This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
PS-MVSNAJss98.53 1998.63 1998.21 7799.68 994.82 12898.10 4899.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6698.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
UA-Net98.88 798.76 1399.22 299.11 8397.89 1499.47 399.32 1099.08 1097.87 14199.67 296.47 8899.92 497.88 2399.98 299.85 3
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
mvs_tets98.90 598.94 698.75 3399.69 896.48 6098.54 2099.22 1396.23 11299.71 499.48 798.77 699.93 298.89 399.95 599.84 5
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6098.45 2699.12 2895.83 13999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
PS-CasMVS98.73 1198.85 1098.39 5999.55 1895.47 10098.49 2399.13 2799.22 899.22 2798.96 4597.35 3499.92 497.79 2899.93 1099.79 7
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6499.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3898.65 1699.19 1895.62 14799.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
FC-MVSNet-test98.16 3398.37 2797.56 12399.49 2793.10 19098.35 2999.21 1498.43 2998.89 3998.83 5394.30 16499.81 3297.87 2499.91 1799.77 8
CP-MVSNet98.42 2398.46 2498.30 6799.46 2995.22 11698.27 3798.84 9999.05 1399.01 3598.65 6695.37 12999.90 1397.57 3699.91 1799.77 8
ANet_high98.31 2898.94 696.41 20499.33 4489.64 25097.92 5899.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
PEN-MVS98.75 1098.85 1098.44 5599.58 1595.67 8898.45 2699.15 2499.33 599.30 2199.00 4197.27 3899.92 497.64 3499.92 1499.75 13
WR-MVS_H98.65 1598.62 2198.75 3399.51 2396.61 5698.55 1999.17 1999.05 1399.17 2998.79 5495.47 12699.89 1697.95 2199.91 1799.75 13
Anonymous2023121198.55 1798.76 1397.94 9698.79 11194.37 14698.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8698.12 1699.86 2599.73 15
FIs97.93 5598.07 3697.48 13599.38 3992.95 19398.03 5399.11 2998.04 4298.62 5298.66 6493.75 17899.78 4397.23 4599.84 2999.73 15
v7n98.73 1198.99 597.95 9599.64 1194.20 15498.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
nrg03098.54 1898.62 2198.32 6499.22 5895.66 8997.90 5999.08 3798.31 3399.02 3498.74 5897.68 2499.61 15897.77 2999.85 2899.70 18
DTE-MVSNet98.79 898.86 898.59 4799.55 1896.12 7198.48 2599.10 3199.36 499.29 2399.06 3997.27 3899.93 297.71 3299.91 1799.70 18
test_part196.77 13696.53 14697.47 13698.04 19792.92 19497.93 5698.85 9498.83 2199.30 2199.07 3879.25 31799.79 3997.59 3599.93 1099.69 20
RRT_test8_iter0592.46 28692.52 28292.29 32995.33 33977.43 36195.73 17798.55 16294.41 19397.46 16397.72 17057.44 37199.74 7596.92 5999.14 19999.69 20
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4599.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 18298.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Baseline_NR-MVSNet97.72 7697.79 5597.50 13199.56 1693.29 18495.44 19398.86 9098.20 3898.37 7699.24 2094.69 14999.55 17395.98 9399.79 3899.65 23
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6399.17 699.05 4398.05 4199.61 1199.52 593.72 17999.88 1898.72 999.88 2399.65 23
pmmvs699.07 499.24 498.56 4999.81 296.38 6298.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12597.75 3099.89 2299.62 25
TransMVSNet (Re)98.38 2598.67 1797.51 12899.51 2393.39 18398.20 4398.87 8798.23 3699.48 1299.27 1998.47 899.55 17396.52 6899.53 10099.60 26
XXY-MVS97.54 8897.70 6297.07 16499.46 2992.21 20797.22 10099.00 6094.93 17898.58 5898.92 4897.31 3699.41 21694.44 17599.43 14099.59 27
test_0728_THIRD96.62 9298.40 7398.28 9897.10 4599.71 10095.70 10499.62 6999.58 28
MSP-MVS97.45 9596.92 12399.03 899.26 4997.70 1997.66 7298.89 7995.65 14598.51 6296.46 26192.15 21499.81 3295.14 14698.58 26399.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EI-MVSNet-UG-set97.32 10597.40 9197.09 16397.34 27892.01 21595.33 20497.65 25297.74 5198.30 9198.14 11595.04 13999.69 11797.55 3799.52 10599.58 28
v1097.55 8797.97 4196.31 20898.60 13789.64 25097.44 8899.02 5296.60 9498.72 5099.16 3093.48 18399.72 8698.76 699.92 1499.58 28
MSC_two_6792asdad98.22 7497.75 24295.34 10898.16 21299.75 6595.87 10099.51 11099.57 32
No_MVS98.22 7497.75 24295.34 10898.16 21299.75 6595.87 10099.51 11099.57 32
APDe-MVS98.14 3498.03 4098.47 5498.72 11996.04 7498.07 5099.10 3195.96 12898.59 5798.69 6296.94 5899.81 3296.64 6299.58 8299.57 32
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16197.36 27392.08 21395.34 20397.65 25297.74 5198.29 9298.11 12095.05 13799.68 12597.50 3999.50 11499.56 35
v897.60 8498.06 3896.23 21198.71 12289.44 25497.43 9098.82 11497.29 7798.74 4899.10 3593.86 17499.68 12598.61 1099.94 899.56 35
VPA-MVSNet98.27 2998.46 2497.70 11499.06 8893.80 16897.76 6799.00 6098.40 3099.07 3398.98 4396.89 6499.75 6597.19 5199.79 3899.55 37
WR-MVS96.90 12596.81 12897.16 15898.56 14292.20 20994.33 25298.12 21897.34 7498.20 9997.33 20692.81 19699.75 6594.79 16299.81 3399.54 38
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8795.87 7996.73 12899.05 4398.67 2498.84 4298.45 7997.58 2899.88 1896.45 7299.86 2599.54 38
SixPastTwentyTwo97.49 9297.57 8197.26 15599.56 1692.33 20398.28 3596.97 27998.30 3499.45 1499.35 1688.43 26699.89 1698.01 2099.76 4299.54 38
test_0728_SECOND98.25 7299.23 5595.49 9996.74 12498.89 7999.75 6595.48 12099.52 10599.53 41
DPE-MVScopyleft97.64 8097.35 9598.50 5198.85 10696.18 6895.21 21598.99 6395.84 13898.78 4598.08 12296.84 6999.81 3293.98 19999.57 8599.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
VPNet97.26 10897.49 8896.59 19199.47 2890.58 23896.27 14598.53 16397.77 4798.46 6998.41 8194.59 15599.68 12594.61 16899.29 18199.52 42
Regformer-497.53 9097.47 9097.71 11297.35 27493.91 16295.26 21098.14 21597.97 4398.34 8297.89 14995.49 12399.71 10097.41 4199.42 14399.51 44
v119296.83 13197.06 11596.15 21698.28 16989.29 25695.36 20198.77 12193.73 21598.11 11098.34 8693.02 19499.67 13098.35 1499.58 8299.50 45
pm-mvs198.47 2198.67 1797.86 10299.52 2294.58 13898.28 3599.00 6097.57 6199.27 2499.22 2298.32 999.50 18797.09 5499.75 4699.50 45
EI-MVSNet96.63 14796.93 12295.74 23397.26 28388.13 27995.29 20897.65 25296.99 8297.94 13298.19 11192.55 20599.58 16296.91 6099.56 8899.50 45
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3597.46 3298.57 1799.05 4395.43 15797.41 16697.50 18797.98 1599.79 3995.58 11699.57 8599.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7397.02 4397.09 10899.02 5295.15 16798.34 8298.23 10697.91 1799.70 10994.41 17799.73 4899.50 45
LGP-MVS_train98.74 3599.15 7397.02 4399.02 5295.15 16798.34 8298.23 10697.91 1799.70 10994.41 17799.73 4899.50 45
IterMVS-LS96.92 12397.29 9895.79 23198.51 14788.13 27995.10 21898.66 14996.99 8298.46 6998.68 6392.55 20599.74 7596.91 6099.79 3899.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH93.61 998.44 2298.76 1397.51 12899.43 3393.54 17998.23 3899.05 4397.40 7399.37 1899.08 3798.79 599.47 19497.74 3199.71 5499.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111194.53 23994.81 21493.72 29899.06 8881.94 34798.31 3283.87 37096.37 10598.49 6599.17 2981.49 30699.73 8196.64 6299.86 2599.49 53
IU-MVS99.22 5895.40 10198.14 21585.77 32398.36 7995.23 13899.51 11099.49 53
test_241102_TWO98.83 10696.11 11898.62 5298.24 10496.92 6299.72 8695.44 12499.49 11899.49 53
v192192096.72 14096.96 12195.99 22098.21 17888.79 26695.42 19598.79 11693.22 23098.19 10298.26 10392.68 20099.70 10998.34 1599.55 9499.49 53
v124096.74 13797.02 11895.91 22798.18 18388.52 26995.39 19998.88 8593.15 23698.46 6998.40 8392.80 19799.71 10098.45 1399.49 11899.49 53
ACMMPR97.95 5097.62 7698.94 1899.20 6697.56 2697.59 7798.83 10696.05 12197.46 16397.63 17696.77 7199.76 5895.61 11399.46 12799.49 53
