test_part1 | | | 99.41 2 | 99.62 2 | 98.80 31 | 99.76 5 | 96.58 57 | 99.49 3 | 99.65 2 | 99.89 2 | 99.94 2 | 99.77 2 | 99.03 4 | 99.92 4 | 99.05 3 | 99.99 2 | 99.90 1 |
|
PS-MVSNAJss | | | 98.53 20 | 98.63 20 | 98.21 75 | 99.68 10 | 94.82 121 | 98.10 43 | 99.21 12 | 96.91 81 | 99.75 3 | 99.45 10 | 95.82 106 | 99.92 4 | 98.80 5 | 99.96 5 | 99.89 2 |
|
test_djsdf | | | 98.73 12 | 98.74 17 | 98.69 41 | 99.63 13 | 96.30 66 | 98.67 12 | 99.02 50 | 96.50 93 | 99.32 21 | 99.44 11 | 97.43 31 | 99.92 4 | 98.73 8 | 99.95 6 | 99.86 3 |
|
UA-Net | | | 98.88 8 | 98.76 14 | 99.22 2 | 99.11 82 | 97.89 13 | 99.47 4 | 99.32 8 | 99.08 11 | 97.87 135 | 99.67 3 | 96.47 84 | 99.92 4 | 97.88 23 | 99.98 3 | 99.85 4 |
|
LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 4 |
|
mvs_tets | | | 98.90 6 | 98.94 7 | 98.75 34 | 99.69 9 | 96.48 60 | 98.54 19 | 99.22 11 | 96.23 104 | 99.71 5 | 99.48 8 | 98.77 7 | 99.93 2 | 98.89 4 | 99.95 6 | 99.84 6 |
|
jajsoiax | | | 98.77 10 | 98.79 13 | 98.74 36 | 99.66 11 | 96.48 60 | 98.45 24 | 99.12 26 | 95.83 129 | 99.67 7 | 99.37 13 | 98.25 11 | 99.92 4 | 98.77 6 | 99.94 9 | 99.82 7 |
|
PS-CasMVS | | | 98.73 12 | 98.85 11 | 98.39 60 | 99.55 18 | 95.47 97 | 98.49 21 | 99.13 25 | 99.22 9 | 99.22 27 | 98.96 41 | 97.35 34 | 99.92 4 | 97.79 28 | 99.93 11 | 99.79 8 |
|
UniMVSNet_ETH3D | | | 99.12 4 | 99.28 4 | 98.65 44 | 99.77 3 | 96.34 64 | 99.18 6 | 99.20 14 | 99.67 3 | 99.73 4 | 99.65 5 | 99.15 3 | 99.86 21 | 97.22 45 | 99.92 13 | 99.77 9 |
|
anonymousdsp | | | 98.72 15 | 98.63 20 | 98.99 13 | 99.62 14 | 97.29 37 | 98.65 15 | 99.19 16 | 95.62 136 | 99.35 20 | 99.37 13 | 97.38 33 | 99.90 14 | 98.59 12 | 99.91 16 | 99.77 9 |
|
FC-MVSNet-test | | | 98.16 34 | 98.37 28 | 97.56 117 | 99.49 27 | 93.10 182 | 98.35 27 | 99.21 12 | 98.43 28 | 98.89 39 | 98.83 50 | 94.30 160 | 99.81 32 | 97.87 24 | 99.91 16 | 99.77 9 |
|
CP-MVSNet | | | 98.42 24 | 98.46 25 | 98.30 68 | 99.46 29 | 95.22 110 | 98.27 32 | 98.84 93 | 99.05 14 | 99.01 35 | 98.65 63 | 95.37 126 | 99.90 14 | 97.57 34 | 99.91 16 | 99.77 9 |
|
ANet_high | | | 98.31 29 | 98.94 7 | 96.41 198 | 99.33 43 | 89.64 239 | 97.92 52 | 99.56 5 | 99.27 7 | 99.66 9 | 99.50 7 | 97.67 26 | 99.83 29 | 97.55 35 | 99.98 3 | 99.77 9 |
|
PEN-MVS | | | 98.75 11 | 98.85 11 | 98.44 56 | 99.58 15 | 95.67 87 | 98.45 24 | 99.15 22 | 99.33 6 | 99.30 22 | 99.00 37 | 97.27 38 | 99.92 4 | 97.64 33 | 99.92 13 | 99.75 14 |
|
WR-MVS_H | | | 98.65 16 | 98.62 22 | 98.75 34 | 99.51 23 | 96.61 55 | 98.55 18 | 99.17 17 | 99.05 14 | 99.17 29 | 98.79 51 | 95.47 123 | 99.89 17 | 97.95 21 | 99.91 16 | 99.75 14 |
|
Anonymous20231211 | | | 98.55 18 | 98.76 14 | 97.94 93 | 98.79 106 | 94.37 138 | 98.84 9 | 99.15 22 | 99.37 4 | 99.67 7 | 99.43 12 | 95.61 118 | 99.72 77 | 98.12 17 | 99.86 24 | 99.73 16 |
|
FIs | | | 97.93 55 | 98.07 37 | 97.48 129 | 99.38 39 | 92.95 185 | 98.03 48 | 99.11 27 | 98.04 41 | 98.62 52 | 98.66 61 | 93.75 174 | 99.78 41 | 97.23 44 | 99.84 27 | 99.73 16 |
|
v7n | | | 98.73 12 | 98.99 6 | 97.95 92 | 99.64 12 | 94.20 146 | 98.67 12 | 99.14 24 | 99.08 11 | 99.42 16 | 99.23 22 | 96.53 79 | 99.91 13 | 99.27 2 | 99.93 11 | 99.73 16 |
|
nrg030 | | | 98.54 19 | 98.62 22 | 98.32 65 | 99.22 57 | 95.66 88 | 97.90 53 | 99.08 35 | 98.31 32 | 99.02 34 | 98.74 55 | 97.68 25 | 99.61 146 | 97.77 29 | 99.85 26 | 99.70 19 |
|
DTE-MVSNet | | | 98.79 9 | 98.86 9 | 98.59 48 | 99.55 18 | 96.12 71 | 98.48 23 | 99.10 29 | 99.36 5 | 99.29 23 | 99.06 36 | 97.27 38 | 99.93 2 | 97.71 32 | 99.91 16 | 99.70 19 |
|
RRT_test8_iter05 | | | 92.46 276 | 92.52 272 | 92.29 315 | 95.33 324 | 77.43 345 | 95.73 168 | 98.55 156 | 94.41 181 | 97.46 155 | 97.72 164 | 57.44 358 | 99.74 67 | 96.92 57 | 99.14 187 | 99.69 21 |
|
LTVRE_ROB | | 96.88 1 | 99.18 3 | 99.34 3 | 98.72 39 | 99.71 8 | 96.99 44 | 99.69 2 | 99.57 4 | 99.02 16 | 99.62 11 | 99.36 15 | 98.53 8 | 99.52 170 | 98.58 13 | 99.95 6 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
Baseline_NR-MVSNet | | | 97.72 74 | 97.79 54 | 97.50 125 | 99.56 16 | 93.29 176 | 95.44 183 | 98.86 85 | 98.20 37 | 98.37 74 | 99.24 21 | 94.69 145 | 99.55 161 | 95.98 87 | 99.79 34 | 99.65 23 |
|
OurMVSNet-221017-0 | | | 98.61 17 | 98.61 24 | 98.63 46 | 99.77 3 | 96.35 63 | 99.17 7 | 99.05 41 | 98.05 40 | 99.61 12 | 99.52 6 | 93.72 175 | 99.88 19 | 98.72 10 | 99.88 22 | 99.65 23 |
|
pmmvs6 | | | 99.07 5 | 99.24 5 | 98.56 50 | 99.81 2 | 96.38 62 | 98.87 8 | 99.30 9 | 99.01 17 | 99.63 10 | 99.66 4 | 99.27 2 | 99.68 115 | 97.75 30 | 99.89 21 | 99.62 25 |
|
TransMVSNet (Re) | | | 98.38 26 | 98.67 18 | 97.51 122 | 99.51 23 | 93.39 175 | 98.20 38 | 98.87 83 | 98.23 35 | 99.48 13 | 99.27 20 | 98.47 9 | 99.55 161 | 96.52 65 | 99.53 95 | 99.60 26 |
|
XXY-MVS | | | 97.54 86 | 97.70 62 | 97.07 157 | 99.46 29 | 92.21 198 | 97.22 93 | 99.00 58 | 94.93 166 | 98.58 57 | 98.92 45 | 97.31 36 | 99.41 204 | 94.44 162 | 99.43 132 | 99.59 27 |
|
test_0728_THIRD | | | | | | | | | | 96.62 88 | 98.40 71 | 98.28 93 | 97.10 45 | 99.71 92 | 95.70 93 | 99.62 64 | 99.58 28 |
|
MSP-MVS | | | 97.45 93 | 96.92 121 | 99.03 8 | 99.26 48 | 97.70 18 | 97.66 65 | 98.89 76 | 95.65 134 | 98.51 61 | 96.46 252 | 92.15 210 | 99.81 32 | 95.14 133 | 98.58 251 | 99.58 28 |
|
EI-MVSNet-UG-set | | | 97.32 104 | 97.40 89 | 97.09 156 | 97.34 264 | 92.01 206 | 95.33 194 | 97.65 244 | 97.74 50 | 98.30 87 | 98.14 109 | 95.04 136 | 99.69 109 | 97.55 35 | 99.52 100 | 99.58 28 |
|
v10 | | | 97.55 85 | 97.97 42 | 96.31 202 | 98.60 131 | 89.64 239 | 97.44 81 | 99.02 50 | 96.60 89 | 98.72 50 | 99.16 30 | 93.48 179 | 99.72 77 | 98.76 7 | 99.92 13 | 99.58 28 |
|
APDe-MVS | | | 98.14 35 | 98.03 41 | 98.47 55 | 98.72 114 | 96.04 73 | 98.07 45 | 99.10 29 | 95.96 118 | 98.59 56 | 98.69 59 | 96.94 55 | 99.81 32 | 96.64 60 | 99.58 77 | 99.57 32 |
|
EI-MVSNet-Vis-set | | | 97.32 104 | 97.39 90 | 97.11 154 | 97.36 259 | 92.08 204 | 95.34 193 | 97.65 244 | 97.74 50 | 98.29 88 | 98.11 114 | 95.05 134 | 99.68 115 | 97.50 37 | 99.50 107 | 99.56 33 |
|
v8 | | | 97.60 82 | 98.06 39 | 96.23 204 | 98.71 117 | 89.44 243 | 97.43 83 | 98.82 108 | 97.29 75 | 98.74 48 | 99.10 33 | 93.86 170 | 99.68 115 | 98.61 11 | 99.94 9 | 99.56 33 |
|
VPA-MVSNet | | | 98.27 30 | 98.46 25 | 97.70 108 | 99.06 87 | 93.80 160 | 97.76 60 | 99.00 58 | 98.40 29 | 99.07 33 | 98.98 39 | 96.89 60 | 99.75 60 | 97.19 49 | 99.79 34 | 99.55 35 |
|
WR-MVS | | | 96.90 123 | 96.81 126 | 97.16 151 | 98.56 136 | 92.20 200 | 94.33 242 | 98.12 210 | 97.34 72 | 98.20 94 | 97.33 198 | 92.81 192 | 99.75 60 | 94.79 149 | 99.81 30 | 99.54 36 |
|
TranMVSNet+NR-MVSNet | | | 98.33 27 | 98.30 32 | 98.43 57 | 99.07 86 | 95.87 78 | 96.73 118 | 99.05 41 | 98.67 23 | 98.84 41 | 98.45 76 | 97.58 28 | 99.88 19 | 96.45 69 | 99.86 24 | 99.54 36 |
|
SixPastTwentyTwo | | | 97.49 90 | 97.57 80 | 97.26 148 | 99.56 16 | 92.33 194 | 98.28 30 | 96.97 270 | 98.30 33 | 99.45 15 | 99.35 17 | 88.43 260 | 99.89 17 | 98.01 20 | 99.76 38 | 99.54 36 |
|
test_0728_SECOND | | | | | 98.25 72 | 99.23 54 | 95.49 96 | 96.74 114 | 98.89 76 | | | | | 99.75 60 | 95.48 108 | 99.52 100 | 99.53 39 |
|
DPE-MVS | | | 97.64 78 | 97.35 93 | 98.50 52 | 98.85 101 | 96.18 68 | 95.21 205 | 98.99 61 | 95.84 128 | 98.78 44 | 98.08 116 | 96.84 65 | 99.81 32 | 93.98 186 | 99.57 80 | 99.52 40 |
|
VPNet | | | 97.26 107 | 97.49 86 | 96.59 185 | 99.47 28 | 90.58 230 | 96.27 136 | 98.53 158 | 97.77 46 | 98.46 67 | 98.41 78 | 94.59 151 | 99.68 115 | 94.61 155 | 99.29 172 | 99.52 40 |
|
Regformer-4 | | | 97.53 88 | 97.47 88 | 97.71 106 | 97.35 260 | 93.91 154 | 95.26 200 | 98.14 207 | 97.97 42 | 98.34 79 | 97.89 143 | 95.49 121 | 99.71 92 | 97.41 39 | 99.42 135 | 99.51 42 |
|
v1192 | | | 96.83 129 | 97.06 113 | 96.15 209 | 98.28 162 | 89.29 245 | 95.36 191 | 98.77 115 | 93.73 203 | 98.11 105 | 98.34 83 | 93.02 190 | 99.67 120 | 98.35 15 | 99.58 77 | 99.50 43 |
|
pm-mvs1 | | | 98.47 22 | 98.67 18 | 97.86 98 | 99.52 22 | 94.58 131 | 98.28 30 | 99.00 58 | 97.57 60 | 99.27 24 | 99.22 23 | 98.32 10 | 99.50 175 | 97.09 52 | 99.75 42 | 99.50 43 |
|
EI-MVSNet | | | 96.63 144 | 96.93 120 | 95.74 224 | 97.26 269 | 88.13 267 | 95.29 198 | 97.65 244 | 96.99 78 | 97.94 126 | 98.19 106 | 92.55 201 | 99.58 150 | 96.91 58 | 99.56 83 | 99.50 43 |
|
HPM-MVS | | | 98.11 39 | 97.83 52 | 98.92 22 | 99.42 35 | 97.46 31 | 98.57 16 | 99.05 41 | 95.43 145 | 97.41 158 | 97.50 180 | 97.98 16 | 99.79 39 | 95.58 104 | 99.57 80 | 99.50 43 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
LPG-MVS_test | | | 97.94 52 | 97.67 65 | 98.74 36 | 99.15 72 | 97.02 42 | 97.09 99 | 99.02 50 | 95.15 155 | 98.34 79 | 98.23 101 | 97.91 18 | 99.70 101 | 94.41 164 | 99.73 44 | 99.50 43 |
|
LGP-MVS_train | | | | | 98.74 36 | 99.15 72 | 97.02 42 | | 99.02 50 | 95.15 155 | 98.34 79 | 98.23 101 | 97.91 18 | 99.70 101 | 94.41 164 | 99.73 44 | 99.50 43 |
|
IterMVS-LS | | | 96.92 121 | 97.29 96 | 95.79 223 | 98.51 141 | 88.13 267 | 95.10 208 | 98.66 143 | 96.99 78 | 98.46 67 | 98.68 60 | 92.55 201 | 99.74 67 | 96.91 58 | 99.79 34 | 99.50 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH | | 93.61 9 | 98.44 23 | 98.76 14 | 97.51 122 | 99.43 33 | 93.54 171 | 98.23 33 | 99.05 41 | 97.40 71 | 99.37 19 | 99.08 35 | 98.79 6 | 99.47 182 | 97.74 31 | 99.71 50 | 99.50 43 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IU-MVS | | | | | | 99.22 57 | 95.40 98 | | 98.14 207 | 85.77 307 | 98.36 76 | | | | 95.23 125 | 99.51 105 | 99.49 51 |
