This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4499.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 17098.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6399.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4499.92 1399.77 8
pmmvs699.07 499.24 498.56 4999.81 296.38 6198.87 799.30 899.01 1699.63 999.66 399.27 299.68 11697.75 2999.89 2199.62 25
mvs_tets98.90 598.94 698.75 3399.69 896.48 5998.54 1899.22 1096.23 10499.71 499.48 798.77 699.93 298.89 399.95 599.84 5
TDRefinement98.90 598.86 899.02 999.54 1998.06 799.34 499.44 698.85 1999.00 3699.20 2397.42 3199.59 14997.21 4699.76 3899.40 81
UA-Net98.88 798.76 1399.22 299.11 8197.89 1399.47 399.32 799.08 1097.87 13499.67 296.47 8399.92 497.88 2299.98 299.85 3
DTE-MVSNet98.79 898.86 898.59 4799.55 1796.12 7098.48 2299.10 2899.36 499.29 2399.06 3697.27 3799.93 297.71 3199.91 1699.70 18
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 5998.45 2399.12 2595.83 12999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5599.58 1495.67 8698.45 2399.15 2199.33 599.30 2199.00 3797.27 3799.92 497.64 3299.92 1399.75 13
v7n98.73 1198.99 597.95 9199.64 1194.20 14598.67 1199.14 2399.08 1099.42 1599.23 2196.53 7899.91 1299.27 299.93 1099.73 15
PS-CasMVS98.73 1198.85 1098.39 5999.55 1795.47 9698.49 2099.13 2499.22 899.22 2798.96 4197.35 3399.92 497.79 2799.93 1099.79 7
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6598.67 1199.02 4996.50 9399.32 2099.44 1097.43 3099.92 498.73 799.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3798.65 1499.19 1595.62 13699.35 1999.37 1297.38 3299.90 1398.59 1199.91 1699.77 8
WR-MVS_H98.65 1598.62 2198.75 3399.51 2296.61 5598.55 1799.17 1699.05 1399.17 2998.79 5095.47 12199.89 1697.95 2099.91 1699.75 13
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6299.17 699.05 4098.05 4099.61 1199.52 593.72 17399.88 1898.72 999.88 2299.65 23
Anonymous2023121198.55 1798.76 1397.94 9298.79 10494.37 13798.84 899.15 2199.37 399.67 699.43 1195.61 11699.72 7898.12 1699.86 2499.73 15
nrg03098.54 1898.62 2198.32 6499.22 5695.66 8797.90 5399.08 3498.31 3299.02 3498.74 5497.68 2499.61 14797.77 2899.85 2699.70 18
PS-MVSNAJss98.53 1998.63 1998.21 7499.68 994.82 12098.10 4299.21 1196.91 8199.75 299.45 995.82 10499.92 498.80 499.96 499.89 1
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5098.76 998.89 7598.49 2799.38 1799.14 3095.44 12399.84 2596.47 6899.80 3299.47 59
pm-mvs198.47 2198.67 1797.86 9799.52 2194.58 13098.28 2999.00 5797.57 6099.27 2499.22 2298.32 999.50 17597.09 5299.75 4299.50 43
ACMH93.61 998.44 2298.76 1397.51 12199.43 3293.54 17098.23 3299.05 4097.40 7199.37 1899.08 3498.79 599.47 18297.74 3099.71 5099.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2398.46 2498.30 6799.46 2895.22 10998.27 3198.84 9399.05 1399.01 3598.65 6295.37 12499.90 1397.57 3499.91 1699.77 8
abl_698.42 2398.19 3299.09 399.16 6898.10 597.73 6499.11 2697.76 4998.62 5198.27 9697.88 1999.80 3795.67 9599.50 10799.38 85
TransMVSNet (Re)98.38 2598.67 1797.51 12199.51 2293.39 17498.20 3798.87 8298.23 3599.48 1299.27 1998.47 899.55 16296.52 6599.53 9599.60 26
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8595.87 7796.73 11899.05 4098.67 2398.84 4198.45 7597.58 2799.88 1896.45 6999.86 2499.54 36
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 1997.48 3098.35 2699.03 4795.88 12497.88 13198.22 10398.15 1299.74 6896.50 6799.62 6499.42 78
ANet_high98.31 2898.94 696.41 19799.33 4289.64 24097.92 5299.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3599.98 299.77 8
VPA-MVSNet98.27 2998.46 2497.70 10799.06 8693.80 15997.76 6099.00 5798.40 2999.07 3398.98 3996.89 5999.75 6197.19 4999.79 3499.55 35
Vis-MVSNetpermissive98.27 2998.34 2898.07 8299.33 4295.21 11198.04 4599.46 597.32 7397.82 13999.11 3196.75 6799.86 2097.84 2499.36 14999.15 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6397.35 3597.96 4899.16 1798.34 3198.78 4498.52 7097.32 3499.45 18994.08 17999.67 5799.13 137
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3298.31 2997.98 9099.39 3795.22 10997.55 7399.20 1398.21 3699.25 2598.51 7198.21 1199.40 20694.79 14999.72 4799.32 95
FC-MVSNet-test98.16 3398.37 2797.56 11699.49 2693.10 18198.35 2699.21 1198.43 2898.89 3998.83 4994.30 15899.81 3197.87 2399.91 1699.77 8
SR-MVS-dyc-post98.14 3497.84 4999.02 998.81 10198.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.60 7599.76 5495.49 10599.20 18099.26 113
MTAPA98.14 3497.84 4999.06 499.44 3097.90 1197.25 9098.73 12397.69 5697.90 12897.96 13295.81 10899.82 2996.13 7699.61 7099.45 66
APDe-MVS98.14 3498.03 4098.47 5498.72 11296.04 7298.07 4499.10 2895.96 11898.59 5598.69 5896.94 5499.81 3196.64 6099.58 7799.57 32
APD-MVS_3200maxsize98.13 3797.90 4498.79 3198.79 10497.31 3697.55 7398.92 7297.72 5398.25 8998.13 10997.10 4499.75 6195.44 11299.24 17899.32 95
HPM-MVScopyleft98.11 3897.83 5198.92 2299.42 3497.46 3198.57 1599.05 4095.43 14597.41 15897.50 17997.98 1599.79 3895.58 10499.57 8099.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test117298.08 3997.76 5799.05 698.78 10698.07 697.41 8598.85 8897.57 6098.15 10097.96 13296.60 7599.76 5495.30 12099.18 18499.33 94
Gipumacopyleft98.07 4098.31 2997.36 14299.76 596.28 6698.51 1999.10 2898.76 2296.79 19099.34 1796.61 7398.82 29396.38 7099.50 10796.98 302
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4197.75 5998.93 2199.23 5397.60 2298.09 4398.96 6795.75 13397.91 12798.06 12296.89 5999.76 5495.32 11999.57 8099.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4197.79 5398.85 2599.15 7197.55 2696.68 12098.83 10095.21 15198.36 7598.13 10998.13 1499.62 14196.04 8199.54 9299.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 4397.76 5798.79 3199.43 3297.21 4197.15 9598.90 7496.58 9198.08 11097.87 14697.02 5299.76 5495.25 12399.59 7599.40 81
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS98.01 4497.66 6499.06 499.44 3097.90 1195.66 17398.73 12397.69 5697.90 12897.96 13295.81 10899.82 2996.13 7699.61 7099.45 66
SR-MVS98.00 4597.66 6499.01 1198.77 10897.93 1097.38 8698.83 10097.32 7398.06 11297.85 14796.65 7099.77 5095.00 14299.11 19599.32 95
Anonymous2024052997.96 4698.04 3997.71 10598.69 11994.28 14297.86 5598.31 18698.79 2199.23 2698.86 4895.76 11199.61 14795.49 10599.36 14999.23 120
XVS97.96 4697.63 7198.94 1899.15 7197.66 1997.77 5898.83 10097.42 6796.32 21497.64 16896.49 8199.72 7895.66 9799.37 14699.45 66
NR-MVSNet97.96 4697.86 4898.26 6998.73 11095.54 9198.14 4098.73 12397.79 4599.42 1597.83 14994.40 15699.78 4195.91 9099.76 3899.46 61
ACMMPR97.95 4997.62 7398.94 1899.20 6497.56 2597.59 7098.83 10096.05 11197.46 15597.63 16996.77 6699.76 5495.61 10199.46 12099.49 51
FMVSNet197.95 4998.08 3597.56 11699.14 7993.67 16498.23 3298.66 14397.41 7099.00 3699.19 2495.47 12199.73 7495.83 9199.76 3899.30 101