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2696.84 4895.38 20098.99 6392.45 25298.11 11098.31 8997.25 4199.77 5396.60 6499.62 6999.48 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PGM-MVS97.88 6297.52 8498.96 1699.20 6697.62 2297.09 10899.06 4195.45 15597.55 15197.94 14497.11 4499.78 4394.77 16599.46 12799.48 59
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6098.72 11995.78 8195.66 18399.02 5298.11 4098.31 8997.69 17394.65 15399.85 2297.02 5799.71 5499.48 59
v14419296.69 14396.90 12596.03 21998.25 17488.92 26195.49 19198.77 12193.05 23898.09 11498.29 9792.51 20999.70 10998.11 1799.56 8899.47 62
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5198.76 1198.89 7998.49 2899.38 1799.14 3395.44 12899.84 2596.47 7199.80 3699.47 62
region2R97.92 5697.59 7998.92 2299.22 5897.55 2797.60 7698.84 9996.00 12697.22 17097.62 17796.87 6799.76 5895.48 12099.43 14099.46 64
Regformer-397.25 10997.29 9897.11 16197.35 27492.32 20495.26 21097.62 25797.67 5998.17 10397.89 14995.05 13799.56 16997.16 5299.42 14399.46 64
DU-MVS97.79 7197.60 7898.36 6198.73 11795.78 8195.65 18698.87 8797.57 6198.31 8997.83 15694.69 14999.85 2297.02 5799.71 5499.46 64
NR-MVSNet97.96 4697.86 5098.26 6998.73 11795.54 9398.14 4698.73 12997.79 4699.42 1597.83 15694.40 16299.78 4395.91 9799.76 4299.46 64
mPP-MVS97.91 5997.53 8399.04 799.22 5897.87 1597.74 6998.78 12096.04 12397.10 18097.73 16896.53 8399.78 4395.16 14399.50 11499.46 64
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4697.24 4097.45 8798.84 9995.76 14196.93 19697.43 19397.26 4099.79 3996.06 8499.53 10099.45 69
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10796.67 5396.74 12498.73 12991.61 26398.48 6698.36 8496.53 8399.68 12595.17 14199.54 9799.45 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4296.84 4896.36 14198.79 11695.07 17197.88 13898.35 8597.24 4299.72 8696.05 8699.58 8299.45 69
zzz-MVS98.01 4497.66 6799.06 499.44 3197.90 1295.66 18398.73 12997.69 5797.90 13597.96 13995.81 11299.82 2996.13 8199.61 7599.45 69
MTAPA98.14 3497.84 5199.06 499.44 3197.90 1297.25 9798.73 12997.69 5797.90 13597.96 13995.81 11299.82 2996.13 8199.61 7599.45 69
v114496.84 12897.08 11396.13 21798.42 15989.28 25795.41 19798.67 14794.21 20197.97 12998.31 8993.06 19099.65 13898.06 1999.62 6999.45 69
XVS97.96 4697.63 7498.94 1899.15 7397.66 2097.77 6598.83 10697.42 6996.32 22597.64 17596.49 8699.72 8695.66 10999.37 15599.45 69
X-MVStestdata92.86 28090.83 30598.94 1899.15 7397.66 2097.77 6598.83 10697.42 6996.32 22536.50 37196.49 8699.72 8695.66 10999.37 15599.45 69
v2v48296.78 13597.06 11595.95 22498.57 14188.77 26795.36 20198.26 19695.18 16697.85 14398.23 10692.58 20499.63 14397.80 2799.69 5899.45 69
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4697.77 1897.49 8698.73 12996.27 10995.59 25797.75 16596.30 9699.78 4393.70 20999.48 12299.45 69
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EU-MVSNet94.25 24794.47 23393.60 30198.14 19082.60 34297.24 9992.72 33785.08 33198.48 6698.94 4682.59 30398.76 31297.47 4099.53 10099.44 79
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5597.60 2398.09 4998.96 7195.75 14397.91 13498.06 12996.89 6499.76 5895.32 13299.57 8599.43 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS97.82 6997.49 8898.81 2999.23 5597.25 3997.16 10298.79 11695.96 12897.53 15297.40 19596.93 6099.77 5395.04 15299.35 16399.42 81
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2097.48 3198.35 2999.03 5095.88 13497.88 13898.22 10998.15 1299.74 7596.50 7099.62 6999.42 81
UniMVSNet (Re)97.83 6797.65 6998.35 6398.80 11095.86 8095.92 17099.04 4997.51 6698.22 9897.81 16094.68 15199.78 4397.14 5399.75 4699.41 83
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3397.21 4297.15 10398.90 7896.58 9698.08 11697.87 15397.02 5399.76 5895.25 13699.59 8099.40 84
Skip Steuart: Steuart Systems R&D Blog.
TDRefinement98.90 598.86 899.02 999.54 2098.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 16097.21 4899.76 4299.40 84
K. test v396.44 15696.28 15796.95 16999.41 3691.53 22397.65 7390.31 35798.89 1998.93 3899.36 1484.57 29599.92 497.81 2699.56 8899.39 86
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7397.55 2796.68 13098.83 10695.21 16398.36 7998.13 11698.13 1499.62 15196.04 8799.54 9799.39 86
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test250689.86 31889.16 32391.97 33198.95 9876.83 36498.54 2061.07 37896.20 11397.07 18599.16 3055.19 37799.69 11796.43 7399.83 3199.38 88
ECVR-MVScopyleft94.37 24594.48 23294.05 29598.95 9883.10 33998.31 3282.48 37196.20 11398.23 9799.16 3081.18 30999.66 13695.95 9499.83 3199.38 88
V4297.04 11597.16 10896.68 18898.59 13991.05 22896.33 14398.36 18594.60 18797.99 12598.30 9393.32 18599.62 15197.40 4299.53 10099.38 88
abl_698.42 2398.19 3299.09 399.16 7098.10 697.73 7199.11 2997.76 5098.62 5298.27 10297.88 1999.80 3895.67 10799.50 11499.38 88
CP-MVS97.92 5697.56 8298.99 1398.99 9697.82 1697.93 5698.96 7196.11 11896.89 19997.45 19196.85 6899.78 4395.19 13999.63 6899.38 88
EG-PatchMatch MVS97.69 7897.79 5597.40 14699.06 8893.52 18095.96 16698.97 7094.55 19198.82 4398.76 5797.31 3699.29 25097.20 5099.44 13299.38 88
IS-MVSNet96.93 12296.68 13597.70 11499.25 5294.00 16098.57 1796.74 28898.36 3198.14 10897.98 13888.23 26899.71 10093.10 22199.72 5199.38 88
Regformer-297.41 9897.24 10397.93 9797.21 28694.72 13194.85 23698.27 19497.74 5198.11 11097.50 18795.58 12199.69 11796.57 6799.31 17799.37 95
GeoE97.75 7497.70 6297.89 9998.88 10594.53 13997.10 10798.98 6695.75 14397.62 14997.59 17997.61 2799.77 5396.34 7699.44 13299.36 96
UGNet96.81 13396.56 14297.58 12296.64 30293.84 16797.75 6897.12 27396.47 10393.62 30998.88 5093.22 18899.53 17895.61 11399.69 5899.36 96
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Regformer-197.27 10797.16 10897.61 12197.21 28693.86 16594.85 23698.04 22997.62 6098.03 12297.50 18795.34 13099.63 14396.52 6899.31 17799.35 98
VDDNet96.98 12096.84 12697.41 14599.40 3793.26 18597.94 5595.31 31499.26 798.39 7599.18 2787.85 27599.62 15195.13 14899.09 21099.35 98
test117298.08 3997.76 5999.05 698.78 11398.07 797.41 9298.85 9497.57 6198.15 10697.96 13996.60 8099.76 5895.30 13399.18 19699.33 100
SR-MVS98.00 4597.66 6799.01 1198.77 11597.93 1197.38 9398.83 10697.32 7598.06 11897.85 15496.65 7599.77 5395.00 15599.11 20799.32 101
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 11197.31 3797.55 8098.92 7697.72 5498.25 9498.13 11697.10 4599.75 6595.44 12499.24 18999.32 101
EPP-MVSNet96.84 12896.58 14097.65 11899.18 6993.78 17098.68 1296.34 29297.91 4597.30 16898.06 12988.46 26599.85 2293.85 20399.40 15099.32 101
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9396.70 5296.24 14998.89 7993.71 21697.97 12997.75 16597.44 3099.63 14393.22 21899.70 5799.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+93.58 1098.23 3298.31 2997.98 9499.39 3895.22 11697.55 8099.20 1698.21 3799.25 2598.51 7598.21 1199.40 21894.79 16299.72 5199.32 101
testtj96.69 14396.13 16398.36 6198.46 15796.02 7696.44 13698.70 13994.26 19996.79 20197.13 21694.07 17099.75 6590.53 27498.80 24299.31 106
Anonymous2024052197.07 11497.51 8595.76 23299.35 4288.18 27697.78 6498.40 18097.11 8098.34 8299.04 4089.58 25399.79 3998.09 1899.93 1099.30 107
HFP-MVS97.94 5297.64 7298.83 2699.15 7397.50 2997.59 7798.84 9996.05 12197.49 15797.54 18297.07 4899.70 10995.61 11399.46 12799.30 107
#test#97.62 8297.22 10598.83 2699.15 7397.50 2996.81 12098.84 9994.25 20097.49 15797.54 18297.07 4899.70 10994.37 18099.46 12799.30 107
