This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 697.72 395.35 8099.51 287.38 12297.70 697.54 10198.16 298.94 299.33 297.84 499.08 8790.73 11599.73 1399.59 12
OurMVSNet-221017-096.80 1296.75 1896.96 3499.03 1091.85 5497.98 598.01 6094.15 4498.93 399.07 588.07 17399.57 1395.86 999.69 1499.46 17
LTVRE_ROB93.87 197.93 298.16 297.26 2498.81 2393.86 2799.07 298.98 397.01 1298.92 498.78 1495.22 3698.61 16296.85 299.77 999.31 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet-Re94.20 11594.58 9993.04 16495.91 19783.13 19393.79 12399.19 292.00 8398.84 598.04 3493.64 6699.02 9881.28 25698.54 14296.96 205
PS-MVSNAJss96.01 4996.04 4895.89 6198.82 2288.51 10495.57 6597.88 7388.72 16298.81 698.86 1090.77 13699.60 895.43 1199.53 3399.57 13
mvs_tets96.83 896.71 1997.17 2598.83 2192.51 4596.58 2697.61 9687.57 18898.80 798.90 996.50 1099.59 1296.15 799.47 3799.40 20
Anonymous2023121196.60 2397.13 1295.00 9597.46 11386.35 14997.11 1498.24 2797.58 798.72 898.97 793.15 8099.15 7893.18 6099.74 1299.50 16
ACMH88.36 1296.59 2597.43 594.07 13198.56 3685.33 16596.33 3798.30 2094.66 3598.72 898.30 2997.51 598.00 21594.87 1499.59 2598.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax96.59 2596.42 2697.12 2798.76 2692.49 4696.44 3397.42 10886.96 19798.71 1098.72 1795.36 3099.56 1695.92 899.45 4199.32 25
wuyk23d87.83 25490.79 19578.96 32990.46 31688.63 9892.72 14990.67 29191.65 10598.68 1197.64 5196.06 1677.53 34859.84 34299.41 5070.73 345
DTE-MVSNet96.74 1597.43 594.67 10699.13 584.68 17096.51 2897.94 7298.14 398.67 1298.32 2895.04 4399.69 293.27 5799.82 799.62 10
PS-CasMVS96.69 1897.43 594.49 11999.13 584.09 18096.61 2497.97 6697.91 598.64 1398.13 3195.24 3599.65 393.39 5299.84 399.72 2
PEN-MVS96.69 1897.39 894.61 10899.16 384.50 17196.54 2798.05 5198.06 498.64 1398.25 3095.01 4699.65 392.95 7099.83 599.68 4
SixPastTwentyTwo94.91 8495.21 7893.98 13398.52 4483.19 19195.93 5294.84 22894.86 3498.49 1598.74 1681.45 24399.60 894.69 1699.39 5299.15 36
WR-MVS_H96.60 2397.05 1495.24 8799.02 1186.44 14596.78 2198.08 4597.42 898.48 1697.86 4491.76 11199.63 694.23 2699.84 399.66 6
v7n96.82 997.31 1095.33 8298.54 4186.81 13596.83 1898.07 4896.59 1998.46 1798.43 2792.91 8699.52 1796.25 699.76 1099.65 8
anonymousdsp96.74 1596.42 2697.68 798.00 8194.03 2196.97 1597.61 9687.68 18598.45 1898.77 1594.20 6299.50 1996.70 399.40 5199.53 14
CP-MVSNet96.19 4496.80 1794.38 12598.99 1383.82 18496.31 3997.53 10297.60 698.34 1997.52 5791.98 10799.63 693.08 6699.81 899.70 3
test_djsdf96.62 2196.49 2597.01 3198.55 3991.77 5697.15 1197.37 11088.98 15698.26 2098.86 1093.35 7499.60 896.41 499.45 4199.66 6
ACMH+88.43 1196.48 2896.82 1695.47 7898.54 4189.06 8995.65 6298.61 696.10 2598.16 2197.52 5796.90 798.62 16190.30 12799.60 2398.72 88
pmmvs696.80 1297.36 995.15 9199.12 787.82 11896.68 2297.86 7496.10 2598.14 2299.28 397.94 398.21 19891.38 10999.69 1499.42 18
ANet_high94.83 9196.28 3390.47 24596.65 14573.16 30994.33 10998.74 596.39 2298.09 2398.93 893.37 7398.70 15490.38 12299.68 1799.53 14
nrg03096.32 3996.55 2495.62 7397.83 8988.55 10295.77 5898.29 2392.68 6598.03 2497.91 4295.13 3998.95 10993.85 3399.49 3699.36 23
MIMVSNet195.52 6395.45 6895.72 7099.14 489.02 9096.23 4496.87 15393.73 5297.87 2598.49 2490.73 14099.05 9286.43 20499.60 2399.10 43
TransMVSNet (Re)95.27 7696.04 4892.97 16898.37 5981.92 20395.07 8396.76 16093.97 4897.77 2698.57 1995.72 1897.90 22088.89 16299.23 7399.08 44
DPE-MVS95.89 5195.88 5495.92 6097.93 8689.83 7793.46 13298.30 2092.37 7297.75 2796.95 8995.14 3899.51 1891.74 9799.28 6798.41 114
test_040295.73 5796.22 3694.26 12798.19 6985.77 16093.24 13797.24 12696.88 1597.69 2897.77 4794.12 6399.13 8191.54 10699.29 6297.88 155
NR-MVSNet95.28 7495.28 7695.26 8697.75 9287.21 12695.08 8297.37 11093.92 5097.65 2995.90 15390.10 15399.33 5990.11 13599.66 1999.26 28
SED-MVS96.00 5096.41 2994.76 10398.51 4586.97 13195.21 7598.10 4291.95 8497.63 3097.25 7596.48 1199.35 5093.29 5599.29 6297.95 147
test_241102_ONE98.51 4586.97 13198.10 4291.85 9097.63 3097.03 8896.48 1198.95 109
test072698.51 4586.69 13895.34 7098.18 3291.85 9097.63 3097.37 6695.58 22
Anonymous2024052995.50 6495.83 5894.50 11797.33 11985.93 15795.19 7996.77 15996.64 1897.61 3398.05 3393.23 7798.79 13388.60 16899.04 9598.78 81
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3497.44 6296.51 999.40 3694.06 3099.23 7398.85 75
test_241102_TWO98.10 4291.95 8497.54 3597.25 7595.37 2799.35 5093.29 5599.25 7098.49 107
FC-MVSNet-test95.32 7195.88 5493.62 14698.49 5381.77 20495.90 5498.32 1793.93 4997.53 3697.56 5488.48 16699.40 3692.91 7199.83 599.68 4
K. test v393.37 13193.27 13993.66 14598.05 7682.62 19794.35 10886.62 31396.05 2797.51 3798.85 1276.59 27999.65 393.21 5998.20 18198.73 87
TranMVSNet+NR-MVSNet96.07 4896.26 3495.50 7798.26 6587.69 11993.75 12497.86 7495.96 2997.48 3897.14 8295.33 3199.44 2390.79 11499.76 1099.38 21
v894.65 9895.29 7592.74 17896.65 14579.77 23794.59 9897.17 13091.86 8997.47 3997.93 3988.16 17199.08 8794.32 2299.47 3799.38 21
v1094.68 9795.27 7792.90 17396.57 15180.15 22394.65 9797.57 9990.68 12797.43 4098.00 3688.18 17099.15 7894.84 1599.55 3299.41 19
APDe-MVS96.46 3096.64 2195.93 5897.68 10089.38 8696.90 1798.41 1392.52 6997.43 4097.92 4095.11 4099.50 1994.45 1999.30 6198.92 66
SMA-MVS95.77 5695.54 6596.47 4898.27 6491.19 6295.09 8197.79 8586.48 20197.42 4297.51 5994.47 5899.29 6393.55 4299.29 6298.93 62
MSP-MVS95.82 5596.18 3894.72 10598.51 4586.69 13895.20 7797.00 13991.85 9097.40 4397.35 7095.58 2299.34 5493.44 4999.31 5998.13 132
test_0728_THIRD93.26 6197.40 4397.35 7094.69 5199.34 5493.88 3299.42 4598.89 68
pm-mvs195.43 6695.94 5193.93 13798.38 5785.08 16795.46 6897.12 13491.84 9397.28 4598.46 2595.30 3397.71 24090.17 13399.42 4598.99 52
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 497.41 997.28 4598.46 2594.62 5398.84 12494.64 1799.53 3398.99 52
SD-MVS95.19 7795.73 6293.55 14996.62 14888.88 9594.67 9598.05 5191.26 11397.25 4796.40 12695.42 2694.36 32192.72 7699.19 7697.40 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMM88.83 996.30 4196.07 4696.97 3398.39 5692.95 4194.74 9398.03 5690.82 12397.15 4896.85 9796.25 1599.00 10193.10 6499.33 5798.95 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v093.87 14198.05 7683.77 18580.32 34597.13 4997.91 4277.49 26999.11 8492.62 7898.08 19298.74 85
FIs94.90 8595.35 7193.55 14998.28 6381.76 20595.33 7198.14 3993.05 6397.07 5097.18 8087.65 18099.29 6391.72 9899.69 1499.61 11
