LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 72 | 99.68 9 | 94.82 115 | 98.10 42 | 99.21 11 | 96.91 76 | 99.75 2 | 99.45 9 | 95.82 102 | 99.92 4 | 98.80 4 | 99.96 4 | 99.89 1 |
|
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 41 | 99.77 3 | 96.34 60 | 99.18 5 | 99.20 13 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 20 | 97.22 43 | 99.92 12 | 99.77 8 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 31 | 99.69 8 | 96.48 56 | 98.54 18 | 99.22 10 | 96.23 99 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 2 | 98.89 3 | 99.95 5 | 99.84 5 |
|
wuyk23d | | | 93.25 261 | 95.20 183 | 87.40 331 | 96.07 300 | 95.38 94 | 97.04 97 | 94.97 294 | 95.33 142 | 99.70 5 | 98.11 112 | 98.14 13 | 91.94 347 | 77.76 339 | 99.68 55 | 74.89 346 |
|
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 90 | 98.79 102 | 94.37 132 | 98.84 8 | 99.15 21 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 114 | 99.72 72 | 98.12 16 | 99.86 23 | 99.73 15 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 33 | 99.66 10 | 96.48 56 | 98.45 23 | 99.12 25 | 95.83 124 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 4 | 98.77 5 | 99.94 8 | 99.82 6 |
|
ANet_high | | | 98.31 28 | 98.94 6 | 96.41 193 | 99.33 42 | 89.64 232 | 97.92 51 | 99.56 4 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 28 | 97.55 34 | 99.98 2 | 99.77 8 |
|
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 47 | 99.81 2 | 96.38 58 | 98.87 7 | 99.30 8 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 110 | 97.75 29 | 99.89 20 | 99.62 24 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 36 | 99.71 7 | 96.99 41 | 99.69 2 | 99.57 3 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 163 | 98.58 12 | 99.95 5 | 99.66 21 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 43 | 99.77 3 | 96.35 59 | 99.17 6 | 99.05 40 | 98.05 39 | 99.61 11 | 99.52 5 | 93.72 169 | 99.88 18 | 98.72 9 | 99.88 21 | 99.65 22 |
|
TransMVSNet (Re) | | | 98.38 25 | 98.67 17 | 97.51 118 | 99.51 22 | 93.39 169 | 98.20 37 | 98.87 81 | 98.23 34 | 99.48 12 | 99.27 19 | 98.47 8 | 99.55 155 | 96.52 63 | 99.53 93 | 99.60 25 |
|
LCM-MVSNet-Re | | | 97.33 99 | 97.33 89 | 97.32 140 | 98.13 180 | 93.79 155 | 96.99 100 | 99.65 2 | 96.74 81 | 99.47 13 | 98.93 43 | 96.91 57 | 99.84 25 | 90.11 261 | 99.06 199 | 98.32 232 |
|
SixPastTwentyTwo | | | 97.49 86 | 97.57 75 | 97.26 144 | 99.56 15 | 92.33 187 | 98.28 29 | 96.97 264 | 98.30 32 | 99.45 14 | 99.35 16 | 88.43 254 | 99.89 16 | 98.01 19 | 99.76 37 | 99.54 35 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 89 | 99.64 11 | 94.20 140 | 98.67 11 | 99.14 23 | 99.08 10 | 99.42 15 | 99.23 21 | 96.53 75 | 99.91 12 | 99.27 2 | 99.93 10 | 99.73 15 |
|
NR-MVSNet | | | 97.96 44 | 97.86 46 | 98.26 67 | 98.73 107 | 95.54 87 | 98.14 40 | 98.73 118 | 97.79 44 | 99.42 15 | 97.83 145 | 94.40 152 | 99.78 40 | 95.91 88 | 99.76 37 | 99.46 60 |
|
MIMVSNet1 | | | 98.51 20 | 98.45 26 | 98.67 39 | 99.72 6 | 96.71 47 | 98.76 9 | 98.89 74 | 98.49 26 | 99.38 17 | 99.14 30 | 95.44 121 | 99.84 25 | 96.47 66 | 99.80 32 | 99.47 58 |
|
ACMH | | 93.61 9 | 98.44 22 | 98.76 13 | 97.51 118 | 99.43 32 | 93.54 165 | 98.23 32 | 99.05 40 | 97.40 67 | 99.37 18 | 99.08 34 | 98.79 5 | 99.47 175 | 97.74 30 | 99.71 49 | 99.50 42 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 11 | 99.62 13 | 97.29 34 | 98.65 14 | 99.19 15 | 95.62 131 | 99.35 19 | 99.37 12 | 97.38 32 | 99.90 13 | 98.59 11 | 99.91 15 | 99.77 8 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 38 | 99.63 12 | 96.30 62 | 98.67 11 | 99.02 49 | 96.50 88 | 99.32 20 | 99.44 10 | 97.43 30 | 99.92 4 | 98.73 7 | 99.95 5 | 99.86 2 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 53 | 99.58 14 | 95.67 82 | 98.45 23 | 99.15 21 | 99.33 5 | 99.30 21 | 99.00 36 | 97.27 37 | 99.92 4 | 97.64 32 | 99.92 12 | 99.75 13 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 45 | 99.55 17 | 96.12 67 | 98.48 22 | 99.10 28 | 99.36 4 | 99.29 22 | 99.06 35 | 97.27 37 | 99.93 2 | 97.71 31 | 99.91 15 | 99.70 18 |
|
pm-mvs1 | | | 98.47 21 | 98.67 17 | 97.86 95 | 99.52 21 | 94.58 125 | 98.28 29 | 99.00 57 | 97.57 57 | 99.27 23 | 99.22 22 | 98.32 9 | 99.50 168 | 97.09 50 | 99.75 41 | 99.50 42 |
|
ACMH+ | | 93.58 10 | 98.23 32 | 98.31 29 | 97.98 88 | 99.39 37 | 95.22 104 | 97.55 72 | 99.20 13 | 98.21 35 | 99.25 24 | 98.51 70 | 98.21 11 | 99.40 199 | 94.79 144 | 99.72 46 | 99.32 94 |
|
Anonymous20240529 | | | 97.96 44 | 98.04 38 | 97.71 102 | 98.69 116 | 94.28 137 | 97.86 54 | 98.31 181 | 98.79 20 | 99.23 25 | 98.86 47 | 95.76 109 | 99.61 140 | 95.49 103 | 99.36 147 | 99.23 116 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 57 | 99.55 17 | 95.47 92 | 98.49 20 | 99.13 24 | 99.22 8 | 99.22 26 | 98.96 40 | 97.35 33 | 99.92 4 | 97.79 27 | 99.93 10 | 99.79 7 |
|
SD-MVS | | | 97.37 96 | 97.70 57 | 96.35 194 | 98.14 177 | 95.13 107 | 96.54 118 | 98.92 71 | 95.94 115 | 99.19 27 | 98.08 114 | 97.74 22 | 95.06 345 | 95.24 119 | 99.54 90 | 98.87 183 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 31 | 99.51 22 | 96.61 52 | 98.55 17 | 99.17 16 | 99.05 13 | 99.17 28 | 98.79 49 | 95.47 119 | 99.89 16 | 97.95 20 | 99.91 15 | 99.75 13 |
|
tfpnnormal | | | 97.72 70 | 97.97 40 | 96.94 158 | 99.26 47 | 92.23 190 | 97.83 56 | 98.45 159 | 98.25 33 | 99.13 29 | 98.66 59 | 96.65 69 | 99.69 104 | 93.92 183 | 99.62 62 | 98.91 174 |
|
SED-MVS | | | 97.94 49 | 97.90 43 | 98.07 80 | 99.22 56 | 95.35 96 | 96.79 106 | 98.83 95 | 96.11 103 | 99.08 30 | 98.24 97 | 97.87 20 | 99.72 72 | 95.44 108 | 99.51 103 | 99.14 130 |
|
test_241102_ONE | | | | | | 99.22 56 | 95.35 96 | | 98.83 95 | 96.04 108 | 99.08 30 | 98.13 108 | 97.87 20 | 99.33 221 | | | |
|
VPA-MVSNet | | | 98.27 29 | 98.46 24 | 97.70 104 | 99.06 85 | 93.80 154 | 97.76 59 | 99.00 57 | 98.40 28 | 99.07 32 | 98.98 38 | 96.89 58 | 99.75 56 | 97.19 47 | 99.79 33 | 99.55 34 |
|
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 62 | 99.22 56 | 95.66 83 | 97.90 52 | 99.08 34 | 98.31 31 | 99.02 33 | 98.74 53 | 97.68 24 | 99.61 140 | 97.77 28 | 99.85 25 | 99.70 18 |
|
CP-MVSNet | | | 98.42 23 | 98.46 24 | 98.30 65 | 99.46 28 | 95.22 104 | 98.27 31 | 98.84 87 | 99.05 13 | 99.01 34 | 98.65 61 | 95.37 122 | 99.90 13 | 97.57 33 | 99.91 15 | 99.77 8 |
|
FMVSNet1 | | | 97.95 47 | 98.08 35 | 97.56 113 | 99.14 78 | 93.67 159 | 98.23 32 | 98.66 138 | 97.41 66 | 99.00 35 | 99.19 24 | 95.47 119 | 99.73 68 | 95.83 89 | 99.76 37 | 99.30 100 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 8 | 99.54 19 | 98.06 6 | 99.34 4 | 99.44 6 | 98.85 19 | 99.00 35 | 99.20 23 | 97.42 31 | 99.59 142 | 97.21 44 | 99.76 37 | 99.40 80 |
|
K. test v3 | | | 96.44 148 | 96.28 148 | 96.95 157 | 99.41 35 | 91.53 207 | 97.65 65 | 90.31 336 | 98.89 18 | 98.93 37 | 99.36 14 | 84.57 283 | 99.92 4 | 97.81 25 | 99.56 81 | 99.39 83 |
|
FC-MVSNet-test | | | 98.16 33 | 98.37 27 | 97.56 113 | 99.49 26 | 93.10 176 | 98.35 26 | 99.21 11 | 98.43 27 | 98.89 38 | 98.83 48 | 94.30 154 | 99.81 31 | 97.87 23 | 99.91 15 | 99.77 8 |
|
TranMVSNet+NR-MVSNet | | | 98.33 26 | 98.30 31 | 98.43 54 | 99.07 84 | 95.87 73 | 96.73 113 | 99.05 40 | 98.67 22 | 98.84 39 | 98.45 74 | 97.58 27 | 99.88 18 | 96.45 67 | 99.86 23 | 99.54 35 |
|
new-patchmatchnet | | | 95.67 175 | 96.58 132 | 92.94 301 | 97.48 243 | 80.21 330 | 92.96 285 | 98.19 196 | 94.83 162 | 98.82 40 | 98.79 49 | 93.31 176 | 99.51 167 | 95.83 89 | 99.04 200 | 99.12 138 |
|
EG-PatchMatch MVS | | | 97.69 72 | 97.79 50 | 97.40 135 | 99.06 85 | 93.52 166 | 95.96 153 | 98.97 66 | 94.55 174 | 98.82 40 | 98.76 52 | 97.31 35 | 99.29 232 | 97.20 46 | 99.44 123 | 99.38 85 |
|
DPE-MVS | | | 97.64 74 | 97.35 88 | 98.50 49 | 98.85 99 | 96.18 64 | 95.21 199 | 98.99 60 | 95.84 123 | 98.78 42 | 98.08 114 | 96.84 63 | 99.81 31 | 93.98 181 | 99.57 78 | 99.52 39 |
|
testing_2 | | | 97.43 91 | 97.71 56 | 96.60 178 | 98.91 96 | 90.85 216 | 96.01 149 | 98.54 151 | 94.78 164 | 98.78 42 | 98.96 40 | 96.35 88 | 99.54 157 | 97.25 41 | 99.82 28 | 99.40 80 |
|
COLMAP_ROB | | 94.48 6 | 98.25 31 | 98.11 34 | 98.64 42 | 99.21 62 | 97.35 32 | 97.96 48 | 99.16 17 | 98.34 30 | 98.78 42 | 98.52 69 | 97.32 34 | 99.45 182 | 94.08 174 | 99.67 56 | 99.13 133 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
lessismore_v0 | | | | | 97.05 153 | 99.36 40 | 92.12 195 | | 84.07 348 | | 98.77 45 | 98.98 38 | 85.36 277 | 99.74 63 | 97.34 40 | 99.37 144 | 99.30 100 |
|
v8 | | | 97.60 78 | 98.06 37 | 96.23 199 | 98.71 112 | 89.44 236 | 97.43 79 | 98.82 103 | 97.29 71 | 98.74 46 | 99.10 32 | 93.86 164 | 99.68 110 | 98.61 10 | 99.94 8 | 99.56 32 |
|
DP-MVS | | | 97.87 59 | 97.89 45 | 97.81 98 | 98.62 123 | 94.82 115 | 97.13 93 | 98.79 105 | 98.98 17 | 98.74 46 | 98.49 71 | 95.80 108 | 99.49 169 | 95.04 134 | 99.44 123 | 99.11 141 |
|
v10 | | | 97.55 81 | 97.97 40 | 96.31 197 | 98.60 126 | 89.64 232 | 97.44 77 | 99.02 49 | 96.60 84 | 98.72 48 | 99.16 29 | 93.48 173 | 99.72 72 | 98.76 6 | 99.92 12 | 99.58 27 |
|
test0726 | | | | | | 99.24 51 | 95.51 89 | 96.89 102 | 98.89 74 | 95.92 116 | 98.64 49 | 98.31 84 | 97.06 49 | | | | |
