LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 3 | 96.34 64 | 99.18 5 | 99.20 16 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 20 | 97.22 46 | 99.92 14 | 99.77 8 |
|
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 96 | 98.79 111 | 94.37 146 | 98.84 10 | 99.15 24 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 120 | 99.72 86 | 98.12 16 | 99.86 25 | 99.73 15 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 47 | 99.55 18 | 96.12 71 | 98.48 25 | 99.10 31 | 99.36 4 | 99.29 23 | 99.06 39 | 97.27 38 | 99.93 2 | 97.71 32 | 99.91 17 | 99.70 18 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 15 | 95.67 88 | 98.45 26 | 99.15 24 | 99.33 5 | 99.30 21 | 99.00 41 | 97.27 38 | 99.92 4 | 97.64 34 | 99.92 14 | 99.75 13 |
|
ANet_high | | | 98.31 28 | 98.94 6 | 96.41 204 | 99.33 44 | 89.64 250 | 97.92 58 | 99.56 5 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 28 | 97.55 37 | 99.98 2 | 99.77 8 |
|
VDDNet | | | 96.98 120 | 96.84 126 | 97.41 145 | 99.40 37 | 93.26 185 | 97.94 55 | 95.31 314 | 99.26 7 | 98.39 75 | 99.18 27 | 87.85 275 | 99.62 151 | 95.13 148 | 99.09 210 | 99.35 98 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 59 | 99.55 18 | 95.47 100 | 98.49 23 | 99.13 27 | 99.22 8 | 99.22 27 | 98.96 45 | 97.35 34 | 99.92 4 | 97.79 28 | 99.93 10 | 99.79 7 |
|
LFMVS | | | 95.32 201 | 94.88 209 | 96.62 189 | 98.03 198 | 91.47 225 | 97.65 73 | 90.72 354 | 99.11 9 | 97.89 137 | 98.31 89 | 79.20 318 | 99.48 191 | 93.91 202 | 99.12 206 | 98.93 183 |
|
gg-mvs-nofinetune | | | 88.28 329 | 86.96 334 | 92.23 330 | 92.84 367 | 84.44 332 | 98.19 44 | 74.60 374 | 99.08 10 | 87.01 366 | 99.47 8 | 56.93 372 | 98.23 349 | 78.91 358 | 95.61 341 | 94.01 356 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 83 | 97.89 14 | 99.47 3 | 99.32 10 | 99.08 10 | 97.87 141 | 99.67 2 | 96.47 88 | 99.92 4 | 97.88 23 | 99.98 2 | 99.85 3 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 95 | 99.64 11 | 94.20 154 | 98.67 13 | 99.14 26 | 99.08 10 | 99.42 15 | 99.23 21 | 96.53 83 | 99.91 12 | 99.27 2 | 99.93 10 | 99.73 15 |
|
CP-MVSNet | | | 98.42 23 | 98.46 24 | 98.30 67 | 99.46 29 | 95.22 116 | 98.27 37 | 98.84 99 | 99.05 13 | 99.01 35 | 98.65 66 | 95.37 129 | 99.90 13 | 97.57 36 | 99.91 17 | 99.77 8 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 33 | 99.51 23 | 96.61 56 | 98.55 19 | 99.17 19 | 99.05 13 | 99.17 29 | 98.79 54 | 95.47 126 | 99.89 16 | 97.95 21 | 99.91 17 | 99.75 13 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 7 | 96.99 45 | 99.69 2 | 99.57 4 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 182 | 98.58 12 | 99.95 5 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 49 | 99.81 2 | 96.38 62 | 98.87 9 | 99.30 11 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 125 | 97.75 30 | 99.89 22 | 99.62 25 |
|
DP-MVS | | | 97.87 63 | 97.89 48 | 97.81 105 | 98.62 134 | 94.82 128 | 97.13 106 | 98.79 116 | 98.98 17 | 98.74 48 | 98.49 76 | 95.80 114 | 99.49 188 | 95.04 152 | 99.44 132 | 99.11 155 |
|
FOURS1 | | | | | | 99.59 14 | 98.20 4 | 99.03 7 | 99.25 12 | 98.96 18 | 98.87 40 | | | | | | |
|
K. test v3 | | | 96.44 156 | 96.28 157 | 96.95 169 | 99.41 36 | 91.53 223 | 97.65 73 | 90.31 357 | 98.89 19 | 98.93 38 | 99.36 14 | 84.57 295 | 99.92 4 | 97.81 26 | 99.56 88 | 99.39 86 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 20 | 98.06 8 | 99.34 4 | 99.44 8 | 98.85 20 | 99.00 36 | 99.20 23 | 97.42 32 | 99.59 160 | 97.21 48 | 99.76 42 | 99.40 84 |
|
test_part1 | | | 96.77 136 | 96.53 146 | 97.47 136 | 98.04 197 | 92.92 194 | 97.93 56 | 98.85 94 | 98.83 21 | 99.30 21 | 99.07 38 | 79.25 317 | 99.79 39 | 97.59 35 | 99.93 10 | 99.69 20 |
|
Anonymous20240529 | | | 97.96 46 | 98.04 39 | 97.71 112 | 98.69 126 | 94.28 151 | 97.86 61 | 98.31 193 | 98.79 22 | 99.23 26 | 98.86 52 | 95.76 115 | 99.61 158 | 95.49 117 | 99.36 158 | 99.23 127 |
|
Gipuma |  | | 98.07 40 | 98.31 29 | 97.36 149 | 99.76 5 | 96.28 67 | 98.51 22 | 99.10 31 | 98.76 23 | 96.79 201 | 99.34 17 | 96.61 78 | 98.82 305 | 96.38 74 | 99.50 114 | 96.98 314 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
TranMVSNet+NR-MVSNet | | | 98.33 26 | 98.30 31 | 98.43 56 | 99.07 87 | 95.87 79 | 96.73 128 | 99.05 43 | 98.67 24 | 98.84 42 | 98.45 79 | 97.58 28 | 99.88 18 | 96.45 72 | 99.86 25 | 99.54 38 |
|
test_0402 | | | 97.84 66 | 97.97 41 | 97.47 136 | 99.19 68 | 94.07 157 | 96.71 129 | 98.73 129 | 98.66 25 | 98.56 59 | 98.41 81 | 96.84 69 | 99.69 117 | 94.82 160 | 99.81 33 | 98.64 221 |
|
VDD-MVS | | | 97.37 101 | 97.25 101 | 97.74 110 | 98.69 126 | 94.50 142 | 97.04 111 | 95.61 308 | 98.59 26 | 98.51 62 | 98.72 59 | 92.54 207 | 99.58 162 | 96.02 89 | 99.49 118 | 99.12 151 |
|
LS3D | | | 97.77 73 | 97.50 87 | 98.57 48 | 96.24 312 | 97.58 25 | 98.45 26 | 98.85 94 | 98.58 27 | 97.51 154 | 97.94 144 | 95.74 116 | 99.63 143 | 95.19 139 | 98.97 221 | 98.51 232 |
|
MIMVSNet1 | | | 98.51 20 | 98.45 26 | 98.67 41 | 99.72 6 | 96.71 51 | 98.76 11 | 98.89 79 | 98.49 28 | 99.38 17 | 99.14 33 | 95.44 128 | 99.84 25 | 96.47 71 | 99.80 36 | 99.47 62 |
|
FC-MVSNet-test | | | 98.16 33 | 98.37 27 | 97.56 123 | 99.49 27 | 93.10 190 | 98.35 29 | 99.21 14 | 98.43 29 | 98.89 39 | 98.83 53 | 94.30 164 | 99.81 32 | 97.87 24 | 99.91 17 | 99.77 8 |
|
VPA-MVSNet | | | 98.27 29 | 98.46 24 | 97.70 114 | 99.06 88 | 93.80 168 | 97.76 67 | 99.00 60 | 98.40 30 | 99.07 33 | 98.98 43 | 96.89 64 | 99.75 65 | 97.19 51 | 99.79 38 | 99.55 37 |
|
IS-MVSNet | | | 96.93 122 | 96.68 135 | 97.70 114 | 99.25 52 | 94.00 160 | 98.57 17 | 96.74 288 | 98.36 31 | 98.14 108 | 97.98 138 | 88.23 268 | 99.71 100 | 93.10 221 | 99.72 51 | 99.38 88 |
|
COLMAP_ROB |  | 94.48 6 | 98.25 31 | 98.11 34 | 98.64 44 | 99.21 65 | 97.35 36 | 97.96 54 | 99.16 20 | 98.34 32 | 98.78 45 | 98.52 74 | 97.32 35 | 99.45 201 | 94.08 192 | 99.67 61 | 99.13 146 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 64 | 99.22 58 | 95.66 89 | 97.90 59 | 99.08 37 | 98.31 33 | 99.02 34 | 98.74 58 | 97.68 24 | 99.61 158 | 97.77 29 | 99.85 28 | 99.70 18 |
|
SixPastTwentyTwo | | | 97.49 92 | 97.57 81 | 97.26 155 | 99.56 16 | 92.33 203 | 98.28 35 | 96.97 279 | 98.30 34 | 99.45 14 | 99.35 16 | 88.43 266 | 99.89 16 | 98.01 20 | 99.76 42 | 99.54 38 |
|
tfpnnormal | | | 97.72 76 | 97.97 41 | 96.94 170 | 99.26 49 | 92.23 206 | 97.83 63 | 98.45 170 | 98.25 35 | 99.13 30 | 98.66 64 | 96.65 75 | 99.69 117 | 93.92 201 | 99.62 69 | 98.91 188 |
|
TransMVSNet (Re) | | | 98.38 25 | 98.67 17 | 97.51 128 | 99.51 23 | 93.39 183 | 98.20 43 | 98.87 87 | 98.23 36 | 99.48 12 | 99.27 19 | 98.47 8 | 99.55 173 | 96.52 68 | 99.53 100 | 99.60 26 |
|
ACMH+ | | 93.58 10 | 98.23 32 | 98.31 29 | 97.98 94 | 99.39 38 | 95.22 116 | 97.55 80 | 99.20 16 | 98.21 37 | 99.25 25 | 98.51 75 | 98.21 11 | 99.40 218 | 94.79 162 | 99.72 51 | 99.32 101 |
|
Baseline_NR-MVSNet | | | 97.72 76 | 97.79 55 | 97.50 131 | 99.56 16 | 93.29 184 | 95.44 193 | 98.86 90 | 98.20 38 | 98.37 76 | 99.24 20 | 94.69 149 | 99.55 173 | 95.98 93 | 99.79 38 | 99.65 23 |
|
3Dnovator+ | | 96.13 3 | 97.73 75 | 97.59 79 | 98.15 81 | 98.11 195 | 95.60 91 | 98.04 51 | 98.70 139 | 98.13 39 | 96.93 196 | 98.45 79 | 95.30 133 | 99.62 151 | 95.64 111 | 98.96 222 | 99.24 126 |
|
UniMVSNet_NR-MVSNet | | | 97.83 67 | 97.65 69 | 98.37 60 | 98.72 119 | 95.78 81 | 95.66 183 | 99.02 52 | 98.11 40 | 98.31 89 | 97.69 173 | 94.65 153 | 99.85 22 | 97.02 57 | 99.71 54 | 99.48 59 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 45 | 99.77 3 | 96.35 63 | 99.17 6 | 99.05 43 | 98.05 41 | 99.61 11 | 99.52 5 | 93.72 179 | 99.88 18 | 98.72 9 | 99.88 23 | 99.65 23 |
|
FIs | | | 97.93 55 | 98.07 36 | 97.48 135 | 99.38 39 | 92.95 193 | 98.03 53 | 99.11 29 | 98.04 42 | 98.62 52 | 98.66 64 | 93.75 178 | 99.78 43 | 97.23 45 | 99.84 29 | 99.73 15 |
|
Regformer-4 | | | 97.53 90 | 97.47 90 | 97.71 112 | 97.35 274 | 93.91 162 | 95.26 210 | 98.14 215 | 97.97 43 | 98.34 82 | 97.89 149 | 95.49 123 | 99.71 100 | 97.41 41 | 99.42 143 | 99.51 44 |
|
PMVS |  | 89.60 17 | 96.71 142 | 96.97 119 | 95.95 224 | 99.51 23 | 97.81 17 | 97.42 91 | 97.49 260 | 97.93 44 | 95.95 242 | 98.58 68 | 96.88 66 | 96.91 361 | 89.59 290 | 99.36 158 | 93.12 361 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EPP-MVSNet | | | 96.84 128 | 96.58 140 | 97.65 118 | 99.18 69 | 93.78 170 | 98.68 12 | 96.34 292 | 97.91 45 | 97.30 168 | 98.06 129 | 88.46 265 | 99.85 22 | 93.85 203 | 99.40 150 | 99.32 101 |
|
NR-MVSNet | | | 97.96 46 | 97.86 50 | 98.26 69 | 98.73 117 | 95.54 93 | 98.14 46 | 98.73 129 | 97.79 46 | 99.42 15 | 97.83 156 | 94.40 162 | 99.78 43 | 95.91 97 | 99.76 42 | 99.46 64 |
|
SR-MVS-dyc-post | | | 98.14 34 | 97.84 51 | 99.02 9 | 98.81 108 | 98.05 9 | 97.55 80 | 98.86 90 | 97.77 47 | 98.20 99 | 98.07 124 | 96.60 80 | 99.76 58 | 95.49 117 | 99.20 191 | 99.26 120 |
|
RE-MVS-def | | | | 97.88 49 | | 98.81 108 | 98.05 9 | 97.55 80 | 98.86 90 | 97.77 47 | 98.20 99 | 98.07 124 | 96.94 58 | | 95.49 117 | 99.20 191 | 99.26 120 |
|
VPNet | | | 97.26 108 | 97.49 88 | 96.59 191 | 99.47 28 | 90.58 238 | 96.27 145 | 98.53 163 | 97.77 47 | 98.46 69 | 98.41 81 | 94.59 155 | 99.68 125 | 94.61 168 | 99.29 181 | 99.52 42 |
|
abl_6 | | | 98.42 23 | 98.19 32 | 99.09 3 | 99.16 70 | 98.10 6 | 97.73 71 | 99.11 29 | 97.76 50 | 98.62 52 | 98.27 102 | 97.88 19 | 99.80 38 | 95.67 107 | 99.50 114 | 99.38 88 |
|
EI-MVSNet-UG-set | | | 97.32 105 | 97.40 91 | 97.09 163 | 97.34 278 | 92.01 215 | 95.33 204 | 97.65 252 | 97.74 51 | 98.30 91 | 98.14 115 | 95.04 139 | 99.69 117 | 97.55 37 | 99.52 105 | 99.58 28 |
|
EI-MVSNet-Vis-set | | | 97.32 105 | 97.39 92 | 97.11 161 | 97.36 273 | 92.08 213 | 95.34 203 | 97.65 252 | 97.74 51 | 98.29 92 | 98.11 120 | 95.05 137 | 99.68 125 | 97.50 39 | 99.50 114 | 99.56 35 |
|
