This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
PS-MVSNAJss98.53 1998.63 1998.21 7299.68 994.82 11598.10 4299.21 1196.91 7699.75 299.45 995.82 10299.92 498.80 499.96 499.89 1
UniMVSNet_ETH3D99.12 399.28 398.65 4199.77 396.34 6099.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4399.92 1299.77 8
mvs_tets98.90 598.94 698.75 3199.69 896.48 5698.54 1899.22 1096.23 9999.71 499.48 798.77 699.93 298.89 399.95 599.84 5
wuyk23d93.25 26195.20 18387.40 33196.07 30095.38 9497.04 9794.97 29495.33 14299.70 598.11 11298.14 1391.94 34777.76 33999.68 5574.89 346
Anonymous2023121198.55 1798.76 1397.94 9098.79 10294.37 13298.84 899.15 2199.37 399.67 699.43 1195.61 11499.72 7298.12 1699.86 2399.73 15
jajsoiax98.77 998.79 1298.74 3399.66 1096.48 5698.45 2399.12 2595.83 12499.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
ANet_high98.31 2898.94 696.41 19399.33 4289.64 23297.92 5199.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3499.98 299.77 8
pmmvs699.07 499.24 498.56 4799.81 296.38 5898.87 799.30 899.01 1699.63 999.66 399.27 299.68 11097.75 2999.89 2099.62 24
LTVRE_ROB96.88 199.18 299.34 298.72 3699.71 796.99 4199.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 16398.58 1299.95 599.66 21
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-098.61 1698.61 2398.63 4399.77 396.35 5999.17 699.05 4098.05 3999.61 1199.52 593.72 16999.88 1898.72 999.88 2199.65 22
TransMVSNet (Re)98.38 2598.67 1797.51 11899.51 2293.39 16998.20 3798.87 8198.23 3499.48 1299.27 1998.47 899.55 15596.52 6399.53 9399.60 25
LCM-MVSNet-Re97.33 9997.33 8997.32 14098.13 18093.79 15596.99 10099.65 296.74 8199.47 1398.93 4396.91 5799.84 2590.11 26199.06 19998.32 232
SixPastTwentyTwo97.49 8697.57 7597.26 14499.56 1592.33 18798.28 2996.97 26498.30 3299.45 1499.35 1688.43 25499.89 1698.01 1999.76 3799.54 35
v7n98.73 1198.99 597.95 8999.64 1194.20 14098.67 1199.14 2399.08 1099.42 1599.23 2196.53 7599.91 1299.27 299.93 1099.73 15
NR-MVSNet97.96 4497.86 4698.26 6798.73 10795.54 8798.14 4098.73 11897.79 4499.42 1597.83 14594.40 15299.78 4095.91 8899.76 3799.46 60
MIMVSNet198.51 2098.45 2698.67 3999.72 696.71 4798.76 998.89 7498.49 2699.38 1799.14 3095.44 12199.84 2596.47 6699.80 3299.47 58
ACMH93.61 998.44 2298.76 1397.51 11899.43 3293.54 16598.23 3299.05 4097.40 6799.37 1899.08 3498.79 599.47 17597.74 3099.71 4999.50 42
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
anonymousdsp98.72 1498.63 1998.99 1199.62 1397.29 3498.65 1499.19 1595.62 13199.35 1999.37 1297.38 3299.90 1398.59 1199.91 1599.77 8
test_djsdf98.73 1198.74 1698.69 3899.63 1296.30 6298.67 1199.02 4996.50 8899.32 2099.44 1097.43 3099.92 498.73 799.95 599.86 2
PEN-MVS98.75 1098.85 1098.44 5399.58 1495.67 8298.45 2399.15 2199.33 599.30 2199.00 3697.27 3799.92 497.64 3299.92 1299.75 13
DTE-MVSNet98.79 898.86 898.59 4599.55 1796.12 6798.48 2299.10 2899.36 499.29 2299.06 3597.27 3799.93 297.71 3199.91 1599.70 18
pm-mvs198.47 2198.67 1797.86 9599.52 2194.58 12598.28 2999.00 5797.57 5799.27 2399.22 2298.32 999.50 16897.09 5099.75 4199.50 42
ACMH+93.58 1098.23 3298.31 2997.98 8899.39 3795.22 10497.55 7299.20 1398.21 3599.25 2498.51 7098.21 1199.40 19994.79 14499.72 4699.32 94
Anonymous2024052997.96 4498.04 3897.71 10298.69 11694.28 13797.86 5498.31 18198.79 2099.23 2598.86 4795.76 10999.61 14095.49 10399.36 14799.23 116
PS-CasMVS98.73 1198.85 1098.39 5799.55 1795.47 9298.49 2099.13 2499.22 899.22 2698.96 4097.35 3399.92 497.79 2799.93 1099.79 7
SD-MVS97.37 9697.70 5796.35 19498.14 17795.13 10796.54 11898.92 7195.94 11599.19 2798.08 11497.74 2295.06 34595.24 11999.54 9098.87 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS_H98.65 1598.62 2198.75 3199.51 2296.61 5298.55 1799.17 1699.05 1399.17 2898.79 4995.47 11999.89 1697.95 2099.91 1599.75 13
tfpnnormal97.72 7097.97 4096.94 15899.26 4792.23 19097.83 5698.45 15998.25 3399.13 2998.66 5996.65 6999.69 10493.92 18399.62 6298.91 174
SED-MVS97.94 4997.90 4398.07 8099.22 5695.35 9696.79 10698.83 9596.11 10399.08 3098.24 9797.87 2099.72 7295.44 10899.51 10399.14 130
test_241102_ONE99.22 5695.35 9698.83 9596.04 10899.08 3098.13 10897.87 2099.33 221
VPA-MVSNet98.27 2998.46 2497.70 10499.06 8593.80 15497.76 5999.00 5798.40 2899.07 3298.98 3896.89 5899.75 5697.19 4799.79 3399.55 34
nrg03098.54 1898.62 2198.32 6299.22 5695.66 8397.90 5299.08 3498.31 3199.02 3398.74 5397.68 2499.61 14097.77 2899.85 2599.70 18
CP-MVSNet98.42 2398.46 2498.30 6599.46 2895.22 10498.27 3198.84 8799.05 1399.01 3498.65 6195.37 12299.90 1397.57 3399.91 1599.77 8
FMVSNet197.95 4798.08 3597.56 11399.14 7893.67 15998.23 3298.66 13897.41 6699.00 3599.19 2495.47 11999.73 6895.83 8999.76 3799.30 100
TDRefinement98.90 598.86 899.02 899.54 1998.06 699.34 499.44 698.85 1999.00 3599.20 2397.42 3199.59 14297.21 4499.76 3799.40 80
K. test v396.44 14896.28 14896.95 15799.41 3591.53 20797.65 6590.31 33698.89 1898.93 3799.36 1484.57 28399.92 497.81 2599.56 8199.39 83
FC-MVSNet-test98.16 3398.37 2797.56 11399.49 2693.10 17698.35 2699.21 1198.43 2798.89 3898.83 4894.30 15499.81 3197.87 2399.91 1599.77 8
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5499.07 8495.87 7396.73 11399.05 4098.67 2298.84 3998.45 7497.58 2799.88 1896.45 6799.86 2399.54 35
new-patchmatchnet95.67 17596.58 13292.94 30197.48 24380.21 33092.96 28598.19 19694.83 16298.82 4098.79 4993.31 17699.51 16795.83 8999.04 20099.12 138
EG-PatchMatch MVS97.69 7297.79 5097.40 13599.06 8593.52 16695.96 15398.97 6694.55 17498.82 4098.76 5297.31 3599.29 23297.20 4699.44 12399.38 85
DPE-MVS97.64 7497.35 8898.50 4998.85 9996.18 6495.21 19998.99 6095.84 12398.78 4298.08 11496.84 6399.81 3193.98 18199.57 7899.52 39
testing_297.43 9197.71 5696.60 17898.91 9690.85 21696.01 14998.54 15194.78 16498.78 4298.96 4096.35 8899.54 15797.25 4199.82 2899.40 80
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4299.21 6297.35 3297.96 4899.16 1798.34 3098.78 4298.52 6997.32 3499.45 18294.08 17499.67 5699.13 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lessismore_v097.05 15399.36 4092.12 19584.07 34898.77 4598.98 3885.36 27799.74 6397.34 4099.37 14499.30 100
v897.60 7898.06 3796.23 19998.71 11289.44 23697.43 7998.82 10397.29 7198.74 4699.10 3293.86 16499.68 11098.61 1099.94 899.56 32
DP-MVS97.87 5997.89 4597.81 9898.62 12394.82 11597.13 9398.79 10598.98 1798.74 4698.49 7195.80 10899.49 16995.04 13499.44 12399.11 141
v1097.55 8197.97 4096.31 19798.60 12689.64 23297.44 7799.02 4996.60 8498.72 4899.16 2993.48 17399.72 7298.76 699.92 1299.58 27
