This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_part199.41 299.62 298.80 3199.76 596.58 5799.49 399.65 299.89 299.94 299.77 299.03 499.92 499.05 399.99 299.90 1
PS-MVSNAJss98.53 2098.63 2098.21 7599.68 1094.82 12198.10 4399.21 1296.91 8199.75 399.45 1095.82 10699.92 498.80 599.96 599.89 2
test_djsdf98.73 1298.74 1798.69 4199.63 1396.30 6698.67 1299.02 5096.50 9399.32 2199.44 1197.43 3199.92 498.73 899.95 699.86 3
UA-Net98.88 898.76 1499.22 299.11 8297.89 1399.47 499.32 899.08 1197.87 13599.67 396.47 8499.92 497.88 2399.98 399.85 4
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 4
mvs_tets98.90 698.94 798.75 3499.69 996.48 6098.54 1999.22 1196.23 10499.71 599.48 898.77 799.93 298.89 499.95 699.84 6
jajsoiax98.77 1098.79 1398.74 3699.66 1196.48 6098.45 2499.12 2695.83 12999.67 799.37 1398.25 1199.92 498.77 699.94 999.82 7
PS-CasMVS98.73 1298.85 1198.39 6099.55 1895.47 9798.49 2199.13 2599.22 999.22 2798.96 4197.35 3499.92 497.79 2899.93 1199.79 8
UniMVSNet_ETH3D99.12 499.28 498.65 4499.77 396.34 6499.18 699.20 1499.67 399.73 499.65 599.15 399.86 2197.22 4599.92 1399.77 9
anonymousdsp98.72 1598.63 2098.99 1399.62 1497.29 3798.65 1599.19 1695.62 13699.35 2099.37 1397.38 3399.90 1498.59 1299.91 1699.77 9
FC-MVSNet-test98.16 3498.37 2897.56 11799.49 2793.10 18298.35 2799.21 1298.43 2898.89 3998.83 5094.30 16099.81 3297.87 2499.91 1699.77 9
CP-MVSNet98.42 2498.46 2598.30 6899.46 2995.22 11098.27 3298.84 9399.05 1499.01 3598.65 6395.37 12699.90 1497.57 3499.91 1699.77 9
ANet_high98.31 2998.94 796.41 19899.33 4389.64 23997.92 5299.56 599.27 799.66 999.50 797.67 2699.83 2997.55 3599.98 399.77 9
PEN-MVS98.75 1198.85 1198.44 5699.58 1595.67 8798.45 2499.15 2299.33 699.30 2299.00 3797.27 3899.92 497.64 3399.92 1399.75 14
WR-MVS_H98.65 1698.62 2298.75 3499.51 2396.61 5598.55 1899.17 1799.05 1499.17 2998.79 5195.47 12399.89 1797.95 2199.91 1699.75 14
Anonymous2023121198.55 1898.76 1497.94 9398.79 10694.37 13898.84 999.15 2299.37 499.67 799.43 1295.61 11899.72 7798.12 1799.86 2499.73 16
FIs97.93 5598.07 3797.48 12999.38 3992.95 18598.03 4899.11 2798.04 4198.62 5298.66 6193.75 17499.78 4197.23 4499.84 2799.73 16
v7n98.73 1298.99 697.95 9299.64 1294.20 14698.67 1299.14 2499.08 1199.42 1699.23 2296.53 7999.91 1399.27 299.93 1199.73 16
nrg03098.54 1998.62 2298.32 6599.22 5795.66 8897.90 5399.08 3598.31 3299.02 3498.74 5597.68 2599.61 14697.77 2999.85 2699.70 19
DTE-MVSNet98.79 998.86 998.59 4899.55 1896.12 7198.48 2399.10 2999.36 599.29 2399.06 3697.27 3899.93 297.71 3299.91 1699.70 19
RRT_test8_iter0592.46 27692.52 27292.29 31595.33 32477.43 34595.73 16898.55 15694.41 18197.46 15597.72 16457.44 35899.74 6796.92 5799.14 18799.69 21
LTVRE_ROB96.88 199.18 399.34 398.72 3999.71 896.99 4499.69 299.57 499.02 1699.62 1199.36 1598.53 899.52 17098.58 1399.95 699.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Baseline_NR-MVSNet97.72 7497.79 5497.50 12599.56 1693.29 17695.44 18398.86 8598.20 3798.37 7499.24 2194.69 14599.55 16195.98 8799.79 3499.65 23
OurMVSNet-221017-098.61 1798.61 2498.63 4699.77 396.35 6399.17 799.05 4198.05 4099.61 1299.52 693.72 17599.88 1998.72 1099.88 2299.65 23
pmmvs699.07 599.24 598.56 5099.81 296.38 6298.87 899.30 999.01 1799.63 1099.66 499.27 299.68 11597.75 3099.89 2199.62 25
TransMVSNet (Re)98.38 2698.67 1897.51 12299.51 2393.39 17598.20 3898.87 8398.23 3599.48 1399.27 2098.47 999.55 16196.52 6599.53 9599.60 26
XXY-MVS97.54 8697.70 6297.07 15799.46 2992.21 19897.22 9399.00 5894.93 16698.58 5798.92 4597.31 3699.41 20494.44 16299.43 13299.59 27
test_0728_THIRD96.62 8898.40 7198.28 9397.10 4599.71 9295.70 9399.62 6499.58 28
MSP-MVS97.45 9396.92 12199.03 899.26 4897.70 1897.66 6598.89 7695.65 13498.51 6196.46 25292.15 21099.81 3295.14 13398.58 25199.58 28
EI-MVSNet-UG-set97.32 10497.40 8997.09 15697.34 26492.01 20695.33 19497.65 24497.74 5098.30 8798.14 10995.04 13699.69 10997.55 3599.52 10099.58 28
v1097.55 8597.97 4296.31 20298.60 13189.64 23997.44 8199.02 5096.60 8998.72 5099.16 3093.48 17999.72 7798.76 799.92 1399.58 28
APDe-MVS98.14 3598.03 4198.47 5598.72 11496.04 7398.07 4599.10 2995.96 11898.59 5698.69 5996.94 5599.81 3296.64 6099.58 7799.57 32
EI-MVSNet-Vis-set97.32 10497.39 9097.11 15497.36 25992.08 20495.34 19397.65 24497.74 5098.29 8898.11 11495.05 13499.68 11597.50 3799.50 10799.56 33
v897.60 8298.06 3996.23 20498.71 11789.44 24397.43 8398.82 10897.29 7598.74 4899.10 3393.86 17099.68 11598.61 1199.94 999.56 33
VPA-MVSNet98.27 3098.46 2597.70 10899.06 8793.80 16097.76 6099.00 5898.40 2999.07 3398.98 3996.89 6099.75 6097.19 4999.79 3499.55 35
WR-MVS96.90 12396.81 12697.16 15198.56 13692.20 20094.33 24298.12 21097.34 7298.20 9497.33 19892.81 19299.75 6094.79 14999.81 3099.54 36
TranMVSNet+NR-MVSNet98.33 2798.30 3298.43 5799.07 8695.87 7896.73 11899.05 4198.67 2398.84 4198.45 7697.58 2899.88 1996.45 6999.86 2499.54 36
SixPastTwentyTwo97.49 9097.57 8097.26 14899.56 1692.33 19498.28 3096.97 27098.30 3399.45 1599.35 1788.43 26099.89 1798.01 2099.76 3899.54 36
test_0728_SECOND98.25 7299.23 5495.49 9696.74 11498.89 7699.75 6095.48 10899.52 10099.53 39
DPE-MVS97.64 7897.35 9398.50 5298.85 10196.18 6895.21 20598.99 6195.84 12898.78 4498.08 11696.84 6599.81 3293.98 18699.57 8099.52 40
VPNet97.26 10797.49 8696.59 18599.47 2890.58 23096.27 13698.53 15897.77 4698.46 6798.41 7894.59 15199.68 11594.61 15599.29 17299.52 40
Regformer-497.53 8897.47 8897.71 10697.35 26093.91 15495.26 20098.14 20797.97 4298.34 7997.89 14395.49 12199.71 9297.41 3999.42 13599.51 42
v119296.83 12997.06 11396.15 20998.28 16289.29 24595.36 19198.77 11593.73 20398.11 10598.34 8393.02 19099.67 12098.35 1599.58 7799.50 43
