.16 31393.08 31796.54 222
miper_lstm_enhance89.90 22689.80 21890.19 26291.37 31377.50 27783.82 33895.00 22784.84 23793.05 20594.96 20476.53 28595.20 32289.96 14498.67 13897.86 161
PHI-MVS94.34 11193.80 12495.95 5795.65 21891.67 6194.82 9597.86 7887.86 18593.04 20694.16 23291.58 11998.78 14390.27 13398.96 10797.41 192
TAMVS90.16 21789.05 22993.49 15896.49 15986.37 15290.34 23992.55 27980.84 27092.99 20794.57 22081.94 24698.20 20673.51 32098.21 18595.90 253
Vis-MVSNet (Re-imp)90.42 20790.16 21091.20 23197.66 10577.32 28094.33 11487.66 31591.20 11992.99 20795.13 19575.40 28898.28 19877.86 29399.19 7997.99 146
ab-mvs92.40 16792.62 15791.74 21397.02 13481.65 21295.84 5995.50 21886.95 20392.95 20997.56 5590.70 14497.50 25579.63 28197.43 23096.06 245
MCST-MVS92.91 15192.51 15994.10 13397.52 11285.72 16691.36 21497.13 13880.33 27292.91 21094.24 22891.23 13098.72 15389.99 14397.93 20997.86 161
ETV-MVS92.99 14992.74 15393.72 14895.86 20686.30 15592.33 17397.84 8291.70 10892.81 21186.17 34392.22 10399.19 8088.03 18497.73 21695.66 263
TAPA-MVS88.58 1092.49 16691.75 17794.73 10796.50 15889.69 8492.91 14997.68 9478.02 29592.79 21294.10 23390.85 13897.96 22684.76 23298.16 18996.54 222
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-RMVSNet90.47 20690.44 20690.56 25095.21 23478.65 26489.15 27493.94 25688.21 17792.74 21394.22 22986.38 20797.88 22978.67 29095.39 27995.14 274
旧先验290.00 25168.65 33892.71 21496.52 29085.15 223
cl-mvsnet289.02 23888.50 23990.59 24989.76 32976.45 29286.62 31694.03 25282.98 25492.65 21592.49 27472.05 29997.53 25388.93 16597.02 24197.78 169
tfpn200view987.05 28086.52 27888.67 28595.77 21072.94 31991.89 19486.00 32890.84 12592.61 21689.80 31363.93 32998.28 19871.27 33496.54 25694.79 281
thres40087.20 27686.52 27889.24 27895.77 21072.94 31991.89 19486.00 32890.84 12592.61 21689.80 31363.93 32998.28 19871.27 33496.54 25696.51 224
MS-PatchMatch88.05 25787.75 25588.95 27993.28 27777.93 27087.88 29092.49 28075.42 30792.57 21893.59 25180.44 25694.24 33381.28 26392.75 32094.69 286
miper_enhance_ethall88.42 25187.87 25490.07 26388.67 34275.52 30185.10 32495.59 21375.68 30492.49 21989.45 32178.96 26297.88 22987.86 18897.02 24196.81 217
testdata91.03 23596.87 14182.01 20794.28 24871.55 32592.46 22095.42 18585.65 21697.38 26682.64 24997.27 23493.70 308
LF4IMVS92.72 15792.02 16994.84 10395.65 21891.99 5492.92 14896.60 17285.08 23392.44 22193.62 24986.80 20296.35 29886.81 20198.25 17996.18 241
diffmvs91.74 17991.93 17191.15 23393.06 28378.17 26888.77 28197.51 11086.28 21092.42 22293.96 24088.04 17897.46 25890.69 12196.67 25497.82 166
HPM-MVS++copyleft95.02 8294.39 10996.91 3897.88 9093.58 3694.09 12096.99 14791.05 12292.40 22395.22 19291.03 13799.25 7492.11 8998.69 13797.90 157
ppachtmachnet_test88.61 24988.64 23788.50 28891.76 30670.99 32984.59 33092.98 26779.30 28592.38 22493.53 25379.57 25997.45 25986.50 21097.17 23797.07 206