SED-MVS97.94 5197.90 4498.07 8299.22 5695.35 10196.79 11198.83 10096.11 10899.08 3198.24 9897.87 2099.72 7895.44 11299.51 10599.14 134
HFP-MVS97.94 5197.64 6998.83 2699.15 7197.50 2897.59 7098.84 9396.05 11197.49 14997.54 17497.07 4799.70 10295.61 10199.46 12099.30 101
LPG-MVS_test97.94 5197.67 6398.74 3599.15 7197.02 4297.09 9999.02 4995.15 15598.34 7898.23 10097.91 1799.70 10294.41 16499.73 4499.50 43
FIs97.93 5498.07 3697.48 12899.38 3892.95 18498.03 4799.11 2698.04 4198.62 5198.66 6093.75 17299.78 4197.23 4399.84 2799.73 15
ZNCC-MVS97.92 5597.62 7398.83 2699.32 4497.24 3997.45 8098.84 9395.76 13196.93 18597.43 18497.26 3999.79 3896.06 7899.53 9599.45 66
region2R97.92 5597.59 7698.92 2299.22 5697.55 2697.60 6998.84 9396.00 11697.22 16297.62 17096.87 6299.76 5495.48 10899.43 13299.46 61
CP-MVS97.92 5597.56 7998.99 1398.99 9297.82 1597.93 5098.96 6796.11 10896.89 18897.45 18396.85 6399.78 4195.19 12699.63 6399.38 85
mPP-MVS97.91 5897.53 8099.04 799.22 5697.87 1497.74 6298.78 11496.04 11397.10 17097.73 16196.53 7899.78 4195.16 13099.50 10799.46 61
ACMMP_NAP97.89 5997.63 7198.67 4199.35 4196.84 4796.36 13298.79 11095.07 15997.88 13198.35 8197.24 4199.72 7896.05 8099.58 7799.45 66
PGM-MVS97.88 6097.52 8198.96 1699.20 6497.62 2197.09 9999.06 3895.45 14397.55 14397.94 13797.11 4399.78 4194.77 15299.46 12099.48 56
DP-MVS97.87 6197.89 4697.81 10098.62 12694.82 12097.13 9898.79 11098.98 1798.74 4798.49 7295.80 11099.49 17695.04 13999.44 12599.11 146
RPSCF97.87 6197.51 8298.95 1799.15 7198.43 397.56 7299.06 3896.19 10598.48 6398.70 5794.72 14299.24 24694.37 16799.33 16499.17 127
DIV-MVS_2432*160097.86 6398.07 3697.25 14999.22 5692.81 18797.55 7398.94 7097.10 7798.85 4098.88 4695.03 13599.67 12197.39 4199.65 6099.26 113
test_040297.84 6497.97 4197.47 12999.19 6694.07 14896.71 11998.73 12398.66 2498.56 5798.41 7796.84 6499.69 11094.82 14799.81 2998.64 211
UniMVSNet_NR-MVSNet97.83 6597.65 6698.37 6098.72 11295.78 7995.66 17399.02 4998.11 3998.31 8497.69 16694.65 14799.85 2297.02 5599.71 5099.48 56
UniMVSNet (Re)97.83 6597.65 6698.35 6398.80 10395.86 7895.92 16199.04 4697.51 6498.22 9297.81 15394.68 14599.78 4197.14 5199.75 4299.41 80
GST-MVS97.82 6797.49 8498.81 2999.23 5397.25 3897.16 9498.79 11095.96 11897.53 14497.40 18696.93 5699.77 5095.04 13999.35 15499.42 78
DeepC-MVS95.41 497.82 6797.70 6098.16 7598.78 10695.72 8196.23 14199.02 4993.92 20098.62 5198.99 3897.69 2399.62 14196.18 7599.87 2399.15 131
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS97.79 6997.60 7598.36 6198.73 11095.78 7995.65 17598.87 8297.57 6098.31 8497.83 14994.69 14399.85 2297.02 5599.71 5099.46 61
DVP-MVS97.78 7097.65 6698.16 7599.24 5195.51 9396.74 11498.23 19295.92 12198.40 7098.28 9297.06 4999.71 9395.48 10899.52 10099.26 113
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 7197.50 8398.57 4896.24 29897.58 2498.45 2398.85 8898.58 2697.51 14697.94 13795.74 11299.63 13395.19 12698.97 20998.51 222
3Dnovator+96.13 397.73 7297.59 7698.15 7898.11 18695.60 8998.04 4598.70 13398.13 3896.93 18598.45 7595.30 12899.62 14195.64 9998.96 21099.24 119
tfpnnormal97.72 7397.97 4196.94 16399.26 4792.23 19797.83 5798.45 16498.25 3499.13 3098.66 6096.65 7099.69 11093.92 18899.62 6498.91 179
Baseline_NR-MVSNet97.72 7397.79 5397.50 12499.56 1593.29 17595.44 18298.86 8498.20 3798.37 7399.24 2094.69 14399.55 16295.98 8799.79 3499.65 23
MP-MVS-pluss97.69 7597.36 9098.70 3999.50 2596.84 4795.38 18998.99 6092.45 24098.11 10498.31 8597.25 4099.77 5096.60 6199.62 6499.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 7597.79 5397.40 13999.06 8693.52 17195.96 15798.97 6694.55 17998.82 4298.76 5397.31 3599.29 23897.20 4899.44 12599.38 85
DPE-MVS97.64 7797.35 9198.50 5198.85 9996.18 6795.21 20498.99 6095.84 12898.78 4498.08 11596.84 6499.81 3193.98 18699.57 8099.52 40
MP-MVScopyleft97.64 7797.18 10399.00 1299.32 4497.77 1797.49 7998.73 12396.27 10195.59 24597.75 15896.30 9199.78 4193.70 19699.48 11599.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
#test#97.62 7997.22 10198.83 2699.15 7197.50 2896.81 11098.84 9394.25 18897.49 14997.54 17497.07 4799.70 10294.37 16799.46 12099.30 101
3Dnovator96.53 297.61 8097.64 6997.50 12497.74 23293.65 16898.49 2098.88 8096.86 8397.11 16998.55 6895.82 10499.73 7495.94 8899.42 13599.13 137
SF-MVS97.60 8197.39 8898.22 7398.93 9595.69 8397.05 10199.10 2895.32 14897.83 13797.88 14496.44 8599.72 7894.59 15999.39 14399.25 117
v897.60 8198.06 3896.23 20498.71 11589.44 24497.43 8398.82 10897.29 7598.74 4799.10 3293.86 16899.68 11698.61 1099.94 899.56 33
XVG-ACMP-BASELINE97.58 8397.28 9698.49 5299.16 6896.90 4696.39 12998.98 6395.05 16098.06 11298.02 12695.86 10099.56 15894.37 16799.64 6299.00 162
v1097.55 8497.97 4196.31 20198.60 12989.64 24097.44 8199.02 4996.60 8998.72 4999.16 2993.48 17799.72 7898.76 699.92 1399.58 28
OPM-MVS97.54 8597.25 9798.41 5799.11 8196.61 5595.24 20298.46 16394.58 17898.10 10798.07 11797.09 4699.39 21195.16 13099.44 12599.21 122
XXY-MVS97.54 8597.70 6097.07 15799.46 2892.21 19897.22 9399.00 5794.93 16698.58 5698.92 4497.31 3599.41 20494.44 16299.43 13299.59 27
Regformer-497.53 8797.47 8697.71 10597.35 26193.91 15395.26 19998.14 20697.97 4298.34 7897.89 14295.49 11999.71 9397.41 3999.42 13599.51 42
casdiffmvs97.50 8897.81 5296.56 18898.51 13991.04 22095.83 16599.09 3397.23 7698.33 8198.30 8997.03 5199.37 21796.58 6399.38 14599.28 108
SixPastTwentyTwo97.49 8997.57 7897.26 14899.56 1592.33 19498.28 2996.97 26998.30 3399.45 1499.35 1688.43 25999.89 1698.01 1999.76 3899.54 36
SMA-MVScopyleft97.48 9097.11 10698.60 4698.83 10096.67 5296.74 11498.73 12391.61 25198.48 6398.36 8096.53 7899.68 11695.17 12899.54 9299.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 9197.10 10798.55 5099.04 8996.70 5196.24 14098.89 7593.71 20497.97 12297.75 15897.44 2999.63 13393.22 20699.70 5399.32 95
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 9296.92 11999.03 899.26 4797.70 1897.66 6598.89 7595.65 13498.51 6096.46 25192.15 20899.81 3195.14 13398.58 25299.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
baseline97.44 9397.78 5696.43 19498.52 13890.75 22796.84 10899.03 4796.51 9297.86 13598.02 12696.67 6999.36 21997.09 5299.47 11799.19 124
TSAR-MVS + MP.97.42 9497.23 10098.00 8999.38 3895.00 11597.63 6898.20 19693.00 22898.16 9898.06 12295.89 9999.72 7895.67 9599.10 19799.28 108
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-297.41 9597.24 9997.93 9397.21 27294.72 12394.85 22598.27 18797.74 5098.11 10497.50 17995.58 11799.69 11096.57 6499.31 16899.37 90
CSCG97.40 9697.30 9397.69 10998.95 9494.83 11997.28 8998.99 6096.35 10098.13 10395.95 27895.99 9799.66 12794.36 17099.73 4498.59 217
XVG-OURS-SEG-HR97.38 9797.07 11098.30 6799.01 9197.41 3494.66 23299.02 4995.20 15298.15 10097.52 17798.83 498.43 32694.87 14596.41 31899.07 153