pm-mvs198.47 2298.67 1897.86 9899.52 2294.58 13198.28 3099.00 5897.57 6099.27 2499.22 2398.32 1099.50 17597.09 5299.75 4299.50 43
EI-MVSNet96.63 14496.93 12095.74 22497.26 26988.13 26795.29 19897.65 24496.99 7897.94 12698.19 10692.55 20199.58 15096.91 5899.56 8399.50 43
HPM-MVScopyleft98.11 3997.83 5298.92 2299.42 3597.46 3198.57 1699.05 4195.43 14597.41 15897.50 18097.98 1699.79 3995.58 10499.57 8099.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LPG-MVS_test97.94 5297.67 6598.74 3699.15 7297.02 4297.09 9999.02 5095.15 15598.34 7998.23 10197.91 1899.70 10194.41 16499.73 4499.50 43
LGP-MVS_train98.74 3699.15 7297.02 4299.02 5095.15 15598.34 7998.23 10197.91 1899.70 10194.41 16499.73 4499.50 43
IterMVS-LS96.92 12197.29 9695.79 22398.51 14188.13 26795.10 20898.66 14396.99 7898.46 6798.68 6092.55 20199.74 6796.91 5899.79 3499.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH93.61 998.44 2398.76 1497.51 12299.43 3393.54 17198.23 3399.05 4197.40 7199.37 1999.08 3598.79 699.47 18297.74 3199.71 5099.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IU-MVS99.22 5795.40 9898.14 20785.77 30798.36 7695.23 12599.51 10599.49 51
test_241102_TWO98.83 10096.11 10898.62 5298.24 9996.92 5899.72 7795.44 11299.49 11199.49 51
v192192096.72 13796.96 11995.99 21398.21 17188.79 25595.42 18598.79 11093.22 21898.19 9798.26 9892.68 19699.70 10198.34 1699.55 8999.49 51
v124096.74 13497.02 11695.91 22098.18 17688.52 25895.39 18998.88 8193.15 22498.46 6798.40 8092.80 19399.71 9298.45 1499.49 11199.49 51
ACMMPR97.95 5097.62 7598.94 1899.20 6597.56 2597.59 7098.83 10096.05 11197.46 15597.63 17096.77 6799.76 5395.61 10199.46 12099.49 51
MP-MVS-pluss97.69 7697.36 9298.70 4099.50 2696.84 4795.38 19098.99 6192.45 23998.11 10598.31 8697.25 4199.77 4996.60 6199.62 6499.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PGM-MVS97.88 6197.52 8398.96 1699.20 6597.62 2197.09 9999.06 3995.45 14397.55 14497.94 13897.11 4499.78 4194.77 15299.46 12099.48 56
UniMVSNet_NR-MVSNet97.83 6697.65 6898.37 6198.72 11495.78 8095.66 17499.02 5098.11 3998.31 8597.69 16794.65 14999.85 2397.02 5599.71 5099.48 56
v14419296.69 14096.90 12396.03 21298.25 16788.92 25095.49 18198.77 11593.05 22698.09 10998.29 9292.51 20599.70 10198.11 1899.56 8399.47 59
MIMVSNet198.51 2198.45 2798.67 4299.72 796.71 5098.76 1098.89 7698.49 2799.38 1899.14 3195.44 12599.84 2696.47 6899.80 3399.47 59
region2R97.92 5697.59 7898.92 2299.22 5797.55 2697.60 6998.84 9396.00 11697.22 16297.62 17196.87 6399.76 5395.48 10899.43 13299.46 61
Regformer-397.25 10897.29 9697.11 15497.35 26092.32 19595.26 20097.62 24997.67 5898.17 9897.89 14395.05 13499.56 15797.16 5099.42 13599.46 61
DU-MVS97.79 7097.60 7798.36 6298.73 11295.78 8095.65 17698.87 8397.57 6098.31 8597.83 15094.69 14599.85 2397.02 5599.71 5099.46 61
NR-MVSNet97.96 4797.86 4998.26 7098.73 11295.54 9298.14 4198.73 12397.79 4599.42 1697.83 15094.40 15899.78 4195.91 9099.76 3899.46 61
mPP-MVS97.91 5997.53 8299.04 799.22 5797.87 1497.74 6298.78 11496.04 11397.10 17097.73 16296.53 7999.78 4195.16 13099.50 10799.46 61
ZNCC-MVS97.92 5697.62 7598.83 2699.32 4597.24 3997.45 8098.84 9395.76 13196.93 18597.43 18597.26 4099.79 3996.06 7899.53 9599.45 66
SMA-MVScopyleft97.48 9197.11 10898.60 4798.83 10296.67 5296.74 11498.73 12391.61 25098.48 6498.36 8196.53 7999.68 11595.17 12899.54 9299.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 6097.63 7398.67 4299.35 4296.84 4796.36 13298.79 11095.07 15997.88 13298.35 8297.24 4299.72 7796.05 8099.58 7799.45 66
zzz-MVS98.01 4597.66 6699.06 499.44 3197.90 1195.66 17498.73 12397.69 5697.90 12997.96 13395.81 11099.82 3096.13 7699.61 7099.45 66
MTAPA98.14 3597.84 5099.06 499.44 3197.90 1197.25 9098.73 12397.69 5697.90 12997.96 13395.81 11099.82 3096.13 7699.61 7099.45 66
v114496.84 12697.08 11196.13 21098.42 15289.28 24695.41 18798.67 14194.21 18997.97 12398.31 8693.06 18699.65 12798.06 1999.62 6499.45 66
XVS97.96 4797.63 7398.94 1899.15 7297.66 1997.77 5898.83 10097.42 6796.32 21397.64 16996.49 8299.72 7795.66 9799.37 14699.45 66
X-MVStestdata92.86 27090.83 29598.94 1899.15 7297.66 1997.77 5898.83 10097.42 6796.32 21336.50 35596.49 8299.72 7795.66 9799.37 14699.45 66
v2v48296.78 13397.06 11395.95 21798.57 13588.77 25695.36 19198.26 19095.18 15497.85 13798.23 10192.58 20099.63 13297.80 2799.69 5499.45 66
MP-MVScopyleft97.64 7897.18 10599.00 1299.32 4597.77 1797.49 7998.73 12396.27 10195.59 24497.75 15996.30 9399.78 4193.70 19699.48 11599.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EU-MVSNet94.25 23794.47 22493.60 28998.14 18382.60 32997.24 9292.72 32385.08 31598.48 6498.94 4382.59 29598.76 29997.47 3899.53 9599.44 76
ACMMPcopyleft98.05 4297.75 6098.93 2199.23 5497.60 2298.09 4498.96 6895.75 13397.91 12898.06 12396.89 6099.76 5395.32 11999.57 8099.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS97.82 6897.49 8698.81 2999.23 5497.25 3897.16 9498.79 11095.96 11897.53 14597.40 18796.93 5799.77 4995.04 13999.35 15499.42 78
HPM-MVS_fast98.32 2898.13 3498.88 2499.54 2097.48 3098.35 2799.03 4895.88 12497.88 13298.22 10498.15 1399.74 6796.50 6799.62 6499.42 78
UniMVSNet (Re)97.83 6697.65 6898.35 6498.80 10595.86 7995.92 16299.04 4797.51 6498.22 9397.81 15494.68 14799.78 4197.14 5199.75 4299.41 80
testing_297.43 9597.71 6196.60 18398.91 9890.85 22396.01 15498.54 15794.78 16998.78 4498.96 4196.35 9299.54 16497.25 4399.82 2999.40 81
SteuartSystems-ACMMP98.02 4497.76 5898.79 3299.43 3397.21 4197.15 9598.90 7596.58 9198.08 11197.87 14797.02 5399.76 5395.25 12399.59 7599.40 81
Skip Steuart: Steuart Systems R&D Blog.