Anonymous2023120688.77 24688.29 24490.20 26196.31 17278.81 26189.56 26393.49 26174.26 31292.38 22495.58 17682.21 24095.43 31672.07 32898.75 13396.34 233
MVS_Test92.57 16493.29 14090.40 25493.53 27575.85 29892.52 16096.96 14888.73 16692.35 22696.70 11390.77 13998.37 19492.53 8395.49 27596.99 210
PVSNet_Blended_VisFu91.63 18291.20 19092.94 17497.73 9883.95 18892.14 18197.46 11178.85 29092.35 22694.98 20384.16 22499.08 9286.36 21296.77 25195.79 257
CDPH-MVS92.67 15991.83 17395.18 9396.94 13788.46 11090.70 22897.07 14277.38 29792.34 22895.08 19892.67 9698.88 12285.74 21798.57 14398.20 129
NCCC94.08 12193.54 13595.70 7496.49 15989.90 8192.39 16996.91 15490.64 13292.33 22994.60 21890.58 14798.96 11390.21 13697.70 22098.23 126
CLD-MVS91.82 17891.41 18593.04 16896.37 16383.65 19186.82 31097.29 12784.65 24092.27 23089.67 31892.20 10497.85 23583.95 23899.47 3897.62 181
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS92.05 17592.16 16591.72 21494.44 25780.13 23187.62 29197.25 13087.34 19692.22 23193.18 26189.54 16398.73 15289.67 15098.20 18796.30 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 26687.31 26188.54 28794.71 25174.27 31193.10 14488.20 31186.20 21192.18 23293.04 26273.21 29495.52 31179.32 28585.82 34595.83 255
API-MVS91.52 18591.61 17891.26 22794.16 26286.26 15794.66 10194.82 23491.17 12092.13 23391.08 29990.03 16097.06 27479.09 28897.35 23390.45 339
DP-MVS Recon92.31 17091.88 17293.60 15197.18 12886.87 13991.10 21997.37 11584.92 23692.08 23494.08 23488.59 16998.20 20683.50 24198.14 19195.73 259
our_test_387.55 26787.59 25887.44 30291.76 30670.48 33083.83 33790.55 30179.79 27592.06 23592.17 28378.63 26795.63 30984.77 23194.73 29296.22 239
MSDG90.82 19690.67 20291.26 22794.16 26283.08 19986.63 31596.19 19390.60 13491.94 23691.89 28789.16 16695.75 30880.96 26994.51 29794.95 279
Effi-MVS+-dtu93.90 12592.60 15897.77 494.74 24796.67 394.00 12395.41 22089.94 14491.93 23792.13 28490.12 15498.97 11287.68 19097.48 22897.67 178
ETH3 D test640091.91 17791.25 18993.89 14396.59 15384.41 17792.10 18297.72 9378.52 29191.82 23893.78 24788.70 16899.13 8683.61 24098.39 15998.14 132
Gipumacopyleft95.31 7595.80 6393.81 14797.99 8790.91 6996.42 3497.95 7396.69 1691.78 23998.85 1291.77 11495.49 31391.72 10399.08 8995.02 277
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
HyFIR lowres test87.19 27785.51 28792.24 19797.12 13380.51 22685.03 32596.06 19766.11 34591.66 24092.98 26470.12 30399.14 8575.29 31295.23 28397.07 206
MVP-Stereo90.07 22188.92 23293.54 15596.31 17286.49 14790.93 22295.59 21379.80 27491.48 24195.59 17380.79 25497.39 26478.57 29191.19 33396.76 219
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20085.85 28785.18 28887.88 29894.44 25772.52 32289.08 27586.21 32488.57 17291.44 24288.40 32964.22 32798.00 22268.35 34295.88 26993.12 316
FMVSNet587.82 26186.56 27691.62 21792.31 29479.81 24293.49 13694.81 23683.26 24791.36 24396.93 9552.77 35597.49 25776.07 30898.03 20397.55 186