LPG-MVS_test96.38 3896.23 3596.84 3898.36 6092.13 4995.33 7198.25 2491.78 9797.07 5097.22 7896.38 1399.28 6592.07 8799.59 2599.11 40
LGP-MVS_train96.84 3898.36 6092.13 4998.25 2491.78 9797.07 5097.22 7896.38 1399.28 6592.07 8799.59 2599.11 40
testing_294.03 11894.38 10593.00 16696.79 14281.41 21192.87 14696.96 14285.88 21397.06 5397.92 4091.18 13198.71 15391.72 9899.04 9598.87 71
VPA-MVSNet95.14 7895.67 6493.58 14897.76 9183.15 19294.58 10097.58 9893.39 5997.05 5498.04 3493.25 7698.51 17589.75 14599.59 2599.08 44
FMVSNet194.84 9095.13 8193.97 13497.60 10484.29 17395.99 4896.56 16992.38 7197.03 5598.53 2190.12 15098.98 10288.78 16499.16 7998.65 90
APD-MVS_3200maxsize96.82 996.65 2097.32 2397.95 8593.82 2996.31 3998.25 2495.51 3196.99 5697.05 8795.63 2199.39 4193.31 5498.88 11098.75 84
EG-PatchMatch MVS94.54 10294.67 9694.14 12997.87 8886.50 14192.00 18396.74 16188.16 17496.93 5797.61 5293.04 8497.90 22091.60 10398.12 18898.03 139
MP-MVS-pluss96.08 4795.92 5396.57 4399.06 991.21 6193.25 13698.32 1787.89 17996.86 5897.38 6595.55 2499.39 4195.47 1099.47 3799.11 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft91.06 596.75 1496.62 2297.13 2698.38 5794.31 1296.79 2098.32 1796.69 1696.86 5897.56 5495.48 2598.77 14190.11 13599.44 4398.31 119
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS96.70 1796.42 2697.54 998.05 7694.69 896.13 4598.07 4895.17 3296.82 6096.73 10795.09 4299.43 2692.99 6998.71 12998.50 106
UniMVSNet_NR-MVSNet95.35 6995.21 7895.76 6897.69 9988.59 10092.26 17297.84 7894.91 3396.80 6195.78 16290.42 14599.41 3291.60 10399.58 2999.29 27
DU-MVS95.28 7495.12 8295.75 6997.75 9288.59 10092.58 15497.81 8193.99 4696.80 6195.90 15390.10 15399.41 3291.60 10399.58 2999.26 28
OPM-MVS95.61 6195.45 6896.08 5198.49 5391.00 6492.65 15397.33 11890.05 13996.77 6396.85 9795.04 4398.56 17092.77 7299.06 8798.70 89
test_part298.21 6889.41 8496.72 64
v124093.29 13393.71 12492.06 20196.01 19177.89 26591.81 19897.37 11085.12 22596.69 6596.40 12686.67 20099.07 9194.51 1898.76 12699.22 31
tfpnnormal94.27 11194.87 8892.48 18997.71 9680.88 21894.55 10495.41 21593.70 5396.67 6697.72 4891.40 11998.18 20287.45 18799.18 7898.36 115
SteuartSystems-ACMMP96.40 3696.30 3296.71 4098.63 2991.96 5295.70 5998.01 6093.34 6096.64 6796.57 11794.99 4799.36 4993.48 4599.34 5598.82 77
Skip Steuart: Steuart Systems R&D Blog.
WR-MVS93.49 12893.72 12392.80 17797.57 10680.03 22990.14 24195.68 20393.70 5396.62 6895.39 18387.21 18899.04 9587.50 18699.64 2199.33 24
ACMP88.15 1395.71 5895.43 7096.54 4498.17 7091.73 5794.24 11198.08 4589.46 14996.61 6996.47 12095.85 1799.12 8390.45 11999.56 3198.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DP-MVS95.62 6095.84 5794.97 9697.16 12488.62 9994.54 10597.64 9296.94 1496.58 7097.32 7393.07 8398.72 14790.45 11998.84 11597.57 179
IterMVS-LS93.78 12394.28 11092.27 19296.27 17179.21 24891.87 19296.78 15791.77 9996.57 7197.07 8587.15 18998.74 14591.99 8999.03 9798.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HPM-MVS_fast97.01 796.89 1597.39 2099.12 793.92 2497.16 1098.17 3593.11 6296.48 7297.36 6996.92 699.34 5494.31 2399.38 5398.92 66
ambc92.98 16796.88 13583.01 19595.92 5396.38 17996.41 7397.48 6088.26 16997.80 23189.96 14098.93 10798.12 133
Regformer-494.90 8594.67 9695.59 7492.78 28289.02 9092.39 16495.91 19694.50 3896.41 7395.56 17392.10 10299.01 10094.23 2698.14 18598.74 85
ACMMP_NAP96.21 4396.12 4396.49 4798.90 1791.42 5994.57 10198.03 5690.42 13496.37 7597.35 7095.68 1999.25 6994.44 2099.34 5598.80 79
xxxxxxxxxxxxxcwj95.03 7994.93 8595.33 8297.46 11388.05 11292.04 18098.42 1287.63 18696.36 7696.68 11094.37 5999.32 6092.41 8199.05 9098.64 94
SF-MVS95.88 5395.88 5495.87 6298.12 7289.65 8095.58 6498.56 791.84 9396.36 7696.68 11094.37 5999.32 6092.41 8199.05 9098.64 94
ACMMPcopyleft96.61 2296.34 3197.43 1798.61 3293.88 2596.95 1698.18 3292.26 7796.33 7896.84 9995.10 4199.40 3693.47 4699.33 5799.02 49
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VDDNet94.03 11894.27 11293.31 15898.87 1982.36 19995.51 6791.78 28597.19 1196.32 7998.60 1884.24 21998.75 14287.09 19298.83 11898.81 78
UniMVSNet (Re)95.32 7195.15 8095.80 6597.79 9088.91 9292.91 14498.07 4893.46 5896.31 8095.97 15290.14 14999.34 5492.11 8499.64 2199.16 35
XVG-ACMP-BASELINE95.68 5995.34 7296.69 4198.40 5593.04 3894.54 10598.05 5190.45 13396.31 8096.76 10392.91 8698.72 14791.19 11099.42 4598.32 117
zzz-MVS96.47 2996.14 4197.47 1398.95 1594.05 1893.69 12697.62 9394.46 4096.29 8296.94 9093.56 6799.37 4794.29 2499.42 4598.99 52
MTAPA96.65 2096.38 3097.47 1398.95 1594.05 1895.88 5597.62 9394.46 4096.29 8296.94 9093.56 6799.37 4794.29 2499.42 4598.99 52
Baseline_NR-MVSNet94.47 10495.09 8392.60 18598.50 5280.82 21992.08 17896.68 16393.82 5196.29 8298.56 2090.10 15397.75 23890.10 13799.66 1999.24 30
IS-MVSNet94.49 10394.35 10794.92 9798.25 6686.46 14497.13 1394.31 24296.24 2396.28 8596.36 13382.88 22799.35 5088.19 17299.52 3598.96 59
VDD-MVS94.37 10594.37 10694.40 12497.49 11086.07 15593.97 12093.28 25894.49 3996.24 8697.78 4587.99 17698.79 13388.92 16199.14 8198.34 116
DeepPCF-MVS90.46 694.20 11593.56 13096.14 4995.96 19392.96 4089.48 25997.46 10685.14 22496.23 8795.42 18093.19 7898.08 20890.37 12398.76 12697.38 193
PM-MVS93.33 13292.67 15295.33 8296.58 15094.06 1692.26 17292.18 27885.92 21296.22 8896.61 11585.64 21395.99 29790.35 12498.23 17695.93 243
DeepC-MVS91.39 495.43 6695.33 7395.71 7197.67 10190.17 7193.86 12298.02 5887.35 19096.22 8897.99 3794.48 5799.05 9292.73 7599.68 1797.93 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
V4293.43 13093.58 12992.97 16895.34 22581.22 21392.67 15296.49 17487.25 19296.20 9096.37 13287.32 18698.85 12392.39 8398.21 17998.85 75
CSCG94.69 9694.75 9294.52 11697.55 10787.87 11695.01 8697.57 9992.68 6596.20 9093.44 24891.92 10898.78 13789.11 15999.24 7296.92 206
v192192093.26 13693.61 12892.19 19596.04 19078.31 25991.88 19197.24 12685.17 22396.19 9296.19 14386.76 19999.05 9294.18 2898.84 11599.22 31
Regformer-294.86 8894.55 10095.77 6792.83 28089.98 7391.87 19296.40 17794.38 4296.19 9295.04 19592.47 9899.04 9593.49 4498.31 16598.28 121
EI-MVSNet-UG-set94.35 10794.27 11294.59 11392.46 28585.87 15892.42 16394.69 23593.67 5796.13 9495.84 15891.20 12898.86 12193.78 3598.23 17699.03 48
EI-MVSNet-Vis-set94.36 10694.28 11094.61 10892.55 28485.98 15692.44 16194.69 23593.70 5396.12 9595.81 15991.24 12598.86 12193.76 3898.22 17898.98 57