TDRefinement98.90 698.86 999.02 999.54 2098.06 799.34 599.44 798.85 2099.00 3699.20 2497.42 3299.59 14897.21 4699.76 3899.40 81
K. test v396.44 15296.28 15396.95 16299.41 3691.53 21497.65 6690.31 34298.89 1998.93 3899.36 1584.57 28999.92 497.81 2699.56 8399.39 84
ACMM93.33 1198.05 4297.79 5498.85 2599.15 7297.55 2696.68 12098.83 10095.21 15198.36 7698.13 11098.13 1599.62 14096.04 8199.54 9299.39 84
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4297.04 11397.16 10696.68 18198.59 13391.05 21996.33 13498.36 17994.60 17597.99 11998.30 9093.32 18199.62 14097.40 4099.53 9599.38 86
abl_698.42 2498.19 3399.09 399.16 6998.10 597.73 6499.11 2797.76 4998.62 5298.27 9797.88 2099.80 3895.67 9599.50 10799.38 86
CP-MVS97.92 5697.56 8198.99 1398.99 9397.82 1597.93 5198.96 6896.11 10896.89 18897.45 18496.85 6499.78 4195.19 12699.63 6399.38 86
EG-PatchMatch MVS97.69 7697.79 5497.40 13999.06 8793.52 17295.96 15898.97 6794.55 17998.82 4298.76 5497.31 3699.29 23897.20 4899.44 12599.38 86
IS-MVSNet96.93 12096.68 13397.70 10899.25 5194.00 15298.57 1696.74 27898.36 3098.14 10397.98 13288.23 26299.71 9293.10 20999.72 4799.38 86
Regformer-297.41 9797.24 10197.93 9497.21 27194.72 12494.85 22698.27 18897.74 5098.11 10597.50 18095.58 11999.69 10996.57 6499.31 16899.37 91
UGNet96.81 13196.56 13997.58 11696.64 28793.84 15997.75 6197.12 26596.47 9693.62 29298.88 4793.22 18499.53 16695.61 10199.69 5499.36 92
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Regformer-197.27 10697.16 10697.61 11597.21 27193.86 15794.85 22698.04 22197.62 5998.03 11797.50 18095.34 12799.63 13296.52 6599.31 16899.35 93
VDDNet96.98 11896.84 12497.41 13899.40 3793.26 17797.94 5095.31 30099.26 898.39 7399.18 2887.85 26999.62 14095.13 13599.09 19899.35 93
test117298.08 4097.76 5899.05 698.78 10898.07 697.41 8598.85 8997.57 6098.15 10197.96 13396.60 7699.76 5395.30 12099.18 18499.33 95
SR-MVS98.00 4697.66 6699.01 1198.77 11097.93 1097.38 8698.83 10097.32 7398.06 11397.85 14896.65 7199.77 4995.00 14299.11 19599.32 96
APD-MVS_3200maxsize98.13 3897.90 4598.79 3298.79 10697.31 3697.55 7398.92 7397.72 5398.25 9098.13 11097.10 4599.75 6095.44 11299.24 17899.32 96
EPP-MVSNet96.84 12696.58 13797.65 11299.18 6893.78 16298.68 1196.34 28297.91 4497.30 16098.06 12388.46 25999.85 2393.85 19099.40 14299.32 96
ACMP92.54 1397.47 9297.10 10998.55 5199.04 9096.70 5196.24 14098.89 7693.71 20497.97 12397.75 15997.44 3099.63 13293.22 20699.70 5399.32 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+93.58 1098.23 3398.31 3097.98 9199.39 3895.22 11097.55 7399.20 1498.21 3699.25 2598.51 7298.21 1299.40 20694.79 14999.72 4799.32 96
testtj96.69 14096.13 15898.36 6298.46 15096.02 7596.44 12698.70 13394.26 18796.79 19097.13 20894.07 16699.75 6090.53 26098.80 23199.31 101
HFP-MVS97.94 5297.64 7198.83 2699.15 7297.50 2897.59 7098.84 9396.05 11197.49 14997.54 17597.07 4899.70 10195.61 10199.46 12099.30 102
#test#97.62 8097.22 10398.83 2699.15 7297.50 2896.81 11098.84 9394.25 18897.49 14997.54 17597.07 4899.70 10194.37 16799.46 12099.30 102
lessismore_v097.05 15899.36 4192.12 20284.07 35498.77 4798.98 3985.36 28399.74 6797.34 4299.37 14699.30 102
GBi-Net96.99 11596.80 12797.56 11797.96 19993.67 16598.23 3398.66 14395.59 13897.99 11999.19 2589.51 25199.73 7394.60 15699.44 12599.30 102
test196.99 11596.80 12797.56 11797.96 19993.67 16598.23 3398.66 14395.59 13897.99 11999.19 2589.51 25199.73 7394.60 15699.44 12599.30 102
FMVSNet197.95 5098.08 3697.56 11799.14 8093.67 16598.23 3398.66 14397.41 7099.00 3699.19 2595.47 12399.73 7395.83 9199.76 3899.30 102
v14896.58 14696.97 11795.42 23898.63 12787.57 27895.09 21097.90 22595.91 12398.24 9297.96 13393.42 18099.39 21196.04 8199.52 10099.29 108
TSAR-MVS + MP.97.42 9697.23 10298.00 9099.38 3995.00 11697.63 6898.20 19793.00 22798.16 9998.06 12395.89 10199.72 7795.67 9599.10 19799.28 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
casdiffmvs97.50 8997.81 5396.56 18998.51 14191.04 22095.83 16699.09 3497.23 7698.33 8298.30 9097.03 5299.37 21796.58 6399.38 14599.28 109
HQP_MVS96.66 14396.33 15297.68 11198.70 11994.29 14096.50 12498.75 11996.36 9896.16 22396.77 23491.91 22199.46 18592.59 21599.20 18099.28 109
plane_prior598.75 11999.46 18592.59 21599.20 18099.28 109
IterMVS-SCA-FT95.86 17496.19 15694.85 25997.68 23785.53 30492.42 30397.63 24896.99 7898.36 7698.54 7087.94 26499.75 6097.07 5499.08 19999.27 113
CL-MVSNet_2432*160097.86 6498.07 3797.25 14999.22 5792.81 18797.55 7398.94 7197.10 7798.85 4098.88 4795.03 13799.67 12097.39 4199.65 6099.26 114
SR-MVS-dyc-post98.14 3597.84 5099.02 998.81 10398.05 897.55 7398.86 8597.77 4698.20 9498.07 11896.60 7699.76 5395.49 10599.20 18099.26 114
RE-MVS-def97.88 4898.81 10398.05 897.55 7398.86 8597.77 4698.20 9498.07 11896.94 5595.49 10599.20 18099.26 114
DVP-MVS97.78 7197.65 6898.16 7699.24 5295.51 9496.74 11498.23 19395.92 12198.40 7198.28 9397.06 5099.71 9295.48 10899.52 10099.26 114
xxxxxxxxxxxxxcwj97.24 10997.03 11597.89 9698.48 14694.71 12594.53 23899.07 3895.02 16297.83 13897.88 14596.44 8699.72 7794.59 15999.39 14399.25 118
SF-MVS97.60 8297.39 9098.22 7498.93 9695.69 8497.05 10199.10 2995.32 14897.83 13897.88 14596.44 8699.72 7794.59 15999.39 14399.25 118
3Dnovator+96.13 397.73 7397.59 7898.15 7998.11 18895.60 9098.04 4698.70 13398.13 3896.93 18598.45 7695.30 13099.62 14095.64 9998.96 21099.24 120
Anonymous2024052997.96 4798.04 4097.71 10698.69 12194.28 14397.86 5598.31 18798.79 2199.23 2698.86 4995.76 11399.61 14695.49 10599.36 14999.23 121
IterMVS95.42 19195.83 17294.20 28297.52 24983.78 32592.41 30497.47 25595.49 14298.06 11398.49 7387.94 26499.58 15096.02 8399.02 20699.23 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OPM-MVS97.54 8697.25 9998.41 5899.11 8296.61 5595.24 20398.46 16494.58 17898.10 10898.07 11897.09 4799.39 21195.16 13099.44 12599.21 123
EPNet93.72 25392.62 27097.03 16087.61 35992.25 19696.27 13691.28 33396.74 8687.65 34797.39 19185.00 28599.64 13092.14 21999.48 11599.20 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.44 9497.78 5796.43 19598.52 14090.75 22896.84 10899.03 4896.51 9297.86 13698.02 12796.67 7099.36 21997.09 5299.47 11799.19 125
APD-MVScopyleft97.00 11496.53 14398.41 5898.55 13796.31 6596.32 13598.77 11592.96 23297.44 15797.58 17495.84 10399.74 6791.96 22099.35 15499.19 125
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS96.92 12196.55 14098.03 8998.00 19795.54 9294.87 22498.17 20394.60 17596.38 21097.05 21695.67 11699.36 21995.12 13699.08 19999.19 125
ETH3D-3000-0.196.89 12596.46 14798.16 7698.62 12895.69 8495.96 15898.98 6493.36 21297.04 17697.31 20094.93 14199.63 13292.60 21399.34 15799.17 128
NCCC96.52 14895.99 16698.10 8197.81 21595.68 8695.00 21998.20 19795.39 14695.40 24896.36 25793.81 17299.45 18993.55 19998.42 25699.17 128
CPTT-MVS96.69 14096.08 16298.49 5398.89 10096.64 5497.25 9098.77 11592.89 23396.01 22997.13 20892.23 20999.67 12092.24 21899.34 15799.17 128
RPSCF97.87 6297.51 8498.95 1799.15 7298.43 397.56 7299.06 3996.19 10598.48 6498.70 5894.72 14499.24 24694.37 16799.33 16499.17 128