新几何193.17 16797.16 12987.29 12894.43 24467.95 34091.29 24494.94 20586.97 19798.23 20481.06 26897.75 21593.98 301
xiu_mvs_v1_base_debu91.47 18691.52 18091.33 22495.69 21581.56 21389.92 25396.05 19883.22 24891.26 24590.74 30391.55 12098.82 13289.29 15695.91 26693.62 310
xiu_mvs_v1_base91.47 18691.52 18091.33 22495.69 21581.56 21389.92 25396.05 19883.22 24891.26 24590.74 30391.55 12098.82 13289.29 15695.91 26693.62 310
xiu_mvs_v1_base_debi91.47 18691.52 18091.33 22495.69 21581.56 21389.92 25396.05 19883.22 24891.26 24590.74 30391.55 12098.82 13289.29 15695.91 26693.62 310
CDS-MVSNet89.55 23088.22 24893.53 15695.37 23086.49 14789.26 27193.59 25879.76 27691.15 24892.31 28177.12 27998.38 19177.51 29897.92 21095.71 260
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 17292.13 16792.68 18394.53 25684.10 18495.70 6297.03 14382.44 26091.14 24996.42 12888.47 17198.38 19185.95 21697.47 22995.55 267
112190.26 21589.23 22493.34 16097.15 13187.40 12691.94 19194.39 24567.88 34191.02 25094.91 20686.91 20098.59 17281.17 26697.71 21994.02 300
CNLPA91.72 18091.20 19093.26 16496.17 18391.02 6691.14 21795.55 21690.16 14290.87 25193.56 25286.31 20894.40 32979.92 28097.12 23894.37 291
test_prior393.29 13692.85 14994.61 11195.95 20087.23 12990.21 24297.36 12089.33 15790.77 25294.81 21090.41 14998.68 16288.21 17798.55 14497.93 153
test_prior290.21 24289.33 15790.77 25294.81 21090.41 14988.21 17798.55 144
test22296.95 13685.27 17188.83 27993.61 25765.09 34890.74 25494.85 20984.62 22297.36 23293.91 302
TR-MVS87.70 26287.17 26589.27 27694.11 26479.26 25288.69 28391.86 29181.94 26490.69 25589.79 31582.82 23497.42 26172.65 32691.98 32991.14 335
CVMVSNet85.16 29084.72 28986.48 30792.12 30070.19 33192.32 17488.17 31256.15 35690.64 25695.85 15967.97 30896.69 28688.78 17090.52 33692.56 325
TEST996.45 16189.46 8690.60 23096.92 15279.09 28690.49 25794.39 22491.31 12698.88 122
train_agg92.71 15891.83 17395.35 8296.45 16189.46 8690.60 23096.92 15279.37 28190.49 25794.39 22491.20 13298.88 12288.66 17498.43 15697.72 174
test_896.37 16389.14 9390.51 23396.89 15579.37 28190.42 25994.36 22691.20 13298.82 132
CS-MVS92.54 16592.31 16393.23 16595.89 20584.07 18693.58 13498.48 888.60 17190.41 26086.23 34292.00 10899.35 5587.54 19298.06 19996.26 237
KD-MVS_2432*160082.17 30880.75 31586.42 30982.04 36070.09 33381.75 34490.80 29882.56 25690.37 26189.30 32242.90 36496.11 30274.47 31592.55 32393.06 317
miper_refine_blended82.17 30880.75 31586.42 30982.04 36070.09 33381.75 34490.80 29882.56 25690.37 26189.30 32242.90 36496.11 30274.47 31592.55 32393.06 317
agg_prior192.60 16191.76 17695.10 9696.20 18088.89 9890.37 23796.88 15679.67 27890.21 26394.41 22291.30 12798.78 14388.46 17698.37 16697.64 180
agg_prior96.20 18088.89 9896.88 15690.21 26398.78 143
jason89.17 23688.32 24291.70 21595.73 21380.07 23288.10 28893.22 26471.98 32490.09 26592.79 26878.53 26898.56 17687.43 19597.06 23996.46 229
jason: jason.