|
test_241102_TWO | | | | | | | | | 98.83 95 | 96.11 103 | 98.62 50 | 98.24 97 | 96.92 56 | 99.72 72 | 95.44 108 | 99.49 109 | 99.49 50 |
|
FIs | | | 97.93 52 | 98.07 36 | 97.48 125 | 99.38 38 | 92.95 179 | 98.03 47 | 99.11 26 | 98.04 40 | 98.62 50 | 98.66 59 | 93.75 168 | 99.78 40 | 97.23 42 | 99.84 26 | 99.73 15 |
|
abl_6 | | | 98.42 23 | 98.19 32 | 99.09 3 | 99.16 67 | 98.10 5 | 97.73 63 | 99.11 26 | 97.76 46 | 98.62 50 | 98.27 95 | 97.88 19 | 99.80 37 | 95.67 93 | 99.50 105 | 99.38 85 |
|
DeepC-MVS | | 95.41 4 | 97.82 64 | 97.70 57 | 98.16 73 | 98.78 104 | 95.72 77 | 96.23 136 | 99.02 49 | 93.92 195 | 98.62 50 | 98.99 37 | 97.69 23 | 99.62 134 | 96.18 73 | 99.87 22 | 99.15 127 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APDe-MVS | | | 98.14 34 | 98.03 39 | 98.47 52 | 98.72 109 | 96.04 69 | 98.07 44 | 99.10 28 | 95.96 113 | 98.59 54 | 98.69 57 | 96.94 54 | 99.81 31 | 96.64 58 | 99.58 75 | 99.57 31 |
|
XXY-MVS | | | 97.54 82 | 97.70 57 | 97.07 152 | 99.46 28 | 92.21 191 | 97.22 88 | 99.00 57 | 94.93 161 | 98.58 55 | 98.92 44 | 97.31 35 | 99.41 197 | 94.44 157 | 99.43 130 | 99.59 26 |
|
test_0402 | | | 97.84 61 | 97.97 40 | 97.47 126 | 99.19 65 | 94.07 143 | 96.71 114 | 98.73 118 | 98.66 23 | 98.56 56 | 98.41 76 | 96.84 63 | 99.69 104 | 94.82 142 | 99.81 29 | 98.64 206 |
|
PM-MVS | | | 97.36 98 | 97.10 104 | 98.14 77 | 98.91 96 | 96.77 46 | 96.20 137 | 98.63 144 | 93.82 196 | 98.54 57 | 98.33 82 | 93.98 162 | 99.05 264 | 95.99 84 | 99.45 122 | 98.61 211 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 119 | 96.43 143 | 98.31 64 | 97.48 243 | 97.23 37 | 92.56 294 | 98.60 146 | 92.84 229 | 98.54 57 | 97.40 182 | 96.64 71 | 98.78 290 | 94.40 161 | 99.41 139 | 98.93 169 |
|
DVP-MVS | | | 97.45 89 | 96.92 116 | 99.03 7 | 99.26 47 | 97.70 15 | 97.66 64 | 98.89 74 | 95.65 129 | 98.51 59 | 96.46 246 | 92.15 204 | 99.81 31 | 95.14 128 | 98.58 245 | 99.58 27 |
|
VDD-MVS | | | 97.37 96 | 97.25 94 | 97.74 101 | 98.69 116 | 94.50 128 | 97.04 97 | 95.61 289 | 98.59 24 | 98.51 59 | 98.72 54 | 92.54 197 | 99.58 144 | 96.02 81 | 99.49 109 | 99.12 138 |
|
FMVSNet2 | | | 96.72 133 | 96.67 129 | 96.87 163 | 97.96 193 | 91.88 201 | 97.15 90 | 98.06 213 | 95.59 133 | 98.50 61 | 98.62 62 | 89.51 245 | 99.65 121 | 94.99 138 | 99.60 71 | 99.07 148 |
|
SMA-MVS | | | 97.48 87 | 97.11 103 | 98.60 44 | 98.83 100 | 96.67 49 | 96.74 109 | 98.73 118 | 91.61 245 | 98.48 62 | 98.36 79 | 96.53 75 | 99.68 110 | 95.17 123 | 99.54 90 | 99.45 65 |
|
EU-MVSNet | | | 94.25 232 | 94.47 218 | 93.60 284 | 98.14 177 | 82.60 322 | 97.24 87 | 92.72 317 | 85.08 308 | 98.48 62 | 98.94 42 | 82.59 289 | 98.76 293 | 97.47 37 | 99.53 93 | 99.44 75 |
|
RPSCF | | | 97.87 59 | 97.51 79 | 98.95 15 | 99.15 70 | 98.43 3 | 97.56 71 | 99.06 38 | 96.19 100 | 98.48 62 | 98.70 56 | 94.72 138 | 99.24 240 | 94.37 162 | 99.33 162 | 99.17 123 |
|
v1240 | | | 96.74 130 | 97.02 111 | 95.91 215 | 98.18 170 | 88.52 251 | 95.39 183 | 98.88 79 | 93.15 219 | 98.46 65 | 98.40 78 | 92.80 187 | 99.71 87 | 98.45 13 | 99.49 109 | 99.49 50 |
|
VPNet | | | 97.26 103 | 97.49 81 | 96.59 180 | 99.47 27 | 90.58 223 | 96.27 131 | 98.53 152 | 97.77 45 | 98.46 65 | 98.41 76 | 94.59 145 | 99.68 110 | 94.61 150 | 99.29 170 | 99.52 39 |
|
IterMVS-LS | | | 96.92 117 | 97.29 91 | 95.79 218 | 98.51 136 | 88.13 260 | 95.10 202 | 98.66 138 | 96.99 73 | 98.46 65 | 98.68 58 | 92.55 195 | 99.74 63 | 96.91 56 | 99.79 33 | 99.50 42 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ambc | | | | | 96.56 184 | 98.23 164 | 91.68 206 | 97.88 53 | 98.13 203 | | 98.42 68 | 98.56 66 | 94.22 157 | 99.04 265 | 94.05 178 | 99.35 152 | 98.95 163 |
|
MSP-MVS | | | 97.78 67 | 97.65 63 | 98.16 73 | 99.24 51 | 95.51 89 | 96.74 109 | 98.23 187 | 95.92 116 | 98.40 69 | 98.28 91 | 97.06 49 | 99.71 87 | 95.48 104 | 99.52 98 | 99.26 112 |
|
test_0728_THIRD | | | | | | | | | | 96.62 83 | 98.40 69 | 98.28 91 | 97.10 44 | 99.71 87 | 95.70 91 | 99.62 62 | 99.58 27 |
|
VDDNet | | | 96.98 114 | 96.84 119 | 97.41 134 | 99.40 36 | 93.26 171 | 97.94 49 | 95.31 293 | 99.26 7 | 98.39 71 | 99.18 27 | 87.85 263 | 99.62 134 | 95.13 130 | 99.09 193 | 99.35 92 |
|
Anonymous202405211 | | | 96.34 151 | 95.98 162 | 97.43 132 | 98.25 161 | 93.85 152 | 96.74 109 | 94.41 300 | 97.72 50 | 98.37 72 | 98.03 122 | 87.15 267 | 99.53 159 | 94.06 175 | 99.07 196 | 98.92 173 |
|
Baseline_NR-MVSNet | | | 97.72 70 | 97.79 50 | 97.50 121 | 99.56 15 | 93.29 170 | 95.44 177 | 98.86 83 | 98.20 36 | 98.37 72 | 99.24 20 | 94.69 139 | 99.55 155 | 95.98 85 | 99.79 33 | 99.65 22 |
|
IU-MVS | | | | | | 99.22 56 | 95.40 93 | | 98.14 201 | 85.77 300 | 98.36 74 | | | | 95.23 120 | 99.51 103 | 99.49 50 |
|
IterMVS-SCA-FT | | | 95.86 170 | 96.19 151 | 94.85 253 | 97.68 230 | 85.53 297 | 92.42 297 | 97.63 242 | 96.99 73 | 98.36 74 | 98.54 68 | 87.94 258 | 99.75 56 | 97.07 52 | 99.08 194 | 99.27 111 |
|
ACMM | | 93.33 11 | 98.05 39 | 97.79 50 | 98.85 23 | 99.15 70 | 97.55 23 | 96.68 115 | 98.83 95 | 95.21 146 | 98.36 74 | 98.13 108 | 98.13 14 | 99.62 134 | 96.04 79 | 99.54 90 | 99.39 83 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Regformer-4 | | | 97.53 84 | 97.47 83 | 97.71 102 | 97.35 253 | 93.91 148 | 95.26 194 | 98.14 201 | 97.97 41 | 98.34 77 | 97.89 138 | 95.49 117 | 99.71 87 | 97.41 38 | 99.42 133 | 99.51 41 |
|
LPG-MVS_test | | | 97.94 49 | 97.67 60 | 98.74 33 | 99.15 70 | 97.02 39 | 97.09 94 | 99.02 49 | 95.15 150 | 98.34 77 | 98.23 99 | 97.91 17 | 99.70 96 | 94.41 159 | 99.73 43 | 99.50 42 |
|
LGP-MVS_train | | | | | 98.74 33 | 99.15 70 | 97.02 39 | | 99.02 49 | 95.15 150 | 98.34 77 | 98.23 99 | 97.91 17 | 99.70 96 | 94.41 159 | 99.73 43 | 99.50 42 |
|
casdiffmvs | | | 97.50 85 | 97.81 49 | 96.56 184 | 98.51 136 | 91.04 213 | 95.83 161 | 99.09 33 | 97.23 72 | 98.33 80 | 98.30 88 | 97.03 51 | 99.37 211 | 96.58 61 | 99.38 143 | 99.28 107 |
|
Patchmatch-RL test | | | 94.66 220 | 94.49 217 | 95.19 240 | 98.54 133 | 88.91 244 | 92.57 293 | 98.74 116 | 91.46 248 | 98.32 81 | 97.75 154 | 77.31 312 | 98.81 288 | 96.06 76 | 99.61 68 | 97.85 268 |
|
XVG-OURS | | | 97.12 108 | 96.74 125 | 98.26 67 | 98.99 91 | 97.45 29 | 93.82 262 | 99.05 40 | 95.19 148 | 98.32 81 | 97.70 160 | 95.22 128 | 98.41 318 | 94.27 167 | 98.13 260 | 98.93 169 |
|
UniMVSNet_NR-MVSNet | | | 97.83 62 | 97.65 63 | 98.37 58 | 98.72 109 | 95.78 75 | 95.66 169 | 99.02 49 | 98.11 38 | 98.31 83 | 97.69 162 | 94.65 143 | 99.85 22 | 97.02 53 | 99.71 49 | 99.48 55 |
|
DU-MVS | | | 97.79 66 | 97.60 72 | 98.36 59 | 98.73 107 | 95.78 75 | 95.65 171 | 98.87 81 | 97.57 57 | 98.31 83 | 97.83 145 | 94.69 139 | 99.85 22 | 97.02 53 | 99.71 49 | 99.46 60 |
|
EI-MVSNet-UG-set | | | 97.32 100 | 97.40 84 | 97.09 151 | 97.34 257 | 92.01 199 | 95.33 188 | 97.65 238 | 97.74 47 | 98.30 85 | 98.14 107 | 95.04 132 | 99.69 104 | 97.55 34 | 99.52 98 | 99.58 27 |
|
EI-MVSNet-Vis-set | | | 97.32 100 | 97.39 85 | 97.11 149 | 97.36 252 | 92.08 197 | 95.34 187 | 97.65 238 | 97.74 47 | 98.29 86 | 98.11 112 | 95.05 130 | 99.68 110 | 97.50 36 | 99.50 105 | 99.56 32 |
|
test20.03 | | | 96.58 142 | 96.61 130 | 96.48 188 | 98.49 139 | 91.72 205 | 95.68 168 | 97.69 233 | 96.81 79 | 98.27 87 | 97.92 136 | 94.18 158 | 98.71 297 | 90.78 242 | 99.66 58 | 99.00 157 |
|
RRT_MVS | | | 94.90 206 | 94.07 231 | 97.39 136 | 93.18 339 | 93.21 173 | 95.26 194 | 97.49 246 | 93.94 194 | 98.25 88 | 97.85 143 | 72.96 332 | 99.84 25 | 97.90 21 | 99.78 36 | 99.14 130 |
|
APD-MVS_3200maxsize | | | 98.13 36 | 97.90 43 | 98.79 29 | 98.79 102 | 97.31 33 | 97.55 72 | 98.92 71 | 97.72 50 | 98.25 88 | 98.13 108 | 97.10 44 | 99.75 56 | 95.44 108 | 99.24 176 | 99.32 94 |
|
v148 | | | 96.58 142 | 96.97 112 | 95.42 233 | 98.63 122 | 87.57 271 | 95.09 204 | 97.90 219 | 95.91 118 | 98.24 90 | 97.96 129 | 93.42 174 | 99.39 204 | 96.04 79 | 99.52 98 | 99.29 106 |
|
UniMVSNet (Re) | | | 97.83 62 | 97.65 63 | 98.35 61 | 98.80 101 | 95.86 74 | 95.92 157 | 99.04 46 | 97.51 60 | 98.22 91 | 97.81 149 | 94.68 141 | 99.78 40 | 97.14 49 | 99.75 41 | 99.41 79 |
|
WR-MVS | | | 96.90 119 | 96.81 121 | 97.16 146 | 98.56 131 | 92.20 193 | 94.33 236 | 98.12 204 | 97.34 68 | 98.20 92 | 97.33 193 | 92.81 186 | 99.75 56 | 94.79 144 | 99.81 29 | 99.54 35 |
|
v1921920 | | | 96.72 133 | 96.96 114 | 95.99 208 | 98.21 165 | 88.79 248 | 95.42 179 | 98.79 105 | 93.22 213 | 98.19 93 | 98.26 96 | 92.68 190 | 99.70 96 | 98.34 15 | 99.55 87 | 99.49 50 |
|
Regformer-3 | | | 97.25 104 | 97.29 91 | 97.11 149 | 97.35 253 | 92.32 188 | 95.26 194 | 97.62 243 | 97.67 55 | 98.17 94 | 97.89 138 | 95.05 130 | 99.56 151 | 97.16 48 | 99.42 133 | 99.46 60 |
|
TSAR-MVS + MP. | | | 97.42 92 | 97.23 97 | 98.00 87 | 99.38 38 | 95.00 110 | 97.63 67 | 98.20 191 | 93.00 222 | 98.16 95 | 98.06 119 | 95.89 97 | 99.72 72 | 95.67 93 | 99.10 192 | 99.28 107 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TinyColmap | | | 96.00 165 | 96.34 146 | 94.96 248 | 97.90 199 | 87.91 263 | 94.13 250 | 98.49 156 | 94.41 176 | 98.16 95 | 97.76 151 | 96.29 90 | 98.68 302 | 90.52 254 | 99.42 133 | 98.30 235 |