Vis-MVSNetpermissive98.27 3098.34 2998.07 8399.33 4395.21 11298.04 4699.46 697.32 7397.82 14099.11 3296.75 6899.86 2197.84 2599.36 14999.15 132
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.73 13696.54 14297.27 14698.35 15793.66 16893.42 28098.36 17994.74 17096.58 20096.76 23696.54 7898.99 27794.87 14599.27 17599.15 132
DeepC-MVS95.41 497.82 6897.70 6298.16 7698.78 10895.72 8296.23 14199.02 5093.92 20098.62 5298.99 3897.69 2499.62 14096.18 7599.87 2399.15 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS97.94 5297.90 4598.07 8399.22 5795.35 10296.79 11198.83 10096.11 10899.08 3198.24 9997.87 2199.72 7795.44 11299.51 10599.14 135
OPU-MVS97.64 11398.01 19395.27 10596.79 11197.35 19696.97 5498.51 32091.21 23899.25 17799.14 135
RRT_MVS94.90 21094.07 23797.39 14093.18 34693.21 17995.26 20097.49 25293.94 19998.25 9097.85 14872.96 33999.84 2697.90 2299.78 3799.14 135
HPM-MVS++copyleft96.99 11596.38 14998.81 2998.64 12397.59 2395.97 15798.20 19795.51 14195.06 25396.53 24894.10 16599.70 10194.29 17199.15 18699.13 138
MCST-MVS96.24 15795.80 17397.56 11798.75 11194.13 14894.66 23398.17 20390.17 26696.21 22196.10 27095.14 13399.43 19494.13 17898.85 22799.13 138
UnsupCasMVSNet_eth95.91 17195.73 17696.44 19498.48 14691.52 21595.31 19698.45 16595.76 13197.48 15297.54 17589.53 25098.69 30594.43 16394.61 33399.13 138
3Dnovator96.53 297.61 8197.64 7197.50 12597.74 23393.65 16998.49 2198.88 8196.86 8397.11 16998.55 6995.82 10699.73 7395.94 8899.42 13599.13 138
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4599.21 6497.35 3597.96 4999.16 1898.34 3198.78 4498.52 7197.32 3599.45 18994.08 17999.67 5799.13 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet95.67 17996.58 13792.94 30697.48 25080.21 33792.96 29198.19 20294.83 16798.82 4298.79 5193.31 18299.51 17495.83 9199.04 20599.12 143
VDD-MVS97.37 10097.25 9997.74 10498.69 12194.50 13497.04 10295.61 29598.59 2598.51 6198.72 5692.54 20399.58 15096.02 8399.49 11199.12 143
MVSTER94.21 24093.93 24395.05 25095.83 31286.46 29495.18 20697.65 24492.41 24097.94 12698.00 13172.39 34099.58 15096.36 7199.56 8399.12 143
testgi96.07 16496.50 14694.80 26299.26 4887.69 27795.96 15898.58 15495.08 15898.02 11896.25 26197.92 1797.60 34388.68 29098.74 23799.11 146
CDPH-MVS95.45 19094.65 21297.84 10098.28 16294.96 11793.73 27298.33 18485.03 31795.44 24696.60 24495.31 12999.44 19290.01 27099.13 19199.11 146
PVSNet_BlendedMVS95.02 20894.93 20095.27 24297.79 22587.40 28294.14 25598.68 13888.94 27794.51 26698.01 12993.04 18799.30 23489.77 27499.49 11199.11 146
DP-MVS97.87 6297.89 4797.81 10198.62 12894.82 12197.13 9898.79 11098.98 1898.74 4898.49 7395.80 11299.49 17695.04 13999.44 12599.11 146
agg_prior290.34 26798.90 21999.10 150
VNet96.84 12696.83 12596.88 16798.06 18992.02 20596.35 13397.57 25197.70 5597.88 13297.80 15592.40 20799.54 16494.73 15498.96 21099.08 151
CHOSEN 1792x268894.10 24493.41 25196.18 20899.16 6990.04 23592.15 30798.68 13879.90 33996.22 22097.83 15087.92 26899.42 19589.18 28299.65 6099.08 151
XVG-OURS-SEG-HR97.38 9997.07 11298.30 6899.01 9297.41 3494.66 23399.02 5095.20 15298.15 10197.52 17898.83 598.43 32394.87 14596.41 31799.07 153
FMVSNet296.72 13796.67 13496.87 16897.96 19991.88 20897.15 9598.06 21995.59 13898.50 6398.62 6489.51 25199.65 12794.99 14399.60 7399.07 153
diffmvs96.04 16696.23 15495.46 23797.35 26088.03 26993.42 28099.08 3594.09 19596.66 19796.93 22393.85 17199.29 23896.01 8598.67 24299.06 155
HQP4-MVS92.87 31099.23 24899.06 155
ETH3 D test640094.77 21693.87 24497.47 13098.12 18793.73 16394.56 23798.70 13385.45 31294.70 26195.93 27991.77 22399.63 13286.45 31399.14 18799.05 157
HQP-MVS95.17 20294.58 22096.92 16497.85 20792.47 19294.26 24398.43 16893.18 22092.86 31195.08 29490.33 23799.23 24890.51 26298.74 23799.05 157
FMVSNet593.39 26292.35 27396.50 19195.83 31290.81 22797.31 8798.27 18892.74 23596.27 21798.28 9362.23 35599.67 12090.86 24599.36 14999.03 159
HyFIR lowres test93.72 25392.65 26896.91 16698.93 9691.81 21191.23 32498.52 15982.69 32796.46 20796.52 25080.38 30399.90 1490.36 26698.79 23299.03 159
tttt051793.31 26492.56 27195.57 23098.71 11787.86 27197.44 8187.17 35095.79 13097.47 15496.84 22864.12 35399.81 3296.20 7499.32 16699.02 161
test9_res91.29 23498.89 22299.00 162
test20.0396.58 14696.61 13596.48 19398.49 14491.72 21295.68 17397.69 23996.81 8498.27 8997.92 14194.18 16498.71 30390.78 24999.66 5999.00 162
XVG-ACMP-BASELINE97.58 8497.28 9898.49 5399.16 6996.90 4696.39 12998.98 6495.05 16098.06 11398.02 12795.86 10299.56 15794.37 16799.64 6299.00 162
MDA-MVSNet-bldmvs95.69 17795.67 17795.74 22498.48 14688.76 25792.84 29297.25 25896.00 11697.59 14397.95 13791.38 22699.46 18593.16 20896.35 31898.99 165
Vis-MVSNet (Re-imp)95.11 20394.85 20495.87 22299.12 8189.17 24797.54 7894.92 30296.50 9396.58 20097.27 20283.64 29299.48 17988.42 29399.67 5798.97 166
FMVSNet395.26 19894.94 19896.22 20696.53 29090.06 23495.99 15597.66 24294.11 19497.99 11997.91 14280.22 30499.63 13294.60 15699.44 12598.96 167
ambc96.56 18998.23 17091.68 21397.88 5498.13 20998.42 7098.56 6894.22 16399.04 27194.05 18399.35 15498.95 168
YYNet194.73 21794.84 20594.41 27797.47 25485.09 31390.29 33495.85 29292.52 23697.53 14597.76 15691.97 21699.18 25293.31 20296.86 30798.95 168
ppachtmachnet_test94.49 23294.84 20593.46 29296.16 30382.10 33190.59 33197.48 25490.53 26297.01 17997.59 17391.01 22999.36 21993.97 18799.18 18498.94 170
CANet95.86 17495.65 17896.49 19296.41 29390.82 22594.36 24198.41 17394.94 16492.62 31996.73 23792.68 19699.71 9295.12 13699.60 7398.94 170
Anonymous2023120695.27 19795.06 19595.88 22198.72 11489.37 24495.70 17097.85 22888.00 28896.98 18297.62 17191.95 21799.34 22489.21 28199.53 9598.94 170
MDA-MVSNet_test_wron94.73 21794.83 20794.42 27697.48 25085.15 31190.28 33595.87 29192.52 23697.48 15297.76 15691.92 22099.17 25693.32 20196.80 31098.94 170
ETH3D cwj APD-0.1696.23 15895.61 18098.09 8297.91 20395.65 8994.94 22198.74 12191.31 25496.02 22897.08 21394.05 16799.69 10991.51 23198.94 21498.93 174
LFMVS95.32 19594.88 20396.62 18298.03 19091.47 21697.65 6690.72 33999.11 1097.89 13198.31 8679.20 30699.48 17993.91 18999.12 19498.93 174
XVG-OURS97.12 11296.74 13098.26 7098.99 9397.45 3293.82 26899.05 4195.19 15398.32 8397.70 16595.22 13298.41 32494.27 17298.13 26698.93 174
DeepPCF-MVS94.58 596.90 12396.43 14898.31 6797.48 25097.23 4092.56 30098.60 15192.84 23498.54 5997.40 18796.64 7398.78 29694.40 16699.41 14198.93 174
Anonymous20240521196.34 15595.98 16797.43 13698.25 16793.85 15896.74 11494.41 30797.72 5398.37 7498.03 12687.15 27399.53 16694.06 18099.07 20198.92 178
our_test_394.20 24294.58 22093.07 30096.16 30381.20 33490.42 33396.84 27390.72 26097.14 16697.13 20890.47 23599.11 26394.04 18498.25 26298.91 179
tfpnnormal97.72 7497.97 4296.94 16399.26 4892.23 19797.83 5798.45 16598.25 3499.13 3098.66 6196.65 7199.69 10993.92 18899.62 6498.91 179
AllTest97.20 11196.92 12198.06 8599.08 8496.16 6997.14 9799.16 1894.35 18497.78 14198.07 11895.84 10399.12 26091.41 23299.42 13598.91 179