v119293.49 12893.78 12192.62 18496.16 18079.62 23991.83 19797.22 12886.07 20996.10 9696.38 13187.22 18799.02 9894.14 2998.88 11099.22 31
FMVSNet292.78 15292.73 15192.95 17095.40 22181.98 20294.18 11395.53 21288.63 16396.05 9797.37 6681.31 24598.81 13187.38 19098.67 13398.06 135
Regformer-394.28 11094.23 11494.46 12192.78 28286.28 15192.39 16494.70 23493.69 5695.97 9895.56 17391.34 12098.48 18093.45 4798.14 18598.62 98
v14419293.20 14193.54 13192.16 19896.05 18678.26 26091.95 18497.14 13184.98 22995.96 9996.11 14687.08 19199.04 9593.79 3498.84 11599.17 34
Regformer-194.55 10194.33 10895.19 8992.83 28088.54 10391.87 19295.84 20093.99 4695.95 10095.04 19592.00 10498.79 13393.14 6398.31 16598.23 124
HPM-MVScopyleft96.81 1196.62 2297.36 2298.89 1893.53 3497.51 798.44 992.35 7495.95 10096.41 12596.71 899.42 2793.99 3199.36 5499.13 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14892.87 15093.29 13691.62 21296.25 17477.72 26791.28 21095.05 22189.69 14595.93 10296.04 14887.34 18598.38 18590.05 13897.99 19998.78 81
v114493.50 12793.81 11992.57 18696.28 17079.61 24091.86 19696.96 14286.95 19895.91 10396.32 13587.65 18098.96 10793.51 4398.88 11099.13 38
IU-MVS98.51 4586.66 14096.83 15472.74 31195.83 10493.00 6899.29 6298.64 94
Patchmatch-RL test88.81 23988.52 23289.69 26395.33 22679.94 23186.22 31392.71 26978.46 28295.80 10594.18 22666.25 31195.33 31089.22 15798.53 14393.78 298
PGM-MVS96.32 3995.94 5197.43 1798.59 3593.84 2895.33 7198.30 2091.40 11095.76 10696.87 9695.26 3499.45 2292.77 7299.21 7599.00 50
casdiffmvs94.32 10994.80 9092.85 17596.05 18681.44 21092.35 16798.05 5191.53 10895.75 10796.80 10093.35 7498.49 17691.01 11298.32 16498.64 94
GST-MVS96.24 4295.99 5097.00 3298.65 2892.71 4495.69 6198.01 6092.08 8295.74 10896.28 13895.22 3699.42 2793.17 6199.06 8798.88 70
VPNet93.08 14293.76 12291.03 23098.60 3375.83 29291.51 20495.62 20491.84 9395.74 10897.10 8489.31 16098.32 18985.07 22199.06 8798.93 62
EU-MVSNet87.39 26586.71 26789.44 26593.40 26876.11 28794.93 8990.00 29357.17 34595.71 11097.37 6664.77 31897.68 24292.67 7794.37 29194.52 281
v2v48293.29 13393.63 12792.29 19196.35 16478.82 25391.77 20096.28 18188.45 16895.70 11196.26 14086.02 20898.90 11393.02 6798.81 12199.14 37
HFP-MVS96.39 3796.17 4097.04 2998.51 4593.37 3596.30 4197.98 6392.35 7495.63 11296.47 12095.37 2799.27 6793.78 3599.14 8198.48 108
#test#95.89 5195.51 6697.04 2998.51 4593.37 3595.14 8097.98 6389.34 15195.63 11296.47 12095.37 2799.27 6791.99 8999.14 8198.48 108
Anonymous20240521192.58 15992.50 15692.83 17696.55 15283.22 19092.43 16291.64 28694.10 4595.59 11496.64 11381.88 24297.50 24985.12 21898.52 14497.77 166
ACMMPR96.46 3096.14 4197.41 1998.60 3393.82 2996.30 4197.96 6792.35 7495.57 11596.61 11594.93 4999.41 3293.78 3599.15 8099.00 50
RRT_MVS91.36 18690.05 20995.29 8589.21 32988.15 10992.51 15994.89 22686.73 20095.54 11695.68 16561.82 33199.30 6294.91 1399.13 8498.43 112
XXY-MVS92.58 15993.16 14190.84 23997.75 9279.84 23391.87 19296.22 18785.94 21195.53 11797.68 4992.69 9194.48 31783.21 23797.51 22098.21 126
new-patchmatchnet88.97 23590.79 19583.50 32094.28 25355.83 35085.34 31793.56 25486.18 20795.47 11895.73 16383.10 22596.51 28585.40 21398.06 19398.16 128
mPP-MVS96.46 3096.05 4797.69 598.62 3094.65 996.45 3197.74 8792.59 6895.47 11896.68 11094.50 5699.42 2793.10 6499.26 6998.99 52
UA-Net97.35 497.24 1197.69 598.22 6793.87 2698.42 498.19 3196.95 1395.46 12099.23 493.45 6999.57 1395.34 1299.89 299.63 9
APD-MVScopyleft95.00 8194.69 9495.93 5897.38 11690.88 6794.59 9897.81 8189.22 15495.46 12096.17 14593.42 7299.34 5489.30 15198.87 11397.56 181
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1494.81 8997.49 11094.11 11498.37 1487.56 18995.38 12296.03 14994.66 5299.08 8790.70 11698.97 103
IterMVS-SCA-FT91.65 17891.55 17591.94 20393.89 26279.22 24787.56 28993.51 25591.53 10895.37 12396.62 11478.65 26098.90 11391.89 9494.95 27997.70 171
ZNCC-MVS96.42 3496.20 3797.07 2898.80 2592.79 4396.08 4798.16 3891.74 10195.34 12496.36 13395.68 1999.44 2394.41 2199.28 6798.97 58
LS3D96.11 4695.83 5896.95 3594.75 23894.20 1497.34 997.98 6397.31 1095.32 12596.77 10193.08 8299.20 7491.79 9598.16 18397.44 186
tttt051789.81 22188.90 22892.55 18797.00 13079.73 23895.03 8583.65 33689.88 14395.30 12694.79 20953.64 34599.39 4191.99 8998.79 12398.54 104
XVG-OURS94.72 9594.12 11596.50 4698.00 8194.23 1391.48 20598.17 3590.72 12595.30 12696.47 12087.94 17796.98 27091.41 10897.61 21898.30 120
region2R96.41 3596.09 4497.38 2198.62 3093.81 3196.32 3897.96 6792.26 7795.28 12896.57 11795.02 4599.41 3293.63 3999.11 8598.94 61
TinyColmap92.00 17392.76 14889.71 26295.62 21577.02 27590.72 22296.17 19087.70 18495.26 12996.29 13792.54 9596.45 28781.77 25198.77 12595.66 256
alignmvs93.26 13692.85 14594.50 11795.70 20887.45 12093.45 13395.76 20191.58 10695.25 13092.42 27281.96 24098.72 14791.61 10297.87 20597.33 195
EI-MVSNet92.99 14693.26 14092.19 19592.12 29279.21 24892.32 16994.67 23791.77 9995.24 13195.85 15587.14 19098.49 17691.99 8998.26 17098.86 72
MVSTER89.32 22788.75 23091.03 23090.10 31976.62 28290.85 21894.67 23782.27 25295.24 13195.79 16061.09 33498.49 17690.49 11898.26 17097.97 146
canonicalmvs94.59 9994.69 9494.30 12695.60 21687.03 13095.59 6398.24 2791.56 10795.21 13392.04 27894.95 4898.66 15891.45 10797.57 21997.20 199
DVP-MVS95.34 7094.63 9897.48 1298.67 2794.05 1896.41 3598.18 3291.26 11395.12 13495.15 18886.60 20299.50 1993.43 5196.81 24298.89 68
GBi-Net93.21 13992.96 14293.97 13495.40 22184.29 17395.99 4896.56 16988.63 16395.10 13598.53 2181.31 24598.98 10286.74 19598.38 15598.65 90
test193.21 13992.96 14293.97 13495.40 22184.29 17395.99 4896.56 16988.63 16395.10 13598.53 2181.31 24598.98 10286.74 19598.38 15598.65 90
FMVSNet390.78 19590.32 20592.16 19893.03 27779.92 23292.54 15594.95 22486.17 20895.10 13596.01 15069.97 29798.75 14286.74 19598.38 15597.82 162
CP-MVS96.44 3396.08 4597.54 998.29 6294.62 1096.80 1998.08 4592.67 6795.08 13896.39 13094.77 5099.42 2793.17 6199.44 4398.58 103
ETH3D-3000-0.194.86 8894.55 10095.81 6397.61 10389.72 7894.05 11698.37 1488.09 17595.06 13995.85 15592.58 9399.10 8690.33 12698.99 9898.62 98
AllTest94.88 8794.51 10296.00 5398.02 7992.17 4795.26 7498.43 1090.48 13195.04 14096.74 10592.54 9597.86 22685.11 21998.98 9997.98 143
TestCases96.00 5398.02 7992.17 4798.43 1090.48 13195.04 14096.74 10592.54 9597.86 22685.11 21998.98 9997.98 143
YYNet188.17 24988.24 23987.93 29092.21 28973.62 30680.75 33788.77 29682.51 25094.99 14295.11 19182.70 23193.70 32683.33 23593.83 29896.48 221
