LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 3 | 96.34 63 | 99.18 5 | 99.20 13 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 20 | 97.22 45 | 99.92 14 | 99.77 8 |
|
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 93 | 98.79 105 | 94.37 138 | 98.84 8 | 99.15 21 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 116 | 99.72 80 | 98.12 16 | 99.86 25 | 99.73 15 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 47 | 99.55 17 | 96.12 70 | 98.48 22 | 99.10 28 | 99.36 4 | 99.29 23 | 99.06 36 | 97.27 37 | 99.93 2 | 97.71 32 | 99.91 17 | 99.70 18 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 14 | 95.67 87 | 98.45 23 | 99.15 21 | 99.33 5 | 99.30 21 | 99.00 38 | 97.27 37 | 99.92 4 | 97.64 33 | 99.92 14 | 99.75 13 |
|
ANet_high | | | 98.31 28 | 98.94 6 | 96.41 198 | 99.33 43 | 89.64 241 | 97.92 52 | 99.56 4 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 28 | 97.55 36 | 99.98 2 | 99.77 8 |
|
VDDNet | | | 96.98 117 | 96.84 123 | 97.41 139 | 99.40 36 | 93.26 177 | 97.94 49 | 95.31 304 | 99.26 7 | 98.39 72 | 99.18 27 | 87.85 269 | 99.62 143 | 95.13 137 | 99.09 199 | 99.35 92 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 59 | 99.55 17 | 95.47 97 | 98.49 20 | 99.13 24 | 99.22 8 | 99.22 27 | 98.96 42 | 97.35 33 | 99.92 4 | 97.79 28 | 99.93 10 | 99.79 7 |
|
LFMVS | | | 95.32 196 | 94.88 204 | 96.62 183 | 98.03 191 | 91.47 217 | 97.65 67 | 90.72 344 | 99.11 9 | 97.89 131 | 98.31 86 | 79.20 309 | 99.48 181 | 93.91 191 | 99.12 195 | 98.93 175 |
|
gg-mvs-nofinetune | | | 88.28 321 | 86.96 326 | 92.23 321 | 92.84 355 | 84.44 323 | 98.19 38 | 74.60 362 | 99.08 10 | 87.01 355 | 99.47 8 | 56.93 362 | 98.23 339 | 78.91 347 | 95.61 330 | 94.01 345 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 82 | 97.89 13 | 99.47 3 | 99.32 7 | 99.08 10 | 97.87 135 | 99.67 2 | 96.47 83 | 99.92 4 | 97.88 23 | 99.98 2 | 99.85 3 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 92 | 99.64 11 | 94.20 146 | 98.67 11 | 99.14 23 | 99.08 10 | 99.42 15 | 99.23 21 | 96.53 78 | 99.91 12 | 99.27 2 | 99.93 10 | 99.73 15 |
|
CP-MVSNet | | | 98.42 23 | 98.46 24 | 98.30 67 | 99.46 28 | 95.22 110 | 98.27 31 | 98.84 93 | 99.05 13 | 99.01 35 | 98.65 63 | 95.37 124 | 99.90 13 | 97.57 35 | 99.91 17 | 99.77 8 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 33 | 99.51 22 | 96.61 55 | 98.55 17 | 99.17 16 | 99.05 13 | 99.17 29 | 98.79 51 | 95.47 121 | 99.89 16 | 97.95 21 | 99.91 17 | 99.75 13 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 7 | 96.99 44 | 99.69 2 | 99.57 3 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 172 | 98.58 12 | 99.95 5 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 49 | 99.81 2 | 96.38 61 | 98.87 7 | 99.30 8 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 118 | 97.75 30 | 99.89 22 | 99.62 25 |
|
DP-MVS | | | 97.87 61 | 97.89 46 | 97.81 101 | 98.62 127 | 94.82 121 | 97.13 99 | 98.79 110 | 98.98 17 | 98.74 47 | 98.49 73 | 95.80 110 | 99.49 178 | 95.04 141 | 99.44 126 | 99.11 147 |
|
K. test v3 | | | 96.44 152 | 96.28 153 | 96.95 163 | 99.41 35 | 91.53 215 | 97.65 67 | 90.31 347 | 98.89 18 | 98.93 38 | 99.36 14 | 84.57 289 | 99.92 4 | 97.81 26 | 99.56 84 | 99.39 83 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 19 | 98.06 7 | 99.34 4 | 99.44 6 | 98.85 19 | 99.00 36 | 99.20 23 | 97.42 31 | 99.59 151 | 97.21 47 | 99.76 39 | 99.40 81 |
|
test_part1 | | | 96.77 133 | 96.53 142 | 97.47 130 | 98.04 190 | 92.92 186 | 97.93 50 | 98.85 88 | 98.83 20 | 99.30 21 | 99.07 35 | 79.25 308 | 99.79 38 | 97.59 34 | 99.93 10 | 99.69 20 |
|
Anonymous20240529 | | | 97.96 46 | 98.04 39 | 97.71 106 | 98.69 120 | 94.28 143 | 97.86 55 | 98.31 187 | 98.79 21 | 99.23 26 | 98.86 49 | 95.76 111 | 99.61 149 | 95.49 107 | 99.36 150 | 99.23 121 |
|
Gipuma |  | | 98.07 40 | 98.31 29 | 97.36 143 | 99.76 5 | 96.28 66 | 98.51 19 | 99.10 28 | 98.76 22 | 96.79 192 | 99.34 17 | 96.61 73 | 98.82 295 | 96.38 71 | 99.50 108 | 96.98 304 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
TranMVSNet+NR-MVSNet | | | 98.33 26 | 98.30 31 | 98.43 56 | 99.07 86 | 95.87 78 | 96.73 120 | 99.05 40 | 98.67 23 | 98.84 41 | 98.45 76 | 97.58 27 | 99.88 18 | 96.45 70 | 99.86 25 | 99.54 36 |
|
test_0402 | | | 97.84 64 | 97.97 41 | 97.47 130 | 99.19 67 | 94.07 149 | 96.71 121 | 98.73 123 | 98.66 24 | 98.56 57 | 98.41 78 | 96.84 64 | 99.69 112 | 94.82 149 | 99.81 30 | 98.64 213 |
|
VDD-MVS | | | 97.37 98 | 97.25 98 | 97.74 104 | 98.69 120 | 94.50 134 | 97.04 103 | 95.61 299 | 98.59 25 | 98.51 60 | 98.72 56 | 92.54 201 | 99.58 153 | 96.02 84 | 99.49 112 | 99.12 143 |
|
LS3D | | | 97.77 71 | 97.50 84 | 98.57 48 | 96.24 300 | 97.58 24 | 98.45 23 | 98.85 88 | 98.58 26 | 97.51 147 | 97.94 139 | 95.74 112 | 99.63 135 | 95.19 128 | 98.97 210 | 98.51 224 |
|
MIMVSNet1 | | | 98.51 20 | 98.45 26 | 98.67 41 | 99.72 6 | 96.71 50 | 98.76 9 | 98.89 75 | 98.49 27 | 99.38 17 | 99.14 30 | 95.44 123 | 99.84 25 | 96.47 69 | 99.80 33 | 99.47 59 |
|
FC-MVSNet-test | | | 98.16 33 | 98.37 27 | 97.56 117 | 99.49 26 | 93.10 182 | 98.35 26 | 99.21 11 | 98.43 28 | 98.89 39 | 98.83 50 | 94.30 158 | 99.81 31 | 97.87 24 | 99.91 17 | 99.77 8 |
|
VPA-MVSNet | | | 98.27 29 | 98.46 24 | 97.70 108 | 99.06 87 | 93.80 160 | 97.76 61 | 99.00 57 | 98.40 29 | 99.07 33 | 98.98 40 | 96.89 59 | 99.75 63 | 97.19 50 | 99.79 35 | 99.55 35 |
|
IS-MVSNet | | | 96.93 119 | 96.68 132 | 97.70 108 | 99.25 51 | 94.00 152 | 98.57 15 | 96.74 280 | 98.36 30 | 98.14 103 | 97.98 133 | 88.23 262 | 99.71 95 | 93.10 211 | 99.72 48 | 99.38 85 |
|
COLMAP_ROB |  | 94.48 6 | 98.25 31 | 98.11 34 | 98.64 44 | 99.21 64 | 97.35 35 | 97.96 48 | 99.16 17 | 98.34 31 | 98.78 44 | 98.52 71 | 97.32 34 | 99.45 191 | 94.08 181 | 99.67 58 | 99.13 138 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 64 | 99.22 57 | 95.66 88 | 97.90 53 | 99.08 34 | 98.31 32 | 99.02 34 | 98.74 55 | 97.68 24 | 99.61 149 | 97.77 29 | 99.85 27 | 99.70 18 |
|
SixPastTwentyTwo | | | 97.49 89 | 97.57 78 | 97.26 149 | 99.56 15 | 92.33 195 | 98.28 29 | 96.97 271 | 98.30 33 | 99.45 14 | 99.35 16 | 88.43 260 | 99.89 16 | 98.01 20 | 99.76 39 | 99.54 36 |
|
tfpnnormal | | | 97.72 73 | 97.97 41 | 96.94 164 | 99.26 48 | 92.23 198 | 97.83 57 | 98.45 164 | 98.25 34 | 99.13 30 | 98.66 61 | 96.65 70 | 99.69 112 | 93.92 190 | 99.62 65 | 98.91 180 |
|
TransMVSNet (Re) | | | 98.38 25 | 98.67 17 | 97.51 122 | 99.51 22 | 93.39 175 | 98.20 37 | 98.87 82 | 98.23 35 | 99.48 12 | 99.27 19 | 98.47 8 | 99.55 164 | 96.52 66 | 99.53 96 | 99.60 26 |
|
ACMH+ | | 93.58 10 | 98.23 32 | 98.31 29 | 97.98 91 | 99.39 37 | 95.22 110 | 97.55 74 | 99.20 13 | 98.21 36 | 99.25 25 | 98.51 72 | 98.21 11 | 99.40 208 | 94.79 151 | 99.72 48 | 99.32 95 |
|
Baseline_NR-MVSNet | | | 97.72 73 | 97.79 53 | 97.50 125 | 99.56 15 | 93.29 176 | 95.44 184 | 98.86 84 | 98.20 37 | 98.37 73 | 99.24 20 | 94.69 143 | 99.55 164 | 95.98 88 | 99.79 35 | 99.65 23 |
|
3Dnovator+ | | 96.13 3 | 97.73 72 | 97.59 76 | 98.15 79 | 98.11 188 | 95.60 90 | 98.04 45 | 98.70 133 | 98.13 38 | 96.93 187 | 98.45 76 | 95.30 128 | 99.62 143 | 95.64 101 | 98.96 211 | 99.24 120 |
|
UniMVSNet_NR-MVSNet | | | 97.83 65 | 97.65 66 | 98.37 60 | 98.72 113 | 95.78 80 | 95.66 175 | 99.02 49 | 98.11 39 | 98.31 85 | 97.69 168 | 94.65 147 | 99.85 22 | 97.02 56 | 99.71 51 | 99.48 56 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 45 | 99.77 3 | 96.35 62 | 99.17 6 | 99.05 40 | 98.05 40 | 99.61 11 | 99.52 5 | 93.72 173 | 99.88 18 | 98.72 9 | 99.88 23 | 99.65 23 |
|
FIs | | | 97.93 54 | 98.07 36 | 97.48 129 | 99.38 38 | 92.95 185 | 98.03 47 | 99.11 26 | 98.04 41 | 98.62 51 | 98.66 61 | 93.75 172 | 99.78 42 | 97.23 44 | 99.84 28 | 99.73 15 |
|
Regformer-4 | | | 97.53 87 | 97.47 87 | 97.71 106 | 97.35 263 | 93.91 154 | 95.26 201 | 98.14 207 | 97.97 42 | 98.34 78 | 97.89 144 | 95.49 119 | 99.71 95 | 97.41 40 | 99.42 136 | 99.51 42 |
|
PMVS |  | 89.60 17 | 96.71 139 | 96.97 116 | 95.95 218 | 99.51 22 | 97.81 16 | 97.42 85 | 97.49 252 | 97.93 43 | 95.95 233 | 98.58 65 | 96.88 61 | 96.91 351 | 89.59 279 | 99.36 150 | 93.12 349 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EPP-MVSNet | | | 96.84 125 | 96.58 136 | 97.65 112 | 99.18 68 | 93.78 162 | 98.68 10 | 96.34 284 | 97.91 44 | 97.30 161 | 98.06 124 | 88.46 259 | 99.85 22 | 93.85 192 | 99.40 143 | 99.32 95 |
|
NR-MVSNet | | | 97.96 46 | 97.86 48 | 98.26 69 | 98.73 111 | 95.54 92 | 98.14 40 | 98.73 123 | 97.79 45 | 99.42 15 | 97.83 151 | 94.40 156 | 99.78 42 | 95.91 91 | 99.76 39 | 99.46 61 |
|
SR-MVS-dyc-post | | | 98.14 34 | 97.84 49 | 99.02 9 | 98.81 102 | 98.05 8 | 97.55 74 | 98.86 84 | 97.77 46 | 98.20 94 | 98.07 119 | 96.60 75 | 99.76 56 | 95.49 107 | 99.20 181 | 99.26 114 |
|
RE-MVS-def | | | | 97.88 47 | | 98.81 102 | 98.05 8 | 97.55 74 | 98.86 84 | 97.77 46 | 98.20 94 | 98.07 119 | 96.94 54 | | 95.49 107 | 99.20 181 | 99.26 114 |
|
VPNet | | | 97.26 105 | 97.49 85 | 96.59 185 | 99.47 27 | 90.58 230 | 96.27 138 | 98.53 157 | 97.77 46 | 98.46 66 | 98.41 78 | 94.59 149 | 99.68 118 | 94.61 157 | 99.29 173 | 99.52 40 |
|
abl_6 | | | 98.42 23 | 98.19 32 | 99.09 3 | 99.16 69 | 98.10 5 | 97.73 65 | 99.11 26 | 97.76 49 | 98.62 51 | 98.27 97 | 97.88 19 | 99.80 37 | 95.67 97 | 99.50 108 | 99.38 85 |
|
EI-MVSNet-UG-set | | | 97.32 102 | 97.40 88 | 97.09 157 | 97.34 267 | 92.01 207 | 95.33 195 | 97.65 244 | 97.74 50 | 98.30 87 | 98.14 110 | 95.04 134 | 99.69 112 | 97.55 36 | 99.52 101 | 99.58 28 |