Fast-Effi-MVS+-dtu92.77 15692.16 16594.58 11894.66 25388.25 11292.05 18496.65 17089.62 15190.08 26691.23 29692.56 9898.60 17086.30 21396.27 26196.90 213
CHOSEN 1792x268887.19 27785.92 28591.00 23897.13 13279.41 24984.51 33195.60 21064.14 34990.07 26794.81 21078.26 27097.14 27273.34 32195.38 28096.46 229
PatchMatch-RL89.18 23588.02 25392.64 18495.90 20492.87 4588.67 28591.06 29680.34 27190.03 26891.67 29183.34 22794.42 32876.35 30794.84 29090.64 338
BH-w/o87.21 27587.02 26987.79 29994.77 24477.27 28187.90 28993.21 26681.74 26589.99 26988.39 33083.47 22696.93 27971.29 33392.43 32589.15 340
Fast-Effi-MVS+91.28 19290.86 19692.53 19195.45 22682.53 20489.25 27396.52 17885.00 23489.91 27088.55 32892.94 8898.84 13084.72 23395.44 27796.22 239
AdaColmapbinary91.63 18291.36 18692.47 19495.56 22386.36 15392.24 17996.27 18788.88 16589.90 27192.69 27191.65 11898.32 19677.38 30097.64 22392.72 324
mvs-test193.07 14791.80 17596.89 3994.74 24795.83 692.17 18095.41 22089.94 14489.85 27290.59 30990.12 15498.88 12287.68 19095.66 27195.97 248
GA-MVS87.70 26286.82 27190.31 25593.27 27877.22 28284.72 32992.79 27285.11 23289.82 27390.07 31066.80 31397.76 24484.56 23494.27 30295.96 249
Patchmatch-test86.10 28686.01 28386.38 31190.63 32074.22 31289.57 26286.69 32185.73 22189.81 27492.83 26665.24 32491.04 34777.82 29695.78 27093.88 304
EIA-MVS92.35 16992.03 16893.30 16395.81 20983.97 18792.80 15298.17 3587.71 18889.79 27587.56 33291.17 13599.18 8187.97 18597.27 23496.77 218
test1294.43 12695.95 20086.75 14196.24 18989.76 27689.79 16198.79 13997.95 20897.75 173
pmmvs488.95 24287.70 25792.70 18294.30 26085.60 16787.22 30092.16 28674.62 31089.75 27794.19 23077.97 27296.41 29482.71 24896.36 26096.09 243
原ACMM192.87 17796.91 13984.22 18197.01 14476.84 30289.64 27894.46 22188.00 17998.70 15981.53 26198.01 20595.70 261
MG-MVS89.54 23189.80 21888.76 28394.88 23872.47 32389.60 26192.44 28185.82 21889.48 27995.98 15582.85 23397.74 24681.87 25795.27 28296.08 244
114514_t90.51 20489.80 21892.63 18698.00 8482.24 20693.40 13997.29 12765.84 34689.40 28094.80 21386.99 19698.75 14883.88 23998.61 14196.89 214
Effi-MVS+92.79 15492.74 15392.94 17495.10 23583.30 19494.00 12397.53 10791.36 11589.35 28190.65 30894.01 6798.66 16487.40 19695.30 28196.88 215
CR-MVSNet87.89 25887.12 26790.22 25991.01 31678.93 25792.52 16092.81 27073.08 31989.10 28296.93 9567.11 31097.64 25088.80 16992.70 32194.08 295
RPMNet90.31 21490.14 21390.81 24591.01 31678.93 25792.52 16098.12 4191.91 9189.10 28296.89 9868.84 30599.41 3590.17 13792.70 32194.08 295
PatchT87.51 26888.17 24985.55 31490.64 31966.91 34192.02 18786.09 32692.20 8389.05 28497.16 8264.15 32896.37 29789.21 16292.98 31993.37 314
MVSFormer92.18 17392.23 16492.04 20794.74 24780.06 23397.15 1197.37 11588.98 16188.83 28592.79 26877.02 28099.60 896.41 496.75 25296.46 229
lupinMVS88.34 25387.31 26191.45 22194.74 24780.06 23387.23 29992.27 28371.10 32888.83 28591.15 29777.02 28098.53 17986.67 20596.75 25295.76 258
HQP-NCC96.36 16591.37 21187.16 19888.81 287
ACMP_Plane96.36 16591.37 21187.16 19888.81 287
HQP4-MVS88.81 28798.61 16898.15 131
HQP-MVS92.09 17491.49 18393.88 14496.36 16584.89 17391.37 21197.31 12487.16 19888.81 28793.40 25584.76 22098.60 17086.55 20897.73 21698.14 132