test072699.24 5195.51 8996.89 10298.89 7495.92 11698.64 4998.31 8497.06 49
test_241102_TWO98.83 9596.11 10398.62 5098.24 9796.92 5699.72 7295.44 10899.49 10999.49 50
FIs97.93 5298.07 3697.48 12599.38 3892.95 17998.03 4799.11 2698.04 4098.62 5098.66 5993.75 16899.78 4097.23 4299.84 2699.73 15
abl_698.42 2398.19 3299.09 399.16 6798.10 597.73 6399.11 2697.76 4698.62 5098.27 9597.88 1999.80 3795.67 9399.50 10599.38 85
DeepC-MVS95.41 497.82 6497.70 5798.16 7398.78 10495.72 7796.23 13699.02 4993.92 19598.62 5098.99 3797.69 2399.62 13496.18 7399.87 2299.15 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS98.14 3498.03 3998.47 5298.72 10996.04 6998.07 4499.10 2895.96 11398.59 5498.69 5796.94 5499.81 3196.64 5899.58 7599.57 31
XXY-MVS97.54 8297.70 5797.07 15299.46 2892.21 19197.22 8899.00 5794.93 16198.58 5598.92 4497.31 3599.41 19794.44 15799.43 13099.59 26
test_040297.84 6197.97 4097.47 12699.19 6594.07 14396.71 11498.73 11898.66 2398.56 5698.41 7696.84 6399.69 10494.82 14299.81 2998.64 206
PM-MVS97.36 9897.10 10498.14 7798.91 9696.77 4696.20 13798.63 14493.82 19698.54 5798.33 8293.98 16299.05 26495.99 8499.45 12298.61 211
DeepPCF-MVS94.58 596.90 11996.43 14398.31 6497.48 24397.23 3792.56 29498.60 14692.84 22998.54 5797.40 18296.64 7198.78 29094.40 16199.41 13998.93 169
DVP-MVS97.45 8996.92 11699.03 799.26 4797.70 1597.66 6498.89 7495.65 12998.51 5996.46 24692.15 20499.81 3195.14 12898.58 24599.58 27
VDD-MVS97.37 9697.25 9497.74 10198.69 11694.50 12897.04 9795.61 28998.59 2498.51 5998.72 5492.54 19799.58 14496.02 8199.49 10999.12 138
FMVSNet296.72 13396.67 12996.87 16397.96 19391.88 20197.15 9098.06 21395.59 13398.50 6198.62 6289.51 24599.65 12194.99 13899.60 7199.07 148
SMA-MVS97.48 8797.11 10398.60 4498.83 10096.67 4996.74 10998.73 11891.61 24598.48 6298.36 7996.53 7599.68 11095.17 12399.54 9099.45 65
EU-MVSNet94.25 23294.47 21893.60 28498.14 17782.60 32297.24 8792.72 31785.08 30898.48 6298.94 4282.59 28998.76 29397.47 3799.53 9399.44 75
RPSCF97.87 5997.51 7998.95 1599.15 7098.43 397.56 7199.06 3896.19 10098.48 6298.70 5694.72 13899.24 24094.37 16299.33 16299.17 123
v124096.74 13097.02 11195.91 21598.18 17088.52 25195.39 18398.88 7993.15 21998.46 6598.40 7892.80 18799.71 8798.45 1399.49 10999.49 50
VPNet97.26 10397.49 8196.59 18099.47 2790.58 22396.27 13198.53 15297.77 4598.46 6598.41 7694.59 14599.68 11094.61 15099.29 17099.52 39
IterMVS-LS96.92 11797.29 9195.79 21898.51 13688.13 26095.10 20298.66 13896.99 7398.46 6598.68 5892.55 19599.74 6396.91 5699.79 3399.50 42
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ambc96.56 18498.23 16491.68 20697.88 5398.13 20398.42 6898.56 6694.22 15799.04 26594.05 17899.35 15298.95 163
MSP-MVS97.78 6797.65 6398.16 7399.24 5195.51 8996.74 10998.23 18795.92 11698.40 6998.28 9197.06 4999.71 8795.48 10499.52 9899.26 112
test_0728_THIRD96.62 8398.40 6998.28 9197.10 4499.71 8795.70 9199.62 6299.58 27
VDDNet96.98 11496.84 11997.41 13499.40 3693.26 17197.94 4995.31 29399.26 798.39 7199.18 2787.85 26399.62 13495.13 13099.09 19399.35 92
Anonymous20240521196.34 15195.98 16297.43 13298.25 16193.85 15296.74 10994.41 30097.72 5098.37 7298.03 12287.15 26799.53 15994.06 17599.07 19698.92 173
Baseline_NR-MVSNet97.72 7097.79 5097.50 12199.56 1593.29 17095.44 17798.86 8398.20 3698.37 7299.24 2094.69 13999.55 15595.98 8599.79 3399.65 22
IU-MVS99.22 5695.40 9398.14 20185.77 30098.36 7495.23 12099.51 10399.49 50
IterMVS-SCA-FT95.86 17096.19 15194.85 25397.68 23085.53 29792.42 29797.63 24296.99 7398.36 7498.54 6887.94 25899.75 5697.07 5299.08 19499.27 111
ACMM93.33 1198.05 3997.79 5098.85 2399.15 7097.55 2396.68 11598.83 9595.21 14698.36 7498.13 10898.13 1499.62 13496.04 7999.54 9099.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Regformer-497.53 8497.47 8397.71 10297.35 25393.91 14895.26 19498.14 20197.97 4198.34 7797.89 13895.49 11799.71 8797.41 3899.42 13399.51 41
LPG-MVS_test97.94 4997.67 6098.74 3399.15 7097.02 3997.09 9499.02 4995.15 15098.34 7798.23 9997.91 1799.70 9694.41 15999.73 4399.50 42
LGP-MVS_train98.74 3399.15 7097.02 3999.02 4995.15 15098.34 7798.23 9997.91 1799.70 9694.41 15999.73 4399.50 42
casdiffmvs97.50 8597.81 4996.56 18498.51 13691.04 21395.83 16199.09 3397.23 7298.33 8098.30 8897.03 5199.37 21196.58 6199.38 14399.28 107
Patchmatch-RL test94.66 22094.49 21795.19 24098.54 13388.91 24492.57 29398.74 11691.46 24898.32 8197.75 15477.31 31298.81 28896.06 7699.61 6897.85 268
XVG-OURS97.12 10896.74 12598.26 6798.99 9197.45 2993.82 26299.05 4095.19 14898.32 8197.70 16095.22 12898.41 31894.27 16798.13 26098.93 169
UniMVSNet_NR-MVSNet97.83 6297.65 6398.37 5898.72 10995.78 7595.66 16999.02 4998.11 3898.31 8397.69 16294.65 14399.85 2297.02 5399.71 4999.48 55
DU-MVS97.79 6697.60 7298.36 5998.73 10795.78 7595.65 17198.87 8197.57 5798.31 8397.83 14594.69 13999.85 2297.02 5399.71 4999.46 60
EI-MVSNet-UG-set97.32 10097.40 8497.09 15197.34 25792.01 19995.33 18897.65 23897.74 4798.30 8598.14 10795.04 13299.69 10497.55 3499.52 9899.58 27
EI-MVSNet-Vis-set97.32 10097.39 8597.11 14997.36 25292.08 19795.34 18797.65 23897.74 4798.29 8698.11 11295.05 13099.68 11097.50 3699.50 10599.56 32
test20.0396.58 14296.61 13096.48 18898.49 13991.72 20595.68 16897.69 23396.81 7998.27 8797.92 13694.18 15898.71 29790.78 24299.66 5899.00 157
RRT_MVS94.90 20694.07 23197.39 13693.18 33993.21 17395.26 19497.49 24693.94 19498.25 8897.85 14372.96 33299.84 2597.90 2199.78 3699.14 130
APD-MVS_3200maxsize98.13 3697.90 4398.79 2998.79 10297.31 3397.55 7298.92 7197.72 5098.25 8898.13 10897.10 4499.75 5695.44 10899.24 17699.32 94
v14896.58 14296.97 11295.42 23398.63 12287.57 27195.09 20497.90 21995.91 11898.24 9097.96 12993.42 17499.39 20496.04 7999.52 9899.29 106
UniMVSNet (Re)97.83 6297.65 6398.35 6198.80 10195.86 7495.92 15799.04 4697.51 6098.22 9197.81 14994.68 14199.78 4097.14 4999.75 4199.41 79
WR-MVS96.90 11996.81 12197.16 14698.56 13192.20 19394.33 23698.12 20497.34 6898.20 9297.33 19392.81 18699.75 5694.79 14499.81 2999.54 35
v192192096.72 13396.96 11495.99 20898.21 16588.79 24895.42 17998.79 10593.22 21398.19 9398.26 9692.68 19099.70 9698.34 1599.55 8799.49 50
Regformer-397.25 10497.29 9197.11 14997.35 25392.32 18895.26 19497.62 24397.67 5598.17 9497.89 13895.05 13099.56 15197.16 4899.42 13399.46 60
TSAR-MVS + MP.97.42 9297.23 9798.00 8799.38 3895.00 11097.63 6798.20 19193.00 22298.16 9598.06 11995.89 9799.72 7295.67 9399.10 19299.28 107