lessismore_v097.05 16599.36 4192.12 21184.07 36998.77 4798.98 4385.36 28999.74 7597.34 4499.37 15599.30 107
GBi-Net96.99 11796.80 12997.56 12397.96 20793.67 17398.23 3898.66 14995.59 15097.99 12599.19 2489.51 25799.73 8194.60 16999.44 13299.30 107
test196.99 11796.80 12997.56 12397.96 20793.67 17398.23 3898.66 14995.59 15097.99 12599.19 2489.51 25799.73 8194.60 16999.44 13299.30 107
FMVSNet197.95 5098.08 3597.56 12399.14 8193.67 17398.23 3898.66 14997.41 7299.00 3699.19 2495.47 12699.73 8195.83 10299.76 4299.30 107
v14896.58 15096.97 11995.42 24798.63 13387.57 29095.09 22097.90 23395.91 13398.24 9697.96 13993.42 18499.39 22396.04 8799.52 10599.29 114
TSAR-MVS + MP.97.42 9797.23 10498.00 9399.38 3995.00 12397.63 7598.20 20393.00 24098.16 10498.06 12995.89 10399.72 8695.67 10799.10 20999.28 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
casdiffmvs97.50 9197.81 5496.56 19598.51 14791.04 22995.83 17599.09 3697.23 7898.33 8698.30 9397.03 5299.37 22996.58 6699.38 15499.28 115
HQP_MVS96.66 14696.33 15697.68 11798.70 12494.29 14896.50 13498.75 12596.36 10696.16 23596.77 24391.91 22599.46 19792.59 22799.20 19199.28 115
plane_prior598.75 12599.46 19792.59 22799.20 19199.28 115
IterMVS-SCA-FT95.86 18096.19 16194.85 26997.68 24985.53 31692.42 31397.63 25696.99 8298.36 7998.54 7387.94 27099.75 6597.07 5699.08 21199.27 119
KD-MVS_self_test97.86 6598.07 3697.25 15699.22 5892.81 19697.55 8098.94 7497.10 8198.85 4198.88 5095.03 14099.67 13097.39 4399.65 6499.26 120
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10898.05 997.55 8098.86 9097.77 4798.20 9998.07 12496.60 8099.76 5895.49 11799.20 19199.26 120
RE-MVS-def97.88 4998.81 10898.05 997.55 8098.86 9097.77 4798.20 9998.07 12496.94 5895.49 11799.20 19199.26 120
DVP-MVScopyleft97.78 7297.65 6998.16 7899.24 5395.51 9596.74 12498.23 19995.92 13198.40 7398.28 9897.06 5099.71 10095.48 12099.52 10599.26 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 9998.48 15394.71 13294.53 24899.07 4095.02 17497.83 14497.88 15196.44 9099.72 8694.59 17299.39 15299.25 124
SF-MVS97.60 8497.39 9298.22 7498.93 10195.69 8597.05 11099.10 3195.32 16097.83 14497.88 15196.44 9099.72 8694.59 17299.39 15299.25 124
3Dnovator+96.13 397.73 7597.59 7998.15 8198.11 19595.60 9198.04 5198.70 13998.13 3996.93 19698.45 7995.30 13399.62 15195.64 11198.96 22299.24 126
Anonymous2024052997.96 4698.04 3997.71 11298.69 12694.28 15197.86 6198.31 19398.79 2299.23 2698.86 5295.76 11599.61 15895.49 11799.36 15899.23 127
IterMVS95.42 19795.83 17794.20 29297.52 26283.78 33792.41 31497.47 26395.49 15498.06 11898.49 7687.94 27099.58 16296.02 8999.02 21899.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DVP-MVS++.97.96 4697.90 4598.12 8397.75 24295.40 10199.03 798.89 7996.62 9298.62 5298.30 9396.97 5699.75 6595.70 10499.25 18699.21 129
PC_three_145287.24 30898.37 7697.44 19297.00 5496.78 36492.01 23299.25 18699.21 129
OPM-MVS97.54 8897.25 10198.41 5799.11 8396.61 5695.24 21398.46 16994.58 19098.10 11398.07 12497.09 4799.39 22395.16 14399.44 13299.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet93.72 26392.62 28097.03 16787.61 37692.25 20596.27 14591.28 34896.74 9087.65 36397.39 19985.00 29199.64 14192.14 23199.48 12299.20 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.44 9697.78 5896.43 20198.52 14690.75 23696.84 11899.03 5096.51 9997.86 14298.02 13396.67 7499.36 23197.09 5499.47 12499.19 133
APD-MVScopyleft97.00 11696.53 14698.41 5798.55 14396.31 6596.32 14498.77 12192.96 24597.44 16597.58 18195.84 10599.74 7591.96 23399.35 16399.19 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS96.92 12396.55 14398.03 9298.00 20595.54 9394.87 23498.17 20994.60 18796.38 22297.05 22495.67 11899.36 23195.12 14999.08 21199.19 133
ETH3D-3000-0.196.89 12796.46 15198.16 7898.62 13495.69 8595.96 16698.98 6693.36 22497.04 18797.31 20894.93 14499.63 14392.60 22599.34 16699.17 136
NCCC96.52 15295.99 17198.10 8497.81 22495.68 8795.00 22998.20 20395.39 15895.40 26196.36 26893.81 17699.45 20193.55 21298.42 26899.17 136
CPTT-MVS96.69 14396.08 16798.49 5298.89 10496.64 5597.25 9798.77 12192.89 24696.01 24197.13 21692.23 21399.67 13092.24 23099.34 16699.17 136
RPSCF97.87 6397.51 8598.95 1799.15 7398.43 397.56 7999.06 4196.19 11598.48 6698.70 6194.72 14899.24 25894.37 18099.33 17399.17 136
Vis-MVSNetpermissive98.27 2998.34 2898.07 8699.33 4495.21 11898.04 5199.46 797.32 7597.82 14699.11 3496.75 7299.86 2097.84 2599.36 15899.15 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.73 13996.54 14597.27 15398.35 16493.66 17693.42 29098.36 18594.74 18296.58 21296.76 24596.54 8298.99 29094.87 15899.27 18499.15 140
DeepC-MVS95.41 497.82 6997.70 6298.16 7898.78 11395.72 8396.23 15099.02 5293.92 21198.62 5298.99 4297.69 2399.62 15196.18 8099.87 2499.15 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS97.94 5297.90 4598.07 8699.22 5895.35 10696.79 12198.83 10696.11 11899.08 3198.24 10497.87 2099.72 8695.44 12499.51 11099.14 143
OPU-MVS97.64 11998.01 20195.27 11196.79 12197.35 20496.97 5698.51 33591.21 25299.25 18699.14 143
RRT_MVS94.90 21794.07 24697.39 14793.18 36193.21 18795.26 21097.49 26093.94 21098.25 9497.85 15472.96 35299.84 2597.90 2299.78 4199.14 143
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 12997.59 2495.97 16598.20 20395.51 15395.06 26696.53 25794.10 16999.70 10994.29 18499.15 19899.13 146
MCST-MVS96.24 16295.80 17897.56 12398.75 11694.13 15694.66 24398.17 20990.17 28196.21 23396.10 28295.14 13699.43 20694.13 19198.85 23899.13 146
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20098.48 15391.52 22495.31 20698.45 17095.76 14197.48 16097.54 18289.53 25698.69 31894.43 17694.61 34999.13 146
3Dnovator96.53 297.61 8397.64 7297.50 13197.74 24593.65 17798.49 2398.88 8596.86 8797.11 17998.55 7295.82 10899.73 8195.94 9599.42 14399.13 146
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6597.35 3697.96 5499.16 2098.34 3298.78 4598.52 7497.32 3599.45 20194.08 19299.67 6199.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet95.67 18596.58 14092.94 31897.48 26480.21 35392.96 30198.19 20894.83 18098.82 4398.79 5493.31 18699.51 18695.83 10299.04 21799.12 151
bset_n11_16_dypcd94.53 23993.95 25296.25 21097.56 25989.85 24788.52 35891.32 34794.90 17997.51 15496.38 26782.34 30499.78 4397.22 4699.80 3699.12 151
VDD-MVS97.37 10197.25 10197.74 11098.69 12694.50 14297.04 11195.61 30898.59 2698.51 6298.72 5992.54 20799.58 16296.02 8999.49 11899.12 151
MVSTER94.21 25093.93 25395.05 26095.83 32786.46 30695.18 21697.65 25292.41 25397.94 13298.00 13772.39 35399.58 16296.36 7599.56 8899.12 151
testgi96.07 16996.50 15094.80 27299.26 4987.69 28995.96 16698.58 16095.08 17098.02 12496.25 27297.92 1697.60 35888.68 30498.74 24899.11 155
CDPH-MVS95.45 19694.65 22097.84 10498.28 16994.96 12493.73 28298.33 19085.03 33395.44 25996.60 25395.31 13299.44 20490.01 28499.13 20399.11 155
PVSNet_BlendedMVS95.02 21594.93 20695.27 25197.79 23487.40 29494.14 26598.68 14488.94 29294.51 28198.01 13593.04 19199.30 24689.77 28899.49 11899.11 155
DP-MVS97.87 6397.89 4897.81 10598.62 13494.82 12897.13 10698.79 11698.98 1798.74 4898.49 7695.80 11499.49 18895.04 15299.44 13299.11 155
agg_prior290.34 28198.90 23099.10 159
VNet96.84 12896.83 12796.88 17498.06 19692.02 21496.35 14297.57 25997.70 5697.88 13897.80 16192.40 21199.54 17694.73 16798.96 22299.08 160
CHOSEN 1792x268894.10 25493.41 26196.18 21599.16 7090.04 24392.15 31798.68 14479.90 35596.22 23297.83 15687.92 27499.42 20789.18 29699.65 6499.08 160