VDD-MVS97.37 9897.25 9797.74 10398.69 11994.50 13397.04 10295.61 29798.59 2598.51 6098.72 5592.54 20199.58 15196.02 8399.49 11199.12 142
SD-MVS97.37 9897.70 6096.35 19898.14 18195.13 11296.54 12398.92 7295.94 12099.19 2898.08 11597.74 2295.06 35495.24 12499.54 9298.87 188
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 10097.10 10798.14 7998.91 9796.77 4996.20 14298.63 14993.82 20198.54 5898.33 8393.98 16699.05 27195.99 8699.45 12498.61 216
LCM-MVSNet-Re97.33 10197.33 9297.32 14498.13 18493.79 16096.99 10599.65 296.74 8699.47 1398.93 4396.91 5899.84 2590.11 26999.06 20498.32 238
EI-MVSNet-UG-set97.32 10297.40 8797.09 15697.34 26592.01 20695.33 19397.65 24397.74 5098.30 8698.14 10895.04 13499.69 11097.55 3599.52 10099.58 28
EI-MVSNet-Vis-set97.32 10297.39 8897.11 15497.36 26092.08 20495.34 19297.65 24397.74 5098.29 8798.11 11395.05 13299.68 11697.50 3799.50 10799.56 33
Regformer-197.27 10497.16 10497.61 11497.21 27293.86 15694.85 22598.04 22097.62 5998.03 11697.50 17995.34 12599.63 13396.52 6599.31 16899.35 92
VPNet97.26 10597.49 8496.59 18499.47 2790.58 22996.27 13698.53 15797.77 4698.46 6698.41 7794.59 14999.68 11694.61 15599.29 17299.52 40
Regformer-397.25 10697.29 9497.11 15497.35 26192.32 19595.26 19997.62 24897.67 5898.17 9797.89 14295.05 13299.56 15897.16 5099.42 13599.46 61
xxxxxxxxxxxxxcwj97.24 10797.03 11397.89 9598.48 14494.71 12494.53 23799.07 3795.02 16297.83 13797.88 14496.44 8599.72 7894.59 15999.39 14399.25 117
canonicalmvs97.23 10897.21 10297.30 14597.65 24094.39 13597.84 5699.05 4097.42 6796.68 19793.85 31797.63 2699.33 22796.29 7298.47 25698.18 253
AllTest97.20 10996.92 11998.06 8499.08 8396.16 6897.14 9799.16 1794.35 18497.78 14098.07 11795.84 10199.12 26191.41 23399.42 13598.91 179
XVG-OURS97.12 11096.74 12898.26 6998.99 9297.45 3293.82 26799.05 4095.19 15398.32 8297.70 16495.22 13098.41 32794.27 17298.13 26798.93 174
V4297.04 11197.16 10496.68 18198.59 13191.05 21996.33 13498.36 17894.60 17597.99 11898.30 8993.32 17999.62 14197.40 4099.53 9599.38 85
APD-MVScopyleft97.00 11296.53 14198.41 5798.55 13596.31 6496.32 13598.77 11592.96 23397.44 15797.58 17395.84 10199.74 6891.96 22099.35 15499.19 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 11396.38 14898.81 2998.64 12197.59 2395.97 15698.20 19695.51 14195.06 25496.53 24794.10 16399.70 10294.29 17199.15 18699.13 137
GBi-Net96.99 11396.80 12597.56 11697.96 19893.67 16498.23 3298.66 14395.59 13897.99 11899.19 2489.51 25099.73 7494.60 15699.44 12599.30 101
test196.99 11396.80 12597.56 11697.96 19893.67 16498.23 3298.66 14395.59 13897.99 11899.19 2489.51 25099.73 7494.60 15699.44 12599.30 101
VDDNet96.98 11696.84 12297.41 13899.40 3693.26 17697.94 4995.31 30299.26 798.39 7299.18 2787.85 26899.62 14195.13 13599.09 19899.35 92
PHI-MVS96.96 11796.53 14198.25 7197.48 25196.50 5896.76 11398.85 8893.52 20796.19 22396.85 22695.94 9899.42 19593.79 19299.43 13298.83 191
IS-MVSNet96.93 11896.68 13197.70 10799.25 5094.00 15198.57 1596.74 27898.36 3098.14 10297.98 13188.23 26199.71 9393.10 20999.72 4799.38 85
CNVR-MVS96.92 11996.55 13898.03 8898.00 19695.54 9194.87 22398.17 20294.60 17596.38 21197.05 21595.67 11499.36 21995.12 13699.08 19999.19 124
IterMVS-LS96.92 11997.29 9495.79 22498.51 13988.13 26895.10 20798.66 14396.99 7898.46 6698.68 5992.55 19999.74 6896.91 5899.79 3499.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 12196.81 12497.16 15198.56 13492.20 20094.33 24198.12 20997.34 7298.20 9397.33 19792.81 19099.75 6194.79 14999.81 2999.54 36
DeepPCF-MVS94.58 596.90 12196.43 14798.31 6697.48 25197.23 4092.56 29998.60 15192.84 23598.54 5897.40 18696.64 7298.78 29794.40 16699.41 14198.93 174
ETH3D-3000-0.196.89 12396.46 14698.16 7598.62 12695.69 8395.96 15798.98 6393.36 21297.04 17697.31 19994.93 13999.63 13392.60 21399.34 15799.17 127
v114496.84 12497.08 10996.13 21098.42 15089.28 24795.41 18698.67 14194.21 18997.97 12298.31 8593.06 18499.65 12898.06 1899.62 6499.45 66
VNet96.84 12496.83 12396.88 16798.06 18792.02 20596.35 13397.57 25097.70 5597.88 13197.80 15492.40 20599.54 16594.73 15498.96 21099.08 151
EPP-MVSNet96.84 12496.58 13597.65 11199.18 6793.78 16198.68 1096.34 28297.91 4497.30 16098.06 12288.46 25899.85 2293.85 19099.40 14299.32 95
v119296.83 12797.06 11196.15 20998.28 16089.29 24695.36 19098.77 11593.73 20398.11 10498.34 8293.02 18899.67 12198.35 1499.58 7799.50 43
MVS_111021_LR96.82 12896.55 13897.62 11398.27 16295.34 10393.81 26998.33 18394.59 17796.56 20396.63 24296.61 7398.73 30294.80 14899.34 15798.78 197
Effi-MVS+-dtu96.81 12996.09 16098.99 1396.90 28598.69 296.42 12798.09 21195.86 12695.15 25395.54 28994.26 15999.81 3194.06 18098.51 25598.47 225
UGNet96.81 12996.56 13797.58 11596.64 28893.84 15897.75 6197.12 26496.47 9693.62 29598.88 4693.22 18299.53 16695.61 10199.69 5499.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 13197.06 11195.95 21798.57 13388.77 25795.36 19098.26 18995.18 15497.85 13698.23 10092.58 19899.63 13397.80 2699.69 5499.45 66
test_part196.77 13296.53 14197.47 12998.04 18892.92 18597.93 5098.85 8898.83 2099.30 2199.07 3579.25 30699.79 3897.59 3399.93 1099.69 20
v124096.74 13397.02 11495.91 22098.18 17488.52 25995.39 18898.88 8093.15 22498.46 6698.40 7992.80 19199.71 9398.45 1399.49 11199.49 51
DeepC-MVS_fast94.34 796.74 13396.51 14497.44 13597.69 23594.15 14696.02 15298.43 16793.17 22397.30 16097.38 19295.48 12099.28 24093.74 19399.34 15798.88 186
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 13596.54 14097.27 14698.35 15593.66 16793.42 27998.36 17894.74 17096.58 20196.76 23596.54 7798.99 27894.87 14599.27 17599.15 131
v192192096.72 13696.96 11795.99 21398.21 16988.79 25695.42 18498.79 11093.22 21898.19 9698.26 9792.68 19499.70 10298.34 1599.55 8999.49 51
FMVSNet296.72 13696.67 13296.87 16897.96 19891.88 20897.15 9598.06 21895.59 13898.50 6298.62 6389.51 25099.65 12894.99 14399.60 7399.07 153
PMVScopyleft89.60 1796.71 13896.97 11595.95 21799.51 2297.81 1697.42 8497.49 25197.93 4395.95 23198.58 6496.88 6196.91 34989.59 27799.36 14993.12 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testtj96.69 13996.13 15798.36 6198.46 14896.02 7496.44 12698.70 13394.26 18796.79 19097.13 20794.07 16499.75 6190.53 26198.80 23199.31 100
v14419296.69 13996.90 12196.03 21298.25 16588.92 25195.49 18098.77 11593.05 22698.09 10898.29 9192.51 20399.70 10298.11 1799.56 8399.47 59
CPTT-MVS96.69 13996.08 16198.49 5298.89 9896.64 5497.25 9098.77 11592.89 23496.01 23097.13 20792.23 20799.67 12192.24 21899.34 15799.17 127
HQP_MVS96.66 14296.33 15197.68 11098.70 11794.29 13996.50 12498.75 11996.36 9896.16 22496.77 23391.91 21999.46 18592.59 21599.20 18099.28 108
EI-MVSNet96.63 14396.93 11895.74 22597.26 27088.13 26895.29 19797.65 24396.99 7897.94 12598.19 10592.55 19999.58 15196.91 5899.56 8399.50 43