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TinyColmap96.00 16596.34 14694.96 24897.90 19987.91 26394.13 25098.49 15694.41 17698.16 9597.76 15196.29 9098.68 30290.52 25499.42 13398.30 235
XVG-OURS-SEG-HR97.38 9597.07 10798.30 6599.01 9097.41 3194.66 22799.02 4995.20 14798.15 9797.52 17398.83 498.43 31794.87 14096.41 31099.07 148
IS-MVSNet96.93 11696.68 12897.70 10499.25 5094.00 14698.57 1596.74 27298.36 2998.14 9897.98 12888.23 25699.71 8793.10 20399.72 4699.38 85
CSCG97.40 9497.30 9097.69 10698.95 9394.83 11497.28 8498.99 6096.35 9598.13 9995.95 27095.99 9599.66 12094.36 16599.73 4398.59 212
MP-MVS-pluss97.69 7297.36 8798.70 3799.50 2596.84 4495.38 18498.99 6092.45 23498.11 10098.31 8497.25 4099.77 4896.60 5999.62 6299.48 55
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v119296.83 12597.06 10896.15 20498.28 15689.29 23895.36 18598.77 11093.73 19898.11 10098.34 8193.02 18499.67 11598.35 1499.58 7599.50 42
Regformer-297.41 9397.24 9697.93 9197.21 26494.72 11894.85 22098.27 18297.74 4798.11 10097.50 17595.58 11599.69 10496.57 6299.31 16699.37 90
OPM-MVS97.54 8297.25 9498.41 5599.11 8096.61 5295.24 19798.46 15894.58 17398.10 10398.07 11697.09 4699.39 20495.16 12599.44 12399.21 118
v14419296.69 13696.90 11896.03 20798.25 16188.92 24395.49 17598.77 11093.05 22198.09 10498.29 9092.51 19999.70 9698.11 1799.56 8199.47 58
N_pmnet95.18 19694.23 22598.06 8297.85 20196.55 5492.49 29591.63 32589.34 26598.09 10497.41 18190.33 23199.06 26391.58 22499.31 16698.56 214
test_part299.03 8996.07 6898.08 106
SteuartSystems-ACMMP98.02 4197.76 5498.79 2999.43 3297.21 3897.15 9098.90 7396.58 8698.08 10697.87 14297.02 5299.76 5295.25 11899.59 7399.40 80
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 4397.66 6199.01 998.77 10597.93 797.38 8198.83 9597.32 6998.06 10897.85 14396.65 6999.77 4895.00 13799.11 19099.32 94
XVG-ACMP-BASELINE97.58 8097.28 9398.49 5099.16 6796.90 4396.39 12498.98 6395.05 15598.06 10898.02 12395.86 9899.56 15194.37 16299.64 6099.00 157
IterMVS95.42 18795.83 16794.20 27797.52 24283.78 31892.41 29897.47 24995.49 13798.06 10898.49 7187.94 25899.58 14496.02 8199.02 20199.23 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TSAR-MVS + GP.96.47 14796.12 15497.49 12497.74 22695.23 10194.15 24796.90 26693.26 21198.04 11196.70 23394.41 15198.89 28194.77 14799.14 18298.37 225
Regformer-197.27 10297.16 10197.61 11197.21 26493.86 15194.85 22098.04 21597.62 5698.03 11297.50 17595.34 12399.63 12696.52 6399.31 16699.35 92
testgi96.07 16096.50 14194.80 25699.26 4787.69 27095.96 15398.58 14995.08 15398.02 11396.25 25597.92 1697.60 33788.68 28398.74 23199.11 141
V4297.04 10997.16 10196.68 17698.59 12891.05 21296.33 12998.36 17394.60 17097.99 11498.30 8893.32 17599.62 13497.40 3999.53 9399.38 85
GBi-Net96.99 11196.80 12297.56 11397.96 19393.67 15998.23 3298.66 13895.59 13397.99 11499.19 2489.51 24599.73 6894.60 15199.44 12399.30 100
test196.99 11196.80 12297.56 11397.96 19393.67 15998.23 3298.66 13895.59 13397.99 11499.19 2489.51 24599.73 6894.60 15199.44 12399.30 100
FMVSNet395.26 19494.94 19396.22 20196.53 28390.06 22795.99 15097.66 23694.11 18997.99 11497.91 13780.22 29899.63 12694.60 15199.44 12398.96 162
pmmvs-eth3d96.49 14596.18 15297.42 13398.25 16194.29 13494.77 22498.07 21289.81 26297.97 11898.33 8293.11 17999.08 26195.46 10799.84 2698.89 178
v114496.84 12297.08 10696.13 20598.42 14689.28 23995.41 18198.67 13694.21 18497.97 11898.31 8493.06 18099.65 12198.06 1899.62 6299.45 65
ACMP92.54 1397.47 8897.10 10498.55 4899.04 8896.70 4896.24 13598.89 7493.71 19997.97 11897.75 15497.44 2999.63 12693.22 20099.70 5299.32 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EI-MVSNet96.63 14096.93 11595.74 21997.26 26288.13 26095.29 19297.65 23896.99 7397.94 12198.19 10492.55 19599.58 14496.91 5699.56 8199.50 42
MVSTER94.21 23693.93 23895.05 24595.83 30586.46 28795.18 20097.65 23892.41 23597.94 12198.00 12772.39 33399.58 14496.36 6999.56 8199.12 138
ACMMPcopyleft98.05 3997.75 5598.93 1999.23 5397.60 1998.09 4398.96 6795.75 12897.91 12398.06 11996.89 5899.76 5295.32 11599.57 7899.43 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
zzz-MVS98.01 4297.66 6199.06 499.44 3097.90 895.66 16998.73 11897.69 5397.90 12497.96 12995.81 10699.82 2996.13 7499.61 6899.45 65
MTAPA98.14 3497.84 4799.06 499.44 3097.90 897.25 8598.73 11897.69 5397.90 12497.96 12995.81 10699.82 2996.13 7499.61 6899.45 65
LFMVS95.32 19194.88 19896.62 17798.03 18491.47 20997.65 6590.72 33399.11 997.89 12698.31 8479.20 30099.48 17293.91 18499.12 18998.93 169
ACMMP_NAP97.89 5797.63 6898.67 3999.35 4196.84 4496.36 12798.79 10595.07 15497.88 12798.35 8097.24 4199.72 7296.05 7899.58 7599.45 65
VNet96.84 12296.83 12096.88 16298.06 18392.02 19896.35 12897.57 24597.70 5297.88 12797.80 15092.40 20199.54 15794.73 14998.96 20599.08 146
HPM-MVS_fast98.32 2798.13 3398.88 2299.54 1997.48 2798.35 2699.03 4795.88 11997.88 12798.22 10298.15 1299.74 6396.50 6599.62 6299.42 77
UA-Net98.88 798.76 1399.22 299.11 8097.89 1099.47 399.32 799.08 1097.87 13099.67 296.47 8099.92 497.88 2299.98 299.85 3
baseline97.44 9097.78 5396.43 19098.52 13590.75 22196.84 10399.03 4796.51 8797.86 13198.02 12396.67 6899.36 21397.09 5099.47 11599.19 120
v2v48296.78 12997.06 10895.95 21298.57 13088.77 24995.36 18598.26 18495.18 14997.85 13298.23 9992.58 19499.63 12697.80 2699.69 5399.45 65
xxxxxxxxxxxxxcwj97.24 10597.03 11097.89 9398.48 14194.71 11994.53 23299.07 3795.02 15797.83 13397.88 14096.44 8299.72 7294.59 15499.39 14199.25 113
SF-MVS97.60 7897.39 8598.22 7198.93 9495.69 7997.05 9699.10 2895.32 14397.83 13397.88 14096.44 8299.72 7294.59 15499.39 14199.25 113
Vis-MVSNetpermissive98.27 2998.34 2898.07 8099.33 4295.21 10698.04 4599.46 597.32 6997.82 13599.11 3196.75 6699.86 2097.84 2499.36 14799.15 127
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AllTest97.20 10796.92 11698.06 8299.08 8296.16 6597.14 9299.16 1794.35 17997.78 13698.07 11695.84 9999.12 25491.41 22699.42 13398.91 174
TestCases98.06 8299.08 8296.16 6599.16 1794.35 17997.78 13698.07 11695.84 9999.12 25491.41 22699.42 13398.91 174
MDA-MVSNet-bldmvs95.69 17395.67 17295.74 21998.48 14188.76 25092.84 28697.25 25296.00 11197.59 13897.95 13291.38 22099.46 17893.16 20296.35 31198.99 160
PGM-MVS97.88 5897.52 7898.96 1499.20 6397.62 1897.09 9499.06 3895.45 13897.55 13997.94 13397.11 4399.78 4094.77 14799.46 11899.48 55
GST-MVS97.82 6497.49 8198.81 2799.23 5397.25 3597.16 8998.79 10595.96 11397.53 14097.40 18296.93 5599.77 4895.04 13499.35 15299.42 77