|
EI-MVSNet-Vis-set | | | 97.32 102 | 97.39 89 | 97.11 155 | 97.36 262 | 92.08 205 | 95.34 194 | 97.65 244 | 97.74 50 | 98.29 88 | 98.11 115 | 95.05 132 | 99.68 118 | 97.50 38 | 99.50 108 | 99.56 33 |
|
Regformer-2 | | | 97.41 95 | 97.24 100 | 97.93 94 | 97.21 274 | 94.72 124 | 94.85 227 | 98.27 188 | 97.74 50 | 98.11 105 | 97.50 181 | 95.58 117 | 99.69 112 | 96.57 65 | 99.31 169 | 99.37 90 |
|
Anonymous202405211 | | | 96.34 155 | 95.98 167 | 97.43 137 | 98.25 167 | 93.85 158 | 96.74 116 | 94.41 311 | 97.72 53 | 98.37 73 | 98.03 127 | 87.15 273 | 99.53 168 | 94.06 182 | 99.07 202 | 98.92 179 |
|
APD-MVS_3200maxsize | | | 98.13 37 | 97.90 44 | 98.79 31 | 98.79 105 | 97.31 36 | 97.55 74 | 98.92 72 | 97.72 53 | 98.25 90 | 98.13 111 | 97.10 44 | 99.75 63 | 95.44 114 | 99.24 179 | 99.32 95 |
|
VNet | | | 96.84 125 | 96.83 124 | 96.88 168 | 98.06 189 | 92.02 206 | 96.35 135 | 97.57 251 | 97.70 55 | 97.88 132 | 97.80 156 | 92.40 205 | 99.54 167 | 94.73 156 | 98.96 211 | 99.08 152 |
|
zzz-MVS | | | 98.01 44 | 97.66 64 | 99.06 4 | 99.44 30 | 97.90 11 | 95.66 175 | 98.73 123 | 97.69 56 | 97.90 129 | 97.96 134 | 95.81 108 | 99.82 29 | 96.13 77 | 99.61 71 | 99.45 66 |
|
MTAPA | | | 98.14 34 | 97.84 49 | 99.06 4 | 99.44 30 | 97.90 11 | 97.25 91 | 98.73 123 | 97.69 56 | 97.90 129 | 97.96 134 | 95.81 108 | 99.82 29 | 96.13 77 | 99.61 71 | 99.45 66 |
|
Regformer-3 | | | 97.25 106 | 97.29 95 | 97.11 155 | 97.35 263 | 92.32 196 | 95.26 201 | 97.62 249 | 97.67 58 | 98.17 98 | 97.89 144 | 95.05 132 | 99.56 160 | 97.16 51 | 99.42 136 | 99.46 61 |
|
Regformer-1 | | | 97.27 104 | 97.16 105 | 97.61 115 | 97.21 274 | 93.86 157 | 94.85 227 | 98.04 221 | 97.62 59 | 98.03 117 | 97.50 181 | 95.34 125 | 99.63 135 | 96.52 66 | 99.31 169 | 99.35 92 |
|
test1172 | | | 98.08 39 | 97.76 57 | 99.05 6 | 98.78 107 | 98.07 6 | 97.41 86 | 98.85 88 | 97.57 60 | 98.15 101 | 97.96 134 | 96.60 75 | 99.76 56 | 95.30 122 | 99.18 185 | 99.33 94 |
|
pm-mvs1 | | | 98.47 21 | 98.67 17 | 97.86 98 | 99.52 21 | 94.58 131 | 98.28 29 | 99.00 57 | 97.57 60 | 99.27 24 | 99.22 22 | 98.32 9 | 99.50 177 | 97.09 53 | 99.75 43 | 99.50 43 |
|
DU-MVS | | | 97.79 69 | 97.60 75 | 98.36 61 | 98.73 111 | 95.78 80 | 95.65 177 | 98.87 82 | 97.57 60 | 98.31 85 | 97.83 151 | 94.69 143 | 99.85 22 | 97.02 56 | 99.71 51 | 99.46 61 |
|
PatchT | | | 93.75 255 | 93.57 251 | 94.29 284 | 95.05 330 | 87.32 287 | 96.05 151 | 92.98 323 | 97.54 63 | 94.25 276 | 98.72 56 | 75.79 329 | 99.24 248 | 95.92 90 | 95.81 325 | 96.32 326 |
|
UniMVSNet (Re) | | | 97.83 65 | 97.65 66 | 98.35 63 | 98.80 104 | 95.86 79 | 95.92 163 | 99.04 46 | 97.51 64 | 98.22 93 | 97.81 155 | 94.68 145 | 99.78 42 | 97.14 52 | 99.75 43 | 99.41 80 |
|
alignmvs | | | 96.01 169 | 95.52 184 | 97.50 125 | 97.77 231 | 94.71 125 | 96.07 150 | 96.84 274 | 97.48 65 | 96.78 196 | 94.28 316 | 85.50 282 | 99.40 208 | 96.22 74 | 98.73 241 | 98.40 230 |
|
RPMNet | | | 94.68 226 | 94.60 219 | 94.90 259 | 95.44 324 | 88.15 268 | 96.18 145 | 98.86 84 | 97.43 66 | 94.10 280 | 98.49 73 | 79.40 307 | 99.76 56 | 95.69 96 | 95.81 325 | 96.81 315 |
|
canonicalmvs | | | 97.23 108 | 97.21 103 | 97.30 146 | 97.65 242 | 94.39 136 | 97.84 56 | 99.05 40 | 97.42 67 | 96.68 199 | 93.85 319 | 97.63 26 | 99.33 229 | 96.29 73 | 98.47 257 | 98.18 255 |
|
XVS | | | 97.96 46 | 97.63 71 | 98.94 18 | 99.15 72 | 97.66 19 | 97.77 59 | 98.83 100 | 97.42 67 | 96.32 216 | 97.64 170 | 96.49 81 | 99.72 80 | 95.66 99 | 99.37 147 | 99.45 66 |
|
X-MVStestdata | | | 92.86 273 | 90.83 298 | 98.94 18 | 99.15 72 | 97.66 19 | 97.77 59 | 98.83 100 | 97.42 67 | 96.32 216 | 36.50 360 | 96.49 81 | 99.72 80 | 95.66 99 | 99.37 147 | 99.45 66 |
|
FMVSNet1 | | | 97.95 49 | 98.08 35 | 97.56 117 | 99.14 80 | 93.67 165 | 98.23 32 | 98.66 143 | 97.41 70 | 99.00 36 | 99.19 24 | 95.47 121 | 99.73 76 | 95.83 93 | 99.76 39 | 99.30 101 |
|
ACMH | | 93.61 9 | 98.44 22 | 98.76 13 | 97.51 122 | 99.43 32 | 93.54 171 | 98.23 32 | 99.05 40 | 97.40 71 | 99.37 18 | 99.08 34 | 98.79 5 | 99.47 184 | 97.74 31 | 99.71 51 | 99.50 43 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
WR-MVS | | | 96.90 122 | 96.81 125 | 97.16 152 | 98.56 135 | 92.20 201 | 94.33 243 | 98.12 210 | 97.34 72 | 98.20 94 | 97.33 199 | 92.81 190 | 99.75 63 | 94.79 151 | 99.81 30 | 99.54 36 |
|
SR-MVS | | | 98.00 45 | 97.66 64 | 99.01 11 | 98.77 109 | 97.93 10 | 97.38 87 | 98.83 100 | 97.32 73 | 98.06 113 | 97.85 149 | 96.65 70 | 99.77 52 | 95.00 144 | 99.11 196 | 99.32 95 |
|
Vis-MVSNet |  | | 98.27 29 | 98.34 28 | 98.07 83 | 99.33 43 | 95.21 112 | 98.04 45 | 99.46 5 | 97.32 73 | 97.82 140 | 99.11 31 | 96.75 67 | 99.86 20 | 97.84 25 | 99.36 150 | 99.15 132 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v8 | | | 97.60 81 | 98.06 38 | 96.23 205 | 98.71 116 | 89.44 245 | 97.43 84 | 98.82 108 | 97.29 75 | 98.74 47 | 99.10 32 | 93.86 168 | 99.68 118 | 98.61 10 | 99.94 8 | 99.56 33 |
|
casdiffmvs | | | 97.50 88 | 97.81 52 | 96.56 189 | 98.51 140 | 91.04 221 | 95.83 167 | 99.09 33 | 97.23 76 | 98.33 82 | 98.30 90 | 97.03 51 | 99.37 219 | 96.58 64 | 99.38 146 | 99.28 109 |
|
Anonymous20240521 | | | 97.07 111 | 97.51 82 | 95.76 226 | 99.35 41 | 88.18 267 | 97.78 58 | 98.40 174 | 97.11 77 | 98.34 78 | 99.04 37 | 89.58 247 | 99.79 38 | 98.09 18 | 99.93 10 | 99.30 101 |
|
DIV-MVS_2432*1600 | | | 97.86 63 | 98.07 36 | 97.25 150 | 99.22 57 | 92.81 188 | 97.55 74 | 98.94 70 | 97.10 78 | 98.85 40 | 98.88 47 | 95.03 135 | 99.67 123 | 97.39 42 | 99.65 61 | 99.26 114 |
|
IterMVS-SCA-FT | | | 95.86 175 | 96.19 156 | 94.85 262 | 97.68 238 | 85.53 307 | 92.42 304 | 97.63 248 | 96.99 79 | 98.36 75 | 98.54 70 | 87.94 264 | 99.75 63 | 97.07 55 | 99.08 200 | 99.27 113 |
|
EI-MVSNet | | | 96.63 144 | 96.93 119 | 95.74 227 | 97.26 272 | 88.13 270 | 95.29 199 | 97.65 244 | 96.99 79 | 97.94 126 | 98.19 106 | 92.55 199 | 99.58 153 | 96.91 59 | 99.56 84 | 99.50 43 |
|
IterMVS-LS | | | 96.92 120 | 97.29 95 | 95.79 225 | 98.51 140 | 88.13 270 | 95.10 209 | 98.66 143 | 96.99 79 | 98.46 66 | 98.68 60 | 92.55 199 | 99.74 70 | 96.91 59 | 99.79 35 | 99.50 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 75 | 99.68 9 | 94.82 121 | 98.10 42 | 99.21 11 | 96.91 82 | 99.75 2 | 99.45 9 | 95.82 104 | 99.92 4 | 98.80 4 | 99.96 4 | 99.89 1 |
|
thres100view900 | | | 91.76 292 | 91.26 291 | 93.26 298 | 98.21 171 | 84.50 322 | 96.39 131 | 90.39 345 | 96.87 83 | 96.33 215 | 93.08 326 | 73.44 340 | 99.42 197 | 78.85 348 | 97.74 282 | 95.85 330 |
|
3Dnovator | | 96.53 2 | 97.61 80 | 97.64 69 | 97.50 125 | 97.74 234 | 93.65 169 | 98.49 20 | 98.88 80 | 96.86 84 | 97.11 171 | 98.55 69 | 95.82 104 | 99.73 76 | 95.94 89 | 99.42 136 | 99.13 138 |
|
test20.03 | | | 96.58 146 | 96.61 134 | 96.48 193 | 98.49 144 | 91.72 213 | 95.68 174 | 97.69 239 | 96.81 85 | 98.27 89 | 97.92 142 | 94.18 162 | 98.71 306 | 90.78 252 | 99.66 60 | 99.00 163 |
|
thres600view7 | | | 92.03 288 | 91.43 286 | 93.82 288 | 98.19 173 | 84.61 321 | 96.27 138 | 90.39 345 | 96.81 85 | 96.37 214 | 93.11 322 | 73.44 340 | 99.49 178 | 80.32 344 | 97.95 274 | 97.36 295 |
|
LCM-MVSNet-Re | | | 97.33 101 | 97.33 93 | 97.32 145 | 98.13 186 | 93.79 161 | 96.99 106 | 99.65 2 | 96.74 87 | 99.47 13 | 98.93 44 | 96.91 58 | 99.84 25 | 90.11 271 | 99.06 205 | 98.32 240 |
|
EPNet | | | 93.72 256 | 92.62 273 | 97.03 161 | 87.61 364 | 92.25 197 | 96.27 138 | 91.28 338 | 96.74 87 | 87.65 352 | 97.39 192 | 85.00 285 | 99.64 133 | 92.14 221 | 99.48 116 | 99.20 124 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_0728_THIRD | | | | | | | | | | 96.62 89 | 98.40 70 | 98.28 93 | 97.10 44 | 99.71 95 | 95.70 95 | 99.62 65 | 99.58 28 |
|
v10 | | | 97.55 84 | 97.97 41 | 96.31 202 | 98.60 130 | 89.64 241 | 97.44 82 | 99.02 49 | 96.60 90 | 98.72 49 | 99.16 29 | 93.48 177 | 99.72 80 | 98.76 6 | 99.92 14 | 99.58 28 |
|
Patchmtry | | | 95.03 209 | 94.59 221 | 96.33 200 | 94.83 332 | 90.82 225 | 96.38 133 | 97.20 260 | 96.59 91 | 97.49 150 | 98.57 66 | 77.67 316 | 99.38 216 | 92.95 214 | 99.62 65 | 98.80 196 |
|
hse-mvs3 | | | 96.29 156 | 95.63 179 | 98.26 69 | 98.50 143 | 96.11 71 | 96.90 108 | 97.09 266 | 96.58 92 | 97.21 165 | 98.19 106 | 84.14 290 | 99.78 42 | 95.89 92 | 96.17 323 | 98.89 184 |
|
SteuartSystems-ACMMP | | | 98.02 43 | 97.76 57 | 98.79 31 | 99.43 32 | 97.21 41 | 97.15 96 | 98.90 74 | 96.58 92 | 98.08 111 | 97.87 148 | 97.02 52 | 99.76 56 | 95.25 125 | 99.59 76 | 99.40 81 |
Skip Steuart: Steuart Systems R&D Blog. |
baseline | | | 97.44 93 | 97.78 56 | 96.43 195 | 98.52 139 | 90.75 228 | 96.84 110 | 99.03 47 | 96.51 94 | 97.86 136 | 98.02 128 | 96.67 69 | 99.36 221 | 97.09 53 | 99.47 118 | 99.19 125 |
|
MVSFormer | | | 96.14 163 | 96.36 150 | 95.49 238 | 97.68 238 | 87.81 277 | 98.67 11 | 99.02 49 | 96.50 95 | 94.48 273 | 96.15 268 | 86.90 274 | 99.92 4 | 98.73 7 | 99.13 192 | 98.74 204 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 40 | 99.63 12 | 96.30 65 | 98.67 11 | 99.02 49 | 96.50 95 | 99.32 20 | 99.44 10 | 97.43 30 | 99.92 4 | 98.73 7 | 99.95 5 | 99.86 2 |
|
Vis-MVSNet (Re-imp) | | | 95.11 204 | 94.85 205 | 95.87 223 | 99.12 81 | 89.17 249 | 97.54 79 | 94.92 306 | 96.50 95 | 96.58 203 | 97.27 203 | 83.64 293 | 99.48 181 | 88.42 296 | 99.67 58 | 98.97 167 |
|