Regformer-2 | | | 97.41 98 | 97.24 103 | 97.93 97 | 97.21 286 | 94.72 131 | 94.85 236 | 98.27 194 | 97.74 51 | 98.11 110 | 97.50 187 | 95.58 121 | 99.69 117 | 96.57 67 | 99.31 177 | 99.37 95 |
|
Anonymous202405211 | | | 96.34 159 | 95.98 172 | 97.43 143 | 98.25 174 | 93.85 166 | 96.74 124 | 94.41 321 | 97.72 54 | 98.37 76 | 98.03 132 | 87.15 279 | 99.53 178 | 94.06 193 | 99.07 213 | 98.92 187 |
|
APD-MVS_3200maxsize | | | 98.13 37 | 97.90 45 | 98.79 31 | 98.79 111 | 97.31 37 | 97.55 80 | 98.92 76 | 97.72 54 | 98.25 94 | 98.13 116 | 97.10 45 | 99.75 65 | 95.44 124 | 99.24 189 | 99.32 101 |
|
VNet | | | 96.84 128 | 96.83 127 | 96.88 174 | 98.06 196 | 92.02 214 | 96.35 142 | 97.57 259 | 97.70 56 | 97.88 138 | 97.80 161 | 92.40 211 | 99.54 176 | 94.73 167 | 98.96 222 | 99.08 160 |
|
zzz-MVS | | | 98.01 44 | 97.66 67 | 99.06 4 | 99.44 31 | 97.90 12 | 95.66 183 | 98.73 129 | 97.69 57 | 97.90 135 | 97.96 139 | 95.81 112 | 99.82 29 | 96.13 81 | 99.61 75 | 99.45 69 |
|
MTAPA | | | 98.14 34 | 97.84 51 | 99.06 4 | 99.44 31 | 97.90 12 | 97.25 97 | 98.73 129 | 97.69 57 | 97.90 135 | 97.96 139 | 95.81 112 | 99.82 29 | 96.13 81 | 99.61 75 | 99.45 69 |
|
Regformer-3 | | | 97.25 109 | 97.29 98 | 97.11 161 | 97.35 274 | 92.32 204 | 95.26 210 | 97.62 257 | 97.67 59 | 98.17 103 | 97.89 149 | 95.05 137 | 99.56 169 | 97.16 52 | 99.42 143 | 99.46 64 |
|
Regformer-1 | | | 97.27 107 | 97.16 108 | 97.61 121 | 97.21 286 | 93.86 165 | 94.85 236 | 98.04 229 | 97.62 60 | 98.03 122 | 97.50 187 | 95.34 130 | 99.63 143 | 96.52 68 | 99.31 177 | 99.35 98 |
|
test1172 | | | 98.08 39 | 97.76 59 | 99.05 6 | 98.78 113 | 98.07 7 | 97.41 92 | 98.85 94 | 97.57 61 | 98.15 106 | 97.96 139 | 96.60 80 | 99.76 58 | 95.30 133 | 99.18 196 | 99.33 100 |
|
pm-mvs1 | | | 98.47 21 | 98.67 17 | 97.86 102 | 99.52 22 | 94.58 138 | 98.28 35 | 99.00 60 | 97.57 61 | 99.27 24 | 99.22 22 | 98.32 9 | 99.50 187 | 97.09 54 | 99.75 46 | 99.50 45 |
|
DU-MVS | | | 97.79 71 | 97.60 78 | 98.36 61 | 98.73 117 | 95.78 81 | 95.65 186 | 98.87 87 | 97.57 61 | 98.31 89 | 97.83 156 | 94.69 149 | 99.85 22 | 97.02 57 | 99.71 54 | 99.46 64 |
|
DROMVSNet | | | 97.90 60 | 97.94 44 | 97.79 106 | 98.66 128 | 95.14 119 | 98.31 32 | 99.66 2 | 97.57 61 | 95.95 242 | 97.01 228 | 96.99 55 | 99.82 29 | 97.66 33 | 99.64 66 | 98.39 240 |
|
PatchT | | | 93.75 262 | 93.57 258 | 94.29 291 | 95.05 342 | 87.32 296 | 96.05 158 | 92.98 333 | 97.54 65 | 94.25 287 | 98.72 59 | 75.79 338 | 99.24 258 | 95.92 96 | 95.81 336 | 96.32 336 |
|
UniMVSNet (Re) | | | 97.83 67 | 97.65 69 | 98.35 63 | 98.80 110 | 95.86 80 | 95.92 170 | 99.04 49 | 97.51 66 | 98.22 98 | 97.81 160 | 94.68 151 | 99.78 43 | 97.14 53 | 99.75 46 | 99.41 83 |
|
alignmvs | | | 96.01 173 | 95.52 188 | 97.50 131 | 97.77 239 | 94.71 132 | 96.07 157 | 96.84 282 | 97.48 67 | 96.78 205 | 94.28 327 | 85.50 288 | 99.40 218 | 96.22 78 | 98.73 251 | 98.40 238 |
|
RPMNet | | | 94.68 231 | 94.60 225 | 94.90 266 | 95.44 336 | 88.15 277 | 96.18 152 | 98.86 90 | 97.43 68 | 94.10 291 | 98.49 76 | 79.40 316 | 99.76 58 | 95.69 106 | 95.81 336 | 96.81 325 |
|
canonicalmvs | | | 97.23 111 | 97.21 106 | 97.30 152 | 97.65 253 | 94.39 144 | 97.84 62 | 99.05 43 | 97.42 69 | 96.68 208 | 93.85 330 | 97.63 26 | 99.33 239 | 96.29 77 | 98.47 267 | 98.18 265 |
|
XVS | | | 97.96 46 | 97.63 74 | 98.94 18 | 99.15 73 | 97.66 20 | 97.77 65 | 98.83 106 | 97.42 69 | 96.32 225 | 97.64 175 | 96.49 86 | 99.72 86 | 95.66 109 | 99.37 155 | 99.45 69 |
|
X-MVStestdata | | | 92.86 280 | 90.83 305 | 98.94 18 | 99.15 73 | 97.66 20 | 97.77 65 | 98.83 106 | 97.42 69 | 96.32 225 | 36.50 371 | 96.49 86 | 99.72 86 | 95.66 109 | 99.37 155 | 99.45 69 |
|
FMVSNet1 | | | 97.95 50 | 98.08 35 | 97.56 123 | 99.14 81 | 93.67 173 | 98.23 38 | 98.66 149 | 97.41 72 | 99.00 36 | 99.19 24 | 95.47 126 | 99.73 81 | 95.83 102 | 99.76 42 | 99.30 107 |
|
ACMH | | 93.61 9 | 98.44 22 | 98.76 13 | 97.51 128 | 99.43 33 | 93.54 179 | 98.23 38 | 99.05 43 | 97.40 73 | 99.37 18 | 99.08 37 | 98.79 5 | 99.47 194 | 97.74 31 | 99.71 54 | 99.50 45 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
WR-MVS | | | 96.90 125 | 96.81 128 | 97.16 158 | 98.56 142 | 92.20 209 | 94.33 252 | 98.12 218 | 97.34 74 | 98.20 99 | 97.33 206 | 92.81 196 | 99.75 65 | 94.79 162 | 99.81 33 | 99.54 38 |
|
SR-MVS | | | 98.00 45 | 97.66 67 | 99.01 11 | 98.77 115 | 97.93 11 | 97.38 93 | 98.83 106 | 97.32 75 | 98.06 118 | 97.85 154 | 96.65 75 | 99.77 53 | 95.00 155 | 99.11 207 | 99.32 101 |
|
Vis-MVSNet |  | | 98.27 29 | 98.34 28 | 98.07 86 | 99.33 44 | 95.21 118 | 98.04 51 | 99.46 7 | 97.32 75 | 97.82 146 | 99.11 34 | 96.75 72 | 99.86 20 | 97.84 25 | 99.36 158 | 99.15 140 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v8 | | | 97.60 84 | 98.06 38 | 96.23 211 | 98.71 122 | 89.44 254 | 97.43 90 | 98.82 114 | 97.29 77 | 98.74 48 | 99.10 35 | 93.86 174 | 99.68 125 | 98.61 10 | 99.94 8 | 99.56 35 |
|
casdiffmvs | | | 97.50 91 | 97.81 54 | 96.56 195 | 98.51 147 | 91.04 229 | 95.83 175 | 99.09 36 | 97.23 78 | 98.33 86 | 98.30 93 | 97.03 52 | 99.37 229 | 96.58 66 | 99.38 154 | 99.28 115 |
|
test_one_0601 | | | | | | 99.05 92 | 95.50 98 | | 98.87 87 | 97.21 79 | 98.03 122 | 98.30 93 | 96.93 60 | | | | |
|
Anonymous20240521 | | | 97.07 114 | 97.51 85 | 95.76 232 | 99.35 42 | 88.18 276 | 97.78 64 | 98.40 180 | 97.11 80 | 98.34 82 | 99.04 40 | 89.58 253 | 99.79 39 | 98.09 18 | 99.93 10 | 99.30 107 |
|
KD-MVS_self_test | | | 97.86 65 | 98.07 36 | 97.25 156 | 99.22 58 | 92.81 196 | 97.55 80 | 98.94 74 | 97.10 81 | 98.85 41 | 98.88 50 | 95.03 140 | 99.67 130 | 97.39 43 | 99.65 64 | 99.26 120 |
|
IterMVS-SCA-FT | | | 95.86 180 | 96.19 161 | 94.85 269 | 97.68 249 | 85.53 316 | 92.42 313 | 97.63 256 | 96.99 82 | 98.36 79 | 98.54 73 | 87.94 270 | 99.75 65 | 97.07 56 | 99.08 211 | 99.27 119 |
|
EI-MVSNet | | | 96.63 147 | 96.93 122 | 95.74 233 | 97.26 283 | 88.13 279 | 95.29 208 | 97.65 252 | 96.99 82 | 97.94 132 | 98.19 111 | 92.55 205 | 99.58 162 | 96.91 60 | 99.56 88 | 99.50 45 |
|
IterMVS-LS | | | 96.92 123 | 97.29 98 | 95.79 231 | 98.51 147 | 88.13 279 | 95.10 218 | 98.66 149 | 96.99 82 | 98.46 69 | 98.68 63 | 92.55 205 | 99.74 75 | 96.91 60 | 99.79 38 | 99.50 45 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 77 | 99.68 9 | 94.82 128 | 98.10 48 | 99.21 14 | 96.91 85 | 99.75 2 | 99.45 9 | 95.82 108 | 99.92 4 | 98.80 4 | 99.96 4 | 99.89 1 |
|
thres100view900 | | | 91.76 299 | 91.26 298 | 93.26 307 | 98.21 178 | 84.50 331 | 96.39 138 | 90.39 355 | 96.87 86 | 96.33 224 | 93.08 337 | 73.44 350 | 99.42 207 | 78.85 359 | 97.74 292 | 95.85 341 |
|
3Dnovator | | 96.53 2 | 97.61 83 | 97.64 72 | 97.50 131 | 97.74 245 | 93.65 177 | 98.49 23 | 98.88 85 | 96.86 87 | 97.11 179 | 98.55 72 | 95.82 108 | 99.73 81 | 95.94 95 | 99.42 143 | 99.13 146 |
|
test20.03 | | | 96.58 150 | 96.61 137 | 96.48 199 | 98.49 151 | 91.72 221 | 95.68 182 | 97.69 247 | 96.81 88 | 98.27 93 | 97.92 147 | 94.18 168 | 98.71 316 | 90.78 263 | 99.66 63 | 99.00 171 |
|
thres600view7 | | | 92.03 295 | 91.43 293 | 93.82 296 | 98.19 180 | 84.61 330 | 96.27 145 | 90.39 355 | 96.81 88 | 96.37 223 | 93.11 333 | 73.44 350 | 99.49 188 | 80.32 355 | 97.95 284 | 97.36 305 |
|
LCM-MVSNet-Re | | | 97.33 104 | 97.33 96 | 97.32 151 | 98.13 193 | 93.79 169 | 96.99 114 | 99.65 3 | 96.74 90 | 99.47 13 | 98.93 47 | 96.91 63 | 99.84 25 | 90.11 282 | 99.06 216 | 98.32 249 |
|
EPNet | | | 93.72 263 | 92.62 280 | 97.03 167 | 87.61 376 | 92.25 205 | 96.27 145 | 91.28 348 | 96.74 90 | 87.65 363 | 97.39 199 | 85.00 291 | 99.64 141 | 92.14 231 | 99.48 122 | 99.20 132 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DVP-MVS++ | | | 97.96 46 | 97.90 45 | 98.12 83 | 97.75 242 | 95.40 101 | 99.03 7 | 98.89 79 | 96.62 92 | 98.62 52 | 98.30 93 | 96.97 56 | 99.75 65 | 95.70 104 | 99.25 186 | 99.21 129 |
|
test_0728_THIRD | | | | | | | | | | 96.62 92 | 98.40 73 | 98.28 98 | 97.10 45 | 99.71 100 | 95.70 104 | 99.62 69 | 99.58 28 |
|
v10 | | | 97.55 87 | 97.97 41 | 96.31 208 | 98.60 137 | 89.64 250 | 97.44 88 | 99.02 52 | 96.60 94 | 98.72 50 | 99.16 30 | 93.48 183 | 99.72 86 | 98.76 6 | 99.92 14 | 99.58 28 |
|
Patchmtry | | | 95.03 214 | 94.59 227 | 96.33 206 | 94.83 344 | 90.82 233 | 96.38 140 | 97.20 268 | 96.59 95 | 97.49 157 | 98.57 69 | 77.67 325 | 99.38 226 | 92.95 224 | 99.62 69 | 98.80 204 |
|
h-mvs33 | | | 96.29 160 | 95.63 184 | 98.26 69 | 98.50 150 | 96.11 72 | 96.90 116 | 97.09 274 | 96.58 96 | 97.21 172 | 98.19 111 | 84.14 296 | 99.78 43 | 95.89 98 | 96.17 334 | 98.89 192 |
|
hse-mvs2 | | | 95.77 182 | 95.09 198 | 97.79 106 | 97.84 220 | 95.51 95 | 95.66 183 | 95.43 313 | 96.58 96 | 97.21 172 | 96.16 276 | 84.14 296 | 99.54 176 | 95.89 98 | 96.92 317 | 98.32 249 |
|
SteuartSystems-ACMMP | | | 98.02 43 | 97.76 59 | 98.79 31 | 99.43 33 | 97.21 42 | 97.15 103 | 98.90 78 | 96.58 96 | 98.08 116 | 97.87 153 | 97.02 53 | 99.76 58 | 95.25 136 | 99.59 80 | 99.40 84 |
Skip Steuart: Steuart Systems R&D Blog. |
baseline | | | 97.44 96 | 97.78 58 | 96.43 201 | 98.52 146 | 90.75 236 | 96.84 118 | 99.03 50 | 96.51 99 | 97.86 142 | 98.02 133 | 96.67 74 | 99.36 231 | 97.09 54 | 99.47 124 | 99.19 133 |
|
MVSFormer | | | 96.14 167 | 96.36 154 | 95.49 244 | 97.68 249 | 87.81 286 | 98.67 13 | 99.02 52 | 96.50 100 | 94.48 283 | 96.15 277 | 86.90 280 | 99.92 4 | 98.73 7 | 99.13 203 | 98.74 212 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 40 | 99.63 12 | 96.30 66 | 98.67 13 | 99.02 52 | 96.50 100 | 99.32 20 | 99.44 10 | 97.43 31 | 99.92 4 | 98.73 7 | 99.95 5 | 99.86 2 |
|
Vis-MVSNet (Re-imp) | | | 95.11 209 | 94.85 210 | 95.87 229 | 99.12 82 | 89.17 258 | 97.54 85 | 94.92 316 | 96.50 100 | 96.58 212 | 97.27 210 | 83.64 300 | 99.48 191 | 88.42 307 | 99.67 61 | 98.97 175 |
|