YYNet194.73 21394.84 20094.41 27297.47 24785.09 30690.29 32895.85 28692.52 23197.53 14097.76 15191.97 21099.18 24693.31 19696.86 30098.95 163
TAMVS95.49 18194.94 19397.16 14698.31 15293.41 16895.07 20796.82 26991.09 25197.51 14297.82 14889.96 23899.42 18888.42 28699.44 12398.64 206
LS3D97.77 6897.50 8098.57 4696.24 29097.58 2198.45 2398.85 8498.58 2597.51 14297.94 13395.74 11099.63 12695.19 12198.97 20498.51 217
HFP-MVS97.94 4997.64 6698.83 2499.15 7097.50 2597.59 6998.84 8796.05 10697.49 14497.54 17097.07 4799.70 9695.61 9999.46 11899.30 100
#test#97.62 7697.22 9898.83 2499.15 7097.50 2596.81 10598.84 8794.25 18397.49 14497.54 17097.07 4799.70 9694.37 16299.46 11899.30 100
Patchmtry95.03 20394.59 21396.33 19594.83 32290.82 21896.38 12697.20 25496.59 8597.49 14498.57 6477.67 30799.38 20892.95 20699.62 6298.80 189
MDA-MVSNet_test_wron94.73 21394.83 20294.42 27197.48 24385.15 30490.28 32995.87 28592.52 23197.48 14797.76 15191.92 21499.17 25093.32 19596.80 30398.94 165
UnsupCasMVSNet_eth95.91 16795.73 17196.44 18998.48 14191.52 20895.31 19098.45 15995.76 12697.48 14797.54 17089.53 24498.69 29994.43 15894.61 32699.13 133
tttt051793.31 25992.56 26595.57 22598.71 11287.86 26497.44 7787.17 34495.79 12597.47 14996.84 22264.12 34699.81 3196.20 7299.32 16499.02 156
ACMMPR97.95 4797.62 7098.94 1699.20 6397.56 2297.59 6998.83 9596.05 10697.46 15097.63 16596.77 6599.76 5295.61 9999.46 11899.49 50
RRT_test8_iter0592.46 27192.52 26692.29 31095.33 31777.43 33895.73 16398.55 15094.41 17697.46 15097.72 15957.44 35199.74 6396.92 5599.14 18299.69 20
APD-MVScopyleft97.00 11096.53 13898.41 5598.55 13296.31 6196.32 13098.77 11092.96 22797.44 15297.58 16995.84 9999.74 6391.96 21499.35 15299.19 120
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVScopyleft98.11 3797.83 4898.92 2099.42 3497.46 2898.57 1599.05 4095.43 14097.41 15397.50 17597.98 1599.79 3895.58 10299.57 7899.50 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
cl_fuxian95.20 19595.32 18194.83 25596.19 29486.43 28991.83 30798.35 17793.47 20497.36 15497.26 19888.69 25199.28 23495.41 11499.36 14798.78 192
EPP-MVSNet96.84 12296.58 13297.65 10899.18 6693.78 15698.68 1096.34 27697.91 4397.30 15598.06 11988.46 25399.85 2293.85 18599.40 14099.32 94
DeepC-MVS_fast94.34 796.74 13096.51 14097.44 13197.69 22994.15 14196.02 14798.43 16293.17 21897.30 15597.38 18895.48 11899.28 23493.74 18899.34 15598.88 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
region2R97.92 5397.59 7398.92 2099.22 5697.55 2397.60 6898.84 8796.00 11197.22 15797.62 16696.87 6199.76 5295.48 10499.43 13099.46 60
ITE_SJBPF97.85 9698.64 11896.66 5098.51 15595.63 13097.22 15797.30 19695.52 11698.55 31190.97 23598.90 21398.34 231
9.1496.69 12798.53 13496.02 14798.98 6393.23 21297.18 15997.46 17896.47 8099.62 13492.99 20499.32 164
OMC-MVS96.48 14696.00 16097.91 9298.30 15396.01 7294.86 21998.60 14691.88 24297.18 15997.21 20196.11 9299.04 26590.49 25799.34 15598.69 203
our_test_394.20 23894.58 21493.07 29596.16 29681.20 32790.42 32796.84 26790.72 25497.14 16197.13 20390.47 22999.11 25794.04 17998.25 25698.91 174
MS-PatchMatch94.83 20994.91 19794.57 26796.81 27987.10 28094.23 24297.34 25188.74 27397.14 16197.11 20691.94 21298.23 32892.99 20497.92 26798.37 225
eth_miper_zixun_eth94.89 20794.93 19594.75 25995.99 30186.12 29291.35 31398.49 15693.40 20597.12 16397.25 19986.87 27099.35 21695.08 13398.82 22498.78 192
3Dnovator96.53 297.61 7797.64 6697.50 12197.74 22693.65 16398.49 2098.88 7996.86 7897.11 16498.55 6795.82 10299.73 6895.94 8699.42 13399.13 133
cl-mvsnet_94.73 21394.64 20895.01 24695.85 30487.00 28191.33 31498.08 20893.34 20897.10 16597.33 19384.01 28599.30 22895.14 12899.56 8198.71 202
cl-mvsnet194.73 21394.64 20895.01 24695.86 30387.00 28191.33 31498.08 20893.34 20897.10 16597.34 19284.02 28499.31 22595.15 12799.55 8798.72 200
PMMVS293.66 25194.07 23192.45 30797.57 23880.67 32986.46 34196.00 28193.99 19297.10 16597.38 18889.90 23997.82 33488.76 28099.47 11598.86 184
mPP-MVS97.91 5697.53 7799.04 699.22 5697.87 1197.74 6198.78 10996.04 10897.10 16597.73 15796.53 7599.78 4095.16 12599.50 10599.46 60
BH-untuned94.69 21894.75 20494.52 26997.95 19687.53 27294.07 25297.01 26293.99 19297.10 16595.65 27792.65 19298.95 27887.60 29696.74 30497.09 291
miper_ehance_all_eth94.69 21894.70 20594.64 26195.77 30786.22 29191.32 31698.24 18691.67 24497.05 17096.65 23688.39 25599.22 24494.88 13998.34 25298.49 218
ETH3D-3000-0.196.89 12196.46 14298.16 7398.62 12395.69 7995.96 15398.98 6393.36 20797.04 17197.31 19594.93 13599.63 12692.60 20799.34 15599.17 123
miper_lstm_enhance94.81 21194.80 20394.85 25396.16 29686.45 28891.14 32098.20 19193.49 20397.03 17297.37 19084.97 28099.26 23795.28 11699.56 8198.83 186
UnsupCasMVSNet_bld94.72 21794.26 22496.08 20698.62 12390.54 22693.38 27798.05 21490.30 25797.02 17396.80 22789.54 24299.16 25188.44 28596.18 31398.56 214
ppachtmachnet_test94.49 22794.84 20093.46 28796.16 29682.10 32490.59 32597.48 24890.53 25597.01 17497.59 16891.01 22399.36 21393.97 18299.18 18098.94 165
D2MVS95.18 19695.17 18595.21 23997.76 22487.76 26994.15 24797.94 21789.77 26396.99 17597.68 16387.45 26599.14 25295.03 13699.81 2998.74 197
ab-mvs96.59 14196.59 13196.60 17898.64 11892.21 19198.35 2697.67 23494.45 17596.99 17598.79 4994.96 13499.49 16990.39 25899.07 19698.08 249
Anonymous2023120695.27 19395.06 19095.88 21698.72 10989.37 23795.70 16597.85 22288.00 28196.98 17797.62 16691.95 21199.34 21889.21 27499.53 9398.94 165
PVSNet_Blended_VisFu95.95 16695.80 16896.42 19199.28 4690.62 22295.31 19099.08 3488.40 27696.97 17898.17 10692.11 20699.78 4093.64 19199.21 17798.86 184
mvs_anonymous95.36 18996.07 15893.21 29396.29 28881.56 32594.60 22997.66 23693.30 21096.95 17998.91 4593.03 18399.38 20896.60 5997.30 29698.69 203
ZNCC-MVS97.92 5397.62 7098.83 2499.32 4497.24 3697.45 7698.84 8795.76 12696.93 18097.43 18097.26 3999.79 3896.06 7699.53 9399.45 65
3Dnovator+96.13 397.73 6997.59 7398.15 7698.11 18295.60 8598.04 4598.70 12898.13 3796.93 18098.45 7495.30 12699.62 13495.64 9798.96 20599.24 115
USDC94.56 22594.57 21694.55 26897.78 22286.43 28992.75 28998.65 14385.96 29696.91 18297.93 13590.82 22698.74 29490.71 24799.59 7398.47 219
CP-MVS97.92 5397.56 7698.99 1198.99 9197.82 1297.93 5098.96 6796.11 10396.89 18397.45 17996.85 6299.78 4095.19 12199.63 6199.38 85
OpenMVS_ROBcopyleft91.80 1493.64 25293.05 25195.42 23397.31 26191.21 21195.08 20696.68 27481.56 32496.88 18496.41 24890.44 23099.25 23985.39 31597.67 28195.80 321
