This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6499.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
Anonymous2023121198.55 1798.76 1397.94 9698.79 11194.37 14698.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8698.12 1699.86 2599.73 15
DTE-MVSNet98.79 898.86 898.59 4799.55 1896.12 7198.48 2599.10 3199.36 499.29 2399.06 3997.27 3899.93 297.71 3299.91 1799.70 18
PEN-MVS98.75 1098.85 1098.44 5599.58 1595.67 8898.45 2699.15 2499.33 599.30 2199.00 4197.27 3899.92 497.64 3499.92 1499.75 13
ANet_high98.31 2898.94 696.41 20499.33 4489.64 25097.92 5899.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
VDDNet96.98 12096.84 12697.41 14599.40 3793.26 18597.94 5595.31 31499.26 798.39 7599.18 2787.85 27599.62 15195.13 14899.09 21099.35 98
PS-CasMVS98.73 1198.85 1098.39 5999.55 1895.47 10098.49 2399.13 2799.22 899.22 2798.96 4597.35 3499.92 497.79 2899.93 1099.79 7
LFMVS95.32 20194.88 20996.62 18998.03 19891.47 22597.65 7390.72 35499.11 997.89 13798.31 8979.20 31899.48 19193.91 20299.12 20698.93 183
gg-mvs-nofinetune88.28 32986.96 33492.23 33092.84 36784.44 33298.19 4474.60 37499.08 1087.01 36699.47 856.93 37298.23 34978.91 35895.61 34194.01 356
UA-Net98.88 798.76 1399.22 299.11 8397.89 1499.47 399.32 1099.08 1097.87 14199.67 296.47 8899.92 497.88 2399.98 299.85 3
v7n98.73 1198.99 597.95 9599.64 1194.20 15498.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
CP-MVSNet98.42 2398.46 2498.30 6799.46 2995.22 11698.27 3798.84 9999.05 1399.01 3598.65 6695.37 12999.90 1397.57 3699.91 1799.77 8
WR-MVS_H98.65 1598.62 2198.75 3399.51 2396.61 5698.55 1999.17 1999.05 1399.17 2998.79 5495.47 12699.89 1697.95 2199.91 1799.75 13
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4599.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 18298.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.07 499.24 498.56 4999.81 296.38 6298.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12597.75 3099.89 2299.62 25
DP-MVS97.87 6397.89 4897.81 10598.62 13494.82 12897.13 10698.79 11698.98 1798.74 4898.49 7695.80 11499.49 18895.04 15299.44 13299.11 155
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
K. test v396.44 15696.28 15796.95 16999.41 3691.53 22397.65 7390.31 35798.89 1998.93 3899.36 1484.57 29599.92 497.81 2699.56 8899.39 86
TDRefinement98.90 598.86 899.02 999.54 2098.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 16097.21 4899.76 4299.40 84
test_part196.77 13696.53 14697.47 13698.04 19792.92 19497.93 5698.85 9498.83 2199.30 2199.07 3879.25 31799.79 3997.59 3599.93 1099.69 20
Anonymous2024052997.96 4698.04 3997.71 11298.69 12694.28 15197.86 6198.31 19398.79 2299.23 2698.86 5295.76 11599.61 15895.49 11799.36 15899.23 127
Gipumacopyleft98.07 4098.31 2997.36 14999.76 596.28 6798.51 2299.10 3198.76 2396.79 20199.34 1796.61 7898.82 30596.38 7499.50 11496.98 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8795.87 7996.73 12899.05 4398.67 2498.84 4298.45 7997.58 2899.88 1896.45 7299.86 2599.54 38
test_040297.84 6697.97 4197.47 13699.19 6894.07 15796.71 12998.73 12998.66 2598.56 5998.41 8196.84 6999.69 11794.82 16099.81 3398.64 221
VDD-MVS97.37 10197.25 10197.74 11098.69 12694.50 14297.04 11195.61 30898.59 2698.51 6298.72 5992.54 20799.58 16296.02 8999.49 11899.12 151
LS3D97.77 7397.50 8798.57 4896.24 31297.58 2598.45 2698.85 9498.58 2797.51 15497.94 14495.74 11699.63 14395.19 13998.97 22198.51 232
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5198.76 1198.89 7998.49 2899.38 1799.14 3395.44 12899.84 2596.47 7199.80 3699.47 62
FC-MVSNet-test98.16 3398.37 2797.56 12399.49 2793.10 19098.35 2999.21 1498.43 2998.89 3998.83 5394.30 16499.81 3297.87 2499.91 1799.77 8
VPA-MVSNet98.27 2998.46 2497.70 11499.06 8893.80 16897.76 6799.00 6098.40 3099.07 3398.98 4396.89 6499.75 6597.19 5199.79 3899.55 37
IS-MVSNet96.93 12296.68 13597.70 11499.25 5294.00 16098.57 1796.74 28898.36 3198.14 10897.98 13888.23 26899.71 10093.10 22199.72 5199.38 88
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6597.35 3697.96 5499.16 2098.34 3298.78 4598.52 7497.32 3599.45 20194.08 19299.67 6199.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
nrg03098.54 1898.62 2198.32 6499.22 5895.66 8997.90 5999.08 3798.31 3399.02 3498.74 5897.68 2499.61 15897.77 2999.85 2899.70 18
SixPastTwentyTwo97.49 9297.57 8197.26 15599.56 1692.33 20398.28 3596.97 27998.30 3499.45 1499.35 1688.43 26699.89 1698.01 2099.76 4299.54 38
tfpnnormal97.72 7697.97 4196.94 17099.26 4992.23 20697.83 6398.45 17098.25 3599.13 3098.66 6496.65 7599.69 11793.92 20199.62 6998.91 188
TransMVSNet (Re)98.38 2598.67 1797.51 12899.51 2393.39 18398.20 4398.87 8798.23 3699.48 1299.27 1998.47 899.55 17396.52 6899.53 10099.60 26
ACMH+93.58 1098.23 3298.31 2997.98 9499.39 3895.22 11697.55 8099.20 1698.21 3799.25 2598.51 7598.21 1199.40 21894.79 16299.72 5199.32 101
Baseline_NR-MVSNet97.72 7697.79 5597.50 13199.56 1693.29 18495.44 19398.86 9098.20 3898.37 7699.24 2094.69 14999.55 17395.98 9399.79 3899.65 23
3Dnovator+96.13 397.73 7597.59 7998.15 8198.11 19595.60 9198.04 5198.70 13998.13 3996.93 19698.45 7995.30 13399.62 15195.64 11198.96 22299.24 126
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6098.72 11995.78 8195.66 18399.02 5298.11 4098.31 8997.69 17394.65 15399.85 2297.02 5799.71 5499.48 59
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6399.17 699.05 4398.05 4199.61 1199.52 593.72 17999.88 1898.72 999.88 2399.65 23
FIs97.93 5598.07 3697.48 13599.38 3992.95 19398.03 5399.11 2998.04 4298.62 5298.66 6493.75 17899.78 4397.23 4599.84 2999.73 15
Regformer-497.53 9097.47 9097.71 11297.35 27493.91 16295.26 21098.14 21597.97 4398.34 8297.89 14995.49 12399.71 10097.41 4199.42 14399.51 44
PMVScopyleft89.60 1796.71 14296.97 11995.95 22499.51 2397.81 1797.42 9197.49 26097.93 4495.95 24298.58 6896.88 6696.91 36189.59 29099.36 15893.12 361
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EPP-MVSNet96.84 12896.58 14097.65 11899.18 6993.78 17098.68 1296.34 29297.91 4597.30 16898.06 12988.46 26599.85 2293.85 20399.40 15099.32 101
NR-MVSNet97.96 4697.86 5098.26 6998.73 11795.54 9398.14 4698.73 12997.79 4699.42 1597.83 15694.40 16299.78 4395.91 9799.76 4299.46 64
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10898.05 997.55 8098.86 9097.77 4798.20 9998.07 12496.60 8099.76 5895.49 11799.20 19199.26 120
RE-MVS-def97.88 4998.81 10898.05 997.55 8098.86 9097.77 4798.20 9998.07 12496.94 5895.49 11799.20 19199.26 120
VPNet97.26 10897.49 8896.59 19199.47 2890.58 23896.27 14598.53 16397.77 4798.46 6998.41 8194.59 15599.68 12594.61 16899.29 18199.52 42
abl_698.42 2398.19 3299.09 399.16 7098.10 697.73 7199.11 2997.76 5098.62 5298.27 10297.88 1999.80 3895.67 10799.50 11499.38 88