UGNet | | | 96.81 130 | 96.56 138 | 97.58 116 | 96.64 290 | 93.84 159 | 97.75 62 | 97.12 265 | 96.47 98 | 93.62 297 | 98.88 47 | 93.22 182 | 99.53 168 | 95.61 103 | 99.69 55 | 99.36 91 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
JIA-IIPM | | | 91.79 291 | 90.69 300 | 95.11 250 | 93.80 345 | 90.98 222 | 94.16 253 | 91.78 334 | 96.38 99 | 90.30 340 | 99.30 18 | 72.02 344 | 98.90 288 | 88.28 298 | 90.17 350 | 95.45 338 |
|
HQP_MVS | | | 96.66 143 | 96.33 152 | 97.68 111 | 98.70 118 | 94.29 140 | 96.50 126 | 98.75 119 | 96.36 100 | 96.16 226 | 96.77 235 | 91.91 219 | 99.46 187 | 92.59 217 | 99.20 181 | 99.28 109 |
|
plane_prior2 | | | | | | | | 96.50 126 | | 96.36 100 | | | | | | | |
|
CSCG | | | 97.40 96 | 97.30 94 | 97.69 110 | 98.95 95 | 94.83 120 | 97.28 90 | 98.99 60 | 96.35 102 | 98.13 104 | 95.95 280 | 95.99 97 | 99.66 129 | 94.36 172 | 99.73 45 | 98.59 219 |
|
MP-MVS |  | | 97.64 77 | 97.18 104 | 99.00 12 | 99.32 45 | 97.77 17 | 97.49 80 | 98.73 123 | 96.27 103 | 95.59 247 | 97.75 160 | 96.30 91 | 99.78 42 | 93.70 198 | 99.48 116 | 99.45 66 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
tfpn200view9 | | | 91.55 294 | 91.00 293 | 93.21 301 | 98.02 192 | 84.35 324 | 95.70 171 | 90.79 342 | 96.26 104 | 95.90 237 | 92.13 339 | 73.62 338 | 99.42 197 | 78.85 348 | 97.74 282 | 95.85 330 |
|
thres400 | | | 91.68 293 | 91.00 293 | 93.71 290 | 98.02 192 | 84.35 324 | 95.70 171 | 90.79 342 | 96.26 104 | 95.90 237 | 92.13 339 | 73.62 338 | 99.42 197 | 78.85 348 | 97.74 282 | 97.36 295 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 33 | 99.69 8 | 96.48 59 | 98.54 18 | 99.22 10 | 96.23 106 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 2 | 98.89 3 | 99.95 5 | 99.84 5 |
|
RPSCF | | | 97.87 61 | 97.51 82 | 98.95 17 | 99.15 72 | 98.43 3 | 97.56 73 | 99.06 38 | 96.19 107 | 98.48 63 | 98.70 58 | 94.72 142 | 99.24 248 | 94.37 169 | 99.33 165 | 99.17 128 |
|
test_yl | | | 94.40 236 | 94.00 242 | 95.59 231 | 96.95 283 | 89.52 243 | 94.75 232 | 95.55 301 | 96.18 108 | 96.79 192 | 96.14 270 | 81.09 301 | 99.18 254 | 90.75 253 | 97.77 279 | 98.07 260 |
|
DCV-MVSNet | | | 94.40 236 | 94.00 242 | 95.59 231 | 96.95 283 | 89.52 243 | 94.75 232 | 95.55 301 | 96.18 108 | 96.79 192 | 96.14 270 | 81.09 301 | 99.18 254 | 90.75 253 | 97.77 279 | 98.07 260 |
|
SED-MVS | | | 97.94 51 | 97.90 44 | 98.07 83 | 99.22 57 | 95.35 102 | 96.79 113 | 98.83 100 | 96.11 110 | 99.08 31 | 98.24 99 | 97.87 20 | 99.72 80 | 95.44 114 | 99.51 106 | 99.14 135 |
|
test_241102_TWO | | | | | | | | | 98.83 100 | 96.11 110 | 98.62 51 | 98.24 99 | 96.92 57 | 99.72 80 | 95.44 114 | 99.49 112 | 99.49 51 |
|
CP-MVS | | | 97.92 55 | 97.56 79 | 98.99 13 | 98.99 93 | 97.82 15 | 97.93 50 | 98.96 67 | 96.11 110 | 96.89 190 | 97.45 185 | 96.85 63 | 99.78 42 | 95.19 128 | 99.63 64 | 99.38 85 |
|
HFP-MVS | | | 97.94 51 | 97.64 69 | 98.83 26 | 99.15 72 | 97.50 28 | 97.59 71 | 98.84 93 | 96.05 113 | 97.49 150 | 97.54 176 | 97.07 47 | 99.70 104 | 95.61 103 | 99.46 121 | 99.30 101 |
|
ACMMPR | | | 97.95 49 | 97.62 73 | 98.94 18 | 99.20 65 | 97.56 25 | 97.59 71 | 98.83 100 | 96.05 113 | 97.46 156 | 97.63 171 | 96.77 66 | 99.76 56 | 95.61 103 | 99.46 121 | 99.49 51 |
|
test_241102_ONE | | | | | | 99.22 57 | 95.35 102 | | 98.83 100 | 96.04 115 | 99.08 31 | 98.13 111 | 97.87 20 | 99.33 229 | | | |
|
mPP-MVS | | | 97.91 58 | 97.53 80 | 99.04 7 | 99.22 57 | 97.87 14 | 97.74 63 | 98.78 114 | 96.04 115 | 97.10 172 | 97.73 163 | 96.53 78 | 99.78 42 | 95.16 132 | 99.50 108 | 99.46 61 |
|
Fast-Effi-MVS+-dtu | | | 96.44 152 | 96.12 159 | 97.39 141 | 97.18 276 | 94.39 136 | 95.46 183 | 98.73 123 | 96.03 117 | 94.72 264 | 94.92 303 | 96.28 93 | 99.69 112 | 93.81 193 | 97.98 273 | 98.09 257 |
|
region2R | | | 97.92 55 | 97.59 76 | 98.92 22 | 99.22 57 | 97.55 26 | 97.60 70 | 98.84 93 | 96.00 118 | 97.22 163 | 97.62 172 | 96.87 62 | 99.76 56 | 95.48 110 | 99.43 133 | 99.46 61 |
|
MDA-MVSNet-bldmvs | | | 95.69 178 | 95.67 177 | 95.74 227 | 98.48 146 | 88.76 259 | 92.84 293 | 97.25 258 | 96.00 118 | 97.59 143 | 97.95 138 | 91.38 224 | 99.46 187 | 93.16 210 | 96.35 320 | 98.99 166 |
|
GST-MVS | | | 97.82 67 | 97.49 85 | 98.81 29 | 99.23 54 | 97.25 38 | 97.16 95 | 98.79 110 | 95.96 120 | 97.53 145 | 97.40 188 | 96.93 56 | 99.77 52 | 95.04 141 | 99.35 155 | 99.42 78 |
|
APDe-MVS | | | 98.14 34 | 98.03 40 | 98.47 54 | 98.72 113 | 96.04 73 | 98.07 44 | 99.10 28 | 95.96 120 | 98.59 55 | 98.69 59 | 96.94 54 | 99.81 31 | 96.64 61 | 99.58 78 | 99.57 32 |
|
SD-MVS | | | 97.37 98 | 97.70 60 | 96.35 199 | 98.14 183 | 95.13 113 | 96.54 125 | 98.92 72 | 95.94 122 | 99.19 28 | 98.08 117 | 97.74 22 | 95.06 356 | 95.24 126 | 99.54 93 | 98.87 190 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DVP-MVS | | | 97.78 70 | 97.65 66 | 98.16 76 | 99.24 52 | 95.51 94 | 96.74 116 | 98.23 193 | 95.92 123 | 98.40 70 | 98.28 93 | 97.06 49 | 99.71 95 | 95.48 110 | 99.52 101 | 99.26 114 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.24 52 | 95.51 94 | 96.89 109 | 98.89 75 | 95.92 123 | 98.64 50 | 98.31 86 | 97.06 49 | | | | |
|
v148 | | | 96.58 146 | 96.97 116 | 95.42 241 | 98.63 126 | 87.57 281 | 95.09 211 | 97.90 225 | 95.91 125 | 98.24 92 | 97.96 134 | 93.42 178 | 99.39 213 | 96.04 82 | 99.52 101 | 99.29 108 |
|
HPM-MVS_fast | | | 98.32 27 | 98.13 33 | 98.88 24 | 99.54 19 | 97.48 30 | 98.35 26 | 99.03 47 | 95.88 126 | 97.88 132 | 98.22 104 | 98.15 12 | 99.74 70 | 96.50 68 | 99.62 65 | 99.42 78 |
|
ETV-MVS | | | 96.13 164 | 95.90 171 | 96.82 172 | 97.76 232 | 93.89 155 | 95.40 189 | 98.95 69 | 95.87 127 | 95.58 248 | 91.00 349 | 96.36 90 | 99.72 80 | 93.36 202 | 98.83 230 | 96.85 311 |
|
Effi-MVS+-dtu | | | 96.81 130 | 96.09 161 | 98.99 13 | 96.90 287 | 98.69 2 | 96.42 129 | 98.09 212 | 95.86 128 | 95.15 255 | 95.54 291 | 94.26 159 | 99.81 31 | 94.06 182 | 98.51 256 | 98.47 227 |
|
mvs-test1 | | | 96.20 160 | 95.50 185 | 98.32 64 | 96.90 287 | 98.16 4 | 95.07 214 | 98.09 212 | 95.86 128 | 93.63 296 | 94.32 315 | 94.26 159 | 99.71 95 | 94.06 182 | 97.27 305 | 97.07 301 |
|
DPE-MVS |  | | 97.64 77 | 97.35 92 | 98.50 51 | 98.85 100 | 96.18 67 | 95.21 206 | 98.99 60 | 95.84 130 | 98.78 44 | 98.08 117 | 96.84 64 | 99.81 31 | 93.98 188 | 99.57 81 | 99.52 40 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 35 | 99.66 10 | 96.48 59 | 98.45 23 | 99.12 25 | 95.83 131 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 4 | 98.77 5 | 99.94 8 | 99.82 6 |
|
tttt0517 | | | 93.31 267 | 92.56 274 | 95.57 233 | 98.71 116 | 87.86 274 | 97.44 82 | 87.17 355 | 95.79 132 | 97.47 155 | 96.84 229 | 64.12 356 | 99.81 31 | 96.20 75 | 99.32 167 | 99.02 162 |
|
ZNCC-MVS | | | 97.92 55 | 97.62 73 | 98.83 26 | 99.32 45 | 97.24 39 | 97.45 81 | 98.84 93 | 95.76 133 | 96.93 187 | 97.43 186 | 97.26 39 | 99.79 38 | 96.06 79 | 99.53 96 | 99.45 66 |
|
UnsupCasMVSNet_eth | | | 95.91 172 | 95.73 176 | 96.44 194 | 98.48 146 | 91.52 216 | 95.31 197 | 98.45 164 | 95.76 133 | 97.48 153 | 97.54 176 | 89.53 250 | 98.69 308 | 94.43 165 | 94.61 338 | 99.13 138 |
|
ACMMP |  | | 98.05 41 | 97.75 59 | 98.93 21 | 99.23 54 | 97.60 22 | 98.09 43 | 98.96 67 | 95.75 135 | 97.91 128 | 98.06 124 | 96.89 59 | 99.76 56 | 95.32 121 | 99.57 81 | 99.43 77 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MSP-MVS | | | 97.45 92 | 96.92 120 | 99.03 8 | 99.26 48 | 97.70 18 | 97.66 66 | 98.89 75 | 95.65 136 | 98.51 60 | 96.46 253 | 92.15 208 | 99.81 31 | 95.14 135 | 98.58 253 | 99.58 28 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ITE_SJBPF | | | | | 97.85 99 | 98.64 122 | 96.66 53 | | 98.51 160 | 95.63 137 | 97.22 163 | 97.30 202 | 95.52 118 | 98.55 322 | 90.97 245 | 98.90 220 | 98.34 239 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 13 | 97.29 37 | 98.65 14 | 99.19 15 | 95.62 138 | 99.35 19 | 99.37 12 | 97.38 32 | 99.90 13 | 98.59 11 | 99.91 17 | 99.77 8 |
|
API-MVS | | | 95.09 206 | 95.01 198 | 95.31 244 | 96.61 291 | 94.02 151 | 96.83 111 | 97.18 262 | 95.60 139 | 95.79 239 | 94.33 314 | 94.54 152 | 98.37 334 | 85.70 320 | 98.52 254 | 93.52 346 |
|
GBi-Net | | | 96.99 114 | 96.80 126 | 97.56 117 | 97.96 200 | 93.67 165 | 98.23 32 | 98.66 143 | 95.59 140 | 97.99 119 | 99.19 24 | 89.51 251 | 99.73 76 | 94.60 158 | 99.44 126 | 99.30 101 |
|
test1 | | | 96.99 114 | 96.80 126 | 97.56 117 | 97.96 200 | 93.67 165 | 98.23 32 | 98.66 143 | 95.59 140 | 97.99 119 | 99.19 24 | 89.51 251 | 99.73 76 | 94.60 158 | 99.44 126 | 99.30 101 |
|
FMVSNet2 | | | 96.72 137 | 96.67 133 | 96.87 169 | 97.96 200 | 91.88 209 | 97.15 96 | 98.06 219 | 95.59 140 | 98.50 62 | 98.62 64 | 89.51 251 | 99.65 130 | 94.99 145 | 99.60 74 | 99.07 154 |
|
HPM-MVS++ |  | | 96.99 114 | 96.38 149 | 98.81 29 | 98.64 122 | 97.59 23 | 95.97 158 | 98.20 197 | 95.51 143 | 95.06 256 | 96.53 249 | 94.10 163 | 99.70 104 | 94.29 173 | 99.15 187 | 99.13 138 |
|
IterMVS | | | 95.42 192 | 95.83 172 | 94.20 285 | 97.52 251 | 83.78 328 | 92.41 305 | 97.47 255 | 95.49 144 | 98.06 113 | 98.49 73 | 87.94 264 | 99.58 153 | 96.02 84 | 99.02 207 | 99.23 121 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+ | | | 96.19 161 | 96.01 164 | 96.71 178 | 97.43 259 | 92.19 202 | 96.12 148 | 99.10 28 | 95.45 145 | 93.33 310 | 94.71 306 | 97.23 42 | 99.56 160 | 93.21 209 | 97.54 294 | 98.37 233 |
|
PGM-MVS | | | 97.88 60 | 97.52 81 | 98.96 16 | 99.20 65 | 97.62 21 | 97.09 100 | 99.06 38 | 95.45 145 | 97.55 144 | 97.94 139 | 97.11 43 | 99.78 42 | 94.77 154 | 99.46 121 | 99.48 56 |