testtj96.69 13696.13 15398.36 5998.46 14596.02 7196.44 12198.70 12894.26 18296.79 18597.13 20394.07 16099.75 5690.53 25398.80 22599.31 99
test_yl94.40 22894.00 23595.59 22396.95 27389.52 23494.75 22595.55 29196.18 10196.79 18596.14 26181.09 29399.18 24690.75 24397.77 27198.07 251
DCV-MVSNet94.40 22894.00 23595.59 22396.95 27389.52 23494.75 22595.55 29196.18 10196.79 18596.14 26181.09 29399.18 24690.75 24397.77 27198.07 251
Gipumacopyleft98.07 3898.31 2997.36 13899.76 596.28 6398.51 1999.10 2898.76 2196.79 18599.34 1796.61 7298.82 28696.38 6899.50 10596.98 295
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
alignmvs96.01 16495.52 17897.50 12197.77 22394.71 11996.07 14396.84 26797.48 6196.78 18994.28 30685.50 27699.40 19996.22 7198.73 23498.40 222
MSLP-MVS++96.42 15096.71 12695.57 22597.82 20890.56 22595.71 16498.84 8794.72 16696.71 19097.39 18694.91 13698.10 33295.28 11699.02 20198.05 258
canonicalmvs97.23 10697.21 9997.30 14197.65 23494.39 13097.84 5599.05 4097.42 6396.68 19193.85 30997.63 2699.33 22196.29 7098.47 24998.18 246
diffmvs96.04 16296.23 14995.46 23297.35 25388.03 26293.42 27499.08 3494.09 19096.66 19296.93 21793.85 16599.29 23296.01 8398.67 23699.06 150
MVP-Stereo95.69 17395.28 18296.92 15998.15 17693.03 17795.64 17398.20 19190.39 25696.63 19397.73 15791.63 21899.10 25991.84 21997.31 29598.63 208
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNet (Re-imp)95.11 19994.85 19995.87 21799.12 7989.17 24097.54 7494.92 29596.50 8896.58 19497.27 19783.64 28699.48 17288.42 28699.67 5698.97 161
MVS_111021_HR96.73 13296.54 13797.27 14298.35 15193.66 16293.42 27498.36 17394.74 16596.58 19496.76 23096.54 7498.99 27194.87 14099.27 17399.15 127
thisisatest053092.71 26891.76 27595.56 22798.42 14688.23 25696.03 14687.35 34394.04 19196.56 19695.47 28364.03 34799.77 4894.78 14699.11 19098.68 205
MVS_111021_LR96.82 12696.55 13597.62 11098.27 15895.34 9893.81 26498.33 17894.59 17296.56 19696.63 23796.61 7298.73 29594.80 14399.34 15598.78 192
DELS-MVS96.17 15796.23 14995.99 20897.55 24190.04 22892.38 29998.52 15394.13 18896.55 19897.06 20994.99 13399.58 14495.62 9899.28 17198.37 225
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline193.14 26392.64 26394.62 26397.34 25787.20 27996.67 11693.02 31294.71 16796.51 19995.83 27381.64 29098.60 30790.00 26488.06 34198.07 251
Patchmatch-test93.60 25393.25 24994.63 26296.14 29987.47 27396.04 14594.50 29993.57 20196.47 20096.97 21476.50 31598.61 30590.67 24998.41 25197.81 272
HyFIR lowres test93.72 24892.65 26296.91 16198.93 9491.81 20491.23 31898.52 15382.69 32096.46 20196.52 24480.38 29799.90 1390.36 25998.79 22699.03 154
QAPM95.88 16995.57 17796.80 16797.90 19991.84 20398.18 3998.73 11888.41 27596.42 20298.13 10894.73 13799.75 5688.72 28198.94 20998.81 188
BH-RMVSNet94.56 22594.44 22194.91 24997.57 23887.44 27493.78 26596.26 27793.69 20096.41 20396.50 24592.10 20799.00 26985.96 30897.71 27798.31 233
CNVR-MVS96.92 11796.55 13598.03 8698.00 19195.54 8794.87 21898.17 19794.60 17096.38 20497.05 21095.67 11299.36 21395.12 13199.08 19499.19 120
thres600view792.03 28091.43 27793.82 28098.19 16784.61 31196.27 13190.39 33496.81 7996.37 20593.11 31273.44 33099.49 16980.32 33297.95 26697.36 286
thres100view90091.76 28491.26 28293.26 29098.21 16584.50 31296.39 12490.39 33496.87 7796.33 20693.08 31473.44 33099.42 18878.85 33697.74 27495.85 319
XVS97.96 4497.63 6898.94 1699.15 7097.66 1697.77 5798.83 9597.42 6396.32 20797.64 16496.49 7899.72 7295.66 9599.37 14499.45 65
X-MVStestdata92.86 26590.83 28998.94 1699.15 7097.66 1697.77 5798.83 9597.42 6396.32 20736.50 34896.49 7899.72 7295.66 9599.37 14499.45 65
MSDG95.33 19095.13 18695.94 21497.40 25191.85 20291.02 32298.37 17295.30 14496.31 20995.99 26594.51 14998.38 32189.59 26997.65 28397.60 280
CDS-MVSNet94.88 20894.12 23097.14 14897.64 23593.57 16493.96 25897.06 26190.05 26096.30 21096.55 24086.10 27299.47 17590.10 26299.31 16698.40 222
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CVMVSNet92.33 27592.79 25890.95 31797.26 26275.84 34395.29 19292.33 32081.86 32296.27 21198.19 10481.44 29198.46 31694.23 16998.29 25598.55 216
FMVSNet593.39 25792.35 26796.50 18695.83 30590.81 22097.31 8298.27 18292.74 23096.27 21198.28 9162.23 34899.67 11590.86 23899.36 14799.03 154
TAPA-MVS93.32 1294.93 20594.23 22597.04 15498.18 17094.51 12695.22 19898.73 11881.22 32796.25 21395.95 27093.80 16798.98 27389.89 26598.87 21797.62 278
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 1792x268894.10 24093.41 24696.18 20399.16 6790.04 22892.15 30198.68 13379.90 33296.22 21497.83 14587.92 26299.42 18889.18 27599.65 5999.08 146
MCST-MVS96.24 15395.80 16897.56 11398.75 10694.13 14294.66 22798.17 19790.17 25996.21 21596.10 26495.14 12999.43 18794.13 17398.85 22199.13 133
PHI-MVS96.96 11596.53 13898.25 6997.48 24396.50 5596.76 10898.85 8493.52 20296.19 21696.85 22195.94 9699.42 18893.79 18799.43 13098.83 186
HQP_MVS96.66 13996.33 14797.68 10798.70 11494.29 13496.50 11998.75 11496.36 9396.16 21796.77 22891.91 21599.46 17892.59 20999.20 17899.28 107
plane_prior394.51 12695.29 14596.16 217
miper_enhance_ethall93.14 26392.78 26094.20 27793.65 33685.29 30189.97 33197.85 22285.05 30996.15 21994.56 29885.74 27499.14 25293.74 18898.34 25298.17 247
MVS_Test96.27 15296.79 12494.73 26096.94 27586.63 28696.18 13898.33 17894.94 15996.07 22098.28 9195.25 12799.26 23797.21 4497.90 26998.30 235
PCF-MVS89.43 1892.12 27990.64 29296.57 18397.80 21393.48 16789.88 33598.45 15974.46 34496.04 22195.68 27690.71 22799.31 22573.73 34199.01 20396.91 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETH3D cwj APD-0.1696.23 15495.61 17598.09 7997.91 19795.65 8494.94 21598.74 11691.31 24996.02 22297.08 20894.05 16199.69 10491.51 22598.94 20998.93 169
CPTT-MVS96.69 13696.08 15798.49 5098.89 9896.64 5197.25 8598.77 11092.89 22896.01 22397.13 20392.23 20399.67 11592.24 21299.34 15599.17 123
PMVScopyleft89.60 1796.71 13596.97 11295.95 21299.51 2297.81 1397.42 8097.49 24697.93 4295.95 22498.58 6396.88 6096.91 34089.59 26999.36 14793.12 338
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
xiu_mvs_v1_base_debu95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
xiu_mvs_v1_base95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
xiu_mvs_v1_base_debi95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
tfpn200view991.55 28691.00 28493.21 29398.02 18584.35 31495.70 16590.79 33196.26 9795.90 22892.13 32773.62 32899.42 18878.85 33697.74 27495.85 319
thres40091.68 28591.00 28493.71 28298.02 18584.35 31495.70 16590.79 33196.26 9795.90 22892.13 32773.62 32899.42 18878.85 33697.74 27497.36 286