UGNet | | | 96.81 133 | 96.56 142 | 97.58 122 | 96.64 302 | 93.84 167 | 97.75 68 | 97.12 273 | 96.47 103 | 93.62 309 | 98.88 50 | 93.22 188 | 99.53 178 | 95.61 113 | 99.69 58 | 99.36 96 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
JIA-IIPM | | | 91.79 298 | 90.69 307 | 95.11 257 | 93.80 357 | 90.98 230 | 94.16 262 | 91.78 344 | 96.38 104 | 90.30 351 | 99.30 18 | 72.02 354 | 98.90 298 | 88.28 309 | 90.17 361 | 95.45 349 |
|
test1111 | | | 94.53 239 | 94.81 214 | 93.72 298 | 99.06 88 | 81.94 347 | 98.31 32 | 83.87 370 | 96.37 105 | 98.49 65 | 99.17 29 | 81.49 306 | 99.73 81 | 96.64 62 | 99.86 25 | 99.49 53 |
|
HQP_MVS | | | 96.66 146 | 96.33 156 | 97.68 117 | 98.70 124 | 94.29 148 | 96.50 134 | 98.75 125 | 96.36 106 | 96.16 235 | 96.77 243 | 91.91 225 | 99.46 197 | 92.59 227 | 99.20 191 | 99.28 115 |
|
plane_prior2 | | | | | | | | 96.50 134 | | 96.36 106 | | | | | | | |
|
CSCG | | | 97.40 99 | 97.30 97 | 97.69 116 | 98.95 98 | 94.83 127 | 97.28 96 | 98.99 63 | 96.35 108 | 98.13 109 | 95.95 289 | 95.99 101 | 99.66 136 | 94.36 183 | 99.73 48 | 98.59 227 |
|
MP-MVS |  | | 97.64 80 | 97.18 107 | 99.00 12 | 99.32 46 | 97.77 18 | 97.49 86 | 98.73 129 | 96.27 109 | 95.59 257 | 97.75 165 | 96.30 96 | 99.78 43 | 93.70 209 | 99.48 122 | 99.45 69 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
tfpn200view9 | | | 91.55 301 | 91.00 300 | 93.21 310 | 98.02 199 | 84.35 333 | 95.70 179 | 90.79 352 | 96.26 110 | 95.90 247 | 92.13 350 | 73.62 347 | 99.42 207 | 78.85 359 | 97.74 292 | 95.85 341 |
|
thres400 | | | 91.68 300 | 91.00 300 | 93.71 299 | 98.02 199 | 84.35 333 | 95.70 179 | 90.79 352 | 96.26 110 | 95.90 247 | 92.13 350 | 73.62 347 | 99.42 207 | 78.85 359 | 97.74 292 | 97.36 305 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 33 | 99.69 8 | 96.48 60 | 98.54 20 | 99.22 13 | 96.23 112 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 2 | 98.89 3 | 99.95 5 | 99.84 5 |
|
test2506 | | | 89.86 318 | 89.16 323 | 91.97 331 | 98.95 98 | 76.83 364 | 98.54 20 | 61.07 378 | 96.20 113 | 97.07 185 | 99.16 30 | 55.19 377 | 99.69 117 | 96.43 73 | 99.83 31 | 99.38 88 |
|
ECVR-MVS |  | | 94.37 245 | 94.48 232 | 94.05 295 | 98.95 98 | 83.10 339 | 98.31 32 | 82.48 371 | 96.20 113 | 98.23 97 | 99.16 30 | 81.18 309 | 99.66 136 | 95.95 94 | 99.83 31 | 99.38 88 |
|
RPSCF | | | 97.87 63 | 97.51 85 | 98.95 17 | 99.15 73 | 98.43 3 | 97.56 79 | 99.06 41 | 96.19 115 | 98.48 66 | 98.70 61 | 94.72 148 | 99.24 258 | 94.37 180 | 99.33 173 | 99.17 136 |
|
test_yl | | | 94.40 242 | 94.00 249 | 95.59 237 | 96.95 295 | 89.52 252 | 94.75 241 | 95.55 310 | 96.18 116 | 96.79 201 | 96.14 279 | 81.09 310 | 99.18 264 | 90.75 264 | 97.77 289 | 98.07 270 |
|
DCV-MVSNet | | | 94.40 242 | 94.00 249 | 95.59 237 | 96.95 295 | 89.52 252 | 94.75 241 | 95.55 310 | 96.18 116 | 96.79 201 | 96.14 279 | 81.09 310 | 99.18 264 | 90.75 264 | 97.77 289 | 98.07 270 |
|
SED-MVS | | | 97.94 52 | 97.90 45 | 98.07 86 | 99.22 58 | 95.35 106 | 96.79 121 | 98.83 106 | 96.11 118 | 99.08 31 | 98.24 104 | 97.87 20 | 99.72 86 | 95.44 124 | 99.51 110 | 99.14 143 |
|
test_241102_TWO | | | | | | | | | 98.83 106 | 96.11 118 | 98.62 52 | 98.24 104 | 96.92 62 | 99.72 86 | 95.44 124 | 99.49 118 | 99.49 53 |
|
CP-MVS | | | 97.92 56 | 97.56 82 | 98.99 13 | 98.99 96 | 97.82 16 | 97.93 56 | 98.96 71 | 96.11 118 | 96.89 199 | 97.45 191 | 96.85 68 | 99.78 43 | 95.19 139 | 99.63 68 | 99.38 88 |
|
HFP-MVS | | | 97.94 52 | 97.64 72 | 98.83 26 | 99.15 73 | 97.50 29 | 97.59 77 | 98.84 99 | 96.05 121 | 97.49 157 | 97.54 182 | 97.07 48 | 99.70 109 | 95.61 113 | 99.46 127 | 99.30 107 |
|
ACMMPR | | | 97.95 50 | 97.62 76 | 98.94 18 | 99.20 66 | 97.56 26 | 97.59 77 | 98.83 106 | 96.05 121 | 97.46 163 | 97.63 176 | 96.77 71 | 99.76 58 | 95.61 113 | 99.46 127 | 99.49 53 |
|
test_241102_ONE | | | | | | 99.22 58 | 95.35 106 | | 98.83 106 | 96.04 123 | 99.08 31 | 98.13 116 | 97.87 20 | 99.33 239 | | | |
|
mPP-MVS | | | 97.91 59 | 97.53 83 | 99.04 7 | 99.22 58 | 97.87 15 | 97.74 69 | 98.78 120 | 96.04 123 | 97.10 180 | 97.73 168 | 96.53 83 | 99.78 43 | 95.16 143 | 99.50 114 | 99.46 64 |
|
Fast-Effi-MVS+-dtu | | | 96.44 156 | 96.12 164 | 97.39 147 | 97.18 288 | 94.39 144 | 95.46 192 | 98.73 129 | 96.03 125 | 94.72 274 | 94.92 314 | 96.28 98 | 99.69 117 | 93.81 204 | 97.98 283 | 98.09 267 |
|
region2R | | | 97.92 56 | 97.59 79 | 98.92 22 | 99.22 58 | 97.55 27 | 97.60 76 | 98.84 99 | 96.00 126 | 97.22 170 | 97.62 177 | 96.87 67 | 99.76 58 | 95.48 120 | 99.43 140 | 99.46 64 |
|
MDA-MVSNet-bldmvs | | | 95.69 183 | 95.67 182 | 95.74 233 | 98.48 153 | 88.76 268 | 92.84 302 | 97.25 266 | 96.00 126 | 97.59 150 | 97.95 143 | 91.38 230 | 99.46 197 | 93.16 220 | 96.35 331 | 98.99 174 |
|
GST-MVS | | | 97.82 69 | 97.49 88 | 98.81 29 | 99.23 55 | 97.25 39 | 97.16 102 | 98.79 116 | 95.96 128 | 97.53 152 | 97.40 195 | 96.93 60 | 99.77 53 | 95.04 152 | 99.35 163 | 99.42 81 |
|
APDe-MVS | | | 98.14 34 | 98.03 40 | 98.47 54 | 98.72 119 | 96.04 74 | 98.07 50 | 99.10 31 | 95.96 128 | 98.59 57 | 98.69 62 | 96.94 58 | 99.81 32 | 96.64 62 | 99.58 82 | 99.57 32 |
|
SD-MVS | | | 97.37 101 | 97.70 62 | 96.35 205 | 98.14 190 | 95.13 120 | 96.54 133 | 98.92 76 | 95.94 130 | 99.19 28 | 98.08 122 | 97.74 22 | 95.06 367 | 95.24 137 | 99.54 97 | 98.87 198 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DVP-MVS |  | | 97.78 72 | 97.65 69 | 98.16 78 | 99.24 53 | 95.51 95 | 96.74 124 | 98.23 199 | 95.92 131 | 98.40 73 | 98.28 98 | 97.06 50 | 99.71 100 | 95.48 120 | 99.52 105 | 99.26 120 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.24 53 | 95.51 95 | 96.89 117 | 98.89 79 | 95.92 131 | 98.64 51 | 98.31 89 | 97.06 50 | | | | |
|
v148 | | | 96.58 150 | 96.97 119 | 95.42 247 | 98.63 133 | 87.57 290 | 95.09 220 | 97.90 233 | 95.91 133 | 98.24 96 | 97.96 139 | 93.42 184 | 99.39 223 | 96.04 87 | 99.52 105 | 99.29 114 |
|
HPM-MVS_fast | | | 98.32 27 | 98.13 33 | 98.88 24 | 99.54 20 | 97.48 31 | 98.35 29 | 99.03 50 | 95.88 134 | 97.88 138 | 98.22 109 | 98.15 12 | 99.74 75 | 96.50 70 | 99.62 69 | 99.42 81 |
|
ETV-MVS | | | 96.13 168 | 95.90 176 | 96.82 178 | 97.76 240 | 93.89 163 | 95.40 198 | 98.95 73 | 95.87 135 | 95.58 258 | 91.00 361 | 96.36 95 | 99.72 86 | 93.36 213 | 98.83 240 | 96.85 321 |
|
Effi-MVS+-dtu | | | 96.81 133 | 96.09 166 | 98.99 13 | 96.90 299 | 98.69 2 | 96.42 137 | 98.09 220 | 95.86 136 | 95.15 265 | 95.54 300 | 94.26 165 | 99.81 32 | 94.06 193 | 98.51 266 | 98.47 235 |
|
mvs-test1 | | | 96.20 164 | 95.50 189 | 98.32 64 | 96.90 299 | 98.16 5 | 95.07 223 | 98.09 220 | 95.86 136 | 93.63 308 | 94.32 326 | 94.26 165 | 99.71 100 | 94.06 193 | 97.27 315 | 97.07 311 |
|
DPE-MVS |  | | 97.64 80 | 97.35 95 | 98.50 51 | 98.85 106 | 96.18 68 | 95.21 215 | 98.99 63 | 95.84 138 | 98.78 45 | 98.08 122 | 96.84 69 | 99.81 32 | 93.98 199 | 99.57 85 | 99.52 42 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 35 | 99.66 10 | 96.48 60 | 98.45 26 | 99.12 28 | 95.83 139 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 4 | 98.77 5 | 99.94 8 | 99.82 6 |
|
tttt0517 | | | 93.31 274 | 92.56 281 | 95.57 239 | 98.71 122 | 87.86 283 | 97.44 88 | 87.17 365 | 95.79 140 | 97.47 162 | 96.84 237 | 64.12 366 | 99.81 32 | 96.20 79 | 99.32 175 | 99.02 170 |
|
ZNCC-MVS | | | 97.92 56 | 97.62 76 | 98.83 26 | 99.32 46 | 97.24 40 | 97.45 87 | 98.84 99 | 95.76 141 | 96.93 196 | 97.43 193 | 97.26 40 | 99.79 39 | 96.06 84 | 99.53 100 | 99.45 69 |
|
UnsupCasMVSNet_eth | | | 95.91 177 | 95.73 181 | 96.44 200 | 98.48 153 | 91.52 224 | 95.31 206 | 98.45 170 | 95.76 141 | 97.48 160 | 97.54 182 | 89.53 256 | 98.69 318 | 94.43 176 | 94.61 349 | 99.13 146 |
|
GeoE | | | 97.75 74 | 97.70 62 | 97.89 99 | 98.88 105 | 94.53 139 | 97.10 107 | 98.98 66 | 95.75 143 | 97.62 149 | 97.59 179 | 97.61 27 | 99.77 53 | 96.34 76 | 99.44 132 | 99.36 96 |
|
ACMMP |  | | 98.05 41 | 97.75 61 | 98.93 21 | 99.23 55 | 97.60 23 | 98.09 49 | 98.96 71 | 95.75 143 | 97.91 134 | 98.06 129 | 96.89 64 | 99.76 58 | 95.32 132 | 99.57 85 | 99.43 80 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MSP-MVS | | | 97.45 95 | 96.92 123 | 99.03 8 | 99.26 49 | 97.70 19 | 97.66 72 | 98.89 79 | 95.65 145 | 98.51 62 | 96.46 261 | 92.15 214 | 99.81 32 | 95.14 146 | 98.58 263 | 99.58 28 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ITE_SJBPF | | | | | 97.85 103 | 98.64 129 | 96.66 54 | | 98.51 166 | 95.63 146 | 97.22 170 | 97.30 209 | 95.52 122 | 98.55 332 | 90.97 256 | 98.90 230 | 98.34 248 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 13 | 97.29 38 | 98.65 16 | 99.19 18 | 95.62 147 | 99.35 19 | 99.37 12 | 97.38 33 | 99.90 13 | 98.59 11 | 99.91 17 | 99.77 8 |
|
CS-MVS-test | | | 96.62 148 | 96.59 138 | 96.69 186 | 97.88 215 | 93.16 188 | 97.21 101 | 99.53 6 | 95.61 148 | 93.72 304 | 95.33 304 | 95.49 123 | 99.69 117 | 95.37 131 | 99.19 195 | 97.22 308 |
|
API-MVS | | | 95.09 211 | 95.01 203 | 95.31 250 | 96.61 303 | 94.02 159 | 96.83 119 | 97.18 270 | 95.60 149 | 95.79 249 | 94.33 325 | 94.54 158 | 98.37 344 | 85.70 331 | 98.52 264 | 93.52 358 |
|
GBi-Net | | | 96.99 117 | 96.80 129 | 97.56 123 | 97.96 207 | 93.67 173 | 98.23 38 | 98.66 149 | 95.59 150 | 97.99 125 | 99.19 24 | 89.51 257 | 99.73 81 | 94.60 169 | 99.44 132 | 99.30 107 |
|
test1 | | | 96.99 117 | 96.80 129 | 97.56 123 | 97.96 207 | 93.67 173 | 98.23 38 | 98.66 149 | 95.59 150 | 97.99 125 | 99.19 24 | 89.51 257 | 99.73 81 | 94.60 169 | 99.44 132 | 99.30 107 |
|
FMVSNet2 | | | 96.72 140 | 96.67 136 | 96.87 175 | 97.96 207 | 91.88 217 | 97.15 103 | 98.06 227 | 95.59 150 | 98.50 64 | 98.62 67 | 89.51 257 | 99.65 138 | 94.99 156 | 99.60 78 | 99.07 162 |
|
HPM-MVS++ |  | | 96.99 117 | 96.38 153 | 98.81 29 | 98.64 129 | 97.59 24 | 95.97 165 | 98.20 203 | 95.51 153 | 95.06 266 | 96.53 257 | 94.10 169 | 99.70 109 | 94.29 184 | 99.15 198 | 99.13 146 |