|
test_241102_TWO | | | | | | | | | 98.83 100 | 96.11 108 | 98.62 52 | 98.24 99 | 96.92 58 | 99.72 77 | 95.44 112 | 99.49 111 | 99.49 51 |
|
v1921920 | | | 96.72 137 | 96.96 119 | 95.99 213 | 98.21 171 | 88.79 255 | 95.42 185 | 98.79 110 | 93.22 218 | 98.19 97 | 98.26 98 | 92.68 196 | 99.70 101 | 98.34 16 | 99.55 89 | 99.49 51 |
|
v1240 | | | 96.74 134 | 97.02 116 | 95.91 220 | 98.18 176 | 88.52 258 | 95.39 189 | 98.88 81 | 93.15 224 | 98.46 67 | 98.40 80 | 92.80 193 | 99.71 92 | 98.45 14 | 99.49 111 | 99.49 51 |
|
ACMMPR | | | 97.95 50 | 97.62 75 | 98.94 18 | 99.20 65 | 97.56 25 | 97.59 70 | 98.83 100 | 96.05 111 | 97.46 155 | 97.63 170 | 96.77 67 | 99.76 53 | 95.61 101 | 99.46 120 | 99.49 51 |
|
MP-MVS-pluss | | | 97.69 76 | 97.36 92 | 98.70 40 | 99.50 26 | 96.84 47 | 95.38 190 | 98.99 61 | 92.45 239 | 98.11 105 | 98.31 86 | 97.25 41 | 99.77 49 | 96.60 61 | 99.62 64 | 99.48 56 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PGM-MVS | | | 97.88 61 | 97.52 83 | 98.96 16 | 99.20 65 | 97.62 21 | 97.09 99 | 99.06 39 | 95.45 143 | 97.55 144 | 97.94 138 | 97.11 44 | 99.78 41 | 94.77 152 | 99.46 120 | 99.48 56 |
|
UniMVSNet_NR-MVSNet | | | 97.83 66 | 97.65 68 | 98.37 61 | 98.72 114 | 95.78 80 | 95.66 174 | 99.02 50 | 98.11 39 | 98.31 85 | 97.69 167 | 94.65 149 | 99.85 23 | 97.02 55 | 99.71 50 | 99.48 56 |
|
v144192 | | | 96.69 140 | 96.90 123 | 96.03 212 | 98.25 167 | 88.92 250 | 95.49 181 | 98.77 115 | 93.05 226 | 98.09 109 | 98.29 92 | 92.51 205 | 99.70 101 | 98.11 18 | 99.56 83 | 99.47 59 |
|
MIMVSNet1 | | | 98.51 21 | 98.45 27 | 98.67 42 | 99.72 7 | 96.71 50 | 98.76 10 | 98.89 76 | 98.49 27 | 99.38 18 | 99.14 31 | 95.44 125 | 99.84 26 | 96.47 68 | 99.80 33 | 99.47 59 |
|
region2R | | | 97.92 56 | 97.59 78 | 98.92 22 | 99.22 57 | 97.55 26 | 97.60 69 | 98.84 93 | 96.00 116 | 97.22 162 | 97.62 171 | 96.87 63 | 99.76 53 | 95.48 108 | 99.43 132 | 99.46 61 |
|
Regformer-3 | | | 97.25 108 | 97.29 96 | 97.11 154 | 97.35 260 | 92.32 195 | 95.26 200 | 97.62 249 | 97.67 58 | 98.17 98 | 97.89 143 | 95.05 134 | 99.56 157 | 97.16 50 | 99.42 135 | 99.46 61 |
|
DU-MVS | | | 97.79 70 | 97.60 77 | 98.36 62 | 98.73 112 | 95.78 80 | 95.65 176 | 98.87 83 | 97.57 60 | 98.31 85 | 97.83 150 | 94.69 145 | 99.85 23 | 97.02 55 | 99.71 50 | 99.46 61 |
|
NR-MVSNet | | | 97.96 47 | 97.86 49 | 98.26 70 | 98.73 112 | 95.54 92 | 98.14 41 | 98.73 123 | 97.79 45 | 99.42 16 | 97.83 150 | 94.40 158 | 99.78 41 | 95.91 90 | 99.76 38 | 99.46 61 |
|
mPP-MVS | | | 97.91 59 | 97.53 82 | 99.04 7 | 99.22 57 | 97.87 14 | 97.74 62 | 98.78 114 | 96.04 113 | 97.10 170 | 97.73 162 | 96.53 79 | 99.78 41 | 95.16 130 | 99.50 107 | 99.46 61 |
|
ZNCC-MVS | | | 97.92 56 | 97.62 75 | 98.83 26 | 99.32 45 | 97.24 39 | 97.45 80 | 98.84 93 | 95.76 131 | 96.93 185 | 97.43 185 | 97.26 40 | 99.79 39 | 96.06 78 | 99.53 95 | 99.45 66 |
|
SMA-MVS | | | 97.48 91 | 97.11 108 | 98.60 47 | 98.83 102 | 96.67 52 | 96.74 114 | 98.73 123 | 91.61 250 | 98.48 64 | 98.36 81 | 96.53 79 | 99.68 115 | 95.17 128 | 99.54 92 | 99.45 66 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMP_NAP | | | 97.89 60 | 97.63 73 | 98.67 42 | 99.35 42 | 96.84 47 | 96.36 132 | 98.79 110 | 95.07 159 | 97.88 132 | 98.35 82 | 97.24 42 | 99.72 77 | 96.05 80 | 99.58 77 | 99.45 66 |
|
zzz-MVS | | | 98.01 45 | 97.66 66 | 99.06 4 | 99.44 31 | 97.90 11 | 95.66 174 | 98.73 123 | 97.69 56 | 97.90 129 | 97.96 133 | 95.81 110 | 99.82 30 | 96.13 76 | 99.61 70 | 99.45 66 |
|
MTAPA | | | 98.14 35 | 97.84 50 | 99.06 4 | 99.44 31 | 97.90 11 | 97.25 90 | 98.73 123 | 97.69 56 | 97.90 129 | 97.96 133 | 95.81 110 | 99.82 30 | 96.13 76 | 99.61 70 | 99.45 66 |
|
v1144 | | | 96.84 126 | 97.08 111 | 96.13 210 | 98.42 152 | 89.28 246 | 95.41 187 | 98.67 141 | 94.21 189 | 97.97 123 | 98.31 86 | 93.06 186 | 99.65 127 | 98.06 19 | 99.62 64 | 99.45 66 |
|
XVS | | | 97.96 47 | 97.63 73 | 98.94 18 | 99.15 72 | 97.66 19 | 97.77 58 | 98.83 100 | 97.42 67 | 96.32 213 | 97.64 169 | 96.49 82 | 99.72 77 | 95.66 97 | 99.37 146 | 99.45 66 |
|
X-MVStestdata | | | 92.86 270 | 90.83 295 | 98.94 18 | 99.15 72 | 97.66 19 | 97.77 58 | 98.83 100 | 97.42 67 | 96.32 213 | 36.50 355 | 96.49 82 | 99.72 77 | 95.66 97 | 99.37 146 | 99.45 66 |
|
v2v482 | | | 96.78 133 | 97.06 113 | 95.95 217 | 98.57 135 | 88.77 256 | 95.36 191 | 98.26 190 | 95.18 154 | 97.85 137 | 98.23 101 | 92.58 200 | 99.63 132 | 97.80 27 | 99.69 54 | 99.45 66 |
|
MP-MVS | | | 97.64 78 | 97.18 105 | 99.00 12 | 99.32 45 | 97.77 17 | 97.49 79 | 98.73 123 | 96.27 101 | 95.59 244 | 97.75 159 | 96.30 93 | 99.78 41 | 93.70 196 | 99.48 115 | 99.45 66 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EU-MVSNet | | | 94.25 237 | 94.47 224 | 93.60 289 | 98.14 183 | 82.60 329 | 97.24 92 | 92.72 323 | 85.08 315 | 98.48 64 | 98.94 43 | 82.59 295 | 98.76 299 | 97.47 38 | 99.53 95 | 99.44 76 |
|
ACMMP | | | 98.05 42 | 97.75 60 | 98.93 21 | 99.23 54 | 97.60 22 | 98.09 44 | 98.96 68 | 95.75 133 | 97.91 128 | 98.06 123 | 96.89 60 | 99.76 53 | 95.32 119 | 99.57 80 | 99.43 77 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
GST-MVS | | | 97.82 68 | 97.49 86 | 98.81 29 | 99.23 54 | 97.25 38 | 97.16 94 | 98.79 110 | 95.96 118 | 97.53 145 | 97.40 187 | 96.93 57 | 99.77 49 | 95.04 139 | 99.35 154 | 99.42 78 |
|
HPM-MVS_fast | | | 98.32 28 | 98.13 34 | 98.88 24 | 99.54 20 | 97.48 30 | 98.35 27 | 99.03 48 | 95.88 124 | 97.88 132 | 98.22 104 | 98.15 13 | 99.74 67 | 96.50 67 | 99.62 64 | 99.42 78 |
|
UniMVSNet (Re) | | | 97.83 66 | 97.65 68 | 98.35 64 | 98.80 105 | 95.86 79 | 95.92 162 | 99.04 47 | 97.51 64 | 98.22 93 | 97.81 154 | 94.68 147 | 99.78 41 | 97.14 51 | 99.75 42 | 99.41 80 |
|
testing_2 | | | 97.43 95 | 97.71 61 | 96.60 183 | 98.91 98 | 90.85 223 | 96.01 154 | 98.54 157 | 94.78 169 | 98.78 44 | 98.96 41 | 96.35 92 | 99.54 164 | 97.25 43 | 99.82 29 | 99.40 81 |
|
SteuartSystems-ACMMP | | | 98.02 44 | 97.76 58 | 98.79 32 | 99.43 33 | 97.21 41 | 97.15 95 | 98.90 75 | 96.58 91 | 98.08 111 | 97.87 147 | 97.02 53 | 99.76 53 | 95.25 123 | 99.59 75 | 99.40 81 |
Skip Steuart: Steuart Systems R&D Blog. |
TDRefinement | | | 98.90 6 | 98.86 9 | 99.02 9 | 99.54 20 | 98.06 7 | 99.34 5 | 99.44 7 | 98.85 20 | 99.00 36 | 99.20 24 | 97.42 32 | 99.59 148 | 97.21 46 | 99.76 38 | 99.40 81 |
|
K. test v3 | | | 96.44 152 | 96.28 153 | 96.95 162 | 99.41 36 | 91.53 214 | 97.65 66 | 90.31 342 | 98.89 19 | 98.93 38 | 99.36 15 | 84.57 289 | 99.92 4 | 97.81 26 | 99.56 83 | 99.39 84 |
|
ACMM | | 93.33 11 | 98.05 42 | 97.79 54 | 98.85 25 | 99.15 72 | 97.55 26 | 96.68 120 | 98.83 100 | 95.21 151 | 98.36 76 | 98.13 110 | 98.13 15 | 99.62 140 | 96.04 81 | 99.54 92 | 99.39 84 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
V42 | | | 97.04 113 | 97.16 106 | 96.68 181 | 98.59 133 | 91.05 219 | 96.33 134 | 98.36 179 | 94.60 175 | 97.99 119 | 98.30 90 | 93.32 181 | 99.62 140 | 97.40 40 | 99.53 95 | 99.38 86 |
|
abl_6 | | | 98.42 24 | 98.19 33 | 99.09 3 | 99.16 69 | 98.10 5 | 97.73 64 | 99.11 27 | 97.76 49 | 98.62 52 | 98.27 97 | 97.88 20 | 99.80 38 | 95.67 95 | 99.50 107 | 99.38 86 |
|
CP-MVS | | | 97.92 56 | 97.56 81 | 98.99 13 | 98.99 93 | 97.82 15 | 97.93 51 | 98.96 68 | 96.11 108 | 96.89 188 | 97.45 184 | 96.85 64 | 99.78 41 | 95.19 126 | 99.63 63 | 99.38 86 |
|
EG-PatchMatch MVS | | | 97.69 76 | 97.79 54 | 97.40 139 | 99.06 87 | 93.52 172 | 95.96 158 | 98.97 67 | 94.55 179 | 98.82 42 | 98.76 54 | 97.31 36 | 99.29 238 | 97.20 48 | 99.44 125 | 99.38 86 |
|
IS-MVSNet | | | 96.93 120 | 96.68 133 | 97.70 108 | 99.25 51 | 94.00 152 | 98.57 16 | 96.74 278 | 98.36 30 | 98.14 103 | 97.98 132 | 88.23 262 | 99.71 92 | 93.10 209 | 99.72 47 | 99.38 86 |
|
Regformer-2 | | | 97.41 97 | 97.24 101 | 97.93 94 | 97.21 271 | 94.72 124 | 94.85 226 | 98.27 188 | 97.74 50 | 98.11 105 | 97.50 180 | 95.58 119 | 99.69 109 | 96.57 64 | 99.31 168 | 99.37 91 |
|
UGNet | | | 96.81 131 | 96.56 139 | 97.58 116 | 96.64 287 | 93.84 159 | 97.75 61 | 97.12 265 | 96.47 96 | 93.62 292 | 98.88 47 | 93.22 184 | 99.53 166 | 95.61 101 | 99.69 54 | 99.36 92 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Regformer-1 | | | 97.27 106 | 97.16 106 | 97.61 115 | 97.21 271 | 93.86 157 | 94.85 226 | 98.04 221 | 97.62 59 | 98.03 117 | 97.50 180 | 95.34 127 | 99.63 132 | 96.52 65 | 99.31 168 | 99.35 93 |
|
VDDNet | | | 96.98 118 | 96.84 124 | 97.41 138 | 99.40 37 | 93.26 177 | 97.94 50 | 95.31 300 | 99.26 8 | 98.39 73 | 99.18 28 | 87.85 269 | 99.62 140 | 95.13 135 | 99.09 198 | 99.35 93 |
|
test1172 | | | 98.08 40 | 97.76 58 | 99.05 6 | 98.78 108 | 98.07 6 | 97.41 85 | 98.85 89 | 97.57 60 | 98.15 101 | 97.96 133 | 96.60 76 | 99.76 53 | 95.30 120 | 99.18 184 | 99.33 95 |
|
SR-MVS | | | 98.00 46 | 97.66 66 | 99.01 11 | 98.77 110 | 97.93 10 | 97.38 86 | 98.83 100 | 97.32 73 | 98.06 113 | 97.85 148 | 96.65 71 | 99.77 49 | 95.00 142 | 99.11 195 | 99.32 96 |
|
APD-MVS_3200maxsize | | | 98.13 38 | 97.90 45 | 98.79 32 | 98.79 106 | 97.31 36 | 97.55 73 | 98.92 73 | 97.72 53 | 98.25 90 | 98.13 110 | 97.10 45 | 99.75 60 | 95.44 112 | 99.24 178 | 99.32 96 |
|
EPP-MVSNet | | | 96.84 126 | 96.58 137 | 97.65 112 | 99.18 68 | 93.78 162 | 98.68 11 | 96.34 282 | 97.91 44 | 97.30 160 | 98.06 123 | 88.46 259 | 99.85 23 | 93.85 190 | 99.40 142 | 99.32 96 |