|
HPM-MVS |  | | 98.11 38 | 97.83 51 | 98.92 22 | 99.42 34 | 97.46 31 | 98.57 15 | 99.05 40 | 95.43 147 | 97.41 159 | 97.50 181 | 97.98 15 | 99.79 38 | 95.58 106 | 99.57 81 | 99.50 43 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
NCCC | | | 96.52 148 | 95.99 166 | 98.10 81 | 97.81 216 | 95.68 86 | 95.00 220 | 98.20 197 | 95.39 148 | 95.40 251 | 96.36 260 | 93.81 170 | 99.45 191 | 93.55 201 | 98.42 258 | 99.17 128 |
|
wuyk23d | | | 93.25 269 | 95.20 189 | 87.40 341 | 96.07 310 | 95.38 99 | 97.04 103 | 94.97 305 | 95.33 149 | 99.70 5 | 98.11 115 | 98.14 13 | 91.94 358 | 77.76 351 | 99.68 57 | 74.89 357 |
|
SF-MVS | | | 97.60 81 | 97.39 89 | 98.22 74 | 98.93 96 | 95.69 84 | 97.05 102 | 99.10 28 | 95.32 150 | 97.83 138 | 97.88 146 | 96.44 85 | 99.72 80 | 94.59 161 | 99.39 144 | 99.25 118 |
|
MSDG | | | 95.33 195 | 95.13 192 | 95.94 220 | 97.40 261 | 91.85 210 | 91.02 330 | 98.37 178 | 95.30 151 | 96.31 218 | 95.99 275 | 94.51 153 | 98.38 332 | 89.59 279 | 97.65 291 | 97.60 289 |
|
plane_prior3 | | | | | | | 94.51 132 | | | 95.29 152 | 96.16 226 | | | | | | |
|
ACMM | | 93.33 11 | 98.05 41 | 97.79 53 | 98.85 25 | 99.15 72 | 97.55 26 | 96.68 122 | 98.83 100 | 95.21 153 | 98.36 75 | 98.13 111 | 98.13 14 | 99.62 143 | 96.04 82 | 99.54 93 | 99.39 83 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVG-OURS-SEG-HR | | | 97.38 97 | 97.07 111 | 98.30 67 | 99.01 92 | 97.41 34 | 94.66 234 | 99.02 49 | 95.20 154 | 98.15 101 | 97.52 179 | 98.83 4 | 98.43 328 | 94.87 147 | 96.41 319 | 99.07 154 |
|
XVG-OURS | | | 97.12 110 | 96.74 129 | 98.26 69 | 98.99 93 | 97.45 32 | 93.82 269 | 99.05 40 | 95.19 155 | 98.32 83 | 97.70 166 | 95.22 130 | 98.41 329 | 94.27 174 | 98.13 268 | 98.93 175 |
|
v2v482 | | | 96.78 132 | 97.06 112 | 95.95 218 | 98.57 134 | 88.77 258 | 95.36 192 | 98.26 190 | 95.18 156 | 97.85 137 | 98.23 101 | 92.58 198 | 99.63 135 | 97.80 27 | 99.69 55 | 99.45 66 |
|
LPG-MVS_test | | | 97.94 51 | 97.67 63 | 98.74 35 | 99.15 72 | 97.02 42 | 97.09 100 | 99.02 49 | 95.15 157 | 98.34 78 | 98.23 101 | 97.91 17 | 99.70 104 | 94.41 166 | 99.73 45 | 99.50 43 |
|
LGP-MVS_train | | | | | 98.74 35 | 99.15 72 | 97.02 42 | | 99.02 49 | 95.15 157 | 98.34 78 | 98.23 101 | 97.91 17 | 99.70 104 | 94.41 166 | 99.73 45 | 99.50 43 |
|
thres200 | | | 91.00 300 | 90.42 304 | 92.77 311 | 97.47 257 | 83.98 327 | 94.01 261 | 91.18 340 | 95.12 159 | 95.44 249 | 91.21 347 | 73.93 334 | 99.31 233 | 77.76 351 | 97.63 292 | 95.01 340 |
|
testgi | | | 96.07 165 | 96.50 146 | 94.80 265 | 99.26 48 | 87.69 280 | 95.96 159 | 98.58 154 | 95.08 160 | 98.02 118 | 96.25 264 | 97.92 16 | 97.60 348 | 88.68 293 | 98.74 238 | 99.11 147 |
|
ACMMP_NAP | | | 97.89 59 | 97.63 71 | 98.67 41 | 99.35 41 | 96.84 47 | 96.36 134 | 98.79 110 | 95.07 161 | 97.88 132 | 98.35 82 | 97.24 41 | 99.72 80 | 96.05 81 | 99.58 78 | 99.45 66 |
|
XVG-ACMP-BASELINE | | | 97.58 83 | 97.28 97 | 98.49 52 | 99.16 69 | 96.90 46 | 96.39 131 | 98.98 63 | 95.05 162 | 98.06 113 | 98.02 128 | 95.86 100 | 99.56 160 | 94.37 169 | 99.64 63 | 99.00 163 |
|
MVS_0304 | | | 95.50 185 | 95.05 197 | 96.84 171 | 96.28 299 | 93.12 181 | 97.00 105 | 96.16 286 | 95.03 163 | 89.22 346 | 97.70 166 | 90.16 242 | 99.48 181 | 94.51 163 | 99.34 158 | 97.93 274 |
|
xxxxxxxxxxxxxcwj | | | 97.24 107 | 97.03 114 | 97.89 96 | 98.48 146 | 94.71 125 | 94.53 239 | 99.07 37 | 95.02 164 | 97.83 138 | 97.88 146 | 96.44 85 | 99.72 80 | 94.59 161 | 99.39 144 | 99.25 118 |
|
save fliter | | | | | | 98.48 146 | 94.71 125 | 94.53 239 | 98.41 172 | 95.02 164 | | | | | | | |
|
CANet | | | 95.86 175 | 95.65 178 | 96.49 192 | 96.41 296 | 90.82 225 | 94.36 242 | 98.41 172 | 94.94 166 | 92.62 324 | 96.73 238 | 92.68 194 | 99.71 95 | 95.12 138 | 99.60 74 | 98.94 171 |
|
MVS_Test | | | 96.27 157 | 96.79 128 | 94.73 268 | 96.94 285 | 86.63 296 | 96.18 145 | 98.33 184 | 94.94 166 | 96.07 229 | 98.28 93 | 95.25 129 | 99.26 245 | 97.21 47 | 97.90 277 | 98.30 243 |
|
XXY-MVS | | | 97.54 85 | 97.70 60 | 97.07 158 | 99.46 28 | 92.21 199 | 97.22 94 | 99.00 57 | 94.93 168 | 98.58 56 | 98.92 45 | 97.31 35 | 99.41 206 | 94.44 164 | 99.43 133 | 99.59 27 |
|
bset_n11_16_dypcd | | | 94.53 234 | 93.95 245 | 96.25 204 | 97.56 248 | 89.85 238 | 88.52 349 | 91.32 337 | 94.90 169 | 97.51 147 | 96.38 259 | 82.34 297 | 99.78 42 | 97.22 45 | 99.80 33 | 99.12 143 |
|
new-patchmatchnet | | | 95.67 180 | 96.58 136 | 92.94 309 | 97.48 253 | 80.21 342 | 92.96 292 | 98.19 202 | 94.83 170 | 98.82 42 | 98.79 51 | 93.31 180 | 99.51 176 | 95.83 93 | 99.04 206 | 99.12 143 |
|
E-PMN | | | 89.52 313 | 89.78 308 | 88.73 336 | 93.14 351 | 77.61 349 | 83.26 356 | 92.02 331 | 94.82 171 | 93.71 293 | 93.11 322 | 75.31 330 | 96.81 352 | 85.81 319 | 96.81 311 | 91.77 352 |
|
MVS_111021_HR | | | 96.73 136 | 96.54 141 | 97.27 147 | 98.35 157 | 93.66 168 | 93.42 281 | 98.36 179 | 94.74 172 | 96.58 203 | 96.76 237 | 96.54 77 | 98.99 280 | 94.87 147 | 99.27 176 | 99.15 132 |
|
MSLP-MVS++ | | | 96.42 154 | 96.71 130 | 95.57 233 | 97.82 215 | 90.56 232 | 95.71 170 | 98.84 93 | 94.72 173 | 96.71 198 | 97.39 192 | 94.91 140 | 98.10 343 | 95.28 123 | 99.02 207 | 98.05 267 |
|
baseline1 | | | 93.14 271 | 92.64 272 | 94.62 271 | 97.34 267 | 87.20 289 | 96.67 123 | 93.02 322 | 94.71 174 | 96.51 208 | 95.83 283 | 81.64 298 | 98.60 318 | 90.00 274 | 88.06 353 | 98.07 260 |
|
EIA-MVS | | | 96.04 167 | 95.77 175 | 96.85 170 | 97.80 220 | 92.98 184 | 96.12 148 | 99.16 17 | 94.65 175 | 93.77 291 | 91.69 344 | 95.68 113 | 99.67 123 | 94.18 177 | 98.85 228 | 97.91 275 |
|
EMVS | | | 89.06 315 | 89.22 311 | 88.61 337 | 93.00 353 | 77.34 351 | 82.91 357 | 90.92 341 | 94.64 176 | 92.63 323 | 91.81 342 | 76.30 326 | 97.02 350 | 83.83 336 | 96.90 308 | 91.48 353 |
|
V42 | | | 97.04 112 | 97.16 105 | 96.68 182 | 98.59 132 | 91.05 220 | 96.33 136 | 98.36 179 | 94.60 177 | 97.99 119 | 98.30 90 | 93.32 179 | 99.62 143 | 97.40 41 | 99.53 96 | 99.38 85 |
|
CNVR-MVS | | | 96.92 120 | 96.55 139 | 98.03 89 | 98.00 198 | 95.54 92 | 94.87 225 | 98.17 203 | 94.60 177 | 96.38 213 | 97.05 217 | 95.67 114 | 99.36 221 | 95.12 138 | 99.08 200 | 99.19 125 |
|
MVS_111021_LR | | | 96.82 129 | 96.55 139 | 97.62 114 | 98.27 164 | 95.34 104 | 93.81 271 | 98.33 184 | 94.59 179 | 96.56 205 | 96.63 244 | 96.61 73 | 98.73 304 | 94.80 150 | 99.34 158 | 98.78 199 |
|
OPM-MVS | | | 97.54 85 | 97.25 98 | 98.41 57 | 99.11 82 | 96.61 55 | 95.24 204 | 98.46 163 | 94.58 180 | 98.10 108 | 98.07 119 | 97.09 46 | 99.39 213 | 95.16 132 | 99.44 126 | 99.21 123 |
|
EG-PatchMatch MVS | | | 97.69 75 | 97.79 53 | 97.40 140 | 99.06 87 | 93.52 172 | 95.96 159 | 98.97 66 | 94.55 181 | 98.82 42 | 98.76 54 | 97.31 35 | 99.29 240 | 97.20 49 | 99.44 126 | 99.38 85 |
|
ab-mvs | | | 96.59 145 | 96.59 135 | 96.60 184 | 98.64 122 | 92.21 199 | 98.35 26 | 97.67 240 | 94.45 182 | 96.99 182 | 98.79 51 | 94.96 138 | 99.49 178 | 90.39 268 | 99.07 202 | 98.08 258 |
|
RRT_test8_iter05 | | | 92.46 279 | 92.52 275 | 92.29 320 | 95.33 327 | 77.43 350 | 95.73 169 | 98.55 156 | 94.41 183 | 97.46 156 | 97.72 165 | 57.44 361 | 99.74 70 | 96.92 58 | 99.14 188 | 99.69 20 |
|
CNLPA | | | 95.04 207 | 94.47 226 | 96.75 176 | 97.81 216 | 95.25 106 | 94.12 258 | 97.89 226 | 94.41 183 | 94.57 268 | 95.69 285 | 90.30 239 | 98.35 335 | 86.72 315 | 98.76 236 | 96.64 320 |
|
TinyColmap | | | 96.00 170 | 96.34 151 | 94.96 256 | 97.90 206 | 87.91 273 | 94.13 257 | 98.49 161 | 94.41 183 | 98.16 99 | 97.76 157 | 96.29 92 | 98.68 311 | 90.52 264 | 99.42 136 | 98.30 243 |
|
AllTest | | | 97.20 109 | 96.92 120 | 98.06 85 | 99.08 84 | 96.16 68 | 97.14 98 | 99.16 17 | 94.35 186 | 97.78 141 | 98.07 119 | 95.84 101 | 99.12 263 | 91.41 235 | 99.42 136 | 98.91 180 |
|
TestCases | | | | | 98.06 85 | 99.08 84 | 96.16 68 | | 99.16 17 | 94.35 186 | 97.78 141 | 98.07 119 | 95.84 101 | 99.12 263 | 91.41 235 | 99.42 136 | 98.91 180 |
|
plane_prior | | | | | | | 94.29 140 | 95.42 186 | | 94.31 188 | | | | | | 98.93 217 | |
|
testtj | | | 96.69 140 | 96.13 158 | 98.36 61 | 98.46 150 | 96.02 75 | 96.44 128 | 98.70 133 | 94.26 189 | 96.79 192 | 97.13 209 | 94.07 164 | 99.75 63 | 90.53 263 | 98.80 232 | 99.31 100 |
|
#test# | | | 97.62 79 | 97.22 102 | 98.83 26 | 99.15 72 | 97.50 28 | 96.81 112 | 98.84 93 | 94.25 190 | 97.49 150 | 97.54 176 | 97.07 47 | 99.70 104 | 94.37 169 | 99.46 121 | 99.30 101 |
|
v1144 | | | 96.84 125 | 97.08 110 | 96.13 211 | 98.42 152 | 89.28 248 | 95.41 188 | 98.67 141 | 94.21 191 | 97.97 123 | 98.31 86 | 93.06 184 | 99.65 130 | 98.06 19 | 99.62 65 | 99.45 66 |
|
test_prior3 | | | 95.91 172 | 95.39 186 | 97.46 133 | 97.79 226 | 94.26 144 | 93.33 286 | 98.42 170 | 94.21 191 | 94.02 284 | 96.25 264 | 93.64 174 | 99.34 226 | 91.90 224 | 98.96 211 | 98.79 197 |
|
test_prior2 | | | | | | | | 93.33 286 | | 94.21 191 | 94.02 284 | 96.25 264 | 93.64 174 | | 91.90 224 | 98.96 211 | |
|
CS-MVS | | | 95.86 175 | 95.59 182 | 96.69 180 | 97.85 208 | 93.14 180 | 96.42 129 | 99.25 9 | 94.17 194 | 93.56 301 | 90.76 352 | 96.05 96 | 99.72 80 | 93.28 205 | 98.91 219 | 97.21 298 |
|
DELS-MVS | | | 96.17 162 | 96.23 154 | 95.99 214 | 97.55 250 | 90.04 235 | 92.38 306 | 98.52 158 | 94.13 195 | 96.55 207 | 97.06 216 | 94.99 137 | 99.58 153 | 95.62 102 | 99.28 174 | 98.37 233 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