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6799.01 9597.41 3594.66 24399.02 5295.20 16498.15 10697.52 18598.83 498.43 33894.87 15896.41 33099.07 162
FMVSNet296.72 14096.67 13696.87 17597.96 20791.88 21797.15 10398.06 22795.59 15098.50 6498.62 6789.51 25799.65 13894.99 15699.60 7899.07 162
diffmvs96.04 17196.23 15995.46 24697.35 27488.03 28193.42 29099.08 3794.09 20696.66 20996.93 23293.85 17599.29 25096.01 9198.67 25399.06 164
HQP4-MVS92.87 32699.23 26099.06 164
ETH3 D test640094.77 22393.87 25497.47 13698.12 19493.73 17194.56 24798.70 13985.45 32894.70 27695.93 29191.77 22799.63 14386.45 32799.14 19999.05 166
HQP-MVS95.17 20894.58 22896.92 17197.85 21692.47 20194.26 25398.43 17393.18 23292.86 32795.08 30890.33 24299.23 26090.51 27698.74 24899.05 166
FMVSNet593.39 27292.35 28396.50 19795.83 32790.81 23597.31 9498.27 19492.74 24896.27 22998.28 9862.23 36899.67 13090.86 25999.36 15899.03 168
HyFIR lowres test93.72 26392.65 27896.91 17398.93 10191.81 22091.23 33498.52 16482.69 34396.46 21996.52 25980.38 31499.90 1390.36 28098.79 24399.03 168
tttt051793.31 27492.56 28195.57 23998.71 12287.86 28397.44 8887.17 36595.79 14097.47 16296.84 23764.12 36699.81 3296.20 7999.32 17599.02 170
test9_res91.29 24898.89 23399.00 171
test20.0396.58 15096.61 13796.48 19998.49 15191.72 22195.68 18297.69 24796.81 8898.27 9397.92 14794.18 16898.71 31690.78 26399.66 6399.00 171
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5299.16 7096.90 4796.39 13898.98 6695.05 17298.06 11898.02 13395.86 10499.56 16994.37 18099.64 6699.00 171
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23398.48 15388.76 26892.84 30297.25 26696.00 12697.59 15097.95 14391.38 23099.46 19793.16 22096.35 33198.99 174
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 22999.12 8289.17 25897.54 8594.92 31696.50 10096.58 21297.27 21083.64 30099.48 19188.42 30799.67 6198.97 175
FMVSNet395.26 20494.94 20496.22 21396.53 30590.06 24295.99 16397.66 25094.11 20597.99 12597.91 14880.22 31599.63 14394.60 16999.44 13298.96 176
ambc96.56 19598.23 17791.68 22297.88 6098.13 21798.42 7298.56 7194.22 16799.04 28494.05 19699.35 16398.95 177
YYNet194.73 22494.84 21194.41 28797.47 26885.09 32590.29 34595.85 30392.52 24997.53 15297.76 16291.97 22099.18 26493.31 21596.86 32098.95 177
ppachtmachnet_test94.49 24194.84 21193.46 30496.16 31882.10 34490.59 34297.48 26290.53 27797.01 19097.59 17991.01 23399.36 23193.97 20099.18 19698.94 179
CANet95.86 18095.65 18396.49 19896.41 30890.82 23394.36 25198.41 17894.94 17692.62 33596.73 24692.68 20099.71 10095.12 14999.60 7898.94 179
Anonymous2023120695.27 20395.06 20195.88 22898.72 11989.37 25595.70 17997.85 23688.00 30396.98 19397.62 17791.95 22199.34 23689.21 29599.53 10098.94 179
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28697.48 26485.15 32390.28 34695.87 30292.52 24997.48 16097.76 16291.92 22499.17 26893.32 21496.80 32398.94 179
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8597.91 21195.65 9094.94 23198.74 12791.31 26996.02 24097.08 22194.05 17199.69 11791.51 24598.94 22698.93 183
LFMVS95.32 20194.88 20996.62 18998.03 19891.47 22597.65 7390.72 35499.11 997.89 13798.31 8979.20 31899.48 19193.91 20299.12 20698.93 183
XVG-OURS97.12 11396.74 13298.26 6998.99 9697.45 3393.82 27899.05 4395.19 16598.32 8797.70 17195.22 13598.41 33994.27 18598.13 27898.93 183
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6697.48 26497.23 4192.56 31098.60 15792.84 24798.54 6097.40 19596.64 7798.78 30994.40 17999.41 14998.93 183
Anonymous20240521196.34 15995.98 17297.43 14398.25 17493.85 16696.74 12494.41 32197.72 5498.37 7698.03 13287.15 27999.53 17894.06 19399.07 21398.92 187
our_test_394.20 25294.58 22893.07 31296.16 31881.20 35090.42 34496.84 28290.72 27597.14 17697.13 21690.47 24099.11 27694.04 19798.25 27498.91 188
tfpnnormal97.72 7697.97 4196.94 17099.26 4992.23 20697.83 6398.45 17098.25 3599.13 3098.66 6496.65 7599.69 11793.92 20199.62 6998.91 188
AllTest97.20 11296.92 12398.06 8899.08 8596.16 6997.14 10599.16 2094.35 19697.78 14798.07 12495.84 10599.12 27391.41 24699.42 14398.91 188
TestCases98.06 8899.08 8596.16 6999.16 2094.35 19697.78 14798.07 12495.84 10599.12 27391.41 24699.42 14398.91 188
h-mvs3396.29 16095.63 18498.26 6998.50 15096.11 7296.90 11697.09 27496.58 9697.21 17298.19 11184.14 29699.78 4395.89 9896.17 33498.89 192
pmmvs-eth3d96.49 15396.18 16297.42 14498.25 17494.29 14894.77 24098.07 22689.81 28497.97 12998.33 8793.11 18999.08 28095.46 12399.84 2998.89 192
train_agg95.46 19594.66 21997.88 10197.84 22095.23 11393.62 28498.39 18187.04 31193.78 30095.99 28494.58 15699.52 18291.76 24198.90 23098.89 192
test1297.46 13997.61 25694.07 15797.78 24293.57 31293.31 18699.42 20798.78 24498.89 192
pmmvs594.63 23494.34 23895.50 24397.63 25588.34 27394.02 26997.13 27287.15 31095.22 26497.15 21587.50 27699.27 25493.99 19899.26 18598.88 196
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14297.69 24894.15 15596.02 16198.43 17393.17 23597.30 16897.38 20195.48 12599.28 25293.74 20699.34 16698.88 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS97.37 10197.70 6296.35 20598.14 19095.13 12096.54 13398.92 7695.94 13099.19 2898.08 12297.74 2295.06 36795.24 13799.54 9798.87 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS293.66 26694.07 24692.45 32697.57 25780.67 35286.46 36196.00 29893.99 20897.10 18097.38 20189.90 25097.82 35588.76 30199.47 12498.86 199
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20299.28 4890.62 23795.31 20699.08 3788.40 29896.97 19498.17 11492.11 21699.78 4393.64 21099.21 19098.86 199
miper_lstm_enhance94.81 22294.80 21594.85 26996.16 31886.45 30791.14 33698.20 20393.49 22097.03 18897.37 20384.97 29299.26 25595.28 13499.56 8898.83 201
PHI-MVS96.96 12196.53 14698.25 7297.48 26496.50 5996.76 12398.85 9493.52 21996.19 23496.85 23695.94 10299.42 20793.79 20599.43 14098.83 201
QAPM95.88 17995.57 18796.80 17997.90 21391.84 21998.18 4598.73 12988.41 29796.42 22098.13 11694.73 14799.75 6588.72 30298.94 22698.81 203
Patchmtry95.03 21494.59 22796.33 20694.83 34490.82 23396.38 14097.20 26896.59 9597.49 15798.57 6977.67 32599.38 22692.95 22499.62 6998.80 204
test_prior395.91 17795.39 19097.46 13997.79 23494.26 15293.33 29598.42 17694.21 20194.02 29596.25 27293.64 18099.34 23691.90 23598.96 22298.79 205
test_prior97.46 13997.79 23494.26 15298.42 17699.34 23698.79 205
eth_miper_zixun_eth94.89 21894.93 20694.75 27495.99 32386.12 31191.35 32998.49 16793.40 22297.12 17897.25 21286.87 28299.35 23495.08 15198.82 24198.78 207
c3_l95.20 20595.32 19194.83 27196.19 31686.43 30891.83 32398.35 18993.47 22197.36 16797.26 21188.69 26399.28 25295.41 13099.36 15898.78 207
MVS_111021_LR96.82 13296.55 14397.62 12098.27 17195.34 10893.81 28098.33 19094.59 18996.56 21496.63 25296.61 7898.73 31494.80 16199.34 16698.78 207
agg_prior195.39 19894.60 22597.75 10997.80 22894.96 12493.39 29298.36 18587.20 30993.49 31495.97 28794.65 15399.53 17891.69 24398.86 23698.77 210
F-COLMAP95.30 20294.38 23798.05 9198.64 12996.04 7495.61 18998.66 14989.00 29193.22 32296.40 26592.90 19599.35 23487.45 32197.53 30598.77 210
D2MVS95.18 20695.17 19595.21 25397.76 24087.76 28894.15 26397.94 23189.77 28596.99 19197.68 17487.45 27799.14 27195.03 15499.81 3398.74 212
MVSFormer96.14 16796.36 15495.49 24497.68 24987.81 28698.67 1399.02 5296.50 10094.48 28396.15 27786.90 28099.92 498.73 799.13 20398.74 212
jason94.39 24494.04 24895.41 24998.29 16787.85 28592.74 30796.75 28785.38 33095.29 26296.15 27788.21 26999.65 13894.24 18699.34 16698.74 212
jason: jason.