|
IterMVS | | | 95.42 197 | 95.83 177 | 94.20 292 | 97.52 262 | 83.78 337 | 92.41 314 | 97.47 263 | 95.49 154 | 98.06 118 | 98.49 76 | 87.94 270 | 99.58 162 | 96.02 89 | 99.02 218 | 99.23 127 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+ | | | 96.19 165 | 96.01 169 | 96.71 184 | 97.43 270 | 92.19 210 | 96.12 155 | 99.10 31 | 95.45 155 | 93.33 321 | 94.71 317 | 97.23 43 | 99.56 169 | 93.21 219 | 97.54 304 | 98.37 242 |
|
PGM-MVS | | | 97.88 62 | 97.52 84 | 98.96 16 | 99.20 66 | 97.62 22 | 97.09 108 | 99.06 41 | 95.45 155 | 97.55 151 | 97.94 144 | 97.11 44 | 99.78 43 | 94.77 165 | 99.46 127 | 99.48 59 |
|
HPM-MVS |  | | 98.11 38 | 97.83 53 | 98.92 22 | 99.42 35 | 97.46 32 | 98.57 17 | 99.05 43 | 95.43 157 | 97.41 166 | 97.50 187 | 97.98 15 | 99.79 39 | 95.58 116 | 99.57 85 | 99.50 45 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
NCCC | | | 96.52 152 | 95.99 171 | 98.10 84 | 97.81 224 | 95.68 87 | 95.00 229 | 98.20 203 | 95.39 158 | 95.40 261 | 96.36 268 | 93.81 176 | 99.45 201 | 93.55 212 | 98.42 268 | 99.17 136 |
|
wuyk23d | | | 93.25 276 | 95.20 193 | 87.40 351 | 96.07 322 | 95.38 103 | 97.04 111 | 94.97 315 | 95.33 159 | 99.70 5 | 98.11 120 | 98.14 13 | 91.94 369 | 77.76 362 | 99.68 60 | 74.89 369 |
|
SF-MVS | | | 97.60 84 | 97.39 92 | 98.22 74 | 98.93 101 | 95.69 85 | 97.05 110 | 99.10 31 | 95.32 160 | 97.83 144 | 97.88 151 | 96.44 90 | 99.72 86 | 94.59 172 | 99.39 152 | 99.25 124 |
|
MSDG | | | 95.33 200 | 95.13 196 | 95.94 226 | 97.40 272 | 91.85 218 | 91.02 339 | 98.37 184 | 95.30 161 | 96.31 227 | 95.99 284 | 94.51 159 | 98.38 342 | 89.59 290 | 97.65 301 | 97.60 299 |
|
plane_prior3 | | | | | | | 94.51 140 | | | 95.29 162 | 96.16 235 | | | | | | |
|
ACMM | | 93.33 11 | 98.05 41 | 97.79 55 | 98.85 25 | 99.15 73 | 97.55 27 | 96.68 130 | 98.83 106 | 95.21 163 | 98.36 79 | 98.13 116 | 98.13 14 | 99.62 151 | 96.04 87 | 99.54 97 | 99.39 86 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVG-OURS-SEG-HR | | | 97.38 100 | 97.07 114 | 98.30 67 | 99.01 95 | 97.41 35 | 94.66 243 | 99.02 52 | 95.20 164 | 98.15 106 | 97.52 185 | 98.83 4 | 98.43 338 | 94.87 158 | 96.41 330 | 99.07 162 |
|
XVG-OURS | | | 97.12 113 | 96.74 132 | 98.26 69 | 98.99 96 | 97.45 33 | 93.82 278 | 99.05 43 | 95.19 165 | 98.32 87 | 97.70 171 | 95.22 135 | 98.41 339 | 94.27 185 | 98.13 278 | 98.93 183 |
|
v2v482 | | | 96.78 135 | 97.06 115 | 95.95 224 | 98.57 141 | 88.77 267 | 95.36 201 | 98.26 196 | 95.18 166 | 97.85 143 | 98.23 106 | 92.58 204 | 99.63 143 | 97.80 27 | 99.69 58 | 99.45 69 |
|
LPG-MVS_test | | | 97.94 52 | 97.67 66 | 98.74 35 | 99.15 73 | 97.02 43 | 97.09 108 | 99.02 52 | 95.15 167 | 98.34 82 | 98.23 106 | 97.91 17 | 99.70 109 | 94.41 177 | 99.73 48 | 99.50 45 |
|
LGP-MVS_train | | | | | 98.74 35 | 99.15 73 | 97.02 43 | | 99.02 52 | 95.15 167 | 98.34 82 | 98.23 106 | 97.91 17 | 99.70 109 | 94.41 177 | 99.73 48 | 99.50 45 |
|
thres200 | | | 91.00 307 | 90.42 311 | 92.77 320 | 97.47 268 | 83.98 336 | 94.01 270 | 91.18 350 | 95.12 169 | 95.44 259 | 91.21 359 | 73.93 343 | 99.31 243 | 77.76 362 | 97.63 302 | 95.01 351 |
|
testgi | | | 96.07 169 | 96.50 150 | 94.80 272 | 99.26 49 | 87.69 289 | 95.96 166 | 98.58 160 | 95.08 170 | 98.02 124 | 96.25 272 | 97.92 16 | 97.60 358 | 88.68 304 | 98.74 248 | 99.11 155 |
|
ACMMP_NAP | | | 97.89 61 | 97.63 74 | 98.67 41 | 99.35 42 | 96.84 48 | 96.36 141 | 98.79 116 | 95.07 171 | 97.88 138 | 98.35 85 | 97.24 42 | 99.72 86 | 96.05 86 | 99.58 82 | 99.45 69 |
|
XVG-ACMP-BASELINE | | | 97.58 86 | 97.28 100 | 98.49 52 | 99.16 70 | 96.90 47 | 96.39 138 | 98.98 66 | 95.05 172 | 98.06 118 | 98.02 133 | 95.86 104 | 99.56 169 | 94.37 180 | 99.64 66 | 99.00 171 |
|
MVS_0304 | | | 95.50 190 | 95.05 202 | 96.84 177 | 96.28 311 | 93.12 189 | 97.00 113 | 96.16 294 | 95.03 173 | 89.22 357 | 97.70 171 | 90.16 248 | 99.48 191 | 94.51 174 | 99.34 166 | 97.93 284 |
|
xxxxxxxxxxxxxcwj | | | 97.24 110 | 97.03 117 | 97.89 99 | 98.48 153 | 94.71 132 | 94.53 248 | 99.07 40 | 95.02 174 | 97.83 144 | 97.88 151 | 96.44 90 | 99.72 86 | 94.59 172 | 99.39 152 | 99.25 124 |
|
save fliter | | | | | | 98.48 153 | 94.71 132 | 94.53 248 | 98.41 178 | 95.02 174 | | | | | | | |
|
CANet | | | 95.86 180 | 95.65 183 | 96.49 198 | 96.41 308 | 90.82 233 | 94.36 251 | 98.41 178 | 94.94 176 | 92.62 335 | 96.73 246 | 92.68 200 | 99.71 100 | 95.12 149 | 99.60 78 | 98.94 179 |
|
MVS_Test | | | 96.27 161 | 96.79 131 | 94.73 275 | 96.94 297 | 86.63 305 | 96.18 152 | 98.33 190 | 94.94 176 | 96.07 238 | 98.28 98 | 95.25 134 | 99.26 255 | 97.21 48 | 97.90 287 | 98.30 253 |
|
XXY-MVS | | | 97.54 88 | 97.70 62 | 97.07 164 | 99.46 29 | 92.21 207 | 97.22 100 | 99.00 60 | 94.93 178 | 98.58 58 | 98.92 48 | 97.31 36 | 99.41 216 | 94.44 175 | 99.43 140 | 99.59 27 |
|
bset_n11_16_dypcd | | | 94.53 239 | 93.95 252 | 96.25 210 | 97.56 259 | 89.85 247 | 88.52 358 | 91.32 347 | 94.90 179 | 97.51 154 | 96.38 267 | 82.34 304 | 99.78 43 | 97.22 46 | 99.80 36 | 99.12 151 |
|
new-patchmatchnet | | | 95.67 185 | 96.58 140 | 92.94 318 | 97.48 264 | 80.21 353 | 92.96 301 | 98.19 208 | 94.83 180 | 98.82 43 | 98.79 54 | 93.31 186 | 99.51 186 | 95.83 102 | 99.04 217 | 99.12 151 |
|
E-PMN | | | 89.52 321 | 89.78 315 | 88.73 346 | 93.14 363 | 77.61 360 | 83.26 365 | 92.02 341 | 94.82 181 | 93.71 305 | 93.11 333 | 75.31 339 | 96.81 362 | 85.81 330 | 96.81 322 | 91.77 364 |
|
MVS_111021_HR | | | 96.73 139 | 96.54 145 | 97.27 153 | 98.35 164 | 93.66 176 | 93.42 290 | 98.36 185 | 94.74 182 | 96.58 212 | 96.76 245 | 96.54 82 | 98.99 290 | 94.87 158 | 99.27 184 | 99.15 140 |
|
MSLP-MVS++ | | | 96.42 158 | 96.71 133 | 95.57 239 | 97.82 223 | 90.56 240 | 95.71 178 | 98.84 99 | 94.72 183 | 96.71 207 | 97.39 199 | 94.91 145 | 98.10 353 | 95.28 134 | 99.02 218 | 98.05 277 |
|
baseline1 | | | 93.14 278 | 92.64 279 | 94.62 278 | 97.34 278 | 87.20 298 | 96.67 131 | 93.02 332 | 94.71 184 | 96.51 217 | 95.83 292 | 81.64 305 | 98.60 328 | 90.00 285 | 88.06 364 | 98.07 270 |
|
EIA-MVS | | | 96.04 171 | 95.77 180 | 96.85 176 | 97.80 228 | 92.98 192 | 96.12 155 | 99.16 20 | 94.65 185 | 93.77 302 | 91.69 355 | 95.68 117 | 99.67 130 | 94.18 188 | 98.85 238 | 97.91 285 |
|
EMVS | | | 89.06 323 | 89.22 318 | 88.61 347 | 93.00 365 | 77.34 362 | 82.91 366 | 90.92 351 | 94.64 186 | 92.63 334 | 91.81 353 | 76.30 335 | 97.02 360 | 83.83 347 | 96.90 319 | 91.48 365 |
|
V42 | | | 97.04 115 | 97.16 108 | 96.68 188 | 98.59 139 | 91.05 228 | 96.33 143 | 98.36 185 | 94.60 187 | 97.99 125 | 98.30 93 | 93.32 185 | 99.62 151 | 97.40 42 | 99.53 100 | 99.38 88 |
|
CNVR-MVS | | | 96.92 123 | 96.55 143 | 98.03 92 | 98.00 205 | 95.54 93 | 94.87 234 | 98.17 209 | 94.60 187 | 96.38 222 | 97.05 224 | 95.67 118 | 99.36 231 | 95.12 149 | 99.08 211 | 99.19 133 |
|
MVS_111021_LR | | | 96.82 132 | 96.55 143 | 97.62 120 | 98.27 171 | 95.34 108 | 93.81 280 | 98.33 190 | 94.59 189 | 96.56 214 | 96.63 252 | 96.61 78 | 98.73 314 | 94.80 161 | 99.34 166 | 98.78 207 |
|
OPM-MVS | | | 97.54 88 | 97.25 101 | 98.41 57 | 99.11 83 | 96.61 56 | 95.24 213 | 98.46 169 | 94.58 190 | 98.10 113 | 98.07 124 | 97.09 47 | 99.39 223 | 95.16 143 | 99.44 132 | 99.21 129 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
EG-PatchMatch MVS | | | 97.69 78 | 97.79 55 | 97.40 146 | 99.06 88 | 93.52 180 | 95.96 166 | 98.97 70 | 94.55 191 | 98.82 43 | 98.76 57 | 97.31 36 | 99.29 250 | 97.20 50 | 99.44 132 | 99.38 88 |
|
ab-mvs | | | 96.59 149 | 96.59 138 | 96.60 190 | 98.64 129 | 92.21 207 | 98.35 29 | 97.67 248 | 94.45 192 | 96.99 191 | 98.79 54 | 94.96 143 | 99.49 188 | 90.39 279 | 99.07 213 | 98.08 268 |
|
RRT_test8_iter05 | | | 92.46 286 | 92.52 282 | 92.29 329 | 95.33 339 | 77.43 361 | 95.73 177 | 98.55 162 | 94.41 193 | 97.46 163 | 97.72 170 | 57.44 371 | 99.74 75 | 96.92 59 | 99.14 199 | 99.69 20 |
|
CNLPA | | | 95.04 212 | 94.47 233 | 96.75 182 | 97.81 224 | 95.25 112 | 94.12 267 | 97.89 234 | 94.41 193 | 94.57 278 | 95.69 294 | 90.30 245 | 98.35 345 | 86.72 326 | 98.76 246 | 96.64 330 |
|
TinyColmap | | | 96.00 174 | 96.34 155 | 94.96 263 | 97.90 213 | 87.91 282 | 94.13 266 | 98.49 167 | 94.41 193 | 98.16 104 | 97.76 162 | 96.29 97 | 98.68 321 | 90.52 275 | 99.42 143 | 98.30 253 |
|
AllTest | | | 97.20 112 | 96.92 123 | 98.06 88 | 99.08 85 | 96.16 69 | 97.14 105 | 99.16 20 | 94.35 196 | 97.78 147 | 98.07 124 | 95.84 105 | 99.12 273 | 91.41 246 | 99.42 143 | 98.91 188 |
|
TestCases | | | | | 98.06 88 | 99.08 85 | 96.16 69 | | 99.16 20 | 94.35 196 | 97.78 147 | 98.07 124 | 95.84 105 | 99.12 273 | 91.41 246 | 99.42 143 | 98.91 188 |
|
plane_prior | | | | | | | 94.29 148 | 95.42 195 | | 94.31 198 | | | | | | 98.93 228 | |
|
testtj | | | 96.69 143 | 96.13 163 | 98.36 61 | 98.46 157 | 96.02 76 | 96.44 136 | 98.70 139 | 94.26 199 | 96.79 201 | 97.13 216 | 94.07 170 | 99.75 65 | 90.53 274 | 98.80 242 | 99.31 106 |
|
#test# | | | 97.62 82 | 97.22 105 | 98.83 26 | 99.15 73 | 97.50 29 | 96.81 120 | 98.84 99 | 94.25 200 | 97.49 157 | 97.54 182 | 97.07 48 | 99.70 109 | 94.37 180 | 99.46 127 | 99.30 107 |
|
v1144 | | | 96.84 128 | 97.08 113 | 96.13 217 | 98.42 159 | 89.28 257 | 95.41 197 | 98.67 147 | 94.21 201 | 97.97 129 | 98.31 89 | 93.06 190 | 99.65 138 | 98.06 19 | 99.62 69 | 99.45 69 |
|
test_prior3 | | | 95.91 177 | 95.39 190 | 97.46 139 | 97.79 234 | 94.26 152 | 93.33 295 | 98.42 176 | 94.21 201 | 94.02 295 | 96.25 272 | 93.64 180 | 99.34 236 | 91.90 235 | 98.96 222 | 98.79 205 |
|
test_prior2 | | | | | | | | 93.33 295 | | 94.21 201 | 94.02 295 | 96.25 272 | 93.64 180 | | 91.90 235 | 98.96 222 | |
|
DELS-MVS | | | 96.17 166 | 96.23 159 | 95.99 220 | 97.55 261 | 90.04 243 | 92.38 315 | 98.52 164 | 94.13 204 | 96.55 216 | 97.06 223 | 94.99 142 | 99.58 162 | 95.62 112 | 99.28 182 | 98.37 242 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