ab-mvs96.59 14496.59 13496.60 18398.64 12192.21 19898.35 2697.67 23994.45 18096.99 18098.79 5094.96 13899.49 17690.39 26699.07 20198.08 256
v14896.58 14596.97 11595.42 23998.63 12587.57 27995.09 20997.90 22495.91 12398.24 9197.96 13293.42 17899.39 21196.04 8199.52 10099.29 107
test20.0396.58 14596.61 13396.48 19298.49 14291.72 21295.68 17297.69 23896.81 8498.27 8897.92 14094.18 16298.71 30490.78 25099.66 5999.00 162
NCCC96.52 14795.99 16598.10 8097.81 21495.68 8595.00 21898.20 19695.39 14695.40 24996.36 25893.81 17099.45 18993.55 19998.42 25799.17 127
pmmvs-eth3d96.49 14896.18 15697.42 13798.25 16594.29 13994.77 22998.07 21789.81 27297.97 12298.33 8393.11 18399.08 26895.46 11199.84 2798.89 183
OMC-MVS96.48 14996.00 16497.91 9498.30 15796.01 7594.86 22498.60 15191.88 24897.18 16497.21 20596.11 9499.04 27290.49 26599.34 15798.69 208
TSAR-MVS + GP.96.47 15096.12 15897.49 12797.74 23295.23 10694.15 25296.90 27193.26 21698.04 11596.70 23894.41 15598.89 28894.77 15299.14 18798.37 231
Fast-Effi-MVS+-dtu96.44 15196.12 15897.39 14097.18 27494.39 13595.46 18198.73 12396.03 11594.72 26294.92 30196.28 9399.69 11093.81 19197.98 27298.09 255
K. test v396.44 15196.28 15296.95 16299.41 3591.53 21497.65 6690.31 34598.89 1898.93 3899.36 1484.57 28899.92 497.81 2599.56 8399.39 83
MSLP-MVS++96.42 15396.71 12995.57 23197.82 21390.56 23195.71 16898.84 9394.72 17196.71 19697.39 19094.91 14098.10 34195.28 12199.02 20698.05 265
Anonymous20240521196.34 15495.98 16697.43 13698.25 16593.85 15796.74 11494.41 30997.72 5398.37 7398.03 12587.15 27299.53 16694.06 18099.07 20198.92 178
MVS_Test96.27 15596.79 12794.73 26696.94 28386.63 29496.18 14398.33 18394.94 16496.07 22798.28 9295.25 12999.26 24397.21 4697.90 27698.30 241
MCST-MVS96.24 15695.80 17297.56 11698.75 10994.13 14794.66 23298.17 20290.17 26996.21 22296.10 27195.14 13199.43 19494.13 17898.85 22799.13 137
ETH3D cwj APD-0.1696.23 15795.61 17998.09 8197.91 20295.65 8894.94 22098.74 12191.31 25796.02 22997.08 21294.05 16599.69 11091.51 23298.94 21498.93 174
mvs-test196.20 15895.50 18398.32 6496.90 28598.16 495.07 21298.09 21195.86 12693.63 29494.32 31394.26 15999.71 9394.06 18097.27 30497.07 299
Effi-MVS+96.19 15996.01 16396.71 17797.43 25792.19 20196.12 14699.10 2895.45 14393.33 30894.71 30497.23 4299.56 15893.21 20797.54 29398.37 231
DELS-MVS96.17 16096.23 15395.99 21397.55 24890.04 23492.38 30498.52 15894.13 19396.55 20597.06 21494.99 13799.58 15195.62 10099.28 17398.37 231
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 16196.36 14995.49 23697.68 23687.81 27598.67 1199.02 4996.50 9394.48 27196.15 26686.90 27399.92 498.73 799.13 19198.74 202
ETV-MVS96.13 16295.90 17096.82 17197.76 23093.89 15495.40 18798.95 6995.87 12595.58 24691.00 34796.36 9099.72 7893.36 20098.83 22996.85 309
testgi96.07 16396.50 14594.80 26399.26 4787.69 27895.96 15798.58 15495.08 15898.02 11796.25 26297.92 1697.60 34688.68 29198.74 23799.11 146
LF4IMVS96.07 16395.63 17897.36 14298.19 17195.55 9095.44 18298.82 10892.29 24295.70 24396.55 24592.63 19798.69 30691.75 22999.33 16497.85 275
EIA-MVS96.04 16595.77 17496.85 16997.80 21892.98 18396.12 14699.16 1794.65 17393.77 28991.69 34295.68 11399.67 12194.18 17598.85 22797.91 273
diffmvs96.04 16596.23 15395.46 23897.35 26188.03 27093.42 27999.08 3494.09 19596.66 19896.93 22293.85 16999.29 23896.01 8598.67 24299.06 155
alignmvs96.01 16795.52 18297.50 12497.77 22994.71 12496.07 14896.84 27297.48 6596.78 19494.28 31485.50 28199.40 20696.22 7398.73 24098.40 228
TinyColmap96.00 16896.34 15094.96 25497.90 20487.91 27194.13 25598.49 16194.41 18198.16 9897.76 15596.29 9298.68 30990.52 26299.42 13598.30 241
PVSNet_Blended_VisFu95.95 16995.80 17296.42 19599.28 4690.62 22895.31 19599.08 3488.40 28696.97 18398.17 10792.11 21099.78 4193.64 19799.21 17998.86 189
test_prior395.91 17095.39 18497.46 13297.79 22494.26 14393.33 28498.42 17094.21 18994.02 28296.25 26293.64 17499.34 22491.90 22298.96 21098.79 195
UnsupCasMVSNet_eth95.91 17095.73 17596.44 19398.48 14491.52 21595.31 19598.45 16495.76 13197.48 15297.54 17489.53 24998.69 30694.43 16394.61 33699.13 137
QAPM95.88 17295.57 18196.80 17297.90 20491.84 21098.18 3998.73 12388.41 28596.42 20998.13 10994.73 14199.75 6188.72 28998.94 21498.81 193
CS-MVS95.86 17395.59 18096.69 17997.85 20693.14 17996.42 12799.25 994.17 19293.56 29990.76 35096.05 9699.72 7893.28 20398.91 21897.21 296
CANet95.86 17395.65 17796.49 19196.41 29490.82 22494.36 24098.41 17294.94 16492.62 32296.73 23692.68 19499.71 9395.12 13699.60 7398.94 170
IterMVS-SCA-FT95.86 17396.19 15594.85 26097.68 23685.53 30592.42 30297.63 24796.99 7898.36 7598.54 6987.94 26399.75 6197.07 5499.08 19999.27 112
MVP-Stereo95.69 17695.28 18696.92 16498.15 18093.03 18295.64 17798.20 19690.39 26696.63 20097.73 16191.63 22299.10 26691.84 22697.31 30298.63 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 17695.67 17695.74 22598.48 14488.76 25892.84 29197.25 25796.00 11697.59 14297.95 13691.38 22499.46 18593.16 20896.35 31998.99 165
new-patchmatchnet95.67 17896.58 13592.94 30797.48 25180.21 34092.96 29098.19 20194.83 16898.82 4298.79 5093.31 18099.51 17495.83 9199.04 20599.12 142
xiu_mvs_v1_base_debu95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
xiu_mvs_v1_base95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
xiu_mvs_v1_base_debi95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
DP-MVS Recon95.55 18295.13 19096.80 17298.51 13993.99 15294.60 23498.69 13690.20 26895.78 23996.21 26592.73 19398.98 28090.58 26098.86 22597.42 292
MVS_030495.50 18395.05 19596.84 17096.28 29793.12 18097.00 10496.16 28495.03 16189.22 34497.70 16490.16 24299.48 17994.51 16199.34 15797.93 272
Fast-Effi-MVS+95.49 18495.07 19296.75 17597.67 23992.82 18694.22 24898.60 15191.61 25193.42 30692.90 32796.73 6899.70 10292.60 21397.89 27797.74 280
TAMVS95.49 18494.94 19797.16 15198.31 15693.41 17395.07 21296.82 27491.09 26097.51 14697.82 15289.96 24399.42 19588.42 29499.44 12598.64 211
OpenMVScopyleft94.22 895.48 18695.20 18796.32 20097.16 27591.96 20797.74 6298.84 9387.26 29594.36 27398.01 12893.95 16799.67 12190.70 25698.75 23697.35 295
CLD-MVS95.47 18795.07 19296.69 17998.27 16292.53 19191.36 31798.67 14191.22 25995.78 23994.12 31595.65 11598.98 28090.81 24899.72 4798.57 218
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 18894.66 21197.88 9697.84 21195.23 10693.62 27398.39 17487.04 29893.78 28795.99 27394.58 15099.52 17091.76 22898.90 21998.89 183
CDPH-MVS95.45 18994.65 21297.84 9998.28 16094.96 11693.73 27198.33 18385.03 32095.44 24796.60 24395.31 12799.44 19290.01 27199.13 19199.11 146
IterMVS95.42 19095.83 17194.20 28397.52 24983.78 32692.41 30397.47 25495.49 14298.06 11298.49 7287.94 26399.58 15196.02 8399.02 20699.23 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
agg_prior195.39 19194.60 21797.75 10297.80 21894.96 11693.39 28198.36 17887.20 29693.49 30195.97 27694.65 14799.53 16691.69 23098.86 22598.77 200