cl-mvsnet293.25 26192.84 25794.46 27094.30 32886.00 29391.09 32196.64 27590.74 25395.79 23096.31 25378.24 30498.77 29194.15 17298.34 25298.62 209
API-MVS95.09 20195.01 19295.31 23696.61 28194.02 14596.83 10497.18 25695.60 13295.79 23094.33 30494.54 14898.37 32385.70 31098.52 24693.52 335
DP-MVS Recon95.55 17995.13 18696.80 16798.51 13693.99 14794.60 22998.69 13190.20 25895.78 23296.21 25892.73 18998.98 27390.58 25298.86 21997.42 285
CLD-MVS95.47 18495.07 18896.69 17498.27 15892.53 18491.36 31298.67 13691.22 25095.78 23294.12 30795.65 11398.98 27390.81 24099.72 4698.57 213
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
旧先验293.35 27877.95 34095.77 23498.67 30390.74 246
pmmvs494.82 21094.19 22896.70 17397.42 25092.75 18292.09 30496.76 27086.80 29195.73 23597.22 20089.28 24898.89 28193.28 19799.14 18298.46 221
LF4IMVS96.07 16095.63 17497.36 13898.19 16795.55 8695.44 17798.82 10392.29 23695.70 23696.55 24092.63 19398.69 29991.75 22299.33 16297.85 268
testdata95.70 22298.16 17490.58 22397.72 23180.38 33095.62 23797.02 21292.06 20998.98 27389.06 27898.52 24697.54 281
MP-MVScopyleft97.64 7497.18 10099.00 1099.32 4497.77 1497.49 7598.73 11896.27 9695.59 23897.75 15496.30 8999.78 4093.70 19099.48 11399.45 65
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS96.13 15995.90 16696.82 16697.76 22493.89 14995.40 18298.95 6995.87 12095.58 23991.00 33796.36 8799.72 7293.36 19498.83 22396.85 302
thres20091.00 29290.42 29592.77 30397.47 24783.98 31794.01 25491.18 32995.12 15295.44 24091.21 33573.93 32499.31 22577.76 33997.63 28495.01 329
CDPH-MVS95.45 18694.65 20797.84 9798.28 15694.96 11193.73 26698.33 17885.03 31095.44 24096.60 23895.31 12599.44 18590.01 26399.13 18699.11 141
NCCC96.52 14495.99 16198.10 7897.81 20995.68 8195.00 21398.20 19195.39 14195.40 24296.36 25193.81 16699.45 18293.55 19398.42 25099.17 123
jason94.39 23094.04 23395.41 23598.29 15487.85 26692.74 29196.75 27185.38 30795.29 24396.15 25988.21 25799.65 12194.24 16899.34 15598.74 197
jason: jason.
new_pmnet92.34 27491.69 27694.32 27496.23 29289.16 24192.27 30092.88 31484.39 31795.29 24396.35 25285.66 27596.74 34384.53 32097.56 28597.05 293
pmmvs594.63 22294.34 22395.50 22997.63 23688.34 25594.02 25397.13 25887.15 28795.22 24597.15 20287.50 26499.27 23693.99 18099.26 17498.88 181
Effi-MVS+-dtu96.81 12796.09 15698.99 1196.90 27798.69 296.42 12298.09 20695.86 12195.15 24695.54 28194.26 15599.81 3194.06 17598.51 24898.47 219
HPM-MVS++copyleft96.99 11196.38 14498.81 2798.64 11897.59 2095.97 15298.20 19195.51 13695.06 24796.53 24294.10 15999.70 9694.29 16699.15 18199.13 133
MIMVSNet93.42 25692.86 25595.10 24398.17 17288.19 25798.13 4193.69 30492.07 23795.04 24898.21 10380.95 29599.03 26881.42 33098.06 26398.07 251
TR-MVS92.54 27092.20 26993.57 28596.49 28486.66 28593.51 27294.73 29689.96 26194.95 24993.87 30890.24 23698.61 30581.18 33194.88 32395.45 327
PatchMatch-RL94.61 22393.81 24097.02 15698.19 16795.72 7793.66 26797.23 25388.17 27994.94 25095.62 27991.43 21998.57 30887.36 30197.68 28096.76 306
MG-MVS94.08 24294.00 23594.32 27497.09 26985.89 29493.19 28395.96 28392.52 23194.93 25197.51 17489.54 24298.77 29187.52 29997.71 27798.31 233
新几何197.25 14598.29 15494.70 12297.73 23077.98 33894.83 25296.67 23592.08 20899.45 18288.17 29098.65 23997.61 279
Fast-Effi-MVS+-dtu96.44 14896.12 15497.39 13697.18 26694.39 13095.46 17698.73 11896.03 11094.72 25394.92 29396.28 9199.69 10493.81 18697.98 26598.09 248
test0.0.03 190.11 29789.21 30392.83 30293.89 33486.87 28491.74 30888.74 34192.02 23894.71 25491.14 33673.92 32594.48 34683.75 32692.94 33197.16 290
ETH3 D test640094.77 21293.87 23997.47 12698.12 18193.73 15794.56 23198.70 12885.45 30594.70 25595.93 27291.77 21799.63 12686.45 30699.14 18299.05 152
test22298.17 17293.24 17292.74 29197.61 24475.17 34394.65 25696.69 23490.96 22598.66 23897.66 277
SCA93.38 25893.52 24492.96 30096.24 29081.40 32693.24 28194.00 30291.58 24794.57 25796.97 21487.94 25899.42 18889.47 27197.66 28298.06 255
CNLPA95.04 20294.47 21896.75 17097.81 20995.25 10094.12 25197.89 22094.41 17694.57 25795.69 27590.30 23498.35 32486.72 30598.76 22996.64 309
112194.26 23193.26 24897.27 14298.26 16094.73 11795.86 15897.71 23277.96 33994.53 25996.71 23291.93 21399.40 19987.71 29298.64 24097.69 276
PVSNet_BlendedMVS95.02 20494.93 19595.27 23797.79 21887.40 27594.14 24998.68 13388.94 27094.51 26098.01 12593.04 18199.30 22889.77 26799.49 10999.11 141
PVSNet_Blended93.96 24493.65 24294.91 24997.79 21887.40 27591.43 31198.68 13384.50 31594.51 26094.48 30293.04 18199.30 22889.77 26798.61 24298.02 261
MVSFormer96.14 15896.36 14595.49 23097.68 23087.81 26798.67 1199.02 4996.50 8894.48 26296.15 25986.90 26899.92 498.73 799.13 18698.74 197
lupinMVS93.77 24693.28 24795.24 23897.68 23087.81 26792.12 30296.05 28084.52 31494.48 26295.06 28986.90 26899.63 12693.62 19299.13 18698.27 238
OpenMVScopyleft94.22 895.48 18395.20 18396.32 19697.16 26791.96 20097.74 6198.84 8787.26 28594.36 26498.01 12593.95 16399.67 11590.70 24898.75 23097.35 288
PatchT93.75 24793.57 24394.29 27695.05 32087.32 27796.05 14492.98 31397.54 5994.25 26598.72 5475.79 32099.24 24095.92 8795.81 31596.32 315
BH-w/o92.14 27891.94 27192.73 30497.13 26885.30 30092.46 29695.64 28889.33 26694.21 26692.74 32089.60 24198.24 32781.68 32994.66 32594.66 331
xiu_mvs_v2_base94.22 23394.63 21092.99 29997.32 26084.84 30992.12 30297.84 22491.96 24094.17 26793.43 31096.07 9399.71 8791.27 22997.48 28994.42 332
PS-MVSNAJ94.10 24094.47 21893.00 29897.35 25384.88 30891.86 30697.84 22491.96 24094.17 26792.50 32495.82 10299.71 8791.27 22997.48 28994.40 333
CR-MVSNet93.29 26092.79 25894.78 25795.44 31488.15 25896.18 13897.20 25484.94 31294.10 26998.57 6477.67 30799.39 20495.17 12395.81 31596.81 304
RPMNet94.22 23394.03 23494.78 25795.44 31488.15 25896.18 13893.73 30397.43 6294.10 26998.49 7179.40 29999.39 20495.69 9295.81 31596.81 304
WTY-MVS93.55 25493.00 25395.19 24097.81 20987.86 26493.89 26096.00 28189.02 26894.07 27195.44 28486.27 27199.33 22187.69 29496.82 30198.39 224
GA-MVS92.83 26692.15 27094.87 25296.97 27287.27 27890.03 33096.12 27991.83 24394.05 27294.57 29776.01 31998.97 27792.46 21197.34 29498.36 230
test_prior395.91 16795.39 18097.46 12897.79 21894.26 13893.33 27998.42 16594.21 18494.02 27396.25 25593.64 17099.34 21891.90 21598.96 20598.79 190
test_prior293.33 27994.21 18494.02 27396.25 25593.64 17091.90 21598.96 205