TestCases98.06 8599.08 8496.16 6999.16 1894.35 18497.78 14198.07 11895.84 10399.12 26091.41 23299.42 13598.91 179
pmmvs-eth3d96.49 14996.18 15797.42 13798.25 16794.29 14094.77 23098.07 21889.81 26997.97 12398.33 8493.11 18599.08 26795.46 11199.84 2798.89 183
train_agg95.46 18994.66 21197.88 9797.84 21295.23 10793.62 27498.39 17587.04 29593.78 28495.99 27294.58 15299.52 17091.76 22798.90 21998.89 183
test1297.46 13297.61 24494.07 14997.78 23493.57 29593.31 18299.42 19598.78 23398.89 183
pmmvs594.63 22794.34 22995.50 23497.63 24388.34 26294.02 25997.13 26487.15 29495.22 25197.15 20787.50 27099.27 24293.99 18599.26 17698.88 186
DeepC-MVS_fast94.34 796.74 13496.51 14597.44 13597.69 23694.15 14796.02 15298.43 16893.17 22397.30 16097.38 19395.48 12299.28 24093.74 19399.34 15798.88 186
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS97.37 10097.70 6296.35 19998.14 18395.13 11396.54 12398.92 7395.94 12099.19 2898.08 11697.74 2395.06 35195.24 12499.54 9298.87 188
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS293.66 25694.07 23792.45 31297.57 24580.67 33686.46 34796.00 28793.99 19797.10 17097.38 19389.90 24597.82 34088.76 28799.47 11798.86 189
PVSNet_Blended_VisFu95.95 17095.80 17396.42 19699.28 4790.62 22995.31 19699.08 3588.40 28396.97 18398.17 10892.11 21299.78 4193.64 19799.21 17998.86 189
miper_lstm_enhance94.81 21594.80 20894.85 25996.16 30386.45 29591.14 32698.20 19793.49 20897.03 17797.37 19584.97 28699.26 24395.28 12199.56 8398.83 191
PHI-MVS96.96 11996.53 14398.25 7297.48 25096.50 5996.76 11398.85 8993.52 20796.19 22296.85 22795.94 10099.42 19593.79 19299.43 13298.83 191
QAPM95.88 17395.57 18296.80 17297.90 20591.84 21098.18 4098.73 12388.41 28296.42 20898.13 11094.73 14399.75 6088.72 28898.94 21498.81 193
Patchmtry95.03 20794.59 21996.33 20094.83 32990.82 22596.38 13197.20 26096.59 9097.49 14998.57 6677.67 31399.38 21492.95 21299.62 6498.80 194
test_prior395.91 17195.39 18597.46 13297.79 22594.26 14493.33 28598.42 17194.21 18994.02 27996.25 26193.64 17699.34 22491.90 22198.96 21098.79 195
test_prior97.46 13297.79 22594.26 14498.42 17199.34 22498.79 195
eth_miper_zixun_eth94.89 21194.93 20094.75 26495.99 30886.12 29991.35 31998.49 16293.40 21097.12 16897.25 20486.87 27699.35 22295.08 13898.82 23098.78 197
cl_fuxian95.20 19995.32 18694.83 26196.19 30186.43 29691.83 31398.35 18393.47 20997.36 15997.26 20388.69 25799.28 24095.41 11899.36 14998.78 197
MVS_111021_LR96.82 13096.55 14097.62 11498.27 16495.34 10493.81 27098.33 18494.59 17796.56 20296.63 24396.61 7498.73 30194.80 14899.34 15798.78 197
agg_prior195.39 19294.60 21797.75 10397.80 21994.96 11793.39 28298.36 17987.20 29393.49 29895.97 27594.65 14999.53 16691.69 22998.86 22598.77 200
F-COLMAP95.30 19694.38 22898.05 8898.64 12396.04 7395.61 17998.66 14389.00 27693.22 30696.40 25692.90 19199.35 22287.45 30797.53 29398.77 200
D2MVS95.18 20095.17 19095.21 24497.76 23187.76 27694.15 25397.94 22389.77 27096.99 18097.68 16887.45 27199.14 25895.03 14199.81 3098.74 202
MVSFormer96.14 16296.36 15095.49 23597.68 23787.81 27498.67 1299.02 5096.50 9394.48 26896.15 26586.90 27499.92 498.73 899.13 19198.74 202
jason94.39 23594.04 23995.41 24098.29 16087.85 27392.74 29796.75 27785.38 31495.29 24996.15 26588.21 26399.65 12794.24 17399.34 15798.74 202
jason: jason.
cl-mvsnet194.73 21794.64 21395.01 25195.86 31087.00 28891.33 32098.08 21493.34 21397.10 17097.34 19784.02 29099.31 23195.15 13299.55 8998.72 205
旧先验197.80 21993.87 15697.75 23597.04 21793.57 17898.68 24198.72 205
cl-mvsnet_94.73 21794.64 21395.01 25195.85 31187.00 28891.33 32098.08 21493.34 21397.10 17097.33 19884.01 29199.30 23495.14 13399.56 8398.71 207
mvs_anonymous95.36 19396.07 16393.21 29896.29 29581.56 33294.60 23597.66 24293.30 21596.95 18498.91 4693.03 18999.38 21496.60 6197.30 30298.69 208
OMC-MVS96.48 15096.00 16597.91 9598.30 15996.01 7694.86 22598.60 15191.88 24797.18 16497.21 20696.11 9699.04 27190.49 26499.34 15798.69 208
thisisatest053092.71 27391.76 28195.56 23298.42 15288.23 26396.03 15187.35 34994.04 19696.56 20295.47 29064.03 35499.77 4994.78 15199.11 19598.68 210
TAMVS95.49 18594.94 19897.16 15198.31 15893.41 17495.07 21396.82 27591.09 25797.51 14797.82 15389.96 24499.42 19588.42 29399.44 12598.64 211
test_040297.84 6597.97 4297.47 13099.19 6794.07 14996.71 11998.73 12398.66 2498.56 5898.41 7896.84 6599.69 10994.82 14799.81 3098.64 211
MVP-Stereo95.69 17795.28 18796.92 16498.15 18293.03 18395.64 17898.20 19790.39 26396.63 19997.73 16291.63 22499.10 26591.84 22597.31 30198.63 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl-mvsnet293.25 26692.84 26294.46 27594.30 33586.00 30091.09 32796.64 28190.74 25995.79 23696.31 25978.24 31098.77 29794.15 17798.34 25898.62 214
CANet_DTU94.65 22694.21 23395.96 21595.90 30989.68 23893.92 26597.83 23293.19 21990.12 33695.64 28588.52 25899.57 15693.27 20599.47 11798.62 214
PM-MVS97.36 10297.10 10998.14 8098.91 9896.77 4996.20 14298.63 14993.82 20198.54 5998.33 8493.98 16899.05 27095.99 8699.45 12498.61 216
CSCG97.40 9897.30 9597.69 11098.95 9594.83 12097.28 8998.99 6196.35 10098.13 10495.95 27795.99 9999.66 12694.36 17099.73 4498.59 217
CLD-MVS95.47 18895.07 19396.69 17998.27 16492.53 19191.36 31898.67 14191.22 25695.78 23894.12 31495.65 11798.98 27990.81 24799.72 4798.57 218
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld94.72 22194.26 23096.08 21198.62 12890.54 23393.38 28398.05 22090.30 26497.02 17896.80 23389.54 24899.16 25788.44 29296.18 32098.56 219
N_pmnet95.18 20094.23 23198.06 8597.85 20796.55 5892.49 30191.63 33189.34 27298.09 10997.41 18690.33 23799.06 26991.58 23099.31 16898.56 219
CVMVSNet92.33 28092.79 26390.95 32297.26 26975.84 35095.29 19892.33 32681.86 32996.27 21798.19 10681.44 29798.46 32294.23 17498.29 26198.55 221
LS3D97.77 7297.50 8598.57 4996.24 29797.58 2498.45 2498.85 8998.58 2697.51 14797.94 13895.74 11499.63 13295.19 12698.97 20998.51 222
miper_ehance_all_eth94.69 22294.70 21094.64 26695.77 31486.22 29891.32 32298.24 19291.67 24997.05 17596.65 24288.39 26199.22 25094.88 14498.34 25898.49 223
Effi-MVS+-dtu96.81 13196.09 16198.99 1396.90 28498.69 296.42 12798.09 21295.86 12695.15 25295.54 28894.26 16199.81 3294.06 18098.51 25498.47 224
USDC94.56 23094.57 22294.55 27397.78 22986.43 29692.75 29598.65 14885.96 30396.91 18797.93 14090.82 23298.74 30090.71 25499.59 7598.47 224
pmmvs494.82 21494.19 23496.70 17897.42 25792.75 18992.09 31096.76 27686.80 29895.73 24197.22 20589.28 25498.89 28793.28 20399.14 18798.46 226
alignmvs96.01 16895.52 18397.50 12597.77 23094.71 12596.07 14896.84 27397.48 6596.78 19494.28 31385.50 28299.40 20696.22 7398.73 24098.40 227
CDS-MVSNet94.88 21294.12 23697.14 15397.64 24293.57 17093.96 26497.06 26790.05 26796.30 21696.55 24686.10 27899.47 18290.10 26999.31 16898.40 227
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS93.55 25993.00 25895.19 24597.81 21587.86 27193.89 26696.00 28789.02 27594.07 27795.44 29186.27 27799.33 22787.69 30196.82 30898.39 229