PAPM_NR91.03 19490.81 19891.68 21696.73 14781.10 22193.72 13096.35 18588.19 17888.77 29192.12 28585.09 21997.25 26882.40 25393.90 30596.68 221
SCA87.43 27087.21 26488.10 29592.01 30371.98 32589.43 26588.11 31382.26 26288.71 29292.83 26678.65 26597.59 25179.61 28293.30 31294.75 283
F-COLMAP92.28 17191.06 19395.95 5797.52 11291.90 5693.53 13597.18 13483.98 24388.70 29394.04 23588.41 17298.55 17880.17 27495.99 26597.39 196
PVSNet_BlendedMVS90.35 21189.96 21591.54 22094.81 24278.80 26290.14 24696.93 15079.43 28088.68 29495.06 19986.27 20998.15 21280.27 27198.04 20297.68 177
PVSNet_Blended88.74 24788.16 25190.46 25394.81 24278.80 26286.64 31496.93 15074.67 30988.68 29489.18 32486.27 20998.15 21280.27 27196.00 26494.44 290
AUN-MVS90.05 22288.30 24395.32 8796.09 18990.52 7392.42 16792.05 29082.08 26388.45 29692.86 26565.76 32098.69 16188.91 16796.07 26396.75 220
pmmvs587.87 25987.14 26690.07 26393.26 27976.97 28788.89 27892.18 28473.71 31688.36 29793.89 24376.86 28396.73 28580.32 27096.81 24996.51 224
WTY-MVS86.93 28286.50 28088.24 29394.96 23774.64 30487.19 30192.07 28978.29 29388.32 29891.59 29378.06 27194.27 33174.88 31493.15 31595.80 256
thisisatest051584.72 29382.99 30189.90 26692.96 28675.33 30284.36 33283.42 34677.37 29888.27 29986.65 33753.94 35298.72 15382.56 25097.40 23195.67 262
MIMVSNet87.13 27986.54 27788.89 28196.05 19276.11 29594.39 11288.51 30781.37 26688.27 29996.75 10872.38 29795.52 31165.71 34895.47 27695.03 276
test0.0.03 182.48 30581.47 30985.48 31589.70 33073.57 31584.73 32781.64 35083.07 25288.13 30186.61 33862.86 33589.10 35366.24 34790.29 33793.77 306
CMPMVSbinary68.83 2287.28 27385.67 28692.09 20588.77 34185.42 16990.31 24094.38 24670.02 33488.00 30293.30 25773.78 29394.03 33475.96 31096.54 25696.83 216
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS281.31 31383.44 29774.92 33990.52 32246.49 36269.19 35485.23 33984.30 24287.95 30394.71 21676.95 28284.36 35664.07 34998.09 19793.89 303
xiu_mvs_v2_base89.00 24089.19 22588.46 29094.86 24074.63 30586.97 30495.60 21080.88 26887.83 30488.62 32791.04 13698.81 13782.51 25294.38 29891.93 330
PS-MVSNAJ88.86 24488.99 23188.48 28994.88 23874.71 30386.69 31395.60 21080.88 26887.83 30487.37 33590.77 13998.82 13282.52 25194.37 29991.93 330
tpm84.38 29584.08 29485.30 31890.47 32363.43 35589.34 26885.63 33277.24 30087.62 30695.03 20261.00 34397.30 26779.26 28691.09 33595.16 272
sss87.23 27486.82 27188.46 29093.96 26877.94 26986.84 30892.78 27377.59 29687.61 30791.83 28878.75 26491.92 34477.84 29494.20 30395.52 268
MAR-MVS90.32 21388.87 23594.66 11094.82 24191.85 5794.22 11794.75 23780.91 26787.52 30888.07 33186.63 20597.87 23276.67 30496.21 26294.25 294
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS89.35 23388.40 24192.18 20296.13 18884.20 18286.96 30596.15 19675.40 30887.36 30991.55 29483.30 22898.01 22182.17 25696.62 25594.32 293
UGNet93.08 14592.50 16094.79 10593.87 27187.99 11995.07 8794.26 24990.64 13287.33 31097.67 5086.89 20198.49 18288.10 18298.71 13497.91 156