|
XVG-OURS-SEG-HR | | | 97.38 95 | 97.07 107 | 98.30 65 | 99.01 90 | 97.41 31 | 94.66 227 | 99.02 49 | 95.20 147 | 98.15 97 | 97.52 173 | 98.83 4 | 98.43 317 | 94.87 140 | 96.41 310 | 99.07 148 |
|
IS-MVSNet | | | 96.93 116 | 96.68 128 | 97.70 104 | 99.25 50 | 94.00 146 | 98.57 15 | 96.74 272 | 98.36 29 | 98.14 98 | 97.98 128 | 88.23 256 | 99.71 87 | 93.10 203 | 99.72 46 | 99.38 85 |
|
CSCG | | | 97.40 94 | 97.30 90 | 97.69 106 | 98.95 93 | 94.83 114 | 97.28 84 | 98.99 60 | 96.35 95 | 98.13 99 | 95.95 270 | 95.99 95 | 99.66 120 | 94.36 165 | 99.73 43 | 98.59 212 |
|
MP-MVS-pluss | | | 97.69 72 | 97.36 87 | 98.70 37 | 99.50 25 | 96.84 44 | 95.38 184 | 98.99 60 | 92.45 234 | 98.11 100 | 98.31 84 | 97.25 40 | 99.77 48 | 96.60 59 | 99.62 62 | 99.48 55 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
v1192 | | | 96.83 125 | 97.06 108 | 96.15 204 | 98.28 156 | 89.29 238 | 95.36 185 | 98.77 110 | 93.73 198 | 98.11 100 | 98.34 81 | 93.02 184 | 99.67 115 | 98.35 14 | 99.58 75 | 99.50 42 |
|
Regformer-2 | | | 97.41 93 | 97.24 96 | 97.93 91 | 97.21 264 | 94.72 118 | 94.85 220 | 98.27 182 | 97.74 47 | 98.11 100 | 97.50 175 | 95.58 115 | 99.69 104 | 96.57 62 | 99.31 166 | 99.37 90 |
|
OPM-MVS | | | 97.54 82 | 97.25 94 | 98.41 55 | 99.11 80 | 96.61 52 | 95.24 197 | 98.46 158 | 94.58 173 | 98.10 103 | 98.07 116 | 97.09 46 | 99.39 204 | 95.16 125 | 99.44 123 | 99.21 118 |
|
v144192 | | | 96.69 136 | 96.90 118 | 96.03 207 | 98.25 161 | 88.92 243 | 95.49 175 | 98.77 110 | 93.05 221 | 98.09 104 | 98.29 90 | 92.51 199 | 99.70 96 | 98.11 17 | 99.56 81 | 99.47 58 |
|
N_pmnet | | | 95.18 196 | 94.23 225 | 98.06 82 | 97.85 201 | 96.55 54 | 92.49 295 | 91.63 325 | 89.34 265 | 98.09 104 | 97.41 181 | 90.33 231 | 99.06 263 | 91.58 224 | 99.31 166 | 98.56 214 |
|
test_part2 | | | | | | 99.03 89 | 96.07 68 | | | | 98.08 106 | | | | | | |
|
SteuartSystems-ACMMP | | | 98.02 41 | 97.76 54 | 98.79 29 | 99.43 32 | 97.21 38 | 97.15 90 | 98.90 73 | 96.58 86 | 98.08 106 | 97.87 142 | 97.02 52 | 99.76 52 | 95.25 118 | 99.59 73 | 99.40 80 |
Skip Steuart: Steuart Systems R&D Blog. |
SR-MVS | | | 98.00 43 | 97.66 61 | 99.01 9 | 98.77 105 | 97.93 7 | 97.38 81 | 98.83 95 | 97.32 69 | 98.06 108 | 97.85 143 | 96.65 69 | 99.77 48 | 95.00 137 | 99.11 190 | 99.32 94 |
|
XVG-ACMP-BASELINE | | | 97.58 80 | 97.28 93 | 98.49 50 | 99.16 67 | 96.90 43 | 96.39 124 | 98.98 63 | 95.05 155 | 98.06 108 | 98.02 123 | 95.86 98 | 99.56 151 | 94.37 162 | 99.64 60 | 99.00 157 |
|
IterMVS | | | 95.42 187 | 95.83 167 | 94.20 277 | 97.52 242 | 83.78 318 | 92.41 298 | 97.47 249 | 95.49 137 | 98.06 108 | 98.49 71 | 87.94 258 | 99.58 144 | 96.02 81 | 99.02 201 | 99.23 116 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TSAR-MVS + GP. | | | 96.47 147 | 96.12 154 | 97.49 124 | 97.74 226 | 95.23 101 | 94.15 247 | 96.90 266 | 93.26 211 | 98.04 111 | 96.70 233 | 94.41 151 | 98.89 281 | 94.77 147 | 99.14 182 | 98.37 225 |
|
Regformer-1 | | | 97.27 102 | 97.16 101 | 97.61 111 | 97.21 264 | 93.86 151 | 94.85 220 | 98.04 215 | 97.62 56 | 98.03 112 | 97.50 175 | 95.34 123 | 99.63 126 | 96.52 63 | 99.31 166 | 99.35 92 |
|
testgi | | | 96.07 160 | 96.50 141 | 94.80 256 | 99.26 47 | 87.69 270 | 95.96 153 | 98.58 149 | 95.08 153 | 98.02 113 | 96.25 255 | 97.92 16 | 97.60 337 | 88.68 283 | 98.74 231 | 99.11 141 |
|
V42 | | | 97.04 109 | 97.16 101 | 96.68 176 | 98.59 128 | 91.05 212 | 96.33 129 | 98.36 173 | 94.60 170 | 97.99 114 | 98.30 88 | 93.32 175 | 99.62 134 | 97.40 39 | 99.53 93 | 99.38 85 |
|
GBi-Net | | | 96.99 111 | 96.80 122 | 97.56 113 | 97.96 193 | 93.67 159 | 98.23 32 | 98.66 138 | 95.59 133 | 97.99 114 | 99.19 24 | 89.51 245 | 99.73 68 | 94.60 151 | 99.44 123 | 99.30 100 |
|
test1 | | | 96.99 111 | 96.80 122 | 97.56 113 | 97.96 193 | 93.67 159 | 98.23 32 | 98.66 138 | 95.59 133 | 97.99 114 | 99.19 24 | 89.51 245 | 99.73 68 | 94.60 151 | 99.44 123 | 99.30 100 |
|
FMVSNet3 | | | 95.26 194 | 94.94 193 | 96.22 201 | 96.53 283 | 90.06 227 | 95.99 150 | 97.66 236 | 94.11 189 | 97.99 114 | 97.91 137 | 80.22 298 | 99.63 126 | 94.60 151 | 99.44 123 | 98.96 162 |
|
pmmvs-eth3d | | | 96.49 145 | 96.18 152 | 97.42 133 | 98.25 161 | 94.29 134 | 94.77 224 | 98.07 212 | 89.81 262 | 97.97 118 | 98.33 82 | 93.11 179 | 99.08 261 | 95.46 107 | 99.84 26 | 98.89 178 |
|
v1144 | | | 96.84 122 | 97.08 106 | 96.13 205 | 98.42 146 | 89.28 239 | 95.41 181 | 98.67 136 | 94.21 184 | 97.97 118 | 98.31 84 | 93.06 180 | 99.65 121 | 98.06 18 | 99.62 62 | 99.45 65 |
|
ACMP | | 92.54 13 | 97.47 88 | 97.10 104 | 98.55 48 | 99.04 88 | 96.70 48 | 96.24 135 | 98.89 74 | 93.71 199 | 97.97 118 | 97.75 154 | 97.44 29 | 99.63 126 | 93.22 200 | 99.70 52 | 99.32 94 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
EI-MVSNet | | | 96.63 140 | 96.93 115 | 95.74 219 | 97.26 262 | 88.13 260 | 95.29 192 | 97.65 238 | 96.99 73 | 97.94 121 | 98.19 104 | 92.55 195 | 99.58 144 | 96.91 56 | 99.56 81 | 99.50 42 |
|
MVSTER | | | 94.21 236 | 93.93 238 | 95.05 245 | 95.83 305 | 86.46 287 | 95.18 200 | 97.65 238 | 92.41 235 | 97.94 121 | 98.00 127 | 72.39 333 | 99.58 144 | 96.36 69 | 99.56 81 | 99.12 138 |
|
ACMMP | | | 98.05 39 | 97.75 55 | 98.93 19 | 99.23 53 | 97.60 19 | 98.09 43 | 98.96 67 | 95.75 128 | 97.91 123 | 98.06 119 | 96.89 58 | 99.76 52 | 95.32 115 | 99.57 78 | 99.43 76 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
zzz-MVS | | | 98.01 42 | 97.66 61 | 99.06 4 | 99.44 30 | 97.90 8 | 95.66 169 | 98.73 118 | 97.69 53 | 97.90 124 | 97.96 129 | 95.81 106 | 99.82 29 | 96.13 74 | 99.61 68 | 99.45 65 |
|
MTAPA | | | 98.14 34 | 97.84 47 | 99.06 4 | 99.44 30 | 97.90 8 | 97.25 85 | 98.73 118 | 97.69 53 | 97.90 124 | 97.96 129 | 95.81 106 | 99.82 29 | 96.13 74 | 99.61 68 | 99.45 65 |
|
LFMVS | | | 95.32 191 | 94.88 198 | 96.62 177 | 98.03 184 | 91.47 209 | 97.65 65 | 90.72 333 | 99.11 9 | 97.89 126 | 98.31 84 | 79.20 300 | 99.48 172 | 93.91 184 | 99.12 189 | 98.93 169 |
|
ACMMP_NAP | | | 97.89 57 | 97.63 68 | 98.67 39 | 99.35 41 | 96.84 44 | 96.36 127 | 98.79 105 | 95.07 154 | 97.88 127 | 98.35 80 | 97.24 41 | 99.72 72 | 96.05 78 | 99.58 75 | 99.45 65 |
|
VNet | | | 96.84 122 | 96.83 120 | 96.88 162 | 98.06 183 | 92.02 198 | 96.35 128 | 97.57 245 | 97.70 52 | 97.88 127 | 97.80 150 | 92.40 201 | 99.54 157 | 94.73 149 | 98.96 205 | 99.08 146 |
|
HPM-MVS_fast | | | 98.32 27 | 98.13 33 | 98.88 22 | 99.54 19 | 97.48 27 | 98.35 26 | 99.03 47 | 95.88 119 | 97.88 127 | 98.22 102 | 98.15 12 | 99.74 63 | 96.50 65 | 99.62 62 | 99.42 77 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 80 | 97.89 10 | 99.47 3 | 99.32 7 | 99.08 10 | 97.87 130 | 99.67 2 | 96.47 80 | 99.92 4 | 97.88 22 | 99.98 2 | 99.85 3 |
|
baseline | | | 97.44 90 | 97.78 53 | 96.43 190 | 98.52 135 | 90.75 221 | 96.84 103 | 99.03 47 | 96.51 87 | 97.86 131 | 98.02 123 | 96.67 68 | 99.36 213 | 97.09 50 | 99.47 115 | 99.19 120 |
|
v2v482 | | | 96.78 129 | 97.06 108 | 95.95 212 | 98.57 130 | 88.77 249 | 95.36 185 | 98.26 184 | 95.18 149 | 97.85 132 | 98.23 99 | 92.58 194 | 99.63 126 | 97.80 26 | 99.69 53 | 99.45 65 |
|
xxxxxxxxxxxxxcwj | | | 97.24 105 | 97.03 110 | 97.89 93 | 98.48 141 | 94.71 119 | 94.53 232 | 99.07 37 | 95.02 157 | 97.83 133 | 97.88 140 | 96.44 82 | 99.72 72 | 94.59 154 | 99.39 141 | 99.25 113 |
|
SF-MVS | | | 97.60 78 | 97.39 85 | 98.22 71 | 98.93 94 | 95.69 79 | 97.05 96 | 99.10 28 | 95.32 143 | 97.83 133 | 97.88 140 | 96.44 82 | 99.72 72 | 94.59 154 | 99.39 141 | 99.25 113 |
|
Vis-MVSNet | | | 98.27 29 | 98.34 28 | 98.07 80 | 99.33 42 | 95.21 106 | 98.04 45 | 99.46 5 | 97.32 69 | 97.82 135 | 99.11 31 | 96.75 66 | 99.86 20 | 97.84 24 | 99.36 147 | 99.15 127 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
AllTest | | | 97.20 107 | 96.92 116 | 98.06 82 | 99.08 82 | 96.16 65 | 97.14 92 | 99.16 17 | 94.35 179 | 97.78 136 | 98.07 116 | 95.84 99 | 99.12 254 | 91.41 226 | 99.42 133 | 98.91 174 |
|
TestCases | | | | | 98.06 82 | 99.08 82 | 96.16 65 | | 99.16 17 | 94.35 179 | 97.78 136 | 98.07 116 | 95.84 99 | 99.12 254 | 91.41 226 | 99.42 133 | 98.91 174 |
|
MDA-MVSNet-bldmvs | | | 95.69 173 | 95.67 172 | 95.74 219 | 98.48 141 | 88.76 250 | 92.84 286 | 97.25 252 | 96.00 111 | 97.59 138 | 97.95 132 | 91.38 220 | 99.46 178 | 93.16 202 | 96.35 311 | 98.99 160 |
|
PGM-MVS | | | 97.88 58 | 97.52 78 | 98.96 14 | 99.20 63 | 97.62 18 | 97.09 94 | 99.06 38 | 95.45 138 | 97.55 139 | 97.94 133 | 97.11 43 | 99.78 40 | 94.77 147 | 99.46 118 | 99.48 55 |
|
GST-MVS | | | 97.82 64 | 97.49 81 | 98.81 27 | 99.23 53 | 97.25 35 | 97.16 89 | 98.79 105 | 95.96 113 | 97.53 140 | 97.40 182 | 96.93 55 | 99.77 48 | 95.04 134 | 99.35 152 | 99.42 77 |
|
YYNet1 | | | 94.73 213 | 94.84 200 | 94.41 272 | 97.47 247 | 85.09 306 | 90.29 328 | 95.85 286 | 92.52 231 | 97.53 140 | 97.76 151 | 91.97 210 | 99.18 246 | 93.31 196 | 96.86 300 | 98.95 163 |
|
TAMVS | | | 95.49 181 | 94.94 193 | 97.16 146 | 98.31 152 | 93.41 168 | 95.07 207 | 96.82 269 | 91.09 251 | 97.51 142 | 97.82 148 | 89.96 238 | 99.42 188 | 88.42 286 | 99.44 123 | 98.64 206 |
|