Effi-MVS+96.19 16096.01 16496.71 17797.43 25692.19 20196.12 14699.10 2995.45 14393.33 30594.71 30397.23 4399.56 15793.21 20797.54 29298.37 230
MS-PatchMatch94.83 21394.91 20294.57 27296.81 28687.10 28794.23 24897.34 25788.74 28097.14 16697.11 21191.94 21898.23 33492.99 21097.92 27398.37 230
TSAR-MVS + GP.96.47 15196.12 15997.49 12897.74 23395.23 10794.15 25396.90 27293.26 21698.04 11696.70 23994.41 15798.89 28794.77 15299.14 18798.37 230
DELS-MVS96.17 16196.23 15495.99 21397.55 24890.04 23592.38 30598.52 15994.13 19396.55 20497.06 21594.99 13999.58 15095.62 10099.28 17398.37 230
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sss94.22 23893.72 24695.74 22497.71 23589.95 23793.84 26796.98 26988.38 28493.75 28795.74 28187.94 26498.89 28791.02 24198.10 26798.37 230
GA-MVS92.83 27192.15 27694.87 25896.97 27987.27 28590.03 33696.12 28591.83 24894.05 27894.57 30476.01 32598.97 28392.46 21797.34 30098.36 235
ITE_SJBPF97.85 9998.64 12396.66 5398.51 16195.63 13597.22 16297.30 20195.52 12098.55 31790.97 24298.90 21998.34 236
LCM-MVSNet-Re97.33 10397.33 9497.32 14498.13 18693.79 16196.99 10599.65 296.74 8699.47 1498.93 4496.91 5999.84 2690.11 26899.06 20498.32 237
BH-RMVSNet94.56 23094.44 22794.91 25497.57 24587.44 28193.78 27196.26 28393.69 20596.41 20996.50 25192.10 21399.00 27585.96 31597.71 28398.31 238
MG-MVS94.08 24694.00 24094.32 27997.09 27685.89 30193.19 28995.96 28992.52 23694.93 25797.51 17989.54 24898.77 29787.52 30697.71 28398.31 238
AUN-MVS93.95 25092.69 26797.74 10497.80 21995.38 9995.57 18095.46 29991.26 25592.64 31796.10 27074.67 32999.55 16193.72 19596.97 30498.30 240
MVS_Test96.27 15696.79 12994.73 26596.94 28286.63 29396.18 14398.33 18494.94 16496.07 22698.28 9395.25 13199.26 24397.21 4697.90 27598.30 240
TinyColmap96.00 16996.34 15194.96 25397.90 20587.91 27094.13 25698.49 16294.41 18198.16 9997.76 15696.29 9498.68 30890.52 26199.42 13598.30 240
CMPMVSbinary73.10 2392.74 27291.39 28496.77 17493.57 34594.67 12994.21 25097.67 24080.36 33893.61 29396.60 24482.85 29497.35 34484.86 32598.78 23398.29 243
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
lupinMVS93.77 25193.28 25295.24 24397.68 23787.81 27492.12 30896.05 28684.52 32194.48 26895.06 29686.90 27499.63 13293.62 19899.13 19198.27 244
PAPM_NR94.61 22894.17 23595.96 21598.36 15691.23 21795.93 16197.95 22292.98 22893.42 30394.43 31090.53 23498.38 32787.60 30396.29 31998.27 244
114514_t93.96 24893.22 25596.19 20799.06 8790.97 22295.99 15598.94 7173.88 35293.43 30296.93 22392.38 20899.37 21789.09 28399.28 17398.25 246
原ACMM196.58 18698.16 18092.12 20298.15 20685.90 30593.49 29896.43 25392.47 20699.38 21487.66 30298.62 24798.23 247
PLCcopyleft91.02 1694.05 24792.90 25997.51 12298.00 19795.12 11494.25 24698.25 19186.17 30191.48 32795.25 29291.01 22999.19 25185.02 32496.69 31298.22 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPNet_dtu91.39 29390.75 29693.31 29490.48 35882.61 32894.80 22892.88 32093.39 21181.74 35594.90 30181.36 29899.11 26388.28 29598.87 22398.21 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss94.12 24393.42 25096.23 20498.59 13390.85 22394.24 24798.85 8985.49 30992.97 30994.94 29886.01 27999.64 13091.78 22697.92 27398.20 250
Test_1112_low_res93.53 26092.86 26095.54 23398.60 13188.86 25392.75 29598.69 13682.66 32892.65 31696.92 22584.75 28799.56 15790.94 24397.76 27998.19 251
canonicalmvs97.23 11097.21 10497.30 14597.65 24194.39 13697.84 5699.05 4197.42 6796.68 19693.85 31697.63 2799.33 22796.29 7298.47 25598.18 252
miper_enhance_ethall93.14 26892.78 26594.20 28293.65 34385.29 30889.97 33797.85 22885.05 31696.15 22594.56 30585.74 28099.14 25893.74 19398.34 25898.17 253
Fast-Effi-MVS+-dtu96.44 15296.12 15997.39 14097.18 27394.39 13695.46 18298.73 12396.03 11594.72 25994.92 30096.28 9599.69 10993.81 19197.98 27198.09 254
ab-mvs96.59 14596.59 13696.60 18398.64 12392.21 19898.35 2797.67 24094.45 18096.99 18098.79 5194.96 14099.49 17690.39 26599.07 20198.08 255
PAPR92.22 28191.27 28795.07 24995.73 31688.81 25491.97 31197.87 22785.80 30690.91 32992.73 32891.16 22798.33 33179.48 34095.76 32698.08 255
test_yl94.40 23394.00 24095.59 22896.95 28089.52 24194.75 23195.55 29796.18 10696.79 19096.14 26781.09 29999.18 25290.75 25097.77 27798.07 257
DCV-MVSNet94.40 23394.00 24095.59 22896.95 28089.52 24194.75 23195.55 29796.18 10696.79 19096.14 26781.09 29999.18 25290.75 25097.77 27798.07 257
baseline193.14 26892.64 26994.62 26897.34 26487.20 28696.67 12193.02 31894.71 17296.51 20595.83 28081.64 29698.60 31390.00 27188.06 34898.07 257
MIMVSNet93.42 26192.86 26095.10 24898.17 17888.19 26498.13 4293.69 31092.07 24295.04 25498.21 10580.95 30199.03 27481.42 33798.06 26998.07 257
GSMVS98.06 261
sam_mvs177.80 31298.06 261
SCA93.38 26393.52 24992.96 30596.24 29781.40 33393.24 28794.00 30991.58 25294.57 26396.97 22087.94 26499.42 19589.47 27897.66 28898.06 261
MSLP-MVS++96.42 15496.71 13195.57 23097.82 21490.56 23295.71 16998.84 9394.72 17196.71 19597.39 19194.91 14298.10 33895.28 12199.02 20698.05 264
ADS-MVSNet291.47 29290.51 30094.36 27895.51 31985.63 30295.05 21695.70 29383.46 32592.69 31496.84 22879.15 30799.41 20485.66 31990.52 34398.04 265
ADS-MVSNet90.95 29890.26 30293.04 30195.51 31982.37 33095.05 21693.41 31583.46 32592.69 31496.84 22879.15 30798.70 30485.66 31990.52 34398.04 265
PVSNet_Blended93.96 24893.65 24794.91 25497.79 22587.40 28291.43 31798.68 13884.50 32294.51 26694.48 30993.04 18799.30 23489.77 27498.61 24898.02 267
PatchmatchNetpermissive91.98 28691.87 27892.30 31494.60 33279.71 33895.12 20793.59 31489.52 27193.61 29397.02 21877.94 31199.18 25290.84 24694.57 33598.01 268
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet86.72 1991.10 29590.97 29291.49 31897.56 24778.04 34287.17 34694.60 30584.65 32092.34 32192.20 33387.37 27298.47 32185.17 32397.69 28597.96 269
无先验93.20 28897.91 22480.78 33599.40 20687.71 29997.94 270
MVS_030495.50 18495.05 19696.84 17096.28 29693.12 18197.00 10496.16 28495.03 16189.22 34197.70 16590.16 24399.48 17994.51 16199.34 15797.93 271
EIA-MVS96.04 16695.77 17596.85 16997.80 21992.98 18496.12 14699.16 1894.65 17393.77 28691.69 33995.68 11599.67 12094.18 17598.85 22797.91 272
tpm91.08 29690.85 29491.75 31795.33 32478.09 34195.03 21891.27 33488.75 27993.53 29797.40 18771.24 34299.30 23491.25 23793.87 33697.87 273
Patchmatch-RL test94.66 22594.49 22395.19 24598.54 13888.91 25192.57 29998.74 12191.46 25398.32 8397.75 15977.31 31898.81 29496.06 7899.61 7097.85 274
LF4IMVS96.07 16495.63 17997.36 14298.19 17395.55 9195.44 18398.82 10892.29 24195.70 24296.55 24692.63 19998.69 30591.75 22899.33 16497.85 274
ET-MVSNet_ETH3D91.12 29489.67 30695.47 23696.41 29389.15 24991.54 31690.23 34389.07 27486.78 35192.84 32569.39 34899.44 19294.16 17696.61 31497.82 276
MDTV_nov1_ep13_2view57.28 36094.89 22380.59 33694.02 27978.66 30985.50 32197.82 276
Patchmatch-test93.60 25893.25 25494.63 26796.14 30687.47 28096.04 15094.50 30693.57 20696.47 20696.97 22076.50 32198.61 31190.67 25698.41 25797.81 278
Fast-Effi-MVS+95.49 18595.07 19396.75 17597.67 24092.82 18694.22 24998.60 15191.61 25093.42 30392.90 32496.73 6999.70 10192.60 21397.89 27697.74 279