FMVSNet3 | | | 95.26 199 | 94.94 199 | 96.22 207 | 96.53 293 | 90.06 234 | 95.99 156 | 97.66 242 | 94.11 196 | 97.99 119 | 97.91 143 | 80.22 306 | 99.63 135 | 94.60 158 | 99.44 126 | 98.96 168 |
|
diffmvs | | | 96.04 167 | 96.23 154 | 95.46 240 | 97.35 263 | 88.03 272 | 93.42 281 | 99.08 34 | 94.09 197 | 96.66 200 | 96.93 224 | 93.85 169 | 99.29 240 | 96.01 86 | 98.67 243 | 99.06 156 |
|
thisisatest0530 | | | 92.71 276 | 91.76 284 | 95.56 235 | 98.42 152 | 88.23 265 | 96.03 153 | 87.35 354 | 94.04 198 | 96.56 205 | 95.47 293 | 64.03 357 | 99.77 52 | 94.78 153 | 99.11 196 | 98.68 212 |
|
PMMVS2 | | | 93.66 259 | 94.07 239 | 92.45 317 | 97.57 246 | 80.67 341 | 86.46 352 | 96.00 289 | 93.99 199 | 97.10 172 | 97.38 194 | 89.90 244 | 97.82 345 | 88.76 290 | 99.47 118 | 98.86 191 |
|
BH-untuned | | | 94.69 224 | 94.75 211 | 94.52 277 | 97.95 203 | 87.53 282 | 94.07 259 | 97.01 269 | 93.99 199 | 97.10 172 | 95.65 287 | 92.65 196 | 98.95 287 | 87.60 306 | 96.74 313 | 97.09 300 |
|
RRT_MVS | | | 94.90 212 | 94.07 239 | 97.39 141 | 93.18 349 | 93.21 179 | 95.26 201 | 97.49 252 | 93.94 201 | 98.25 90 | 97.85 149 | 72.96 342 | 99.84 25 | 97.90 22 | 99.78 38 | 99.14 135 |
|
DeepC-MVS | | 95.41 4 | 97.82 67 | 97.70 60 | 98.16 76 | 98.78 107 | 95.72 82 | 96.23 143 | 99.02 49 | 93.92 202 | 98.62 51 | 98.99 39 | 97.69 23 | 99.62 143 | 96.18 76 | 99.87 24 | 99.15 132 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PM-MVS | | | 97.36 100 | 97.10 108 | 98.14 80 | 98.91 98 | 96.77 49 | 96.20 144 | 98.63 149 | 93.82 203 | 98.54 58 | 98.33 84 | 93.98 166 | 99.05 273 | 95.99 87 | 99.45 125 | 98.61 218 |
|
testdata1 | | | | | | | | 92.77 295 | | 93.78 204 | | | | | | | |
|
v1192 | | | 96.83 128 | 97.06 112 | 96.15 210 | 98.28 162 | 89.29 247 | 95.36 192 | 98.77 115 | 93.73 205 | 98.11 105 | 98.34 83 | 93.02 188 | 99.67 123 | 98.35 14 | 99.58 78 | 99.50 43 |
|
ACMP | | 92.54 13 | 97.47 91 | 97.10 108 | 98.55 50 | 99.04 90 | 96.70 51 | 96.24 142 | 98.89 75 | 93.71 206 | 97.97 123 | 97.75 160 | 97.44 29 | 99.63 135 | 93.22 208 | 99.70 54 | 99.32 95 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
BH-RMVSNet | | | 94.56 232 | 94.44 229 | 94.91 257 | 97.57 246 | 87.44 284 | 93.78 272 | 96.26 285 | 93.69 207 | 96.41 212 | 96.50 252 | 92.10 211 | 99.00 278 | 85.96 318 | 97.71 285 | 98.31 241 |
|
Patchmatch-test | | | 93.60 261 | 93.25 257 | 94.63 270 | 96.14 309 | 87.47 283 | 96.04 152 | 94.50 310 | 93.57 208 | 96.47 209 | 96.97 221 | 76.50 324 | 98.61 316 | 90.67 259 | 98.41 259 | 97.81 281 |
|
PHI-MVS | | | 96.96 118 | 96.53 142 | 98.25 72 | 97.48 253 | 96.50 58 | 96.76 115 | 98.85 88 | 93.52 209 | 96.19 225 | 96.85 228 | 95.94 98 | 99.42 197 | 93.79 194 | 99.43 133 | 98.83 193 |
|
miper_lstm_enhance | | | 94.81 217 | 94.80 209 | 94.85 262 | 96.16 306 | 86.45 298 | 91.14 327 | 98.20 197 | 93.49 210 | 97.03 179 | 97.37 196 | 84.97 286 | 99.26 245 | 95.28 123 | 99.56 84 | 98.83 193 |
|
cl_fuxian | | | 95.20 200 | 95.32 187 | 94.83 264 | 96.19 304 | 86.43 299 | 91.83 314 | 98.35 183 | 93.47 211 | 97.36 160 | 97.26 204 | 88.69 257 | 99.28 242 | 95.41 120 | 99.36 150 | 98.78 199 |
|
eth_miper_zixun_eth | | | 94.89 213 | 94.93 201 | 94.75 267 | 95.99 311 | 86.12 302 | 91.35 320 | 98.49 161 | 93.40 212 | 97.12 170 | 97.25 205 | 86.87 276 | 99.35 224 | 95.08 140 | 98.82 231 | 98.78 199 |
|
EPNet_dtu | | | 91.39 296 | 90.75 299 | 93.31 297 | 90.48 361 | 82.61 331 | 94.80 229 | 92.88 324 | 93.39 213 | 81.74 360 | 94.90 304 | 81.36 300 | 99.11 266 | 88.28 298 | 98.87 224 | 98.21 252 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ETH3D-3000-0.1 | | | 96.89 124 | 96.46 147 | 98.16 76 | 98.62 127 | 95.69 84 | 95.96 159 | 98.98 63 | 93.36 214 | 97.04 178 | 97.31 201 | 94.93 139 | 99.63 135 | 92.60 215 | 99.34 158 | 99.17 128 |
|
cl-mvsnet_ | | | 94.73 219 | 94.64 215 | 95.01 254 | 95.85 314 | 87.00 291 | 91.33 321 | 98.08 214 | 93.34 215 | 97.10 172 | 97.33 199 | 84.01 292 | 99.30 236 | 95.14 135 | 99.56 84 | 98.71 209 |
|
cl-mvsnet1 | | | 94.73 219 | 94.64 215 | 95.01 254 | 95.86 313 | 87.00 291 | 91.33 321 | 98.08 214 | 93.34 215 | 97.10 172 | 97.34 198 | 84.02 291 | 99.31 233 | 95.15 134 | 99.55 90 | 98.72 207 |
|
mvs_anonymous | | | 95.36 194 | 96.07 163 | 93.21 301 | 96.29 298 | 81.56 337 | 94.60 236 | 97.66 242 | 93.30 217 | 96.95 186 | 98.91 46 | 93.03 187 | 99.38 216 | 96.60 62 | 97.30 304 | 98.69 210 |
|
TSAR-MVS + GP. | | | 96.47 151 | 96.12 159 | 97.49 128 | 97.74 234 | 95.23 107 | 94.15 254 | 96.90 273 | 93.26 218 | 98.04 116 | 96.70 240 | 94.41 155 | 98.89 290 | 94.77 154 | 99.14 188 | 98.37 233 |
|
9.14 | | | | 96.69 131 | | 98.53 138 | | 96.02 154 | 98.98 63 | 93.23 219 | 97.18 166 | 97.46 184 | 96.47 83 | 99.62 143 | 92.99 212 | 99.32 167 | |
|
v1921920 | | | 96.72 137 | 96.96 118 | 95.99 214 | 98.21 171 | 88.79 257 | 95.42 186 | 98.79 110 | 93.22 220 | 98.19 97 | 98.26 98 | 92.68 194 | 99.70 104 | 98.34 15 | 99.55 90 | 99.49 51 |
|
CANet_DTU | | | 94.65 228 | 94.21 235 | 95.96 216 | 95.90 312 | 89.68 240 | 93.92 266 | 97.83 232 | 93.19 221 | 90.12 341 | 95.64 288 | 88.52 258 | 99.57 159 | 93.27 207 | 99.47 118 | 98.62 216 |
|
HQP-NCC | | | | | | 97.85 208 | | 94.26 244 | | 93.18 222 | 92.86 316 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 208 | | 94.26 244 | | 93.18 222 | 92.86 316 | | | | | | |
|
HQP-MVS | | | 95.17 203 | 94.58 222 | 96.92 165 | 97.85 208 | 92.47 193 | 94.26 244 | 98.43 167 | 93.18 222 | 92.86 316 | 95.08 297 | 90.33 236 | 99.23 250 | 90.51 265 | 98.74 238 | 99.05 158 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 134 | 96.51 145 | 97.44 136 | 97.69 237 | 94.15 147 | 96.02 154 | 98.43 167 | 93.17 225 | 97.30 161 | 97.38 194 | 95.48 120 | 99.28 242 | 93.74 195 | 99.34 158 | 98.88 188 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
v1240 | | | 96.74 134 | 97.02 115 | 95.91 221 | 98.18 176 | 88.52 260 | 95.39 190 | 98.88 80 | 93.15 226 | 98.46 66 | 98.40 80 | 92.80 191 | 99.71 95 | 98.45 13 | 99.49 112 | 99.49 51 |
|
AdaColmap |  | | 95.11 204 | 94.62 218 | 96.58 186 | 97.33 269 | 94.45 135 | 94.92 223 | 98.08 214 | 93.15 226 | 93.98 287 | 95.53 292 | 94.34 157 | 99.10 268 | 85.69 321 | 98.61 250 | 96.20 328 |
|
CL-MVSNet_2432*1600 | | | 95.04 207 | 94.79 210 | 95.82 224 | 97.51 252 | 89.79 239 | 91.14 327 | 96.82 276 | 93.05 228 | 96.72 197 | 96.40 257 | 90.82 230 | 99.16 259 | 91.95 223 | 98.66 245 | 98.50 225 |
|
v144192 | | | 96.69 140 | 96.90 122 | 96.03 213 | 98.25 167 | 88.92 252 | 95.49 182 | 98.77 115 | 93.05 228 | 98.09 109 | 98.29 92 | 92.51 203 | 99.70 104 | 98.11 17 | 99.56 84 | 99.47 59 |
|
TSAR-MVS + MP. | | | 97.42 94 | 97.23 101 | 98.00 90 | 99.38 38 | 95.00 116 | 97.63 69 | 98.20 197 | 93.00 230 | 98.16 99 | 98.06 124 | 95.89 99 | 99.72 80 | 95.67 97 | 99.10 198 | 99.28 109 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xiu_mvs_v1_base_debu | | | 95.62 181 | 95.96 168 | 94.60 272 | 98.01 194 | 88.42 261 | 93.99 262 | 98.21 194 | 92.98 231 | 95.91 234 | 94.53 309 | 96.39 87 | 99.72 80 | 95.43 117 | 98.19 265 | 95.64 334 |
|
xiu_mvs_v1_base | | | 95.62 181 | 95.96 168 | 94.60 272 | 98.01 194 | 88.42 261 | 93.99 262 | 98.21 194 | 92.98 231 | 95.91 234 | 94.53 309 | 96.39 87 | 99.72 80 | 95.43 117 | 98.19 265 | 95.64 334 |
|
xiu_mvs_v1_base_debi | | | 95.62 181 | 95.96 168 | 94.60 272 | 98.01 194 | 88.42 261 | 93.99 262 | 98.21 194 | 92.98 231 | 95.91 234 | 94.53 309 | 96.39 87 | 99.72 80 | 95.43 117 | 98.19 265 | 95.64 334 |
|
PAPM_NR | | | 94.61 230 | 94.17 237 | 95.96 216 | 98.36 156 | 91.23 218 | 95.93 162 | 97.95 222 | 92.98 231 | 93.42 308 | 94.43 313 | 90.53 233 | 98.38 332 | 87.60 306 | 96.29 321 | 98.27 247 |
|
APD-MVS |  | | 97.00 113 | 96.53 142 | 98.41 57 | 98.55 136 | 96.31 64 | 96.32 137 | 98.77 115 | 92.96 235 | 97.44 158 | 97.58 175 | 95.84 101 | 99.74 70 | 91.96 222 | 99.35 155 | 99.19 125 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CPTT-MVS | | | 96.69 140 | 96.08 162 | 98.49 52 | 98.89 99 | 96.64 54 | 97.25 91 | 98.77 115 | 92.89 236 | 96.01 232 | 97.13 209 | 92.23 207 | 99.67 123 | 92.24 220 | 99.34 158 | 99.17 128 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 122 | 96.43 148 | 98.31 66 | 97.48 253 | 97.23 40 | 92.56 301 | 98.60 151 | 92.84 237 | 98.54 58 | 97.40 188 | 96.64 72 | 98.78 299 | 94.40 168 | 99.41 142 | 98.93 175 |
|
FMVSNet5 | | | 93.39 265 | 92.35 276 | 96.50 191 | 95.83 315 | 90.81 227 | 97.31 88 | 98.27 188 | 92.74 238 | 96.27 220 | 98.28 93 | 62.23 358 | 99.67 123 | 90.86 248 | 99.36 150 | 99.03 160 |
|
YYNet1 | | | 94.73 219 | 94.84 206 | 94.41 280 | 97.47 257 | 85.09 316 | 90.29 336 | 95.85 294 | 92.52 239 | 97.53 145 | 97.76 157 | 91.97 214 | 99.18 254 | 93.31 204 | 96.86 309 | 98.95 169 |
|
MDA-MVSNet_test_wron | | | 94.73 219 | 94.83 208 | 94.42 279 | 97.48 253 | 85.15 314 | 90.28 337 | 95.87 293 | 92.52 239 | 97.48 153 | 97.76 157 | 91.92 218 | 99.17 258 | 93.32 203 | 96.80 312 | 98.94 171 |
|
MG-MVS | | | 94.08 249 | 94.00 242 | 94.32 282 | 97.09 279 | 85.89 304 | 93.19 290 | 95.96 291 | 92.52 239 | 94.93 262 | 97.51 180 | 89.54 248 | 98.77 300 | 87.52 309 | 97.71 285 | 98.31 241 |
|
MP-MVS-pluss | | | 97.69 75 | 97.36 91 | 98.70 39 | 99.50 25 | 96.84 47 | 95.38 191 | 98.99 60 | 92.45 242 | 98.11 105 | 98.31 86 | 97.25 40 | 99.77 52 | 96.60 62 | 99.62 65 | 99.48 56 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