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive85.22 28984.64 29086.98 30589.51 33469.83 33690.52 23287.34 31878.87 28987.22 31192.74 27066.91 31296.53 28981.77 25886.88 34494.58 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
1112_ss88.42 25187.41 26091.45 22196.69 14880.99 22289.72 25996.72 16773.37 31787.00 31290.69 30677.38 27698.20 20681.38 26293.72 30895.15 273
cascas87.02 28186.28 28289.25 27791.56 31176.45 29284.33 33396.78 16271.01 32986.89 31385.91 34481.35 24996.94 27783.09 24595.60 27294.35 292
CANet92.38 16891.99 17093.52 15793.82 27383.46 19291.14 21797.00 14589.81 14886.47 31494.04 23587.90 18299.21 7889.50 15398.27 17597.90 157
Test_1112_low_res87.50 26986.58 27590.25 25896.80 14677.75 27487.53 29696.25 18869.73 33586.47 31493.61 25075.67 28797.88 22979.95 27693.20 31395.11 275
PLCcopyleft85.34 1590.40 20888.92 23294.85 10296.53 15790.02 7791.58 20896.48 18080.16 27386.14 31692.18 28285.73 21498.25 20376.87 30394.61 29696.30 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
new_pmnet81.22 31481.01 31381.86 33290.92 31870.15 33284.03 33580.25 35570.83 33085.97 31789.78 31667.93 30984.65 35567.44 34491.90 33090.78 337
EPMVS81.17 31680.37 31883.58 32785.58 35465.08 35090.31 24071.34 35877.31 29985.80 31891.30 29559.38 34492.70 34279.99 27582.34 35292.96 320
tpmvs84.22 29683.97 29584.94 31987.09 34965.18 34891.21 21688.35 30882.87 25585.21 31990.96 30165.24 32496.75 28479.60 28485.25 34692.90 321
FPMVS84.50 29483.28 29888.16 29496.32 17194.49 1485.76 32085.47 33483.09 25185.20 32094.26 22763.79 33186.58 35463.72 35091.88 33183.40 349
pmmvs380.83 31778.96 32586.45 30887.23 34877.48 27884.87 32682.31 34863.83 35085.03 32189.50 32049.66 35693.10 33973.12 32495.10 28588.78 344
PAPR87.65 26586.77 27390.27 25792.85 28777.38 27988.56 28696.23 19076.82 30384.98 32289.75 31786.08 21197.16 27172.33 32793.35 31196.26 237
MDTV_nov1_ep1383.88 29689.42 33561.52 35688.74 28287.41 31773.99 31484.96 32394.01 23865.25 32395.53 31078.02 29293.16 314
131486.46 28486.33 28186.87 30691.65 30874.54 30691.94 19194.10 25174.28 31184.78 32487.33 33683.03 23195.00 32378.72 28991.16 33491.06 336
ADS-MVSNet284.01 29782.20 30589.41 27289.04 33876.37 29487.57 29290.98 29772.71 32284.46 32592.45 27668.08 30696.48 29270.58 33883.97 34795.38 269
ADS-MVSNet82.25 30681.55 30784.34 32489.04 33865.30 34787.57 29285.13 34072.71 32284.46 32592.45 27668.08 30692.33 34370.58 33883.97 34795.38 269
PVSNet76.22 2082.89 30382.37 30384.48 32393.96 26864.38 35378.60 34988.61 30671.50 32684.43 32786.36 34174.27 29094.60 32569.87 34093.69 30994.46 289
MVS84.98 29284.30 29287.01 30491.03 31577.69 27691.94 19194.16 25059.36 35484.23 32887.50 33485.66 21596.80 28371.79 32993.05 31886.54 346
tpmrst82.85 30482.93 30282.64 33087.65 34358.99 35890.14 24687.90 31475.54 30683.93 32991.63 29266.79 31595.36 31781.21 26581.54 35393.57 313
ET-MVSNet_ETH3D86.15 28584.27 29391.79 21193.04 28481.28 21887.17 30286.14 32579.57 27983.65 33088.66 32657.10 34798.18 20987.74 18995.40 27895.90 253
HY-MVS82.50 1886.81 28385.93 28489.47 27093.63 27477.93 27094.02 12291.58 29475.68 30483.64 33193.64 24877.40 27597.42 26171.70 33192.07 32893.05 319
MDTV_nov1_ep13_2view42.48 36388.45 28767.22 34383.56 33266.80 31372.86 32594.06 297