DPM-MVS93.68 25592.77 26696.42 19697.91 20392.54 19091.17 32597.47 25584.99 31893.08 30894.74 30289.90 24599.00 27587.54 30598.09 26897.72 280
baseline289.65 30988.44 31693.25 29695.62 31782.71 32793.82 26885.94 35288.89 27887.35 34992.54 33071.23 34399.33 22786.01 31494.60 33497.72 280
112194.26 23693.26 25397.27 14698.26 16694.73 12395.86 16397.71 23877.96 34694.53 26596.71 23891.93 21999.40 20687.71 29998.64 24697.69 282
test22298.17 17893.24 17892.74 29797.61 25075.17 35094.65 26296.69 24090.96 23198.66 24497.66 283
TAPA-MVS93.32 1294.93 20994.23 23197.04 15998.18 17694.51 13295.22 20498.73 12381.22 33496.25 21995.95 27793.80 17398.98 27989.89 27298.87 22397.62 284
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何197.25 14998.29 16094.70 12897.73 23677.98 34594.83 25896.67 24192.08 21499.45 18988.17 29798.65 24597.61 285
MSDG95.33 19495.13 19195.94 21997.40 25891.85 20991.02 32898.37 17895.30 14996.31 21595.99 27294.51 15598.38 32789.59 27697.65 28997.60 286
testdata95.70 22798.16 18090.58 23097.72 23780.38 33795.62 24397.02 21892.06 21598.98 27989.06 28598.52 25297.54 287
DSMNet-mixed92.19 28291.83 27993.25 29696.18 30283.68 32696.27 13693.68 31276.97 34992.54 32099.18 2889.20 25698.55 31783.88 33098.60 25097.51 288
thisisatest051590.43 30089.18 31294.17 28497.07 27785.44 30589.75 34287.58 34888.28 28593.69 29091.72 33865.27 35299.58 15090.59 25898.67 24297.50 289
PMMVS92.39 27791.08 28996.30 20393.12 34992.81 18790.58 33295.96 28979.17 34291.85 32692.27 33290.29 24198.66 31089.85 27396.68 31397.43 290
DP-MVS Recon95.55 18395.13 19196.80 17298.51 14193.99 15394.60 23598.69 13690.20 26595.78 23896.21 26492.73 19598.98 27990.58 25998.86 22597.42 291
thres600view792.03 28591.43 28393.82 28598.19 17384.61 31896.27 13690.39 34096.81 8496.37 21193.11 31973.44 33799.49 17680.32 33997.95 27297.36 292
thres40091.68 29091.00 29093.71 28798.02 19184.35 32195.70 17090.79 33796.26 10295.90 23492.13 33473.62 33599.42 19578.85 34397.74 28097.36 292
OpenMVScopyleft94.22 895.48 18795.20 18896.32 20197.16 27491.96 20797.74 6298.84 9387.26 29294.36 27098.01 12993.95 16999.67 12090.70 25598.75 23697.35 294
CS-MVS95.86 17495.59 18196.69 17997.85 20793.14 18096.42 12799.25 1094.17 19293.56 29690.76 34796.05 9899.72 7793.28 20398.91 21897.21 295
test0.0.03 190.11 30289.21 30992.83 30793.89 34186.87 29191.74 31488.74 34792.02 24394.71 26091.14 34373.92 33294.48 35283.75 33392.94 33897.16 296
BH-untuned94.69 22294.75 20994.52 27497.95 20287.53 27994.07 25897.01 26893.99 19797.10 17095.65 28492.65 19898.95 28487.60 30396.74 31197.09 297
mvs-test196.20 15995.50 18498.32 6596.90 28498.16 495.07 21398.09 21295.86 12693.63 29194.32 31294.26 16199.71 9294.06 18097.27 30397.07 298
new_pmnet92.34 27991.69 28294.32 27996.23 29989.16 24892.27 30692.88 32084.39 32495.29 24996.35 25885.66 28196.74 34984.53 32797.56 29197.05 299
tpmrst90.31 30190.61 29989.41 32994.06 34072.37 35695.06 21593.69 31088.01 28792.32 32296.86 22677.45 31598.82 29291.04 24087.01 35097.04 300
EPMVS89.26 31188.55 31591.39 31992.36 35479.11 33995.65 17679.86 35588.60 28193.12 30796.53 24870.73 34698.10 33890.75 25089.32 34796.98 301
Gipumacopyleft98.07 4198.31 3097.36 14299.76 596.28 6798.51 2099.10 2998.76 2296.79 19099.34 1896.61 7498.82 29296.38 7099.50 10796.98 301
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test-LLR89.97 30689.90 30490.16 32694.24 33774.98 35189.89 33889.06 34592.02 24389.97 33790.77 34573.92 33298.57 31491.88 22397.36 29896.92 303
test-mter87.92 31987.17 32090.16 32694.24 33774.98 35189.89 33889.06 34586.44 30089.97 33790.77 34554.96 36298.57 31491.88 22397.36 29896.92 303
PCF-MVS89.43 1892.12 28490.64 29896.57 18897.80 21993.48 17389.88 34198.45 16574.46 35196.04 22795.68 28390.71 23399.31 23173.73 34899.01 20896.91 305
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer89.75 30889.25 30791.26 32194.69 33178.00 34395.32 19591.98 32881.50 33290.55 33296.96 22271.06 34498.89 28788.59 29192.63 34096.87 306
dp88.08 31788.05 31788.16 33592.85 35168.81 35894.17 25192.88 32085.47 31091.38 32896.14 26768.87 34998.81 29486.88 31083.80 35396.87 306
ETV-MVS96.13 16395.90 17196.82 17197.76 23193.89 15595.40 18898.95 7095.87 12595.58 24591.00 34496.36 9199.72 7793.36 20098.83 22996.85 308
cascas91.89 28791.35 28593.51 29194.27 33685.60 30388.86 34498.61 15079.32 34192.16 32391.44 34089.22 25598.12 33790.80 24897.47 29796.82 309
CR-MVSNet93.29 26592.79 26394.78 26395.44 32188.15 26596.18 14397.20 26084.94 31994.10 27598.57 6677.67 31399.39 21195.17 12895.81 32296.81 310
RPMNet94.68 22494.60 21794.90 25695.44 32188.15 26596.18 14398.86 8597.43 6694.10 27598.49 7379.40 30599.76 5395.69 9495.81 32296.81 310
PatchMatch-RL94.61 22893.81 24597.02 16198.19 17395.72 8293.66 27397.23 25988.17 28694.94 25695.62 28691.43 22598.57 31487.36 30897.68 28696.76 312
MAR-MVS94.21 24093.03 25797.76 10296.94 28297.44 3396.97 10697.15 26387.89 29092.00 32492.73 32892.14 21199.12 26083.92 32997.51 29496.73 313
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DWT-MVSNet_test87.92 31986.77 32391.39 31993.18 34678.62 34095.10 20891.42 33285.58 30888.00 34588.73 35060.60 35698.90 28590.60 25787.70 34996.65 314
TESTMET0.1,187.20 32286.57 32489.07 33093.62 34472.84 35589.89 33887.01 35185.46 31189.12 34290.20 34856.00 36197.72 34290.91 24496.92 30596.64 315
CNLPA95.04 20694.47 22496.75 17597.81 21595.25 10694.12 25797.89 22694.41 18194.57 26395.69 28290.30 24098.35 33086.72 31298.76 23596.64 315
IB-MVS85.98 2088.63 31386.95 32293.68 28895.12 32684.82 31790.85 32990.17 34487.55 29188.48 34491.34 34158.01 35799.59 14887.24 30993.80 33796.63 317
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs90.79 29990.87 29390.57 32592.75 35376.30 34895.79 16793.64 31391.04 25891.91 32596.26 26077.19 31998.86 29189.38 28089.85 34696.56 318
CHOSEN 280x42089.98 30589.19 31192.37 31395.60 31881.13 33586.22 34897.09 26681.44 33387.44 34893.15 31873.99 33099.47 18288.69 28999.07 20196.52 319
HY-MVS91.43 1592.58 27491.81 28094.90 25696.49 29188.87 25297.31 8794.62 30485.92 30490.50 33396.84 22885.05 28499.40 20683.77 33295.78 32596.43 320
PatchT93.75 25293.57 24894.29 28195.05 32787.32 28496.05 14992.98 31997.54 6394.25 27198.72 5675.79 32699.24 24695.92 8995.81 32296.32 321
tpm288.47 31487.69 31890.79 32394.98 32877.34 34695.09 21091.83 32977.51 34889.40 33996.41 25467.83 35098.73 30183.58 33492.60 34196.29 322
AdaColmapbinary95.11 20394.62 21696.58 18697.33 26694.45 13594.92 22298.08 21493.15 22493.98 28295.53 28994.34 15999.10 26585.69 31898.61 24896.20 323
pmmvs390.00 30488.90 31393.32 29394.20 33985.34 30691.25 32392.56 32578.59 34393.82 28395.17 29367.36 35198.69 30589.08 28498.03 27095.92 324
thres100view90091.76 28991.26 28893.26 29598.21 17184.50 31996.39 12990.39 34096.87 8296.33 21293.08 32173.44 33799.42 19578.85 34397.74 28095.85 325
tfpn200view991.55 29191.00 29093.21 29898.02 19184.35 32195.70 17090.79 33796.26 10295.90 23492.13 33473.62 33599.42 19578.85 34397.74 28095.85 325