MVSTER | | | 94.21 243 | 93.93 246 | 95.05 253 | 95.83 315 | 86.46 297 | 95.18 207 | 97.65 244 | 92.41 243 | 97.94 126 | 98.00 132 | 72.39 343 | 99.58 153 | 96.36 72 | 99.56 84 | 99.12 143 |
|
LF4IMVS | | | 96.07 165 | 95.63 179 | 97.36 143 | 98.19 173 | 95.55 91 | 95.44 184 | 98.82 108 | 92.29 244 | 95.70 245 | 96.55 247 | 92.63 197 | 98.69 308 | 91.75 231 | 99.33 165 | 97.85 277 |
|
MIMVSNet | | | 93.42 264 | 92.86 263 | 95.10 251 | 98.17 178 | 88.19 266 | 98.13 41 | 93.69 314 | 92.07 245 | 95.04 259 | 98.21 105 | 80.95 303 | 99.03 277 | 81.42 342 | 98.06 271 | 98.07 260 |
|
test-LLR | | | 89.97 309 | 89.90 307 | 90.16 331 | 94.24 340 | 74.98 356 | 89.89 340 | 89.06 350 | 92.02 246 | 89.97 342 | 90.77 350 | 73.92 335 | 98.57 319 | 91.88 226 | 97.36 300 | 96.92 306 |
|
test0.0.03 1 | | | 90.11 305 | 89.21 312 | 92.83 310 | 93.89 344 | 86.87 294 | 91.74 315 | 88.74 352 | 92.02 246 | 94.71 265 | 91.14 348 | 73.92 335 | 94.48 357 | 83.75 338 | 92.94 343 | 97.16 299 |
|
xiu_mvs_v2_base | | | 94.22 241 | 94.63 217 | 92.99 307 | 97.32 270 | 84.84 319 | 92.12 309 | 97.84 230 | 91.96 248 | 94.17 278 | 93.43 320 | 96.07 95 | 99.71 95 | 91.27 238 | 97.48 297 | 94.42 343 |
|
PS-MVSNAJ | | | 94.10 247 | 94.47 226 | 93.00 306 | 97.35 263 | 84.88 318 | 91.86 313 | 97.84 230 | 91.96 248 | 94.17 278 | 92.50 336 | 95.82 104 | 99.71 95 | 91.27 238 | 97.48 297 | 94.40 344 |
|
OMC-MVS | | | 96.48 150 | 96.00 165 | 97.91 95 | 98.30 159 | 96.01 76 | 94.86 226 | 98.60 151 | 91.88 250 | 97.18 166 | 97.21 207 | 96.11 94 | 99.04 274 | 90.49 267 | 99.34 158 | 98.69 210 |
|
GA-MVS | | | 92.83 274 | 92.15 279 | 94.87 261 | 96.97 282 | 87.27 288 | 90.03 338 | 96.12 287 | 91.83 251 | 94.05 283 | 94.57 307 | 76.01 328 | 98.97 286 | 92.46 219 | 97.34 302 | 98.36 238 |
|
miper_ehance_all_eth | | | 94.69 224 | 94.70 212 | 94.64 269 | 95.77 317 | 86.22 301 | 91.32 323 | 98.24 192 | 91.67 252 | 97.05 177 | 96.65 243 | 88.39 261 | 99.22 252 | 94.88 146 | 98.34 260 | 98.49 226 |
|
SMA-MVS |  | | 97.48 90 | 97.11 107 | 98.60 46 | 98.83 101 | 96.67 52 | 96.74 116 | 98.73 123 | 91.61 253 | 98.48 63 | 98.36 81 | 96.53 78 | 99.68 118 | 95.17 130 | 99.54 93 | 99.45 66 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
Fast-Effi-MVS+ | | | 95.49 186 | 95.07 194 | 96.75 176 | 97.67 241 | 92.82 187 | 94.22 250 | 98.60 151 | 91.61 253 | 93.42 308 | 92.90 329 | 96.73 68 | 99.70 104 | 92.60 215 | 97.89 278 | 97.74 282 |
|
SCA | | | 93.38 266 | 93.52 252 | 92.96 308 | 96.24 300 | 81.40 338 | 93.24 288 | 94.00 313 | 91.58 255 | 94.57 268 | 96.97 221 | 87.94 264 | 99.42 197 | 89.47 281 | 97.66 290 | 98.06 264 |
|
Patchmatch-RL test | | | 94.66 227 | 94.49 225 | 95.19 248 | 98.54 137 | 88.91 253 | 92.57 300 | 98.74 121 | 91.46 256 | 98.32 83 | 97.75 160 | 77.31 321 | 98.81 297 | 96.06 79 | 99.61 71 | 97.85 277 |
|
KD-MVS_2432*1600 | | | 88.93 316 | 87.74 321 | 92.49 314 | 88.04 362 | 81.99 335 | 89.63 345 | 95.62 297 | 91.35 257 | 95.06 256 | 93.11 322 | 56.58 363 | 98.63 314 | 85.19 326 | 95.07 333 | 96.85 311 |
|
miper_refine_blended | | | 88.93 316 | 87.74 321 | 92.49 314 | 88.04 362 | 81.99 335 | 89.63 345 | 95.62 297 | 91.35 257 | 95.06 256 | 93.11 322 | 56.58 363 | 98.63 314 | 85.19 326 | 95.07 333 | 96.85 311 |
|
ETH3D cwj APD-0.16 | | | 96.23 159 | 95.61 181 | 98.09 82 | 97.91 204 | 95.65 89 | 94.94 222 | 98.74 121 | 91.31 259 | 96.02 231 | 97.08 214 | 94.05 165 | 99.69 112 | 91.51 234 | 98.94 215 | 98.93 175 |
|
AUN-MVS | | | 93.95 253 | 92.69 270 | 97.74 104 | 97.80 220 | 95.38 99 | 95.57 181 | 95.46 303 | 91.26 260 | 92.64 322 | 96.10 273 | 74.67 332 | 99.55 164 | 93.72 197 | 96.97 306 | 98.30 243 |
|
CLD-MVS | | | 95.47 189 | 95.07 194 | 96.69 180 | 98.27 164 | 92.53 192 | 91.36 319 | 98.67 141 | 91.22 261 | 95.78 241 | 94.12 317 | 95.65 115 | 98.98 282 | 90.81 250 | 99.72 48 | 98.57 220 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TAMVS | | | 95.49 186 | 94.94 199 | 97.16 152 | 98.31 158 | 93.41 174 | 95.07 214 | 96.82 276 | 91.09 262 | 97.51 147 | 97.82 154 | 89.96 243 | 99.42 197 | 88.42 296 | 99.44 126 | 98.64 213 |
|
tpmvs | | | 90.79 302 | 90.87 296 | 90.57 330 | 92.75 356 | 76.30 353 | 95.79 168 | 93.64 317 | 91.04 263 | 91.91 330 | 96.26 263 | 77.19 322 | 98.86 294 | 89.38 283 | 89.85 351 | 96.56 323 |
|
cl-mvsnet2 | | | 93.25 269 | 92.84 265 | 94.46 278 | 94.30 338 | 86.00 303 | 91.09 329 | 96.64 283 | 90.74 264 | 95.79 239 | 96.31 262 | 78.24 313 | 98.77 300 | 94.15 179 | 98.34 260 | 98.62 216 |
|
ZD-MVS | | | | | | 98.43 151 | 95.94 77 | | 98.56 155 | 90.72 265 | 96.66 200 | 97.07 215 | 95.02 136 | 99.74 70 | 91.08 242 | 98.93 217 | |
|
our_test_3 | | | 94.20 245 | 94.58 222 | 93.07 303 | 96.16 306 | 81.20 339 | 90.42 335 | 96.84 274 | 90.72 265 | 97.14 168 | 97.13 209 | 90.47 234 | 99.11 266 | 94.04 186 | 98.25 264 | 98.91 180 |
|
ppachtmachnet_test | | | 94.49 235 | 94.84 206 | 93.46 295 | 96.16 306 | 82.10 334 | 90.59 333 | 97.48 254 | 90.53 267 | 97.01 181 | 97.59 174 | 91.01 227 | 99.36 221 | 93.97 189 | 99.18 185 | 98.94 171 |
|
MVP-Stereo | | | 95.69 178 | 95.28 188 | 96.92 165 | 98.15 182 | 93.03 183 | 95.64 179 | 98.20 197 | 90.39 268 | 96.63 202 | 97.73 163 | 91.63 222 | 99.10 268 | 91.84 228 | 97.31 303 | 98.63 215 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
UnsupCasMVSNet_bld | | | 94.72 223 | 94.26 232 | 96.08 212 | 98.62 127 | 90.54 233 | 93.38 284 | 98.05 220 | 90.30 269 | 97.02 180 | 96.80 234 | 89.54 248 | 99.16 259 | 88.44 295 | 96.18 322 | 98.56 221 |
|
DP-MVS Recon | | | 95.55 184 | 95.13 192 | 96.80 173 | 98.51 140 | 93.99 153 | 94.60 236 | 98.69 136 | 90.20 270 | 95.78 241 | 96.21 267 | 92.73 193 | 98.98 282 | 90.58 262 | 98.86 226 | 97.42 294 |
|
MCST-MVS | | | 96.24 158 | 95.80 173 | 97.56 117 | 98.75 110 | 94.13 148 | 94.66 234 | 98.17 203 | 90.17 271 | 96.21 224 | 96.10 273 | 95.14 131 | 99.43 196 | 94.13 180 | 98.85 228 | 99.13 138 |
|
CDS-MVSNet | | | 94.88 214 | 94.12 238 | 97.14 154 | 97.64 243 | 93.57 170 | 93.96 265 | 97.06 268 | 90.05 272 | 96.30 219 | 96.55 247 | 86.10 278 | 99.47 184 | 90.10 272 | 99.31 169 | 98.40 230 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TR-MVS | | | 92.54 278 | 92.20 278 | 93.57 293 | 96.49 294 | 86.66 295 | 93.51 279 | 94.73 307 | 89.96 273 | 94.95 260 | 93.87 318 | 90.24 241 | 98.61 316 | 81.18 343 | 94.88 335 | 95.45 338 |
|
pmmvs-eth3d | | | 96.49 149 | 96.18 157 | 97.42 138 | 98.25 167 | 94.29 140 | 94.77 231 | 98.07 218 | 89.81 274 | 97.97 123 | 98.33 84 | 93.11 183 | 99.08 270 | 95.46 113 | 99.84 28 | 98.89 184 |
|
D2MVS | | | 95.18 201 | 95.17 191 | 95.21 247 | 97.76 232 | 87.76 279 | 94.15 254 | 97.94 223 | 89.77 275 | 96.99 182 | 97.68 169 | 87.45 271 | 99.14 261 | 95.03 143 | 99.81 30 | 98.74 204 |
|
PatchmatchNet |  | | 91.98 289 | 91.87 281 | 92.30 319 | 94.60 335 | 79.71 343 | 95.12 208 | 93.59 318 | 89.52 276 | 93.61 298 | 97.02 219 | 77.94 314 | 99.18 254 | 90.84 249 | 94.57 340 | 98.01 271 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
N_pmnet | | | 95.18 201 | 94.23 233 | 98.06 85 | 97.85 208 | 96.55 57 | 92.49 302 | 91.63 335 | 89.34 277 | 98.09 109 | 97.41 187 | 90.33 236 | 99.06 272 | 91.58 233 | 99.31 169 | 98.56 221 |
|
BH-w/o | | | 92.14 286 | 91.94 280 | 92.73 312 | 97.13 278 | 85.30 310 | 92.46 303 | 95.64 296 | 89.33 278 | 94.21 277 | 92.74 332 | 89.60 246 | 98.24 338 | 81.68 341 | 94.66 337 | 94.66 342 |
|
ET-MVSNet_ETH3D | | | 91.12 297 | 89.67 309 | 95.47 239 | 96.41 296 | 89.15 251 | 91.54 317 | 90.23 348 | 89.07 279 | 86.78 356 | 92.84 330 | 69.39 351 | 99.44 194 | 94.16 178 | 96.61 316 | 97.82 279 |
|
WTY-MVS | | | 93.55 262 | 93.00 261 | 95.19 248 | 97.81 216 | 87.86 274 | 93.89 267 | 96.00 289 | 89.02 280 | 94.07 282 | 95.44 294 | 86.27 277 | 99.33 229 | 87.69 304 | 96.82 310 | 98.39 232 |
|
F-COLMAP | | | 95.30 197 | 94.38 230 | 98.05 88 | 98.64 122 | 96.04 73 | 95.61 180 | 98.66 143 | 89.00 281 | 93.22 311 | 96.40 257 | 92.90 189 | 99.35 224 | 87.45 310 | 97.53 295 | 98.77 202 |
|
PVSNet_BlendedMVS | | | 95.02 210 | 94.93 201 | 95.27 245 | 97.79 226 | 87.40 285 | 94.14 256 | 98.68 138 | 88.94 282 | 94.51 271 | 98.01 130 | 93.04 185 | 99.30 236 | 89.77 277 | 99.49 112 | 99.11 147 |
|
baseline2 | | | 89.65 312 | 88.44 319 | 93.25 299 | 95.62 320 | 82.71 330 | 93.82 269 | 85.94 357 | 88.89 283 | 87.35 354 | 92.54 335 | 71.23 346 | 99.33 229 | 86.01 317 | 94.60 339 | 97.72 283 |
|
tpm | | | 91.08 299 | 90.85 297 | 91.75 322 | 95.33 327 | 78.09 346 | 95.03 219 | 91.27 339 | 88.75 284 | 93.53 302 | 97.40 188 | 71.24 345 | 99.30 236 | 91.25 240 | 93.87 341 | 97.87 276 |
|
MS-PatchMatch | | | 94.83 215 | 94.91 203 | 94.57 275 | 96.81 289 | 87.10 290 | 94.23 249 | 97.34 257 | 88.74 285 | 97.14 168 | 97.11 212 | 91.94 216 | 98.23 339 | 92.99 212 | 97.92 275 | 98.37 233 |
|
EPMVS | | | 89.26 314 | 88.55 318 | 91.39 324 | 92.36 357 | 79.11 344 | 95.65 177 | 79.86 360 | 88.60 286 | 93.12 312 | 96.53 249 | 70.73 349 | 98.10 343 | 90.75 253 | 89.32 352 | 96.98 304 |
|
QAPM | | | 95.88 174 | 95.57 183 | 96.80 173 | 97.90 206 | 91.84 211 | 98.18 39 | 98.73 123 | 88.41 287 | 96.42 211 | 98.13 111 | 94.73 141 | 99.75 63 | 88.72 291 | 98.94 215 | 98.81 195 |
|
PVSNet_Blended_VisFu | | | 95.95 171 | 95.80 173 | 96.42 196 | 99.28 47 | 90.62 229 | 95.31 197 | 99.08 34 | 88.40 288 | 96.97 185 | 98.17 109 | 92.11 210 | 99.78 42 | 93.64 199 | 99.21 180 | 98.86 191 |
|