mvs_anonymous95.36 19296.07 16293.21 29996.29 29681.56 33594.60 23497.66 24193.30 21596.95 18498.91 4593.03 18799.38 21496.60 6197.30 30398.69 208
MSDG95.33 19395.13 19095.94 21997.40 25991.85 20991.02 32898.37 17795.30 14996.31 21695.99 27394.51 15398.38 33089.59 27797.65 29097.60 287
LFMVS95.32 19494.88 20296.62 18298.03 18991.47 21697.65 6690.72 34299.11 997.89 13098.31 8579.20 30799.48 17993.91 18999.12 19498.93 174
F-COLMAP95.30 19594.38 22898.05 8798.64 12196.04 7295.61 17898.66 14389.00 27993.22 30996.40 25592.90 18999.35 22287.45 30897.53 29498.77 200
Anonymous2023120695.27 19695.06 19495.88 22198.72 11289.37 24595.70 16997.85 22788.00 29196.98 18297.62 17091.95 21599.34 22489.21 28299.53 9598.94 170
FMVSNet395.26 19794.94 19796.22 20696.53 29190.06 23395.99 15497.66 24194.11 19497.99 11897.91 14180.22 30499.63 13394.60 15699.44 12598.96 167
cl_fuxian95.20 19895.32 18594.83 26296.19 30286.43 29791.83 31298.35 18293.47 20997.36 15997.26 20288.69 25699.28 24095.41 11899.36 14998.78 197
D2MVS95.18 19995.17 18995.21 24597.76 23087.76 27794.15 25297.94 22289.77 27396.99 18097.68 16787.45 27099.14 25995.03 14199.81 2998.74 202
N_pmnet95.18 19994.23 23198.06 8497.85 20696.55 5792.49 30091.63 33389.34 27598.09 10897.41 18590.33 23699.06 27091.58 23199.31 16898.56 219
HQP-MVS95.17 20194.58 22096.92 16497.85 20692.47 19294.26 24298.43 16793.18 22092.86 31495.08 29590.33 23699.23 24890.51 26398.74 23799.05 157
Vis-MVSNet (Re-imp)95.11 20294.85 20395.87 22299.12 8089.17 24897.54 7894.92 30496.50 9396.58 20197.27 20183.64 29199.48 17988.42 29499.67 5798.97 166
AdaColmapbinary95.11 20294.62 21696.58 18597.33 26794.45 13494.92 22198.08 21393.15 22493.98 28595.53 29094.34 15799.10 26685.69 31998.61 24996.20 326
API-MVS95.09 20495.01 19695.31 24296.61 28994.02 15096.83 10997.18 26195.60 13795.79 23794.33 31294.54 15298.37 33285.70 31898.52 25393.52 344
CL-MVSNet_2432*160095.04 20594.79 20895.82 22397.51 25089.79 23891.14 32596.82 27493.05 22696.72 19596.40 25590.82 23099.16 25791.95 22198.66 24498.50 223
CNLPA95.04 20594.47 22496.75 17597.81 21495.25 10594.12 25697.89 22594.41 18194.57 26695.69 28390.30 23998.35 33386.72 31398.76 23596.64 318
Patchmtry95.03 20794.59 21996.33 19994.83 33090.82 22496.38 13197.20 25996.59 9097.49 14998.57 6577.67 31499.38 21492.95 21299.62 6498.80 194
PVSNet_BlendedMVS95.02 20894.93 19995.27 24397.79 22487.40 28394.14 25498.68 13888.94 28094.51 26998.01 12893.04 18599.30 23489.77 27599.49 11199.11 146
TAPA-MVS93.32 1294.93 20994.23 23197.04 15998.18 17494.51 13195.22 20398.73 12381.22 33796.25 22095.95 27893.80 17198.98 28089.89 27398.87 22397.62 285
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RRT_MVS94.90 21094.07 23797.39 14093.18 34793.21 17895.26 19997.49 25193.94 19998.25 8997.85 14772.96 34099.84 2597.90 2199.78 3799.14 134
eth_miper_zixun_eth94.89 21194.93 19994.75 26595.99 30986.12 30091.35 31898.49 16193.40 21097.12 16897.25 20386.87 27599.35 22295.08 13898.82 23098.78 197
CDS-MVSNet94.88 21294.12 23697.14 15397.64 24193.57 16993.96 26397.06 26690.05 27096.30 21796.55 24586.10 27799.47 18290.10 27099.31 16898.40 228
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 21394.91 20194.57 27396.81 28787.10 28894.23 24797.34 25688.74 28397.14 16697.11 21091.94 21698.23 33792.99 21097.92 27498.37 231
pmmvs494.82 21494.19 23496.70 17897.42 25892.75 18992.09 30996.76 27686.80 30195.73 24297.22 20489.28 25398.89 28893.28 20399.14 18798.46 227
miper_lstm_enhance94.81 21594.80 20794.85 26096.16 30486.45 29691.14 32598.20 19693.49 20897.03 17797.37 19484.97 28599.26 24395.28 12199.56 8398.83 191
ETH3 D test640094.77 21693.87 24597.47 12998.12 18593.73 16294.56 23698.70 13385.45 31594.70 26495.93 28091.77 22199.63 13386.45 31499.14 18799.05 157
cl-mvsnet_94.73 21794.64 21395.01 25295.85 31287.00 28991.33 31998.08 21393.34 21397.10 17097.33 19784.01 29099.30 23495.14 13399.56 8398.71 207
cl-mvsnet194.73 21794.64 21395.01 25295.86 31187.00 28991.33 31998.08 21393.34 21397.10 17097.34 19684.02 28999.31 23195.15 13299.55 8998.72 205
YYNet194.73 21794.84 20494.41 27897.47 25585.09 31490.29 33495.85 29292.52 23797.53 14497.76 15591.97 21499.18 25293.31 20296.86 30898.95 168
MDA-MVSNet_test_wron94.73 21794.83 20694.42 27797.48 25185.15 31290.28 33595.87 29192.52 23797.48 15297.76 15591.92 21899.17 25693.32 20196.80 31198.94 170
UnsupCasMVSNet_bld94.72 22194.26 23096.08 21198.62 12690.54 23293.38 28298.05 21990.30 26797.02 17896.80 23289.54 24799.16 25788.44 29396.18 32198.56 219
miper_ehance_all_eth94.69 22294.70 21094.64 26795.77 31586.22 29991.32 32198.24 19191.67 25097.05 17596.65 24188.39 26099.22 25094.88 14498.34 25998.49 224
BH-untuned94.69 22294.75 20994.52 27597.95 20187.53 28094.07 25797.01 26793.99 19797.10 17095.65 28592.65 19698.95 28587.60 30496.74 31297.09 298
RPMNet94.68 22494.60 21794.90 25795.44 32288.15 26696.18 14398.86 8497.43 6694.10 27898.49 7279.40 30599.76 5495.69 9495.81 32396.81 313
Patchmatch-RL test94.66 22594.49 22395.19 24698.54 13688.91 25292.57 29898.74 12191.46 25498.32 8297.75 15877.31 31998.81 29596.06 7899.61 7097.85 275
CANet_DTU94.65 22694.21 23395.96 21595.90 31089.68 23993.92 26497.83 23193.19 21990.12 33995.64 28688.52 25799.57 15793.27 20599.47 11798.62 214
pmmvs594.63 22794.34 22995.50 23597.63 24288.34 26394.02 25897.13 26387.15 29795.22 25297.15 20687.50 26999.27 24293.99 18599.26 17698.88 186
PAPM_NR94.61 22894.17 23595.96 21598.36 15491.23 21795.93 16097.95 22192.98 22993.42 30694.43 31190.53 23398.38 33087.60 30496.29 32098.27 245
PatchMatch-RL94.61 22893.81 24697.02 16198.19 17195.72 8193.66 27297.23 25888.17 28994.94 25995.62 28791.43 22398.57 31787.36 30997.68 28796.76 315
BH-RMVSNet94.56 23094.44 22794.91 25597.57 24487.44 28293.78 27096.26 28393.69 20596.41 21096.50 25092.10 21199.00 27685.96 31697.71 28498.31 239
USDC94.56 23094.57 22294.55 27497.78 22886.43 29792.75 29498.65 14885.96 30696.91 18797.93 13990.82 23098.74 30190.71 25599.59 7598.47 225
bset_n11_16_dypcd94.53 23293.95 24396.25 20397.56 24689.85 23788.52 34791.32 33594.90 16797.51 14696.38 25782.34 29599.78 4197.22 4499.80 3299.12 142
ppachtmachnet_test94.49 23394.84 20493.46 29396.16 30482.10 33290.59 33197.48 25390.53 26597.01 17997.59 17291.01 22799.36 21993.97 18799.18 18498.94 170
test_yl94.40 23494.00 24095.59 22996.95 28189.52 24294.75 23095.55 29996.18 10696.79 19096.14 26881.09 29999.18 25290.75 25197.77 27898.07 258
DCV-MVSNet94.40 23494.00 24095.59 22996.95 28189.52 24294.75 23095.55 29996.18 10696.79 19096.14 26881.09 29999.18 25290.75 25197.77 27898.07 258
jason94.39 23694.04 23995.41 24198.29 15887.85 27492.74 29696.75 27785.38 31795.29 25096.15 26688.21 26299.65 12894.24 17399.34 15798.74 202
jason: jason.