|
ACMP | | 92.54 13 | 97.47 92 | 97.10 109 | 98.55 51 | 99.04 90 | 96.70 51 | 96.24 140 | 98.89 76 | 93.71 204 | 97.97 123 | 97.75 159 | 97.44 30 | 99.63 132 | 93.22 206 | 99.70 53 | 99.32 96 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMH+ | | 93.58 10 | 98.23 33 | 98.31 30 | 97.98 91 | 99.39 38 | 95.22 110 | 97.55 73 | 99.20 14 | 98.21 36 | 99.25 25 | 98.51 72 | 98.21 12 | 99.40 206 | 94.79 149 | 99.72 47 | 99.32 96 |
|
testtj | | | 96.69 140 | 96.13 158 | 98.36 62 | 98.46 150 | 96.02 75 | 96.44 126 | 98.70 133 | 94.26 187 | 96.79 190 | 97.13 208 | 94.07 166 | 99.75 60 | 90.53 260 | 98.80 231 | 99.31 101 |
|
HFP-MVS | | | 97.94 52 | 97.64 71 | 98.83 26 | 99.15 72 | 97.50 28 | 97.59 70 | 98.84 93 | 96.05 111 | 97.49 149 | 97.54 175 | 97.07 48 | 99.70 101 | 95.61 101 | 99.46 120 | 99.30 102 |
|
#test# | | | 97.62 80 | 97.22 103 | 98.83 26 | 99.15 72 | 97.50 28 | 96.81 110 | 98.84 93 | 94.25 188 | 97.49 149 | 97.54 175 | 97.07 48 | 99.70 101 | 94.37 167 | 99.46 120 | 99.30 102 |
|
lessismore_v0 | | | | | 97.05 158 | 99.36 41 | 92.12 202 | | 84.07 354 | | 98.77 47 | 98.98 39 | 85.36 283 | 99.74 67 | 97.34 42 | 99.37 146 | 99.30 102 |
|
GBi-Net | | | 96.99 115 | 96.80 127 | 97.56 117 | 97.96 199 | 93.67 165 | 98.23 33 | 98.66 143 | 95.59 138 | 97.99 119 | 99.19 25 | 89.51 251 | 99.73 73 | 94.60 156 | 99.44 125 | 99.30 102 |
|
test1 | | | 96.99 115 | 96.80 127 | 97.56 117 | 97.96 199 | 93.67 165 | 98.23 33 | 98.66 143 | 95.59 138 | 97.99 119 | 99.19 25 | 89.51 251 | 99.73 73 | 94.60 156 | 99.44 125 | 99.30 102 |
|
FMVSNet1 | | | 97.95 50 | 98.08 36 | 97.56 117 | 99.14 80 | 93.67 165 | 98.23 33 | 98.66 143 | 97.41 70 | 99.00 36 | 99.19 25 | 95.47 123 | 99.73 73 | 95.83 91 | 99.76 38 | 99.30 102 |
|
v148 | | | 96.58 146 | 96.97 117 | 95.42 238 | 98.63 127 | 87.57 278 | 95.09 210 | 97.90 225 | 95.91 123 | 98.24 92 | 97.96 133 | 93.42 180 | 99.39 211 | 96.04 81 | 99.52 100 | 99.29 108 |
|
TSAR-MVS + MP. | | | 97.42 96 | 97.23 102 | 98.00 90 | 99.38 39 | 95.00 116 | 97.63 68 | 98.20 197 | 93.00 227 | 98.16 99 | 98.06 123 | 95.89 101 | 99.72 77 | 95.67 95 | 99.10 197 | 99.28 109 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
casdiffmvs | | | 97.50 89 | 97.81 53 | 96.56 189 | 98.51 141 | 91.04 220 | 95.83 166 | 99.09 34 | 97.23 76 | 98.33 82 | 98.30 90 | 97.03 52 | 99.37 217 | 96.58 63 | 99.38 145 | 99.28 109 |
|
HQP_MVS | | | 96.66 143 | 96.33 152 | 97.68 111 | 98.70 119 | 94.29 140 | 96.50 124 | 98.75 119 | 96.36 98 | 96.16 223 | 96.77 234 | 91.91 221 | 99.46 185 | 92.59 215 | 99.20 180 | 99.28 109 |
|
plane_prior5 | | | | | | | | | 98.75 119 | | | | | 99.46 185 | 92.59 215 | 99.20 180 | 99.28 109 |
|
IterMVS-SCA-FT | | | 95.86 174 | 96.19 156 | 94.85 259 | 97.68 237 | 85.53 304 | 92.42 303 | 97.63 248 | 96.99 78 | 98.36 76 | 98.54 70 | 87.94 264 | 99.75 60 | 97.07 54 | 99.08 199 | 99.27 113 |
|
CL-MVSNet_2432*1600 | | | 97.86 64 | 98.07 37 | 97.25 149 | 99.22 57 | 92.81 187 | 97.55 73 | 98.94 71 | 97.10 77 | 98.85 40 | 98.88 47 | 95.03 137 | 99.67 120 | 97.39 41 | 99.65 60 | 99.26 114 |
|
SR-MVS-dyc-post | | | 98.14 35 | 97.84 50 | 99.02 9 | 98.81 103 | 98.05 8 | 97.55 73 | 98.86 85 | 97.77 46 | 98.20 94 | 98.07 118 | 96.60 76 | 99.76 53 | 95.49 105 | 99.20 180 | 99.26 114 |
|
RE-MVS-def | | | | 97.88 48 | | 98.81 103 | 98.05 8 | 97.55 73 | 98.86 85 | 97.77 46 | 98.20 94 | 98.07 118 | 96.94 55 | | 95.49 105 | 99.20 180 | 99.26 114 |
|
DVP-MVS | | | 97.78 71 | 97.65 68 | 98.16 76 | 99.24 52 | 95.51 94 | 96.74 114 | 98.23 193 | 95.92 121 | 98.40 71 | 98.28 93 | 97.06 50 | 99.71 92 | 95.48 108 | 99.52 100 | 99.26 114 |
|
xxxxxxxxxxxxxcwj | | | 97.24 109 | 97.03 115 | 97.89 96 | 98.48 146 | 94.71 125 | 94.53 238 | 99.07 38 | 95.02 162 | 97.83 138 | 97.88 145 | 96.44 86 | 99.72 77 | 94.59 159 | 99.39 143 | 99.25 118 |
|
SF-MVS | | | 97.60 82 | 97.39 90 | 98.22 74 | 98.93 96 | 95.69 84 | 97.05 101 | 99.10 29 | 95.32 148 | 97.83 138 | 97.88 145 | 96.44 86 | 99.72 77 | 94.59 159 | 99.39 143 | 99.25 118 |
|
3Dnovator+ | | 96.13 3 | 97.73 73 | 97.59 78 | 98.15 79 | 98.11 188 | 95.60 90 | 98.04 46 | 98.70 133 | 98.13 38 | 96.93 185 | 98.45 76 | 95.30 130 | 99.62 140 | 95.64 99 | 98.96 210 | 99.24 120 |
|
Anonymous20240529 | | | 97.96 47 | 98.04 40 | 97.71 106 | 98.69 121 | 94.28 143 | 97.86 55 | 98.31 187 | 98.79 21 | 99.23 26 | 98.86 49 | 95.76 113 | 99.61 146 | 95.49 105 | 99.36 149 | 99.23 121 |
|
IterMVS | | | 95.42 191 | 95.83 172 | 94.20 282 | 97.52 249 | 83.78 325 | 92.41 304 | 97.47 255 | 95.49 142 | 98.06 113 | 98.49 73 | 87.94 264 | 99.58 150 | 96.02 83 | 99.02 206 | 99.23 121 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
OPM-MVS | | | 97.54 86 | 97.25 99 | 98.41 58 | 99.11 82 | 96.61 55 | 95.24 203 | 98.46 164 | 94.58 178 | 98.10 108 | 98.07 118 | 97.09 47 | 99.39 211 | 95.16 130 | 99.44 125 | 99.21 123 |
|
EPNet | | | 93.72 253 | 92.62 270 | 97.03 160 | 87.61 359 | 92.25 196 | 96.27 136 | 91.28 333 | 96.74 86 | 87.65 347 | 97.39 191 | 85.00 285 | 99.64 130 | 92.14 219 | 99.48 115 | 99.20 124 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline | | | 97.44 94 | 97.78 57 | 96.43 195 | 98.52 140 | 90.75 228 | 96.84 108 | 99.03 48 | 96.51 92 | 97.86 136 | 98.02 127 | 96.67 70 | 99.36 219 | 97.09 52 | 99.47 117 | 99.19 125 |
|
APD-MVS | | | 97.00 114 | 96.53 143 | 98.41 58 | 98.55 137 | 96.31 65 | 96.32 135 | 98.77 115 | 92.96 232 | 97.44 157 | 97.58 174 | 95.84 103 | 99.74 67 | 91.96 220 | 99.35 154 | 99.19 125 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CNVR-MVS | | | 96.92 121 | 96.55 140 | 98.03 89 | 98.00 197 | 95.54 92 | 94.87 224 | 98.17 203 | 94.60 175 | 96.38 210 | 97.05 216 | 95.67 116 | 99.36 219 | 95.12 136 | 99.08 199 | 99.19 125 |
|
ETH3D-3000-0.1 | | | 96.89 125 | 96.46 147 | 98.16 76 | 98.62 128 | 95.69 84 | 95.96 158 | 98.98 64 | 93.36 212 | 97.04 176 | 97.31 200 | 94.93 141 | 99.63 132 | 92.60 213 | 99.34 157 | 99.17 128 |
|
NCCC | | | 96.52 148 | 95.99 166 | 98.10 81 | 97.81 215 | 95.68 86 | 95.00 219 | 98.20 197 | 95.39 146 | 95.40 248 | 96.36 257 | 93.81 172 | 99.45 189 | 93.55 199 | 98.42 256 | 99.17 128 |
|
CPTT-MVS | | | 96.69 140 | 96.08 162 | 98.49 53 | 98.89 100 | 96.64 54 | 97.25 90 | 98.77 115 | 92.89 233 | 96.01 229 | 97.13 208 | 92.23 209 | 99.67 120 | 92.24 218 | 99.34 157 | 99.17 128 |
|
RPSCF | | | 97.87 62 | 97.51 84 | 98.95 17 | 99.15 72 | 98.43 3 | 97.56 72 | 99.06 39 | 96.19 105 | 98.48 64 | 98.70 58 | 94.72 144 | 99.24 246 | 94.37 167 | 99.33 164 | 99.17 128 |
|
Vis-MVSNet | | | 98.27 30 | 98.34 29 | 98.07 83 | 99.33 43 | 95.21 112 | 98.04 46 | 99.46 6 | 97.32 73 | 97.82 140 | 99.11 32 | 96.75 68 | 99.86 21 | 97.84 25 | 99.36 149 | 99.15 132 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MVS_111021_HR | | | 96.73 136 | 96.54 142 | 97.27 146 | 98.35 157 | 93.66 168 | 93.42 280 | 98.36 179 | 94.74 170 | 96.58 200 | 96.76 236 | 96.54 78 | 98.99 277 | 94.87 145 | 99.27 175 | 99.15 132 |
|
DeepC-MVS | | 95.41 4 | 97.82 68 | 97.70 62 | 98.16 76 | 98.78 108 | 95.72 82 | 96.23 141 | 99.02 50 | 93.92 200 | 98.62 52 | 98.99 38 | 97.69 24 | 99.62 140 | 96.18 75 | 99.87 23 | 99.15 132 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SED-MVS | | | 97.94 52 | 97.90 45 | 98.07 83 | 99.22 57 | 95.35 102 | 96.79 111 | 98.83 100 | 96.11 108 | 99.08 31 | 98.24 99 | 97.87 21 | 99.72 77 | 95.44 112 | 99.51 105 | 99.14 135 |
|
OPU-MVS | | | | | 97.64 113 | 98.01 193 | 95.27 105 | 96.79 111 | | | | 97.35 196 | 96.97 54 | 98.51 320 | 91.21 238 | 99.25 177 | 99.14 135 |
|
RRT_MVS | | | 94.90 210 | 94.07 237 | 97.39 140 | 93.18 346 | 93.21 179 | 95.26 200 | 97.49 252 | 93.94 199 | 98.25 90 | 97.85 148 | 72.96 339 | 99.84 26 | 97.90 22 | 99.78 37 | 99.14 135 |
|
HPM-MVS++ | | | 96.99 115 | 96.38 149 | 98.81 29 | 98.64 123 | 97.59 23 | 95.97 157 | 98.20 197 | 95.51 141 | 95.06 253 | 96.53 248 | 94.10 165 | 99.70 101 | 94.29 171 | 99.15 186 | 99.13 138 |
|
MCST-MVS | | | 96.24 157 | 95.80 173 | 97.56 117 | 98.75 111 | 94.13 148 | 94.66 233 | 98.17 203 | 90.17 266 | 96.21 221 | 96.10 270 | 95.14 133 | 99.43 194 | 94.13 178 | 98.85 227 | 99.13 138 |
|
UnsupCasMVSNet_eth | | | 95.91 171 | 95.73 176 | 96.44 194 | 98.48 146 | 91.52 215 | 95.31 196 | 98.45 165 | 95.76 131 | 97.48 152 | 97.54 175 | 89.53 250 | 98.69 305 | 94.43 163 | 94.61 333 | 99.13 138 |
|
3Dnovator | | 96.53 2 | 97.61 81 | 97.64 71 | 97.50 125 | 97.74 233 | 93.65 169 | 98.49 21 | 98.88 81 | 96.86 83 | 97.11 169 | 98.55 69 | 95.82 106 | 99.73 73 | 95.94 88 | 99.42 135 | 99.13 138 |
|
COLMAP_ROB | | 94.48 6 | 98.25 32 | 98.11 35 | 98.64 45 | 99.21 64 | 97.35 35 | 97.96 49 | 99.16 18 | 98.34 31 | 98.78 44 | 98.52 71 | 97.32 35 | 99.45 189 | 94.08 179 | 99.67 57 | 99.13 138 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
new-patchmatchnet | | | 95.67 179 | 96.58 137 | 92.94 306 | 97.48 250 | 80.21 337 | 92.96 291 | 98.19 202 | 94.83 167 | 98.82 42 | 98.79 51 | 93.31 182 | 99.51 174 | 95.83 91 | 99.04 205 | 99.12 143 |
|
VDD-MVS | | | 97.37 100 | 97.25 99 | 97.74 104 | 98.69 121 | 94.50 134 | 97.04 102 | 95.61 295 | 98.59 25 | 98.51 61 | 98.72 56 | 92.54 203 | 99.58 150 | 96.02 83 | 99.49 111 | 99.12 143 |
|