EI-MVSNet-UG-set97.32 10597.40 9197.09 16397.34 27892.01 21595.33 20497.65 25297.74 5198.30 9198.14 11595.04 13999.69 11797.55 3799.52 10599.58 28
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16197.36 27392.08 21395.34 20397.65 25297.74 5198.29 9298.11 12095.05 13799.68 12597.50 3999.50 11499.56 35
Regformer-297.41 9897.24 10397.93 9797.21 28694.72 13194.85 23698.27 19497.74 5198.11 11097.50 18795.58 12199.69 11796.57 6799.31 17799.37 95
Anonymous20240521196.34 15995.98 17297.43 14398.25 17493.85 16696.74 12494.41 32197.72 5498.37 7698.03 13287.15 27999.53 17894.06 19399.07 21398.92 187
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 11197.31 3797.55 8098.92 7697.72 5498.25 9498.13 11697.10 4599.75 6595.44 12499.24 18999.32 101
VNet96.84 12896.83 12796.88 17498.06 19692.02 21496.35 14297.57 25997.70 5697.88 13897.80 16192.40 21199.54 17694.73 16798.96 22299.08 160
zzz-MVS98.01 4497.66 6799.06 499.44 3197.90 1295.66 18398.73 12997.69 5797.90 13597.96 13995.81 11299.82 2996.13 8199.61 7599.45 69
MTAPA98.14 3497.84 5199.06 499.44 3197.90 1297.25 9798.73 12997.69 5797.90 13597.96 13995.81 11299.82 2996.13 8199.61 7599.45 69
Regformer-397.25 10997.29 9897.11 16197.35 27492.32 20495.26 21097.62 25797.67 5998.17 10397.89 14995.05 13799.56 16997.16 5299.42 14399.46 64
Regformer-197.27 10797.16 10897.61 12197.21 28693.86 16594.85 23698.04 22997.62 6098.03 12297.50 18795.34 13099.63 14396.52 6899.31 17799.35 98
test117298.08 3997.76 5999.05 698.78 11398.07 797.41 9298.85 9497.57 6198.15 10697.96 13996.60 8099.76 5895.30 13399.18 19699.33 100
pm-mvs198.47 2198.67 1797.86 10299.52 2294.58 13898.28 3599.00 6097.57 6199.27 2499.22 2298.32 999.50 18797.09 5499.75 4699.50 45
DU-MVS97.79 7197.60 7898.36 6198.73 11795.78 8195.65 18698.87 8797.57 6198.31 8997.83 15694.69 14999.85 2297.02 5799.71 5499.46 64
DROMVSNet97.90 6097.94 4497.79 10698.66 12895.14 11998.31 3299.66 297.57 6195.95 24297.01 22896.99 5599.82 2997.66 3399.64 6698.39 240
PatchT93.75 26293.57 25894.29 29195.05 34287.32 29696.05 15892.98 33397.54 6594.25 28798.72 5975.79 33899.24 25895.92 9695.81 33696.32 336
UniMVSNet (Re)97.83 6797.65 6998.35 6398.80 11095.86 8095.92 17099.04 4997.51 6698.22 9897.81 16094.68 15199.78 4397.14 5399.75 4699.41 83
alignmvs96.01 17395.52 18897.50 13197.77 23994.71 13296.07 15796.84 28297.48 6796.78 20594.28 32785.50 28899.40 21896.22 7898.73 25198.40 238
RPMNet94.68 23194.60 22594.90 26695.44 33688.15 27796.18 15298.86 9097.43 6894.10 29198.49 7679.40 31699.76 5895.69 10695.81 33696.81 325
canonicalmvs97.23 11197.21 10697.30 15297.65 25394.39 14497.84 6299.05 4397.42 6996.68 20893.85 33097.63 2699.33 23996.29 7798.47 26798.18 265
XVS97.96 4697.63 7498.94 1899.15 7397.66 2097.77 6598.83 10697.42 6996.32 22597.64 17596.49 8699.72 8695.66 10999.37 15599.45 69
X-MVStestdata92.86 28090.83 30598.94 1899.15 7397.66 2097.77 6598.83 10697.42 6996.32 22536.50 37196.49 8699.72 8695.66 10999.37 15599.45 69
FMVSNet197.95 5098.08 3597.56 12399.14 8193.67 17398.23 3898.66 14997.41 7299.00 3699.19 2495.47 12699.73 8195.83 10299.76 4299.30 107
ACMH93.61 998.44 2298.76 1397.51 12899.43 3393.54 17998.23 3899.05 4397.40 7399.37 1899.08 3798.79 599.47 19497.74 3199.71 5499.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS96.90 12596.81 12897.16 15898.56 14292.20 20994.33 25298.12 21897.34 7498.20 9997.33 20692.81 19699.75 6594.79 16299.81 3399.54 38
SR-MVS98.00 4597.66 6799.01 1198.77 11597.93 1197.38 9398.83 10697.32 7598.06 11897.85 15496.65 7599.77 5395.00 15599.11 20799.32 101
Vis-MVSNetpermissive98.27 2998.34 2898.07 8699.33 4495.21 11898.04 5199.46 797.32 7597.82 14699.11 3496.75 7299.86 2097.84 2599.36 15899.15 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 8498.06 3896.23 21198.71 12289.44 25497.43 9098.82 11497.29 7798.74 4899.10 3593.86 17499.68 12598.61 1099.94 899.56 35
casdiffmvs97.50 9197.81 5496.56 19598.51 14791.04 22995.83 17599.09 3697.23 7898.33 8698.30 9397.03 5299.37 22996.58 6699.38 15499.28 115
test_one_060199.05 9295.50 9898.87 8797.21 7998.03 12298.30 9396.93 60
Anonymous2024052197.07 11497.51 8595.76 23299.35 4288.18 27697.78 6498.40 18097.11 8098.34 8299.04 4089.58 25399.79 3998.09 1899.93 1099.30 107
KD-MVS_self_test97.86 6598.07 3697.25 15699.22 5892.81 19697.55 8098.94 7497.10 8198.85 4198.88 5095.03 14099.67 13097.39 4399.65 6499.26 120
IterMVS-SCA-FT95.86 18096.19 16194.85 26997.68 24985.53 31692.42 31397.63 25696.99 8298.36 7998.54 7387.94 27099.75 6597.07 5699.08 21199.27 119
EI-MVSNet96.63 14796.93 12295.74 23397.26 28388.13 27995.29 20897.65 25296.99 8297.94 13298.19 11192.55 20599.58 16296.91 6099.56 8899.50 45
IterMVS-LS96.92 12397.29 9895.79 23198.51 14788.13 27995.10 21898.66 14996.99 8298.46 6998.68 6392.55 20599.74 7596.91 6099.79 3899.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss98.53 1998.63 1998.21 7799.68 994.82 12898.10 4899.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
thres100view90091.76 29991.26 29893.26 30798.21 17884.50 33196.39 13890.39 35596.87 8696.33 22493.08 33773.44 35099.42 20778.85 35997.74 29295.85 341
3Dnovator96.53 297.61 8397.64 7297.50 13197.74 24593.65 17798.49 2398.88 8596.86 8797.11 17998.55 7295.82 10899.73 8195.94 9599.42 14399.13 146
test20.0396.58 15096.61 13796.48 19998.49 15191.72 22195.68 18297.69 24796.81 8898.27 9397.92 14794.18 16898.71 31690.78 26399.66 6399.00 171
thres600view792.03 29591.43 29393.82 29698.19 18084.61 33096.27 14590.39 35596.81 8896.37 22393.11 33373.44 35099.49 18880.32 35597.95 28497.36 305
LCM-MVSNet-Re97.33 10497.33 9697.32 15198.13 19393.79 16996.99 11499.65 396.74 9099.47 1398.93 4796.91 6399.84 2590.11 28299.06 21698.32 249
EPNet93.72 26392.62 28097.03 16787.61 37692.25 20596.27 14591.28 34896.74 9087.65 36397.39 19985.00 29199.64 14192.14 23199.48 12299.20 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DVP-MVS++97.96 4697.90 4598.12 8397.75 24295.40 10199.03 798.89 7996.62 9298.62 5298.30 9396.97 5699.75 6595.70 10499.25 18699.21 129
test_0728_THIRD96.62 9298.40 7398.28 9897.10 4599.71 10095.70 10499.62 6999.58 28
v1097.55 8797.97 4196.31 20898.60 13789.64 25097.44 8899.02 5296.60 9498.72 5099.16 3093.48 18399.72 8698.76 699.92 1499.58 28
Patchmtry95.03 21494.59 22796.33 20694.83 34490.82 23396.38 14097.20 26896.59 9597.49 15798.57 6977.67 32599.38 22692.95 22499.62 6998.80 204
h-mvs3396.29 16095.63 18498.26 6998.50 15096.11 7296.90 11697.09 27496.58 9697.21 17298.19 11184.14 29699.78 4395.89 9896.17 33498.89 192
hse-mvs295.77 18295.09 19897.79 10697.84 22095.51 9595.66 18395.43 31396.58 9697.21 17296.16 27684.14 29699.54 17695.89 9896.92 31798.32 249
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3397.21 4297.15 10398.90 7896.58 9698.08 11697.87 15397.02 5399.76 5895.25 13699.59 8099.40 84
Skip Steuart: Steuart Systems R&D Blog.