LS3D | | | 97.77 68 | 97.50 80 | 98.57 46 | 96.24 290 | 97.58 21 | 98.45 23 | 98.85 84 | 98.58 25 | 97.51 142 | 97.94 133 | 95.74 110 | 99.63 126 | 95.19 121 | 98.97 204 | 98.51 217 |
|
HFP-MVS | | | 97.94 49 | 97.64 66 | 98.83 24 | 99.15 70 | 97.50 25 | 97.59 69 | 98.84 87 | 96.05 106 | 97.49 144 | 97.54 170 | 97.07 47 | 99.70 96 | 95.61 99 | 99.46 118 | 99.30 100 |
|
#test# | | | 97.62 76 | 97.22 98 | 98.83 24 | 99.15 70 | 97.50 25 | 96.81 105 | 98.84 87 | 94.25 183 | 97.49 144 | 97.54 170 | 97.07 47 | 99.70 96 | 94.37 162 | 99.46 118 | 99.30 100 |
|
Patchmtry | | | 95.03 203 | 94.59 213 | 96.33 195 | 94.83 322 | 90.82 218 | 96.38 126 | 97.20 254 | 96.59 85 | 97.49 144 | 98.57 64 | 77.67 307 | 99.38 208 | 92.95 206 | 99.62 62 | 98.80 189 |
|
MDA-MVSNet_test_wron | | | 94.73 213 | 94.83 202 | 94.42 271 | 97.48 243 | 85.15 304 | 90.28 329 | 95.87 285 | 92.52 231 | 97.48 147 | 97.76 151 | 91.92 214 | 99.17 250 | 93.32 195 | 96.80 303 | 98.94 165 |
|
UnsupCasMVSNet_eth | | | 95.91 167 | 95.73 171 | 96.44 189 | 98.48 141 | 91.52 208 | 95.31 190 | 98.45 159 | 95.76 126 | 97.48 147 | 97.54 170 | 89.53 244 | 98.69 299 | 94.43 158 | 94.61 326 | 99.13 133 |
|
tttt0517 | | | 93.31 259 | 92.56 265 | 95.57 225 | 98.71 112 | 87.86 264 | 97.44 77 | 87.17 344 | 95.79 125 | 97.47 149 | 96.84 222 | 64.12 346 | 99.81 31 | 96.20 72 | 99.32 164 | 99.02 156 |
|
ACMMPR | | | 97.95 47 | 97.62 70 | 98.94 16 | 99.20 63 | 97.56 22 | 97.59 69 | 98.83 95 | 96.05 106 | 97.46 150 | 97.63 165 | 96.77 65 | 99.76 52 | 95.61 99 | 99.46 118 | 99.49 50 |
|
RRT_test8_iter05 | | | 92.46 271 | 92.52 266 | 92.29 310 | 95.33 317 | 77.43 338 | 95.73 163 | 98.55 150 | 94.41 176 | 97.46 150 | 97.72 159 | 57.44 351 | 99.74 63 | 96.92 55 | 99.14 182 | 99.69 20 |
|
APD-MVS | | | 97.00 110 | 96.53 138 | 98.41 55 | 98.55 132 | 96.31 61 | 96.32 130 | 98.77 110 | 92.96 227 | 97.44 152 | 97.58 169 | 95.84 99 | 99.74 63 | 91.96 214 | 99.35 152 | 99.19 120 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HPM-MVS | | | 98.11 37 | 97.83 48 | 98.92 20 | 99.42 34 | 97.46 28 | 98.57 15 | 99.05 40 | 95.43 140 | 97.41 153 | 97.50 175 | 97.98 15 | 99.79 38 | 95.58 102 | 99.57 78 | 99.50 42 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
cl_fuxian | | | 95.20 195 | 95.32 181 | 94.83 255 | 96.19 294 | 86.43 289 | 91.83 307 | 98.35 177 | 93.47 204 | 97.36 154 | 97.26 198 | 88.69 251 | 99.28 234 | 95.41 114 | 99.36 147 | 98.78 192 |
|
EPP-MVSNet | | | 96.84 122 | 96.58 132 | 97.65 108 | 99.18 66 | 93.78 156 | 98.68 10 | 96.34 276 | 97.91 43 | 97.30 155 | 98.06 119 | 88.46 253 | 99.85 22 | 93.85 185 | 99.40 140 | 99.32 94 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 130 | 96.51 140 | 97.44 131 | 97.69 229 | 94.15 141 | 96.02 147 | 98.43 162 | 93.17 218 | 97.30 155 | 97.38 188 | 95.48 118 | 99.28 234 | 93.74 188 | 99.34 155 | 98.88 181 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
region2R | | | 97.92 53 | 97.59 73 | 98.92 20 | 99.22 56 | 97.55 23 | 97.60 68 | 98.84 87 | 96.00 111 | 97.22 157 | 97.62 166 | 96.87 61 | 99.76 52 | 95.48 104 | 99.43 130 | 99.46 60 |
|
ITE_SJBPF | | | | | 97.85 96 | 98.64 118 | 96.66 50 | | 98.51 155 | 95.63 130 | 97.22 157 | 97.30 196 | 95.52 116 | 98.55 311 | 90.97 235 | 98.90 213 | 98.34 231 |
|
9.14 | | | | 96.69 127 | | 98.53 134 | | 96.02 147 | 98.98 63 | 93.23 212 | 97.18 159 | 97.46 178 | 96.47 80 | 99.62 134 | 92.99 204 | 99.32 164 | |
|
OMC-MVS | | | 96.48 146 | 96.00 160 | 97.91 92 | 98.30 153 | 96.01 72 | 94.86 219 | 98.60 146 | 91.88 242 | 97.18 159 | 97.21 201 | 96.11 92 | 99.04 265 | 90.49 257 | 99.34 155 | 98.69 203 |
|
our_test_3 | | | 94.20 238 | 94.58 214 | 93.07 295 | 96.16 296 | 81.20 327 | 90.42 327 | 96.84 267 | 90.72 254 | 97.14 161 | 97.13 203 | 90.47 229 | 99.11 257 | 94.04 179 | 98.25 256 | 98.91 174 |
|
MS-PatchMatch | | | 94.83 209 | 94.91 197 | 94.57 267 | 96.81 279 | 87.10 280 | 94.23 242 | 97.34 251 | 88.74 273 | 97.14 161 | 97.11 206 | 91.94 212 | 98.23 328 | 92.99 204 | 97.92 267 | 98.37 225 |
|
eth_miper_zixun_eth | | | 94.89 207 | 94.93 195 | 94.75 259 | 95.99 301 | 86.12 292 | 91.35 313 | 98.49 156 | 93.40 205 | 97.12 163 | 97.25 199 | 86.87 270 | 99.35 216 | 95.08 133 | 98.82 224 | 98.78 192 |
|
3Dnovator | | 96.53 2 | 97.61 77 | 97.64 66 | 97.50 121 | 97.74 226 | 93.65 163 | 98.49 20 | 98.88 79 | 96.86 78 | 97.11 164 | 98.55 67 | 95.82 102 | 99.73 68 | 95.94 86 | 99.42 133 | 99.13 133 |
|
cl-mvsnet_ | | | 94.73 213 | 94.64 208 | 95.01 246 | 95.85 304 | 87.00 281 | 91.33 314 | 98.08 208 | 93.34 208 | 97.10 165 | 97.33 193 | 84.01 285 | 99.30 228 | 95.14 128 | 99.56 81 | 98.71 202 |
|
cl-mvsnet1 | | | 94.73 213 | 94.64 208 | 95.01 246 | 95.86 303 | 87.00 281 | 91.33 314 | 98.08 208 | 93.34 208 | 97.10 165 | 97.34 192 | 84.02 284 | 99.31 225 | 95.15 127 | 99.55 87 | 98.72 200 |
|
PMMVS2 | | | 93.66 251 | 94.07 231 | 92.45 307 | 97.57 238 | 80.67 329 | 86.46 341 | 96.00 281 | 93.99 192 | 97.10 165 | 97.38 188 | 89.90 239 | 97.82 334 | 88.76 280 | 99.47 115 | 98.86 184 |
|
mPP-MVS | | | 97.91 56 | 97.53 77 | 99.04 6 | 99.22 56 | 97.87 11 | 97.74 61 | 98.78 109 | 96.04 108 | 97.10 165 | 97.73 157 | 96.53 75 | 99.78 40 | 95.16 125 | 99.50 105 | 99.46 60 |
|
BH-untuned | | | 94.69 218 | 94.75 204 | 94.52 269 | 97.95 196 | 87.53 272 | 94.07 252 | 97.01 262 | 93.99 192 | 97.10 165 | 95.65 277 | 92.65 192 | 98.95 278 | 87.60 296 | 96.74 304 | 97.09 291 |
|
miper_ehance_all_eth | | | 94.69 218 | 94.70 205 | 94.64 261 | 95.77 307 | 86.22 291 | 91.32 316 | 98.24 186 | 91.67 244 | 97.05 170 | 96.65 236 | 88.39 255 | 99.22 244 | 94.88 139 | 98.34 252 | 98.49 218 |
|
ETH3D-3000-0.1 | | | 96.89 121 | 96.46 142 | 98.16 73 | 98.62 123 | 95.69 79 | 95.96 153 | 98.98 63 | 93.36 207 | 97.04 171 | 97.31 195 | 94.93 135 | 99.63 126 | 92.60 207 | 99.34 155 | 99.17 123 |
|
miper_lstm_enhance | | | 94.81 211 | 94.80 203 | 94.85 253 | 96.16 296 | 86.45 288 | 91.14 320 | 98.20 191 | 93.49 203 | 97.03 172 | 97.37 190 | 84.97 280 | 99.26 237 | 95.28 116 | 99.56 81 | 98.83 186 |
|
UnsupCasMVSNet_bld | | | 94.72 217 | 94.26 224 | 96.08 206 | 98.62 123 | 90.54 226 | 93.38 277 | 98.05 214 | 90.30 257 | 97.02 173 | 96.80 227 | 89.54 242 | 99.16 251 | 88.44 285 | 96.18 313 | 98.56 214 |
|
ppachtmachnet_test | | | 94.49 227 | 94.84 200 | 93.46 287 | 96.16 296 | 82.10 324 | 90.59 325 | 97.48 248 | 90.53 255 | 97.01 174 | 97.59 168 | 91.01 223 | 99.36 213 | 93.97 182 | 99.18 180 | 98.94 165 |
|
D2MVS | | | 95.18 196 | 95.17 185 | 95.21 239 | 97.76 224 | 87.76 269 | 94.15 247 | 97.94 217 | 89.77 263 | 96.99 175 | 97.68 163 | 87.45 265 | 99.14 252 | 95.03 136 | 99.81 29 | 98.74 197 |
|
ab-mvs | | | 96.59 141 | 96.59 131 | 96.60 178 | 98.64 118 | 92.21 191 | 98.35 26 | 97.67 234 | 94.45 175 | 96.99 175 | 98.79 49 | 94.96 134 | 99.49 169 | 90.39 258 | 99.07 196 | 98.08 249 |
|
Anonymous20231206 | | | 95.27 193 | 95.06 190 | 95.88 216 | 98.72 109 | 89.37 237 | 95.70 165 | 97.85 222 | 88.00 281 | 96.98 177 | 97.62 166 | 91.95 211 | 99.34 218 | 89.21 274 | 99.53 93 | 98.94 165 |
|
PVSNet_Blended_VisFu | | | 95.95 166 | 95.80 168 | 96.42 191 | 99.28 46 | 90.62 222 | 95.31 190 | 99.08 34 | 88.40 276 | 96.97 178 | 98.17 106 | 92.11 206 | 99.78 40 | 93.64 191 | 99.21 177 | 98.86 184 |
|
mvs_anonymous | | | 95.36 189 | 96.07 158 | 93.21 293 | 96.29 288 | 81.56 325 | 94.60 229 | 97.66 236 | 93.30 210 | 96.95 179 | 98.91 45 | 93.03 183 | 99.38 208 | 96.60 59 | 97.30 296 | 98.69 203 |
|
ZNCC-MVS | | | 97.92 53 | 97.62 70 | 98.83 24 | 99.32 44 | 97.24 36 | 97.45 76 | 98.84 87 | 95.76 126 | 96.93 180 | 97.43 180 | 97.26 39 | 99.79 38 | 96.06 76 | 99.53 93 | 99.45 65 |
|
3Dnovator+ | | 96.13 3 | 97.73 69 | 97.59 73 | 98.15 76 | 98.11 182 | 95.60 85 | 98.04 45 | 98.70 128 | 98.13 37 | 96.93 180 | 98.45 74 | 95.30 126 | 99.62 134 | 95.64 97 | 98.96 205 | 99.24 115 |
|
USDC | | | 94.56 225 | 94.57 216 | 94.55 268 | 97.78 222 | 86.43 289 | 92.75 289 | 98.65 143 | 85.96 296 | 96.91 182 | 97.93 135 | 90.82 226 | 98.74 294 | 90.71 247 | 99.59 73 | 98.47 219 |
|
CP-MVS | | | 97.92 53 | 97.56 76 | 98.99 11 | 98.99 91 | 97.82 12 | 97.93 50 | 98.96 67 | 96.11 103 | 96.89 183 | 97.45 179 | 96.85 62 | 99.78 40 | 95.19 121 | 99.63 61 | 99.38 85 |
|
OpenMVS_ROB | | 91.80 14 | 93.64 252 | 93.05 251 | 95.42 233 | 97.31 261 | 91.21 211 | 95.08 206 | 96.68 274 | 81.56 324 | 96.88 184 | 96.41 248 | 90.44 230 | 99.25 239 | 85.39 315 | 97.67 281 | 95.80 321 |
|
testtj | | | 96.69 136 | 96.13 153 | 98.36 59 | 98.46 145 | 96.02 71 | 96.44 121 | 98.70 128 | 94.26 182 | 96.79 185 | 97.13 203 | 94.07 160 | 99.75 56 | 90.53 253 | 98.80 225 | 99.31 99 |
|
test_yl | | | 94.40 228 | 94.00 235 | 95.59 223 | 96.95 273 | 89.52 234 | 94.75 225 | 95.55 291 | 96.18 101 | 96.79 185 | 96.14 261 | 81.09 293 | 99.18 246 | 90.75 243 | 97.77 271 | 98.07 251 |
|
DCV-MVSNet | | | 94.40 228 | 94.00 235 | 95.59 223 | 96.95 273 | 89.52 234 | 94.75 225 | 95.55 291 | 96.18 101 | 96.79 185 | 96.14 261 | 81.09 293 | 99.18 246 | 90.75 243 | 97.77 271 | 98.07 251 |
|