DIV-MVS_self_test94.73 22494.64 22195.01 26195.86 32587.00 30091.33 33098.08 22293.34 22597.10 18097.34 20584.02 29899.31 24395.15 14599.55 9498.72 215
旧先验197.80 22893.87 16497.75 24397.04 22593.57 18298.68 25298.72 215
cl____94.73 22494.64 22195.01 26195.85 32687.00 30091.33 33098.08 22293.34 22597.10 18097.33 20684.01 29999.30 24695.14 14699.56 8898.71 217
mvs_anonymous95.36 19996.07 16893.21 31096.29 31081.56 34894.60 24597.66 25093.30 22796.95 19598.91 4993.03 19399.38 22696.60 6497.30 31498.69 218
OMC-MVS96.48 15496.00 17097.91 9898.30 16696.01 7794.86 23598.60 15791.88 26097.18 17497.21 21496.11 9999.04 28490.49 27899.34 16698.69 218
thisisatest053092.71 28391.76 29195.56 24198.42 15988.23 27496.03 16087.35 36494.04 20796.56 21495.47 30264.03 36799.77 5394.78 16499.11 20798.68 220
TAMVS95.49 19194.94 20497.16 15898.31 16593.41 18295.07 22396.82 28491.09 27297.51 15497.82 15989.96 24999.42 20788.42 30799.44 13298.64 221
test_040297.84 6697.97 4197.47 13699.19 6894.07 15796.71 12998.73 12998.66 2598.56 5998.41 8196.84 6999.69 11794.82 16099.81 3398.64 221
MVP-Stereo95.69 18395.28 19296.92 17198.15 18993.03 19195.64 18898.20 20390.39 27896.63 21197.73 16891.63 22899.10 27891.84 23997.31 31398.63 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl2293.25 27692.84 27294.46 28594.30 35086.00 31291.09 33896.64 29190.74 27495.79 24996.31 27078.24 32298.77 31094.15 19098.34 27098.62 224
CANet_DTU94.65 23394.21 24295.96 22295.90 32489.68 24993.92 27597.83 24093.19 23190.12 35295.64 29788.52 26499.57 16893.27 21799.47 12498.62 224
PM-MVS97.36 10397.10 11198.14 8298.91 10396.77 5096.20 15198.63 15593.82 21398.54 6098.33 8793.98 17299.05 28395.99 9299.45 13198.61 226
CSCG97.40 9997.30 9797.69 11698.95 9894.83 12797.28 9698.99 6396.35 10898.13 10995.95 28995.99 10199.66 13694.36 18399.73 4898.59 227
CLD-MVS95.47 19495.07 19996.69 18698.27 17192.53 20091.36 32898.67 14791.22 27195.78 25194.12 32895.65 11998.98 29290.81 26199.72 5198.57 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld94.72 22894.26 23996.08 21898.62 13490.54 24193.38 29398.05 22890.30 27997.02 18996.80 24289.54 25499.16 26988.44 30696.18 33398.56 229
N_pmnet95.18 20694.23 24098.06 8897.85 21696.55 5892.49 31191.63 34589.34 28798.09 11497.41 19490.33 24299.06 28291.58 24499.31 17798.56 229
CVMVSNet92.33 29092.79 27390.95 33797.26 28375.84 36795.29 20892.33 34081.86 34596.27 22998.19 11181.44 30798.46 33794.23 18798.29 27398.55 231
LS3D97.77 7397.50 8798.57 4896.24 31297.58 2598.45 2698.85 9498.58 2797.51 15497.94 14495.74 11699.63 14395.19 13998.97 22198.51 232
CL-MVSNet_self_test95.04 21294.79 21695.82 23097.51 26389.79 24891.14 33696.82 28493.05 23896.72 20696.40 26590.82 23699.16 26991.95 23498.66 25598.50 233
miper_ehance_all_eth94.69 22994.70 21894.64 27695.77 32986.22 31091.32 33298.24 19891.67 26297.05 18696.65 25188.39 26799.22 26294.88 15798.34 27098.49 234
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 29998.69 296.42 13798.09 22095.86 13695.15 26595.54 30094.26 16599.81 3294.06 19398.51 26698.47 235
USDC94.56 23794.57 23094.55 28397.78 23886.43 30892.75 30598.65 15485.96 31996.91 19897.93 14690.82 23698.74 31390.71 26899.59 8098.47 235
pmmvs494.82 22194.19 24396.70 18597.42 27192.75 19892.09 32096.76 28686.80 31495.73 25497.22 21389.28 26098.89 30093.28 21699.14 19998.46 237
alignmvs96.01 17395.52 18897.50 13197.77 23994.71 13296.07 15796.84 28297.48 6796.78 20594.28 32785.50 28899.40 21896.22 7898.73 25198.40 238
CDS-MVSNet94.88 21994.12 24597.14 16097.64 25493.57 17893.96 27497.06 27690.05 28296.30 22896.55 25586.10 28499.47 19490.10 28399.31 17798.40 238
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS93.55 26993.00 26895.19 25597.81 22487.86 28393.89 27696.00 29889.02 29094.07 29395.44 30386.27 28399.33 23987.69 31596.82 32198.39 240
DROMVSNet97.90 6097.94 4497.79 10698.66 12895.14 11998.31 3299.66 297.57 6195.95 24297.01 22896.99 5599.82 2997.66 3399.64 6698.39 240
Effi-MVS+96.19 16596.01 16996.71 18497.43 27092.19 21096.12 15599.10 3195.45 15593.33 32194.71 31797.23 4399.56 16993.21 21997.54 30498.37 242
MS-PatchMatch94.83 22094.91 20894.57 28296.81 30187.10 29994.23 25897.34 26588.74 29597.14 17697.11 21991.94 22298.23 34992.99 22297.92 28598.37 242
TSAR-MVS + GP.96.47 15596.12 16497.49 13497.74 24595.23 11394.15 26396.90 28193.26 22898.04 12196.70 24894.41 16198.89 30094.77 16599.14 19998.37 242
DELS-MVS96.17 16696.23 15995.99 22097.55 26190.04 24392.38 31598.52 16494.13 20496.55 21697.06 22394.99 14299.58 16295.62 11299.28 18298.37 242
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sss94.22 24893.72 25695.74 23397.71 24789.95 24593.84 27796.98 27888.38 29993.75 30395.74 29387.94 27098.89 30091.02 25598.10 27998.37 242
GA-MVS92.83 28192.15 28694.87 26896.97 29487.27 29790.03 34796.12 29591.83 26194.05 29494.57 31876.01 33798.97 29692.46 22997.34 31298.36 247
ITE_SJBPF97.85 10398.64 12996.66 5498.51 16695.63 14697.22 17097.30 20995.52 12298.55 33290.97 25698.90 23098.34 248
hse-mvs295.77 18295.09 19897.79 10697.84 22095.51 9595.66 18395.43 31396.58 9697.21 17296.16 27684.14 29699.54 17695.89 9896.92 31798.32 249
LCM-MVSNet-Re97.33 10497.33 9697.32 15198.13 19393.79 16996.99 11499.65 396.74 9099.47 1398.93 4796.91 6399.84 2590.11 28299.06 21698.32 249
BH-RMVSNet94.56 23794.44 23694.91 26497.57 25787.44 29393.78 28196.26 29393.69 21796.41 22196.50 26092.10 21799.00 28885.96 32997.71 29598.31 251
MG-MVS94.08 25694.00 24994.32 28997.09 29185.89 31393.19 29995.96 30092.52 24994.93 27297.51 18689.54 25498.77 31087.52 32097.71 29598.31 251
AUN-MVS93.95 26092.69 27797.74 11097.80 22895.38 10395.57 19095.46 31291.26 27092.64 33396.10 28274.67 34199.55 17393.72 20896.97 31698.30 253
MVS_Test96.27 16196.79 13194.73 27596.94 29786.63 30596.18 15298.33 19094.94 17696.07 23898.28 9895.25 13499.26 25597.21 4897.90 28798.30 253
TinyColmap96.00 17496.34 15594.96 26397.90 21387.91 28294.13 26698.49 16794.41 19398.16 10497.76 16296.29 9798.68 32190.52 27599.42 14398.30 253
CMPMVSbinary73.10 2392.74 28291.39 29496.77 18193.57 36094.67 13694.21 26097.67 24880.36 35493.61 31096.60 25382.85 30297.35 35984.86 34198.78 24498.29 256
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
lupinMVS93.77 26193.28 26295.24 25297.68 24987.81 28692.12 31896.05 29684.52 33794.48 28395.06 31086.90 28099.63 14393.62 21199.13 20398.27 257