baseline97.44 9697.78 5896.43 20198.52 14690.75 23696.84 11899.03 5096.51 9997.86 14298.02 13396.67 7499.36 23197.09 5499.47 12499.19 133
MVSFormer96.14 16796.36 15495.49 24497.68 24987.81 28698.67 1399.02 5296.50 10094.48 28396.15 27786.90 28099.92 498.73 799.13 20398.74 212
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6698.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 22999.12 8289.17 25897.54 8594.92 31696.50 10096.58 21297.27 21083.64 30099.48 19188.42 30799.67 6198.97 175
UGNet96.81 13396.56 14297.58 12296.64 30293.84 16797.75 6897.12 27396.47 10393.62 30998.88 5093.22 18899.53 17895.61 11399.69 5899.36 96
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
JIA-IIPM91.79 29890.69 30795.11 25793.80 35790.98 23094.16 26291.78 34496.38 10490.30 35199.30 1872.02 35498.90 29888.28 30990.17 36195.45 349
test111194.53 23994.81 21493.72 29899.06 8881.94 34798.31 3283.87 37096.37 10598.49 6599.17 2981.49 30699.73 8196.64 6299.86 2599.49 53
HQP_MVS96.66 14696.33 15697.68 11798.70 12494.29 14896.50 13498.75 12596.36 10696.16 23596.77 24391.91 22599.46 19792.59 22799.20 19199.28 115
plane_prior296.50 13496.36 106
CSCG97.40 9997.30 9797.69 11698.95 9894.83 12797.28 9698.99 6396.35 10898.13 10995.95 28995.99 10199.66 13694.36 18399.73 4898.59 227
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4697.77 1897.49 8698.73 12996.27 10995.59 25797.75 16596.30 9699.78 4393.70 20999.48 12299.45 69
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
tfpn200view991.55 30191.00 30093.21 31098.02 19984.35 33395.70 17990.79 35296.26 11095.90 24792.13 35073.62 34799.42 20778.85 35997.74 29295.85 341
thres40091.68 30091.00 30093.71 29998.02 19984.35 33395.70 17990.79 35296.26 11095.90 24792.13 35073.62 34799.42 20778.85 35997.74 29297.36 305
mvs_tets98.90 598.94 698.75 3399.69 896.48 6098.54 2099.22 1396.23 11299.71 499.48 798.77 699.93 298.89 399.95 599.84 5
test250689.86 31889.16 32391.97 33198.95 9876.83 36498.54 2061.07 37896.20 11397.07 18599.16 3055.19 37799.69 11796.43 7399.83 3199.38 88
ECVR-MVScopyleft94.37 24594.48 23294.05 29598.95 9883.10 33998.31 3282.48 37196.20 11398.23 9799.16 3081.18 30999.66 13695.95 9499.83 3199.38 88
RPSCF97.87 6397.51 8598.95 1799.15 7398.43 397.56 7999.06 4196.19 11598.48 6698.70 6194.72 14899.24 25894.37 18099.33 17399.17 136
test_yl94.40 24294.00 24995.59 23796.95 29589.52 25294.75 24195.55 31096.18 11696.79 20196.14 27981.09 31099.18 26490.75 26497.77 28998.07 270
DCV-MVSNet94.40 24294.00 24995.59 23796.95 29589.52 25294.75 24195.55 31096.18 11696.79 20196.14 27981.09 31099.18 26490.75 26497.77 28998.07 270
SED-MVS97.94 5297.90 4598.07 8699.22 5895.35 10696.79 12198.83 10696.11 11899.08 3198.24 10497.87 2099.72 8695.44 12499.51 11099.14 143
test_241102_TWO98.83 10696.11 11898.62 5298.24 10496.92 6299.72 8695.44 12499.49 11899.49 53
CP-MVS97.92 5697.56 8298.99 1398.99 9697.82 1697.93 5698.96 7196.11 11896.89 19997.45 19196.85 6899.78 4395.19 13999.63 6899.38 88
HFP-MVS97.94 5297.64 7298.83 2699.15 7397.50 2997.59 7798.84 9996.05 12197.49 15797.54 18297.07 4899.70 10995.61 11399.46 12799.30 107
ACMMPR97.95 5097.62 7698.94 1899.20 6697.56 2697.59 7798.83 10696.05 12197.46 16397.63 17696.77 7199.76 5895.61 11399.46 12799.49 53
test_241102_ONE99.22 5895.35 10698.83 10696.04 12399.08 3198.13 11697.87 2099.33 239
mPP-MVS97.91 5997.53 8399.04 799.22 5897.87 1597.74 6998.78 12096.04 12397.10 18097.73 16896.53 8399.78 4395.16 14399.50 11499.46 64
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14797.18 28894.39 14495.46 19298.73 12996.03 12594.72 27494.92 31496.28 9899.69 11793.81 20497.98 28398.09 267
region2R97.92 5697.59 7998.92 2299.22 5897.55 2797.60 7698.84 9996.00 12697.22 17097.62 17796.87 6799.76 5895.48 12099.43 14099.46 64
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23398.48 15388.76 26892.84 30297.25 26696.00 12697.59 15097.95 14391.38 23099.46 19793.16 22096.35 33198.99 174
GST-MVS97.82 6997.49 8898.81 2999.23 5597.25 3997.16 10298.79 11695.96 12897.53 15297.40 19596.93 6099.77 5395.04 15299.35 16399.42 81
APDe-MVS98.14 3498.03 4098.47 5498.72 11996.04 7498.07 5099.10 3195.96 12898.59 5798.69 6296.94 5899.81 3296.64 6299.58 8299.57 32
SD-MVS97.37 10197.70 6296.35 20598.14 19095.13 12096.54 13398.92 7695.94 13099.19 2898.08 12297.74 2295.06 36795.24 13799.54 9798.87 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft97.78 7297.65 6998.16 7899.24 5395.51 9596.74 12498.23 19995.92 13198.40 7398.28 9897.06 5099.71 10095.48 12099.52 10599.26 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 5395.51 9596.89 11798.89 7995.92 13198.64 5198.31 8997.06 50
v14896.58 15096.97 11995.42 24798.63 13387.57 29095.09 22097.90 23395.91 13398.24 9697.96 13993.42 18499.39 22396.04 8799.52 10599.29 114
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2097.48 3198.35 2999.03 5095.88 13497.88 13898.22 10998.15 1299.74 7596.50 7099.62 6999.42 81
ETV-MVS96.13 16895.90 17696.82 17897.76 24093.89 16395.40 19898.95 7395.87 13595.58 25891.00 36196.36 9599.72 8693.36 21398.83 24096.85 321
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 29998.69 296.42 13798.09 22095.86 13695.15 26595.54 30094.26 16599.81 3294.06 19398.51 26698.47 235
mvs-test196.20 16495.50 18998.32 6496.90 29998.16 595.07 22398.09 22095.86 13693.63 30894.32 32694.26 16599.71 10094.06 19397.27 31597.07 311
DPE-MVScopyleft97.64 8097.35 9598.50 5198.85 10696.18 6895.21 21598.99 6395.84 13898.78 4598.08 12296.84 6999.81 3293.98 19999.57 8599.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6098.45 2699.12 2895.83 13999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
tttt051793.31 27492.56 28195.57 23998.71 12287.86 28397.44 8887.17 36595.79 14097.47 16296.84 23764.12 36699.81 3296.20 7999.32 17599.02 170
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4697.24 4097.45 8798.84 9995.76 14196.93 19697.43 19397.26 4099.79 3996.06 8499.53 10099.45 69
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20098.48 15391.52 22495.31 20698.45 17095.76 14197.48 16097.54 18289.53 25698.69 31894.43 17694.61 34999.13 146
GeoE97.75 7497.70 6297.89 9998.88 10594.53 13997.10 10798.98 6695.75 14397.62 14997.59 17997.61 2799.77 5396.34 7699.44 13299.36 96
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5597.60 2398.09 4998.96 7195.75 14397.91 13498.06 12996.89 6499.76 5895.32 13299.57 8599.43 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS97.45 9596.92 12399.03 899.26 4997.70 1997.66 7298.89 7995.65 14598.51 6296.46 26192.15 21499.81 3295.14 14698.58 26399.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ITE_SJBPF97.85 10398.64 12996.66 5498.51 16695.63 14697.22 17097.30 20995.52 12298.55 33290.97 25698.90 23098.34 248
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3898.65 1699.19 1895.62 14799.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
CS-MVS-test96.62 14896.59 13896.69 18697.88 21593.16 18897.21 10199.53 695.61 14893.72 30495.33 30495.49 12399.69 11795.37 13199.19 19597.22 308