EPP-MVSNet93.91 12193.68 12694.59 11398.08 7585.55 16397.44 894.03 24794.22 4394.94 14396.19 14382.07 23899.57 1387.28 19198.89 10898.65 90
MDA-MVSNet-bldmvs91.04 19090.88 19191.55 21494.68 24480.16 22285.49 31692.14 28190.41 13594.93 14495.79 16085.10 21496.93 27385.15 21694.19 29697.57 179
testtj94.81 9294.42 10396.01 5297.23 12190.51 7094.77 9297.85 7791.29 11294.92 14595.66 16691.71 11299.40 3688.07 17698.25 17398.11 134
baseline94.26 11294.80 9092.64 18196.08 18480.99 21693.69 12698.04 5590.80 12494.89 14696.32 13593.19 7898.48 18091.68 10198.51 14698.43 112
MDA-MVSNet_test_wron88.16 25088.23 24087.93 29092.22 28873.71 30580.71 33888.84 29582.52 24994.88 14795.14 18982.70 23193.61 32783.28 23693.80 29996.46 222
LFMVS91.33 18791.16 18891.82 20596.27 17179.36 24395.01 8685.61 32496.04 2894.82 14897.06 8672.03 29398.46 18284.96 22298.70 13197.65 175
ITE_SJBPF95.95 5597.34 11893.36 3796.55 17291.93 8694.82 14895.39 18391.99 10697.08 26785.53 21297.96 20097.41 187
TSAR-MVS + MP.94.96 8394.75 9295.57 7598.86 2088.69 9696.37 3696.81 15585.23 22194.75 15097.12 8391.85 10999.40 3693.45 4798.33 16298.62 98
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Patchmtry90.11 21489.92 21190.66 24190.35 31777.00 27692.96 14292.81 26590.25 13794.74 15196.93 9267.11 30397.52 24885.17 21498.98 9997.46 184
3Dnovator+92.74 295.86 5495.77 6196.13 5096.81 14090.79 6996.30 4197.82 8096.13 2494.74 15197.23 7791.33 12199.16 7793.25 5898.30 16798.46 110
cl_fuxian91.32 18891.42 18091.00 23392.29 28776.79 28187.52 29296.42 17685.76 21694.72 15393.89 23782.73 23098.16 20490.93 11398.55 13998.04 138
TSAR-MVS + GP.93.07 14492.41 15895.06 9495.82 20190.87 6890.97 21692.61 27288.04 17694.61 15493.79 24088.08 17297.81 23089.41 15098.39 15396.50 220
OMC-MVS94.22 11493.69 12595.81 6397.25 12091.27 6092.27 17197.40 10987.10 19694.56 15595.42 18093.74 6598.11 20786.62 19998.85 11498.06 135
testgi90.38 20691.34 18387.50 29597.49 11071.54 31889.43 26095.16 22088.38 17094.54 15694.68 21292.88 8893.09 33171.60 32297.85 20697.88 155
VNet92.67 15692.96 14291.79 20696.27 17180.15 22391.95 18494.98 22392.19 8094.52 15796.07 14787.43 18497.39 25884.83 22398.38 15597.83 160
eth_miper_zixun_eth90.72 19690.61 19991.05 22992.04 29476.84 28086.91 30196.67 16485.21 22294.41 15893.92 23679.53 25598.26 19589.76 14497.02 23498.06 135
test20.0390.80 19490.85 19390.63 24295.63 21479.24 24689.81 25392.87 26489.90 14294.39 15996.40 12685.77 20995.27 31273.86 30999.05 9097.39 191
XVS96.49 2796.18 3897.44 1598.56 3693.99 2296.50 2997.95 6994.58 3694.38 16096.49 11994.56 5499.39 4193.57 4099.05 9098.93 62
X-MVStestdata90.70 19788.45 23497.44 1598.56 3693.99 2296.50 2997.95 6994.58 3694.38 16026.89 34894.56 5499.39 4193.57 4099.05 9098.93 62
3Dnovator92.54 394.80 9394.90 8694.47 12095.47 21987.06 12896.63 2397.28 12491.82 9694.34 16297.41 6390.60 14398.65 16092.47 8098.11 18997.70 171
RRT_test8_iter0588.21 24888.17 24288.33 28691.62 30166.82 33591.73 20196.60 16786.34 20494.14 16395.38 18547.72 35199.11 8491.78 9698.26 17099.06 46
Vis-MVSNetpermissive95.50 6495.48 6795.56 7698.11 7389.40 8595.35 6998.22 2992.36 7394.11 16498.07 3292.02 10399.44 2393.38 5397.67 21597.85 159
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS90.18 21290.16 20690.21 25493.15 27375.98 28987.56 28992.97 26386.43 20394.09 16596.40 12678.32 26497.43 25487.87 18094.69 28697.23 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++93.25 13893.88 11891.37 21896.34 16582.81 19693.11 13897.74 8789.37 15094.08 16695.29 18690.40 14896.35 29290.35 12498.25 17394.96 271
BH-untuned90.68 19890.90 19090.05 25995.98 19279.57 24190.04 24494.94 22587.91 17794.07 16793.00 25787.76 17997.78 23479.19 27995.17 27692.80 313
miper_ehance_all_eth90.48 20290.42 20390.69 24091.62 30176.57 28386.83 30496.18 18983.38 23994.06 16892.66 26682.20 23698.04 21089.79 14397.02 23497.45 185
cl-mvsnet_90.65 19990.56 20090.91 23791.85 29676.98 27886.75 30695.36 21885.53 21894.06 16894.89 20277.36 27397.98 21890.27 12998.98 9997.76 167
cl-mvsnet190.65 19990.56 20090.91 23791.85 29676.99 27786.75 30695.36 21885.52 22094.06 16894.89 20277.37 27297.99 21790.28 12898.97 10397.76 167
pmmvs-eth3d91.54 18190.73 19793.99 13295.76 20687.86 11790.83 21993.98 25078.23 28494.02 17196.22 14282.62 23396.83 27686.57 20098.33 16297.29 197
UnsupCasMVSNet_eth90.33 20990.34 20490.28 24994.64 24680.24 22189.69 25595.88 19785.77 21593.94 17295.69 16481.99 23992.98 33284.21 23091.30 32297.62 177
CNVR-MVS94.58 10094.29 10995.46 7996.94 13289.35 8791.81 19896.80 15689.66 14693.90 17395.44 17992.80 9098.72 14792.74 7498.52 14498.32 117
DeepC-MVS_fast89.96 793.73 12493.44 13394.60 11296.14 18187.90 11593.36 13597.14 13185.53 21893.90 17395.45 17891.30 12398.59 16689.51 14898.62 13597.31 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVG-OURS-SEG-HR95.38 6895.00 8496.51 4598.10 7494.07 1592.46 16098.13 4190.69 12693.75 17596.25 14198.03 297.02 26992.08 8695.55 26598.45 111
QAPM92.88 14992.77 14793.22 16295.82 20183.31 18896.45 3197.35 11783.91 23793.75 17596.77 10189.25 16198.88 11684.56 22797.02 23497.49 183
MVS_111021_LR93.66 12593.28 13894.80 10196.25 17490.95 6590.21 23795.43 21487.91 17793.74 17794.40 21892.88 8896.38 29090.39 12198.28 16897.07 200
thisisatest053088.69 24287.52 25292.20 19496.33 16679.36 24392.81 14784.01 33586.44 20293.67 17892.68 26553.62 34699.25 6989.65 14798.45 15098.00 141
ETH3D cwj APD-0.1693.99 12093.38 13595.80 6596.82 13889.92 7492.72 14998.02 5884.73 23393.65 17995.54 17591.68 11399.22 7288.78 16498.49 14998.26 123
PCF-MVS84.52 1789.12 23187.71 24993.34 15696.06 18585.84 15986.58 31297.31 11968.46 32993.61 18093.89 23787.51 18398.52 17467.85 33398.11 18995.66 256
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR93.63 12693.42 13494.26 12796.65 14586.96 13389.30 26596.23 18588.36 17193.57 18194.60 21393.45 6997.77 23590.23 13198.38 15598.03 139
MP-MVScopyleft96.14 4595.68 6397.51 1198.81 2394.06 1696.10 4697.78 8692.73 6493.48 18296.72 10894.23 6199.42 2791.99 8999.29 6299.05 47
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
RPSCF95.58 6294.89 8797.62 897.58 10596.30 495.97 5197.53 10292.42 7093.41 18397.78 4591.21 12797.77 23591.06 11197.06 23298.80 79
OpenMVS_ROBcopyleft85.12 1689.52 22589.05 22290.92 23594.58 24781.21 21491.10 21493.41 25777.03 29193.41 18393.99 23483.23 22497.80 23179.93 27194.80 28393.74 300