MDTV_nov1_ep13_2view57.28 35394.89 21780.59 32994.02 27378.66 30385.50 31497.82 270
AdaColmapbinary95.11 19994.62 21196.58 18197.33 25994.45 12994.92 21698.08 20893.15 21993.98 27695.53 28294.34 15399.10 25985.69 31198.61 24296.20 317
pmmvs390.00 29988.90 30793.32 28894.20 33285.34 29991.25 31792.56 31978.59 33693.82 27795.17 28667.36 34498.69 29989.08 27798.03 26495.92 318
TEST997.84 20695.23 10193.62 26898.39 16986.81 29093.78 27895.99 26594.68 14199.52 163
train_agg95.46 18594.66 20697.88 9497.84 20695.23 10193.62 26898.39 16987.04 28893.78 27895.99 26594.58 14699.52 16391.76 22198.90 21398.89 178
EIA-MVS96.04 16295.77 17096.85 16497.80 21392.98 17896.12 14199.16 1794.65 16893.77 28091.69 33295.68 11199.67 11594.18 17098.85 22197.91 266
sss94.22 23393.72 24195.74 21997.71 22889.95 23093.84 26196.98 26388.38 27793.75 28195.74 27487.94 25898.89 28191.02 23498.10 26198.37 225
test_897.81 20995.07 10993.54 27198.38 17187.04 28893.71 28295.96 26994.58 14699.52 163
E-PMN89.52 30589.78 29988.73 32693.14 34177.61 33783.26 34592.02 32194.82 16393.71 28293.11 31275.31 32196.81 34185.81 30996.81 30291.77 341
thisisatest051590.43 29589.18 30694.17 27997.07 27085.44 29889.75 33687.58 34288.28 27893.69 28491.72 33165.27 34599.58 14490.59 25198.67 23697.50 283
mvs-test196.20 15595.50 17998.32 6296.90 27798.16 495.07 20798.09 20695.86 12193.63 28594.32 30594.26 15599.71 8794.06 17597.27 29797.07 292
UGNet96.81 12796.56 13497.58 11296.64 28093.84 15397.75 6097.12 25996.47 9193.62 28698.88 4693.22 17899.53 15995.61 9999.69 5399.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive91.98 28191.87 27292.30 30994.60 32579.71 33195.12 20193.59 30889.52 26493.61 28797.02 21277.94 30599.18 24690.84 23994.57 32898.01 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CMPMVSbinary73.10 2392.74 26791.39 27896.77 16993.57 33894.67 12394.21 24497.67 23480.36 33193.61 28796.60 23882.85 28897.35 33884.86 31898.78 22798.29 237
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test1297.46 12897.61 23794.07 14397.78 22893.57 28993.31 17699.42 18898.78 22798.89 178
CS-MVS95.86 17095.59 17696.69 17497.85 20193.14 17496.42 12299.25 994.17 18793.56 29090.76 34096.05 9499.72 7293.28 19798.91 21297.21 289
tpm91.08 29190.85 28891.75 31295.33 31778.09 33495.03 21291.27 32888.75 27293.53 29197.40 18271.24 33599.30 22891.25 23193.87 32997.87 267
agg_prior195.39 18894.60 21297.75 10097.80 21394.96 11193.39 27698.36 17387.20 28693.49 29295.97 26894.65 14399.53 15991.69 22398.86 21998.77 195
agg_prior97.80 21394.96 11198.36 17393.49 29299.53 159
原ACMM196.58 18198.16 17492.12 19598.15 20085.90 29893.49 29296.43 24792.47 20099.38 20887.66 29598.62 24198.23 241
MDTV_nov1_ep1391.28 28094.31 32773.51 34794.80 22293.16 31186.75 29293.45 29597.40 18276.37 31698.55 31188.85 27996.43 309
114514_t93.96 24493.22 25096.19 20299.06 8590.97 21595.99 15098.94 7073.88 34593.43 29696.93 21792.38 20299.37 21189.09 27699.28 17198.25 240
Fast-Effi-MVS+95.49 18195.07 18896.75 17097.67 23392.82 18094.22 24398.60 14691.61 24593.42 29792.90 31796.73 6799.70 9692.60 20797.89 27097.74 273
PAPM_NR94.61 22394.17 22995.96 21098.36 15091.23 21095.93 15697.95 21692.98 22393.42 29794.43 30390.53 22898.38 32187.60 29696.29 31298.27 238
Effi-MVS+96.19 15696.01 15996.71 17297.43 24992.19 19496.12 14199.10 2895.45 13893.33 29994.71 29697.23 4299.56 15193.21 20197.54 28698.37 225
F-COLMAP95.30 19294.38 22298.05 8598.64 11896.04 6995.61 17498.66 13889.00 26993.22 30096.40 25092.90 18599.35 21687.45 30097.53 28798.77 195
EPMVS89.26 30688.55 30991.39 31492.36 34779.11 33295.65 17179.86 34988.60 27493.12 30196.53 24270.73 33998.10 33290.75 24389.32 34096.98 295
DPM-MVS93.68 25092.77 26196.42 19197.91 19792.54 18391.17 31997.47 24984.99 31193.08 30294.74 29589.90 23999.00 26987.54 29898.09 26297.72 274
1112_ss94.12 23993.42 24596.23 19998.59 12890.85 21694.24 24198.85 8485.49 30292.97 30394.94 29186.01 27399.64 12491.78 22097.92 26798.20 244
HQP4-MVS92.87 30499.23 24299.06 150
HQP-NCC97.85 20194.26 23793.18 21592.86 305
ACMP_Plane97.85 20194.26 23793.18 21592.86 305
HQP-MVS95.17 19894.58 21496.92 15997.85 20192.47 18594.26 23798.43 16293.18 21592.86 30595.08 28790.33 23199.23 24290.51 25598.74 23199.05 152
ADS-MVSNet291.47 28790.51 29494.36 27395.51 31285.63 29595.05 21095.70 28783.46 31892.69 30896.84 22279.15 30199.41 19785.66 31290.52 33698.04 259
ADS-MVSNet90.95 29390.26 29693.04 29695.51 31282.37 32395.05 21093.41 30983.46 31892.69 30896.84 22279.15 30198.70 29885.66 31290.52 33698.04 259
Test_1112_low_res93.53 25592.86 25595.54 22898.60 12688.86 24692.75 28998.69 13182.66 32192.65 31096.92 21984.75 28199.56 15190.94 23697.76 27398.19 245
EMVS89.06 30789.22 30288.61 32793.00 34377.34 33982.91 34690.92 33094.64 16992.63 31191.81 33076.30 31797.02 33983.83 32496.90 29991.48 342
CANet95.86 17095.65 17396.49 18796.41 28690.82 21894.36 23598.41 16794.94 15992.62 31296.73 23192.68 19099.71 8795.12 13199.60 7198.94 165
DSMNet-mixed92.19 27791.83 27393.25 29196.18 29583.68 31996.27 13193.68 30676.97 34292.54 31399.18 2789.20 25098.55 31183.88 32398.60 24497.51 282
PVSNet86.72 1991.10 29090.97 28691.49 31397.56 24078.04 33587.17 34094.60 29884.65 31392.34 31492.20 32687.37 26698.47 31585.17 31697.69 27997.96 263
tpmrst90.31 29690.61 29389.41 32494.06 33372.37 34995.06 20993.69 30488.01 28092.32 31596.86 22077.45 30998.82 28691.04 23387.01 34397.04 294
cascas91.89 28291.35 27993.51 28694.27 32985.60 29688.86 33898.61 14579.32 33492.16 31691.44 33389.22 24998.12 33190.80 24197.47 29196.82 303
MAR-MVS94.21 23693.03 25297.76 9996.94 27597.44 3096.97 10197.15 25787.89 28392.00 31792.73 32192.14 20599.12 25483.92 32297.51 28896.73 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmvs90.79 29490.87 28790.57 32092.75 34676.30 34195.79 16293.64 30791.04 25291.91 31896.26 25477.19 31398.86 28589.38 27389.85 33996.56 312
PMMVS92.39 27291.08 28396.30 19893.12 34292.81 18190.58 32695.96 28379.17 33591.85 31992.27 32590.29 23598.66 30489.85 26696.68 30697.43 284
PLCcopyleft91.02 1694.05 24392.90 25497.51 11898.00 19195.12 10894.25 24098.25 18586.17 29491.48 32095.25 28591.01 22399.19 24585.02 31796.69 30598.22 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.08 31288.05 31188.16 33092.85 34468.81 35194.17 24592.88 31485.47 30391.38 32196.14 26168.87 34298.81 28886.88 30383.80 34696.87 300
PAPR92.22 27691.27 28195.07 24495.73 30988.81 24791.97 30597.87 22185.80 29990.91 32292.73 32191.16 22198.33 32579.48 33395.76 31998.08 249