CostFormer83.09 30182.21 30485.73 31389.27 33667.01 34090.35 23886.47 32370.42 33283.52 33393.23 26061.18 34196.85 28177.21 30188.26 34293.34 315
DSMNet-mixed82.21 30781.56 30684.16 32589.57 33370.00 33590.65 22977.66 35754.99 35783.30 33497.57 5477.89 27390.50 34966.86 34695.54 27491.97 329
E-PMN80.72 31980.86 31480.29 33585.11 35568.77 33872.96 35181.97 34987.76 18783.25 33583.01 35162.22 33889.17 35277.15 30294.31 30182.93 350
test-LLR83.58 29883.17 29984.79 32189.68 33166.86 34383.08 33984.52 34183.07 25282.85 33684.78 34762.86 33593.49 33782.85 24694.86 28894.03 298
test-mter81.21 31580.01 32284.79 32189.68 33166.86 34383.08 33984.52 34173.85 31582.85 33684.78 34743.66 36393.49 33782.85 24694.86 28894.03 298
CANet_DTU89.85 22789.17 22691.87 20992.20 29880.02 23690.79 22595.87 20386.02 21582.53 33891.77 28980.01 25798.57 17585.66 21897.70 22097.01 209
MVS_030490.96 19590.15 21293.37 15993.17 28087.06 13393.62 13392.43 28289.60 15282.25 33995.50 18182.56 23997.83 23684.41 23697.83 21495.22 271
JIA-IIPM85.08 29183.04 30091.19 23287.56 34486.14 15989.40 26784.44 34388.98 16182.20 34097.95 3956.82 34996.15 30076.55 30683.45 34991.30 334
PMMVS83.00 30281.11 31088.66 28683.81 35986.44 15082.24 34385.65 33161.75 35382.07 34185.64 34579.75 25891.59 34675.99 30993.09 31687.94 345
tpm281.46 31280.35 31984.80 32089.90 32865.14 34990.44 23485.36 33565.82 34782.05 34292.44 27857.94 34696.69 28670.71 33788.49 34192.56 325
IB-MVS77.21 1983.11 30081.05 31189.29 27591.15 31475.85 29885.66 32186.00 32879.70 27782.02 34386.61 33848.26 35898.39 18977.84 29492.22 32693.63 309
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat180.61 32079.46 32384.07 32688.78 34065.06 35189.26 27188.23 31062.27 35281.90 34489.66 31962.70 33795.29 32071.72 33080.60 35491.86 332
EMVS80.35 32180.28 32080.54 33484.73 35769.07 33772.54 35380.73 35287.80 18681.66 34581.73 35262.89 33489.84 35075.79 31194.65 29582.71 351
dp79.28 32378.62 32681.24 33385.97 35356.45 35986.91 30685.26 33872.97 32081.45 34689.17 32556.01 35195.45 31573.19 32376.68 35591.82 333
DWT-MVSNet_test80.74 31879.18 32485.43 31687.51 34666.87 34289.87 25686.01 32774.20 31380.86 34780.62 35348.84 35796.68 28881.54 26083.14 35192.75 323
EPNet89.80 22988.25 24594.45 12583.91 35886.18 15893.87 12687.07 32091.16 12180.64 34894.72 21578.83 26398.89 12185.17 22198.89 11098.28 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TESTMET0.1,179.09 32478.04 32782.25 33187.52 34564.03 35483.08 33980.62 35370.28 33380.16 34983.22 35044.13 36290.56 34879.95 27693.36 31092.15 328
baseline283.38 29981.54 30888.90 28091.38 31272.84 32188.78 28081.22 35178.97 28779.82 35087.56 33261.73 34097.80 23874.30 31790.05 33896.05 246
gg-mvs-nofinetune82.10 31081.02 31285.34 31787.46 34771.04 32794.74 9867.56 35996.44 2179.43 35198.99 645.24 36096.15 30067.18 34592.17 32788.85 342
PVSNet_070.34 2174.58 32672.96 32979.47 33690.63 32066.24 34673.26 35083.40 34763.67 35178.02 35278.35 35472.53 29689.59 35156.68 35460.05 35882.57 352
MVS-HIRNet78.83 32580.60 31773.51 34093.07 28247.37 36187.10 30378.00 35668.94 33777.53 35397.26 7571.45 30194.62 32463.28 35188.74 34078.55 353