MVSTER | | | 94.21 240 | 93.93 243 | 95.05 250 | 95.83 312 | 86.46 294 | 95.18 206 | 97.65 244 | 92.41 240 | 97.94 126 | 98.00 131 | 72.39 340 | 99.58 150 | 96.36 71 | 99.56 83 | 99.12 143 |
|
testgi | | | 96.07 164 | 96.50 146 | 94.80 262 | 99.26 48 | 87.69 277 | 95.96 158 | 98.58 154 | 95.08 158 | 98.02 118 | 96.25 261 | 97.92 17 | 97.60 343 | 88.68 290 | 98.74 237 | 99.11 146 |
|
CDPH-MVS | | | 95.45 190 | 94.65 212 | 97.84 100 | 98.28 162 | 94.96 117 | 93.73 272 | 98.33 184 | 85.03 317 | 95.44 246 | 96.60 244 | 95.31 129 | 99.44 192 | 90.01 270 | 99.13 191 | 99.11 146 |
|
PVSNet_BlendedMVS | | | 95.02 208 | 94.93 200 | 95.27 242 | 97.79 225 | 87.40 282 | 94.14 255 | 98.68 138 | 88.94 277 | 94.51 266 | 98.01 129 | 93.04 187 | 99.30 234 | 89.77 274 | 99.49 111 | 99.11 146 |
|
DP-MVS | | | 97.87 62 | 97.89 47 | 97.81 101 | 98.62 128 | 94.82 121 | 97.13 98 | 98.79 110 | 98.98 18 | 98.74 48 | 98.49 73 | 95.80 112 | 99.49 176 | 95.04 139 | 99.44 125 | 99.11 146 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 267 | 98.90 219 | 99.10 150 |
|
VNet | | | 96.84 126 | 96.83 125 | 96.88 167 | 98.06 189 | 92.02 205 | 96.35 133 | 97.57 251 | 97.70 55 | 97.88 132 | 97.80 155 | 92.40 207 | 99.54 164 | 94.73 154 | 98.96 210 | 99.08 151 |
|
CHOSEN 1792x2688 | | | 94.10 244 | 93.41 251 | 96.18 208 | 99.16 69 | 90.04 235 | 92.15 307 | 98.68 138 | 79.90 339 | 96.22 220 | 97.83 150 | 87.92 268 | 99.42 195 | 89.18 282 | 99.65 60 | 99.08 151 |
|
XVG-OURS-SEG-HR | | | 97.38 99 | 97.07 112 | 98.30 68 | 99.01 92 | 97.41 34 | 94.66 233 | 99.02 50 | 95.20 152 | 98.15 101 | 97.52 178 | 98.83 5 | 98.43 323 | 94.87 145 | 96.41 317 | 99.07 153 |
|
FMVSNet2 | | | 96.72 137 | 96.67 134 | 96.87 168 | 97.96 199 | 91.88 208 | 97.15 95 | 98.06 219 | 95.59 138 | 98.50 63 | 98.62 64 | 89.51 251 | 99.65 127 | 94.99 143 | 99.60 73 | 99.07 153 |
|
diffmvs | | | 96.04 166 | 96.23 154 | 95.46 237 | 97.35 260 | 88.03 269 | 93.42 280 | 99.08 35 | 94.09 195 | 96.66 197 | 96.93 223 | 93.85 171 | 99.29 238 | 96.01 85 | 98.67 242 | 99.06 155 |
|
HQP4-MVS | | | | | | | | | | | 92.87 310 | | | 99.23 248 | | | 99.06 155 |
|
ETH3 D test6400 | | | 94.77 216 | 93.87 244 | 97.47 130 | 98.12 187 | 93.73 163 | 94.56 237 | 98.70 133 | 85.45 312 | 94.70 261 | 95.93 279 | 91.77 223 | 99.63 132 | 86.45 313 | 99.14 187 | 99.05 157 |
|
HQP-MVS | | | 95.17 202 | 94.58 220 | 96.92 164 | 97.85 207 | 92.47 192 | 94.26 243 | 98.43 168 | 93.18 220 | 92.86 311 | 95.08 294 | 90.33 237 | 99.23 248 | 90.51 262 | 98.74 237 | 99.05 157 |
|
FMVSNet5 | | | 93.39 262 | 92.35 273 | 96.50 191 | 95.83 312 | 90.81 227 | 97.31 87 | 98.27 188 | 92.74 235 | 96.27 217 | 98.28 93 | 62.23 355 | 99.67 120 | 90.86 245 | 99.36 149 | 99.03 159 |
|
HyFIR lowres test | | | 93.72 253 | 92.65 268 | 96.91 166 | 98.93 96 | 91.81 211 | 91.23 324 | 98.52 159 | 82.69 327 | 96.46 207 | 96.52 250 | 80.38 303 | 99.90 14 | 90.36 266 | 98.79 232 | 99.03 159 |
|
tttt0517 | | | 93.31 264 | 92.56 271 | 95.57 230 | 98.71 117 | 87.86 271 | 97.44 81 | 87.17 350 | 95.79 130 | 97.47 154 | 96.84 228 | 64.12 353 | 99.81 32 | 96.20 74 | 99.32 166 | 99.02 161 |
|
test9_res | | | | | | | | | | | | | | | 91.29 234 | 98.89 222 | 99.00 162 |
|
test20.03 | | | 96.58 146 | 96.61 135 | 96.48 193 | 98.49 144 | 91.72 212 | 95.68 173 | 97.69 239 | 96.81 84 | 98.27 89 | 97.92 141 | 94.18 164 | 98.71 303 | 90.78 249 | 99.66 59 | 99.00 162 |
|
XVG-ACMP-BASELINE | | | 97.58 84 | 97.28 98 | 98.49 53 | 99.16 69 | 96.90 46 | 96.39 129 | 98.98 64 | 95.05 160 | 98.06 113 | 98.02 127 | 95.86 102 | 99.56 157 | 94.37 167 | 99.64 62 | 99.00 162 |
|
MDA-MVSNet-bldmvs | | | 95.69 177 | 95.67 177 | 95.74 224 | 98.48 146 | 88.76 257 | 92.84 292 | 97.25 258 | 96.00 116 | 97.59 143 | 97.95 137 | 91.38 226 | 99.46 185 | 93.16 208 | 96.35 318 | 98.99 165 |
|
Vis-MVSNet (Re-imp) | | | 95.11 203 | 94.85 204 | 95.87 222 | 99.12 81 | 89.17 247 | 97.54 78 | 94.92 302 | 96.50 93 | 96.58 200 | 97.27 202 | 83.64 292 | 99.48 179 | 88.42 293 | 99.67 57 | 98.97 166 |
|
FMVSNet3 | | | 95.26 198 | 94.94 198 | 96.22 206 | 96.53 290 | 90.06 234 | 95.99 155 | 97.66 242 | 94.11 194 | 97.99 119 | 97.91 142 | 80.22 304 | 99.63 132 | 94.60 156 | 99.44 125 | 98.96 167 |
|
ambc | | | | | 96.56 189 | 98.23 170 | 91.68 213 | 97.88 54 | 98.13 209 | | 98.42 70 | 98.56 68 | 94.22 163 | 99.04 271 | 94.05 183 | 99.35 154 | 98.95 168 |
|
YYNet1 | | | 94.73 217 | 94.84 205 | 94.41 277 | 97.47 254 | 85.09 313 | 90.29 334 | 95.85 292 | 92.52 236 | 97.53 145 | 97.76 156 | 91.97 216 | 99.18 252 | 93.31 202 | 96.86 307 | 98.95 168 |
|
ppachtmachnet_test | | | 94.49 232 | 94.84 205 | 93.46 292 | 96.16 303 | 82.10 331 | 90.59 331 | 97.48 254 | 90.53 262 | 97.01 179 | 97.59 173 | 91.01 229 | 99.36 219 | 93.97 187 | 99.18 184 | 98.94 170 |
|
CANet | | | 95.86 174 | 95.65 178 | 96.49 192 | 96.41 293 | 90.82 225 | 94.36 241 | 98.41 173 | 94.94 164 | 92.62 319 | 96.73 237 | 92.68 196 | 99.71 92 | 95.12 136 | 99.60 73 | 98.94 170 |
|
Anonymous20231206 | | | 95.27 197 | 95.06 195 | 95.88 221 | 98.72 114 | 89.37 244 | 95.70 170 | 97.85 228 | 88.00 288 | 96.98 182 | 97.62 171 | 91.95 217 | 99.34 224 | 89.21 281 | 99.53 95 | 98.94 170 |
|
MDA-MVSNet_test_wron | | | 94.73 217 | 94.83 207 | 94.42 276 | 97.48 250 | 85.15 311 | 90.28 335 | 95.87 291 | 92.52 236 | 97.48 152 | 97.76 156 | 91.92 220 | 99.17 256 | 93.32 201 | 96.80 310 | 98.94 170 |
|
ETH3D cwj APD-0.16 | | | 96.23 158 | 95.61 180 | 98.09 82 | 97.91 203 | 95.65 89 | 94.94 221 | 98.74 121 | 91.31 254 | 96.02 228 | 97.08 213 | 94.05 167 | 99.69 109 | 91.51 231 | 98.94 214 | 98.93 174 |
|
LFMVS | | | 95.32 195 | 94.88 203 | 96.62 182 | 98.03 190 | 91.47 216 | 97.65 66 | 90.72 339 | 99.11 10 | 97.89 131 | 98.31 86 | 79.20 306 | 99.48 179 | 93.91 189 | 99.12 194 | 98.93 174 |
|
XVG-OURS | | | 97.12 112 | 96.74 130 | 98.26 70 | 98.99 93 | 97.45 32 | 93.82 268 | 99.05 41 | 95.19 153 | 98.32 83 | 97.70 165 | 95.22 132 | 98.41 324 | 94.27 172 | 98.13 266 | 98.93 174 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 123 | 96.43 148 | 98.31 67 | 97.48 250 | 97.23 40 | 92.56 300 | 98.60 151 | 92.84 234 | 98.54 59 | 97.40 187 | 96.64 73 | 98.78 296 | 94.40 166 | 99.41 141 | 98.93 174 |
|
Anonymous202405211 | | | 96.34 155 | 95.98 167 | 97.43 136 | 98.25 167 | 93.85 158 | 96.74 114 | 94.41 307 | 97.72 53 | 98.37 74 | 98.03 126 | 87.15 273 | 99.53 166 | 94.06 180 | 99.07 201 | 98.92 178 |
|
our_test_3 | | | 94.20 242 | 94.58 220 | 93.07 300 | 96.16 303 | 81.20 334 | 90.42 333 | 96.84 273 | 90.72 260 | 97.14 166 | 97.13 208 | 90.47 235 | 99.11 263 | 94.04 184 | 98.25 262 | 98.91 179 |
|
tfpnnormal | | | 97.72 74 | 97.97 42 | 96.94 163 | 99.26 48 | 92.23 197 | 97.83 57 | 98.45 165 | 98.25 34 | 99.13 30 | 98.66 61 | 96.65 71 | 99.69 109 | 93.92 188 | 99.62 64 | 98.91 179 |
|
AllTest | | | 97.20 111 | 96.92 121 | 98.06 85 | 99.08 84 | 96.16 69 | 97.14 97 | 99.16 18 | 94.35 184 | 97.78 141 | 98.07 118 | 95.84 103 | 99.12 260 | 91.41 232 | 99.42 135 | 98.91 179 |
|
TestCases | | | | | 98.06 85 | 99.08 84 | 96.16 69 | | 99.16 18 | 94.35 184 | 97.78 141 | 98.07 118 | 95.84 103 | 99.12 260 | 91.41 232 | 99.42 135 | 98.91 179 |
|
pmmvs-eth3d | | | 96.49 149 | 96.18 157 | 97.42 137 | 98.25 167 | 94.29 140 | 94.77 230 | 98.07 218 | 89.81 269 | 97.97 123 | 98.33 84 | 93.11 185 | 99.08 267 | 95.46 111 | 99.84 27 | 98.89 183 |
|
train_agg | | | 95.46 189 | 94.66 211 | 97.88 97 | 97.84 212 | 95.23 107 | 93.62 274 | 98.39 175 | 87.04 295 | 93.78 284 | 95.99 272 | 94.58 152 | 99.52 170 | 91.76 227 | 98.90 219 | 98.89 183 |
|
test12 | | | | | 97.46 132 | 97.61 244 | 94.07 149 | | 97.78 234 | | 93.57 295 | | 93.31 182 | 99.42 195 | | 98.78 233 | 98.89 183 |
|
pmmvs5 | | | 94.63 227 | 94.34 229 | 95.50 234 | 97.63 243 | 88.34 262 | 94.02 259 | 97.13 264 | 87.15 294 | 95.22 251 | 97.15 207 | 87.50 270 | 99.27 242 | 93.99 185 | 99.26 176 | 98.88 186 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 134 | 96.51 145 | 97.44 135 | 97.69 236 | 94.15 147 | 96.02 152 | 98.43 168 | 93.17 223 | 97.30 160 | 97.38 193 | 95.48 122 | 99.28 240 | 93.74 193 | 99.34 157 | 98.88 186 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SD-MVS | | | 97.37 100 | 97.70 62 | 96.35 199 | 98.14 183 | 95.13 113 | 96.54 123 | 98.92 73 | 95.94 120 | 99.19 28 | 98.08 116 | 97.74 23 | 95.06 351 | 95.24 124 | 99.54 92 | 98.87 188 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PMMVS2 | | | 93.66 256 | 94.07 237 | 92.45 312 | 97.57 245 | 80.67 336 | 86.46 347 | 96.00 287 | 93.99 197 | 97.10 170 | 97.38 193 | 89.90 245 | 97.82 340 | 88.76 287 | 99.47 117 | 98.86 189 |
|
PVSNet_Blended_VisFu | | | 95.95 170 | 95.80 173 | 96.42 196 | 99.28 47 | 90.62 229 | 95.31 196 | 99.08 35 | 88.40 283 | 96.97 183 | 98.17 108 | 92.11 212 | 99.78 41 | 93.64 197 | 99.21 179 | 98.86 189 |
|
miper_lstm_enhance | | | 94.81 215 | 94.80 208 | 94.85 259 | 96.16 303 | 86.45 295 | 91.14 326 | 98.20 197 | 93.49 208 | 97.03 177 | 97.37 195 | 84.97 286 | 99.26 243 | 95.28 121 | 99.56 83 | 98.83 191 |
|
PHI-MVS | | | 96.96 119 | 96.53 143 | 98.25 72 | 97.48 250 | 96.50 59 | 96.76 113 | 98.85 89 | 93.52 207 | 96.19 222 | 96.85 227 | 95.94 100 | 99.42 195 | 93.79 192 | 99.43 132 | 98.83 191 |
|