112194.26 23793.26 25497.27 14698.26 16494.73 12295.86 16297.71 23777.96 34994.53 26896.71 23791.93 21799.40 20687.71 30098.64 24797.69 283
EU-MVSNet94.25 23894.47 22493.60 29098.14 18182.60 33097.24 9292.72 32585.08 31898.48 6398.94 4282.59 29498.76 30097.47 3899.53 9599.44 76
xiu_mvs_v2_base94.22 23994.63 21592.99 30597.32 26884.84 31792.12 30797.84 22991.96 24694.17 27693.43 31896.07 9599.71 9391.27 23697.48 29694.42 341
sss94.22 23993.72 24795.74 22597.71 23489.95 23693.84 26696.98 26888.38 28793.75 29095.74 28287.94 26398.89 28891.02 24298.10 26898.37 231
MVSTER94.21 24193.93 24495.05 25195.83 31386.46 29595.18 20597.65 24392.41 24197.94 12598.00 13072.39 34199.58 15196.36 7199.56 8399.12 142
MAR-MVS94.21 24193.03 25897.76 10196.94 28397.44 3396.97 10697.15 26287.89 29392.00 32792.73 33192.14 20999.12 26183.92 33297.51 29596.73 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 24394.58 22093.07 30196.16 30481.20 33790.42 33396.84 27290.72 26397.14 16697.13 20790.47 23499.11 26494.04 18498.25 26398.91 179
1112_ss94.12 24493.42 25196.23 20498.59 13190.85 22394.24 24698.85 8885.49 31292.97 31294.94 29986.01 27899.64 13191.78 22797.92 27498.20 251
PS-MVSNAJ94.10 24594.47 22493.00 30497.35 26184.88 31691.86 31197.84 22991.96 24694.17 27692.50 33495.82 10499.71 9391.27 23697.48 29694.40 342
CHOSEN 1792x268894.10 24593.41 25296.18 20899.16 6890.04 23492.15 30698.68 13879.90 34296.22 22197.83 14987.92 26799.42 19589.18 28399.65 6099.08 151
MG-MVS94.08 24794.00 24094.32 28097.09 27785.89 30293.19 28895.96 28992.52 23794.93 26097.51 17889.54 24798.77 29887.52 30797.71 28498.31 239
PLCcopyleft91.02 1694.05 24892.90 26097.51 12198.00 19695.12 11394.25 24598.25 19086.17 30491.48 33095.25 29391.01 22799.19 25185.02 32796.69 31398.22 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t93.96 24993.22 25696.19 20799.06 8690.97 22295.99 15498.94 7073.88 35593.43 30596.93 22292.38 20699.37 21789.09 28499.28 17398.25 247
PVSNet_Blended93.96 24993.65 24894.91 25597.79 22487.40 28391.43 31698.68 13884.50 32594.51 26994.48 31093.04 18599.30 23489.77 27598.61 24998.02 268
AUN-MVS93.95 25192.69 26897.74 10397.80 21895.38 9895.57 17995.46 30191.26 25892.64 32096.10 27174.67 33099.55 16293.72 19596.97 30598.30 241
lupinMVS93.77 25293.28 25395.24 24497.68 23687.81 27592.12 30796.05 28684.52 32494.48 27195.06 29786.90 27399.63 13393.62 19899.13 19198.27 245
PatchT93.75 25393.57 24994.29 28295.05 32887.32 28596.05 14992.98 32197.54 6394.25 27498.72 5575.79 32799.24 24695.92 8995.81 32396.32 324
EPNet93.72 25492.62 27197.03 16087.61 36292.25 19696.27 13691.28 33696.74 8687.65 35097.39 19085.00 28499.64 13192.14 21999.48 11599.20 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 25492.65 26996.91 16698.93 9591.81 21191.23 32398.52 15882.69 33096.46 20896.52 24980.38 30399.90 1390.36 26798.79 23299.03 159
DPM-MVS93.68 25692.77 26796.42 19597.91 20292.54 19091.17 32497.47 25484.99 32193.08 31194.74 30389.90 24499.00 27687.54 30698.09 26997.72 281
PMMVS293.66 25794.07 23792.45 31597.57 24480.67 33986.46 35096.00 28793.99 19797.10 17097.38 19289.90 24497.82 34388.76 28899.47 11798.86 189
OpenMVS_ROBcopyleft91.80 1493.64 25893.05 25795.42 23997.31 26991.21 21895.08 21196.68 28081.56 33496.88 18996.41 25390.44 23599.25 24585.39 32397.67 28895.80 330
Patchmatch-test93.60 25993.25 25594.63 26896.14 30787.47 28196.04 15094.50 30893.57 20696.47 20796.97 21976.50 32298.61 31490.67 25798.41 25897.81 279
WTY-MVS93.55 26093.00 25995.19 24697.81 21487.86 27293.89 26596.00 28789.02 27894.07 28095.44 29286.27 27699.33 22787.69 30296.82 30998.39 230
Test_1112_low_res93.53 26192.86 26195.54 23498.60 12988.86 25492.75 29498.69 13682.66 33192.65 31996.92 22484.75 28699.56 15890.94 24497.76 28098.19 252
MIMVSNet93.42 26292.86 26195.10 24998.17 17688.19 26598.13 4193.69 31292.07 24395.04 25798.21 10480.95 30199.03 27581.42 34098.06 27098.07 258
FMVSNet593.39 26392.35 27496.50 19095.83 31390.81 22697.31 8798.27 18792.74 23696.27 21898.28 9262.23 35699.67 12190.86 24699.36 14999.03 159
SCA93.38 26493.52 25092.96 30696.24 29881.40 33693.24 28694.00 31191.58 25394.57 26696.97 21987.94 26399.42 19589.47 27997.66 28998.06 262
tttt051793.31 26592.56 27295.57 23198.71 11587.86 27297.44 8187.17 35395.79 13097.47 15496.84 22764.12 35499.81 3196.20 7499.32 16699.02 161
CR-MVSNet93.29 26692.79 26494.78 26495.44 32288.15 26696.18 14397.20 25984.94 32294.10 27898.57 6577.67 31499.39 21195.17 12895.81 32396.81 313
cl-mvsnet293.25 26792.84 26394.46 27694.30 33686.00 30191.09 32796.64 28190.74 26295.79 23796.31 26078.24 31198.77 29894.15 17798.34 25998.62 214
wuyk23d93.25 26795.20 18787.40 33996.07 30895.38 9897.04 10294.97 30395.33 14799.70 598.11 11398.14 1391.94 35677.76 34999.68 5674.89 355
miper_enhance_ethall93.14 26992.78 26694.20 28393.65 34485.29 30989.97 33797.85 22785.05 31996.15 22694.56 30685.74 27999.14 25993.74 19398.34 25998.17 254
baseline193.14 26992.64 27094.62 26997.34 26587.20 28796.67 12193.02 32094.71 17296.51 20695.83 28181.64 29698.60 31690.00 27288.06 35198.07 258
X-MVStestdata92.86 27190.83 29698.94 1899.15 7197.66 1997.77 5898.83 10097.42 6796.32 21436.50 35896.49 8199.72 7895.66 9799.37 14699.45 66
GA-MVS92.83 27292.15 27794.87 25996.97 28087.27 28690.03 33696.12 28591.83 24994.05 28194.57 30576.01 32698.97 28492.46 21797.34 30198.36 236
CMPMVSbinary73.10 2392.74 27391.39 28596.77 17493.57 34694.67 12894.21 24997.67 23980.36 34193.61 29696.60 24382.85 29397.35 34784.86 32898.78 23398.29 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 27491.76 28295.56 23398.42 15088.23 26496.03 15187.35 35294.04 19696.56 20395.47 29164.03 35599.77 5094.78 15199.11 19598.68 210
HY-MVS91.43 1592.58 27591.81 28194.90 25796.49 29288.87 25397.31 8794.62 30685.92 30790.50 33696.84 22785.05 28399.40 20683.77 33595.78 32696.43 323
TR-MVS92.54 27692.20 27693.57 29196.49 29286.66 29393.51 27794.73 30589.96 27194.95 25893.87 31690.24 24198.61 31481.18 34194.88 33395.45 336
RRT_test8_iter0592.46 27792.52 27392.29 31895.33 32577.43 34895.73 16798.55 15694.41 18197.46 15597.72 16357.44 35999.74 6896.92 5799.14 18799.69 20
PMMVS92.39 27891.08 29096.30 20293.12 35092.81 18790.58 33295.96 28979.17 34591.85 32992.27 33590.29 24098.66 31189.85 27496.68 31497.43 291