FMVSNet3 | | | 95.26 204 | 94.94 204 | 96.22 213 | 96.53 305 | 90.06 242 | 95.99 163 | 97.66 250 | 94.11 205 | 97.99 125 | 97.91 148 | 80.22 315 | 99.63 143 | 94.60 169 | 99.44 132 | 98.96 176 |
|
diffmvs | | | 96.04 171 | 96.23 159 | 95.46 246 | 97.35 274 | 88.03 281 | 93.42 290 | 99.08 37 | 94.09 206 | 96.66 209 | 96.93 232 | 93.85 175 | 99.29 250 | 96.01 91 | 98.67 253 | 99.06 164 |
|
thisisatest0530 | | | 92.71 283 | 91.76 291 | 95.56 241 | 98.42 159 | 88.23 274 | 96.03 160 | 87.35 364 | 94.04 207 | 96.56 214 | 95.47 302 | 64.03 367 | 99.77 53 | 94.78 164 | 99.11 207 | 98.68 220 |
|
PMMVS2 | | | 93.66 266 | 94.07 246 | 92.45 326 | 97.57 257 | 80.67 352 | 86.46 361 | 96.00 298 | 93.99 208 | 97.10 180 | 97.38 201 | 89.90 250 | 97.82 355 | 88.76 301 | 99.47 124 | 98.86 199 |
|
BH-untuned | | | 94.69 229 | 94.75 217 | 94.52 284 | 97.95 210 | 87.53 291 | 94.07 268 | 97.01 277 | 93.99 208 | 97.10 180 | 95.65 296 | 92.65 202 | 98.95 297 | 87.60 317 | 96.74 324 | 97.09 310 |
|
RRT_MVS | | | 94.90 217 | 94.07 246 | 97.39 147 | 93.18 361 | 93.21 187 | 95.26 210 | 97.49 260 | 93.94 210 | 98.25 94 | 97.85 154 | 72.96 352 | 99.84 25 | 97.90 22 | 99.78 41 | 99.14 143 |
|
DeepC-MVS | | 95.41 4 | 97.82 69 | 97.70 62 | 98.16 78 | 98.78 113 | 95.72 83 | 96.23 150 | 99.02 52 | 93.92 211 | 98.62 52 | 98.99 42 | 97.69 23 | 99.62 151 | 96.18 80 | 99.87 24 | 99.15 140 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CS-MVS | | | 95.98 175 | 96.24 158 | 95.20 254 | 97.26 283 | 89.88 246 | 95.84 174 | 99.39 9 | 93.89 212 | 94.28 286 | 95.15 307 | 94.81 146 | 99.62 151 | 96.11 83 | 99.40 150 | 96.10 339 |
|
PM-MVS | | | 97.36 103 | 97.10 111 | 98.14 82 | 98.91 103 | 96.77 50 | 96.20 151 | 98.63 155 | 93.82 213 | 98.54 60 | 98.33 87 | 93.98 172 | 99.05 283 | 95.99 92 | 99.45 131 | 98.61 226 |
|
testdata1 | | | | | | | | 92.77 304 | | 93.78 214 | | | | | | | |
|
v1192 | | | 96.83 131 | 97.06 115 | 96.15 216 | 98.28 169 | 89.29 256 | 95.36 201 | 98.77 121 | 93.73 215 | 98.11 110 | 98.34 86 | 93.02 194 | 99.67 130 | 98.35 14 | 99.58 82 | 99.50 45 |
|
ACMP | | 92.54 13 | 97.47 94 | 97.10 111 | 98.55 50 | 99.04 93 | 96.70 52 | 96.24 149 | 98.89 79 | 93.71 216 | 97.97 129 | 97.75 165 | 97.44 30 | 99.63 143 | 93.22 218 | 99.70 57 | 99.32 101 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
BH-RMVSNet | | | 94.56 237 | 94.44 236 | 94.91 264 | 97.57 257 | 87.44 293 | 93.78 281 | 96.26 293 | 93.69 217 | 96.41 221 | 96.50 260 | 92.10 217 | 99.00 288 | 85.96 329 | 97.71 295 | 98.31 251 |
|
Patchmatch-test | | | 93.60 268 | 93.25 264 | 94.63 277 | 96.14 321 | 87.47 292 | 96.04 159 | 94.50 320 | 93.57 218 | 96.47 218 | 96.97 229 | 76.50 333 | 98.61 326 | 90.67 270 | 98.41 269 | 97.81 291 |
|
PHI-MVS | | | 96.96 121 | 96.53 146 | 98.25 72 | 97.48 264 | 96.50 59 | 96.76 123 | 98.85 94 | 93.52 219 | 96.19 234 | 96.85 236 | 95.94 102 | 99.42 207 | 93.79 205 | 99.43 140 | 98.83 201 |
|
miper_lstm_enhance | | | 94.81 222 | 94.80 215 | 94.85 269 | 96.16 318 | 86.45 307 | 91.14 336 | 98.20 203 | 93.49 220 | 97.03 188 | 97.37 203 | 84.97 292 | 99.26 255 | 95.28 134 | 99.56 88 | 98.83 201 |
|
c3_l | | | 95.20 205 | 95.32 191 | 94.83 271 | 96.19 316 | 86.43 308 | 91.83 323 | 98.35 189 | 93.47 221 | 97.36 167 | 97.26 211 | 88.69 263 | 99.28 252 | 95.41 130 | 99.36 158 | 98.78 207 |
|
eth_miper_zixun_eth | | | 94.89 218 | 94.93 206 | 94.75 274 | 95.99 323 | 86.12 311 | 91.35 329 | 98.49 167 | 93.40 222 | 97.12 178 | 97.25 212 | 86.87 282 | 99.35 234 | 95.08 151 | 98.82 241 | 98.78 207 |
|
EPNet_dtu | | | 91.39 303 | 90.75 306 | 93.31 306 | 90.48 373 | 82.61 341 | 94.80 238 | 92.88 334 | 93.39 223 | 81.74 371 | 94.90 315 | 81.36 308 | 99.11 276 | 88.28 309 | 98.87 234 | 98.21 262 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ETH3D-3000-0.1 | | | 96.89 127 | 96.46 151 | 98.16 78 | 98.62 134 | 95.69 85 | 95.96 166 | 98.98 66 | 93.36 224 | 97.04 187 | 97.31 208 | 94.93 144 | 99.63 143 | 92.60 225 | 99.34 166 | 99.17 136 |
|
cl____ | | | 94.73 224 | 94.64 221 | 95.01 261 | 95.85 326 | 87.00 300 | 91.33 330 | 98.08 222 | 93.34 225 | 97.10 180 | 97.33 206 | 84.01 299 | 99.30 246 | 95.14 146 | 99.56 88 | 98.71 217 |
|
DIV-MVS_self_test | | | 94.73 224 | 94.64 221 | 95.01 261 | 95.86 325 | 87.00 300 | 91.33 330 | 98.08 222 | 93.34 225 | 97.10 180 | 97.34 205 | 84.02 298 | 99.31 243 | 95.15 145 | 99.55 94 | 98.72 215 |
|
mvs_anonymous | | | 95.36 199 | 96.07 168 | 93.21 310 | 96.29 310 | 81.56 348 | 94.60 245 | 97.66 250 | 93.30 227 | 96.95 195 | 98.91 49 | 93.03 193 | 99.38 226 | 96.60 64 | 97.30 314 | 98.69 218 |
|
TSAR-MVS + GP. | | | 96.47 155 | 96.12 164 | 97.49 134 | 97.74 245 | 95.23 113 | 94.15 263 | 96.90 281 | 93.26 228 | 98.04 121 | 96.70 248 | 94.41 161 | 98.89 300 | 94.77 165 | 99.14 199 | 98.37 242 |
|
9.14 | | | | 96.69 134 | | 98.53 145 | | 96.02 161 | 98.98 66 | 93.23 229 | 97.18 174 | 97.46 190 | 96.47 88 | 99.62 151 | 92.99 222 | 99.32 175 | |
|
v1921920 | | | 96.72 140 | 96.96 121 | 95.99 220 | 98.21 178 | 88.79 266 | 95.42 195 | 98.79 116 | 93.22 230 | 98.19 102 | 98.26 103 | 92.68 200 | 99.70 109 | 98.34 15 | 99.55 94 | 99.49 53 |
|
CANet_DTU | | | 94.65 233 | 94.21 242 | 95.96 222 | 95.90 324 | 89.68 249 | 93.92 275 | 97.83 240 | 93.19 231 | 90.12 352 | 95.64 297 | 88.52 264 | 99.57 168 | 93.27 217 | 99.47 124 | 98.62 224 |
|
HQP-NCC | | | | | | 97.85 216 | | 94.26 253 | | 93.18 232 | 92.86 327 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 216 | | 94.26 253 | | 93.18 232 | 92.86 327 | | | | | | |
|
HQP-MVS | | | 95.17 208 | 94.58 228 | 96.92 171 | 97.85 216 | 92.47 201 | 94.26 253 | 98.43 173 | 93.18 232 | 92.86 327 | 95.08 308 | 90.33 242 | 99.23 260 | 90.51 276 | 98.74 248 | 99.05 166 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 137 | 96.51 149 | 97.44 142 | 97.69 248 | 94.15 155 | 96.02 161 | 98.43 173 | 93.17 235 | 97.30 168 | 97.38 201 | 95.48 125 | 99.28 252 | 93.74 206 | 99.34 166 | 98.88 196 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
v1240 | | | 96.74 137 | 97.02 118 | 95.91 227 | 98.18 183 | 88.52 269 | 95.39 199 | 98.88 85 | 93.15 236 | 98.46 69 | 98.40 83 | 92.80 197 | 99.71 100 | 98.45 13 | 99.49 118 | 99.49 53 |
|
AdaColmap |  | | 95.11 209 | 94.62 224 | 96.58 192 | 97.33 280 | 94.45 143 | 94.92 232 | 98.08 222 | 93.15 236 | 93.98 298 | 95.53 301 | 94.34 163 | 99.10 278 | 85.69 332 | 98.61 260 | 96.20 338 |
|
CL-MVSNet_self_test | | | 95.04 212 | 94.79 216 | 95.82 230 | 97.51 263 | 89.79 248 | 91.14 336 | 96.82 284 | 93.05 238 | 96.72 206 | 96.40 265 | 90.82 236 | 99.16 269 | 91.95 234 | 98.66 255 | 98.50 233 |
|
v144192 | | | 96.69 143 | 96.90 125 | 96.03 219 | 98.25 174 | 88.92 261 | 95.49 191 | 98.77 121 | 93.05 238 | 98.09 114 | 98.29 97 | 92.51 209 | 99.70 109 | 98.11 17 | 99.56 88 | 99.47 62 |
|
TSAR-MVS + MP. | | | 97.42 97 | 97.23 104 | 98.00 93 | 99.38 39 | 95.00 123 | 97.63 75 | 98.20 203 | 93.00 240 | 98.16 104 | 98.06 129 | 95.89 103 | 99.72 86 | 95.67 107 | 99.10 209 | 99.28 115 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xiu_mvs_v1_base_debu | | | 95.62 186 | 95.96 173 | 94.60 279 | 98.01 201 | 88.42 270 | 93.99 271 | 98.21 200 | 92.98 241 | 95.91 244 | 94.53 320 | 96.39 92 | 99.72 86 | 95.43 127 | 98.19 275 | 95.64 345 |
|
xiu_mvs_v1_base | | | 95.62 186 | 95.96 173 | 94.60 279 | 98.01 201 | 88.42 270 | 93.99 271 | 98.21 200 | 92.98 241 | 95.91 244 | 94.53 320 | 96.39 92 | 99.72 86 | 95.43 127 | 98.19 275 | 95.64 345 |
|
xiu_mvs_v1_base_debi | | | 95.62 186 | 95.96 173 | 94.60 279 | 98.01 201 | 88.42 270 | 93.99 271 | 98.21 200 | 92.98 241 | 95.91 244 | 94.53 320 | 96.39 92 | 99.72 86 | 95.43 127 | 98.19 275 | 95.64 345 |
|
PAPM_NR | | | 94.61 235 | 94.17 244 | 95.96 222 | 98.36 163 | 91.23 226 | 95.93 169 | 97.95 230 | 92.98 241 | 93.42 319 | 94.43 324 | 90.53 239 | 98.38 342 | 87.60 317 | 96.29 332 | 98.27 257 |
|
APD-MVS |  | | 97.00 116 | 96.53 146 | 98.41 57 | 98.55 143 | 96.31 65 | 96.32 144 | 98.77 121 | 92.96 245 | 97.44 165 | 97.58 181 | 95.84 105 | 99.74 75 | 91.96 233 | 99.35 163 | 99.19 133 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CPTT-MVS | | | 96.69 143 | 96.08 167 | 98.49 52 | 98.89 104 | 96.64 55 | 97.25 97 | 98.77 121 | 92.89 246 | 96.01 241 | 97.13 216 | 92.23 213 | 99.67 130 | 92.24 230 | 99.34 166 | 99.17 136 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 125 | 96.43 152 | 98.31 66 | 97.48 264 | 97.23 41 | 92.56 310 | 98.60 157 | 92.84 247 | 98.54 60 | 97.40 195 | 96.64 77 | 98.78 309 | 94.40 179 | 99.41 149 | 98.93 183 |
|
FMVSNet5 | | | 93.39 272 | 92.35 283 | 96.50 197 | 95.83 327 | 90.81 235 | 97.31 94 | 98.27 194 | 92.74 248 | 96.27 229 | 98.28 98 | 62.23 368 | 99.67 130 | 90.86 259 | 99.36 158 | 99.03 168 |
|
YYNet1 | | | 94.73 224 | 94.84 211 | 94.41 287 | 97.47 268 | 85.09 325 | 90.29 345 | 95.85 303 | 92.52 249 | 97.53 152 | 97.76 162 | 91.97 220 | 99.18 264 | 93.31 215 | 96.86 320 | 98.95 177 |
|
MDA-MVSNet_test_wron | | | 94.73 224 | 94.83 213 | 94.42 286 | 97.48 264 | 85.15 323 | 90.28 346 | 95.87 302 | 92.52 249 | 97.48 160 | 97.76 162 | 91.92 224 | 99.17 268 | 93.32 214 | 96.80 323 | 98.94 179 |
|
MG-MVS | | | 94.08 256 | 94.00 249 | 94.32 289 | 97.09 291 | 85.89 313 | 93.19 299 | 95.96 300 | 92.52 249 | 94.93 272 | 97.51 186 | 89.54 254 | 98.77 310 | 87.52 320 | 97.71 295 | 98.31 251 |
|
MP-MVS-pluss | | | 97.69 78 | 97.36 94 | 98.70 39 | 99.50 26 | 96.84 48 | 95.38 200 | 98.99 63 | 92.45 252 | 98.11 110 | 98.31 89 | 97.25 41 | 99.77 53 | 96.60 64 | 99.62 69 | 99.48 59 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MVSTER | | | 94.21 250 | 93.93 253 | 95.05 260 | 95.83 327 | 86.46 306 | 95.18 216 | 97.65 252 | 92.41 253 | 97.94 132 | 98.00 137 | 72.39 353 | 99.58 162 | 96.36 75 | 99.56 88 | 99.12 151 |