QAPM | | | 95.88 173 | 95.57 182 | 96.80 172 | 97.90 205 | 91.84 210 | 98.18 40 | 98.73 123 | 88.41 282 | 96.42 208 | 98.13 110 | 94.73 143 | 99.75 60 | 88.72 288 | 98.94 214 | 98.81 193 |
|
Patchmtry | | | 95.03 207 | 94.59 219 | 96.33 200 | 94.83 329 | 90.82 225 | 96.38 131 | 97.20 260 | 96.59 90 | 97.49 149 | 98.57 66 | 77.67 313 | 99.38 214 | 92.95 212 | 99.62 64 | 98.80 194 |
|
test_prior3 | | | 95.91 171 | 95.39 185 | 97.46 132 | 97.79 225 | 94.26 144 | 93.33 285 | 98.42 171 | 94.21 189 | 94.02 279 | 96.25 261 | 93.64 176 | 99.34 224 | 91.90 221 | 98.96 210 | 98.79 195 |
|
test_prior | | | | | 97.46 132 | 97.79 225 | 94.26 144 | | 98.42 171 | | | | | 99.34 224 | | | 98.79 195 |
|
eth_miper_zixun_eth | | | 94.89 211 | 94.93 200 | 94.75 264 | 95.99 308 | 86.12 299 | 91.35 319 | 98.49 162 | 93.40 210 | 97.12 168 | 97.25 204 | 86.87 276 | 99.35 222 | 95.08 138 | 98.82 230 | 98.78 197 |
|
cl_fuxian | | | 95.20 199 | 95.32 186 | 94.83 261 | 96.19 301 | 86.43 296 | 91.83 313 | 98.35 183 | 93.47 209 | 97.36 159 | 97.26 203 | 88.69 257 | 99.28 240 | 95.41 118 | 99.36 149 | 98.78 197 |
|
MVS_111021_LR | | | 96.82 130 | 96.55 140 | 97.62 114 | 98.27 164 | 95.34 104 | 93.81 270 | 98.33 184 | 94.59 177 | 96.56 202 | 96.63 243 | 96.61 74 | 98.73 301 | 94.80 148 | 99.34 157 | 98.78 197 |
|
agg_prior1 | | | 95.39 192 | 94.60 217 | 97.75 103 | 97.80 219 | 94.96 117 | 93.39 282 | 98.36 179 | 87.20 293 | 93.49 298 | 95.97 275 | 94.65 149 | 99.53 166 | 91.69 229 | 98.86 225 | 98.77 200 |
|
F-COLMAP | | | 95.30 196 | 94.38 228 | 98.05 88 | 98.64 123 | 96.04 73 | 95.61 179 | 98.66 143 | 89.00 276 | 93.22 306 | 96.40 256 | 92.90 191 | 99.35 222 | 87.45 307 | 97.53 293 | 98.77 200 |
|
D2MVS | | | 95.18 200 | 95.17 190 | 95.21 244 | 97.76 231 | 87.76 276 | 94.15 253 | 97.94 223 | 89.77 270 | 96.99 180 | 97.68 168 | 87.45 271 | 99.14 258 | 95.03 141 | 99.81 30 | 98.74 202 |
|
MVSFormer | | | 96.14 162 | 96.36 150 | 95.49 235 | 97.68 237 | 87.81 274 | 98.67 12 | 99.02 50 | 96.50 93 | 94.48 268 | 96.15 265 | 86.90 274 | 99.92 4 | 98.73 8 | 99.13 191 | 98.74 202 |
|
jason | | | 94.39 235 | 94.04 239 | 95.41 240 | 98.29 160 | 87.85 273 | 92.74 297 | 96.75 277 | 85.38 314 | 95.29 249 | 96.15 265 | 88.21 263 | 99.65 127 | 94.24 173 | 99.34 157 | 98.74 202 |
jason: jason. |
cl-mvsnet1 | | | 94.73 217 | 94.64 213 | 95.01 251 | 95.86 310 | 87.00 288 | 91.33 320 | 98.08 214 | 93.34 213 | 97.10 170 | 97.34 197 | 84.02 290 | 99.31 231 | 95.15 132 | 99.55 89 | 98.72 205 |
|
旧先验1 | | | | | | 97.80 219 | 93.87 156 | | 97.75 235 | | | 97.04 217 | 93.57 178 | | | 98.68 241 | 98.72 205 |
|
cl-mvsnet_ | | | 94.73 217 | 94.64 213 | 95.01 251 | 95.85 311 | 87.00 288 | 91.33 320 | 98.08 214 | 93.34 213 | 97.10 170 | 97.33 198 | 84.01 291 | 99.30 234 | 95.14 133 | 99.56 83 | 98.71 207 |
|
mvs_anonymous | | | 95.36 193 | 96.07 163 | 93.21 298 | 96.29 295 | 81.56 332 | 94.60 235 | 97.66 242 | 93.30 215 | 96.95 184 | 98.91 46 | 93.03 189 | 99.38 214 | 96.60 61 | 97.30 302 | 98.69 208 |
|
OMC-MVS | | | 96.48 150 | 96.00 165 | 97.91 95 | 98.30 159 | 96.01 76 | 94.86 225 | 98.60 151 | 91.88 247 | 97.18 164 | 97.21 206 | 96.11 96 | 99.04 271 | 90.49 264 | 99.34 157 | 98.69 208 |
|
thisisatest0530 | | | 92.71 273 | 91.76 281 | 95.56 232 | 98.42 152 | 88.23 263 | 96.03 151 | 87.35 349 | 94.04 196 | 96.56 202 | 95.47 290 | 64.03 354 | 99.77 49 | 94.78 151 | 99.11 195 | 98.68 210 |
|
TAMVS | | | 95.49 185 | 94.94 198 | 97.16 151 | 98.31 158 | 93.41 174 | 95.07 213 | 96.82 275 | 91.09 257 | 97.51 147 | 97.82 153 | 89.96 244 | 99.42 195 | 88.42 293 | 99.44 125 | 98.64 211 |
|
test_0402 | | | 97.84 65 | 97.97 42 | 97.47 130 | 99.19 67 | 94.07 149 | 96.71 119 | 98.73 123 | 98.66 24 | 98.56 58 | 98.41 78 | 96.84 65 | 99.69 109 | 94.82 147 | 99.81 30 | 98.64 211 |
|
MVP-Stereo | | | 95.69 177 | 95.28 187 | 96.92 164 | 98.15 182 | 93.03 183 | 95.64 178 | 98.20 197 | 90.39 263 | 96.63 199 | 97.73 162 | 91.63 224 | 99.10 265 | 91.84 225 | 97.31 301 | 98.63 213 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
cl-mvsnet2 | | | 93.25 266 | 92.84 262 | 94.46 275 | 94.30 335 | 86.00 300 | 91.09 327 | 96.64 281 | 90.74 259 | 95.79 236 | 96.31 259 | 78.24 310 | 98.77 297 | 94.15 177 | 98.34 258 | 98.62 214 |
|
CANet_DTU | | | 94.65 226 | 94.21 233 | 95.96 215 | 95.90 309 | 89.68 238 | 93.92 265 | 97.83 232 | 93.19 219 | 90.12 336 | 95.64 285 | 88.52 258 | 99.57 156 | 93.27 205 | 99.47 117 | 98.62 214 |
|
PM-MVS | | | 97.36 102 | 97.10 109 | 98.14 80 | 98.91 98 | 96.77 49 | 96.20 142 | 98.63 149 | 93.82 201 | 98.54 59 | 98.33 84 | 93.98 168 | 99.05 270 | 95.99 86 | 99.45 124 | 98.61 216 |
|
CSCG | | | 97.40 98 | 97.30 95 | 97.69 110 | 98.95 95 | 94.83 120 | 97.28 89 | 98.99 61 | 96.35 100 | 98.13 104 | 95.95 277 | 95.99 99 | 99.66 126 | 94.36 170 | 99.73 44 | 98.59 217 |
|
CLD-MVS | | | 95.47 188 | 95.07 193 | 96.69 179 | 98.27 164 | 92.53 191 | 91.36 318 | 98.67 141 | 91.22 256 | 95.78 238 | 94.12 314 | 95.65 117 | 98.98 279 | 90.81 247 | 99.72 47 | 98.57 218 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UnsupCasMVSNet_bld | | | 94.72 221 | 94.26 230 | 96.08 211 | 98.62 128 | 90.54 233 | 93.38 283 | 98.05 220 | 90.30 264 | 97.02 178 | 96.80 233 | 89.54 248 | 99.16 257 | 88.44 292 | 96.18 320 | 98.56 219 |
|
N_pmnet | | | 95.18 200 | 94.23 231 | 98.06 85 | 97.85 207 | 96.55 58 | 92.49 301 | 91.63 331 | 89.34 272 | 98.09 109 | 97.41 186 | 90.33 237 | 99.06 269 | 91.58 230 | 99.31 168 | 98.56 219 |
|
CVMVSNet | | | 92.33 280 | 92.79 263 | 90.95 322 | 97.26 269 | 75.84 350 | 95.29 198 | 92.33 326 | 81.86 329 | 96.27 217 | 98.19 106 | 81.44 297 | 98.46 322 | 94.23 174 | 98.29 261 | 98.55 221 |
|
LS3D | | | 97.77 72 | 97.50 85 | 98.57 49 | 96.24 297 | 97.58 24 | 98.45 24 | 98.85 89 | 98.58 26 | 97.51 147 | 97.94 138 | 95.74 114 | 99.63 132 | 95.19 126 | 98.97 209 | 98.51 222 |
|
miper_ehance_all_eth | | | 94.69 222 | 94.70 210 | 94.64 266 | 95.77 314 | 86.22 298 | 91.32 322 | 98.24 192 | 91.67 249 | 97.05 175 | 96.65 242 | 88.39 261 | 99.22 250 | 94.88 144 | 98.34 258 | 98.49 223 |
|
Effi-MVS+-dtu | | | 96.81 131 | 96.09 161 | 98.99 13 | 96.90 284 | 98.69 2 | 96.42 127 | 98.09 212 | 95.86 126 | 95.15 252 | 95.54 288 | 94.26 161 | 99.81 32 | 94.06 180 | 98.51 254 | 98.47 224 |
|
USDC | | | 94.56 230 | 94.57 222 | 94.55 273 | 97.78 229 | 86.43 296 | 92.75 295 | 98.65 148 | 85.96 303 | 96.91 187 | 97.93 140 | 90.82 232 | 98.74 300 | 90.71 254 | 99.59 75 | 98.47 224 |
|
pmmvs4 | | | 94.82 214 | 94.19 234 | 96.70 178 | 97.42 257 | 92.75 189 | 92.09 310 | 96.76 276 | 86.80 298 | 95.73 241 | 97.22 205 | 89.28 254 | 98.89 287 | 93.28 203 | 99.14 187 | 98.46 226 |
|
alignmvs | | | 96.01 168 | 95.52 183 | 97.50 125 | 97.77 230 | 94.71 125 | 96.07 148 | 96.84 273 | 97.48 65 | 96.78 194 | 94.28 313 | 85.50 282 | 99.40 206 | 96.22 73 | 98.73 240 | 98.40 227 |
|
CDS-MVSNet | | | 94.88 212 | 94.12 236 | 97.14 153 | 97.64 242 | 93.57 170 | 93.96 264 | 97.06 267 | 90.05 267 | 96.30 216 | 96.55 246 | 86.10 278 | 99.47 182 | 90.10 269 | 99.31 168 | 98.40 227 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
WTY-MVS | | | 93.55 259 | 93.00 258 | 95.19 245 | 97.81 215 | 87.86 271 | 93.89 266 | 96.00 287 | 89.02 275 | 94.07 277 | 95.44 291 | 86.27 277 | 99.33 227 | 87.69 301 | 96.82 308 | 98.39 229 |
|
Effi-MVS+ | | | 96.19 160 | 96.01 164 | 96.71 177 | 97.43 256 | 92.19 201 | 96.12 146 | 99.10 29 | 95.45 143 | 93.33 305 | 94.71 303 | 97.23 43 | 99.56 157 | 93.21 207 | 97.54 292 | 98.37 230 |
|
MS-PatchMatch | | | 94.83 213 | 94.91 202 | 94.57 272 | 96.81 286 | 87.10 287 | 94.23 248 | 97.34 257 | 88.74 280 | 97.14 166 | 97.11 211 | 91.94 218 | 98.23 334 | 92.99 210 | 97.92 273 | 98.37 230 |
|
TSAR-MVS + GP. | | | 96.47 151 | 96.12 159 | 97.49 128 | 97.74 233 | 95.23 107 | 94.15 253 | 96.90 272 | 93.26 216 | 98.04 116 | 96.70 239 | 94.41 157 | 98.89 287 | 94.77 152 | 99.14 187 | 98.37 230 |
|
DELS-MVS | | | 96.17 161 | 96.23 154 | 95.99 213 | 97.55 248 | 90.04 235 | 92.38 305 | 98.52 159 | 94.13 193 | 96.55 204 | 97.06 215 | 94.99 139 | 99.58 150 | 95.62 100 | 99.28 173 | 98.37 230 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
sss | | | 94.22 238 | 93.72 246 | 95.74 224 | 97.71 235 | 89.95 237 | 93.84 267 | 96.98 269 | 88.38 284 | 93.75 287 | 95.74 281 | 87.94 264 | 98.89 287 | 91.02 241 | 98.10 267 | 98.37 230 |
|
GA-MVS | | | 92.83 271 | 92.15 276 | 94.87 258 | 96.97 279 | 87.27 285 | 90.03 336 | 96.12 285 | 91.83 248 | 94.05 278 | 94.57 304 | 76.01 325 | 98.97 283 | 92.46 217 | 97.34 300 | 98.36 235 |
|
ITE_SJBPF | | | | | 97.85 99 | 98.64 123 | 96.66 53 | | 98.51 161 | 95.63 135 | 97.22 162 | 97.30 201 | 95.52 120 | 98.55 317 | 90.97 242 | 98.90 219 | 98.34 236 |
|
LCM-MVSNet-Re | | | 97.33 103 | 97.33 94 | 97.32 144 | 98.13 186 | 93.79 161 | 96.99 105 | 99.65 2 | 96.74 86 | 99.47 14 | 98.93 44 | 96.91 59 | 99.84 26 | 90.11 268 | 99.06 204 | 98.32 237 |
|
BH-RMVSNet | | | 94.56 230 | 94.44 227 | 94.91 254 | 97.57 245 | 87.44 281 | 93.78 271 | 96.26 283 | 93.69 205 | 96.41 209 | 96.50 251 | 92.10 213 | 99.00 275 | 85.96 315 | 97.71 283 | 98.31 238 |
|
MG-MVS | | | 94.08 246 | 94.00 240 | 94.32 279 | 97.09 276 | 85.89 301 | 93.19 289 | 95.96 289 | 92.52 236 | 94.93 257 | 97.51 179 | 89.54 248 | 98.77 297 | 87.52 306 | 97.71 283 | 98.31 238 |
|