CHOSEN 280x42080.04 32277.97 32886.23 31290.13 32674.53 30772.87 35289.59 30366.38 34476.29 35485.32 34656.96 34895.36 31769.49 34194.72 29388.79 343
PAPM81.91 31180.11 32187.31 30393.87 27172.32 32484.02 33693.22 26469.47 33676.13 35589.84 31272.15 29897.23 26953.27 35689.02 33992.37 327
GG-mvs-BLEND83.24 32985.06 35671.03 32894.99 9265.55 36074.09 35675.51 35544.57 36194.46 32759.57 35387.54 34384.24 348
EPNet_dtu85.63 28884.37 29189.40 27386.30 35274.33 31091.64 20788.26 30984.84 23772.96 35789.85 31171.27 30297.69 24876.60 30597.62 22496.18 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVEpermissive59.87 2373.86 32772.65 33077.47 33887.00 35174.35 30961.37 35660.93 36167.27 34269.69 35886.49 34081.24 25372.33 35856.45 35583.45 34985.74 347
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft53.83 34170.38 36264.56 35248.52 36333.01 35865.50 35974.21 35656.19 35046.64 35938.45 35870.07 35650.30 355
tmp_tt37.97 32844.33 33118.88 34211.80 36321.54 36463.51 35545.66 3644.23 35951.34 36050.48 35759.08 34522.11 36044.50 35768.35 35713.00 356
test1239.49 33012.01 3331.91 3432.87 3641.30 36582.38 3421.34 3661.36 3602.84 3616.56 3602.45 3660.97 3612.73 3595.56 3593.47 357
testmvs9.02 33111.42 3341.81 3442.77 3651.13 36679.44 3481.90 3651.18 3612.65 3626.80 3591.95 3670.87 3622.62 3603.45 3603.44 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.35 32931.13 3320.00 3450.00 3660.00 3670.00 35795.58 2150.00 3620.00 36391.15 29793.43 740.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.56 33210.09 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36390.77 1390.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re7.56 33210.08 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36390.69 3060.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS95.15 9496.84 14289.43 8895.21 7995.66 17193.12 8498.06 21686.28 21498.61 14197.95 151
save fliter97.46 11788.05 11792.04 18597.08 14187.63 191
test_0728_SECOND94.88 10198.55 3986.72 14295.20 8198.22 2999.38 5193.44 5199.31 6198.53 106
GSMVS94.75 283
sam_mvs166.64 31694.75 283
sam_mvs66.41 317
MTGPAbinary97.62 97
test_post190.21 2425.85 36265.36 32296.00 30579.61 282
test_post6.07 36165.74 32195.84 307
patchmatchnet-post91.71 29066.22 31997.59 251
MTMP94.82 9554.62 362
gm-plane-assit87.08 35059.33 35771.22 32783.58 34997.20 27073.95 318
test9_res88.16 18198.40 15797.83 164
agg_prior287.06 20098.36 16797.98 147
test_prior489.91 8090.74 226
test_prior94.61 11195.95 20087.23 12997.36 12098.68 16297.93 153
新几何290.02 250
旧先验196.20 18084.17 18394.82 23495.57 17789.57 16297.89 21196.32 234
无先验89.94 25295.75 20770.81 33198.59 17281.17 26694.81 280
原ACMM289.34 268
testdata298.03 21880.24 273
segment_acmp92.14 105
testdata188.96 27788.44 174
plane_prior797.71 9988.68 102
plane_prior697.21 12788.23 11386.93 198
plane_prior597.81 8598.95 11589.26 15998.51 15198.60 102
plane_prior495.59 173
plane_prior294.56 10791.74 105
plane_prior197.38 120
plane_prior88.12 11593.01 14588.98 16198.06 199
n20.00 367
nn0.00 367
door-mid92.13 288
test1196.65 170
door91.26 295
HQP5-MVS84.89 173
BP-MVS86.55 208
HQP3-MVS97.31 12497.73 216
HQP2-MVS84.76 220
NP-MVS96.82 14387.10 13293.40 255
ACMMP++_ref98.82 123
ACMMP++99.25 72
Test By Simon90.61 145