PMVScopyleft87.21 1494.97 8295.33 7393.91 13898.97 1497.16 295.54 6695.85 19996.47 2093.40 18597.46 6195.31 3295.47 30586.18 20898.78 12489.11 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HQP_MVS94.26 11293.93 11795.23 8897.71 9688.12 11094.56 10297.81 8191.74 10193.31 18695.59 16886.93 19498.95 10989.26 15598.51 14698.60 101
plane_prior388.43 10690.35 13693.31 186
thres600view787.66 25887.10 26189.36 26896.05 18673.17 30892.72 14985.31 32791.89 8893.29 18890.97 29263.42 32498.39 18373.23 31296.99 23996.51 217
CPTT-MVS94.74 9494.12 11596.60 4298.15 7193.01 3995.84 5697.66 9189.21 15593.28 18995.46 17788.89 16398.98 10289.80 14298.82 11997.80 164
USDC89.02 23289.08 22188.84 27695.07 22974.50 30088.97 27196.39 17873.21 30893.27 19096.28 13882.16 23796.39 28977.55 28998.80 12295.62 259
thres100view90087.35 26686.89 26388.72 27896.14 18173.09 31093.00 14185.31 32792.13 8193.26 19190.96 29363.42 32498.28 19171.27 32496.54 24994.79 274
N_pmnet88.90 23787.25 25693.83 14294.40 25193.81 3184.73 32187.09 31079.36 27393.26 19192.43 27179.29 25691.68 33677.50 29197.22 22996.00 240
mvs_anonymous90.37 20791.30 18487.58 29492.17 29168.00 32989.84 25294.73 23383.82 23893.22 19397.40 6487.54 18297.40 25787.94 17995.05 27897.34 194
test_yl90.11 21489.73 21591.26 22294.09 25779.82 23490.44 22992.65 27090.90 11993.19 19493.30 25173.90 28598.03 21182.23 24796.87 24095.93 243
DCV-MVSNet90.11 21489.73 21591.26 22294.09 25779.82 23490.44 22992.65 27090.90 11993.19 19493.30 25173.90 28598.03 21182.23 24796.87 24095.93 243
D2MVS89.93 21889.60 21790.92 23594.03 25978.40 25888.69 27894.85 22778.96 27893.08 19695.09 19274.57 28396.94 27188.19 17298.96 10597.41 187
UnsupCasMVSNet_bld88.50 24488.03 24589.90 26095.52 21878.88 25287.39 29394.02 24979.32 27493.06 19794.02 23280.72 25094.27 32275.16 30593.08 30996.54 215
miper_lstm_enhance89.90 21989.80 21290.19 25691.37 30577.50 26983.82 33195.00 22284.84 23193.05 19894.96 19976.53 28095.20 31389.96 14098.67 13397.86 157
PHI-MVS94.34 10893.80 12095.95 5595.65 21291.67 5894.82 9097.86 7487.86 18093.04 19994.16 22791.58 11598.78 13790.27 12998.96 10597.41 187
TAMVS90.16 21389.05 22293.49 15496.49 15586.37 14790.34 23492.55 27380.84 26092.99 20094.57 21581.94 24198.20 19973.51 31098.21 17995.90 246
Vis-MVSNet (Re-imp)90.42 20490.16 20691.20 22697.66 10277.32 27294.33 10987.66 30791.20 11592.99 20095.13 19075.40 28298.28 19177.86 28599.19 7697.99 142
ab-mvs92.40 16492.62 15391.74 20897.02 12981.65 20695.84 5695.50 21386.95 19892.95 20297.56 5490.70 14197.50 24979.63 27397.43 22396.06 238
MCST-MVS92.91 14892.51 15594.10 13097.52 10885.72 16191.36 20997.13 13380.33 26292.91 20394.24 22391.23 12698.72 14789.99 13997.93 20297.86 157
ETV-MVS92.99 14692.74 14993.72 14495.86 20086.30 15092.33 16897.84 7891.70 10492.81 20486.17 33392.22 9999.19 7588.03 17797.73 20995.66 256
TAPA-MVS88.58 1092.49 16391.75 17394.73 10496.50 15489.69 7992.91 14497.68 9078.02 28592.79 20594.10 22890.85 13597.96 21984.76 22598.16 18396.54 215
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-RMVSNet90.47 20390.44 20290.56 24495.21 22778.65 25789.15 26993.94 25188.21 17292.74 20694.22 22486.38 20397.88 22278.67 28295.39 27195.14 267
旧先验290.00 24668.65 32892.71 20796.52 28485.15 216
cl-mvsnet289.02 23288.50 23390.59 24389.76 32176.45 28486.62 31194.03 24782.98 24792.65 20892.49 26772.05 29297.53 24788.93 16097.02 23497.78 165
tfpn200view987.05 27486.52 27188.67 27995.77 20472.94 31191.89 18986.00 31990.84 12192.61 20989.80 30563.93 32198.28 19171.27 32496.54 24994.79 274
thres40087.20 27086.52 27189.24 27295.77 20472.94 31191.89 18986.00 31990.84 12192.61 20989.80 30563.93 32198.28 19171.27 32496.54 24996.51 217
MS-PatchMatch88.05 25187.75 24888.95 27393.28 26977.93 26387.88 28592.49 27475.42 29792.57 21193.59 24580.44 25194.24 32481.28 25692.75 31294.69 279
miper_enhance_ethall88.42 24587.87 24790.07 25788.67 33475.52 29385.10 31895.59 20875.68 29492.49 21289.45 31378.96 25797.88 22287.86 18197.02 23496.81 211
testdata91.03 23096.87 13682.01 20194.28 24371.55 31592.46 21395.42 18085.65 21297.38 26082.64 24297.27 22793.70 301
LF4IMVS92.72 15492.02 16594.84 10095.65 21291.99 5192.92 14396.60 16785.08 22792.44 21493.62 24386.80 19896.35 29286.81 19498.25 17396.18 234
diffmvs91.74 17691.93 16791.15 22893.06 27578.17 26188.77 27697.51 10586.28 20592.42 21593.96 23588.04 17497.46 25290.69 11796.67 24797.82 162
HPM-MVS++copyleft95.02 8094.39 10496.91 3697.88 8793.58 3394.09 11596.99 14191.05 11892.40 21695.22 18791.03 13499.25 6992.11 8498.69 13297.90 153
ppachtmachnet_test88.61 24388.64 23188.50 28291.76 29870.99 32184.59 32492.98 26279.30 27592.38 21793.53 24779.57 25497.45 25386.50 20397.17 23097.07 200
Anonymous2023120688.77 24088.29 23790.20 25596.31 16878.81 25489.56 25893.49 25674.26 30292.38 21795.58 17182.21 23595.43 30772.07 31898.75 12896.34 226
MVS_Test92.57 16193.29 13690.40 24793.53 26775.85 29092.52 15696.96 14288.73 16192.35 21996.70 10990.77 13698.37 18892.53 7995.49 26796.99 204
PVSNet_Blended_VisFu91.63 17991.20 18692.94 17197.73 9583.95 18392.14 17697.46 10678.85 28092.35 21994.98 19884.16 22099.08 8786.36 20596.77 24495.79 250
CDPH-MVS92.67 15691.83 16995.18 9096.94 13288.46 10590.70 22397.07 13677.38 28792.34 22195.08 19392.67 9298.88 11685.74 21098.57 13898.20 127
NCCC94.08 11793.54 13195.70 7296.49 15589.90 7692.39 16496.91 14990.64 12892.33 22294.60 21390.58 14498.96 10790.21 13297.70 21398.23 124
CLD-MVS91.82 17591.41 18193.04 16496.37 15983.65 18686.82 30597.29 12284.65 23492.27 22389.67 31092.20 10097.85 22883.95 23199.47 3797.62 177
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS92.05 17292.16 16191.72 20994.44 24980.13 22587.62 28697.25 12587.34 19192.22 22493.18 25589.54 15998.73 14689.67 14698.20 18196.30 228
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 26087.31 25488.54 28194.71 24374.27 30393.10 13988.20 30286.20 20692.18 22593.04 25673.21 28895.52 30279.32 27785.82 33595.83 248
API-MVS91.52 18291.61 17491.26 22294.16 25486.26 15294.66 9694.82 22991.17 11692.13 22691.08 29190.03 15697.06 26879.09 28097.35 22690.45 330
DP-MVS Recon92.31 16791.88 16893.60 14797.18 12386.87 13491.10 21497.37 11084.92 23092.08 22794.08 22988.59 16598.20 19983.50 23498.14 18595.73 252
our_test_387.55 26187.59 25187.44 29691.76 29870.48 32283.83 33090.55 29279.79 26592.06 22892.17 27578.63 26295.63 30084.77 22494.73 28496.22 232
MSDG90.82 19390.67 19891.26 22294.16 25483.08 19486.63 31096.19 18890.60 13091.94 22991.89 27989.16 16295.75 29980.96 26294.51 28994.95 272