Gipuma | | | 98.07 38 | 98.31 29 | 97.36 138 | 99.76 5 | 96.28 63 | 98.51 19 | 99.10 28 | 98.76 21 | 96.79 185 | 99.34 17 | 96.61 72 | 98.82 286 | 96.38 68 | 99.50 105 | 96.98 295 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
alignmvs | | | 96.01 164 | 95.52 178 | 97.50 121 | 97.77 223 | 94.71 119 | 96.07 143 | 96.84 267 | 97.48 61 | 96.78 189 | 94.28 306 | 85.50 276 | 99.40 199 | 96.22 71 | 98.73 234 | 98.40 222 |
|
MSLP-MVS++ | | | 96.42 150 | 96.71 126 | 95.57 225 | 97.82 208 | 90.56 225 | 95.71 164 | 98.84 87 | 94.72 166 | 96.71 190 | 97.39 186 | 94.91 136 | 98.10 332 | 95.28 116 | 99.02 201 | 98.05 258 |
|
canonicalmvs | | | 97.23 106 | 97.21 99 | 97.30 141 | 97.65 234 | 94.39 130 | 97.84 55 | 99.05 40 | 97.42 63 | 96.68 191 | 93.85 309 | 97.63 26 | 99.33 221 | 96.29 70 | 98.47 249 | 98.18 246 |
|
diffmvs | | | 96.04 162 | 96.23 149 | 95.46 232 | 97.35 253 | 88.03 262 | 93.42 274 | 99.08 34 | 94.09 190 | 96.66 192 | 96.93 217 | 93.85 165 | 99.29 232 | 96.01 83 | 98.67 236 | 99.06 150 |
|
MVP-Stereo | | | 95.69 173 | 95.28 182 | 96.92 159 | 98.15 176 | 93.03 177 | 95.64 173 | 98.20 191 | 90.39 256 | 96.63 193 | 97.73 157 | 91.63 218 | 99.10 259 | 91.84 219 | 97.31 295 | 98.63 208 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Vis-MVSNet (Re-imp) | | | 95.11 199 | 94.85 199 | 95.87 217 | 99.12 79 | 89.17 240 | 97.54 74 | 94.92 295 | 96.50 88 | 96.58 194 | 97.27 197 | 83.64 286 | 99.48 172 | 88.42 286 | 99.67 56 | 98.97 161 |
|
MVS_111021_HR | | | 96.73 132 | 96.54 137 | 97.27 142 | 98.35 151 | 93.66 162 | 93.42 274 | 98.36 173 | 94.74 165 | 96.58 194 | 96.76 230 | 96.54 74 | 98.99 271 | 94.87 140 | 99.27 173 | 99.15 127 |
|
thisisatest0530 | | | 92.71 268 | 91.76 275 | 95.56 227 | 98.42 146 | 88.23 256 | 96.03 146 | 87.35 343 | 94.04 191 | 96.56 196 | 95.47 283 | 64.03 347 | 99.77 48 | 94.78 146 | 99.11 190 | 98.68 205 |
|
MVS_111021_LR | | | 96.82 126 | 96.55 135 | 97.62 110 | 98.27 158 | 95.34 98 | 93.81 264 | 98.33 178 | 94.59 172 | 96.56 196 | 96.63 237 | 96.61 72 | 98.73 295 | 94.80 143 | 99.34 155 | 98.78 192 |
|
DELS-MVS | | | 96.17 157 | 96.23 149 | 95.99 208 | 97.55 241 | 90.04 228 | 92.38 299 | 98.52 153 | 94.13 188 | 96.55 198 | 97.06 209 | 94.99 133 | 99.58 144 | 95.62 98 | 99.28 171 | 98.37 225 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
baseline1 | | | 93.14 263 | 92.64 263 | 94.62 263 | 97.34 257 | 87.20 279 | 96.67 116 | 93.02 312 | 94.71 167 | 96.51 199 | 95.83 273 | 81.64 290 | 98.60 307 | 90.00 264 | 88.06 341 | 98.07 251 |
|
Patchmatch-test | | | 93.60 253 | 93.25 249 | 94.63 262 | 96.14 299 | 87.47 273 | 96.04 145 | 94.50 299 | 93.57 201 | 96.47 200 | 96.97 214 | 76.50 315 | 98.61 305 | 90.67 249 | 98.41 251 | 97.81 272 |
|
HyFIR lowres test | | | 93.72 248 | 92.65 262 | 96.91 161 | 98.93 94 | 91.81 204 | 91.23 318 | 98.52 153 | 82.69 320 | 96.46 201 | 96.52 244 | 80.38 297 | 99.90 13 | 90.36 259 | 98.79 226 | 99.03 154 |
|
QAPM | | | 95.88 169 | 95.57 177 | 96.80 167 | 97.90 199 | 91.84 203 | 98.18 39 | 98.73 118 | 88.41 275 | 96.42 202 | 98.13 108 | 94.73 137 | 99.75 56 | 88.72 281 | 98.94 209 | 98.81 188 |
|
BH-RMVSNet | | | 94.56 225 | 94.44 221 | 94.91 249 | 97.57 238 | 87.44 274 | 93.78 265 | 96.26 277 | 93.69 200 | 96.41 203 | 96.50 245 | 92.10 207 | 99.00 269 | 85.96 308 | 97.71 277 | 98.31 233 |
|
CNVR-MVS | | | 96.92 117 | 96.55 135 | 98.03 86 | 98.00 191 | 95.54 87 | 94.87 218 | 98.17 197 | 94.60 170 | 96.38 204 | 97.05 210 | 95.67 112 | 99.36 213 | 95.12 131 | 99.08 194 | 99.19 120 |
|
thres600view7 | | | 92.03 280 | 91.43 277 | 93.82 280 | 98.19 167 | 84.61 311 | 96.27 131 | 90.39 334 | 96.81 79 | 96.37 205 | 93.11 312 | 73.44 330 | 99.49 169 | 80.32 332 | 97.95 266 | 97.36 286 |
|
thres100view900 | | | 91.76 284 | 91.26 282 | 93.26 290 | 98.21 165 | 84.50 312 | 96.39 124 | 90.39 334 | 96.87 77 | 96.33 206 | 93.08 314 | 73.44 330 | 99.42 188 | 78.85 336 | 97.74 274 | 95.85 319 |
|
XVS | | | 97.96 44 | 97.63 68 | 98.94 16 | 99.15 70 | 97.66 16 | 97.77 57 | 98.83 95 | 97.42 63 | 96.32 207 | 97.64 164 | 96.49 78 | 99.72 72 | 95.66 95 | 99.37 144 | 99.45 65 |
|
X-MVStestdata | | | 92.86 265 | 90.83 289 | 98.94 16 | 99.15 70 | 97.66 16 | 97.77 57 | 98.83 95 | 97.42 63 | 96.32 207 | 36.50 348 | 96.49 78 | 99.72 72 | 95.66 95 | 99.37 144 | 99.45 65 |
|
MSDG | | | 95.33 190 | 95.13 186 | 95.94 214 | 97.40 251 | 91.85 202 | 91.02 322 | 98.37 172 | 95.30 144 | 96.31 209 | 95.99 265 | 94.51 149 | 98.38 321 | 89.59 269 | 97.65 283 | 97.60 280 |
|
CDS-MVSNet | | | 94.88 208 | 94.12 230 | 97.14 148 | 97.64 235 | 93.57 164 | 93.96 258 | 97.06 261 | 90.05 260 | 96.30 210 | 96.55 240 | 86.10 272 | 99.47 175 | 90.10 262 | 99.31 166 | 98.40 222 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CVMVSNet | | | 92.33 275 | 92.79 258 | 90.95 317 | 97.26 262 | 75.84 343 | 95.29 192 | 92.33 320 | 81.86 322 | 96.27 211 | 98.19 104 | 81.44 291 | 98.46 316 | 94.23 169 | 98.29 255 | 98.55 216 |
|
FMVSNet5 | | | 93.39 257 | 92.35 267 | 96.50 186 | 95.83 305 | 90.81 220 | 97.31 82 | 98.27 182 | 92.74 230 | 96.27 211 | 98.28 91 | 62.23 348 | 99.67 115 | 90.86 238 | 99.36 147 | 99.03 154 |
|
TAPA-MVS | | 93.32 12 | 94.93 205 | 94.23 225 | 97.04 154 | 98.18 170 | 94.51 126 | 95.22 198 | 98.73 118 | 81.22 327 | 96.25 213 | 95.95 270 | 93.80 167 | 98.98 273 | 89.89 265 | 98.87 217 | 97.62 278 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CHOSEN 1792x2688 | | | 94.10 240 | 93.41 246 | 96.18 203 | 99.16 67 | 90.04 228 | 92.15 301 | 98.68 133 | 79.90 332 | 96.22 214 | 97.83 145 | 87.92 262 | 99.42 188 | 89.18 275 | 99.65 59 | 99.08 146 |
|
MCST-MVS | | | 96.24 153 | 95.80 168 | 97.56 113 | 98.75 106 | 94.13 142 | 94.66 227 | 98.17 197 | 90.17 259 | 96.21 215 | 96.10 264 | 95.14 129 | 99.43 187 | 94.13 173 | 98.85 221 | 99.13 133 |
|
PHI-MVS | | | 96.96 115 | 96.53 138 | 98.25 69 | 97.48 243 | 96.50 55 | 96.76 108 | 98.85 84 | 93.52 202 | 96.19 216 | 96.85 221 | 95.94 96 | 99.42 188 | 93.79 187 | 99.43 130 | 98.83 186 |
|
HQP_MVS | | | 96.66 139 | 96.33 147 | 97.68 107 | 98.70 114 | 94.29 134 | 96.50 119 | 98.75 114 | 96.36 93 | 96.16 217 | 96.77 228 | 91.91 215 | 99.46 178 | 92.59 209 | 99.20 178 | 99.28 107 |
|
plane_prior3 | | | | | | | 94.51 126 | | | 95.29 145 | 96.16 217 | | | | | | |
|
miper_enhance_ethall | | | 93.14 263 | 92.78 260 | 94.20 277 | 93.65 336 | 85.29 301 | 89.97 331 | 97.85 222 | 85.05 309 | 96.15 219 | 94.56 298 | 85.74 274 | 99.14 252 | 93.74 188 | 98.34 252 | 98.17 247 |
|
MVS_Test | | | 96.27 152 | 96.79 124 | 94.73 260 | 96.94 275 | 86.63 286 | 96.18 138 | 98.33 178 | 94.94 159 | 96.07 220 | 98.28 91 | 95.25 127 | 99.26 237 | 97.21 44 | 97.90 269 | 98.30 235 |
|
PCF-MVS | | 89.43 18 | 92.12 279 | 90.64 292 | 96.57 183 | 97.80 213 | 93.48 167 | 89.88 335 | 98.45 159 | 74.46 344 | 96.04 221 | 95.68 276 | 90.71 227 | 99.31 225 | 73.73 341 | 99.01 203 | 96.91 299 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ETH3D cwj APD-0.16 | | | 96.23 154 | 95.61 175 | 98.09 79 | 97.91 197 | 95.65 84 | 94.94 215 | 98.74 116 | 91.31 249 | 96.02 222 | 97.08 208 | 94.05 161 | 99.69 104 | 91.51 225 | 98.94 209 | 98.93 169 |
|
CPTT-MVS | | | 96.69 136 | 96.08 157 | 98.49 50 | 98.89 98 | 96.64 51 | 97.25 85 | 98.77 110 | 92.89 228 | 96.01 223 | 97.13 203 | 92.23 203 | 99.67 115 | 92.24 212 | 99.34 155 | 99.17 123 |
|
PMVS | | 89.60 17 | 96.71 135 | 96.97 112 | 95.95 212 | 99.51 22 | 97.81 13 | 97.42 80 | 97.49 246 | 97.93 42 | 95.95 224 | 98.58 63 | 96.88 60 | 96.91 340 | 89.59 269 | 99.36 147 | 93.12 338 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
xiu_mvs_v1_base_debu | | | 95.62 176 | 95.96 163 | 94.60 264 | 98.01 187 | 88.42 252 | 93.99 255 | 98.21 188 | 92.98 223 | 95.91 225 | 94.53 299 | 96.39 84 | 99.72 72 | 95.43 111 | 98.19 257 | 95.64 323 |
|
xiu_mvs_v1_base | | | 95.62 176 | 95.96 163 | 94.60 264 | 98.01 187 | 88.42 252 | 93.99 255 | 98.21 188 | 92.98 223 | 95.91 225 | 94.53 299 | 96.39 84 | 99.72 72 | 95.43 111 | 98.19 257 | 95.64 323 |
|
xiu_mvs_v1_base_debi | | | 95.62 176 | 95.96 163 | 94.60 264 | 98.01 187 | 88.42 252 | 93.99 255 | 98.21 188 | 92.98 223 | 95.91 225 | 94.53 299 | 96.39 84 | 99.72 72 | 95.43 111 | 98.19 257 | 95.64 323 |
|
tfpn200view9 | | | 91.55 286 | 91.00 284 | 93.21 293 | 98.02 185 | 84.35 314 | 95.70 165 | 90.79 331 | 96.26 97 | 95.90 228 | 92.13 327 | 73.62 328 | 99.42 188 | 78.85 336 | 97.74 274 | 95.85 319 |
|
thres400 | | | 91.68 285 | 91.00 284 | 93.71 282 | 98.02 185 | 84.35 314 | 95.70 165 | 90.79 331 | 96.26 97 | 95.90 228 | 92.13 327 | 73.62 328 | 99.42 188 | 78.85 336 | 97.74 274 | 97.36 286 |
|
cl-mvsnet2 | | | 93.25 261 | 92.84 257 | 94.46 270 | 94.30 328 | 86.00 293 | 91.09 321 | 96.64 275 | 90.74 253 | 95.79 230 | 96.31 253 | 78.24 304 | 98.77 291 | 94.15 172 | 98.34 252 | 98.62 209 |
|
API-MVS | | | 95.09 201 | 95.01 192 | 95.31 236 | 96.61 281 | 94.02 145 | 96.83 104 | 97.18 256 | 95.60 132 | 95.79 230 | 94.33 304 | 94.54 148 | 98.37 323 | 85.70 310 | 98.52 246 | 93.52 335 |
|