API-MVS95.09 21195.01 20395.31 25096.61 30394.02 15996.83 11997.18 27095.60 14995.79 24994.33 32594.54 15898.37 34485.70 33198.52 26493.52 358
GBi-Net96.99 11796.80 12997.56 12397.96 20793.67 17398.23 3898.66 14995.59 15097.99 12599.19 2489.51 25799.73 8194.60 16999.44 13299.30 107
test196.99 11796.80 12997.56 12397.96 20793.67 17398.23 3898.66 14995.59 15097.99 12599.19 2489.51 25799.73 8194.60 16999.44 13299.30 107
FMVSNet296.72 14096.67 13696.87 17597.96 20791.88 21797.15 10398.06 22795.59 15098.50 6498.62 6789.51 25799.65 13894.99 15699.60 7899.07 162
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 12997.59 2495.97 16598.20 20395.51 15395.06 26696.53 25794.10 16999.70 10994.29 18499.15 19899.13 146
IterMVS95.42 19795.83 17794.20 29297.52 26283.78 33792.41 31497.47 26395.49 15498.06 11898.49 7687.94 27099.58 16296.02 8999.02 21899.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+96.19 16596.01 16996.71 18497.43 27092.19 21096.12 15599.10 3195.45 15593.33 32194.71 31797.23 4399.56 16993.21 21997.54 30498.37 242
PGM-MVS97.88 6297.52 8498.96 1699.20 6697.62 2297.09 10899.06 4195.45 15597.55 15197.94 14497.11 4499.78 4394.77 16599.46 12799.48 59
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3597.46 3298.57 1799.05 4395.43 15797.41 16697.50 18797.98 1599.79 3995.58 11699.57 8599.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC96.52 15295.99 17198.10 8497.81 22495.68 8795.00 22998.20 20395.39 15895.40 26196.36 26893.81 17699.45 20193.55 21298.42 26899.17 136
wuyk23d93.25 27695.20 19387.40 35196.07 32295.38 10397.04 11194.97 31595.33 15999.70 598.11 12098.14 1391.94 36977.76 36299.68 6074.89 369
SF-MVS97.60 8497.39 9298.22 7498.93 10195.69 8597.05 11099.10 3195.32 16097.83 14497.88 15196.44 9099.72 8694.59 17299.39 15299.25 124
MSDG95.33 20095.13 19695.94 22697.40 27291.85 21891.02 33998.37 18495.30 16196.31 22795.99 28494.51 15998.38 34289.59 29097.65 30197.60 299
plane_prior394.51 14095.29 16296.16 235
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7397.55 2796.68 13098.83 10695.21 16398.36 7998.13 11698.13 1499.62 15196.04 8799.54 9799.39 86
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6799.01 9597.41 3594.66 24399.02 5295.20 16498.15 10697.52 18598.83 498.43 33894.87 15896.41 33099.07 162
XVG-OURS97.12 11396.74 13298.26 6998.99 9697.45 3393.82 27899.05 4395.19 16598.32 8797.70 17195.22 13598.41 33994.27 18598.13 27898.93 183
v2v48296.78 13597.06 11595.95 22498.57 14188.77 26795.36 20198.26 19695.18 16697.85 14398.23 10692.58 20499.63 14397.80 2799.69 5899.45 69
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7397.02 4397.09 10899.02 5295.15 16798.34 8298.23 10697.91 1799.70 10994.41 17799.73 4899.50 45
LGP-MVS_train98.74 3599.15 7397.02 4399.02 5295.15 16798.34 8298.23 10697.91 1799.70 10994.41 17799.73 4899.50 45
thres20091.00 30790.42 31192.77 32097.47 26883.98 33694.01 27091.18 35095.12 16995.44 25991.21 35973.93 34399.31 24377.76 36297.63 30295.01 351
testgi96.07 16996.50 15094.80 27299.26 4987.69 28995.96 16698.58 16095.08 17098.02 12496.25 27297.92 1697.60 35888.68 30498.74 24899.11 155
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4296.84 4896.36 14198.79 11695.07 17197.88 13898.35 8597.24 4299.72 8696.05 8699.58 8299.45 69
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5299.16 7096.90 4796.39 13898.98 6695.05 17298.06 11898.02 13395.86 10499.56 16994.37 18099.64 6699.00 171
MVS_030495.50 19095.05 20296.84 17796.28 31193.12 18997.00 11396.16 29495.03 17389.22 35797.70 17190.16 24899.48 19194.51 17499.34 16697.93 284
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 9998.48 15394.71 13294.53 24899.07 4095.02 17497.83 14497.88 15196.44 9099.72 8694.59 17299.39 15299.25 124
save fliter98.48 15394.71 13294.53 24898.41 17895.02 174
CANet95.86 18095.65 18396.49 19896.41 30890.82 23394.36 25198.41 17894.94 17692.62 33596.73 24692.68 20099.71 10095.12 14999.60 7898.94 179
MVS_Test96.27 16196.79 13194.73 27596.94 29786.63 30596.18 15298.33 19094.94 17696.07 23898.28 9895.25 13499.26 25597.21 4897.90 28798.30 253
XXY-MVS97.54 8897.70 6297.07 16499.46 2992.21 20797.22 10099.00 6094.93 17898.58 5898.92 4897.31 3699.41 21694.44 17599.43 14099.59 27
bset_n11_16_dypcd94.53 23993.95 25296.25 21097.56 25989.85 24788.52 35891.32 34794.90 17997.51 15496.38 26782.34 30499.78 4397.22 4699.80 3699.12 151
new-patchmatchnet95.67 18596.58 14092.94 31897.48 26480.21 35392.96 30198.19 20894.83 18098.82 4398.79 5493.31 18699.51 18695.83 10299.04 21799.12 151
E-PMN89.52 32189.78 31588.73 34693.14 36377.61 36083.26 36592.02 34194.82 18193.71 30593.11 33375.31 33996.81 36285.81 33096.81 32291.77 364
MVS_111021_HR96.73 13996.54 14597.27 15398.35 16493.66 17693.42 29098.36 18594.74 18296.58 21296.76 24596.54 8298.99 29094.87 15899.27 18499.15 140
MSLP-MVS++96.42 15896.71 13395.57 23997.82 22390.56 24095.71 17898.84 9994.72 18396.71 20797.39 19994.91 14598.10 35395.28 13499.02 21898.05 277
baseline193.14 27892.64 27994.62 27897.34 27887.20 29896.67 13193.02 33294.71 18496.51 21795.83 29281.64 30598.60 32890.00 28588.06 36498.07 270
EIA-MVS96.04 17195.77 18096.85 17697.80 22892.98 19296.12 15599.16 2094.65 18593.77 30291.69 35595.68 11799.67 13094.18 18898.85 23897.91 285
EMVS89.06 32389.22 31888.61 34793.00 36577.34 36282.91 36690.92 35194.64 18692.63 33491.81 35376.30 33597.02 36083.83 34796.90 31991.48 365
V4297.04 11597.16 10896.68 18898.59 13991.05 22896.33 14398.36 18594.60 18797.99 12598.30 9393.32 18599.62 15197.40 4299.53 10099.38 88
CNVR-MVS96.92 12396.55 14398.03 9298.00 20595.54 9394.87 23498.17 20994.60 18796.38 22297.05 22495.67 11899.36 23195.12 14999.08 21199.19 133
MVS_111021_LR96.82 13296.55 14397.62 12098.27 17195.34 10893.81 28098.33 19094.59 18996.56 21496.63 25296.61 7898.73 31494.80 16199.34 16698.78 207
OPM-MVS97.54 8897.25 10198.41 5799.11 8396.61 5695.24 21398.46 16994.58 19098.10 11398.07 12497.09 4799.39 22395.16 14399.44 13299.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EG-PatchMatch MVS97.69 7897.79 5597.40 14699.06 8893.52 18095.96 16698.97 7094.55 19198.82 4398.76 5797.31 3699.29 25097.20 5099.44 13299.38 88
ab-mvs96.59 14996.59 13896.60 19098.64 12992.21 20798.35 2997.67 24894.45 19296.99 19198.79 5494.96 14399.49 18890.39 27999.07 21398.08 268
RRT_test8_iter0592.46 28692.52 28292.29 32995.33 33977.43 36195.73 17798.55 16294.41 19397.46 16397.72 17057.44 37199.74 7596.92 5999.14 19999.69 20
CNLPA95.04 21294.47 23396.75 18297.81 22495.25 11294.12 26797.89 23494.41 19394.57 27895.69 29490.30 24598.35 34586.72 32698.76 24696.64 330
TinyColmap96.00 17496.34 15594.96 26397.90 21387.91 28294.13 26698.49 16794.41 19398.16 10497.76 16296.29 9798.68 32190.52 27599.42 14398.30 253
AllTest97.20 11296.92 12398.06 8899.08 8596.16 6997.14 10599.16 2094.35 19697.78 14798.07 12495.84 10599.12 27391.41 24699.42 14398.91 188
TestCases98.06 8899.08 8596.16 6999.16 2094.35 19697.78 14798.07 12495.84 10599.12 27391.41 24699.42 14398.91 188
plane_prior94.29 14895.42 19594.31 19898.93 228