sss | | | 94.22 241 | 93.72 249 | 95.74 227 | 97.71 236 | 89.95 237 | 93.84 268 | 96.98 270 | 88.38 289 | 93.75 292 | 95.74 284 | 87.94 264 | 98.89 290 | 91.02 244 | 98.10 269 | 98.37 233 |
|
thisisatest0515 | | | 90.43 303 | 89.18 315 | 94.17 287 | 97.07 280 | 85.44 308 | 89.75 344 | 87.58 353 | 88.28 290 | 93.69 295 | 91.72 343 | 65.27 355 | 99.58 153 | 90.59 261 | 98.67 243 | 97.50 292 |
|
PatchMatch-RL | | | 94.61 230 | 93.81 248 | 97.02 162 | 98.19 173 | 95.72 82 | 93.66 274 | 97.23 259 | 88.17 291 | 94.94 261 | 95.62 289 | 91.43 223 | 98.57 319 | 87.36 311 | 97.68 288 | 96.76 317 |
|
tpmrst | | | 90.31 304 | 90.61 302 | 89.41 334 | 94.06 343 | 72.37 361 | 95.06 216 | 93.69 314 | 88.01 292 | 92.32 327 | 96.86 227 | 77.45 318 | 98.82 295 | 91.04 243 | 87.01 355 | 97.04 303 |
|
Anonymous20231206 | | | 95.27 198 | 95.06 196 | 95.88 222 | 98.72 113 | 89.37 246 | 95.70 171 | 97.85 228 | 88.00 293 | 96.98 184 | 97.62 172 | 91.95 215 | 99.34 226 | 89.21 284 | 99.53 96 | 98.94 171 |
|
FPMVS | | | 89.92 310 | 88.63 317 | 93.82 288 | 98.37 155 | 96.94 45 | 91.58 316 | 93.34 320 | 88.00 293 | 90.32 339 | 97.10 213 | 70.87 348 | 91.13 359 | 71.91 356 | 96.16 324 | 93.39 348 |
|
MAR-MVS | | | 94.21 243 | 93.03 260 | 97.76 102 | 96.94 285 | 97.44 33 | 96.97 107 | 97.15 263 | 87.89 295 | 92.00 329 | 92.73 333 | 92.14 209 | 99.12 263 | 83.92 334 | 97.51 296 | 96.73 318 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
IB-MVS | | 85.98 20 | 88.63 318 | 86.95 327 | 93.68 291 | 95.12 329 | 84.82 320 | 90.85 331 | 90.17 349 | 87.55 296 | 88.48 349 | 91.34 346 | 58.01 360 | 99.59 151 | 87.24 312 | 93.80 342 | 96.63 322 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
OpenMVS |  | 94.22 8 | 95.48 188 | 95.20 189 | 96.32 201 | 97.16 277 | 91.96 208 | 97.74 63 | 98.84 93 | 87.26 297 | 94.36 275 | 98.01 130 | 93.95 167 | 99.67 123 | 90.70 258 | 98.75 237 | 97.35 297 |
|
agg_prior1 | | | 95.39 193 | 94.60 219 | 97.75 103 | 97.80 220 | 94.96 117 | 93.39 283 | 98.36 179 | 87.20 298 | 93.49 303 | 95.97 278 | 94.65 147 | 99.53 168 | 91.69 232 | 98.86 226 | 98.77 202 |
|
pmmvs5 | | | 94.63 229 | 94.34 231 | 95.50 237 | 97.63 244 | 88.34 264 | 94.02 260 | 97.13 264 | 87.15 299 | 95.22 254 | 97.15 208 | 87.50 270 | 99.27 244 | 93.99 187 | 99.26 177 | 98.88 188 |
|
train_agg | | | 95.46 190 | 94.66 213 | 97.88 97 | 97.84 213 | 95.23 107 | 93.62 275 | 98.39 175 | 87.04 300 | 93.78 289 | 95.99 275 | 94.58 150 | 99.52 172 | 91.76 230 | 98.90 220 | 98.89 184 |
|
test_8 | | | | | | 97.81 216 | 95.07 115 | 93.54 278 | 98.38 177 | 87.04 300 | 93.71 293 | 95.96 279 | 94.58 150 | 99.52 172 | | | |
|
TEST9 | | | | | | 97.84 213 | 95.23 107 | 93.62 275 | 98.39 175 | 86.81 302 | 93.78 289 | 95.99 275 | 94.68 145 | 99.52 172 | | | |
|
pmmvs4 | | | 94.82 216 | 94.19 236 | 96.70 179 | 97.42 260 | 92.75 190 | 92.09 311 | 96.76 278 | 86.80 303 | 95.73 244 | 97.22 206 | 89.28 254 | 98.89 290 | 93.28 205 | 99.14 188 | 98.46 229 |
|
MDTV_nov1_ep13 | | | | 91.28 289 | | 94.31 337 | 73.51 359 | 94.80 229 | 93.16 321 | 86.75 304 | 93.45 306 | 97.40 188 | 76.37 325 | 98.55 322 | 88.85 289 | 96.43 318 | |
|
test-mter | | | 87.92 324 | 87.17 325 | 90.16 331 | 94.24 340 | 74.98 356 | 89.89 340 | 89.06 350 | 86.44 305 | 89.97 342 | 90.77 350 | 54.96 367 | 98.57 319 | 91.88 226 | 97.36 300 | 96.92 306 |
|
PLC |  | 91.02 16 | 94.05 250 | 92.90 262 | 97.51 122 | 98.00 198 | 95.12 114 | 94.25 247 | 98.25 191 | 86.17 306 | 91.48 332 | 95.25 295 | 91.01 227 | 99.19 253 | 85.02 329 | 96.69 314 | 98.22 251 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVE |  | 73.61 22 | 86.48 328 | 85.92 330 | 88.18 339 | 96.23 302 | 85.28 312 | 81.78 358 | 75.79 361 | 86.01 307 | 82.53 359 | 91.88 341 | 92.74 192 | 87.47 360 | 71.42 357 | 94.86 336 | 91.78 351 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
USDC | | | 94.56 232 | 94.57 224 | 94.55 276 | 97.78 230 | 86.43 299 | 92.75 296 | 98.65 148 | 85.96 308 | 96.91 189 | 97.93 141 | 90.82 230 | 98.74 303 | 90.71 257 | 99.59 76 | 98.47 227 |
|
HY-MVS | | 91.43 15 | 92.58 277 | 91.81 283 | 94.90 259 | 96.49 294 | 88.87 254 | 97.31 88 | 94.62 308 | 85.92 309 | 90.50 338 | 96.84 229 | 85.05 284 | 99.40 208 | 83.77 337 | 95.78 328 | 96.43 325 |
|
原ACMM1 | | | | | 96.58 186 | 98.16 180 | 92.12 203 | | 98.15 206 | 85.90 310 | 93.49 303 | 96.43 254 | 92.47 204 | 99.38 216 | 87.66 305 | 98.62 249 | 98.23 250 |
|
PAPR | | | 92.22 284 | 91.27 290 | 95.07 252 | 95.73 319 | 88.81 256 | 91.97 312 | 97.87 227 | 85.80 311 | 90.91 334 | 92.73 333 | 91.16 225 | 98.33 336 | 79.48 345 | 95.76 329 | 98.08 258 |
|
IU-MVS | | | | | | 99.22 57 | 95.40 98 | | 98.14 207 | 85.77 312 | 98.36 75 | | | | 95.23 127 | 99.51 106 | 99.49 51 |
|
DWT-MVSNet_test | | | 87.92 324 | 86.77 328 | 91.39 324 | 93.18 349 | 78.62 345 | 95.10 209 | 91.42 336 | 85.58 313 | 88.00 350 | 88.73 355 | 60.60 359 | 98.90 288 | 90.60 260 | 87.70 354 | 96.65 319 |
|
1112_ss | | | 94.12 246 | 93.42 253 | 96.23 205 | 98.59 132 | 90.85 224 | 94.24 248 | 98.85 88 | 85.49 314 | 92.97 314 | 94.94 301 | 86.01 279 | 99.64 133 | 91.78 229 | 97.92 275 | 98.20 253 |
|
dp | | | 88.08 322 | 88.05 320 | 88.16 340 | 92.85 354 | 68.81 363 | 94.17 252 | 92.88 324 | 85.47 315 | 91.38 333 | 96.14 270 | 68.87 352 | 98.81 297 | 86.88 313 | 83.80 358 | 96.87 309 |
|
TESTMET0.1,1 | | | 87.20 327 | 86.57 329 | 89.07 335 | 93.62 347 | 72.84 360 | 89.89 340 | 87.01 356 | 85.46 316 | 89.12 347 | 90.20 353 | 56.00 366 | 97.72 347 | 90.91 247 | 96.92 307 | 96.64 320 |
|
ETH3 D test6400 | | | 94.77 218 | 93.87 247 | 97.47 130 | 98.12 187 | 93.73 163 | 94.56 238 | 98.70 133 | 85.45 317 | 94.70 266 | 95.93 282 | 91.77 221 | 99.63 135 | 86.45 316 | 99.14 188 | 99.05 158 |
|
1314 | | | 92.38 281 | 92.30 277 | 92.64 313 | 95.42 326 | 85.15 314 | 95.86 164 | 96.97 271 | 85.40 318 | 90.62 335 | 93.06 327 | 91.12 226 | 97.80 346 | 86.74 314 | 95.49 332 | 94.97 341 |
|
jason | | | 94.39 238 | 94.04 241 | 95.41 243 | 98.29 160 | 87.85 276 | 92.74 298 | 96.75 279 | 85.38 319 | 95.29 252 | 96.15 268 | 88.21 263 | 99.65 130 | 94.24 175 | 99.34 158 | 98.74 204 |
jason: jason. |
EU-MVSNet | | | 94.25 240 | 94.47 226 | 93.60 292 | 98.14 183 | 82.60 332 | 97.24 93 | 92.72 327 | 85.08 320 | 98.48 63 | 98.94 43 | 82.59 296 | 98.76 302 | 97.47 39 | 99.53 96 | 99.44 76 |
|
miper_enhance_ethall | | | 93.14 271 | 92.78 268 | 94.20 285 | 93.65 346 | 85.29 311 | 89.97 339 | 97.85 228 | 85.05 321 | 96.15 228 | 94.56 308 | 85.74 280 | 99.14 261 | 93.74 195 | 98.34 260 | 98.17 256 |
|
CDPH-MVS | | | 95.45 191 | 94.65 214 | 97.84 100 | 98.28 162 | 94.96 117 | 93.73 273 | 98.33 184 | 85.03 322 | 95.44 249 | 96.60 245 | 95.31 127 | 99.44 194 | 90.01 273 | 99.13 192 | 99.11 147 |
|
DPM-MVS | | | 93.68 258 | 92.77 269 | 96.42 196 | 97.91 204 | 92.54 191 | 91.17 326 | 97.47 255 | 84.99 323 | 93.08 313 | 94.74 305 | 89.90 244 | 99.00 278 | 87.54 308 | 98.09 270 | 97.72 283 |
|
CR-MVSNet | | | 93.29 268 | 92.79 266 | 94.78 266 | 95.44 324 | 88.15 268 | 96.18 145 | 97.20 260 | 84.94 324 | 94.10 280 | 98.57 66 | 77.67 316 | 99.39 213 | 95.17 130 | 95.81 325 | 96.81 315 |
|
PVSNet | | 86.72 19 | 91.10 298 | 90.97 295 | 91.49 323 | 97.56 248 | 78.04 347 | 87.17 351 | 94.60 309 | 84.65 325 | 92.34 326 | 92.20 338 | 87.37 272 | 98.47 326 | 85.17 328 | 97.69 287 | 97.96 272 |
|
lupinMVS | | | 93.77 254 | 93.28 255 | 95.24 246 | 97.68 238 | 87.81 277 | 92.12 309 | 96.05 288 | 84.52 326 | 94.48 273 | 95.06 299 | 86.90 274 | 99.63 135 | 93.62 200 | 99.13 192 | 98.27 247 |
|
PVSNet_Blended | | | 93.96 251 | 93.65 250 | 94.91 257 | 97.79 226 | 87.40 285 | 91.43 318 | 98.68 138 | 84.50 327 | 94.51 271 | 94.48 312 | 93.04 185 | 99.30 236 | 89.77 277 | 98.61 250 | 98.02 270 |
|
MVS-HIRNet | | | 88.40 320 | 90.20 306 | 82.99 342 | 97.01 281 | 60.04 364 | 93.11 291 | 85.61 358 | 84.45 328 | 88.72 348 | 99.09 33 | 84.72 288 | 98.23 339 | 82.52 340 | 96.59 317 | 90.69 355 |
|
new_pmnet | | | 92.34 282 | 91.69 285 | 94.32 282 | 96.23 302 | 89.16 250 | 92.27 307 | 92.88 324 | 84.39 329 | 95.29 252 | 96.35 261 | 85.66 281 | 96.74 354 | 84.53 332 | 97.56 293 | 97.05 302 |
|
ADS-MVSNet2 | | | 91.47 295 | 90.51 303 | 94.36 281 | 95.51 322 | 85.63 305 | 95.05 217 | 95.70 295 | 83.46 330 | 92.69 319 | 96.84 229 | 79.15 310 | 99.41 206 | 85.66 322 | 90.52 348 | 98.04 268 |
|
ADS-MVSNet | | | 90.95 301 | 90.26 305 | 93.04 304 | 95.51 322 | 82.37 333 | 95.05 217 | 93.41 319 | 83.46 330 | 92.69 319 | 96.84 229 | 79.15 310 | 98.70 307 | 85.66 322 | 90.52 348 | 98.04 268 |
|
HyFIR lowres test | | | 93.72 256 | 92.65 271 | 96.91 167 | 98.93 96 | 91.81 212 | 91.23 325 | 98.52 158 | 82.69 332 | 96.46 210 | 96.52 251 | 80.38 305 | 99.90 13 | 90.36 269 | 98.79 233 | 99.03 160 |
|
Test_1112_low_res | | | 93.53 263 | 92.86 263 | 95.54 236 | 98.60 130 | 88.86 255 | 92.75 296 | 98.69 136 | 82.66 333 | 92.65 321 | 96.92 226 | 84.75 287 | 99.56 160 | 90.94 246 | 97.76 281 | 98.19 254 |
|
CVMVSNet | | | 92.33 283 | 92.79 266 | 90.95 327 | 97.26 272 | 75.84 355 | 95.29 199 | 92.33 330 | 81.86 334 | 96.27 220 | 98.19 106 | 81.44 299 | 98.46 327 | 94.23 176 | 98.29 263 | 98.55 223 |
|
gm-plane-assit | | | | | | 91.79 358 | 71.40 362 | | | 81.67 335 | | 90.11 354 | | 98.99 280 | 84.86 330 | | |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 260 | 93.05 259 | 95.42 241 | 97.31 271 | 91.21 219 | 95.08 213 | 96.68 282 | 81.56 336 | 96.88 191 | 96.41 255 | 90.44 235 | 99.25 247 | 85.39 325 | 97.67 289 | 95.80 332 |