PAPM_NR94.61 23594.17 24495.96 22298.36 16391.23 22695.93 16997.95 23092.98 24193.42 31994.43 32490.53 23998.38 34287.60 31796.29 33298.27 257
114514_t93.96 25893.22 26596.19 21499.06 8890.97 23195.99 16398.94 7473.88 36893.43 31896.93 23292.38 21299.37 22989.09 29799.28 18298.25 259
原ACMM196.58 19298.16 18792.12 21198.15 21485.90 32193.49 31496.43 26292.47 21099.38 22687.66 31698.62 25998.23 260
PLCcopyleft91.02 1694.05 25792.90 26997.51 12898.00 20595.12 12194.25 25698.25 19786.17 31791.48 34395.25 30591.01 23399.19 26385.02 34096.69 32598.22 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPNet_dtu91.39 30390.75 30693.31 30690.48 37382.61 34194.80 23892.88 33493.39 22381.74 37194.90 31581.36 30899.11 27688.28 30998.87 23498.21 262
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss94.12 25393.42 26096.23 21198.59 13990.85 23294.24 25798.85 9485.49 32592.97 32594.94 31286.01 28599.64 14191.78 24097.92 28598.20 263
Test_1112_low_res93.53 27092.86 27095.54 24298.60 13788.86 26492.75 30598.69 14282.66 34492.65 33296.92 23484.75 29399.56 16990.94 25797.76 29198.19 264
canonicalmvs97.23 11197.21 10697.30 15297.65 25394.39 14497.84 6299.05 4397.42 6996.68 20893.85 33097.63 2699.33 23996.29 7798.47 26798.18 265
miper_enhance_ethall93.14 27892.78 27594.20 29293.65 35885.29 32089.97 34897.85 23685.05 33296.15 23794.56 31985.74 28699.14 27193.74 20698.34 27098.17 266
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14797.18 28894.39 14495.46 19298.73 12996.03 12594.72 27494.92 31496.28 9899.69 11793.81 20497.98 28398.09 267
ab-mvs96.59 14996.59 13896.60 19098.64 12992.21 20798.35 2997.67 24894.45 19296.99 19198.79 5494.96 14399.49 18890.39 27999.07 21398.08 268
PAPR92.22 29191.27 29795.07 25995.73 33188.81 26591.97 32197.87 23585.80 32290.91 34592.73 34491.16 23198.33 34679.48 35695.76 34098.08 268
test_yl94.40 24294.00 24995.59 23796.95 29589.52 25294.75 24195.55 31096.18 11696.79 20196.14 27981.09 31099.18 26490.75 26497.77 28998.07 270
DCV-MVSNet94.40 24294.00 24995.59 23796.95 29589.52 25294.75 24195.55 31096.18 11696.79 20196.14 27981.09 31099.18 26490.75 26497.77 28998.07 270
baseline193.14 27892.64 27994.62 27897.34 27887.20 29896.67 13193.02 33294.71 18496.51 21795.83 29281.64 30598.60 32890.00 28588.06 36498.07 270
MIMVSNet93.42 27192.86 27095.10 25898.17 18588.19 27598.13 4793.69 32492.07 25595.04 26998.21 11080.95 31299.03 28781.42 35398.06 28198.07 270
GSMVS98.06 274
sam_mvs177.80 32498.06 274
SCA93.38 27393.52 25992.96 31796.24 31281.40 34993.24 29794.00 32391.58 26594.57 27896.97 22987.94 27099.42 20789.47 29297.66 30098.06 274
MSLP-MVS++96.42 15896.71 13395.57 23997.82 22390.56 24095.71 17898.84 9994.72 18396.71 20797.39 19994.91 14598.10 35395.28 13499.02 21898.05 277
ADS-MVSNet291.47 30290.51 31094.36 28895.51 33485.63 31495.05 22695.70 30483.46 34192.69 33096.84 23779.15 31999.41 21685.66 33390.52 35998.04 278
ADS-MVSNet90.95 30890.26 31293.04 31395.51 33482.37 34395.05 22693.41 32983.46 34192.69 33096.84 23779.15 31998.70 31785.66 33390.52 35998.04 278
PVSNet_Blended93.96 25893.65 25794.91 26497.79 23487.40 29491.43 32798.68 14484.50 33894.51 28194.48 32393.04 19199.30 24689.77 28898.61 26098.02 280
PatchmatchNetpermissive91.98 29691.87 28892.30 32894.60 34779.71 35495.12 21793.59 32889.52 28693.61 31097.02 22677.94 32399.18 26490.84 26094.57 35198.01 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet86.72 1991.10 30590.97 30291.49 33397.56 25978.04 35887.17 36094.60 31984.65 33692.34 33792.20 34987.37 27898.47 33685.17 33997.69 29797.96 282
无先验93.20 29897.91 23280.78 35199.40 21887.71 31397.94 283
MVS_030495.50 19095.05 20296.84 17796.28 31193.12 18997.00 11396.16 29495.03 17389.22 35797.70 17190.16 24899.48 19194.51 17499.34 16697.93 284
EIA-MVS96.04 17195.77 18096.85 17697.80 22892.98 19296.12 15599.16 2094.65 18593.77 30291.69 35595.68 11799.67 13094.18 18898.85 23897.91 285
tpm91.08 30690.85 30491.75 33295.33 33978.09 35795.03 22891.27 34988.75 29493.53 31397.40 19571.24 35599.30 24691.25 25193.87 35297.87 286
Patchmatch-RL test94.66 23294.49 23195.19 25598.54 14488.91 26292.57 30998.74 12791.46 26698.32 8797.75 16577.31 33098.81 30796.06 8499.61 7597.85 287
LF4IMVS96.07 16995.63 18497.36 14998.19 18095.55 9295.44 19398.82 11492.29 25495.70 25596.55 25592.63 20398.69 31891.75 24299.33 17397.85 287
ET-MVSNet_ETH3D91.12 30489.67 31695.47 24596.41 30889.15 26091.54 32690.23 35889.07 28986.78 36792.84 34169.39 36199.44 20494.16 18996.61 32797.82 289
MDTV_nov1_ep13_2view57.28 37794.89 23380.59 35294.02 29578.66 32185.50 33597.82 289
Patchmatch-test93.60 26893.25 26494.63 27796.14 32187.47 29296.04 15994.50 32093.57 21896.47 21896.97 22976.50 33398.61 32690.67 27098.41 26997.81 291
Fast-Effi-MVS+95.49 19195.07 19996.75 18297.67 25292.82 19594.22 25998.60 15791.61 26393.42 31992.90 34096.73 7399.70 10992.60 22597.89 28897.74 292
DPM-MVS93.68 26592.77 27696.42 20297.91 21192.54 19991.17 33597.47 26384.99 33493.08 32494.74 31689.90 25099.00 28887.54 31998.09 28097.72 293
baseline289.65 32088.44 32793.25 30895.62 33282.71 34093.82 27885.94 36788.89 29387.35 36592.54 34671.23 35699.33 23986.01 32894.60 35097.72 293
112194.26 24693.26 26397.27 15398.26 17394.73 13095.86 17197.71 24677.96 36294.53 28096.71 24791.93 22399.40 21887.71 31398.64 25897.69 295
test22298.17 18593.24 18692.74 30797.61 25875.17 36694.65 27796.69 24990.96 23598.66 25597.66 296
TAPA-MVS93.32 1294.93 21694.23 24097.04 16698.18 18394.51 14095.22 21498.73 12981.22 35096.25 23195.95 28993.80 17798.98 29289.89 28698.87 23497.62 297
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何197.25 15698.29 16794.70 13597.73 24477.98 36194.83 27396.67 25092.08 21899.45 20188.17 31198.65 25797.61 298
MSDG95.33 20095.13 19695.94 22697.40 27291.85 21891.02 33998.37 18495.30 16196.31 22795.99 28494.51 15998.38 34289.59 29097.65 30197.60 299
testdata95.70 23698.16 18790.58 23897.72 24580.38 35395.62 25697.02 22692.06 21998.98 29289.06 29998.52 26497.54 300
DSMNet-mixed92.19 29291.83 28993.25 30896.18 31783.68 33896.27 14593.68 32676.97 36592.54 33699.18 2789.20 26298.55 33283.88 34698.60 26297.51 301
thisisatest051590.43 31089.18 32294.17 29497.07 29285.44 31789.75 35387.58 36388.28 30093.69 30791.72 35465.27 36599.58 16290.59 27298.67 25397.50 302
PMMVS92.39 28791.08 29996.30 20993.12 36492.81 19690.58 34395.96 30079.17 35891.85 34292.27 34890.29 24698.66 32389.85 28796.68 32697.43 303