testtj96.69 14396.13 16398.36 6198.46 15796.02 7696.44 13698.70 13994.26 19996.79 20197.13 21694.07 17099.75 6590.53 27498.80 24299.31 106
#test#97.62 8297.22 10598.83 2699.15 7397.50 2996.81 12098.84 9994.25 20097.49 15797.54 18297.07 4899.70 10994.37 18099.46 12799.30 107
v114496.84 12897.08 11396.13 21798.42 15989.28 25795.41 19798.67 14794.21 20197.97 12998.31 8993.06 19099.65 13898.06 1999.62 6999.45 69
test_prior395.91 17795.39 19097.46 13997.79 23494.26 15293.33 29598.42 17694.21 20194.02 29596.25 27293.64 18099.34 23691.90 23598.96 22298.79 205
test_prior293.33 29594.21 20194.02 29596.25 27293.64 18091.90 23598.96 222
DELS-MVS96.17 16696.23 15995.99 22097.55 26190.04 24392.38 31598.52 16494.13 20496.55 21697.06 22394.99 14299.58 16295.62 11299.28 18298.37 242
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet395.26 20494.94 20496.22 21396.53 30590.06 24295.99 16397.66 25094.11 20597.99 12597.91 14880.22 31599.63 14394.60 16999.44 13298.96 176
diffmvs96.04 17196.23 15995.46 24697.35 27488.03 28193.42 29099.08 3794.09 20696.66 20996.93 23293.85 17599.29 25096.01 9198.67 25399.06 164
thisisatest053092.71 28391.76 29195.56 24198.42 15988.23 27496.03 16087.35 36494.04 20796.56 21495.47 30264.03 36799.77 5394.78 16499.11 20798.68 220
PMMVS293.66 26694.07 24692.45 32697.57 25780.67 35286.46 36196.00 29893.99 20897.10 18097.38 20189.90 25097.82 35588.76 30199.47 12498.86 199
BH-untuned94.69 22994.75 21794.52 28497.95 21087.53 29194.07 26897.01 27793.99 20897.10 18095.65 29692.65 20298.95 29787.60 31796.74 32497.09 310
RRT_MVS94.90 21794.07 24697.39 14793.18 36193.21 18795.26 21097.49 26093.94 21098.25 9497.85 15472.96 35299.84 2597.90 2299.78 4199.14 143
DeepC-MVS95.41 497.82 6997.70 6298.16 7898.78 11395.72 8396.23 15099.02 5293.92 21198.62 5298.99 4297.69 2399.62 15196.18 8099.87 2499.15 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS95.98 17596.24 15895.20 25497.26 28389.88 24695.84 17499.39 993.89 21294.28 28695.15 30794.81 14699.62 15196.11 8399.40 15096.10 339
PM-MVS97.36 10397.10 11198.14 8298.91 10396.77 5096.20 15198.63 15593.82 21398.54 6098.33 8793.98 17299.05 28395.99 9299.45 13198.61 226
testdata192.77 30493.78 214
v119296.83 13197.06 11596.15 21698.28 16989.29 25695.36 20198.77 12193.73 21598.11 11098.34 8693.02 19499.67 13098.35 1499.58 8299.50 45
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9396.70 5296.24 14998.89 7993.71 21697.97 12997.75 16597.44 3099.63 14393.22 21899.70 5799.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet94.56 23794.44 23694.91 26497.57 25787.44 29393.78 28196.26 29393.69 21796.41 22196.50 26092.10 21799.00 28885.96 32997.71 29598.31 251
Patchmatch-test93.60 26893.25 26494.63 27796.14 32187.47 29296.04 15994.50 32093.57 21896.47 21896.97 22976.50 33398.61 32690.67 27098.41 26997.81 291
PHI-MVS96.96 12196.53 14698.25 7297.48 26496.50 5996.76 12398.85 9493.52 21996.19 23496.85 23695.94 10299.42 20793.79 20599.43 14098.83 201
miper_lstm_enhance94.81 22294.80 21594.85 26996.16 31886.45 30791.14 33698.20 20393.49 22097.03 18897.37 20384.97 29299.26 25595.28 13499.56 8898.83 201
c3_l95.20 20595.32 19194.83 27196.19 31686.43 30891.83 32398.35 18993.47 22197.36 16797.26 21188.69 26399.28 25295.41 13099.36 15898.78 207
eth_miper_zixun_eth94.89 21894.93 20694.75 27495.99 32386.12 31191.35 32998.49 16793.40 22297.12 17897.25 21286.87 28299.35 23495.08 15198.82 24198.78 207
EPNet_dtu91.39 30390.75 30693.31 30690.48 37382.61 34194.80 23892.88 33493.39 22381.74 37194.90 31581.36 30899.11 27688.28 30998.87 23498.21 262
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETH3D-3000-0.196.89 12796.46 15198.16 7898.62 13495.69 8595.96 16698.98 6693.36 22497.04 18797.31 20894.93 14499.63 14392.60 22599.34 16699.17 136
cl____94.73 22494.64 22195.01 26195.85 32687.00 30091.33 33098.08 22293.34 22597.10 18097.33 20684.01 29999.30 24695.14 14699.56 8898.71 217
DIV-MVS_self_test94.73 22494.64 22195.01 26195.86 32587.00 30091.33 33098.08 22293.34 22597.10 18097.34 20584.02 29899.31 24395.15 14599.55 9498.72 215
mvs_anonymous95.36 19996.07 16893.21 31096.29 31081.56 34894.60 24597.66 25093.30 22796.95 19598.91 4993.03 19399.38 22696.60 6497.30 31498.69 218
TSAR-MVS + GP.96.47 15596.12 16497.49 13497.74 24595.23 11394.15 26396.90 28193.26 22898.04 12196.70 24894.41 16198.89 30094.77 16599.14 19998.37 242
9.1496.69 13498.53 14596.02 16198.98 6693.23 22997.18 17497.46 19096.47 8899.62 15192.99 22299.32 175
v192192096.72 14096.96 12195.99 22098.21 17888.79 26695.42 19598.79 11693.22 23098.19 10298.26 10392.68 20099.70 10998.34 1599.55 9499.49 53
CANet_DTU94.65 23394.21 24295.96 22295.90 32489.68 24993.92 27597.83 24093.19 23190.12 35295.64 29788.52 26499.57 16893.27 21799.47 12498.62 224
HQP-NCC97.85 21694.26 25393.18 23292.86 327
ACMP_Plane97.85 21694.26 25393.18 23292.86 327
HQP-MVS95.17 20894.58 22896.92 17197.85 21692.47 20194.26 25398.43 17393.18 23292.86 32795.08 30890.33 24299.23 26090.51 27698.74 24899.05 166
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14297.69 24894.15 15596.02 16198.43 17393.17 23597.30 16897.38 20195.48 12599.28 25293.74 20699.34 16698.88 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v124096.74 13797.02 11895.91 22798.18 18388.52 26995.39 19998.88 8593.15 23698.46 6998.40 8392.80 19799.71 10098.45 1399.49 11899.49 53
AdaColmapbinary95.11 20994.62 22496.58 19297.33 28094.45 14394.92 23298.08 22293.15 23693.98 29895.53 30194.34 16399.10 27885.69 33298.61 26096.20 338
CL-MVSNet_self_test95.04 21294.79 21695.82 23097.51 26389.79 24891.14 33696.82 28493.05 23896.72 20696.40 26590.82 23699.16 26991.95 23498.66 25598.50 233
v14419296.69 14396.90 12596.03 21998.25 17488.92 26195.49 19198.77 12193.05 23898.09 11498.29 9792.51 20999.70 10998.11 1799.56 8899.47 62
TSAR-MVS + MP.97.42 9797.23 10498.00 9399.38 3995.00 12397.63 7598.20 20393.00 24098.16 10498.06 12995.89 10399.72 8695.67 10799.10 20999.28 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
xiu_mvs_v1_base95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
PAPM_NR94.61 23594.17 24495.96 22298.36 16391.23 22695.93 16997.95 23092.98 24193.42 31994.43 32490.53 23998.38 34287.60 31796.29 33298.27 257
APD-MVScopyleft97.00 11696.53 14698.41 5798.55 14396.31 6596.32 14498.77 12192.96 24597.44 16597.58 18195.84 10599.74 7591.96 23399.35 16399.19 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS96.69 14396.08 16798.49 5298.89 10496.64 5597.25 9798.77 12192.89 24696.01 24197.13 21692.23 21399.67 13092.24 23099.34 16699.17 136
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6697.48 26497.23 4192.56 31098.60 15792.84 24798.54 6097.40 19596.64 7798.78 30994.40 17999.41 14998.93 183
FMVSNet593.39 27292.35 28396.50 19795.83 32790.81 23597.31 9498.27 19492.74 24896.27 22998.28 9862.23 36899.67 13090.86 25999.36 15899.03 168
YYNet194.73 22494.84 21194.41 28797.47 26885.09 32590.29 34595.85 30392.52 24997.53 15297.76 16291.97 22099.18 26493.31 21596.86 32098.95 177