DP-MVS Recon | | | 95.55 179 | 95.13 186 | 96.80 167 | 98.51 136 | 93.99 147 | 94.60 229 | 98.69 131 | 90.20 258 | 95.78 232 | 96.21 258 | 92.73 189 | 98.98 273 | 90.58 252 | 98.86 219 | 97.42 285 |
|
CLD-MVS | | | 95.47 184 | 95.07 188 | 96.69 174 | 98.27 158 | 92.53 184 | 91.36 312 | 98.67 136 | 91.22 250 | 95.78 232 | 94.12 307 | 95.65 113 | 98.98 273 | 90.81 240 | 99.72 46 | 98.57 213 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
旧先验2 | | | | | | | | 93.35 278 | | 77.95 340 | 95.77 234 | | | 98.67 303 | 90.74 246 | | |
|
pmmvs4 | | | 94.82 210 | 94.19 228 | 96.70 173 | 97.42 250 | 92.75 182 | 92.09 304 | 96.76 270 | 86.80 291 | 95.73 235 | 97.22 200 | 89.28 248 | 98.89 281 | 93.28 197 | 99.14 182 | 98.46 221 |
|
LF4IMVS | | | 96.07 160 | 95.63 174 | 97.36 138 | 98.19 167 | 95.55 86 | 95.44 177 | 98.82 103 | 92.29 236 | 95.70 236 | 96.55 240 | 92.63 193 | 98.69 299 | 91.75 222 | 99.33 162 | 97.85 268 |
|
testdata | | | | | 95.70 222 | 98.16 174 | 90.58 223 | | 97.72 231 | 80.38 330 | 95.62 237 | 97.02 212 | 92.06 209 | 98.98 273 | 89.06 278 | 98.52 246 | 97.54 281 |
|
MP-MVS | | | 97.64 74 | 97.18 100 | 99.00 10 | 99.32 44 | 97.77 14 | 97.49 75 | 98.73 118 | 96.27 96 | 95.59 238 | 97.75 154 | 96.30 89 | 99.78 40 | 93.70 190 | 99.48 113 | 99.45 65 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ETV-MVS | | | 96.13 159 | 95.90 166 | 96.82 166 | 97.76 224 | 93.89 149 | 95.40 182 | 98.95 69 | 95.87 120 | 95.58 239 | 91.00 337 | 96.36 87 | 99.72 72 | 93.36 194 | 98.83 223 | 96.85 302 |
|
thres200 | | | 91.00 292 | 90.42 295 | 92.77 303 | 97.47 247 | 83.98 317 | 94.01 254 | 91.18 329 | 95.12 152 | 95.44 240 | 91.21 335 | 73.93 324 | 99.31 225 | 77.76 339 | 97.63 284 | 95.01 329 |
|
CDPH-MVS | | | 95.45 186 | 94.65 207 | 97.84 97 | 98.28 156 | 94.96 111 | 93.73 266 | 98.33 178 | 85.03 310 | 95.44 240 | 96.60 238 | 95.31 125 | 99.44 185 | 90.01 263 | 99.13 186 | 99.11 141 |
|
NCCC | | | 96.52 144 | 95.99 161 | 98.10 78 | 97.81 209 | 95.68 81 | 95.00 213 | 98.20 191 | 95.39 141 | 95.40 242 | 96.36 251 | 93.81 166 | 99.45 182 | 93.55 193 | 98.42 250 | 99.17 123 |
|
jason | | | 94.39 230 | 94.04 233 | 95.41 235 | 98.29 154 | 87.85 266 | 92.74 291 | 96.75 271 | 85.38 307 | 95.29 243 | 96.15 259 | 88.21 257 | 99.65 121 | 94.24 168 | 99.34 155 | 98.74 197 |
jason: jason. |
new_pmnet | | | 92.34 274 | 91.69 276 | 94.32 274 | 96.23 292 | 89.16 241 | 92.27 300 | 92.88 314 | 84.39 317 | 95.29 243 | 96.35 252 | 85.66 275 | 96.74 343 | 84.53 320 | 97.56 285 | 97.05 293 |
|
pmmvs5 | | | 94.63 222 | 94.34 223 | 95.50 229 | 97.63 236 | 88.34 255 | 94.02 253 | 97.13 258 | 87.15 287 | 95.22 245 | 97.15 202 | 87.50 264 | 99.27 236 | 93.99 180 | 99.26 174 | 98.88 181 |
|
Effi-MVS+-dtu | | | 96.81 127 | 96.09 156 | 98.99 11 | 96.90 277 | 98.69 2 | 96.42 122 | 98.09 206 | 95.86 121 | 95.15 246 | 95.54 281 | 94.26 155 | 99.81 31 | 94.06 175 | 98.51 248 | 98.47 219 |
|
HPM-MVS++ | | | 96.99 111 | 96.38 144 | 98.81 27 | 98.64 118 | 97.59 20 | 95.97 152 | 98.20 191 | 95.51 136 | 95.06 247 | 96.53 242 | 94.10 159 | 99.70 96 | 94.29 166 | 99.15 181 | 99.13 133 |
|
MIMVSNet | | | 93.42 256 | 92.86 255 | 95.10 243 | 98.17 172 | 88.19 257 | 98.13 41 | 93.69 304 | 92.07 237 | 95.04 248 | 98.21 103 | 80.95 295 | 99.03 268 | 81.42 330 | 98.06 263 | 98.07 251 |
|
TR-MVS | | | 92.54 270 | 92.20 269 | 93.57 285 | 96.49 284 | 86.66 285 | 93.51 272 | 94.73 296 | 89.96 261 | 94.95 249 | 93.87 308 | 90.24 236 | 98.61 305 | 81.18 331 | 94.88 323 | 95.45 327 |
|
PatchMatch-RL | | | 94.61 223 | 93.81 240 | 97.02 156 | 98.19 167 | 95.72 77 | 93.66 267 | 97.23 253 | 88.17 279 | 94.94 250 | 95.62 279 | 91.43 219 | 98.57 308 | 87.36 301 | 97.68 280 | 96.76 306 |
|
MG-MVS | | | 94.08 242 | 94.00 235 | 94.32 274 | 97.09 269 | 85.89 294 | 93.19 283 | 95.96 283 | 92.52 231 | 94.93 251 | 97.51 174 | 89.54 242 | 98.77 291 | 87.52 299 | 97.71 277 | 98.31 233 |
|
新几何1 | | | | | 97.25 145 | 98.29 154 | 94.70 122 | | 97.73 230 | 77.98 338 | 94.83 252 | 96.67 235 | 92.08 208 | 99.45 182 | 88.17 290 | 98.65 239 | 97.61 279 |
|
Fast-Effi-MVS+-dtu | | | 96.44 148 | 96.12 154 | 97.39 136 | 97.18 266 | 94.39 130 | 95.46 176 | 98.73 118 | 96.03 110 | 94.72 253 | 94.92 293 | 96.28 91 | 99.69 104 | 93.81 186 | 97.98 265 | 98.09 248 |
|
test0.0.03 1 | | | 90.11 297 | 89.21 303 | 92.83 302 | 93.89 334 | 86.87 284 | 91.74 308 | 88.74 341 | 92.02 238 | 94.71 254 | 91.14 336 | 73.92 325 | 94.48 346 | 83.75 326 | 92.94 331 | 97.16 290 |
|
ETH3 D test6400 | | | 94.77 212 | 93.87 239 | 97.47 126 | 98.12 181 | 93.73 157 | 94.56 231 | 98.70 128 | 85.45 305 | 94.70 255 | 95.93 272 | 91.77 217 | 99.63 126 | 86.45 306 | 99.14 182 | 99.05 152 |
|
test222 | | | | | | 98.17 172 | 93.24 172 | 92.74 291 | 97.61 244 | 75.17 343 | 94.65 256 | 96.69 234 | 90.96 225 | | | 98.66 238 | 97.66 277 |
|
SCA | | | 93.38 258 | 93.52 244 | 92.96 300 | 96.24 290 | 81.40 326 | 93.24 281 | 94.00 302 | 91.58 247 | 94.57 257 | 96.97 214 | 87.94 258 | 99.42 188 | 89.47 271 | 97.66 282 | 98.06 255 |
|
CNLPA | | | 95.04 202 | 94.47 218 | 96.75 170 | 97.81 209 | 95.25 100 | 94.12 251 | 97.89 220 | 94.41 176 | 94.57 257 | 95.69 275 | 90.30 234 | 98.35 324 | 86.72 305 | 98.76 229 | 96.64 309 |
|
1121 | | | 94.26 231 | 93.26 248 | 97.27 142 | 98.26 160 | 94.73 117 | 95.86 158 | 97.71 232 | 77.96 339 | 94.53 259 | 96.71 232 | 91.93 213 | 99.40 199 | 87.71 292 | 98.64 240 | 97.69 276 |
|
PVSNet_BlendedMVS | | | 95.02 204 | 94.93 195 | 95.27 237 | 97.79 218 | 87.40 275 | 94.14 249 | 98.68 133 | 88.94 270 | 94.51 260 | 98.01 125 | 93.04 181 | 99.30 228 | 89.77 267 | 99.49 109 | 99.11 141 |
|
PVSNet_Blended | | | 93.96 244 | 93.65 242 | 94.91 249 | 97.79 218 | 87.40 275 | 91.43 311 | 98.68 133 | 84.50 315 | 94.51 260 | 94.48 302 | 93.04 181 | 99.30 228 | 89.77 267 | 98.61 242 | 98.02 261 |
|
MVSFormer | | | 96.14 158 | 96.36 145 | 95.49 230 | 97.68 230 | 87.81 267 | 98.67 11 | 99.02 49 | 96.50 88 | 94.48 262 | 96.15 259 | 86.90 268 | 99.92 4 | 98.73 7 | 99.13 186 | 98.74 197 |
|
lupinMVS | | | 93.77 246 | 93.28 247 | 95.24 238 | 97.68 230 | 87.81 267 | 92.12 302 | 96.05 280 | 84.52 314 | 94.48 262 | 95.06 289 | 86.90 268 | 99.63 126 | 93.62 192 | 99.13 186 | 98.27 238 |
|
OpenMVS | | 94.22 8 | 95.48 183 | 95.20 183 | 96.32 196 | 97.16 267 | 91.96 200 | 97.74 61 | 98.84 87 | 87.26 285 | 94.36 264 | 98.01 125 | 93.95 163 | 99.67 115 | 90.70 248 | 98.75 230 | 97.35 288 |
|
PatchT | | | 93.75 247 | 93.57 243 | 94.29 276 | 95.05 320 | 87.32 277 | 96.05 144 | 92.98 313 | 97.54 59 | 94.25 265 | 98.72 54 | 75.79 320 | 99.24 240 | 95.92 87 | 95.81 315 | 96.32 315 |
|
BH-w/o | | | 92.14 278 | 91.94 271 | 92.73 304 | 97.13 268 | 85.30 300 | 92.46 296 | 95.64 288 | 89.33 266 | 94.21 266 | 92.74 320 | 89.60 241 | 98.24 327 | 81.68 329 | 94.66 325 | 94.66 331 |
|
xiu_mvs_v2_base | | | 94.22 233 | 94.63 210 | 92.99 299 | 97.32 260 | 84.84 309 | 92.12 302 | 97.84 224 | 91.96 240 | 94.17 267 | 93.43 310 | 96.07 93 | 99.71 87 | 91.27 229 | 97.48 289 | 94.42 332 |
|
PS-MVSNAJ | | | 94.10 240 | 94.47 218 | 93.00 298 | 97.35 253 | 84.88 308 | 91.86 306 | 97.84 224 | 91.96 240 | 94.17 267 | 92.50 324 | 95.82 102 | 99.71 87 | 91.27 229 | 97.48 289 | 94.40 333 |
|
CR-MVSNet | | | 93.29 260 | 92.79 258 | 94.78 257 | 95.44 314 | 88.15 258 | 96.18 138 | 97.20 254 | 84.94 312 | 94.10 269 | 98.57 64 | 77.67 307 | 99.39 204 | 95.17 123 | 95.81 315 | 96.81 304 |
|
RPMNet | | | 94.22 233 | 94.03 234 | 94.78 257 | 95.44 314 | 88.15 258 | 96.18 138 | 93.73 303 | 97.43 62 | 94.10 269 | 98.49 71 | 79.40 299 | 99.39 204 | 95.69 92 | 95.81 315 | 96.81 304 |
|
WTY-MVS | | | 93.55 254 | 93.00 253 | 95.19 240 | 97.81 209 | 87.86 264 | 93.89 260 | 96.00 281 | 89.02 268 | 94.07 271 | 95.44 284 | 86.27 271 | 99.33 221 | 87.69 294 | 96.82 301 | 98.39 224 |
|
GA-MVS | | | 92.83 266 | 92.15 270 | 94.87 252 | 96.97 272 | 87.27 278 | 90.03 330 | 96.12 279 | 91.83 243 | 94.05 272 | 94.57 297 | 76.01 319 | 98.97 277 | 92.46 211 | 97.34 294 | 98.36 230 |
|
test_prior3 | | | 95.91 167 | 95.39 180 | 97.46 128 | 97.79 218 | 94.26 138 | 93.33 279 | 98.42 165 | 94.21 184 | 94.02 273 | 96.25 255 | 93.64 170 | 99.34 218 | 91.90 215 | 98.96 205 | 98.79 190 |
|
test_prior2 | | | | | | | | 93.33 279 | | 94.21 184 | 94.02 273 | 96.25 255 | 93.64 170 | | 91.90 215 | 98.96 205 | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 353 | 94.89 217 | | 80.59 329 | 94.02 273 | | 78.66 303 | | 85.50 314 | | 97.82 270 |
|
AdaColmap | | | 95.11 199 | 94.62 211 | 96.58 181 | 97.33 259 | 94.45 129 | 94.92 216 | 98.08 208 | 93.15 219 | 93.98 276 | 95.53 282 | 94.34 153 | 99.10 259 | 85.69 311 | 98.61 242 | 96.20 317 |
|
pmmvs3 | | | 90.00 299 | 88.90 307 | 93.32 288 | 94.20 332 | 85.34 299 | 91.25 317 | 92.56 319 | 78.59 336 | 93.82 277 | 95.17 286 | 67.36 344 | 98.69 299 | 89.08 277 | 98.03 264 | 95.92 318 |
|
TEST9 | | | | | | 97.84 206 | 95.23 101 | 93.62 268 | 98.39 169 | 86.81 290 | 93.78 278 | 95.99 265 | 94.68 141 | 99.52 163 | | | |
|