AUN-MVS | | | 93.95 250 | 92.69 267 | 97.74 104 | 97.80 219 | 95.38 99 | 95.57 180 | 95.46 299 | 91.26 255 | 92.64 317 | 96.10 270 | 74.67 329 | 99.55 161 | 93.72 195 | 96.97 304 | 98.30 240 |
|
MVS_Test | | | 96.27 156 | 96.79 129 | 94.73 265 | 96.94 282 | 86.63 293 | 96.18 143 | 98.33 184 | 94.94 164 | 96.07 226 | 98.28 93 | 95.25 131 | 99.26 243 | 97.21 46 | 97.90 275 | 98.30 240 |
|
TinyColmap | | | 96.00 169 | 96.34 151 | 94.96 253 | 97.90 205 | 87.91 270 | 94.13 256 | 98.49 162 | 94.41 181 | 98.16 99 | 97.76 156 | 96.29 94 | 98.68 308 | 90.52 261 | 99.42 135 | 98.30 240 |
|
CMPMVS | | 73.10 23 | 92.74 272 | 91.39 284 | 96.77 174 | 93.57 345 | 94.67 129 | 94.21 250 | 97.67 240 | 80.36 338 | 93.61 293 | 96.60 244 | 82.85 294 | 97.35 344 | 84.86 325 | 98.78 233 | 98.29 243 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
lupinMVS | | | 93.77 251 | 93.28 252 | 95.24 243 | 97.68 237 | 87.81 274 | 92.12 308 | 96.05 286 | 84.52 321 | 94.48 268 | 95.06 296 | 86.90 274 | 99.63 132 | 93.62 198 | 99.13 191 | 98.27 244 |
|
PAPM_NR | | | 94.61 228 | 94.17 235 | 95.96 215 | 98.36 156 | 91.23 217 | 95.93 161 | 97.95 222 | 92.98 228 | 93.42 303 | 94.43 310 | 90.53 234 | 98.38 327 | 87.60 303 | 96.29 319 | 98.27 244 |
|
114514_t | | | 93.96 248 | 93.22 255 | 96.19 207 | 99.06 87 | 90.97 222 | 95.99 155 | 98.94 71 | 73.88 352 | 93.43 302 | 96.93 223 | 92.38 208 | 99.37 217 | 89.09 283 | 99.28 173 | 98.25 246 |
|
原ACMM1 | | | | | 96.58 186 | 98.16 180 | 92.12 202 | | 98.15 206 | 85.90 305 | 93.49 298 | 96.43 253 | 92.47 206 | 99.38 214 | 87.66 302 | 98.62 247 | 98.23 247 |
|
PLC | | 91.02 16 | 94.05 247 | 92.90 259 | 97.51 122 | 98.00 197 | 95.12 114 | 94.25 246 | 98.25 191 | 86.17 301 | 91.48 327 | 95.25 292 | 91.01 229 | 99.19 251 | 85.02 324 | 96.69 312 | 98.22 248 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EPNet_dtu | | | 91.39 293 | 90.75 296 | 93.31 294 | 90.48 358 | 82.61 328 | 94.80 228 | 92.88 320 | 93.39 211 | 81.74 355 | 94.90 301 | 81.36 298 | 99.11 263 | 88.28 295 | 98.87 223 | 98.21 249 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
1112_ss | | | 94.12 243 | 93.42 250 | 96.23 204 | 98.59 133 | 90.85 223 | 94.24 247 | 98.85 89 | 85.49 309 | 92.97 309 | 94.94 298 | 86.01 279 | 99.64 130 | 91.78 226 | 97.92 273 | 98.20 250 |
|
Test_1112_low_res | | | 93.53 260 | 92.86 260 | 95.54 233 | 98.60 131 | 88.86 253 | 92.75 295 | 98.69 136 | 82.66 328 | 92.65 316 | 96.92 225 | 84.75 287 | 99.56 157 | 90.94 243 | 97.76 279 | 98.19 251 |
|
canonicalmvs | | | 97.23 110 | 97.21 104 | 97.30 145 | 97.65 241 | 94.39 136 | 97.84 56 | 99.05 41 | 97.42 67 | 96.68 196 | 93.85 316 | 97.63 27 | 99.33 227 | 96.29 72 | 98.47 255 | 98.18 252 |
|
miper_enhance_ethall | | | 93.14 268 | 92.78 265 | 94.20 282 | 93.65 343 | 85.29 308 | 89.97 337 | 97.85 228 | 85.05 316 | 96.15 225 | 94.56 305 | 85.74 280 | 99.14 258 | 93.74 193 | 98.34 258 | 98.17 253 |
|
Fast-Effi-MVS+-dtu | | | 96.44 152 | 96.12 159 | 97.39 140 | 97.18 273 | 94.39 136 | 95.46 182 | 98.73 123 | 96.03 115 | 94.72 259 | 94.92 300 | 96.28 95 | 99.69 109 | 93.81 191 | 97.98 271 | 98.09 254 |
|
ab-mvs | | | 96.59 145 | 96.59 136 | 96.60 183 | 98.64 123 | 92.21 198 | 98.35 27 | 97.67 240 | 94.45 180 | 96.99 180 | 98.79 51 | 94.96 140 | 99.49 176 | 90.39 265 | 99.07 201 | 98.08 255 |
|
PAPR | | | 92.22 281 | 91.27 287 | 95.07 249 | 95.73 316 | 88.81 254 | 91.97 311 | 97.87 227 | 85.80 306 | 90.91 329 | 92.73 328 | 91.16 227 | 98.33 331 | 79.48 340 | 95.76 326 | 98.08 255 |
|
test_yl | | | 94.40 233 | 94.00 240 | 95.59 228 | 96.95 280 | 89.52 241 | 94.75 231 | 95.55 297 | 96.18 106 | 96.79 190 | 96.14 267 | 81.09 299 | 99.18 252 | 90.75 250 | 97.77 277 | 98.07 257 |
|
DCV-MVSNet | | | 94.40 233 | 94.00 240 | 95.59 228 | 96.95 280 | 89.52 241 | 94.75 231 | 95.55 297 | 96.18 106 | 96.79 190 | 96.14 267 | 81.09 299 | 99.18 252 | 90.75 250 | 97.77 277 | 98.07 257 |
|
baseline1 | | | 93.14 268 | 92.64 269 | 94.62 268 | 97.34 264 | 87.20 286 | 96.67 121 | 93.02 318 | 94.71 172 | 96.51 205 | 95.83 280 | 81.64 296 | 98.60 313 | 90.00 271 | 88.06 348 | 98.07 257 |
|
MIMVSNet | | | 93.42 261 | 92.86 260 | 95.10 248 | 98.17 178 | 88.19 264 | 98.13 42 | 93.69 310 | 92.07 242 | 95.04 254 | 98.21 105 | 80.95 301 | 99.03 274 | 81.42 337 | 98.06 269 | 98.07 257 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 261 |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 312 | | | | 98.06 261 |
|
SCA | | | 93.38 263 | 93.52 249 | 92.96 305 | 96.24 297 | 81.40 333 | 93.24 287 | 94.00 309 | 91.58 252 | 94.57 263 | 96.97 220 | 87.94 264 | 99.42 195 | 89.47 278 | 97.66 288 | 98.06 261 |
|
MSLP-MVS++ | | | 96.42 154 | 96.71 131 | 95.57 230 | 97.82 214 | 90.56 232 | 95.71 169 | 98.84 93 | 94.72 171 | 96.71 195 | 97.39 191 | 94.91 142 | 98.10 338 | 95.28 121 | 99.02 206 | 98.05 264 |
|
ADS-MVSNet2 | | | 91.47 292 | 90.51 300 | 94.36 278 | 95.51 319 | 85.63 302 | 95.05 216 | 95.70 293 | 83.46 325 | 92.69 314 | 96.84 228 | 79.15 307 | 99.41 204 | 85.66 319 | 90.52 343 | 98.04 265 |
|
ADS-MVSNet | | | 90.95 298 | 90.26 302 | 93.04 301 | 95.51 319 | 82.37 330 | 95.05 216 | 93.41 315 | 83.46 325 | 92.69 314 | 96.84 228 | 79.15 307 | 98.70 304 | 85.66 319 | 90.52 343 | 98.04 265 |
|
PVSNet_Blended | | | 93.96 248 | 93.65 247 | 94.91 254 | 97.79 225 | 87.40 282 | 91.43 317 | 98.68 138 | 84.50 322 | 94.51 266 | 94.48 309 | 93.04 187 | 99.30 234 | 89.77 274 | 98.61 248 | 98.02 267 |
|
PatchmatchNet | | | 91.98 286 | 91.87 278 | 92.30 314 | 94.60 332 | 79.71 338 | 95.12 207 | 93.59 314 | 89.52 271 | 93.61 293 | 97.02 218 | 77.94 311 | 99.18 252 | 90.84 246 | 94.57 335 | 98.01 268 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PVSNet | | 86.72 19 | 91.10 295 | 90.97 292 | 91.49 318 | 97.56 247 | 78.04 342 | 87.17 346 | 94.60 305 | 84.65 320 | 92.34 321 | 92.20 333 | 87.37 272 | 98.47 321 | 85.17 323 | 97.69 285 | 97.96 269 |
|
æ— å…ˆéªŒ | | | | | | | | 93.20 288 | 97.91 224 | 80.78 335 | | | | 99.40 206 | 87.71 299 | | 97.94 270 |
|
MVS_0304 | | | 95.50 184 | 95.05 196 | 96.84 170 | 96.28 296 | 93.12 181 | 97.00 104 | 96.16 284 | 95.03 161 | 89.22 341 | 97.70 165 | 90.16 243 | 99.48 179 | 94.51 161 | 99.34 157 | 97.93 271 |
|
EIA-MVS | | | 96.04 166 | 95.77 175 | 96.85 169 | 97.80 219 | 92.98 184 | 96.12 146 | 99.16 18 | 94.65 173 | 93.77 286 | 91.69 339 | 95.68 115 | 99.67 120 | 94.18 175 | 98.85 227 | 97.91 272 |
|
tpm | | | 91.08 296 | 90.85 294 | 91.75 317 | 95.33 324 | 78.09 341 | 95.03 218 | 91.27 334 | 88.75 279 | 93.53 297 | 97.40 187 | 71.24 342 | 99.30 234 | 91.25 237 | 93.87 336 | 97.87 273 |
|
Patchmatch-RL test | | | 94.66 225 | 94.49 223 | 95.19 245 | 98.54 138 | 88.91 251 | 92.57 299 | 98.74 121 | 91.46 253 | 98.32 83 | 97.75 159 | 77.31 318 | 98.81 294 | 96.06 78 | 99.61 70 | 97.85 274 |
|
LF4IMVS | | | 96.07 164 | 95.63 179 | 97.36 142 | 98.19 173 | 95.55 91 | 95.44 183 | 98.82 108 | 92.29 241 | 95.70 242 | 96.55 246 | 92.63 199 | 98.69 305 | 91.75 228 | 99.33 164 | 97.85 274 |
|
ET-MVSNet_ETH3D | | | 91.12 294 | 89.67 306 | 95.47 236 | 96.41 293 | 89.15 249 | 91.54 316 | 90.23 343 | 89.07 274 | 86.78 351 | 92.84 325 | 69.39 348 | 99.44 192 | 94.16 176 | 96.61 314 | 97.82 276 |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 360 | 94.89 223 | | 80.59 336 | 94.02 279 | | 78.66 309 | | 85.50 321 | | 97.82 276 |
|
Patchmatch-test | | | 93.60 258 | 93.25 254 | 94.63 267 | 96.14 306 | 87.47 280 | 96.04 150 | 94.50 306 | 93.57 206 | 96.47 206 | 96.97 220 | 76.50 321 | 98.61 311 | 90.67 256 | 98.41 257 | 97.81 278 |
|
Fast-Effi-MVS+ | | | 95.49 185 | 95.07 193 | 96.75 175 | 97.67 240 | 92.82 186 | 94.22 249 | 98.60 151 | 91.61 250 | 93.42 303 | 92.90 324 | 96.73 69 | 99.70 101 | 92.60 213 | 97.89 276 | 97.74 279 |
|
DPM-MVS | | | 93.68 255 | 92.77 266 | 96.42 196 | 97.91 203 | 92.54 190 | 91.17 325 | 97.47 255 | 84.99 318 | 93.08 308 | 94.74 302 | 89.90 245 | 99.00 275 | 87.54 305 | 98.09 268 | 97.72 280 |
|
baseline2 | | | 89.65 309 | 88.44 316 | 93.25 296 | 95.62 317 | 82.71 327 | 93.82 268 | 85.94 352 | 88.89 278 | 87.35 349 | 92.54 330 | 71.23 343 | 99.33 227 | 86.01 314 | 94.60 334 | 97.72 280 |
|
1121 | | | 94.26 236 | 93.26 253 | 97.27 146 | 98.26 166 | 94.73 123 | 95.86 163 | 97.71 238 | 77.96 346 | 94.53 265 | 96.71 238 | 91.93 219 | 99.40 206 | 87.71 299 | 98.64 246 | 97.69 282 |
|
test222 | | | | | | 98.17 178 | 93.24 178 | 92.74 297 | 97.61 250 | 75.17 350 | 94.65 262 | 96.69 240 | 90.96 231 | | | 98.66 244 | 97.66 283 |
|
TAPA-MVS | | 93.32 12 | 94.93 209 | 94.23 231 | 97.04 159 | 98.18 176 | 94.51 132 | 95.22 204 | 98.73 123 | 81.22 334 | 96.25 219 | 95.95 277 | 93.80 173 | 98.98 279 | 89.89 272 | 98.87 223 | 97.62 284 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
æ–°å‡ ä½•1 | | | | | 97.25 149 | 98.29 160 | 94.70 128 | | 97.73 236 | 77.98 345 | 94.83 258 | 96.67 241 | 92.08 214 | 99.45 189 | 88.17 297 | 98.65 245 | 97.61 285 |
|
MSDG | | | 95.33 194 | 95.13 191 | 95.94 219 | 97.40 258 | 91.85 209 | 91.02 328 | 98.37 178 | 95.30 149 | 96.31 215 | 95.99 272 | 94.51 155 | 98.38 327 | 89.59 276 | 97.65 289 | 97.60 286 |
|
testdata | | | | | 95.70 227 | 98.16 180 | 90.58 230 | | 97.72 237 | 80.38 337 | 95.62 243 | 97.02 218 | 92.06 215 | 98.98 279 | 89.06 285 | 98.52 252 | 97.54 287 |
|