DP-MVS Recon95.55 18995.13 19696.80 17998.51 14793.99 16194.60 24598.69 14290.20 28095.78 25196.21 27592.73 19998.98 29290.58 27398.86 23697.42 304
thres600view792.03 29591.43 29393.82 29698.19 18084.61 33096.27 14590.39 35596.81 8896.37 22393.11 33373.44 35099.49 18880.32 35597.95 28497.36 305
thres40091.68 30091.00 30093.71 29998.02 19984.35 33395.70 17990.79 35296.26 11095.90 24792.13 35073.62 34799.42 20778.85 35997.74 29297.36 305
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20797.16 28991.96 21697.74 6998.84 9987.26 30794.36 28598.01 13593.95 17399.67 13090.70 26998.75 24797.35 307
CS-MVS-test96.62 14896.59 13896.69 18697.88 21593.16 18897.21 10199.53 695.61 14893.72 30495.33 30495.49 12399.69 11795.37 13199.19 19597.22 308
test0.0.03 190.11 31289.21 31992.83 31993.89 35686.87 30391.74 32488.74 36292.02 25694.71 27591.14 36073.92 34494.48 36883.75 34992.94 35497.16 309
BH-untuned94.69 22994.75 21794.52 28497.95 21087.53 29194.07 26897.01 27793.99 20897.10 18095.65 29692.65 20298.95 29787.60 31796.74 32497.09 310
mvs-test196.20 16495.50 18998.32 6496.90 29998.16 595.07 22398.09 22095.86 13693.63 30894.32 32694.26 16599.71 10094.06 19397.27 31597.07 311
new_pmnet92.34 28991.69 29294.32 28996.23 31489.16 25992.27 31692.88 33484.39 34095.29 26296.35 26985.66 28796.74 36584.53 34397.56 30397.05 312
tpmrst90.31 31190.61 30989.41 34494.06 35572.37 37395.06 22593.69 32488.01 30292.32 33896.86 23577.45 32798.82 30591.04 25487.01 36697.04 313
EPMVS89.26 32288.55 32691.39 33492.36 36979.11 35595.65 18679.86 37288.60 29693.12 32396.53 25770.73 35998.10 35390.75 26489.32 36396.98 314
Gipumacopyleft98.07 4098.31 2997.36 14999.76 596.28 6798.51 2299.10 3198.76 2396.79 20199.34 1796.61 7898.82 30596.38 7499.50 11496.98 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test-LLR89.97 31689.90 31490.16 34194.24 35274.98 36889.89 34989.06 36092.02 25689.97 35390.77 36273.92 34498.57 32991.88 23797.36 31096.92 316
test-mter87.92 33287.17 33390.16 34194.24 35274.98 36889.89 34989.06 36086.44 31689.97 35390.77 36254.96 37898.57 32991.88 23797.36 31096.92 316
PCF-MVS89.43 1892.12 29490.64 30896.57 19497.80 22893.48 18189.88 35298.45 17074.46 36796.04 23995.68 29590.71 23899.31 24373.73 36599.01 22096.91 318
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer89.75 31989.25 31791.26 33694.69 34678.00 35995.32 20591.98 34281.50 34890.55 34896.96 23171.06 35798.89 30088.59 30592.63 35696.87 319
dp88.08 33088.05 32888.16 35092.85 36668.81 37594.17 26192.88 33485.47 32691.38 34496.14 27968.87 36298.81 30786.88 32483.80 36996.87 319
KD-MVS_2432*160088.93 32487.74 32992.49 32388.04 37481.99 34589.63 35495.62 30691.35 26795.06 26693.11 33356.58 37398.63 32485.19 33795.07 34496.85 321
miper_refine_blended88.93 32487.74 32992.49 32388.04 37481.99 34589.63 35495.62 30691.35 26795.06 26693.11 33356.58 37398.63 32485.19 33795.07 34496.85 321
ETV-MVS96.13 16895.90 17696.82 17897.76 24093.89 16395.40 19898.95 7395.87 13595.58 25891.00 36196.36 9599.72 8693.36 21398.83 24096.85 321
cascas91.89 29791.35 29593.51 30394.27 35185.60 31588.86 35798.61 15679.32 35792.16 33991.44 35789.22 26198.12 35290.80 26297.47 30996.82 324
CR-MVSNet93.29 27592.79 27394.78 27395.44 33688.15 27796.18 15297.20 26884.94 33594.10 29198.57 6977.67 32599.39 22395.17 14195.81 33696.81 325
RPMNet94.68 23194.60 22594.90 26695.44 33688.15 27796.18 15298.86 9097.43 6894.10 29198.49 7679.40 31699.76 5895.69 10695.81 33696.81 325
PatchMatch-RL94.61 23593.81 25597.02 16898.19 18095.72 8393.66 28397.23 26788.17 30194.94 27195.62 29891.43 22998.57 32987.36 32297.68 29896.76 327
MAR-MVS94.21 25093.03 26797.76 10896.94 29797.44 3496.97 11597.15 27187.89 30592.00 34092.73 34492.14 21599.12 27383.92 34597.51 30696.73 328
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DWT-MVSNet_test87.92 33286.77 33691.39 33493.18 36178.62 35695.10 21891.42 34685.58 32488.00 36188.73 36660.60 36998.90 29890.60 27187.70 36596.65 329
TESTMET0.1,187.20 33586.57 33789.07 34593.62 35972.84 37289.89 34987.01 36685.46 32789.12 35890.20 36456.00 37697.72 35790.91 25896.92 31796.64 330
CNLPA95.04 21294.47 23396.75 18297.81 22495.25 11294.12 26797.89 23494.41 19394.57 27895.69 29490.30 24598.35 34586.72 32698.76 24696.64 330
IB-MVS85.98 2088.63 32686.95 33593.68 30095.12 34184.82 32990.85 34090.17 35987.55 30688.48 36091.34 35858.01 37099.59 16087.24 32393.80 35396.63 332
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs90.79 30990.87 30390.57 34092.75 36876.30 36595.79 17693.64 32791.04 27391.91 34196.26 27177.19 33198.86 30489.38 29489.85 36296.56 333
CHOSEN 280x42089.98 31589.19 32192.37 32795.60 33381.13 35186.22 36297.09 27481.44 34987.44 36493.15 33273.99 34299.47 19488.69 30399.07 21396.52 334
HY-MVS91.43 1592.58 28491.81 29094.90 26696.49 30688.87 26397.31 9494.62 31885.92 32090.50 34996.84 23785.05 29099.40 21883.77 34895.78 33996.43 335
PatchT93.75 26293.57 25894.29 29195.05 34287.32 29696.05 15892.98 33397.54 6594.25 28798.72 5975.79 33899.24 25895.92 9695.81 33696.32 336
tpm288.47 32787.69 33190.79 33894.98 34377.34 36295.09 22091.83 34377.51 36489.40 35596.41 26367.83 36398.73 31483.58 35092.60 35796.29 337
AdaColmapbinary95.11 20994.62 22496.58 19297.33 28094.45 14394.92 23298.08 22293.15 23693.98 29895.53 30194.34 16399.10 27885.69 33298.61 26096.20 338
CS-MVS95.98 17596.24 15895.20 25497.26 28389.88 24695.84 17499.39 993.89 21294.28 28695.15 30794.81 14699.62 15196.11 8399.40 15096.10 339
pmmvs390.00 31488.90 32493.32 30594.20 35485.34 31891.25 33392.56 33978.59 35993.82 29995.17 30667.36 36498.69 31889.08 29898.03 28295.92 340
thres100view90091.76 29991.26 29893.26 30798.21 17884.50 33196.39 13890.39 35596.87 8696.33 22493.08 33773.44 35099.42 20778.85 35997.74 29295.85 341
tfpn200view991.55 30191.00 30093.21 31098.02 19984.35 33395.70 17990.79 35296.26 11095.90 24792.13 35073.62 34799.42 20778.85 35997.74 29295.85 341
OpenMVS_ROBcopyleft91.80 1493.64 26793.05 26695.42 24797.31 28291.21 22795.08 22296.68 29081.56 34796.88 20096.41 26390.44 24199.25 25785.39 33697.67 29995.80 343
PAPM87.64 33485.84 33993.04 31396.54 30484.99 32688.42 35995.57 30979.52 35683.82 36893.05 33980.57 31398.41 33962.29 37192.79 35595.71 344
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
xiu_mvs_v1_base95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