train_agg | | | 95.46 185 | 94.66 206 | 97.88 94 | 97.84 206 | 95.23 101 | 93.62 268 | 98.39 169 | 87.04 288 | 93.78 278 | 95.99 265 | 94.58 146 | 99.52 163 | 91.76 221 | 98.90 213 | 98.89 178 |
|
EIA-MVS | | | 96.04 162 | 95.77 170 | 96.85 164 | 97.80 213 | 92.98 178 | 96.12 141 | 99.16 17 | 94.65 168 | 93.77 280 | 91.69 332 | 95.68 111 | 99.67 115 | 94.18 170 | 98.85 221 | 97.91 266 |
|
sss | | | 94.22 233 | 93.72 241 | 95.74 219 | 97.71 228 | 89.95 230 | 93.84 261 | 96.98 263 | 88.38 277 | 93.75 281 | 95.74 274 | 87.94 258 | 98.89 281 | 91.02 234 | 98.10 261 | 98.37 225 |
|
test_8 | | | | | | 97.81 209 | 95.07 109 | 93.54 271 | 98.38 171 | 87.04 288 | 93.71 282 | 95.96 269 | 94.58 146 | 99.52 163 | | | |
|
E-PMN | | | 89.52 305 | 89.78 299 | 88.73 326 | 93.14 341 | 77.61 337 | 83.26 345 | 92.02 321 | 94.82 163 | 93.71 282 | 93.11 312 | 75.31 321 | 96.81 341 | 85.81 309 | 96.81 302 | 91.77 341 |
|
thisisatest0515 | | | 90.43 295 | 89.18 306 | 94.17 279 | 97.07 270 | 85.44 298 | 89.75 336 | 87.58 342 | 88.28 278 | 93.69 284 | 91.72 331 | 65.27 345 | 99.58 144 | 90.59 251 | 98.67 236 | 97.50 283 |
|
mvs-test1 | | | 96.20 155 | 95.50 179 | 98.32 62 | 96.90 277 | 98.16 4 | 95.07 207 | 98.09 206 | 95.86 121 | 93.63 285 | 94.32 305 | 94.26 155 | 99.71 87 | 94.06 175 | 97.27 297 | 97.07 292 |
|
UGNet | | | 96.81 127 | 96.56 134 | 97.58 112 | 96.64 280 | 93.84 153 | 97.75 60 | 97.12 259 | 96.47 91 | 93.62 286 | 98.88 46 | 93.22 178 | 99.53 159 | 95.61 99 | 99.69 53 | 99.36 91 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PatchmatchNet | | | 91.98 281 | 91.87 272 | 92.30 309 | 94.60 325 | 79.71 331 | 95.12 201 | 93.59 308 | 89.52 264 | 93.61 287 | 97.02 212 | 77.94 305 | 99.18 246 | 90.84 239 | 94.57 328 | 98.01 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CMPMVS | | 73.10 23 | 92.74 267 | 91.39 278 | 96.77 169 | 93.57 338 | 94.67 123 | 94.21 244 | 97.67 234 | 80.36 331 | 93.61 287 | 96.60 238 | 82.85 288 | 97.35 338 | 84.86 318 | 98.78 227 | 98.29 237 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test12 | | | | | 97.46 128 | 97.61 237 | 94.07 143 | | 97.78 228 | | 93.57 289 | | 93.31 176 | 99.42 188 | | 98.78 227 | 98.89 178 |
|
CS-MVS | | | 95.86 170 | 95.59 176 | 96.69 174 | 97.85 201 | 93.14 174 | 96.42 122 | 99.25 9 | 94.17 187 | 93.56 290 | 90.76 340 | 96.05 94 | 99.72 72 | 93.28 197 | 98.91 212 | 97.21 289 |
|
tpm | | | 91.08 291 | 90.85 288 | 91.75 312 | 95.33 317 | 78.09 334 | 95.03 212 | 91.27 328 | 88.75 272 | 93.53 291 | 97.40 182 | 71.24 335 | 99.30 228 | 91.25 231 | 93.87 329 | 97.87 267 |
|
agg_prior1 | | | 95.39 188 | 94.60 212 | 97.75 100 | 97.80 213 | 94.96 111 | 93.39 276 | 98.36 173 | 87.20 286 | 93.49 292 | 95.97 268 | 94.65 143 | 99.53 159 | 91.69 223 | 98.86 219 | 98.77 195 |
|
agg_prior | | | | | | 97.80 213 | 94.96 111 | | 98.36 173 | | 93.49 292 | | | 99.53 159 | | | |
|
原ACMM1 | | | | | 96.58 181 | 98.16 174 | 92.12 195 | | 98.15 200 | 85.90 298 | 93.49 292 | 96.43 247 | 92.47 200 | 99.38 208 | 87.66 295 | 98.62 241 | 98.23 241 |
|
MDTV_nov1_ep13 | | | | 91.28 280 | | 94.31 327 | 73.51 347 | 94.80 222 | 93.16 311 | 86.75 292 | 93.45 295 | 97.40 182 | 76.37 316 | 98.55 311 | 88.85 279 | 96.43 309 | |
|
114514_t | | | 93.96 244 | 93.22 250 | 96.19 202 | 99.06 85 | 90.97 215 | 95.99 150 | 98.94 70 | 73.88 345 | 93.43 296 | 96.93 217 | 92.38 202 | 99.37 211 | 89.09 276 | 99.28 171 | 98.25 240 |
|
Fast-Effi-MVS+ | | | 95.49 181 | 95.07 188 | 96.75 170 | 97.67 233 | 92.82 180 | 94.22 243 | 98.60 146 | 91.61 245 | 93.42 297 | 92.90 317 | 96.73 67 | 99.70 96 | 92.60 207 | 97.89 270 | 97.74 273 |
|
PAPM_NR | | | 94.61 223 | 94.17 229 | 95.96 210 | 98.36 150 | 91.23 210 | 95.93 156 | 97.95 216 | 92.98 223 | 93.42 297 | 94.43 303 | 90.53 228 | 98.38 321 | 87.60 296 | 96.29 312 | 98.27 238 |
|
Effi-MVS+ | | | 96.19 156 | 96.01 159 | 96.71 172 | 97.43 249 | 92.19 194 | 96.12 141 | 99.10 28 | 95.45 138 | 93.33 299 | 94.71 296 | 97.23 42 | 99.56 151 | 93.21 201 | 97.54 286 | 98.37 225 |
|
F-COLMAP | | | 95.30 192 | 94.38 222 | 98.05 85 | 98.64 118 | 96.04 69 | 95.61 174 | 98.66 138 | 89.00 269 | 93.22 300 | 96.40 250 | 92.90 185 | 99.35 216 | 87.45 300 | 97.53 287 | 98.77 195 |
|
EPMVS | | | 89.26 306 | 88.55 309 | 91.39 314 | 92.36 347 | 79.11 332 | 95.65 171 | 79.86 349 | 88.60 274 | 93.12 301 | 96.53 242 | 70.73 339 | 98.10 332 | 90.75 243 | 89.32 340 | 96.98 295 |
|
DPM-MVS | | | 93.68 250 | 92.77 261 | 96.42 191 | 97.91 197 | 92.54 183 | 91.17 319 | 97.47 249 | 84.99 311 | 93.08 302 | 94.74 295 | 89.90 239 | 99.00 269 | 87.54 298 | 98.09 262 | 97.72 274 |
|
1112_ss | | | 94.12 239 | 93.42 245 | 96.23 199 | 98.59 128 | 90.85 216 | 94.24 241 | 98.85 84 | 85.49 302 | 92.97 303 | 94.94 291 | 86.01 273 | 99.64 124 | 91.78 220 | 97.92 267 | 98.20 244 |
|
HQP4-MVS | | | | | | | | | | | 92.87 304 | | | 99.23 242 | | | 99.06 150 |
|
HQP-NCC | | | | | | 97.85 201 | | 94.26 237 | | 93.18 215 | 92.86 305 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 201 | | 94.26 237 | | 93.18 215 | 92.86 305 | | | | | | |
|
HQP-MVS | | | 95.17 198 | 94.58 214 | 96.92 159 | 97.85 201 | 92.47 185 | 94.26 237 | 98.43 162 | 93.18 215 | 92.86 305 | 95.08 287 | 90.33 231 | 99.23 242 | 90.51 255 | 98.74 231 | 99.05 152 |
|
ADS-MVSNet2 | | | 91.47 287 | 90.51 294 | 94.36 273 | 95.51 312 | 85.63 295 | 95.05 210 | 95.70 287 | 83.46 318 | 92.69 308 | 96.84 222 | 79.15 301 | 99.41 197 | 85.66 312 | 90.52 336 | 98.04 259 |
|
ADS-MVSNet | | | 90.95 293 | 90.26 296 | 93.04 296 | 95.51 312 | 82.37 323 | 95.05 210 | 93.41 309 | 83.46 318 | 92.69 308 | 96.84 222 | 79.15 301 | 98.70 298 | 85.66 312 | 90.52 336 | 98.04 259 |
|
Test_1112_low_res | | | 93.53 255 | 92.86 255 | 95.54 228 | 98.60 126 | 88.86 246 | 92.75 289 | 98.69 131 | 82.66 321 | 92.65 310 | 96.92 219 | 84.75 281 | 99.56 151 | 90.94 236 | 97.76 273 | 98.19 245 |
|
EMVS | | | 89.06 307 | 89.22 302 | 88.61 327 | 93.00 343 | 77.34 339 | 82.91 346 | 90.92 330 | 94.64 169 | 92.63 311 | 91.81 330 | 76.30 317 | 97.02 339 | 83.83 324 | 96.90 299 | 91.48 342 |
|
CANet | | | 95.86 170 | 95.65 173 | 96.49 187 | 96.41 286 | 90.82 218 | 94.36 235 | 98.41 167 | 94.94 159 | 92.62 312 | 96.73 231 | 92.68 190 | 99.71 87 | 95.12 131 | 99.60 71 | 98.94 165 |
|
DSMNet-mixed | | | 92.19 277 | 91.83 273 | 93.25 291 | 96.18 295 | 83.68 319 | 96.27 131 | 93.68 306 | 76.97 342 | 92.54 313 | 99.18 27 | 89.20 250 | 98.55 311 | 83.88 323 | 98.60 244 | 97.51 282 |
|
PVSNet | | 86.72 19 | 91.10 290 | 90.97 286 | 91.49 313 | 97.56 240 | 78.04 335 | 87.17 340 | 94.60 298 | 84.65 313 | 92.34 314 | 92.20 326 | 87.37 266 | 98.47 315 | 85.17 316 | 97.69 279 | 97.96 263 |
|
tpmrst | | | 90.31 296 | 90.61 293 | 89.41 324 | 94.06 333 | 72.37 349 | 95.06 209 | 93.69 304 | 88.01 280 | 92.32 315 | 96.86 220 | 77.45 309 | 98.82 286 | 91.04 233 | 87.01 343 | 97.04 294 |
|
cascas | | | 91.89 282 | 91.35 279 | 93.51 286 | 94.27 329 | 85.60 296 | 88.86 338 | 98.61 145 | 79.32 334 | 92.16 316 | 91.44 333 | 89.22 249 | 98.12 331 | 90.80 241 | 97.47 291 | 96.82 303 |
|
MAR-MVS | | | 94.21 236 | 93.03 252 | 97.76 99 | 96.94 275 | 97.44 30 | 96.97 101 | 97.15 257 | 87.89 283 | 92.00 317 | 92.73 321 | 92.14 205 | 99.12 254 | 83.92 322 | 97.51 288 | 96.73 307 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
tpmvs | | | 90.79 294 | 90.87 287 | 90.57 320 | 92.75 346 | 76.30 341 | 95.79 162 | 93.64 307 | 91.04 252 | 91.91 318 | 96.26 254 | 77.19 313 | 98.86 285 | 89.38 273 | 89.85 339 | 96.56 312 |
|
PMMVS | | | 92.39 272 | 91.08 283 | 96.30 198 | 93.12 342 | 92.81 181 | 90.58 326 | 95.96 283 | 79.17 335 | 91.85 319 | 92.27 325 | 90.29 235 | 98.66 304 | 89.85 266 | 96.68 306 | 97.43 284 |
|
PLC | | 91.02 16 | 94.05 243 | 92.90 254 | 97.51 118 | 98.00 191 | 95.12 108 | 94.25 240 | 98.25 185 | 86.17 294 | 91.48 320 | 95.25 285 | 91.01 223 | 99.19 245 | 85.02 317 | 96.69 305 | 98.22 242 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
dp | | | 88.08 312 | 88.05 311 | 88.16 330 | 92.85 344 | 68.81 351 | 94.17 245 | 92.88 314 | 85.47 303 | 91.38 321 | 96.14 261 | 68.87 342 | 98.81 288 | 86.88 303 | 83.80 346 | 96.87 300 |
|
PAPR | | | 92.22 276 | 91.27 281 | 95.07 244 | 95.73 309 | 88.81 247 | 91.97 305 | 97.87 221 | 85.80 299 | 90.91 322 | 92.73 321 | 91.16 221 | 98.33 325 | 79.48 333 | 95.76 319 | 98.08 249 |
|
1314 | | | 92.38 273 | 92.30 268 | 92.64 305 | 95.42 316 | 85.15 304 | 95.86 158 | 96.97 264 | 85.40 306 | 90.62 323 | 93.06 315 | 91.12 222 | 97.80 335 | 86.74 304 | 95.49 322 | 94.97 330 |
|
MVS | | | 90.02 298 | 89.20 304 | 92.47 306 | 94.71 323 | 86.90 283 | 95.86 158 | 96.74 272 | 64.72 347 | 90.62 323 | 92.77 319 | 92.54 197 | 98.39 320 | 79.30 334 | 95.56 321 | 92.12 339 |
|
CostFormer | | | 89.75 303 | 89.25 301 | 91.26 316 | 94.69 324 | 78.00 336 | 95.32 189 | 91.98 322 | 81.50 325 | 90.55 325 | 96.96 216 | 71.06 337 | 98.89 281 | 88.59 284 | 92.63 333 | 96.87 300 |
|
HY-MVS | | 91.43 15 | 92.58 269 | 91.81 274 | 94.90 251 | 96.49 284 | 88.87 245 | 97.31 82 | 94.62 297 | 85.92 297 | 90.50 326 | 96.84 222 | 85.05 278 | 99.40 199 | 83.77 325 | 95.78 318 | 96.43 314 |
|