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28697.48 26485.15 32390.28 34695.87 30292.52 24997.48 16097.76 16291.92 22499.17 26893.32 21496.80 32398.94 179
MG-MVS94.08 25694.00 24994.32 28997.09 29185.89 31393.19 29995.96 30092.52 24994.93 27297.51 18689.54 25498.77 31087.52 32097.71 29598.31 251
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2696.84 4895.38 20098.99 6392.45 25298.11 11098.31 8997.25 4199.77 5396.60 6499.62 6999.48 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSTER94.21 25093.93 25395.05 26095.83 32786.46 30695.18 21697.65 25292.41 25397.94 13298.00 13772.39 35399.58 16296.36 7599.56 8899.12 151
LF4IMVS96.07 16995.63 18497.36 14998.19 18095.55 9295.44 19398.82 11492.29 25495.70 25596.55 25592.63 20398.69 31891.75 24299.33 17397.85 287
MIMVSNet93.42 27192.86 27095.10 25898.17 18588.19 27598.13 4793.69 32492.07 25595.04 26998.21 11080.95 31299.03 28781.42 35398.06 28198.07 270
test-LLR89.97 31689.90 31490.16 34194.24 35274.98 36889.89 34989.06 36092.02 25689.97 35390.77 36273.92 34498.57 32991.88 23797.36 31096.92 316
test0.0.03 190.11 31289.21 31992.83 31993.89 35686.87 30391.74 32488.74 36292.02 25694.71 27591.14 36073.92 34494.48 36883.75 34992.94 35497.16 309
xiu_mvs_v2_base94.22 24894.63 22392.99 31697.32 28184.84 32892.12 31897.84 23891.96 25894.17 28993.43 33196.07 10099.71 10091.27 24997.48 30794.42 354
PS-MVSNAJ94.10 25494.47 23393.00 31597.35 27484.88 32791.86 32297.84 23891.96 25894.17 28992.50 34795.82 10899.71 10091.27 24997.48 30794.40 355
OMC-MVS96.48 15496.00 17097.91 9898.30 16696.01 7794.86 23598.60 15791.88 26097.18 17497.21 21496.11 9999.04 28490.49 27899.34 16698.69 218
GA-MVS92.83 28192.15 28694.87 26896.97 29487.27 29790.03 34796.12 29591.83 26194.05 29494.57 31876.01 33798.97 29692.46 22997.34 31298.36 247
miper_ehance_all_eth94.69 22994.70 21894.64 27695.77 32986.22 31091.32 33298.24 19891.67 26297.05 18696.65 25188.39 26799.22 26294.88 15798.34 27098.49 234
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10796.67 5396.74 12498.73 12991.61 26398.48 6698.36 8496.53 8399.68 12595.17 14199.54 9799.45 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+95.49 19195.07 19996.75 18297.67 25292.82 19594.22 25998.60 15791.61 26393.42 31992.90 34096.73 7399.70 10992.60 22597.89 28897.74 292
SCA93.38 27393.52 25992.96 31796.24 31281.40 34993.24 29794.00 32391.58 26594.57 27896.97 22987.94 27099.42 20789.47 29297.66 30098.06 274
Patchmatch-RL test94.66 23294.49 23195.19 25598.54 14488.91 26292.57 30998.74 12791.46 26698.32 8797.75 16577.31 33098.81 30796.06 8499.61 7597.85 287
KD-MVS_2432*160088.93 32487.74 32992.49 32388.04 37481.99 34589.63 35495.62 30691.35 26795.06 26693.11 33356.58 37398.63 32485.19 33795.07 34496.85 321
miper_refine_blended88.93 32487.74 32992.49 32388.04 37481.99 34589.63 35495.62 30691.35 26795.06 26693.11 33356.58 37398.63 32485.19 33795.07 34496.85 321
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8597.91 21195.65 9094.94 23198.74 12791.31 26996.02 24097.08 22194.05 17199.69 11791.51 24598.94 22698.93 183
AUN-MVS93.95 26092.69 27797.74 11097.80 22895.38 10395.57 19095.46 31291.26 27092.64 33396.10 28274.67 34199.55 17393.72 20896.97 31698.30 253
CLD-MVS95.47 19495.07 19996.69 18698.27 17192.53 20091.36 32898.67 14791.22 27195.78 25194.12 32895.65 11998.98 29290.81 26199.72 5198.57 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAMVS95.49 19194.94 20497.16 15898.31 16593.41 18295.07 22396.82 28491.09 27297.51 15497.82 15989.96 24999.42 20788.42 30799.44 13298.64 221
tpmvs90.79 30990.87 30390.57 34092.75 36876.30 36595.79 17693.64 32791.04 27391.91 34196.26 27177.19 33198.86 30489.38 29489.85 36296.56 333
cl2293.25 27692.84 27294.46 28594.30 35086.00 31291.09 33896.64 29190.74 27495.79 24996.31 27078.24 32298.77 31094.15 19098.34 27098.62 224
ZD-MVS98.43 15895.94 7898.56 16190.72 27596.66 20997.07 22295.02 14199.74 7591.08 25398.93 228
our_test_394.20 25294.58 22893.07 31296.16 31881.20 35090.42 34496.84 28290.72 27597.14 17697.13 21690.47 24099.11 27694.04 19798.25 27498.91 188
ppachtmachnet_test94.49 24194.84 21193.46 30496.16 31882.10 34490.59 34297.48 26290.53 27797.01 19097.59 17991.01 23399.36 23193.97 20099.18 19698.94 179
MVP-Stereo95.69 18395.28 19296.92 17198.15 18993.03 19195.64 18898.20 20390.39 27896.63 21197.73 16891.63 22899.10 27891.84 23997.31 31398.63 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UnsupCasMVSNet_bld94.72 22894.26 23996.08 21898.62 13490.54 24193.38 29398.05 22890.30 27997.02 18996.80 24289.54 25499.16 26988.44 30696.18 33398.56 229
DP-MVS Recon95.55 18995.13 19696.80 17998.51 14793.99 16194.60 24598.69 14290.20 28095.78 25196.21 27592.73 19998.98 29290.58 27398.86 23697.42 304
MCST-MVS96.24 16295.80 17897.56 12398.75 11694.13 15694.66 24398.17 20990.17 28196.21 23396.10 28295.14 13699.43 20694.13 19198.85 23899.13 146
CDS-MVSNet94.88 21994.12 24597.14 16097.64 25493.57 17893.96 27497.06 27690.05 28296.30 22896.55 25586.10 28499.47 19490.10 28399.31 17798.40 238
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TR-MVS92.54 28592.20 28593.57 30296.49 30686.66 30493.51 28894.73 31789.96 28394.95 27093.87 32990.24 24798.61 32681.18 35494.88 34695.45 349
pmmvs-eth3d96.49 15396.18 16297.42 14498.25 17494.29 14894.77 24098.07 22689.81 28497.97 12998.33 8793.11 18999.08 28095.46 12399.84 2998.89 192
D2MVS95.18 20695.17 19595.21 25397.76 24087.76 28894.15 26397.94 23189.77 28596.99 19197.68 17487.45 27799.14 27195.03 15499.81 3398.74 212
PatchmatchNetpermissive91.98 29691.87 28892.30 32894.60 34779.71 35495.12 21793.59 32889.52 28693.61 31097.02 22677.94 32399.18 26490.84 26094.57 35198.01 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet95.18 20694.23 24098.06 8897.85 21696.55 5892.49 31191.63 34589.34 28798.09 11497.41 19490.33 24299.06 28291.58 24499.31 17798.56 229
BH-w/o92.14 29391.94 28792.73 32197.13 29085.30 31992.46 31295.64 30589.33 28894.21 28892.74 34389.60 25298.24 34881.68 35294.66 34894.66 353
ET-MVSNet_ETH3D91.12 30489.67 31695.47 24596.41 30889.15 26091.54 32690.23 35889.07 28986.78 36792.84 34169.39 36199.44 20494.16 18996.61 32797.82 289
WTY-MVS93.55 26993.00 26895.19 25597.81 22487.86 28393.89 27696.00 29889.02 29094.07 29395.44 30386.27 28399.33 23987.69 31596.82 32198.39 240
F-COLMAP95.30 20294.38 23798.05 9198.64 12996.04 7495.61 18998.66 14989.00 29193.22 32296.40 26592.90 19599.35 23487.45 32197.53 30598.77 210
PVSNet_BlendedMVS95.02 21594.93 20695.27 25197.79 23487.40 29494.14 26598.68 14488.94 29294.51 28198.01 13593.04 19199.30 24689.77 28899.49 11899.11 155
baseline289.65 32088.44 32793.25 30895.62 33282.71 34093.82 27885.94 36788.89 29387.35 36592.54 34671.23 35699.33 23986.01 32894.60 35097.72 293
tpm91.08 30690.85 30491.75 33295.33 33978.09 35795.03 22891.27 34988.75 29493.53 31397.40 19571.24 35599.30 24691.25 25193.87 35297.87 286
MS-PatchMatch94.83 22094.91 20894.57 28296.81 30187.10 29994.23 25897.34 26588.74 29597.14 17697.11 21991.94 22298.23 34992.99 22297.92 28598.37 242