131492.38 27992.30 27592.64 31195.42 32485.15 31295.86 16296.97 26985.40 31690.62 33393.06 32591.12 22697.80 34486.74 31295.49 33094.97 339
new_pmnet92.34 28091.69 28394.32 28096.23 30089.16 24992.27 30592.88 32284.39 32795.29 25096.35 25985.66 28096.74 35284.53 33097.56 29297.05 300
CVMVSNet92.33 28192.79 26490.95 32597.26 27075.84 35395.29 19792.33 32881.86 33296.27 21898.19 10581.44 29798.46 32594.23 17498.29 26298.55 221
PAPR92.22 28291.27 28895.07 25095.73 31788.81 25591.97 31097.87 22685.80 30990.91 33292.73 33191.16 22598.33 33479.48 34395.76 32798.08 256
DSMNet-mixed92.19 28391.83 28093.25 29796.18 30383.68 32796.27 13693.68 31476.97 35292.54 32399.18 2789.20 25598.55 32083.88 33398.60 25197.51 289
BH-w/o92.14 28491.94 27892.73 31097.13 27685.30 30892.46 30195.64 29489.33 27694.21 27592.74 33089.60 24698.24 33681.68 33994.66 33594.66 340
PCF-MVS89.43 1892.12 28590.64 29996.57 18797.80 21893.48 17289.88 34198.45 16474.46 35496.04 22895.68 28490.71 23299.31 23173.73 35199.01 20896.91 306
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.03 28691.43 28493.82 28698.19 17184.61 31996.27 13690.39 34396.81 8496.37 21293.11 32073.44 33899.49 17680.32 34297.95 27397.36 293
PatchmatchNetpermissive91.98 28791.87 27992.30 31794.60 33379.71 34195.12 20693.59 31689.52 27493.61 29697.02 21777.94 31299.18 25290.84 24794.57 33898.01 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 28891.35 28693.51 29294.27 33785.60 30488.86 34698.61 15079.32 34492.16 32691.44 34389.22 25498.12 34090.80 24997.47 29896.82 312
JIA-IIPM91.79 28990.69 29895.11 24893.80 34390.98 22194.16 25191.78 33296.38 9790.30 33899.30 1872.02 34298.90 28688.28 29690.17 34895.45 336
thres100view90091.76 29091.26 28993.26 29698.21 16984.50 32096.39 12990.39 34396.87 8296.33 21393.08 32473.44 33899.42 19578.85 34697.74 28195.85 328
thres40091.68 29191.00 29193.71 28898.02 19084.35 32295.70 16990.79 34096.26 10295.90 23592.13 33773.62 33699.42 19578.85 34697.74 28197.36 293
tfpn200view991.55 29291.00 29193.21 29998.02 19084.35 32295.70 16990.79 34096.26 10295.90 23592.13 33773.62 33699.42 19578.85 34697.74 28195.85 328
ADS-MVSNet291.47 29390.51 30194.36 27995.51 32085.63 30395.05 21595.70 29383.46 32892.69 31796.84 22779.15 30899.41 20485.66 32090.52 34698.04 266
EPNet_dtu91.39 29490.75 29793.31 29590.48 35982.61 32994.80 22792.88 32293.39 21181.74 35894.90 30281.36 29899.11 26488.28 29698.87 22398.21 250
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 29589.67 30795.47 23796.41 29489.15 25091.54 31590.23 34689.07 27786.78 35492.84 32869.39 34999.44 19294.16 17696.61 31597.82 277
PVSNet86.72 1991.10 29690.97 29391.49 32197.56 24678.04 34587.17 34994.60 30784.65 32392.34 32492.20 33687.37 27198.47 32485.17 32697.69 28697.96 270
tpm91.08 29790.85 29591.75 32095.33 32578.09 34495.03 21791.27 33788.75 28293.53 30097.40 18671.24 34399.30 23491.25 23893.87 33997.87 274
thres20091.00 29890.42 30292.77 30997.47 25583.98 32594.01 25991.18 33895.12 15795.44 24791.21 34573.93 33299.31 23177.76 34997.63 29195.01 338
ADS-MVSNet90.95 29990.26 30393.04 30295.51 32082.37 33195.05 21593.41 31783.46 32892.69 31796.84 22779.15 30898.70 30585.66 32090.52 34698.04 266
tpmvs90.79 30090.87 29490.57 32892.75 35476.30 35195.79 16693.64 31591.04 26191.91 32896.26 26177.19 32098.86 29289.38 28189.85 34996.56 321
thisisatest051590.43 30189.18 31394.17 28597.07 27885.44 30689.75 34287.58 35188.28 28893.69 29391.72 34165.27 35399.58 15190.59 25998.67 24297.50 290
tpmrst90.31 30290.61 30089.41 33294.06 34172.37 35995.06 21493.69 31288.01 29092.32 32596.86 22577.45 31698.82 29391.04 24187.01 35397.04 301
test0.0.03 190.11 30389.21 31092.83 30893.89 34286.87 29291.74 31388.74 35092.02 24494.71 26391.14 34673.92 33394.48 35583.75 33692.94 34197.16 297
MVS90.02 30489.20 31192.47 31494.71 33186.90 29195.86 16296.74 27864.72 35790.62 33392.77 32992.54 20198.39 32979.30 34495.56 32992.12 348
pmmvs390.00 30588.90 31493.32 29494.20 34085.34 30791.25 32292.56 32778.59 34693.82 28695.17 29467.36 35298.69 30689.08 28598.03 27195.92 327
CHOSEN 280x42089.98 30689.19 31292.37 31695.60 31981.13 33886.22 35197.09 26581.44 33687.44 35193.15 31973.99 33199.47 18288.69 29099.07 20196.52 322
test-LLR89.97 30789.90 30590.16 32994.24 33874.98 35489.89 33889.06 34892.02 24489.97 34090.77 34873.92 33398.57 31791.88 22497.36 29996.92 304
FPMVS89.92 30888.63 31593.82 28698.37 15396.94 4591.58 31493.34 31888.00 29190.32 33797.10 21170.87 34691.13 35771.91 35496.16 32293.39 346
CostFormer89.75 30989.25 30891.26 32494.69 33278.00 34695.32 19491.98 33081.50 33590.55 33596.96 22171.06 34598.89 28888.59 29292.63 34396.87 307
baseline289.65 31088.44 31793.25 29795.62 31882.71 32893.82 26785.94 35588.89 28187.35 35292.54 33371.23 34499.33 22786.01 31594.60 33797.72 281
E-PMN89.52 31189.78 30688.73 33493.14 34977.61 34783.26 35492.02 32994.82 16993.71 29193.11 32075.31 32896.81 35085.81 31796.81 31091.77 350
EPMVS89.26 31288.55 31691.39 32292.36 35579.11 34295.65 17579.86 35888.60 28493.12 31096.53 24770.73 34798.10 34190.75 25189.32 35096.98 302
EMVS89.06 31389.22 30988.61 33593.00 35177.34 34982.91 35590.92 33994.64 17492.63 32191.81 34076.30 32497.02 34883.83 33496.90 30791.48 351
KD-MVS_2432*160088.93 31487.74 31992.49 31288.04 36081.99 33389.63 34395.62 29591.35 25595.06 25493.11 32056.58 36198.63 31285.19 32495.07 33196.85 309
miper_refine_blended88.93 31487.74 31992.49 31288.04 36081.99 33389.63 34395.62 29591.35 25595.06 25493.11 32056.58 36198.63 31285.19 32495.07 33196.85 309
IB-MVS85.98 2088.63 31686.95 32593.68 28995.12 32784.82 31890.85 32990.17 34787.55 29488.48 34791.34 34458.01 35899.59 14987.24 31093.80 34096.63 320
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 31787.69 32190.79 32694.98 32977.34 34995.09 20991.83 33177.51 35189.40 34296.41 25367.83 35198.73 30283.58 33792.60 34496.29 325
MVS-HIRNet88.40 31890.20 30482.99 34097.01 27960.04 36293.11 28985.61 35684.45 32688.72 34699.09 3384.72 28798.23 33782.52 33896.59 31690.69 353
gg-mvs-nofinetune88.28 31986.96 32492.23 31992.84 35384.44 32198.19 3874.60 36099.08 1087.01 35399.47 856.93 36098.23 33778.91 34595.61 32894.01 343
dp88.08 32088.05 31888.16 33892.85 35268.81 36194.17 25092.88 32285.47 31391.38 33196.14 26868.87 35098.81 29586.88 31183.80 35696.87 307