Effi-MVS+-dtu93.90 12292.60 15497.77 494.74 23996.67 394.00 11895.41 21589.94 14091.93 23092.13 27690.12 15098.97 10687.68 18397.48 22197.67 174
ETH3 D test640091.91 17491.25 18593.89 13996.59 14984.41 17292.10 17797.72 8978.52 28191.82 23193.78 24188.70 16499.13 8183.61 23398.39 15398.14 130
Gipumacopyleft95.31 7395.80 6093.81 14397.99 8490.91 6696.42 3497.95 6996.69 1691.78 23298.85 1291.77 11095.49 30491.72 9899.08 8695.02 270
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
HyFIR lowres test87.19 27185.51 28092.24 19397.12 12880.51 22085.03 31996.06 19266.11 33591.66 23392.98 25870.12 29699.14 8075.29 30495.23 27597.07 200
MVP-Stereo90.07 21788.92 22693.54 15196.31 16886.49 14290.93 21795.59 20879.80 26491.48 23495.59 16880.79 24997.39 25878.57 28391.19 32396.76 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20085.85 28185.18 28187.88 29294.44 24972.52 31489.08 27086.21 31588.57 16791.44 23588.40 31964.22 31998.00 21568.35 33295.88 26193.12 309
FMVSNet587.82 25586.56 26991.62 21292.31 28679.81 23693.49 13194.81 23183.26 24091.36 23696.93 9252.77 34797.49 25176.07 30098.03 19797.55 182
新几何193.17 16397.16 12487.29 12394.43 23967.95 33091.29 23794.94 20086.97 19398.23 19781.06 26197.75 20893.98 294
xiu_mvs_v1_base_debu91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
xiu_mvs_v1_base91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
xiu_mvs_v1_base_debi91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
CDS-MVSNet89.55 22388.22 24193.53 15295.37 22486.49 14289.26 26693.59 25379.76 26691.15 24192.31 27377.12 27498.38 18577.51 29097.92 20395.71 253
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 16992.13 16392.68 18094.53 24884.10 17995.70 5997.03 13782.44 25191.14 24296.42 12488.47 16798.38 18585.95 20997.47 22295.55 260
112190.26 21189.23 21893.34 15697.15 12687.40 12191.94 18694.39 24067.88 33191.02 24394.91 20186.91 19698.59 16681.17 25997.71 21294.02 293
CNLPA91.72 17791.20 18693.26 16096.17 17991.02 6391.14 21295.55 21190.16 13890.87 24493.56 24686.31 20494.40 32079.92 27297.12 23194.37 284
test_prior393.29 13392.85 14594.61 10895.95 19487.23 12490.21 23797.36 11589.33 15290.77 24594.81 20590.41 14698.68 15688.21 17098.55 13997.93 149
test_prior290.21 23789.33 15290.77 24594.81 20590.41 14688.21 17098.55 139
test22296.95 13185.27 16688.83 27493.61 25265.09 33890.74 24794.85 20484.62 21897.36 22593.91 295
TR-MVS87.70 25687.17 25889.27 27094.11 25679.26 24588.69 27891.86 28481.94 25490.69 24889.79 30782.82 22997.42 25572.65 31691.98 31991.14 326
CVMVSNet85.16 28484.72 28286.48 30192.12 29270.19 32392.32 16988.17 30356.15 34690.64 24995.85 15567.97 30196.69 28088.78 16490.52 32692.56 316
TEST996.45 15789.46 8190.60 22596.92 14779.09 27690.49 25094.39 21991.31 12298.88 116
train_agg92.71 15591.83 16995.35 8096.45 15789.46 8190.60 22596.92 14779.37 27190.49 25094.39 21991.20 12898.88 11688.66 16798.43 15197.72 170
test_896.37 15989.14 8890.51 22896.89 15079.37 27190.42 25294.36 22191.20 12898.82 126
CS-MVS92.54 16292.31 15993.23 16195.89 19984.07 18193.58 12998.48 888.60 16690.41 25386.23 33292.00 10499.35 5087.54 18598.06 19396.26 230
agg_prior192.60 15891.76 17295.10 9396.20 17688.89 9390.37 23296.88 15179.67 26890.21 25494.41 21791.30 12398.78 13788.46 16998.37 16097.64 176
agg_prior96.20 17688.89 9396.88 15190.21 25498.78 137
jason89.17 23088.32 23691.70 21095.73 20780.07 22688.10 28393.22 25971.98 31490.09 25692.79 26178.53 26398.56 17087.43 18897.06 23296.46 222
jason: jason.
Fast-Effi-MVS+-dtu92.77 15392.16 16194.58 11594.66 24588.25 10792.05 17996.65 16589.62 14790.08 25791.23 28892.56 9498.60 16486.30 20696.27 25496.90 207
CHOSEN 1792x268887.19 27185.92 27891.00 23397.13 12779.41 24284.51 32595.60 20564.14 33990.07 25894.81 20578.26 26597.14 26673.34 31195.38 27296.46 222
PatchMatch-RL89.18 22988.02 24692.64 18195.90 19892.87 4288.67 28091.06 28980.34 26190.03 25991.67 28383.34 22294.42 31976.35 29994.84 28290.64 329
BH-w/o87.21 26987.02 26287.79 29394.77 23777.27 27387.90 28493.21 26181.74 25589.99 26088.39 32083.47 22196.93 27371.29 32392.43 31589.15 331
Fast-Effi-MVS+91.28 18990.86 19292.53 18895.45 22082.53 19889.25 26896.52 17385.00 22889.91 26188.55 31892.94 8598.84 12484.72 22695.44 26996.22 232
AdaColmapbinary91.63 17991.36 18292.47 19095.56 21786.36 14892.24 17496.27 18288.88 16089.90 26292.69 26491.65 11498.32 18977.38 29297.64 21692.72 315
mvs-test193.07 14491.80 17196.89 3794.74 23995.83 692.17 17595.41 21589.94 14089.85 26390.59 30190.12 15098.88 11687.68 18395.66 26395.97 241
GA-MVS87.70 25686.82 26490.31 24893.27 27077.22 27484.72 32392.79 26785.11 22689.82 26490.07 30266.80 30697.76 23784.56 22794.27 29495.96 242
Patchmatch-test86.10 28086.01 27686.38 30390.63 31274.22 30489.57 25786.69 31285.73 21789.81 26592.83 25965.24 31691.04 33877.82 28895.78 26293.88 297
EIA-MVS92.35 16692.03 16493.30 15995.81 20383.97 18292.80 14898.17 3587.71 18389.79 26687.56 32291.17 13299.18 7687.97 17897.27 22796.77 212
test1294.43 12395.95 19486.75 13696.24 18489.76 26789.79 15798.79 13397.95 20197.75 169
pmmvs488.95 23687.70 25092.70 17994.30 25285.60 16287.22 29592.16 28074.62 30089.75 26894.19 22577.97 26796.41 28882.71 24196.36 25396.09 236
原ACMM192.87 17496.91 13484.22 17697.01 13876.84 29289.64 26994.46 21688.00 17598.70 15481.53 25498.01 19895.70 254
MG-MVS89.54 22489.80 21288.76 27794.88 23172.47 31589.60 25692.44 27585.82 21489.48 27095.98 15182.85 22897.74 23981.87 25095.27 27496.08 237
114514_t90.51 20189.80 21292.63 18398.00 8182.24 20093.40 13497.29 12265.84 33689.40 27194.80 20886.99 19298.75 14283.88 23298.61 13696.89 208
Effi-MVS+92.79 15192.74 14992.94 17195.10 22883.30 18994.00 11897.53 10291.36 11189.35 27290.65 30094.01 6498.66 15887.40 18995.30 27396.88 209
CR-MVSNet87.89 25287.12 26090.22 25291.01 30878.93 25092.52 15692.81 26573.08 30989.10 27396.93 9267.11 30397.64 24388.80 16392.70 31394.08 288
RPMNet89.30 22889.00 22490.22 25291.01 30878.93 25092.52 15687.85 30691.91 8789.10 27396.89 9568.84 29897.64 24390.17 13392.70 31394.08 288
PatchT87.51 26288.17 24285.55 30690.64 31166.91 33192.02 18286.09 31792.20 7989.05 27597.16 8164.15 32096.37 29189.21 15892.98 31193.37 307
MVSFormer92.18 17092.23 16092.04 20294.74 23980.06 22797.15 1197.37 11088.98 15688.83 27692.79 26177.02 27599.60 896.41 496.75 24596.46 222
lupinMVS88.34 24787.31 25491.45 21694.74 23980.06 22787.23 29492.27 27771.10 31888.83 27691.15 28977.02 27598.53 17386.67 19896.75 24595.76 251