EPMVS89.26 32288.55 32691.39 33492.36 36979.11 35595.65 18679.86 37288.60 29693.12 32396.53 25770.73 35998.10 35390.75 26489.32 36396.98 314
QAPM95.88 17995.57 18796.80 17997.90 21391.84 21998.18 4598.73 12988.41 29796.42 22098.13 11694.73 14799.75 6588.72 30298.94 22698.81 203
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20299.28 4890.62 23795.31 20699.08 3788.40 29896.97 19498.17 11492.11 21699.78 4393.64 21099.21 19098.86 199
sss94.22 24893.72 25695.74 23397.71 24789.95 24593.84 27796.98 27888.38 29993.75 30395.74 29387.94 27098.89 30091.02 25598.10 27998.37 242
thisisatest051590.43 31089.18 32294.17 29497.07 29285.44 31789.75 35387.58 36388.28 30093.69 30791.72 35465.27 36599.58 16290.59 27298.67 25397.50 302
PatchMatch-RL94.61 23593.81 25597.02 16898.19 18095.72 8393.66 28397.23 26788.17 30194.94 27195.62 29891.43 22998.57 32987.36 32297.68 29896.76 327
tpmrst90.31 31190.61 30989.41 34494.06 35572.37 37395.06 22593.69 32488.01 30292.32 33896.86 23577.45 32798.82 30591.04 25487.01 36697.04 313
Anonymous2023120695.27 20395.06 20195.88 22898.72 11989.37 25595.70 17997.85 23688.00 30396.98 19397.62 17791.95 22199.34 23689.21 29599.53 10098.94 179
FPMVS89.92 31788.63 32593.82 29698.37 16296.94 4691.58 32593.34 33088.00 30390.32 35097.10 22070.87 35891.13 37071.91 36896.16 33593.39 360
MAR-MVS94.21 25093.03 26797.76 10896.94 29797.44 3496.97 11597.15 27187.89 30592.00 34092.73 34492.14 21599.12 27383.92 34597.51 30696.73 328
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
IB-MVS85.98 2088.63 32686.95 33593.68 30095.12 34184.82 32990.85 34090.17 35987.55 30688.48 36091.34 35858.01 37099.59 16087.24 32393.80 35396.63 332
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20797.16 28991.96 21697.74 6998.84 9987.26 30794.36 28598.01 13593.95 17399.67 13090.70 26998.75 24797.35 307
PC_three_145287.24 30898.37 7697.44 19297.00 5496.78 36492.01 23299.25 18699.21 129
agg_prior195.39 19894.60 22597.75 10997.80 22894.96 12493.39 29298.36 18587.20 30993.49 31495.97 28794.65 15399.53 17891.69 24398.86 23698.77 210
pmmvs594.63 23494.34 23895.50 24397.63 25588.34 27394.02 26997.13 27287.15 31095.22 26497.15 21587.50 27699.27 25493.99 19899.26 18598.88 196
train_agg95.46 19594.66 21997.88 10197.84 22095.23 11393.62 28498.39 18187.04 31193.78 30095.99 28494.58 15699.52 18291.76 24198.90 23098.89 192
test_897.81 22495.07 12293.54 28798.38 18387.04 31193.71 30595.96 28894.58 15699.52 182
TEST997.84 22095.23 11393.62 28498.39 18186.81 31393.78 30095.99 28494.68 15199.52 182
pmmvs494.82 22194.19 24396.70 18597.42 27192.75 19892.09 32096.76 28686.80 31495.73 25497.22 21389.28 26098.89 30093.28 21699.14 19998.46 237
MDTV_nov1_ep1391.28 29694.31 34973.51 37194.80 23893.16 33186.75 31593.45 31797.40 19576.37 33498.55 33288.85 30096.43 329
test-mter87.92 33287.17 33390.16 34194.24 35274.98 36889.89 34989.06 36086.44 31689.97 35390.77 36254.96 37898.57 32991.88 23797.36 31096.92 316
PLCcopyleft91.02 1694.05 25792.90 26997.51 12898.00 20595.12 12194.25 25698.25 19786.17 31791.48 34395.25 30591.01 23399.19 26385.02 34096.69 32598.22 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVEpermissive73.61 2286.48 33685.92 33888.18 34996.23 31485.28 32181.78 36775.79 37386.01 31882.53 37091.88 35292.74 19887.47 37271.42 36994.86 34791.78 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
USDC94.56 23794.57 23094.55 28397.78 23886.43 30892.75 30598.65 15485.96 31996.91 19897.93 14690.82 23698.74 31390.71 26899.59 8098.47 235
HY-MVS91.43 1592.58 28491.81 29094.90 26696.49 30688.87 26397.31 9494.62 31885.92 32090.50 34996.84 23785.05 29099.40 21883.77 34895.78 33996.43 335
原ACMM196.58 19298.16 18792.12 21198.15 21485.90 32193.49 31496.43 26292.47 21099.38 22687.66 31698.62 25998.23 260
PAPR92.22 29191.27 29795.07 25995.73 33188.81 26591.97 32197.87 23585.80 32290.91 34592.73 34491.16 23198.33 34679.48 35695.76 34098.08 268
IU-MVS99.22 5895.40 10198.14 21585.77 32398.36 7995.23 13899.51 11099.49 53
DWT-MVSNet_test87.92 33286.77 33691.39 33493.18 36178.62 35695.10 21891.42 34685.58 32488.00 36188.73 36660.60 36998.90 29890.60 27187.70 36596.65 329
1112_ss94.12 25393.42 26096.23 21198.59 13990.85 23294.24 25798.85 9485.49 32592.97 32594.94 31286.01 28599.64 14191.78 24097.92 28598.20 263
dp88.08 33088.05 32888.16 35092.85 36668.81 37594.17 26192.88 33485.47 32691.38 34496.14 27968.87 36298.81 30786.88 32483.80 36996.87 319
TESTMET0.1,187.20 33586.57 33789.07 34593.62 35972.84 37289.89 34987.01 36685.46 32789.12 35890.20 36456.00 37697.72 35790.91 25896.92 31796.64 330
ETH3 D test640094.77 22393.87 25497.47 13698.12 19493.73 17194.56 24798.70 13985.45 32894.70 27695.93 29191.77 22799.63 14386.45 32799.14 19999.05 166
131492.38 28892.30 28492.64 32295.42 33885.15 32395.86 17196.97 27985.40 32990.62 34693.06 33891.12 23297.80 35686.74 32595.49 34394.97 352
jason94.39 24494.04 24895.41 24998.29 16787.85 28592.74 30796.75 28785.38 33095.29 26296.15 27788.21 26999.65 13894.24 18699.34 16698.74 212
jason: jason.
EU-MVSNet94.25 24794.47 23393.60 30198.14 19082.60 34297.24 9992.72 33785.08 33198.48 6698.94 4682.59 30398.76 31297.47 4099.53 10099.44 79
miper_enhance_ethall93.14 27892.78 27594.20 29293.65 35885.29 32089.97 34897.85 23685.05 33296.15 23794.56 31985.74 28699.14 27193.74 20698.34 27098.17 266
CDPH-MVS95.45 19694.65 22097.84 10498.28 16994.96 12493.73 28298.33 19085.03 33395.44 25996.60 25395.31 13299.44 20490.01 28499.13 20399.11 155
DPM-MVS93.68 26592.77 27696.42 20297.91 21192.54 19991.17 33597.47 26384.99 33493.08 32494.74 31689.90 25099.00 28887.54 31998.09 28097.72 293
CR-MVSNet93.29 27592.79 27394.78 27395.44 33688.15 27796.18 15297.20 26884.94 33594.10 29198.57 6977.67 32599.39 22395.17 14195.81 33696.81 325
PVSNet86.72 1991.10 30590.97 30291.49 33397.56 25978.04 35887.17 36094.60 31984.65 33692.34 33792.20 34987.37 27898.47 33685.17 33997.69 29797.96 282
lupinMVS93.77 26193.28 26295.24 25297.68 24987.81 28692.12 31896.05 29684.52 33794.48 28395.06 31086.90 28099.63 14393.62 21199.13 20398.27 257
PVSNet_Blended93.96 25893.65 25794.91 26497.79 23487.40 29491.43 32798.68 14484.50 33894.51 28194.48 32393.04 19199.30 24689.77 28898.61 26098.02 280
MVS-HIRNet88.40 32890.20 31382.99 35297.01 29360.04 37693.11 30085.61 36884.45 33988.72 35999.09 3684.72 29498.23 34982.52 35196.59 32890.69 367
new_pmnet92.34 28991.69 29294.32 28996.23 31489.16 25992.27 31692.88 33484.39 34095.29 26296.35 26985.66 28796.74 36584.53 34397.56 30397.05 312
ADS-MVSNet291.47 30290.51 31094.36 28895.51 33485.63 31495.05 22695.70 30483.46 34192.69 33096.84 23779.15 31999.41 21685.66 33390.52 35998.04 278
ADS-MVSNet90.95 30890.26 31293.04 31395.51 33482.37 34395.05 22693.41 32983.46 34192.69 33096.84 23779.15 31998.70 31785.66 33390.52 35998.04 278
HyFIR lowres test93.72 26392.65 27896.91 17398.93 10191.81 22091.23 33498.52 16482.69 34396.46 21996.52 25980.38 31499.90 1390.36 28098.79 24399.03 168