|
LF4IMVS | | | 96.07 169 | 95.63 184 | 97.36 149 | 98.19 180 | 95.55 92 | 95.44 193 | 98.82 114 | 92.29 254 | 95.70 255 | 96.55 255 | 92.63 203 | 98.69 318 | 91.75 242 | 99.33 173 | 97.85 287 |
|
MIMVSNet | | | 93.42 271 | 92.86 270 | 95.10 258 | 98.17 185 | 88.19 275 | 98.13 47 | 93.69 324 | 92.07 255 | 95.04 269 | 98.21 110 | 80.95 312 | 99.03 287 | 81.42 353 | 98.06 281 | 98.07 270 |
|
test-LLR | | | 89.97 316 | 89.90 314 | 90.16 341 | 94.24 352 | 74.98 368 | 89.89 349 | 89.06 360 | 92.02 256 | 89.97 353 | 90.77 362 | 73.92 344 | 98.57 329 | 91.88 237 | 97.36 310 | 96.92 316 |
|
test0.0.03 1 | | | 90.11 312 | 89.21 319 | 92.83 319 | 93.89 356 | 86.87 303 | 91.74 324 | 88.74 362 | 92.02 256 | 94.71 275 | 91.14 360 | 73.92 344 | 94.48 368 | 83.75 349 | 92.94 354 | 97.16 309 |
|
xiu_mvs_v2_base | | | 94.22 248 | 94.63 223 | 92.99 316 | 97.32 281 | 84.84 328 | 92.12 318 | 97.84 238 | 91.96 258 | 94.17 289 | 93.43 331 | 96.07 100 | 99.71 100 | 91.27 249 | 97.48 307 | 94.42 354 |
|
PS-MVSNAJ | | | 94.10 254 | 94.47 233 | 93.00 315 | 97.35 274 | 84.88 327 | 91.86 322 | 97.84 238 | 91.96 258 | 94.17 289 | 92.50 347 | 95.82 108 | 99.71 100 | 91.27 249 | 97.48 307 | 94.40 355 |
|
OMC-MVS | | | 96.48 154 | 96.00 170 | 97.91 98 | 98.30 166 | 96.01 77 | 94.86 235 | 98.60 157 | 91.88 260 | 97.18 174 | 97.21 214 | 96.11 99 | 99.04 284 | 90.49 278 | 99.34 166 | 98.69 218 |
|
GA-MVS | | | 92.83 281 | 92.15 286 | 94.87 268 | 96.97 294 | 87.27 297 | 90.03 347 | 96.12 295 | 91.83 261 | 94.05 294 | 94.57 318 | 76.01 337 | 98.97 296 | 92.46 229 | 97.34 312 | 98.36 247 |
|
miper_ehance_all_eth | | | 94.69 229 | 94.70 218 | 94.64 276 | 95.77 329 | 86.22 310 | 91.32 332 | 98.24 198 | 91.67 262 | 97.05 186 | 96.65 251 | 88.39 267 | 99.22 262 | 94.88 157 | 98.34 270 | 98.49 234 |
|
SMA-MVS |  | | 97.48 93 | 97.11 110 | 98.60 46 | 98.83 107 | 96.67 53 | 96.74 124 | 98.73 129 | 91.61 263 | 98.48 66 | 98.36 84 | 96.53 83 | 99.68 125 | 95.17 141 | 99.54 97 | 99.45 69 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
Fast-Effi-MVS+ | | | 95.49 191 | 95.07 199 | 96.75 182 | 97.67 252 | 92.82 195 | 94.22 259 | 98.60 157 | 91.61 263 | 93.42 319 | 92.90 340 | 96.73 73 | 99.70 109 | 92.60 225 | 97.89 288 | 97.74 292 |
|
SCA | | | 93.38 273 | 93.52 259 | 92.96 317 | 96.24 312 | 81.40 349 | 93.24 297 | 94.00 323 | 91.58 265 | 94.57 278 | 96.97 229 | 87.94 270 | 99.42 207 | 89.47 292 | 97.66 300 | 98.06 274 |
|
Patchmatch-RL test | | | 94.66 232 | 94.49 231 | 95.19 255 | 98.54 144 | 88.91 262 | 92.57 309 | 98.74 127 | 91.46 266 | 98.32 87 | 97.75 165 | 77.31 330 | 98.81 307 | 96.06 84 | 99.61 75 | 97.85 287 |
|
KD-MVS_2432*1600 | | | 88.93 324 | 87.74 329 | 92.49 323 | 88.04 374 | 81.99 345 | 89.63 354 | 95.62 306 | 91.35 267 | 95.06 266 | 93.11 333 | 56.58 373 | 98.63 324 | 85.19 337 | 95.07 344 | 96.85 321 |
|
miper_refine_blended | | | 88.93 324 | 87.74 329 | 92.49 323 | 88.04 374 | 81.99 345 | 89.63 354 | 95.62 306 | 91.35 267 | 95.06 266 | 93.11 333 | 56.58 373 | 98.63 324 | 85.19 337 | 95.07 344 | 96.85 321 |
|
ETH3D cwj APD-0.16 | | | 96.23 163 | 95.61 186 | 98.09 85 | 97.91 211 | 95.65 90 | 94.94 231 | 98.74 127 | 91.31 269 | 96.02 240 | 97.08 221 | 94.05 171 | 99.69 117 | 91.51 245 | 98.94 226 | 98.93 183 |
|
AUN-MVS | | | 93.95 260 | 92.69 277 | 97.74 110 | 97.80 228 | 95.38 103 | 95.57 190 | 95.46 312 | 91.26 270 | 92.64 333 | 96.10 282 | 74.67 341 | 99.55 173 | 93.72 208 | 96.97 316 | 98.30 253 |
|
CLD-MVS | | | 95.47 194 | 95.07 199 | 96.69 186 | 98.27 171 | 92.53 200 | 91.36 328 | 98.67 147 | 91.22 271 | 95.78 251 | 94.12 328 | 95.65 119 | 98.98 292 | 90.81 261 | 99.72 51 | 98.57 228 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TAMVS | | | 95.49 191 | 94.94 204 | 97.16 158 | 98.31 165 | 93.41 182 | 95.07 223 | 96.82 284 | 91.09 272 | 97.51 154 | 97.82 159 | 89.96 249 | 99.42 207 | 88.42 307 | 99.44 132 | 98.64 221 |
|
tpmvs | | | 90.79 309 | 90.87 303 | 90.57 340 | 92.75 368 | 76.30 365 | 95.79 176 | 93.64 327 | 91.04 273 | 91.91 341 | 96.26 271 | 77.19 331 | 98.86 304 | 89.38 294 | 89.85 362 | 96.56 333 |
|
cl22 | | | 93.25 276 | 92.84 272 | 94.46 285 | 94.30 350 | 86.00 312 | 91.09 338 | 96.64 291 | 90.74 274 | 95.79 249 | 96.31 270 | 78.24 322 | 98.77 310 | 94.15 190 | 98.34 270 | 98.62 224 |
|
ZD-MVS | | | | | | 98.43 158 | 95.94 78 | | 98.56 161 | 90.72 275 | 96.66 209 | 97.07 222 | 95.02 141 | 99.74 75 | 91.08 253 | 98.93 228 | |
|
our_test_3 | | | 94.20 252 | 94.58 228 | 93.07 312 | 96.16 318 | 81.20 350 | 90.42 344 | 96.84 282 | 90.72 275 | 97.14 176 | 97.13 216 | 90.47 240 | 99.11 276 | 94.04 197 | 98.25 274 | 98.91 188 |
|
ppachtmachnet_test | | | 94.49 241 | 94.84 211 | 93.46 304 | 96.16 318 | 82.10 344 | 90.59 342 | 97.48 262 | 90.53 277 | 97.01 190 | 97.59 179 | 91.01 233 | 99.36 231 | 93.97 200 | 99.18 196 | 98.94 179 |
|
MVP-Stereo | | | 95.69 183 | 95.28 192 | 96.92 171 | 98.15 189 | 93.03 191 | 95.64 188 | 98.20 203 | 90.39 278 | 96.63 211 | 97.73 168 | 91.63 228 | 99.10 278 | 91.84 239 | 97.31 313 | 98.63 223 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
UnsupCasMVSNet_bld | | | 94.72 228 | 94.26 239 | 96.08 218 | 98.62 134 | 90.54 241 | 93.38 293 | 98.05 228 | 90.30 279 | 97.02 189 | 96.80 242 | 89.54 254 | 99.16 269 | 88.44 306 | 96.18 333 | 98.56 229 |
|
DP-MVS Recon | | | 95.55 189 | 95.13 196 | 96.80 179 | 98.51 147 | 93.99 161 | 94.60 245 | 98.69 142 | 90.20 280 | 95.78 251 | 96.21 275 | 92.73 199 | 98.98 292 | 90.58 273 | 98.86 236 | 97.42 304 |
|
MCST-MVS | | | 96.24 162 | 95.80 178 | 97.56 123 | 98.75 116 | 94.13 156 | 94.66 243 | 98.17 209 | 90.17 281 | 96.21 233 | 96.10 282 | 95.14 136 | 99.43 206 | 94.13 191 | 98.85 238 | 99.13 146 |
|
CDS-MVSNet | | | 94.88 219 | 94.12 245 | 97.14 160 | 97.64 254 | 93.57 178 | 93.96 274 | 97.06 276 | 90.05 282 | 96.30 228 | 96.55 255 | 86.10 284 | 99.47 194 | 90.10 283 | 99.31 177 | 98.40 238 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TR-MVS | | | 92.54 285 | 92.20 285 | 93.57 302 | 96.49 306 | 86.66 304 | 93.51 288 | 94.73 317 | 89.96 283 | 94.95 270 | 93.87 329 | 90.24 247 | 98.61 326 | 81.18 354 | 94.88 346 | 95.45 349 |
|
pmmvs-eth3d | | | 96.49 153 | 96.18 162 | 97.42 144 | 98.25 174 | 94.29 148 | 94.77 240 | 98.07 226 | 89.81 284 | 97.97 129 | 98.33 87 | 93.11 189 | 99.08 280 | 95.46 123 | 99.84 29 | 98.89 192 |
|
D2MVS | | | 95.18 206 | 95.17 195 | 95.21 253 | 97.76 240 | 87.76 288 | 94.15 263 | 97.94 231 | 89.77 285 | 96.99 191 | 97.68 174 | 87.45 277 | 99.14 271 | 95.03 154 | 99.81 33 | 98.74 212 |
|
PatchmatchNet |  | | 91.98 296 | 91.87 288 | 92.30 328 | 94.60 347 | 79.71 354 | 95.12 217 | 93.59 328 | 89.52 286 | 93.61 310 | 97.02 226 | 77.94 323 | 99.18 264 | 90.84 260 | 94.57 351 | 98.01 281 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
N_pmnet | | | 95.18 206 | 94.23 240 | 98.06 88 | 97.85 216 | 96.55 58 | 92.49 311 | 91.63 345 | 89.34 287 | 98.09 114 | 97.41 194 | 90.33 242 | 99.06 282 | 91.58 244 | 99.31 177 | 98.56 229 |
|
BH-w/o | | | 92.14 293 | 91.94 287 | 92.73 321 | 97.13 290 | 85.30 319 | 92.46 312 | 95.64 305 | 89.33 288 | 94.21 288 | 92.74 343 | 89.60 252 | 98.24 348 | 81.68 352 | 94.66 348 | 94.66 353 |
|
ET-MVSNet_ETH3D | | | 91.12 304 | 89.67 316 | 95.47 245 | 96.41 308 | 89.15 260 | 91.54 326 | 90.23 358 | 89.07 289 | 86.78 367 | 92.84 341 | 69.39 361 | 99.44 204 | 94.16 189 | 96.61 327 | 97.82 289 |
|
WTY-MVS | | | 93.55 269 | 93.00 268 | 95.19 255 | 97.81 224 | 87.86 283 | 93.89 276 | 96.00 298 | 89.02 290 | 94.07 293 | 95.44 303 | 86.27 283 | 99.33 239 | 87.69 315 | 96.82 321 | 98.39 240 |
|
F-COLMAP | | | 95.30 202 | 94.38 237 | 98.05 91 | 98.64 129 | 96.04 74 | 95.61 189 | 98.66 149 | 89.00 291 | 93.22 322 | 96.40 265 | 92.90 195 | 99.35 234 | 87.45 321 | 97.53 305 | 98.77 210 |
|
PVSNet_BlendedMVS | | | 95.02 215 | 94.93 206 | 95.27 251 | 97.79 234 | 87.40 294 | 94.14 265 | 98.68 144 | 88.94 292 | 94.51 281 | 98.01 135 | 93.04 191 | 99.30 246 | 89.77 288 | 99.49 118 | 99.11 155 |
|
baseline2 | | | 89.65 320 | 88.44 327 | 93.25 308 | 95.62 332 | 82.71 340 | 93.82 278 | 85.94 367 | 88.89 293 | 87.35 365 | 92.54 346 | 71.23 356 | 99.33 239 | 86.01 328 | 94.60 350 | 97.72 293 |
|
tpm | | | 91.08 306 | 90.85 304 | 91.75 332 | 95.33 339 | 78.09 357 | 95.03 228 | 91.27 349 | 88.75 294 | 93.53 313 | 97.40 195 | 71.24 355 | 99.30 246 | 91.25 251 | 93.87 352 | 97.87 286 |
|
MS-PatchMatch | | | 94.83 220 | 94.91 208 | 94.57 282 | 96.81 301 | 87.10 299 | 94.23 258 | 97.34 265 | 88.74 295 | 97.14 176 | 97.11 219 | 91.94 222 | 98.23 349 | 92.99 222 | 97.92 285 | 98.37 242 |
|
EPMVS | | | 89.26 322 | 88.55 326 | 91.39 334 | 92.36 369 | 79.11 355 | 95.65 186 | 79.86 372 | 88.60 296 | 93.12 323 | 96.53 257 | 70.73 359 | 98.10 353 | 90.75 264 | 89.32 363 | 96.98 314 |
|
QAPM | | | 95.88 179 | 95.57 187 | 96.80 179 | 97.90 213 | 91.84 219 | 98.18 45 | 98.73 129 | 88.41 297 | 96.42 220 | 98.13 116 | 94.73 147 | 99.75 65 | 88.72 302 | 98.94 226 | 98.81 203 |
|
PVSNet_Blended_VisFu | | | 95.95 176 | 95.80 178 | 96.42 202 | 99.28 48 | 90.62 237 | 95.31 206 | 99.08 37 | 88.40 298 | 96.97 194 | 98.17 114 | 92.11 216 | 99.78 43 | 93.64 210 | 99.21 190 | 98.86 199 |
|
sss | | | 94.22 248 | 93.72 256 | 95.74 233 | 97.71 247 | 89.95 245 | 93.84 277 | 96.98 278 | 88.38 299 | 93.75 303 | 95.74 293 | 87.94 270 | 98.89 300 | 91.02 255 | 98.10 279 | 98.37 242 |
|
thisisatest0515 | | | 90.43 310 | 89.18 322 | 94.17 294 | 97.07 292 | 85.44 317 | 89.75 353 | 87.58 363 | 88.28 300 | 93.69 307 | 91.72 354 | 65.27 365 | 99.58 162 | 90.59 272 | 98.67 253 | 97.50 302 |
|