tpm cat188.01 32187.33 32290.05 33194.48 33476.28 35294.47 23994.35 31073.84 35689.26 34395.61 28873.64 33598.30 33584.13 33186.20 35495.57 335
test-mter87.92 32287.17 32390.16 32994.24 33874.98 35489.89 33889.06 34886.44 30389.97 34090.77 34854.96 36598.57 31791.88 22497.36 29996.92 304
DWT-MVSNet_test87.92 32286.77 32691.39 32293.18 34778.62 34395.10 20791.42 33485.58 31188.00 34888.73 35360.60 35798.90 28690.60 25887.70 35296.65 317
PAPM87.64 32485.84 32993.04 30296.54 29084.99 31588.42 34895.57 29879.52 34383.82 35593.05 32680.57 30298.41 32762.29 35792.79 34295.71 331
TESTMET0.1,187.20 32586.57 32789.07 33393.62 34572.84 35889.89 33887.01 35485.46 31489.12 34590.20 35156.00 36497.72 34590.91 24596.92 30696.64 318
MVEpermissive73.61 2286.48 32685.92 32888.18 33796.23 30085.28 31081.78 35675.79 35986.01 30582.53 35791.88 33992.74 19287.47 35871.42 35594.86 33491.78 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 32783.21 33088.34 33695.76 31674.97 35683.49 35392.70 32678.47 34787.94 34986.90 35583.38 29296.63 35373.44 35266.86 35893.40 345
tmp_tt57.23 32862.50 33141.44 34234.77 36349.21 36483.93 35260.22 36415.31 35971.11 36079.37 35770.09 34844.86 36064.76 35682.93 35730.25 356
cdsmvs_eth3d_5k24.22 32932.30 3320.00 3450.00 3660.00 3670.00 35798.10 2100.00 3620.00 36395.06 29797.54 280.00 3630.00 3610.00 3610.00 359
test12312.59 33015.49 3333.87 3436.07 3642.55 36590.75 3302.59 3662.52 3605.20 36213.02 3604.96 3661.85 3625.20 3599.09 3597.23 357
testmvs12.33 33115.23 3343.64 3445.77 3652.23 36688.99 3453.62 3652.30 3615.29 36113.09 3594.52 3671.95 3615.16 3608.32 3606.75 358
pcd_1.5k_mvsjas7.98 33210.65 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36395.82 1040.00 3630.00 3610.00 3610.00 359
ab-mvs-re7.91 33310.55 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36394.94 2990.00 3680.00 3630.00 3610.00 3610.00 359
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS98.43 14995.94 7698.56 15590.72 26396.66 19897.07 21395.02 13699.74 6891.08 24098.93 216
RE-MVS-def97.88 4798.81 10198.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.94 5495.49 10599.20 18099.26 113
IU-MVS99.22 5695.40 9798.14 20685.77 31098.36 7595.23 12599.51 10599.49 51
OPU-MVS97.64 11298.01 19295.27 10496.79 11197.35 19596.97 5398.51 32391.21 23999.25 17799.14 134
test_241102_TWO98.83 10096.11 10898.62 5198.24 9896.92 5799.72 7895.44 11299.49 11199.49 51
test_241102_ONE99.22 5695.35 10198.83 10096.04 11399.08 3198.13 10997.87 2099.33 227
9.1496.69 13098.53 13796.02 15298.98 6393.23 21797.18 16497.46 18296.47 8399.62 14192.99 21099.32 166
save fliter98.48 14494.71 12494.53 23798.41 17295.02 162
test_0728_THIRD96.62 8898.40 7098.28 9297.10 4499.71 9395.70 9399.62 6499.58 28
test_0728_SECOND98.25 7199.23 5395.49 9596.74 11498.89 7599.75 6195.48 10899.52 10099.53 39
test072699.24 5195.51 9396.89 10798.89 7595.92 12198.64 5098.31 8597.06 49
GSMVS98.06 262
test_part299.03 9096.07 7198.08 110
sam_mvs177.80 31398.06 262
sam_mvs77.38 317
ambc96.56 18898.23 16891.68 21397.88 5498.13 20898.42 6998.56 6794.22 16199.04 27294.05 18399.35 15498.95 168
MTGPAbinary98.73 123
test_post194.98 21910.37 36276.21 32599.04 27289.47 279
test_post10.87 36176.83 32199.07 269
patchmatchnet-post96.84 22777.36 31899.42 195
GG-mvs-BLEND90.60 32791.00 35784.21 32498.23 3272.63 36382.76 35684.11 35656.14 36396.79 35172.20 35392.09 34590.78 352
MTMP96.55 12274.60 360
gm-plane-assit91.79 35671.40 36081.67 33390.11 35298.99 27884.86 328
test9_res91.29 23598.89 22299.00 162
TEST997.84 21195.23 10693.62 27398.39 17486.81 30093.78 28795.99 27394.68 14599.52 170
test_897.81 21495.07 11493.54 27698.38 17687.04 29893.71 29195.96 27794.58 15099.52 170
agg_prior290.34 26898.90 21999.10 150
agg_prior97.80 21894.96 11698.36 17893.49 30199.53 166
TestCases98.06 8499.08 8396.16 6899.16 1794.35 18497.78 14098.07 11795.84 10199.12 26191.41 23399.42 13598.91 179
test_prior495.38 9893.61 275
test_prior293.33 28494.21 18994.02 28296.25 26293.64 17491.90 22298.96 210
test_prior97.46 13297.79 22494.26 14398.42 17099.34 22498.79 195
旧先验293.35 28377.95 35095.77 24198.67 31090.74 254
新几何293.43 278
新几何197.25 14998.29 15894.70 12797.73 23577.98 34894.83 26196.67 24092.08 21299.45 18988.17 29898.65 24697.61 286
旧先验197.80 21893.87 15597.75 23497.04 21693.57 17698.68 24198.72 205
无先验93.20 28797.91 22380.78 33899.40 20687.71 30097.94 271
原ACMM292.82 292
原ACMM196.58 18598.16 17892.12 20298.15 20585.90 30893.49 30196.43 25292.47 20499.38 21487.66 30398.62 24898.23 248
test22298.17 17693.24 17792.74 29697.61 24975.17 35394.65 26596.69 23990.96 22998.66 24497.66 284
testdata299.46 18587.84 299
segment_acmp95.34 125
testdata95.70 22898.16 17890.58 22997.72 23680.38 34095.62 24497.02 21792.06 21398.98 28089.06 28698.52 25397.54 288
testdata192.77 29393.78 202
test1297.46 13297.61 24394.07 14897.78 23393.57 29893.31 18099.42 19598.78 23398.89 183
plane_prior798.70 11794.67 128
plane_prior698.38 15294.37 13791.91 219
plane_prior598.75 11999.46 18592.59 21599.20 18099.28 108
plane_prior496.77 233
plane_prior394.51 13195.29 15096.16 224
plane_prior296.50 12496.36 98
plane_prior198.49 142
plane_prior94.29 13995.42 18494.31 18698.93 216
n20.00 367
nn0.00 367
door-mid98.17 202
lessismore_v097.05 15899.36 4092.12 20284.07 35798.77 4698.98 3985.36 28299.74 6897.34 4299.37 14699.30 101
LGP-MVS_train98.74 3599.15 7197.02 4299.02 4995.15 15598.34 7898.23 10097.91 1799.70 10294.41 16499.73 4499.50 43
test1198.08 213
door97.81 232
HQP5-MVS92.47 192
HQP-NCC97.85 20694.26 24293.18 22092.86 314
ACMP_Plane97.85 20694.26 24293.18 22092.86 314
BP-MVS90.51 263
HQP4-MVS92.87 31399.23 24899.06 155
HQP3-MVS98.43 16798.74 237
HQP2-MVS90.33 236
NP-MVS98.14 18193.72 16395.08 295
MDTV_nov1_ep13_2view57.28 36394.89 22280.59 33994.02 28278.66 31085.50 32297.82 277
MDTV_nov1_ep1391.28 28794.31 33573.51 35794.80 22793.16 31986.75 30293.45 30497.40 18676.37 32398.55 32088.85 28796.43 317
ACMMP++_ref99.52 100
ACMMP++99.55 89
Test By Simon94.51 153
ITE_SJBPF97.85 9898.64 12196.66 5398.51 16095.63 13597.22 16297.30 20095.52 11898.55 32090.97 24398.90 21998.34 237
DeepMVS_CXcopyleft77.17 34190.94 35885.28 31074.08 36252.51 35880.87 35988.03 35475.25 32970.63 35959.23 35884.94 35575.62 354