tpm cat188.01 33187.33 33290.05 34394.48 34876.28 36694.47 25094.35 32273.84 36989.26 35695.61 29973.64 34698.30 34784.13 34486.20 36795.57 348
JIA-IIPM91.79 29890.69 30795.11 25793.80 35790.98 23094.16 26291.78 34496.38 10490.30 35199.30 1872.02 35498.90 29888.28 30990.17 36195.45 349
TR-MVS92.54 28592.20 28593.57 30296.49 30686.66 30493.51 28894.73 31789.96 28394.95 27093.87 32990.24 24798.61 32681.18 35494.88 34695.45 349
thres20091.00 30790.42 31192.77 32097.47 26883.98 33694.01 27091.18 35095.12 16995.44 25991.21 35973.93 34399.31 24377.76 36297.63 30295.01 351
131492.38 28892.30 28492.64 32295.42 33885.15 32395.86 17196.97 27985.40 32990.62 34693.06 33891.12 23297.80 35686.74 32595.49 34394.97 352
BH-w/o92.14 29391.94 28792.73 32197.13 29085.30 31992.46 31295.64 30589.33 28894.21 28892.74 34389.60 25298.24 34881.68 35294.66 34894.66 353
xiu_mvs_v2_base94.22 24894.63 22392.99 31697.32 28184.84 32892.12 31897.84 23891.96 25894.17 28993.43 33196.07 10099.71 10091.27 24997.48 30794.42 354
PS-MVSNAJ94.10 25494.47 23393.00 31597.35 27484.88 32791.86 32297.84 23891.96 25894.17 28992.50 34795.82 10899.71 10091.27 24997.48 30794.40 355
gg-mvs-nofinetune88.28 32986.96 33492.23 33092.84 36784.44 33298.19 4474.60 37499.08 1087.01 36699.47 856.93 37298.23 34978.91 35895.61 34194.01 356
test_method66.88 33866.13 34169.11 35462.68 37725.73 37949.76 36896.04 29714.32 37364.27 37491.69 35573.45 34988.05 37176.06 36466.94 37193.54 357
API-MVS95.09 21195.01 20395.31 25096.61 30394.02 15996.83 11997.18 27095.60 14995.79 24994.33 32594.54 15898.37 34485.70 33198.52 26493.52 358
PVSNet_081.89 2184.49 33783.21 34088.34 34895.76 33074.97 37083.49 36492.70 33878.47 36087.94 36286.90 36883.38 30196.63 36673.44 36666.86 37293.40 359
FPMVS89.92 31788.63 32593.82 29698.37 16296.94 4691.58 32593.34 33088.00 30390.32 35097.10 22070.87 35891.13 37071.91 36896.16 33593.39 360
PMVScopyleft89.60 1796.71 14296.97 11995.95 22499.51 2397.81 1797.42 9197.49 26097.93 4495.95 24298.58 6896.88 6696.91 36189.59 29099.36 15893.12 361
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS90.02 31389.20 32092.47 32594.71 34586.90 30295.86 17196.74 28864.72 37090.62 34692.77 34292.54 20798.39 34179.30 35795.56 34292.12 362
MVEpermissive73.61 2286.48 33685.92 33888.18 34996.23 31485.28 32181.78 36775.79 37386.01 31882.53 37091.88 35292.74 19887.47 37271.42 36994.86 34791.78 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN89.52 32189.78 31588.73 34693.14 36377.61 36083.26 36592.02 34194.82 18193.71 30593.11 33375.31 33996.81 36285.81 33096.81 32291.77 364
EMVS89.06 32389.22 31888.61 34793.00 36577.34 36282.91 36690.92 35194.64 18692.63 33491.81 35376.30 33597.02 36083.83 34796.90 31991.48 365
GG-mvs-BLEND90.60 33991.00 37184.21 33598.23 3872.63 37782.76 36984.11 36956.14 37596.79 36372.20 36792.09 35890.78 366
MVS-HIRNet88.40 32890.20 31382.99 35297.01 29360.04 37693.11 30085.61 36884.45 33988.72 35999.09 3684.72 29498.23 34982.52 35196.59 32890.69 367
DeepMVS_CXcopyleft77.17 35390.94 37285.28 32174.08 37652.51 37180.87 37288.03 36775.25 34070.63 37359.23 37284.94 36875.62 368
wuyk23d93.25 27695.20 19387.40 35196.07 32295.38 10397.04 11194.97 31595.33 15999.70 598.11 12098.14 1391.94 36977.76 36299.68 6074.89 369
tmp_tt57.23 33962.50 34241.44 35534.77 37849.21 37883.93 36360.22 37915.31 37271.11 37379.37 37070.09 36044.86 37464.76 37082.93 37030.25 370
test12312.59 34115.49 3443.87 3566.07 3792.55 38090.75 3412.59 3812.52 3745.20 37613.02 3734.96 3791.85 3765.20 3739.09 3737.23 371
testmvs12.33 34215.23 3453.64 3575.77 3802.23 38188.99 3563.62 3802.30 3755.29 37513.09 3724.52 3801.95 3755.16 3748.32 3746.75 372
test_blank0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
cdsmvs_eth3d_5k24.22 34032.30 3430.00 3580.00 3810.00 3820.00 36998.10 2190.00 3760.00 37795.06 31097.54 290.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas7.98 34310.65 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 37695.82 1080.00 3770.00 3750.00 3750.00 373
sosnet-low-res0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
sosnet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
Regformer0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re7.91 34410.55 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37794.94 3120.00 3810.00 3770.00 3750.00 3750.00 373
uanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
test_one_060199.05 9295.50 9898.87 8797.21 7998.03 12298.30 9396.93 60
eth-test20.00 381
eth-test0.00 381
ZD-MVS98.43 15895.94 7898.56 16190.72 27596.66 20997.07 22295.02 14199.74 7591.08 25398.93 228
test_241102_ONE99.22 5895.35 10698.83 10696.04 12399.08 3198.13 11697.87 2099.33 239
9.1496.69 13498.53 14596.02 16198.98 6693.23 22997.18 17497.46 19096.47 8899.62 15192.99 22299.32 175
save fliter98.48 15394.71 13294.53 24898.41 17895.02 174
test072699.24 5395.51 9596.89 11798.89 7995.92 13198.64 5198.31 8997.06 50
test_part299.03 9496.07 7398.08 116
sam_mvs77.38 328
MTGPAbinary98.73 129
test_post194.98 23010.37 37576.21 33699.04 28489.47 292
test_post10.87 37476.83 33299.07 281
patchmatchnet-post96.84 23777.36 32999.42 207
MTMP96.55 13274.60 374
gm-plane-assit91.79 37071.40 37481.67 34690.11 36598.99 29084.86 341
TEST997.84 22095.23 11393.62 28498.39 18186.81 31393.78 30095.99 28494.68 15199.52 182
test_897.81 22495.07 12293.54 28798.38 18387.04 31193.71 30595.96 28894.58 15699.52 182
agg_prior97.80 22894.96 12498.36 18593.49 31499.53 178
test_prior495.38 10393.61 286
test_prior293.33 29594.21 20194.02 29596.25 27293.64 18091.90 23598.96 222
旧先验293.35 29477.95 36395.77 25398.67 32290.74 267
新几何293.43 289
原ACMM292.82 303
testdata299.46 19787.84 312
segment_acmp95.34 130
testdata192.77 30493.78 214
plane_prior798.70 12494.67 136
plane_prior698.38 16194.37 14691.91 225
plane_prior496.77 243
plane_prior394.51 14095.29 16296.16 235
plane_prior296.50 13496.36 106
plane_prior198.49 151
plane_prior94.29 14895.42 19594.31 19898.93 228
n20.00 382
nn0.00 382
door-mid98.17 209
test1198.08 222
door97.81 241
HQP5-MVS92.47 201
HQP-NCC97.85 21694.26 25393.18 23292.86 327
ACMP_Plane97.85 21694.26 25393.18 23292.86 327
BP-MVS90.51 276
HQP3-MVS98.43 17398.74 248
HQP2-MVS90.33 242
NP-MVS98.14 19093.72 17295.08 308
MDTV_nov1_ep1391.28 29694.31 34973.51 37194.80 23893.16 33186.75 31593.45 31797.40 19576.37 33498.55 33288.85 30096.43 329
ACMMP++_ref99.52 105
ACMMP++99.55 94
Test By Simon94.51 159