131492.38 27392.30 26892.64 30595.42 31685.15 30495.86 15896.97 26485.40 30690.62 32393.06 31591.12 22297.80 33586.74 30495.49 32294.97 330
MVS90.02 29889.20 30492.47 30694.71 32386.90 28395.86 15896.74 27264.72 34790.62 32392.77 31992.54 19798.39 32079.30 33495.56 32192.12 339
CostFormer89.75 30389.25 30191.26 31694.69 32478.00 33695.32 18991.98 32281.50 32590.55 32596.96 21671.06 33798.89 28188.59 28492.63 33396.87 300
HY-MVS91.43 1592.58 26991.81 27494.90 25196.49 28488.87 24597.31 8294.62 29785.92 29790.50 32696.84 22285.05 27899.40 19983.77 32595.78 31896.43 314
FPMVS89.92 30288.63 30893.82 28098.37 14996.94 4291.58 30993.34 31088.00 28190.32 32797.10 20770.87 33891.13 34871.91 34496.16 31493.39 337
JIA-IIPM91.79 28390.69 29195.11 24293.80 33590.98 21494.16 24691.78 32496.38 9290.30 32899.30 1872.02 33498.90 27988.28 28890.17 33895.45 327
CANet_DTU94.65 22194.21 22795.96 21095.90 30289.68 23193.92 25997.83 22693.19 21490.12 32995.64 27888.52 25299.57 15093.27 19999.47 11598.62 209
test-LLR89.97 30189.90 29890.16 32194.24 33074.98 34489.89 33289.06 33992.02 23889.97 33090.77 33873.92 32598.57 30891.88 21797.36 29296.92 297
test-mter87.92 31487.17 31490.16 32194.24 33074.98 34489.89 33289.06 33986.44 29389.97 33090.77 33854.96 35598.57 30891.88 21797.36 29296.92 297
tpm288.47 30987.69 31290.79 31894.98 32177.34 33995.09 20491.83 32377.51 34189.40 33296.41 24867.83 34398.73 29583.58 32792.60 33496.29 316
tpm cat188.01 31387.33 31390.05 32394.48 32676.28 34294.47 23494.35 30173.84 34689.26 33395.61 28073.64 32798.30 32684.13 32186.20 34495.57 326
MVS_030495.50 18095.05 19196.84 16596.28 28993.12 17597.00 9996.16 27895.03 15689.22 33497.70 16090.16 23799.48 17294.51 15699.34 15597.93 265
TESTMET0.1,187.20 31786.57 31889.07 32593.62 33772.84 34889.89 33287.01 34585.46 30489.12 33590.20 34156.00 35497.72 33690.91 23796.92 29896.64 309
MVS-HIRNet88.40 31090.20 29782.99 33297.01 27160.04 35293.11 28485.61 34784.45 31688.72 33699.09 3384.72 28298.23 32882.52 32896.59 30890.69 344
IB-MVS85.98 2088.63 30886.95 31693.68 28395.12 31984.82 31090.85 32390.17 33887.55 28488.48 33791.34 33458.01 35099.59 14287.24 30293.80 33096.63 311
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test87.92 31486.77 31791.39 31493.18 33978.62 33395.10 20291.42 32685.58 30188.00 33888.73 34360.60 34998.90 27990.60 25087.70 34296.65 308
PVSNet_081.89 2184.49 31983.21 32188.34 32895.76 30874.97 34683.49 34492.70 31878.47 33787.94 33986.90 34583.38 28796.63 34473.44 34266.86 34893.40 336
EPNet93.72 24892.62 26497.03 15587.61 35292.25 18996.27 13191.28 32796.74 8187.65 34097.39 18685.00 27999.64 12492.14 21399.48 11399.20 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42089.98 30089.19 30592.37 30895.60 31181.13 32886.22 34297.09 26081.44 32687.44 34193.15 31173.99 32399.47 17588.69 28299.07 19696.52 313
baseline289.65 30488.44 31093.25 29195.62 31082.71 32093.82 26285.94 34688.89 27187.35 34292.54 32371.23 33699.33 22186.01 30794.60 32797.72 274
gg-mvs-nofinetune88.28 31186.96 31592.23 31192.84 34584.44 31398.19 3874.60 35199.08 1087.01 34399.47 856.93 35298.23 32878.91 33595.61 32094.01 334
ET-MVSNet_ETH3D91.12 28989.67 30095.47 23196.41 28689.15 24291.54 31090.23 33789.07 26786.78 34492.84 31869.39 34199.44 18594.16 17196.61 30797.82 270
PAPM87.64 31685.84 32093.04 29696.54 28284.99 30788.42 33995.57 29079.52 33383.82 34593.05 31680.57 29698.41 31862.29 34792.79 33295.71 322
GG-mvs-BLEND90.60 31991.00 34984.21 31698.23 3272.63 35482.76 34684.11 34656.14 35396.79 34272.20 34392.09 33590.78 343
MVEpermissive73.61 2286.48 31885.92 31988.18 32996.23 29285.28 30281.78 34775.79 35086.01 29582.53 34791.88 32992.74 18887.47 34971.42 34594.86 32491.78 340
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu91.39 28890.75 29093.31 28990.48 35182.61 32194.80 22292.88 31493.39 20681.74 34894.90 29481.36 29299.11 25788.28 28898.87 21798.21 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft77.17 33390.94 35085.28 30274.08 35352.51 34880.87 34988.03 34475.25 32270.63 35059.23 34884.94 34575.62 345
tmp_tt57.23 32062.50 32241.44 33434.77 35349.21 35483.93 34360.22 35515.31 34971.11 35079.37 34770.09 34044.86 35164.76 34682.93 34730.25 347
testmvs12.33 32315.23 3253.64 3365.77 3552.23 35688.99 3373.62 3562.30 3515.29 35113.09 3494.52 3571.95 3525.16 3508.32 3506.75 349
test12312.59 32215.49 3243.87 3356.07 3542.55 35590.75 3242.59 3572.52 3505.20 35213.02 3504.96 3561.85 3535.20 3499.09 3497.23 348
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.22 32132.30 3230.00 3370.00 3560.00 3570.00 34898.10 2050.00 3520.00 35395.06 28997.54 280.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.98 32410.65 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35395.82 1020.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.91 32510.55 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35394.94 2910.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS97.64 10998.01 18795.27 9996.79 10697.35 19196.97 5398.51 31491.21 23299.25 17599.14 130
save fliter98.48 14194.71 11994.53 23298.41 16795.02 157
test_0728_SECOND98.25 6999.23 5395.49 9196.74 10998.89 7499.75 5695.48 10499.52 9899.53 38
GSMVS98.06 255
test_part10.00 3370.00 3570.00 34898.84 870.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs177.80 30698.06 255
sam_mvs77.38 310
MTGPAbinary98.73 118
test_post194.98 21410.37 35276.21 31899.04 26589.47 271
test_post10.87 35176.83 31499.07 262
patchmatchnet-post96.84 22277.36 31199.42 188
MTMP96.55 11774.60 351
gm-plane-assit91.79 34871.40 35081.67 32390.11 34298.99 27184.86 318
test9_res91.29 22898.89 21699.00 157
agg_prior290.34 26098.90 21399.10 145
test_prior495.38 9493.61 270
test_prior97.46 12897.79 21894.26 13898.42 16599.34 21898.79 190
新几何293.43 273
旧先验197.80 21393.87 15097.75 22997.04 21193.57 17298.68 23598.72 200
无先验93.20 28297.91 21880.78 32899.40 19987.71 29297.94 264
原ACMM292.82 287
testdata299.46 17887.84 291
segment_acmp95.34 123
testdata192.77 28893.78 197
plane_prior798.70 11494.67 123
plane_prior698.38 14894.37 13291.91 215
plane_prior598.75 11499.46 17892.59 20999.20 17899.28 107
plane_prior496.77 228
plane_prior296.50 11996.36 93
plane_prior198.49 139
plane_prior94.29 13495.42 17994.31 18198.93 211
n20.00 358
nn0.00 358
door-mid98.17 197
test1198.08 208
door97.81 227
HQP5-MVS92.47 185
BP-MVS90.51 255
HQP3-MVS98.43 16298.74 231
HQP2-MVS90.33 231
NP-MVS98.14 17793.72 15895.08 287
ACMMP++_ref99.52 98
ACMMP++99.55 87
Test By Simon94.51 149