|
CostFormer | | | 89.75 311 | 89.25 310 | 91.26 326 | 94.69 334 | 78.00 348 | 95.32 196 | 91.98 332 | 81.50 337 | 90.55 337 | 96.96 223 | 71.06 347 | 98.89 290 | 88.59 294 | 92.63 345 | 96.87 309 |
|
CHOSEN 280x420 | | | 89.98 308 | 89.19 314 | 92.37 318 | 95.60 321 | 81.13 340 | 86.22 353 | 97.09 266 | 81.44 338 | 87.44 353 | 93.15 321 | 73.99 333 | 99.47 184 | 88.69 292 | 99.07 202 | 96.52 324 |
|
TAPA-MVS | | 93.32 12 | 94.93 211 | 94.23 233 | 97.04 160 | 98.18 176 | 94.51 132 | 95.22 205 | 98.73 123 | 81.22 339 | 96.25 222 | 95.95 280 | 93.80 171 | 98.98 282 | 89.89 275 | 98.87 224 | 97.62 287 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
无先验 | | | | | | | | 93.20 289 | 97.91 224 | 80.78 340 | | | | 99.40 208 | 87.71 302 | | 97.94 273 |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 365 | 94.89 224 | | 80.59 341 | 94.02 284 | | 78.66 312 | | 85.50 324 | | 97.82 279 |
|
testdata | | | | | 95.70 230 | 98.16 180 | 90.58 230 | | 97.72 237 | 80.38 342 | 95.62 246 | 97.02 219 | 92.06 213 | 98.98 282 | 89.06 288 | 98.52 254 | 97.54 290 |
|
CMPMVS |  | 73.10 23 | 92.74 275 | 91.39 287 | 96.77 175 | 93.57 348 | 94.67 129 | 94.21 251 | 97.67 240 | 80.36 343 | 93.61 298 | 96.60 245 | 82.85 295 | 97.35 349 | 84.86 330 | 98.78 234 | 98.29 246 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CHOSEN 1792x2688 | | | 94.10 247 | 93.41 254 | 96.18 209 | 99.16 69 | 90.04 235 | 92.15 308 | 98.68 138 | 79.90 344 | 96.22 223 | 97.83 151 | 87.92 268 | 99.42 197 | 89.18 285 | 99.65 61 | 99.08 152 |
|
PAPM | | | 87.64 326 | 85.84 331 | 93.04 304 | 96.54 292 | 84.99 317 | 88.42 350 | 95.57 300 | 79.52 345 | 83.82 357 | 93.05 328 | 80.57 304 | 98.41 329 | 62.29 359 | 92.79 344 | 95.71 333 |
|
cascas | | | 91.89 290 | 91.35 288 | 93.51 294 | 94.27 339 | 85.60 306 | 88.86 348 | 98.61 150 | 79.32 346 | 92.16 328 | 91.44 345 | 89.22 255 | 98.12 342 | 90.80 251 | 97.47 299 | 96.82 314 |
|
PMMVS | | | 92.39 280 | 91.08 292 | 96.30 203 | 93.12 352 | 92.81 188 | 90.58 334 | 95.96 291 | 79.17 347 | 91.85 331 | 92.27 337 | 90.29 240 | 98.66 313 | 89.85 276 | 96.68 315 | 97.43 293 |
|
pmmvs3 | | | 90.00 307 | 88.90 316 | 93.32 296 | 94.20 342 | 85.34 309 | 91.25 324 | 92.56 329 | 78.59 348 | 93.82 288 | 95.17 296 | 67.36 354 | 98.69 308 | 89.08 287 | 98.03 272 | 95.92 329 |
|
PVSNet_0 | | 81.89 21 | 84.49 329 | 83.21 332 | 88.34 338 | 95.76 318 | 74.97 358 | 83.49 355 | 92.70 328 | 78.47 349 | 87.94 351 | 86.90 357 | 83.38 294 | 96.63 355 | 73.44 354 | 66.86 360 | 93.40 347 |
|
新几何1 | | | | | 97.25 150 | 98.29 160 | 94.70 128 | | 97.73 236 | 77.98 350 | 94.83 263 | 96.67 242 | 92.08 212 | 99.45 191 | 88.17 300 | 98.65 247 | 97.61 288 |
|
1121 | | | 94.26 239 | 93.26 256 | 97.27 147 | 98.26 166 | 94.73 123 | 95.86 164 | 97.71 238 | 77.96 351 | 94.53 270 | 96.71 239 | 91.93 217 | 99.40 208 | 87.71 302 | 98.64 248 | 97.69 285 |
|
旧先验2 | | | | | | | | 93.35 285 | | 77.95 352 | 95.77 243 | | | 98.67 312 | 90.74 256 | | |
|
tpm2 | | | 88.47 319 | 87.69 323 | 90.79 328 | 94.98 331 | 77.34 351 | 95.09 211 | 91.83 333 | 77.51 353 | 89.40 344 | 96.41 255 | 67.83 353 | 98.73 304 | 83.58 339 | 92.60 346 | 96.29 327 |
|
DSMNet-mixed | | | 92.19 285 | 91.83 282 | 93.25 299 | 96.18 305 | 83.68 329 | 96.27 138 | 93.68 316 | 76.97 354 | 92.54 325 | 99.18 27 | 89.20 256 | 98.55 322 | 83.88 335 | 98.60 252 | 97.51 291 |
|
test222 | | | | | | 98.17 178 | 93.24 178 | 92.74 298 | 97.61 250 | 75.17 355 | 94.65 267 | 96.69 241 | 90.96 229 | | | 98.66 245 | 97.66 286 |
|
PCF-MVS | | 89.43 18 | 92.12 287 | 90.64 301 | 96.57 188 | 97.80 220 | 93.48 173 | 89.88 343 | 98.45 164 | 74.46 356 | 96.04 230 | 95.68 286 | 90.71 232 | 99.31 233 | 73.73 353 | 99.01 209 | 96.91 308 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
114514_t | | | 93.96 251 | 93.22 258 | 96.19 208 | 99.06 87 | 90.97 223 | 95.99 156 | 98.94 70 | 73.88 357 | 93.43 307 | 96.93 224 | 92.38 206 | 99.37 219 | 89.09 286 | 99.28 174 | 98.25 249 |
|
tpm cat1 | | | 88.01 323 | 87.33 324 | 90.05 333 | 94.48 336 | 76.28 354 | 94.47 241 | 94.35 312 | 73.84 358 | 89.26 345 | 95.61 290 | 73.64 337 | 98.30 337 | 84.13 333 | 86.20 356 | 95.57 337 |
|
MVS | | | 90.02 306 | 89.20 313 | 92.47 316 | 94.71 333 | 86.90 293 | 95.86 164 | 96.74 280 | 64.72 359 | 90.62 335 | 92.77 331 | 92.54 201 | 98.39 331 | 79.30 346 | 95.56 331 | 92.12 350 |
|
DeepMVS_CX |  | | | | 77.17 343 | 90.94 360 | 85.28 312 | | 74.08 364 | 52.51 360 | 80.87 361 | 88.03 356 | 75.25 331 | 70.63 361 | 59.23 360 | 84.94 357 | 75.62 356 |
|
tmp_tt | | | 57.23 330 | 62.50 333 | 41.44 344 | 34.77 365 | 49.21 366 | 83.93 354 | 60.22 366 | 15.31 361 | 71.11 362 | 79.37 359 | 70.09 350 | 44.86 362 | 64.76 358 | 82.93 359 | 30.25 358 |
|
test123 | | | 12.59 332 | 15.49 335 | 3.87 345 | 6.07 366 | 2.55 367 | 90.75 332 | 2.59 368 | 2.52 362 | 5.20 364 | 13.02 362 | 4.96 368 | 1.85 364 | 5.20 361 | 9.09 361 | 7.23 359 |
|
testmvs | | | 12.33 333 | 15.23 336 | 3.64 346 | 5.77 367 | 2.23 368 | 88.99 347 | 3.62 367 | 2.30 363 | 5.29 363 | 13.09 361 | 4.52 369 | 1.95 363 | 5.16 362 | 8.32 362 | 6.75 360 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
cdsmvs_eth3d_5k | | | 24.22 331 | 32.30 334 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 98.10 211 | 0.00 364 | 0.00 365 | 95.06 299 | 97.54 28 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 7.98 334 | 10.65 337 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 95.82 104 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
ab-mvs-re | | | 7.91 335 | 10.55 338 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 94.94 301 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
OPU-MVS | | | | | 97.64 113 | 98.01 194 | 95.27 105 | 96.79 113 | | | | 97.35 197 | 96.97 53 | 98.51 325 | 91.21 241 | 99.25 178 | 99.14 135 |
|
test_0728_SECOND | | | | | 98.25 72 | 99.23 54 | 95.49 96 | 96.74 116 | 98.89 75 | | | | | 99.75 63 | 95.48 110 | 99.52 101 | 99.53 39 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 264 |
|
test_part2 | | | | | | 99.03 91 | 96.07 72 | | | | 98.08 111 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 315 | | | | 98.06 264 |
|
sam_mvs | | | | | | | | | | | | | 77.38 319 | | | | |
|
ambc | | | | | 96.56 189 | 98.23 170 | 91.68 214 | 97.88 54 | 98.13 209 | | 98.42 69 | 98.56 68 | 94.22 161 | 99.04 274 | 94.05 185 | 99.35 155 | 98.95 169 |
|
MTGPA |  | | | | | | | | 98.73 123 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 221 | | | | 10.37 364 | 76.21 327 | 99.04 274 | 89.47 281 | | |
|
test_post | | | | | | | | | | | | 10.87 363 | 76.83 323 | 99.07 271 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 229 | 77.36 320 | 99.42 197 | | | |
|
GG-mvs-BLEND | | | | | 90.60 329 | 91.00 359 | 84.21 326 | 98.23 32 | 72.63 365 | | 82.76 358 | 84.11 358 | 56.14 365 | 96.79 353 | 72.20 355 | 92.09 347 | 90.78 354 |
|
MTMP | | | | | | | | 96.55 124 | 74.60 362 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 237 | 98.89 223 | 99.00 163 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 270 | 98.90 220 | 99.10 151 |
|
agg_prior | | | | | | 97.80 220 | 94.96 117 | | 98.36 179 | | 93.49 303 | | | 99.53 168 | | | |
|
test_prior4 | | | | | | | 95.38 99 | 93.61 277 | | | | | | | | | |
|
test_prior | | | | | 97.46 133 | 97.79 226 | 94.26 144 | | 98.42 170 | | | | | 99.34 226 | | | 98.79 197 |
|
新几何2 | | | | | | | | 93.43 280 | | | | | | | | | |
|
旧先验1 | | | | | | 97.80 220 | 93.87 156 | | 97.75 235 | | | 97.04 218 | 93.57 176 | | | 98.68 242 | 98.72 207 |
|
原ACMM2 | | | | | | | | 92.82 294 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.46 187 | 87.84 301 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 125 | | | | |
|
test12 | | | | | 97.46 133 | 97.61 245 | 94.07 149 | | 97.78 234 | | 93.57 300 | | 93.31 180 | 99.42 197 | | 98.78 234 | 98.89 184 |
|
plane_prior7 | | | | | | 98.70 118 | 94.67 129 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 154 | 94.37 138 | | | | | | 91.91 219 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 119 | | | | | 99.46 187 | 92.59 217 | 99.20 181 | 99.28 109 |
|
plane_prior4 | | | | | | | | | | | | 96.77 235 | | | | | |
|
plane_prior1 | | | | | | 98.49 144 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 369 | | | | | | | | |
|
nn | | | | | | | | | 0.00 369 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 203 | | | | | | | | |
|
lessismore_v0 | | | | | 97.05 159 | 99.36 40 | 92.12 203 | | 84.07 359 | | 98.77 46 | 98.98 40 | 85.36 283 | 99.74 70 | 97.34 43 | 99.37 147 | 99.30 101 |
|
test11 | | | | | | | | | 98.08 214 | | | | | | | | |
|
door | | | | | | | | | 97.81 233 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 193 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 265 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 315 | | | 99.23 250 | | | 99.06 156 |
|
HQP3-MVS | | | | | | | | | 98.43 167 | | | | | | | 98.74 238 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 236 | | | | |
|
NP-MVS | | | | | | 98.14 183 | 93.72 164 | | | | | 95.08 297 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 101 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 90 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 153 | | | | |
|