PatchMatch-RL | | | 94.61 235 | 93.81 255 | 97.02 168 | 98.19 180 | 95.72 83 | 93.66 283 | 97.23 267 | 88.17 301 | 94.94 271 | 95.62 298 | 91.43 229 | 98.57 329 | 87.36 322 | 97.68 298 | 96.76 327 |
|
tpmrst | | | 90.31 311 | 90.61 309 | 89.41 344 | 94.06 355 | 72.37 373 | 95.06 225 | 93.69 324 | 88.01 302 | 92.32 338 | 96.86 235 | 77.45 327 | 98.82 305 | 91.04 254 | 87.01 366 | 97.04 313 |
|
Anonymous20231206 | | | 95.27 203 | 95.06 201 | 95.88 228 | 98.72 119 | 89.37 255 | 95.70 179 | 97.85 236 | 88.00 303 | 96.98 193 | 97.62 177 | 91.95 221 | 99.34 236 | 89.21 295 | 99.53 100 | 98.94 179 |
|
FPMVS | | | 89.92 317 | 88.63 325 | 93.82 296 | 98.37 162 | 96.94 46 | 91.58 325 | 93.34 330 | 88.00 303 | 90.32 350 | 97.10 220 | 70.87 358 | 91.13 370 | 71.91 368 | 96.16 335 | 93.39 360 |
|
MAR-MVS | | | 94.21 250 | 93.03 267 | 97.76 108 | 96.94 297 | 97.44 34 | 96.97 115 | 97.15 271 | 87.89 305 | 92.00 340 | 92.73 344 | 92.14 215 | 99.12 273 | 83.92 345 | 97.51 306 | 96.73 328 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
IB-MVS | | 85.98 20 | 88.63 326 | 86.95 335 | 93.68 300 | 95.12 341 | 84.82 329 | 90.85 340 | 90.17 359 | 87.55 306 | 88.48 360 | 91.34 358 | 58.01 370 | 99.59 160 | 87.24 323 | 93.80 353 | 96.63 332 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
OpenMVS |  | 94.22 8 | 95.48 193 | 95.20 193 | 96.32 207 | 97.16 289 | 91.96 216 | 97.74 69 | 98.84 99 | 87.26 307 | 94.36 285 | 98.01 135 | 93.95 173 | 99.67 130 | 90.70 269 | 98.75 247 | 97.35 307 |
|
PC_three_1452 | | | | | | | | | | 87.24 308 | 98.37 76 | 97.44 192 | 97.00 54 | 96.78 364 | 92.01 232 | 99.25 186 | 99.21 129 |
|
agg_prior1 | | | 95.39 198 | 94.60 225 | 97.75 109 | 97.80 228 | 94.96 124 | 93.39 292 | 98.36 185 | 87.20 309 | 93.49 314 | 95.97 287 | 94.65 153 | 99.53 178 | 91.69 243 | 98.86 236 | 98.77 210 |
|
pmmvs5 | | | 94.63 234 | 94.34 238 | 95.50 243 | 97.63 255 | 88.34 273 | 94.02 269 | 97.13 272 | 87.15 310 | 95.22 264 | 97.15 215 | 87.50 276 | 99.27 254 | 93.99 198 | 99.26 185 | 98.88 196 |
|
train_agg | | | 95.46 195 | 94.66 219 | 97.88 101 | 97.84 220 | 95.23 113 | 93.62 284 | 98.39 181 | 87.04 311 | 93.78 300 | 95.99 284 | 94.58 156 | 99.52 182 | 91.76 241 | 98.90 230 | 98.89 192 |
|
test_8 | | | | | | 97.81 224 | 95.07 122 | 93.54 287 | 98.38 183 | 87.04 311 | 93.71 305 | 95.96 288 | 94.58 156 | 99.52 182 | | | |
|
TEST9 | | | | | | 97.84 220 | 95.23 113 | 93.62 284 | 98.39 181 | 86.81 313 | 93.78 300 | 95.99 284 | 94.68 151 | 99.52 182 | | | |
|
pmmvs4 | | | 94.82 221 | 94.19 243 | 96.70 185 | 97.42 271 | 92.75 198 | 92.09 320 | 96.76 286 | 86.80 314 | 95.73 254 | 97.22 213 | 89.28 260 | 98.89 300 | 93.28 216 | 99.14 199 | 98.46 237 |
|
MDTV_nov1_ep13 | | | | 91.28 296 | | 94.31 349 | 73.51 371 | 94.80 238 | 93.16 331 | 86.75 315 | 93.45 317 | 97.40 195 | 76.37 334 | 98.55 332 | 88.85 300 | 96.43 329 | |
|
test-mter | | | 87.92 332 | 87.17 333 | 90.16 341 | 94.24 352 | 74.98 368 | 89.89 349 | 89.06 360 | 86.44 316 | 89.97 353 | 90.77 362 | 54.96 378 | 98.57 329 | 91.88 237 | 97.36 310 | 96.92 316 |
|
PLC |  | 91.02 16 | 94.05 257 | 92.90 269 | 97.51 128 | 98.00 205 | 95.12 121 | 94.25 256 | 98.25 197 | 86.17 317 | 91.48 343 | 95.25 305 | 91.01 233 | 99.19 263 | 85.02 340 | 96.69 325 | 98.22 261 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVE |  | 73.61 22 | 86.48 336 | 85.92 338 | 88.18 349 | 96.23 314 | 85.28 321 | 81.78 367 | 75.79 373 | 86.01 318 | 82.53 370 | 91.88 352 | 92.74 198 | 87.47 372 | 71.42 369 | 94.86 347 | 91.78 363 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
USDC | | | 94.56 237 | 94.57 230 | 94.55 283 | 97.78 238 | 86.43 308 | 92.75 305 | 98.65 154 | 85.96 319 | 96.91 198 | 97.93 146 | 90.82 236 | 98.74 313 | 90.71 268 | 99.59 80 | 98.47 235 |
|
HY-MVS | | 91.43 15 | 92.58 284 | 91.81 290 | 94.90 266 | 96.49 306 | 88.87 263 | 97.31 94 | 94.62 318 | 85.92 320 | 90.50 349 | 96.84 237 | 85.05 290 | 99.40 218 | 83.77 348 | 95.78 339 | 96.43 335 |
|
原ACMM1 | | | | | 96.58 192 | 98.16 187 | 92.12 211 | | 98.15 214 | 85.90 321 | 93.49 314 | 96.43 262 | 92.47 210 | 99.38 226 | 87.66 316 | 98.62 259 | 98.23 260 |
|
PAPR | | | 92.22 291 | 91.27 297 | 95.07 259 | 95.73 331 | 88.81 265 | 91.97 321 | 97.87 235 | 85.80 322 | 90.91 345 | 92.73 344 | 91.16 231 | 98.33 346 | 79.48 356 | 95.76 340 | 98.08 268 |
|
IU-MVS | | | | | | 99.22 58 | 95.40 101 | | 98.14 215 | 85.77 323 | 98.36 79 | | | | 95.23 138 | 99.51 110 | 99.49 53 |
|
DWT-MVSNet_test | | | 87.92 332 | 86.77 336 | 91.39 334 | 93.18 361 | 78.62 356 | 95.10 218 | 91.42 346 | 85.58 324 | 88.00 361 | 88.73 366 | 60.60 369 | 98.90 298 | 90.60 271 | 87.70 365 | 96.65 329 |
|
1112_ss | | | 94.12 253 | 93.42 260 | 96.23 211 | 98.59 139 | 90.85 232 | 94.24 257 | 98.85 94 | 85.49 325 | 92.97 325 | 94.94 312 | 86.01 285 | 99.64 141 | 91.78 240 | 97.92 285 | 98.20 263 |
|
dp | | | 88.08 330 | 88.05 328 | 88.16 350 | 92.85 366 | 68.81 375 | 94.17 261 | 92.88 334 | 85.47 326 | 91.38 344 | 96.14 279 | 68.87 362 | 98.81 307 | 86.88 324 | 83.80 369 | 96.87 319 |
|
TESTMET0.1,1 | | | 87.20 335 | 86.57 337 | 89.07 345 | 93.62 359 | 72.84 372 | 89.89 349 | 87.01 366 | 85.46 327 | 89.12 358 | 90.20 364 | 56.00 376 | 97.72 357 | 90.91 258 | 96.92 317 | 96.64 330 |
|
ETH3 D test6400 | | | 94.77 223 | 93.87 254 | 97.47 136 | 98.12 194 | 93.73 171 | 94.56 247 | 98.70 139 | 85.45 328 | 94.70 276 | 95.93 291 | 91.77 227 | 99.63 143 | 86.45 327 | 99.14 199 | 99.05 166 |
|
1314 | | | 92.38 288 | 92.30 284 | 92.64 322 | 95.42 338 | 85.15 323 | 95.86 171 | 96.97 279 | 85.40 329 | 90.62 346 | 93.06 338 | 91.12 232 | 97.80 356 | 86.74 325 | 95.49 343 | 94.97 352 |
|
jason | | | 94.39 244 | 94.04 248 | 95.41 249 | 98.29 167 | 87.85 285 | 92.74 307 | 96.75 287 | 85.38 330 | 95.29 262 | 96.15 277 | 88.21 269 | 99.65 138 | 94.24 186 | 99.34 166 | 98.74 212 |
jason: jason. |
EU-MVSNet | | | 94.25 247 | 94.47 233 | 93.60 301 | 98.14 190 | 82.60 342 | 97.24 99 | 92.72 337 | 85.08 331 | 98.48 66 | 98.94 46 | 82.59 303 | 98.76 312 | 97.47 40 | 99.53 100 | 99.44 79 |
|
miper_enhance_ethall | | | 93.14 278 | 92.78 275 | 94.20 292 | 93.65 358 | 85.29 320 | 89.97 348 | 97.85 236 | 85.05 332 | 96.15 237 | 94.56 319 | 85.74 286 | 99.14 271 | 93.74 206 | 98.34 270 | 98.17 266 |
|
CDPH-MVS | | | 95.45 196 | 94.65 220 | 97.84 104 | 98.28 169 | 94.96 124 | 93.73 282 | 98.33 190 | 85.03 333 | 95.44 259 | 96.60 253 | 95.31 132 | 99.44 204 | 90.01 284 | 99.13 203 | 99.11 155 |
|
DPM-MVS | | | 93.68 265 | 92.77 276 | 96.42 202 | 97.91 211 | 92.54 199 | 91.17 335 | 97.47 263 | 84.99 334 | 93.08 324 | 94.74 316 | 89.90 250 | 99.00 288 | 87.54 319 | 98.09 280 | 97.72 293 |
|
CR-MVSNet | | | 93.29 275 | 92.79 273 | 94.78 273 | 95.44 336 | 88.15 277 | 96.18 152 | 97.20 268 | 84.94 335 | 94.10 291 | 98.57 69 | 77.67 325 | 99.39 223 | 95.17 141 | 95.81 336 | 96.81 325 |
|
PVSNet | | 86.72 19 | 91.10 305 | 90.97 302 | 91.49 333 | 97.56 259 | 78.04 358 | 87.17 360 | 94.60 319 | 84.65 336 | 92.34 337 | 92.20 349 | 87.37 278 | 98.47 336 | 85.17 339 | 97.69 297 | 97.96 282 |
|
lupinMVS | | | 93.77 261 | 93.28 262 | 95.24 252 | 97.68 249 | 87.81 286 | 92.12 318 | 96.05 296 | 84.52 337 | 94.48 283 | 95.06 310 | 86.90 280 | 99.63 143 | 93.62 211 | 99.13 203 | 98.27 257 |
|
PVSNet_Blended | | | 93.96 258 | 93.65 257 | 94.91 264 | 97.79 234 | 87.40 294 | 91.43 327 | 98.68 144 | 84.50 338 | 94.51 281 | 94.48 323 | 93.04 191 | 99.30 246 | 89.77 288 | 98.61 260 | 98.02 280 |
|
MVS-HIRNet | | | 88.40 328 | 90.20 313 | 82.99 352 | 97.01 293 | 60.04 376 | 93.11 300 | 85.61 368 | 84.45 339 | 88.72 359 | 99.09 36 | 84.72 294 | 98.23 349 | 82.52 351 | 96.59 328 | 90.69 367 |
|
new_pmnet | | | 92.34 289 | 91.69 292 | 94.32 289 | 96.23 314 | 89.16 259 | 92.27 316 | 92.88 334 | 84.39 340 | 95.29 262 | 96.35 269 | 85.66 287 | 96.74 365 | 84.53 343 | 97.56 303 | 97.05 312 |
|
ADS-MVSNet2 | | | 91.47 302 | 90.51 310 | 94.36 288 | 95.51 334 | 85.63 314 | 95.05 226 | 95.70 304 | 83.46 341 | 92.69 330 | 96.84 237 | 79.15 319 | 99.41 216 | 85.66 333 | 90.52 359 | 98.04 278 |
|
ADS-MVSNet | | | 90.95 308 | 90.26 312 | 93.04 313 | 95.51 334 | 82.37 343 | 95.05 226 | 93.41 329 | 83.46 341 | 92.69 330 | 96.84 237 | 79.15 319 | 98.70 317 | 85.66 333 | 90.52 359 | 98.04 278 |
|
HyFIR lowres test | | | 93.72 263 | 92.65 278 | 96.91 173 | 98.93 101 | 91.81 220 | 91.23 334 | 98.52 164 | 82.69 343 | 96.46 219 | 96.52 259 | 80.38 314 | 99.90 13 | 90.36 280 | 98.79 243 | 99.03 168 |
|
Test_1112_low_res | | | 93.53 270 | 92.86 270 | 95.54 242 | 98.60 137 | 88.86 264 | 92.75 305 | 98.69 142 | 82.66 344 | 92.65 332 | 96.92 234 | 84.75 293 | 99.56 169 | 90.94 257 | 97.76 291 | 98.19 264 |
|
CVMVSNet | | | 92.33 290 | 92.79 273 | 90.95 337 | 97.26 283 | 75.84 367 | 95.29 208 | 92.33 340 | 81.86 345 | 96.27 229 | 98.19 111 | 81.44 307 | 98.46 337 | 94.23 187 | 98.29 273 | 98.55 231 |
|
gm-plane-assit | | | | | | 91.79 370 | 71.40 374 | | | 81.67 346 | | 90.11 365 | | 98.99 290 | 84.86 341 | | |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 267 | 93.05 266 | 95.42 247 | 97.31 282 | 91.21 227 | 95.08 222 | 96.68 290 | 81.56 347 | 96.88 200 | 96.41 263 | 90.44 241 | 99.25 257 | 85.39 336 | 97.67 299 | 95.80 343 |
|
CostFormer | | | 89.75 319 | 89.25 317 | 91.26 336 | 94.69 346 | 78.00 359 | 95.32 205 | 91.98 342 | 81.50 348 | 90.55 348 | 96.96 231 | 71.06 357 | 98.89 300 | 88.59 305 | 92.63 356 | 96.87 319 |
|
CHOSEN 280x420 | | | 89.98 315 | 89.19 321 | 92.37 327 | 95.60 333 | 81.13 351 | 86.22 362 | 97.09 274 | 81.44 349 | 87.44 364 | 93.15 332 | 73.99 342 | 99.47 194 | 88.69 303 | 99.07 213 | 96.52 334 |
|
TAPA-MVS | | 93.32 12 | 94.93 216 | 94.23 240 | 97.04 166 | 98.18 183 | 94.51 140 | 95.22 214 | 98.73 129 | 81.22 350 | 96.25 231 | 95.95 289 | 93.80 177 | 98.98 292 | 89.89 286 | 98.87 234 | 97.62 297 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