DSMNet-mixed | | | 92.19 282 | 91.83 279 | 93.25 296 | 96.18 302 | 83.68 326 | 96.27 136 | 93.68 312 | 76.97 349 | 92.54 320 | 99.18 28 | 89.20 256 | 98.55 317 | 83.88 330 | 98.60 250 | 97.51 288 |
|
thisisatest0515 | | | 90.43 300 | 89.18 312 | 94.17 284 | 97.07 277 | 85.44 305 | 89.75 342 | 87.58 348 | 88.28 285 | 93.69 290 | 91.72 338 | 65.27 352 | 99.58 150 | 90.59 258 | 98.67 242 | 97.50 289 |
|
PMMVS | | | 92.39 277 | 91.08 289 | 96.30 203 | 93.12 349 | 92.81 187 | 90.58 332 | 95.96 289 | 79.17 342 | 91.85 326 | 92.27 332 | 90.29 241 | 98.66 310 | 89.85 273 | 96.68 313 | 97.43 290 |
|
DP-MVS Recon | | | 95.55 183 | 95.13 191 | 96.80 172 | 98.51 141 | 93.99 153 | 94.60 235 | 98.69 136 | 90.20 265 | 95.78 238 | 96.21 264 | 92.73 195 | 98.98 279 | 90.58 259 | 98.86 225 | 97.42 291 |
|
thres600view7 | | | 92.03 285 | 91.43 283 | 93.82 285 | 98.19 173 | 84.61 318 | 96.27 136 | 90.39 340 | 96.81 84 | 96.37 211 | 93.11 319 | 73.44 337 | 99.49 176 | 80.32 339 | 97.95 272 | 97.36 292 |
|
thres400 | | | 91.68 290 | 91.00 290 | 93.71 287 | 98.02 191 | 84.35 321 | 95.70 170 | 90.79 337 | 96.26 102 | 95.90 234 | 92.13 334 | 73.62 335 | 99.42 195 | 78.85 343 | 97.74 280 | 97.36 292 |
|
OpenMVS | | 94.22 8 | 95.48 187 | 95.20 188 | 96.32 201 | 97.16 274 | 91.96 207 | 97.74 62 | 98.84 93 | 87.26 292 | 94.36 270 | 98.01 129 | 93.95 169 | 99.67 120 | 90.70 255 | 98.75 236 | 97.35 294 |
|
CS-MVS | | | 95.86 174 | 95.59 181 | 96.69 179 | 97.85 207 | 93.14 180 | 96.42 127 | 99.25 10 | 94.17 192 | 93.56 296 | 90.76 347 | 96.05 98 | 99.72 77 | 93.28 203 | 98.91 218 | 97.21 295 |
|
test0.0.03 1 | | | 90.11 302 | 89.21 309 | 92.83 307 | 93.89 341 | 86.87 291 | 91.74 314 | 88.74 347 | 92.02 243 | 94.71 260 | 91.14 343 | 73.92 332 | 94.48 352 | 83.75 333 | 92.94 338 | 97.16 296 |
|
BH-untuned | | | 94.69 222 | 94.75 209 | 94.52 274 | 97.95 202 | 87.53 279 | 94.07 258 | 97.01 268 | 93.99 197 | 97.10 170 | 95.65 284 | 92.65 198 | 98.95 284 | 87.60 303 | 96.74 311 | 97.09 297 |
|
mvs-test1 | | | 96.20 159 | 95.50 184 | 98.32 65 | 96.90 284 | 98.16 4 | 95.07 213 | 98.09 212 | 95.86 126 | 93.63 291 | 94.32 312 | 94.26 161 | 99.71 92 | 94.06 180 | 97.27 303 | 97.07 298 |
|
new_pmnet | | | 92.34 279 | 91.69 282 | 94.32 279 | 96.23 299 | 89.16 248 | 92.27 306 | 92.88 320 | 84.39 324 | 95.29 249 | 96.35 258 | 85.66 281 | 96.74 349 | 84.53 327 | 97.56 291 | 97.05 299 |
|
tpmrst | | | 90.31 301 | 90.61 299 | 89.41 329 | 94.06 340 | 72.37 356 | 95.06 215 | 93.69 310 | 88.01 287 | 92.32 322 | 96.86 226 | 77.45 315 | 98.82 292 | 91.04 240 | 87.01 350 | 97.04 300 |
|
EPMVS | | | 89.26 311 | 88.55 315 | 91.39 319 | 92.36 354 | 79.11 339 | 95.65 176 | 79.86 355 | 88.60 281 | 93.12 307 | 96.53 248 | 70.73 346 | 98.10 338 | 90.75 250 | 89.32 347 | 96.98 301 |
|
Gipuma | | | 98.07 41 | 98.31 30 | 97.36 142 | 99.76 5 | 96.28 67 | 98.51 20 | 99.10 29 | 98.76 22 | 96.79 190 | 99.34 18 | 96.61 74 | 98.82 292 | 96.38 70 | 99.50 107 | 96.98 301 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test-LLR | | | 89.97 306 | 89.90 304 | 90.16 326 | 94.24 337 | 74.98 351 | 89.89 338 | 89.06 345 | 92.02 243 | 89.97 337 | 90.77 345 | 73.92 332 | 98.57 314 | 91.88 223 | 97.36 298 | 96.92 303 |
|
test-mter | | | 87.92 319 | 87.17 320 | 90.16 326 | 94.24 337 | 74.98 351 | 89.89 338 | 89.06 345 | 86.44 300 | 89.97 337 | 90.77 345 | 54.96 362 | 98.57 314 | 91.88 223 | 97.36 298 | 96.92 303 |
|
PCF-MVS | | 89.43 18 | 92.12 284 | 90.64 298 | 96.57 188 | 97.80 219 | 93.48 173 | 89.88 341 | 98.45 165 | 74.46 351 | 96.04 227 | 95.68 283 | 90.71 233 | 99.31 231 | 73.73 348 | 99.01 208 | 96.91 305 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CostFormer | | | 89.75 308 | 89.25 307 | 91.26 321 | 94.69 331 | 78.00 343 | 95.32 195 | 91.98 328 | 81.50 332 | 90.55 332 | 96.96 222 | 71.06 344 | 98.89 287 | 88.59 291 | 92.63 340 | 96.87 306 |
|
dp | | | 88.08 317 | 88.05 317 | 88.16 335 | 92.85 351 | 68.81 358 | 94.17 251 | 92.88 320 | 85.47 310 | 91.38 328 | 96.14 267 | 68.87 349 | 98.81 294 | 86.88 310 | 83.80 353 | 96.87 306 |
|
ETV-MVS | | | 96.13 163 | 95.90 171 | 96.82 171 | 97.76 231 | 93.89 155 | 95.40 188 | 98.95 70 | 95.87 125 | 95.58 245 | 91.00 344 | 96.36 91 | 99.72 77 | 93.36 200 | 98.83 229 | 96.85 308 |
|
cascas | | | 91.89 287 | 91.35 285 | 93.51 291 | 94.27 336 | 85.60 303 | 88.86 344 | 98.61 150 | 79.32 341 | 92.16 323 | 91.44 340 | 89.22 255 | 98.12 337 | 90.80 248 | 97.47 297 | 96.82 309 |
|
CR-MVSNet | | | 93.29 265 | 92.79 263 | 94.78 263 | 95.44 321 | 88.15 265 | 96.18 143 | 97.20 260 | 84.94 319 | 94.10 275 | 98.57 66 | 77.67 313 | 99.39 211 | 95.17 128 | 95.81 322 | 96.81 310 |
|
RPMNet | | | 94.68 224 | 94.60 217 | 94.90 256 | 95.44 321 | 88.15 265 | 96.18 143 | 98.86 85 | 97.43 66 | 94.10 275 | 98.49 73 | 79.40 305 | 99.76 53 | 95.69 94 | 95.81 322 | 96.81 310 |
|
PatchMatch-RL | | | 94.61 228 | 93.81 245 | 97.02 161 | 98.19 173 | 95.72 82 | 93.66 273 | 97.23 259 | 88.17 286 | 94.94 256 | 95.62 286 | 91.43 225 | 98.57 314 | 87.36 308 | 97.68 286 | 96.76 312 |
|
MAR-MVS | | | 94.21 240 | 93.03 257 | 97.76 102 | 96.94 282 | 97.44 33 | 96.97 106 | 97.15 263 | 87.89 290 | 92.00 324 | 92.73 328 | 92.14 211 | 99.12 260 | 83.92 329 | 97.51 294 | 96.73 313 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DWT-MVSNet_test | | | 87.92 319 | 86.77 323 | 91.39 319 | 93.18 346 | 78.62 340 | 95.10 208 | 91.42 332 | 85.58 308 | 88.00 345 | 88.73 350 | 60.60 356 | 98.90 285 | 90.60 257 | 87.70 349 | 96.65 314 |
|
TESTMET0.1,1 | | | 87.20 322 | 86.57 324 | 89.07 330 | 93.62 344 | 72.84 355 | 89.89 338 | 87.01 351 | 85.46 311 | 89.12 342 | 90.20 348 | 56.00 361 | 97.72 342 | 90.91 244 | 96.92 305 | 96.64 315 |
|
CNLPA | | | 95.04 206 | 94.47 224 | 96.75 175 | 97.81 215 | 95.25 106 | 94.12 257 | 97.89 226 | 94.41 181 | 94.57 263 | 95.69 282 | 90.30 240 | 98.35 330 | 86.72 312 | 98.76 235 | 96.64 315 |
|
IB-MVS | | 85.98 20 | 88.63 313 | 86.95 322 | 93.68 288 | 95.12 326 | 84.82 317 | 90.85 329 | 90.17 344 | 87.55 291 | 88.48 344 | 91.34 341 | 58.01 357 | 99.59 148 | 87.24 309 | 93.80 337 | 96.63 317 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpmvs | | | 90.79 299 | 90.87 293 | 90.57 325 | 92.75 353 | 76.30 348 | 95.79 167 | 93.64 313 | 91.04 258 | 91.91 325 | 96.26 260 | 77.19 319 | 98.86 291 | 89.38 280 | 89.85 346 | 96.56 318 |
|
CHOSEN 280x420 | | | 89.98 305 | 89.19 311 | 92.37 313 | 95.60 318 | 81.13 335 | 86.22 348 | 97.09 266 | 81.44 333 | 87.44 348 | 93.15 318 | 73.99 330 | 99.47 182 | 88.69 289 | 99.07 201 | 96.52 319 |
|
HY-MVS | | 91.43 15 | 92.58 274 | 91.81 280 | 94.90 256 | 96.49 291 | 88.87 252 | 97.31 87 | 94.62 304 | 85.92 304 | 90.50 333 | 96.84 228 | 85.05 284 | 99.40 206 | 83.77 332 | 95.78 325 | 96.43 320 |
|
PatchT | | | 93.75 252 | 93.57 248 | 94.29 281 | 95.05 327 | 87.32 284 | 96.05 149 | 92.98 319 | 97.54 63 | 94.25 271 | 98.72 56 | 75.79 326 | 99.24 246 | 95.92 89 | 95.81 322 | 96.32 321 |
|
tpm2 | | | 88.47 314 | 87.69 318 | 90.79 323 | 94.98 328 | 77.34 346 | 95.09 210 | 91.83 329 | 77.51 348 | 89.40 339 | 96.41 254 | 67.83 350 | 98.73 301 | 83.58 334 | 92.60 341 | 96.29 322 |
|
AdaColmap | | | 95.11 203 | 94.62 216 | 96.58 186 | 97.33 266 | 94.45 135 | 94.92 222 | 98.08 214 | 93.15 224 | 93.98 282 | 95.53 289 | 94.34 159 | 99.10 265 | 85.69 318 | 98.61 248 | 96.20 323 |
|
pmmvs3 | | | 90.00 304 | 88.90 313 | 93.32 293 | 94.20 339 | 85.34 306 | 91.25 323 | 92.56 325 | 78.59 343 | 93.82 283 | 95.17 293 | 67.36 351 | 98.69 305 | 89.08 284 | 98.03 270 | 95.92 324 |
|
thres100view900 | | | 91.76 289 | 91.26 288 | 93.26 295 | 98.21 171 | 84.50 319 | 96.39 129 | 90.39 340 | 96.87 82 | 96.33 212 | 93.08 321 | 73.44 337 | 99.42 195 | 78.85 343 | 97.74 280 | 95.85 325 |
|
tfpn200view9 | | | 91.55 291 | 91.00 290 | 93.21 298 | 98.02 191 | 84.35 321 | 95.70 170 | 90.79 337 | 96.26 102 | 95.90 234 | 92.13 334 | 73.62 335 | 99.42 195 | 78.85 343 | 97.74 280 | 95.85 325 |
|
OpenMVS_ROB | | 91.80 14 | 93.64 257 | 93.05 256 | 95.42 238 | 97.31 268 | 91.21 218 | 95.08 212 | 96.68 280 | 81.56 331 | 96.88 189 | 96.41 254 | 90.44 236 | 99.25 245 | 85.39 322 | 97.67 287 | 95.80 327 |
|
PAPM | | | 87.64 321 | 85.84 326 | 93.04 301 | 96.54 289 | 84.99 314 | 88.42 345 | 95.57 296 | 79.52 340 | 83.82 352 | 93.05 323 | 80.57 302 | 98.41 324 | 62.29 354 | 92.79 339 | 95.71 328 |
|
xiu_mvs_v1_base_debu | | | 95.62 180 | 95.96 168 | 94.60 269 | 98.01 193 | 88.42 259 | 93.99 261 | 98.21 194 | 92.98 228 | 95.91 231 | 94.53 306 | 96.39 88 | 99.72 77 | 95.43 115 | 98.19 263 | 95.64 329 |
|
xiu_mvs_v1_base | | | 95.62 180 | 95.96 168 | 94.60 269 | 98.01 193 | 88.42 259 | 93.99 261 | 98.21 194 | 92.98 228 | 95.91 231 | 94.53 306 | 96.39 88 | 99.72 77 | 95.43 115 | 98.19 263 | 95.64 329 |
|
xiu_mvs_v1_base_debi | | | 95.62 180 | 95.96 168 | 94.60 269 | 98.01 193 | 88.42 259 | 93.99 261 | 98.21 194 | 92.98 228 | 95.91 231 | 94.53 306 | 96.39 88 | 99.72 77 | 95.43 115 | 98.19 263 | 95.64 329 |
|
tpm cat1 | | | 88.01 318 | 87.33 319 | 90.05 328 | 94.48 333 | 76.28 349 | 94.47 240 | 94.35 308 | 73.84 353 | 89.26 340 | 95.61 287 | 73.64 334 | 98.30 332 | 84.13 328 | 86.20 351 | 95.57 332 |
|
JIA-IIPM | | | 91.79 288 | 90.69 297 | 95.11 247 | 93.80 342 | 90.98 221 | 94.16 252 | 91.78 330 | 96.38 97 | 90.30 335 | 99.30 19 | 72.02 341 | 98.90 285 | 88.28 295 | 90.17 345 | 95.45 333 |