FPMVS | | | 89.92 302 | 88.63 308 | 93.82 280 | 98.37 149 | 96.94 42 | 91.58 309 | 93.34 310 | 88.00 281 | 90.32 327 | 97.10 207 | 70.87 338 | 91.13 348 | 71.91 344 | 96.16 314 | 93.39 337 |
|
JIA-IIPM | | | 91.79 283 | 90.69 291 | 95.11 242 | 93.80 335 | 90.98 214 | 94.16 246 | 91.78 324 | 96.38 92 | 90.30 328 | 99.30 18 | 72.02 334 | 98.90 279 | 88.28 288 | 90.17 338 | 95.45 327 |
|
CANet_DTU | | | 94.65 221 | 94.21 227 | 95.96 210 | 95.90 302 | 89.68 231 | 93.92 259 | 97.83 226 | 93.19 214 | 90.12 329 | 95.64 278 | 88.52 252 | 99.57 150 | 93.27 199 | 99.47 115 | 98.62 209 |
|
test-LLR | | | 89.97 301 | 89.90 298 | 90.16 321 | 94.24 330 | 74.98 344 | 89.89 332 | 89.06 339 | 92.02 238 | 89.97 330 | 90.77 338 | 73.92 325 | 98.57 308 | 91.88 217 | 97.36 292 | 96.92 297 |
|
test-mter | | | 87.92 314 | 87.17 314 | 90.16 321 | 94.24 330 | 74.98 344 | 89.89 332 | 89.06 339 | 86.44 293 | 89.97 330 | 90.77 338 | 54.96 355 | 98.57 308 | 91.88 217 | 97.36 292 | 96.92 297 |
|
tpm2 | | | 88.47 309 | 87.69 312 | 90.79 318 | 94.98 321 | 77.34 339 | 95.09 204 | 91.83 323 | 77.51 341 | 89.40 332 | 96.41 248 | 67.83 343 | 98.73 295 | 83.58 327 | 92.60 334 | 96.29 316 |
|
tpm cat1 | | | 88.01 313 | 87.33 313 | 90.05 323 | 94.48 326 | 76.28 342 | 94.47 234 | 94.35 301 | 73.84 346 | 89.26 333 | 95.61 280 | 73.64 327 | 98.30 326 | 84.13 321 | 86.20 344 | 95.57 326 |
|
MVS_0304 | | | 95.50 180 | 95.05 191 | 96.84 165 | 96.28 289 | 93.12 175 | 97.00 99 | 96.16 278 | 95.03 156 | 89.22 334 | 97.70 160 | 90.16 237 | 99.48 172 | 94.51 156 | 99.34 155 | 97.93 265 |
|
TESTMET0.1,1 | | | 87.20 317 | 86.57 318 | 89.07 325 | 93.62 337 | 72.84 348 | 89.89 332 | 87.01 345 | 85.46 304 | 89.12 335 | 90.20 341 | 56.00 354 | 97.72 336 | 90.91 237 | 96.92 298 | 96.64 309 |
|
MVS-HIRNet | | | 88.40 310 | 90.20 297 | 82.99 332 | 97.01 271 | 60.04 352 | 93.11 284 | 85.61 347 | 84.45 316 | 88.72 336 | 99.09 33 | 84.72 282 | 98.23 328 | 82.52 328 | 96.59 308 | 90.69 344 |
|
IB-MVS | | 85.98 20 | 88.63 308 | 86.95 316 | 93.68 283 | 95.12 319 | 84.82 310 | 90.85 323 | 90.17 338 | 87.55 284 | 88.48 337 | 91.34 334 | 58.01 350 | 99.59 142 | 87.24 302 | 93.80 330 | 96.63 311 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
DWT-MVSNet_test | | | 87.92 314 | 86.77 317 | 91.39 314 | 93.18 339 | 78.62 333 | 95.10 202 | 91.42 326 | 85.58 301 | 88.00 338 | 88.73 343 | 60.60 349 | 98.90 279 | 90.60 250 | 87.70 342 | 96.65 308 |
|
PVSNet_0 | | 81.89 21 | 84.49 319 | 83.21 321 | 88.34 328 | 95.76 308 | 74.97 346 | 83.49 344 | 92.70 318 | 78.47 337 | 87.94 339 | 86.90 345 | 83.38 287 | 96.63 344 | 73.44 342 | 66.86 348 | 93.40 336 |
|
EPNet | | | 93.72 248 | 92.62 264 | 97.03 155 | 87.61 352 | 92.25 189 | 96.27 131 | 91.28 327 | 96.74 81 | 87.65 340 | 97.39 186 | 85.00 279 | 99.64 124 | 92.14 213 | 99.48 113 | 99.20 119 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 280x420 | | | 89.98 300 | 89.19 305 | 92.37 308 | 95.60 311 | 81.13 328 | 86.22 342 | 97.09 260 | 81.44 326 | 87.44 341 | 93.15 311 | 73.99 323 | 99.47 175 | 88.69 282 | 99.07 196 | 96.52 313 |
|
baseline2 | | | 89.65 304 | 88.44 310 | 93.25 291 | 95.62 310 | 82.71 320 | 93.82 262 | 85.94 346 | 88.89 271 | 87.35 342 | 92.54 323 | 71.23 336 | 99.33 221 | 86.01 307 | 94.60 327 | 97.72 274 |
|
gg-mvs-nofinetune | | | 88.28 311 | 86.96 315 | 92.23 311 | 92.84 345 | 84.44 313 | 98.19 38 | 74.60 351 | 99.08 10 | 87.01 343 | 99.47 8 | 56.93 352 | 98.23 328 | 78.91 335 | 95.61 320 | 94.01 334 |
|
ET-MVSNet_ETH3D | | | 91.12 289 | 89.67 300 | 95.47 231 | 96.41 286 | 89.15 242 | 91.54 310 | 90.23 337 | 89.07 267 | 86.78 344 | 92.84 318 | 69.39 341 | 99.44 185 | 94.16 171 | 96.61 307 | 97.82 270 |
|
PAPM | | | 87.64 316 | 85.84 320 | 93.04 296 | 96.54 282 | 84.99 307 | 88.42 339 | 95.57 290 | 79.52 333 | 83.82 345 | 93.05 316 | 80.57 296 | 98.41 318 | 62.29 347 | 92.79 332 | 95.71 322 |
|
GG-mvs-BLEND | | | | | 90.60 319 | 91.00 349 | 84.21 316 | 98.23 32 | 72.63 354 | | 82.76 346 | 84.11 346 | 56.14 353 | 96.79 342 | 72.20 343 | 92.09 335 | 90.78 343 |
|
MVE | | 73.61 22 | 86.48 318 | 85.92 319 | 88.18 329 | 96.23 292 | 85.28 302 | 81.78 347 | 75.79 350 | 86.01 295 | 82.53 347 | 91.88 329 | 92.74 188 | 87.47 349 | 71.42 345 | 94.86 324 | 91.78 340 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EPNet_dtu | | | 91.39 288 | 90.75 290 | 93.31 289 | 90.48 351 | 82.61 321 | 94.80 222 | 92.88 314 | 93.39 206 | 81.74 348 | 94.90 294 | 81.36 292 | 99.11 257 | 88.28 288 | 98.87 217 | 98.21 243 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepMVS_CX | | | | | 77.17 333 | 90.94 350 | 85.28 302 | | 74.08 353 | 52.51 348 | 80.87 349 | 88.03 344 | 75.25 322 | 70.63 350 | 59.23 348 | 84.94 345 | 75.62 345 |
|
tmp_tt | | | 57.23 320 | 62.50 322 | 41.44 334 | 34.77 353 | 49.21 354 | 83.93 343 | 60.22 355 | 15.31 349 | 71.11 350 | 79.37 347 | 70.09 340 | 44.86 351 | 64.76 346 | 82.93 347 | 30.25 347 |
|
testmvs | | | 12.33 323 | 15.23 325 | 3.64 336 | 5.77 355 | 2.23 356 | 88.99 337 | 3.62 356 | 2.30 351 | 5.29 351 | 13.09 349 | 4.52 357 | 1.95 352 | 5.16 350 | 8.32 350 | 6.75 349 |
|
test123 | | | 12.59 322 | 15.49 324 | 3.87 335 | 6.07 354 | 2.55 355 | 90.75 324 | 2.59 357 | 2.52 350 | 5.20 352 | 13.02 350 | 4.96 356 | 1.85 353 | 5.20 349 | 9.09 349 | 7.23 348 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
cdsmvs_eth3d_5k | | | 24.22 321 | 32.30 323 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 98.10 205 | 0.00 352 | 0.00 353 | 95.06 289 | 97.54 28 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 7.98 324 | 10.65 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 95.82 102 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ab-mvs-re | | | 7.91 325 | 10.55 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 94.94 291 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
OPU-MVS | | | | | 97.64 109 | 98.01 187 | 95.27 99 | 96.79 106 | | | | 97.35 191 | 96.97 53 | 98.51 314 | 91.21 232 | 99.25 175 | 99.14 130 |
|
save fliter | | | | | | 98.48 141 | 94.71 119 | 94.53 232 | 98.41 167 | 95.02 157 | | | | | | | |
|
test_0728_SECOND | | | | | 98.25 69 | 99.23 53 | 95.49 91 | 96.74 109 | 98.89 74 | | | | | 99.75 56 | 95.48 104 | 99.52 98 | 99.53 38 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 255 |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 98.84 87 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 306 | | | | 98.06 255 |
|
sam_mvs | | | | | | | | | | | | | 77.38 310 | | | | |
|
MTGPA | | | | | | | | | 98.73 118 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 214 | | | | 10.37 352 | 76.21 318 | 99.04 265 | 89.47 271 | | |
|
test_post | | | | | | | | | | | | 10.87 351 | 76.83 314 | 99.07 262 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 222 | 77.36 311 | 99.42 188 | | | |
|
MTMP | | | | | | | | 96.55 117 | 74.60 351 | | | | | | | | |
|
gm-plane-assit | | | | | | 91.79 348 | 71.40 350 | | | 81.67 323 | | 90.11 342 | | 98.99 271 | 84.86 318 | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 228 | 98.89 216 | 99.00 157 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 260 | 98.90 213 | 99.10 145 |
|
test_prior4 | | | | | | | 95.38 94 | 93.61 270 | | | | | | | | | |
|
test_prior | | | | | 97.46 128 | 97.79 218 | 94.26 138 | | 98.42 165 | | | | | 99.34 218 | | | 98.79 190 |
|
新几何2 | | | | | | | | 93.43 273 | | | | | | | | | |
|
旧先验1 | | | | | | 97.80 213 | 93.87 150 | | 97.75 229 | | | 97.04 211 | 93.57 172 | | | 98.68 235 | 98.72 200 |
|
无先验 | | | | | | | | 93.20 282 | 97.91 218 | 80.78 328 | | | | 99.40 199 | 87.71 292 | | 97.94 264 |
|
原ACMM2 | | | | | | | | 92.82 287 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.46 178 | 87.84 291 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 123 | | | | |
|
testdata1 | | | | | | | | 92.77 288 | | 93.78 197 | | | | | | | |
|
plane_prior7 | | | | | | 98.70 114 | 94.67 123 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 148 | 94.37 132 | | | | | | 91.91 215 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 114 | | | | | 99.46 178 | 92.59 209 | 99.20 178 | 99.28 107 |
|
plane_prior4 | | | | | | | | | | | | 96.77 228 | | | | | |
|
plane_prior2 | | | | | | | | 96.50 119 | | 96.36 93 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 139 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 134 | 95.42 179 | | 94.31 181 | | | | | | 98.93 211 | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 197 | | | | | | | | |
|
test11 | | | | | | | | | 98.08 208 | | | | | | | | |
|
door | | | | | | | | | 97.81 227 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 185 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 255 | | |
|
HQP3-MVS | | | | | | | | | 98.43 162 | | | | | | | 98.74 231 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 231 | | | | |
|
NP-MVS | | | | | | 98.14 177 | 93.72 158 | | | | | 95.08 287 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 98 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 87 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 149 | | | | |
|