Test_1112_low_res93.53 27092.86 27095.54 24298.60 13788.86 26492.75 30598.69 14282.66 34492.65 33296.92 23484.75 29399.56 16990.94 25797.76 29198.19 264
CVMVSNet92.33 29092.79 27390.95 33797.26 28375.84 36795.29 20892.33 34081.86 34596.27 22998.19 11181.44 30798.46 33794.23 18798.29 27398.55 231
gm-plane-assit91.79 37071.40 37481.67 34690.11 36598.99 29084.86 341
OpenMVS_ROBcopyleft91.80 1493.64 26793.05 26695.42 24797.31 28291.21 22795.08 22296.68 29081.56 34796.88 20096.41 26390.44 24199.25 25785.39 33697.67 29995.80 343
CostFormer89.75 31989.25 31791.26 33694.69 34678.00 35995.32 20591.98 34281.50 34890.55 34896.96 23171.06 35798.89 30088.59 30592.63 35696.87 319
CHOSEN 280x42089.98 31589.19 32192.37 32795.60 33381.13 35186.22 36297.09 27481.44 34987.44 36493.15 33273.99 34299.47 19488.69 30399.07 21396.52 334
TAPA-MVS93.32 1294.93 21694.23 24097.04 16698.18 18394.51 14095.22 21498.73 12981.22 35096.25 23195.95 28993.80 17798.98 29289.89 28698.87 23497.62 297
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
无先验93.20 29897.91 23280.78 35199.40 21887.71 31397.94 283
MDTV_nov1_ep13_2view57.28 37794.89 23380.59 35294.02 29578.66 32185.50 33597.82 289
testdata95.70 23698.16 18790.58 23897.72 24580.38 35395.62 25697.02 22692.06 21998.98 29289.06 29998.52 26497.54 300
CMPMVSbinary73.10 2392.74 28291.39 29496.77 18193.57 36094.67 13694.21 26097.67 24880.36 35493.61 31096.60 25382.85 30297.35 35984.86 34198.78 24498.29 256
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 1792x268894.10 25493.41 26196.18 21599.16 7090.04 24392.15 31798.68 14479.90 35596.22 23297.83 15687.92 27499.42 20789.18 29699.65 6499.08 160
PAPM87.64 33485.84 33993.04 31396.54 30484.99 32688.42 35995.57 30979.52 35683.82 36893.05 33980.57 31398.41 33962.29 37192.79 35595.71 344
cascas91.89 29791.35 29593.51 30394.27 35185.60 31588.86 35798.61 15679.32 35792.16 33991.44 35789.22 26198.12 35290.80 26297.47 30996.82 324
PMMVS92.39 28791.08 29996.30 20993.12 36492.81 19690.58 34395.96 30079.17 35891.85 34292.27 34890.29 24698.66 32389.85 28796.68 32697.43 303
pmmvs390.00 31488.90 32493.32 30594.20 35485.34 31891.25 33392.56 33978.59 35993.82 29995.17 30667.36 36498.69 31889.08 29898.03 28295.92 340
PVSNet_081.89 2184.49 33783.21 34088.34 34895.76 33074.97 37083.49 36492.70 33878.47 36087.94 36286.90 36883.38 30196.63 36673.44 36666.86 37293.40 359
新几何197.25 15698.29 16794.70 13597.73 24477.98 36194.83 27396.67 25092.08 21899.45 20188.17 31198.65 25797.61 298
112194.26 24693.26 26397.27 15398.26 17394.73 13095.86 17197.71 24677.96 36294.53 28096.71 24791.93 22399.40 21887.71 31398.64 25897.69 295
旧先验293.35 29477.95 36395.77 25398.67 32290.74 267
tpm288.47 32787.69 33190.79 33894.98 34377.34 36295.09 22091.83 34377.51 36489.40 35596.41 26367.83 36398.73 31483.58 35092.60 35796.29 337
DSMNet-mixed92.19 29291.83 28993.25 30896.18 31783.68 33896.27 14593.68 32676.97 36592.54 33699.18 2789.20 26298.55 33283.88 34698.60 26297.51 301
test22298.17 18593.24 18692.74 30797.61 25875.17 36694.65 27796.69 24990.96 23598.66 25597.66 296
PCF-MVS89.43 1892.12 29490.64 30896.57 19497.80 22893.48 18189.88 35298.45 17074.46 36796.04 23995.68 29590.71 23899.31 24373.73 36599.01 22096.91 318
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t93.96 25893.22 26596.19 21499.06 8890.97 23195.99 16398.94 7473.88 36893.43 31896.93 23292.38 21299.37 22989.09 29799.28 18298.25 259
tpm cat188.01 33187.33 33290.05 34394.48 34876.28 36694.47 25094.35 32273.84 36989.26 35695.61 29973.64 34698.30 34784.13 34486.20 36795.57 348
MVS90.02 31389.20 32092.47 32594.71 34586.90 30295.86 17196.74 28864.72 37090.62 34692.77 34292.54 20798.39 34179.30 35795.56 34292.12 362
DeepMVS_CXcopyleft77.17 35390.94 37285.28 32174.08 37652.51 37180.87 37288.03 36775.25 34070.63 37359.23 37284.94 36875.62 368
tmp_tt57.23 33962.50 34241.44 35534.77 37849.21 37883.93 36360.22 37915.31 37271.11 37379.37 37070.09 36044.86 37464.76 37082.93 37030.25 370
test_method66.88 33866.13 34169.11 35462.68 37725.73 37949.76 36896.04 29714.32 37364.27 37491.69 35573.45 34988.05 37176.06 36466.94 37193.54 357
test12312.59 34115.49 3443.87 3566.07 3792.55 38090.75 3412.59 3812.52 3745.20 37613.02 3734.96 3791.85 3765.20 3739.09 3737.23 371
testmvs12.33 34215.23 3453.64 3575.77 3802.23 38188.99 3563.62 3802.30 3755.29 37513.09 3724.52 3801.95 3755.16 3748.32 3746.75 372
test_blank0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
cdsmvs_eth3d_5k24.22 34032.30 3430.00 3580.00 3810.00 3820.00 36998.10 2190.00 3760.00 37795.06 31097.54 290.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas7.98 34310.65 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 37695.82 1080.00 3770.00 3750.00 3750.00 373
sosnet-low-res0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
sosnet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
Regformer0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re7.91 34410.55 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37794.94 3120.00 3810.00 3770.00 3750.00 3750.00 373
uanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
MSC_two_6792asdad98.22 7497.75 24295.34 10898.16 21299.75 6595.87 10099.51 11099.57 32
No_MVS98.22 7497.75 24295.34 10898.16 21299.75 6595.87 10099.51 11099.57 32
eth-test20.00 381
eth-test0.00 381
OPU-MVS97.64 11998.01 20195.27 11196.79 12197.35 20496.97 5698.51 33591.21 25299.25 18699.14 143
test_0728_SECOND98.25 7299.23 5595.49 9996.74 12498.89 7999.75 6595.48 12099.52 10599.53 41
GSMVS98.06 274
test_part299.03 9496.07 7398.08 116
sam_mvs177.80 32498.06 274
sam_mvs77.38 328
ambc96.56 19598.23 17791.68 22297.88 6098.13 21798.42 7298.56 7194.22 16799.04 28494.05 19699.35 16398.95 177
MTGPAbinary98.73 129
test_post194.98 23010.37 37576.21 33699.04 28489.47 292
test_post10.87 37476.83 33299.07 281
patchmatchnet-post96.84 23777.36 32999.42 207
GG-mvs-BLEND90.60 33991.00 37184.21 33598.23 3872.63 37782.76 36984.11 36956.14 37596.79 36372.20 36792.09 35890.78 366
MTMP96.55 13274.60 374
test9_res91.29 24898.89 23399.00 171
agg_prior290.34 28198.90 23099.10 159
agg_prior97.80 22894.96 12498.36 18593.49 31499.53 178
test_prior495.38 10393.61 286
test_prior97.46 13997.79 23494.26 15298.42 17699.34 23698.79 205
新几何293.43 289
旧先验197.80 22893.87 16497.75 24397.04 22593.57 18298.68 25298.72 215
原ACMM292.82 303
testdata299.46 19787.84 312
segment_acmp95.34 130
test1297.46 13997.61 25694.07 15797.78 24293.57 31293.31 18699.42 20798.78 24498.89 192
plane_prior798.70 12494.67 136
plane_prior698.38 16194.37 14691.91 225
plane_prior598.75 12599.46 19792.59 22799.20 19199.28 115
plane_prior496.77 243
plane_prior198.49 151
n20.00 382
nn0.00 382
door-mid98.17 209
lessismore_v097.05 16599.36 4192.12 21184.07 36998.77 4798.98 4385.36 28999.74 7597.34 4499.37 15599.30 107
test1198.08 222
door97.81 241
HQP5-MVS92.47 201
BP-MVS90.51 276
HQP4-MVS92.87 32699.23 26099.06 164
HQP3-MVS98.43 17398.74 248
HQP2-MVS90.33 242
NP-MVS98.14 19093.72 17295.08 308
ACMMP++_ref99.52 105
ACMMP++99.55 94
Test By Simon94.51 159