HQP-NCC96.36 16191.37 20687.16 19388.81 278
ACMP_Plane96.36 16191.37 20687.16 19388.81 278
HQP4-MVS88.81 27898.61 16298.15 129
HQP-MVS92.09 17191.49 17993.88 14096.36 16184.89 16891.37 20697.31 11987.16 19388.81 27893.40 24984.76 21698.60 16486.55 20197.73 20998.14 130
PAPM_NR91.03 19190.81 19491.68 21196.73 14381.10 21593.72 12596.35 18088.19 17388.77 28292.12 27785.09 21597.25 26282.40 24693.90 29796.68 214
SCA87.43 26487.21 25788.10 28992.01 29571.98 31789.43 26088.11 30482.26 25388.71 28392.83 25978.65 26097.59 24579.61 27493.30 30494.75 276
F-COLMAP92.28 16891.06 18995.95 5597.52 10891.90 5393.53 13097.18 12983.98 23688.70 28494.04 23088.41 16898.55 17280.17 26795.99 25797.39 191
PVSNet_BlendedMVS90.35 20889.96 21091.54 21594.81 23578.80 25590.14 24196.93 14579.43 27088.68 28595.06 19486.27 20598.15 20580.27 26498.04 19697.68 173
PVSNet_Blended88.74 24188.16 24490.46 24694.81 23578.80 25586.64 30996.93 14574.67 29988.68 28589.18 31486.27 20598.15 20580.27 26496.00 25694.44 283
pmmvs587.87 25387.14 25990.07 25793.26 27176.97 27988.89 27392.18 27873.71 30688.36 28793.89 23776.86 27896.73 27980.32 26396.81 24296.51 217
WTY-MVS86.93 27686.50 27388.24 28794.96 23074.64 29687.19 29692.07 28378.29 28388.32 28891.59 28578.06 26694.27 32274.88 30693.15 30795.80 249
thisisatest051584.72 28782.99 29489.90 26092.96 27875.33 29484.36 32683.42 33777.37 28888.27 28986.65 32753.94 34498.72 14782.56 24397.40 22495.67 255
MIMVSNet87.13 27386.54 27088.89 27596.05 18676.11 28794.39 10788.51 29881.37 25688.27 28996.75 10472.38 29095.52 30265.71 33895.47 26895.03 269
test0.0.03 182.48 29981.47 30285.48 30789.70 32273.57 30784.73 32181.64 34183.07 24588.13 29186.61 32862.86 32789.10 34466.24 33790.29 32793.77 299
CMPMVSbinary68.83 2287.28 26785.67 27992.09 20088.77 33385.42 16490.31 23594.38 24170.02 32488.00 29293.30 25173.78 28794.03 32575.96 30296.54 24996.83 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS281.31 30583.44 29074.92 33190.52 31446.49 35269.19 34585.23 33084.30 23587.95 29394.71 21176.95 27784.36 34764.07 33998.09 19193.89 296
xiu_mvs_v2_base89.00 23489.19 21988.46 28494.86 23374.63 29786.97 29995.60 20580.88 25887.83 29488.62 31791.04 13398.81 13182.51 24594.38 29091.93 321
PS-MVSNAJ88.86 23888.99 22588.48 28394.88 23174.71 29586.69 30895.60 20580.88 25887.83 29487.37 32590.77 13698.82 12682.52 24494.37 29191.93 321
tpm84.38 28984.08 28785.30 31090.47 31563.43 34589.34 26385.63 32377.24 29087.62 29695.03 19761.00 33597.30 26179.26 27891.09 32595.16 265
sss87.23 26886.82 26488.46 28493.96 26077.94 26286.84 30392.78 26877.59 28687.61 29791.83 28078.75 25991.92 33577.84 28694.20 29595.52 261
MAR-MVS90.32 21088.87 22994.66 10794.82 23491.85 5494.22 11294.75 23280.91 25787.52 29888.07 32186.63 20197.87 22576.67 29696.21 25594.25 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS89.35 22688.40 23592.18 19796.13 18384.20 17786.96 30096.15 19175.40 29887.36 29991.55 28683.30 22398.01 21482.17 24996.62 24894.32 286
UGNet93.08 14292.50 15694.79 10293.87 26387.99 11495.07 8394.26 24490.64 12887.33 30097.67 5086.89 19798.49 17688.10 17598.71 12997.91 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive85.22 28384.64 28386.98 29989.51 32669.83 32690.52 22787.34 30978.87 27987.22 30192.74 26366.91 30596.53 28381.77 25186.88 33494.58 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
1112_ss88.42 24587.41 25391.45 21696.69 14480.99 21689.72 25496.72 16273.37 30787.00 30290.69 29877.38 27198.20 19981.38 25593.72 30095.15 266
cascas87.02 27586.28 27589.25 27191.56 30376.45 28484.33 32796.78 15771.01 31986.89 30385.91 33481.35 24496.94 27183.09 23895.60 26494.35 285
CANet92.38 16591.99 16693.52 15393.82 26583.46 18791.14 21297.00 13989.81 14486.47 30494.04 23087.90 17899.21 7389.50 14998.27 16997.90 153
Test_1112_low_res87.50 26386.58 26890.25 25196.80 14177.75 26687.53 29196.25 18369.73 32586.47 30493.61 24475.67 28197.88 22279.95 26993.20 30595.11 268
PLCcopyleft85.34 1590.40 20588.92 22694.85 9996.53 15390.02 7291.58 20396.48 17580.16 26386.14 30692.18 27485.73 21098.25 19676.87 29594.61 28896.30 228
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
new_pmnet81.22 30681.01 30681.86 32490.92 31070.15 32484.03 32880.25 34670.83 32085.97 30789.78 30867.93 30284.65 34667.44 33491.90 32090.78 328
EPMVS81.17 30880.37 30983.58 31985.58 34665.08 34090.31 23571.34 34977.31 28985.80 30891.30 28759.38 33692.70 33379.99 26882.34 34292.96 311
tpmvs84.22 29083.97 28884.94 31187.09 34165.18 33891.21 21188.35 29982.87 24885.21 30990.96 29365.24 31696.75 27879.60 27685.25 33692.90 312
FPMVS84.50 28883.28 29188.16 28896.32 16794.49 1185.76 31485.47 32583.09 24485.20 31094.26 22263.79 32386.58 34563.72 34091.88 32183.40 340
pmmvs380.83 30978.96 31686.45 30287.23 34077.48 27084.87 32082.31 33963.83 34085.03 31189.50 31249.66 34893.10 33073.12 31495.10 27788.78 335
PAPR87.65 25986.77 26690.27 25092.85 27977.38 27188.56 28196.23 18576.82 29384.98 31289.75 30986.08 20797.16 26572.33 31793.35 30396.26 230
MDTV_nov1_ep1383.88 28989.42 32761.52 34688.74 27787.41 30873.99 30484.96 31394.01 23365.25 31595.53 30178.02 28493.16 306
131486.46 27886.33 27486.87 30091.65 30074.54 29891.94 18694.10 24674.28 30184.78 31487.33 32683.03 22695.00 31478.72 28191.16 32491.06 327
ADS-MVSNet284.01 29182.20 29889.41 26689.04 33076.37 28687.57 28790.98 29072.71 31284.46 31592.45 26868.08 29996.48 28670.58 32883.97 33795.38 262
ADS-MVSNet82.25 30081.55 30084.34 31689.04 33065.30 33787.57 28785.13 33172.71 31284.46 31592.45 26868.08 29992.33 33470.58 32883.97 33795.38 262
PVSNet76.22 2082.89 29782.37 29684.48 31593.96 26064.38 34378.60 34088.61 29771.50 31684.43 31786.36 33174.27 28494.60 31669.87 33093.69 30194.46 282
MVS84.98 28684.30 28587.01 29891.03 30777.69 26891.94 18694.16 24559.36 34484.23 31887.50 32485.66 21196.80 27771.79 31993.05 31086.54 337
tpmrst82.85 29882.93 29582.64 32287.65 33558.99 34890.14 24187.90 30575.54 29683.93 31991.63 28466.79 30895.36 30881.21 25881.54 34393.57 306
ET-MVSNet_ETH3D86.15 27984.27 28691.79 20693.04 27681.28 21287.17 29786.14 31679.57 26983.65 32088.66 31657.10 33998.18 20287.74 18295.40 27095.90 246
HY-MVS82.50 1886.81 27785.93 27789.47 26493.63 26677.93 26394.02 11791.58 28775.68 29483.64 32193.64 24277.40 27097.42 25571.70 32192.07 31893.05 310
MDTV_nov1_ep13_2view42.48 35388.45 28267.22 33383.56 32266.80 30672.86 31594.06 290