|
TR-MVS | | | 92.54 275 | 92.20 275 | 93.57 290 | 96.49 291 | 86.66 292 | 93.51 278 | 94.73 303 | 89.96 268 | 94.95 255 | 93.87 315 | 90.24 242 | 98.61 311 | 81.18 338 | 94.88 330 | 95.45 333 |
|
thres200 | | | 91.00 297 | 90.42 301 | 92.77 308 | 97.47 254 | 83.98 324 | 94.01 260 | 91.18 335 | 95.12 157 | 95.44 246 | 91.21 342 | 73.93 331 | 99.31 231 | 77.76 346 | 97.63 290 | 95.01 335 |
|
1314 | | | 92.38 278 | 92.30 274 | 92.64 310 | 95.42 323 | 85.15 311 | 95.86 163 | 96.97 270 | 85.40 313 | 90.62 330 | 93.06 322 | 91.12 228 | 97.80 341 | 86.74 311 | 95.49 329 | 94.97 336 |
|
BH-w/o | | | 92.14 283 | 91.94 277 | 92.73 309 | 97.13 275 | 85.30 307 | 92.46 302 | 95.64 294 | 89.33 273 | 94.21 272 | 92.74 327 | 89.60 247 | 98.24 333 | 81.68 336 | 94.66 332 | 94.66 337 |
|
xiu_mvs_v2_base | | | 94.22 238 | 94.63 215 | 92.99 304 | 97.32 267 | 84.84 316 | 92.12 308 | 97.84 230 | 91.96 245 | 94.17 273 | 93.43 317 | 96.07 97 | 99.71 92 | 91.27 235 | 97.48 295 | 94.42 338 |
|
PS-MVSNAJ | | | 94.10 244 | 94.47 224 | 93.00 303 | 97.35 260 | 84.88 315 | 91.86 312 | 97.84 230 | 91.96 245 | 94.17 273 | 92.50 331 | 95.82 106 | 99.71 92 | 91.27 235 | 97.48 295 | 94.40 339 |
|
gg-mvs-nofinetune | | | 88.28 316 | 86.96 321 | 92.23 316 | 92.84 352 | 84.44 320 | 98.19 39 | 74.60 357 | 99.08 11 | 87.01 350 | 99.47 9 | 56.93 359 | 98.23 334 | 78.91 342 | 95.61 327 | 94.01 340 |
|
API-MVS | | | 95.09 205 | 95.01 197 | 95.31 241 | 96.61 288 | 94.02 151 | 96.83 109 | 97.18 262 | 95.60 137 | 95.79 236 | 94.33 311 | 94.54 154 | 98.37 329 | 85.70 317 | 98.52 252 | 93.52 341 |
|
PVSNet_0 | | 81.89 21 | 84.49 324 | 83.21 327 | 88.34 333 | 95.76 315 | 74.97 353 | 83.49 350 | 92.70 324 | 78.47 344 | 87.94 346 | 86.90 352 | 83.38 293 | 96.63 350 | 73.44 349 | 66.86 355 | 93.40 342 |
|
FPMVS | | | 89.92 307 | 88.63 314 | 93.82 285 | 98.37 155 | 96.94 45 | 91.58 315 | 93.34 316 | 88.00 288 | 90.32 334 | 97.10 212 | 70.87 345 | 91.13 354 | 71.91 351 | 96.16 321 | 93.39 343 |
|
PMVS | | 89.60 17 | 96.71 139 | 96.97 117 | 95.95 217 | 99.51 23 | 97.81 16 | 97.42 84 | 97.49 252 | 97.93 43 | 95.95 230 | 98.58 65 | 96.88 62 | 96.91 346 | 89.59 276 | 99.36 149 | 93.12 344 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVS | | | 90.02 303 | 89.20 310 | 92.47 311 | 94.71 330 | 86.90 290 | 95.86 163 | 96.74 278 | 64.72 354 | 90.62 330 | 92.77 326 | 92.54 203 | 98.39 326 | 79.30 341 | 95.56 328 | 92.12 345 |
|
MVE | | 73.61 22 | 86.48 323 | 85.92 325 | 88.18 334 | 96.23 299 | 85.28 309 | 81.78 353 | 75.79 356 | 86.01 302 | 82.53 354 | 91.88 336 | 92.74 194 | 87.47 355 | 71.42 352 | 94.86 331 | 91.78 346 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 89.52 310 | 89.78 305 | 88.73 331 | 93.14 348 | 77.61 344 | 83.26 351 | 92.02 327 | 94.82 168 | 93.71 288 | 93.11 319 | 75.31 327 | 96.81 347 | 85.81 316 | 96.81 309 | 91.77 347 |
|
EMVS | | | 89.06 312 | 89.22 308 | 88.61 332 | 93.00 350 | 77.34 346 | 82.91 352 | 90.92 336 | 94.64 174 | 92.63 318 | 91.81 337 | 76.30 323 | 97.02 345 | 83.83 331 | 96.90 306 | 91.48 348 |
|
GG-mvs-BLEND | | | | | 90.60 324 | 91.00 356 | 84.21 323 | 98.23 33 | 72.63 360 | | 82.76 353 | 84.11 353 | 56.14 360 | 96.79 348 | 72.20 350 | 92.09 342 | 90.78 349 |
|
MVS-HIRNet | | | 88.40 315 | 90.20 303 | 82.99 337 | 97.01 278 | 60.04 359 | 93.11 290 | 85.61 353 | 84.45 323 | 88.72 343 | 99.09 34 | 84.72 288 | 98.23 334 | 82.52 335 | 96.59 315 | 90.69 350 |
|
DeepMVS_CX | | | | | 77.17 338 | 90.94 357 | 85.28 309 | | 74.08 359 | 52.51 355 | 80.87 356 | 88.03 351 | 75.25 328 | 70.63 356 | 59.23 355 | 84.94 352 | 75.62 351 |
|
wuyk23d | | | 93.25 266 | 95.20 188 | 87.40 336 | 96.07 307 | 95.38 99 | 97.04 102 | 94.97 301 | 95.33 147 | 99.70 6 | 98.11 114 | 98.14 14 | 91.94 353 | 77.76 346 | 99.68 56 | 74.89 352 |
|
tmp_tt | | | 57.23 325 | 62.50 328 | 41.44 339 | 34.77 360 | 49.21 361 | 83.93 349 | 60.22 361 | 15.31 356 | 71.11 357 | 79.37 354 | 70.09 347 | 44.86 357 | 64.76 353 | 82.93 354 | 30.25 353 |
|
test123 | | | 12.59 327 | 15.49 330 | 3.87 340 | 6.07 361 | 2.55 362 | 90.75 330 | 2.59 363 | 2.52 357 | 5.20 359 | 13.02 357 | 4.96 363 | 1.85 359 | 5.20 356 | 9.09 356 | 7.23 354 |
|
testmvs | | | 12.33 328 | 15.23 331 | 3.64 341 | 5.77 362 | 2.23 363 | 88.99 343 | 3.62 362 | 2.30 358 | 5.29 358 | 13.09 356 | 4.52 364 | 1.95 358 | 5.16 357 | 8.32 357 | 6.75 355 |
|
uanet_test | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
cdsmvs_eth3d_5k | | | 24.22 326 | 32.30 329 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 98.10 211 | 0.00 359 | 0.00 360 | 95.06 296 | 97.54 29 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
pcd_1.5k_mvsjas | | | 7.98 329 | 10.65 332 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 95.82 106 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
sosnet-low-res | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
sosnet | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
uncertanet | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
Regformer | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
ab-mvs-re | | | 7.91 330 | 10.55 333 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 94.94 298 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
uanet | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
ZD-MVS | | | | | | 98.43 151 | 95.94 77 | | 98.56 155 | 90.72 260 | 96.66 197 | 97.07 214 | 95.02 138 | 99.74 67 | 91.08 239 | 98.93 216 | |
|
test_241102_ONE | | | | | | 99.22 57 | 95.35 102 | | 98.83 100 | 96.04 113 | 99.08 31 | 98.13 110 | 97.87 21 | 99.33 227 | | | |
|
9.14 | | | | 96.69 132 | | 98.53 139 | | 96.02 152 | 98.98 64 | 93.23 217 | 97.18 164 | 97.46 183 | 96.47 84 | 99.62 140 | 92.99 210 | 99.32 166 | |
|
save fliter | | | | | | 98.48 146 | 94.71 125 | 94.53 238 | 98.41 173 | 95.02 162 | | | | | | | |
|
test0726 | | | | | | 99.24 52 | 95.51 94 | 96.89 107 | 98.89 76 | 95.92 121 | 98.64 51 | 98.31 86 | 97.06 50 | | | | |
|
test_part2 | | | | | | 99.03 91 | 96.07 72 | | | | 98.08 111 | | | | | | |
|
sam_mvs | | | | | | | | | | | | | 77.38 316 | | | | |
|
MTGPA | | | | | | | | | 98.73 123 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 220 | | | | 10.37 359 | 76.21 324 | 99.04 271 | 89.47 278 | | |
|
test_post | | | | | | | | | | | | 10.87 358 | 76.83 320 | 99.07 268 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 228 | 77.36 317 | 99.42 195 | | | |
|
MTMP | | | | | | | | 96.55 122 | 74.60 357 | | | | | | | | |
|
gm-plane-assit | | | | | | 91.79 355 | 71.40 357 | | | 81.67 330 | | 90.11 349 | | 98.99 277 | 84.86 325 | | |
|
TEST9 | | | | | | 97.84 212 | 95.23 107 | 93.62 274 | 98.39 175 | 86.81 297 | 93.78 284 | 95.99 272 | 94.68 147 | 99.52 170 | | | |
|
test_8 | | | | | | 97.81 215 | 95.07 115 | 93.54 277 | 98.38 177 | 87.04 295 | 93.71 288 | 95.96 276 | 94.58 152 | 99.52 170 | | | |
|
agg_prior | | | | | | 97.80 219 | 94.96 117 | | 98.36 179 | | 93.49 298 | | | 99.53 166 | | | |
|
test_prior4 | | | | | | | 95.38 99 | 93.61 276 | | | | | | | | | |
|
test_prior2 | | | | | | | | 93.33 285 | | 94.21 189 | 94.02 279 | 96.25 261 | 93.64 176 | | 91.90 221 | 98.96 210 | |
|
旧先验2 | | | | | | | | 93.35 284 | | 77.95 347 | 95.77 240 | | | 98.67 309 | 90.74 253 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 93.43 279 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 92.82 293 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.46 185 | 87.84 298 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 127 | | | | |
|
testdata1 | | | | | | | | 92.77 294 | | 93.78 202 | | | | | | | |
|
plane_prior7 | | | | | | 98.70 119 | 94.67 129 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 154 | 94.37 138 | | | | | | 91.91 221 | | | | |
|
plane_prior4 | | | | | | | | | | | | 96.77 234 | | | | | |
|
plane_prior3 | | | | | | | 94.51 132 | | | 95.29 150 | 96.16 223 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 124 | | 96.36 98 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 144 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 140 | 95.42 185 | | 94.31 186 | | | | | | 98.93 216 | |
|
n2 | | | | | | | | | 0.00 364 | | | | | | | | |
|
nn | | | | | | | | | 0.00 364 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 203 | | | | | | | | |
|
test11 | | | | | | | | | 98.08 214 | | | | | | | | |
|
door | | | | | | | | | 97.81 233 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 192 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.85 207 | | 94.26 243 | | 93.18 220 | 92.86 311 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 207 | | 94.26 243 | | 93.18 220 | 92.86 311 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 262 | | |
|
HQP3-MVS | | | | | | | | | 98.43 168 | | | | | | | 98.74 237 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 237 | | | | |
|
NP-MVS | | | | | | 98.14 183 | 93.72 164 | | | | | 95.08 294 | | | | | |
|
MDTV_nov1_ep13 | | | | 91.28 286 | | 94.31 334 | 73.51 354 | 94.80 228 | 93.16 317 | 86.75 299 | 93.45 301 | 97.40 187 | 76.37 322 | 98.55 317 | 88.85 286 | 96.43 316 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 100 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 89 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 155 | | | | |
|