无先验 | | | | | | | | 93.20 298 | 97.91 232 | 80.78 351 | | | | 99.40 218 | 87.71 313 | | 97.94 283 |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 377 | 94.89 233 | | 80.59 352 | 94.02 295 | | 78.66 321 | | 85.50 335 | | 97.82 289 |
|
testdata | | | | | 95.70 236 | 98.16 187 | 90.58 238 | | 97.72 245 | 80.38 353 | 95.62 256 | 97.02 226 | 92.06 219 | 98.98 292 | 89.06 299 | 98.52 264 | 97.54 300 |
|
CMPMVS |  | 73.10 23 | 92.74 282 | 91.39 294 | 96.77 181 | 93.57 360 | 94.67 136 | 94.21 260 | 97.67 248 | 80.36 354 | 93.61 310 | 96.60 253 | 82.85 302 | 97.35 359 | 84.86 341 | 98.78 244 | 98.29 256 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CHOSEN 1792x2688 | | | 94.10 254 | 93.41 261 | 96.18 215 | 99.16 70 | 90.04 243 | 92.15 317 | 98.68 144 | 79.90 355 | 96.22 232 | 97.83 156 | 87.92 274 | 99.42 207 | 89.18 296 | 99.65 64 | 99.08 160 |
|
PAPM | | | 87.64 334 | 85.84 339 | 93.04 313 | 96.54 304 | 84.99 326 | 88.42 359 | 95.57 309 | 79.52 356 | 83.82 368 | 93.05 339 | 80.57 313 | 98.41 339 | 62.29 371 | 92.79 355 | 95.71 344 |
|
cascas | | | 91.89 297 | 91.35 295 | 93.51 303 | 94.27 351 | 85.60 315 | 88.86 357 | 98.61 156 | 79.32 357 | 92.16 339 | 91.44 357 | 89.22 261 | 98.12 352 | 90.80 262 | 97.47 309 | 96.82 324 |
|
PMMVS | | | 92.39 287 | 91.08 299 | 96.30 209 | 93.12 364 | 92.81 196 | 90.58 343 | 95.96 300 | 79.17 358 | 91.85 342 | 92.27 348 | 90.29 246 | 98.66 323 | 89.85 287 | 96.68 326 | 97.43 303 |
|
pmmvs3 | | | 90.00 314 | 88.90 324 | 93.32 305 | 94.20 354 | 85.34 318 | 91.25 333 | 92.56 339 | 78.59 359 | 93.82 299 | 95.17 306 | 67.36 364 | 98.69 318 | 89.08 298 | 98.03 282 | 95.92 340 |
|
PVSNet_0 | | 81.89 21 | 84.49 337 | 83.21 340 | 88.34 348 | 95.76 330 | 74.97 370 | 83.49 364 | 92.70 338 | 78.47 360 | 87.94 362 | 86.90 368 | 83.38 301 | 96.63 366 | 73.44 366 | 66.86 372 | 93.40 359 |
|
新几何1 | | | | | 97.25 156 | 98.29 167 | 94.70 135 | | 97.73 244 | 77.98 361 | 94.83 273 | 96.67 250 | 92.08 218 | 99.45 201 | 88.17 311 | 98.65 257 | 97.61 298 |
|
1121 | | | 94.26 246 | 93.26 263 | 97.27 153 | 98.26 173 | 94.73 130 | 95.86 171 | 97.71 246 | 77.96 362 | 94.53 280 | 96.71 247 | 91.93 223 | 99.40 218 | 87.71 313 | 98.64 258 | 97.69 295 |
|
旧先验2 | | | | | | | | 93.35 294 | | 77.95 363 | 95.77 253 | | | 98.67 322 | 90.74 267 | | |
|
tpm2 | | | 88.47 327 | 87.69 331 | 90.79 338 | 94.98 343 | 77.34 362 | 95.09 220 | 91.83 343 | 77.51 364 | 89.40 355 | 96.41 263 | 67.83 363 | 98.73 314 | 83.58 350 | 92.60 357 | 96.29 337 |
|
DSMNet-mixed | | | 92.19 292 | 91.83 289 | 93.25 308 | 96.18 317 | 83.68 338 | 96.27 145 | 93.68 326 | 76.97 365 | 92.54 336 | 99.18 27 | 89.20 262 | 98.55 332 | 83.88 346 | 98.60 262 | 97.51 301 |
|
test222 | | | | | | 98.17 185 | 93.24 186 | 92.74 307 | 97.61 258 | 75.17 366 | 94.65 277 | 96.69 249 | 90.96 235 | | | 98.66 255 | 97.66 296 |
|
PCF-MVS | | 89.43 18 | 92.12 294 | 90.64 308 | 96.57 194 | 97.80 228 | 93.48 181 | 89.88 352 | 98.45 170 | 74.46 367 | 96.04 239 | 95.68 295 | 90.71 238 | 99.31 243 | 73.73 365 | 99.01 220 | 96.91 318 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
114514_t | | | 93.96 258 | 93.22 265 | 96.19 214 | 99.06 88 | 90.97 231 | 95.99 163 | 98.94 74 | 73.88 368 | 93.43 318 | 96.93 232 | 92.38 212 | 99.37 229 | 89.09 297 | 99.28 182 | 98.25 259 |
|
tpm cat1 | | | 88.01 331 | 87.33 332 | 90.05 343 | 94.48 348 | 76.28 366 | 94.47 250 | 94.35 322 | 73.84 369 | 89.26 356 | 95.61 299 | 73.64 346 | 98.30 347 | 84.13 344 | 86.20 367 | 95.57 348 |
|
MVS | | | 90.02 313 | 89.20 320 | 92.47 325 | 94.71 345 | 86.90 302 | 95.86 171 | 96.74 288 | 64.72 370 | 90.62 346 | 92.77 342 | 92.54 207 | 98.39 341 | 79.30 357 | 95.56 342 | 92.12 362 |
|
DeepMVS_CX |  | | | | 77.17 353 | 90.94 372 | 85.28 321 | | 74.08 376 | 52.51 371 | 80.87 372 | 88.03 367 | 75.25 340 | 70.63 373 | 59.23 372 | 84.94 368 | 75.62 368 |
|
tmp_tt | | | 57.23 339 | 62.50 342 | 41.44 355 | 34.77 378 | 49.21 378 | 83.93 363 | 60.22 379 | 15.31 372 | 71.11 373 | 79.37 370 | 70.09 360 | 44.86 374 | 64.76 370 | 82.93 370 | 30.25 370 |
|
test_method | | | 66.88 338 | 66.13 341 | 69.11 354 | 62.68 377 | 25.73 379 | 49.76 368 | 96.04 297 | 14.32 373 | 64.27 374 | 91.69 355 | 73.45 349 | 88.05 371 | 76.06 364 | 66.94 371 | 93.54 357 |
|
test123 | | | 12.59 341 | 15.49 344 | 3.87 356 | 6.07 379 | 2.55 380 | 90.75 341 | 2.59 381 | 2.52 374 | 5.20 376 | 13.02 373 | 4.96 379 | 1.85 376 | 5.20 373 | 9.09 373 | 7.23 371 |
|
testmvs | | | 12.33 342 | 15.23 345 | 3.64 357 | 5.77 380 | 2.23 381 | 88.99 356 | 3.62 380 | 2.30 375 | 5.29 375 | 13.09 372 | 4.52 380 | 1.95 375 | 5.16 374 | 8.32 374 | 6.75 372 |
|
test_blank | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uanet_test | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
cdsmvs_eth3d_5k | | | 24.22 340 | 32.30 343 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 98.10 219 | 0.00 376 | 0.00 377 | 95.06 310 | 97.54 29 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
pcd_1.5k_mvsjas | | | 7.98 343 | 10.65 346 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 95.82 108 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
sosnet-low-res | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
sosnet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uncertanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
Regformer | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
ab-mvs-re | | | 7.91 344 | 10.55 347 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 94.94 312 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
uanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 382 | 0.00 369 | 0.00 382 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 381 | 0.00 377 | 0.00 375 | 0.00 375 | 0.00 373 |
|
MSC_two_6792asdad | | | | | 98.22 74 | 97.75 242 | 95.34 108 | | 98.16 212 | | | | | 99.75 65 | 95.87 100 | 99.51 110 | 99.57 32 |
|
No_MVS | | | | | 98.22 74 | 97.75 242 | 95.34 108 | | 98.16 212 | | | | | 99.75 65 | 95.87 100 | 99.51 110 | 99.57 32 |
|
eth-test2 | | | | | | 0.00 381 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 381 | | | | | | | | | | | |
|
OPU-MVS | | | | | 97.64 119 | 98.01 201 | 95.27 111 | 96.79 121 | | | | 97.35 204 | 96.97 56 | 98.51 335 | 91.21 252 | 99.25 186 | 99.14 143 |
|
test_0728_SECOND | | | | | 98.25 72 | 99.23 55 | 95.49 99 | 96.74 124 | 98.89 79 | | | | | 99.75 65 | 95.48 120 | 99.52 105 | 99.53 41 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 274 |
|
test_part2 | | | | | | 99.03 94 | 96.07 73 | | | | 98.08 116 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 324 | | | | 98.06 274 |
|
sam_mvs | | | | | | | | | | | | | 77.38 328 | | | | |
|
ambc | | | | | 96.56 195 | 98.23 177 | 91.68 222 | 97.88 60 | 98.13 217 | | 98.42 72 | 98.56 71 | 94.22 167 | 99.04 284 | 94.05 196 | 99.35 163 | 98.95 177 |
|
MTGPA |  | | | | | | | | 98.73 129 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 230 | | | | 10.37 375 | 76.21 336 | 99.04 284 | 89.47 292 | | |
|
test_post | | | | | | | | | | | | 10.87 374 | 76.83 332 | 99.07 281 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 237 | 77.36 329 | 99.42 207 | | | |
|
GG-mvs-BLEND | | | | | 90.60 339 | 91.00 371 | 84.21 335 | 98.23 38 | 72.63 377 | | 82.76 369 | 84.11 369 | 56.14 375 | 96.79 363 | 72.20 367 | 92.09 358 | 90.78 366 |
|
MTMP | | | | | | | | 96.55 132 | 74.60 374 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 248 | 98.89 233 | 99.00 171 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 281 | 98.90 230 | 99.10 159 |
|
agg_prior | | | | | | 97.80 228 | 94.96 124 | | 98.36 185 | | 93.49 314 | | | 99.53 178 | | | |
|
test_prior4 | | | | | | | 95.38 103 | 93.61 286 | | | | | | | | | |
|
test_prior | | | | | 97.46 139 | 97.79 234 | 94.26 152 | | 98.42 176 | | | | | 99.34 236 | | | 98.79 205 |
|
新几何2 | | | | | | | | 93.43 289 | | | | | | | | | |
|
旧先验1 | | | | | | 97.80 228 | 93.87 164 | | 97.75 243 | | | 97.04 225 | 93.57 182 | | | 98.68 252 | 98.72 215 |
|
原ACMM2 | | | | | | | | 92.82 303 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.46 197 | 87.84 312 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 130 | | | | |
|
test12 | | | | | 97.46 139 | 97.61 256 | 94.07 157 | | 97.78 242 | | 93.57 312 | | 93.31 186 | 99.42 207 | | 98.78 244 | 98.89 192 |
|
plane_prior7 | | | | | | 98.70 124 | 94.67 136 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 161 | 94.37 146 | | | | | | 91.91 225 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 125 | | | | | 99.46 197 | 92.59 227 | 99.20 191 | 99.28 115 |
|
plane_prior4 | | | | | | | | | | | | 96.77 243 | | | | | |
|
plane_prior1 | | | | | | 98.49 151 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 382 | | | | | | | | |
|
nn | | | | | | | | | 0.00 382 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 209 | | | | | | | | |
|
lessismore_v0 | | | | | 97.05 165 | 99.36 41 | 92.12 211 | | 84.07 369 | | 98.77 47 | 98.98 43 | 85.36 289 | 99.74 75 | 97.34 44 | 99.37 155 | 99.30 107 |
|
test11 | | | | | | | | | 98.08 222 | | | | | | | | |
|
door | | | | | | | | | 97.81 241 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 201 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 276 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 326 | | | 99.23 260 | | | 99.06 164 |
|
HQP3-MVS | | | | | | | | | 98.43 173 | | | | | | | 98.74 248 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 242 | | | | |
|
NP-MVS | | | | | | 98.14 190 | 93.72 172 | | | | | 95.08 308 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 105 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 94 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 159 | | | | |
|