CostFormer83.09 29582.21 29785.73 30589.27 32867.01 33090.35 23386.47 31470.42 32283.52 32393.23 25461.18 33396.85 27577.21 29388.26 33293.34 308
DSMNet-mixed82.21 30181.56 29984.16 31789.57 32570.00 32590.65 22477.66 34854.99 34783.30 32497.57 5377.89 26890.50 34066.86 33695.54 26691.97 320
E-PMN80.72 31180.86 30780.29 32785.11 34768.77 32872.96 34281.97 34087.76 18283.25 32583.01 34162.22 33089.17 34377.15 29494.31 29382.93 341
test-LLR83.58 29283.17 29284.79 31389.68 32366.86 33383.08 33284.52 33283.07 24582.85 32684.78 33762.86 32793.49 32882.85 23994.86 28094.03 291
test-mter81.21 30780.01 31384.79 31389.68 32366.86 33383.08 33284.52 33273.85 30582.85 32684.78 33743.66 35593.49 32882.85 23994.86 28094.03 291
CANet_DTU89.85 22089.17 22091.87 20492.20 29080.02 23090.79 22095.87 19886.02 21082.53 32891.77 28180.01 25298.57 16985.66 21197.70 21397.01 203
MVS_030490.96 19290.15 20893.37 15593.17 27287.06 12893.62 12892.43 27689.60 14882.25 32995.50 17682.56 23497.83 22984.41 22997.83 20795.22 264
JIA-IIPM85.08 28583.04 29391.19 22787.56 33686.14 15489.40 26284.44 33488.98 15682.20 33097.95 3856.82 34196.15 29476.55 29883.45 33991.30 325
PMMVS83.00 29681.11 30388.66 28083.81 35186.44 14582.24 33685.65 32261.75 34382.07 33185.64 33579.75 25391.59 33775.99 30193.09 30887.94 336
tpm281.46 30480.35 31084.80 31289.90 32065.14 33990.44 22985.36 32665.82 33782.05 33292.44 27057.94 33896.69 28070.71 32788.49 33192.56 316
IB-MVS77.21 1983.11 29481.05 30489.29 26991.15 30675.85 29085.66 31586.00 31979.70 26782.02 33386.61 32848.26 35098.39 18377.84 28692.22 31693.63 302
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat180.61 31279.46 31484.07 31888.78 33265.06 34189.26 26688.23 30162.27 34281.90 33489.66 31162.70 32995.29 31171.72 32080.60 34491.86 323
EMVS80.35 31380.28 31180.54 32684.73 34969.07 32772.54 34480.73 34387.80 18181.66 33581.73 34262.89 32689.84 34175.79 30394.65 28782.71 342
dp79.28 31578.62 31781.24 32585.97 34556.45 34986.91 30185.26 32972.97 31081.45 33689.17 31556.01 34395.45 30673.19 31376.68 34591.82 324
DWT-MVSNet_test80.74 31079.18 31585.43 30887.51 33866.87 33289.87 25186.01 31874.20 30380.86 33780.62 34348.84 34996.68 28281.54 25383.14 34192.75 314
EPNet89.80 22288.25 23894.45 12283.91 35086.18 15393.87 12187.07 31191.16 11780.64 33894.72 21078.83 25898.89 11585.17 21498.89 10898.28 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TESTMET0.1,179.09 31678.04 31882.25 32387.52 33764.03 34483.08 33280.62 34470.28 32380.16 33983.22 34044.13 35490.56 33979.95 26993.36 30292.15 319
baseline283.38 29381.54 30188.90 27491.38 30472.84 31388.78 27581.22 34278.97 27779.82 34087.56 32261.73 33297.80 23174.30 30790.05 32896.05 239
gg-mvs-nofinetune82.10 30281.02 30585.34 30987.46 33971.04 31994.74 9367.56 35096.44 2179.43 34198.99 645.24 35296.15 29467.18 33592.17 31788.85 333
PVSNet_070.34 2174.58 31872.96 32079.47 32890.63 31266.24 33673.26 34183.40 33863.67 34178.02 34278.35 34472.53 28989.59 34256.68 34460.05 34882.57 343
MVS-HIRNet78.83 31780.60 30873.51 33293.07 27447.37 35187.10 29878.00 34768.94 32777.53 34397.26 7471.45 29494.62 31563.28 34188.74 33078.55 344
CHOSEN 280x42080.04 31477.97 31986.23 30490.13 31874.53 29972.87 34389.59 29466.38 33476.29 34485.32 33656.96 34095.36 30869.49 33194.72 28588.79 334
PAPM81.91 30380.11 31287.31 29793.87 26372.32 31684.02 32993.22 25969.47 32676.13 34589.84 30472.15 29197.23 26353.27 34689.02 32992.37 318
GG-mvs-BLEND83.24 32185.06 34871.03 32094.99 8865.55 35174.09 34675.51 34544.57 35394.46 31859.57 34387.54 33384.24 339
EPNet_dtu85.63 28284.37 28489.40 26786.30 34474.33 30291.64 20288.26 30084.84 23172.96 34789.85 30371.27 29597.69 24176.60 29797.62 21796.18 234
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVEpermissive59.87 2373.86 31972.65 32177.47 33087.00 34374.35 30161.37 34760.93 35267.27 33269.69 34886.49 33081.24 24872.33 34956.45 34583.45 33985.74 338
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft53.83 33370.38 35264.56 34248.52 35433.01 34865.50 34974.21 34656.19 34246.64 35038.45 34870.07 34650.30 346
tmp_tt37.97 32044.33 32218.88 33411.80 35321.54 35463.51 34645.66 3554.23 34951.34 35050.48 34759.08 33722.11 35144.50 34768.35 34713.00 347
test1239.49 32212.01 3241.91 3352.87 3541.30 35582.38 3351.34 3571.36 3502.84 3516.56 3502.45 3560.97 3522.73 3495.56 3493.47 348
testmvs9.02 32311.42 3251.81 3362.77 3551.13 35679.44 3391.90 3561.18 3512.65 3526.80 3491.95 3570.87 3532.62 3503.45 3503.44 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.35 32131.13 3230.00 3370.00 3560.00 3570.00 34895.58 2100.00 3520.00 35391.15 28993.43 710.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.56 32410.09 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35390.77 1360.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.56 32410.08 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35390.69 2980.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS95.15 9196.84 13789.43 8395.21 7595.66 16693.12 8198.06 20986.28 20798.61 13697.95 147
save fliter97.46 11388.05 11292.04 18097.08 13587.63 186
test_0728_SECOND94.88 9898.55 3986.72 13795.20 7798.22 2999.38 4693.44 4999.31 5998.53 105
GSMVS94.75 276
test_part10.00 3370.00 3570.00 34898.14 390.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs166.64 30994.75 276
sam_mvs66.41 310
MTGPAbinary97.62 93
test_post190.21 2375.85 35265.36 31496.00 29679.61 274
test_post6.07 35165.74 31395.84 298
patchmatchnet-post91.71 28266.22 31297.59 245
MTMP94.82 9054.62 353
gm-plane-assit87.08 34259.33 34771.22 31783.58 33997.20 26473.95 308
test9_res88.16 17498.40 15297.83 160
agg_prior287.06 19398.36 16197.98 143
test_prior489.91 7590.74 221
test_prior94.61 10895.95 19487.23 12497.36 11598.68 15697.93 149
新几何290.02 245
旧先验196.20 17684.17 17894.82 22995.57 17289.57 15897.89 20496.32 227
无先验89.94 24795.75 20270.81 32198.59 16681.17 25994.81 273
原ACMM289.34 263
testdata298.03 21180.24 266
segment_acmp92.14 101
testdata188.96 27288.44 169
plane_prior797.71 9688.68 97
plane_prior697.21 12288.23 10886.93 194
plane_prior597.81 8198.95 10989.26 15598.51 14698.60 101
plane_prior495.59 168
plane_prior294.56 10291.74 101
plane_prior197.38 116
plane_prior88.12 11093.01 14088.98 15698.06 193
n20.00 358
nn0.00 358
door-mid92.13 282
test1196.65 165
door91.26 288
HQP5-MVS84.89 168
BP-MVS86.55 201
HQP3-MVS97.31 11997.73 209
HQP2-MVS84.76 216
NP-MVS96.82 13887.10 12793.40 249
ACMMP++_ref98.82 119
ACMMP++99.25 70
Test By Simon90.61 142