OpenMVS_ROBcopyleft91.80 1493.64 25793.05 25695.42 23897.31 26891.21 21895.08 21296.68 28081.56 33196.88 18996.41 25490.44 23699.25 24585.39 32297.67 28795.80 327
PAPM87.64 32185.84 32693.04 30196.54 28984.99 31488.42 34595.57 29679.52 34083.82 35293.05 32380.57 30298.41 32462.29 35492.79 33995.71 328
xiu_mvs_v1_base_debu95.62 18095.96 16894.60 26998.01 19388.42 25993.99 26198.21 19492.98 22895.91 23194.53 30696.39 8899.72 7795.43 11598.19 26395.64 329
xiu_mvs_v1_base95.62 18095.96 16894.60 26998.01 19388.42 25993.99 26198.21 19492.98 22895.91 23194.53 30696.39 8899.72 7795.43 11598.19 26395.64 329
xiu_mvs_v1_base_debi95.62 18095.96 16894.60 26998.01 19388.42 25993.99 26198.21 19492.98 22895.91 23194.53 30696.39 8899.72 7795.43 11598.19 26395.64 329
tpm cat188.01 31887.33 31990.05 32894.48 33376.28 34994.47 24094.35 30873.84 35389.26 34095.61 28773.64 33498.30 33284.13 32886.20 35195.57 332
JIA-IIPM91.79 28890.69 29795.11 24793.80 34290.98 22194.16 25291.78 33096.38 9790.30 33599.30 1972.02 34198.90 28588.28 29590.17 34595.45 333
TR-MVS92.54 27592.20 27593.57 29096.49 29186.66 29293.51 27894.73 30389.96 26894.95 25593.87 31590.24 24298.61 31181.18 33894.88 33095.45 333
thres20091.00 29790.42 30192.77 30897.47 25483.98 32494.01 26091.18 33595.12 15795.44 24691.21 34273.93 33199.31 23177.76 34697.63 29095.01 335
131492.38 27892.30 27492.64 31095.42 32385.15 31195.86 16396.97 27085.40 31390.62 33093.06 32291.12 22897.80 34186.74 31195.49 32994.97 336
BH-w/o92.14 28391.94 27792.73 30997.13 27585.30 30792.46 30295.64 29489.33 27394.21 27292.74 32789.60 24798.24 33381.68 33694.66 33294.66 337
xiu_mvs_v2_base94.22 23894.63 21592.99 30497.32 26784.84 31692.12 30897.84 23091.96 24594.17 27393.43 31796.07 9799.71 9291.27 23597.48 29594.42 338
PS-MVSNAJ94.10 24494.47 22493.00 30397.35 26084.88 31591.86 31297.84 23091.96 24594.17 27392.50 33195.82 10699.71 9291.27 23597.48 29594.40 339
gg-mvs-nofinetune88.28 31686.96 32192.23 31692.84 35284.44 32098.19 3974.60 35799.08 1187.01 35099.47 956.93 35998.23 33478.91 34295.61 32794.01 340
API-MVS95.09 20595.01 19795.31 24196.61 28894.02 15196.83 10997.18 26295.60 13795.79 23694.33 31194.54 15498.37 32985.70 31798.52 25293.52 341
PVSNet_081.89 2184.49 32483.21 32788.34 33395.76 31574.97 35383.49 35092.70 32478.47 34487.94 34686.90 35283.38 29396.63 35073.44 34966.86 35593.40 342
FPMVS89.92 30788.63 31493.82 28598.37 15596.94 4591.58 31593.34 31688.00 28890.32 33497.10 21270.87 34591.13 35471.91 35196.16 32193.39 343
PMVScopyleft89.60 1796.71 13996.97 11795.95 21799.51 2397.81 1697.42 8497.49 25297.93 4395.95 23098.58 6596.88 6296.91 34689.59 27699.36 14993.12 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS90.02 30389.20 31092.47 31194.71 33086.90 29095.86 16396.74 27864.72 35490.62 33092.77 32692.54 20398.39 32679.30 34195.56 32892.12 345
MVEpermissive73.61 2286.48 32385.92 32588.18 33496.23 29985.28 30981.78 35375.79 35686.01 30282.53 35491.88 33692.74 19487.47 35571.42 35294.86 33191.78 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN89.52 31089.78 30588.73 33193.14 34877.61 34483.26 35192.02 32794.82 16893.71 28893.11 31975.31 32796.81 34785.81 31696.81 30991.77 347
EMVS89.06 31289.22 30888.61 33293.00 35077.34 34682.91 35290.92 33694.64 17492.63 31891.81 33776.30 32397.02 34583.83 33196.90 30691.48 348
GG-mvs-BLEND90.60 32491.00 35684.21 32398.23 3372.63 36082.76 35384.11 35356.14 36096.79 34872.20 35092.09 34290.78 349
MVS-HIRNet88.40 31590.20 30382.99 33797.01 27860.04 35993.11 29085.61 35384.45 32388.72 34399.09 3484.72 28898.23 33482.52 33596.59 31590.69 350
DeepMVS_CXcopyleft77.17 33890.94 35785.28 30974.08 35952.51 35580.87 35688.03 35175.25 32870.63 35659.23 35584.94 35275.62 351
wuyk23d93.25 26695.20 18887.40 33696.07 30795.38 9997.04 10294.97 30195.33 14799.70 698.11 11498.14 1491.94 35377.76 34699.68 5674.89 352
tmp_tt57.23 32562.50 32841.44 33934.77 36049.21 36183.93 34960.22 36115.31 35671.11 35779.37 35470.09 34744.86 35764.76 35382.93 35430.25 353
test12312.59 32715.49 3303.87 3406.07 3612.55 36290.75 3302.59 3632.52 3575.20 35913.02 3574.96 3631.85 3595.20 3569.09 3567.23 354
testmvs12.33 32815.23 3313.64 3415.77 3622.23 36388.99 3433.62 3622.30 3585.29 35813.09 3564.52 3641.95 3585.16 3578.32 3576.75 355
uanet_test0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
cdsmvs_eth3d_5k24.22 32632.30 3290.00 3420.00 3630.00 3640.00 35498.10 2110.00 3590.00 36095.06 29697.54 290.00 3600.00 3580.00 3580.00 356
pcd_1.5k_mvsjas7.98 32910.65 3320.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 36095.82 1060.00 3600.00 3580.00 3580.00 356
sosnet-low-res0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
sosnet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
uncertanet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
Regformer0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
ab-mvs-re7.91 33010.55 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 36094.94 2980.00 3650.00 3600.00 3580.00 3580.00 356
uanet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
ZD-MVS98.43 15195.94 7798.56 15590.72 26096.66 19797.07 21495.02 13899.74 6791.08 23998.93 216
test_241102_ONE99.22 5795.35 10298.83 10096.04 11399.08 3198.13 11097.87 2199.33 227
9.1496.69 13298.53 13996.02 15298.98 6493.23 21797.18 16497.46 18396.47 8499.62 14092.99 21099.32 166
save fliter98.48 14694.71 12594.53 23898.41 17395.02 162
test072699.24 5295.51 9496.89 10798.89 7695.92 12198.64 5198.31 8697.06 50
test_part299.03 9196.07 7298.08 111
sam_mvs77.38 316
MTGPAbinary98.73 123
test_post194.98 22010.37 35976.21 32499.04 27189.47 278
test_post10.87 35876.83 32099.07 268
patchmatchnet-post96.84 22877.36 31799.42 195
MTMP96.55 12274.60 357
gm-plane-assit91.79 35571.40 35781.67 33090.11 34998.99 27784.86 325
TEST997.84 21295.23 10793.62 27498.39 17586.81 29793.78 28495.99 27294.68 14799.52 170
test_897.81 21595.07 11593.54 27798.38 17787.04 29593.71 28895.96 27694.58 15299.52 170
agg_prior97.80 21994.96 11798.36 17993.49 29899.53 166
test_prior495.38 9993.61 276
test_prior293.33 28594.21 18994.02 27996.25 26193.64 17691.90 22198.96 210
旧先验293.35 28477.95 34795.77 24098.67 30990.74 253
新几何293.43 279
原ACMM292.82 293
testdata299.46 18587.84 298
segment_acmp95.34 127
testdata192.77 29493.78 202
plane_prior798.70 11994.67 129
plane_prior698.38 15494.37 13891.91 221
plane_prior496.77 234
plane_prior394.51 13295.29 15096.16 223
plane_prior296.50 12496.36 98
plane_prior198.49 144
plane_prior94.29 14095.42 18594.31 18698.93 216
n20.00 364
nn0.00 364
door-mid98.17 203
test1198.08 214
door97.81 233
HQP5-MVS92.47 192
HQP-NCC97.85 20794.26 24393.18 22092.86 311
ACMP_Plane97.85 20794.26 24393.18 22092.86 311
BP-MVS90.51 262
HQP3-MVS98.43 16898.74 237
HQP2-MVS90.33 237
NP-MVS98.14 18393.72 16495.08 294
MDTV_nov1_ep1391.28 28694.31 33473.51 35494.80 22893.16 31786.75 29993.45 30197.40 18776.37 32298.55 31788.85 28696.43 316
ACMMP++_ref99.52 100
ACMMP++99.55 89
Test By Simon94.51 155