This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12399.20 3299.65 1999.48 2499.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4299.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 1099.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1899.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
EU-MVSNet97.66 19398.50 9095.13 32799.63 4885.84 35498.35 10998.21 29198.23 11999.54 3099.46 4395.02 22599.68 24798.24 7599.87 5299.87 4
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 999.82 399.04 11199.81 398.05 6799.96 898.85 4199.99 599.86 6
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
RRT_test8_iter0595.24 29395.13 29395.57 32097.32 33987.02 35197.99 14799.41 9398.06 13199.12 9399.05 10866.85 36999.85 10598.93 3699.47 20499.84 8
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1498.93 7999.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
ANet_high99.57 799.67 599.28 7999.89 698.09 12799.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5399.53 2399.46 4399.41 5198.23 5299.95 1598.89 3999.95 1699.81 11
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10699.30 2299.57 3599.61 1999.40 5299.50 3697.12 13599.85 10599.02 3299.94 2199.80 12
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 12099.42 3099.33 6299.26 6997.01 14299.94 2398.74 5099.93 2599.79 13
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
CVMVSNet96.25 27297.21 21493.38 34399.10 16680.56 36797.20 22398.19 29496.94 21999.00 11899.02 11589.50 29499.80 16896.36 20299.59 16599.78 14
Anonymous2023121199.27 2599.27 2499.26 8599.29 12298.18 12099.49 899.51 5799.70 899.80 999.68 1496.84 15199.83 13699.21 2399.91 4099.77 16
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 5099.62 1799.56 2899.42 4998.16 6099.96 898.78 4599.93 2599.77 16
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4699.46 2799.50 3999.34 6097.30 12499.93 2898.90 3799.93 2599.77 16
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 599.63 1499.78 1099.67 1699.48 699.81 15999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5699.48 6999.68 999.46 4399.26 6998.62 2999.73 22399.17 2699.92 3499.76 20
FIs99.14 3299.09 3499.29 7799.70 3698.28 11099.13 4199.52 5699.48 2499.24 8099.41 5196.79 15799.82 14698.69 5399.88 4999.76 20
v7n99.53 899.57 899.41 6099.88 798.54 9699.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
APDe-MVS98.99 3998.79 5399.60 1399.21 13699.15 4598.87 6299.48 6997.57 16399.35 5999.24 7297.83 8099.89 5897.88 9799.70 12399.75 22
test_part197.91 16897.46 19999.27 8298.80 23398.18 12099.07 4699.36 10899.75 599.63 2599.49 3982.20 34299.89 5898.87 4099.95 1699.74 24
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5799.64 1299.56 2899.46 4398.23 5299.97 398.78 4599.93 2599.72 25
PMMVS298.07 15898.08 15298.04 23399.41 10694.59 27594.59 33699.40 9697.50 16998.82 15598.83 16896.83 15399.84 12297.50 11799.81 6999.71 26
Baseline_NR-MVSNet98.98 4398.86 4699.36 6499.82 1698.55 9397.47 20399.57 3599.37 3499.21 8499.61 2396.76 16099.83 13698.06 8699.83 6299.71 26
XXY-MVS99.14 3299.15 3299.10 10699.76 2297.74 17098.85 6599.62 2298.48 10399.37 5699.49 3998.75 2499.86 9198.20 7899.80 7799.71 26
test_0728_THIRD98.17 12699.08 10199.02 11597.89 7799.88 6797.07 13899.71 11899.70 29
MSP-MVS98.40 12798.00 15899.61 999.57 5599.25 2298.57 8399.35 11497.55 16699.31 7097.71 28694.61 23899.88 6796.14 21599.19 24899.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14399.32 12799.88 6796.99 14399.63 15199.68 31
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2899.44 2999.78 1099.76 696.39 17899.92 3599.44 1399.92 3499.68 31
CHOSEN 1792x268897.49 20497.14 21998.54 19299.68 3996.09 23596.50 26599.62 2291.58 32898.84 15098.97 13192.36 27699.88 6796.76 16699.95 1699.67 33
IU-MVS99.49 8499.15 4598.87 24192.97 31199.41 4996.76 16699.62 15499.66 34
test_241102_TWO99.30 14198.03 13299.26 7799.02 11597.51 10999.88 6796.91 14999.60 16399.66 34
DPE-MVScopyleft98.59 10298.26 12899.57 1899.27 12499.15 4597.01 23499.39 9897.67 15499.44 4698.99 12597.53 10699.89 5895.40 24699.68 13499.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9199.27 2999.57 3599.39 3299.75 1299.62 2199.17 1299.83 13699.06 3099.62 15499.66 34
EI-MVSNet-UG-set98.69 8298.71 6298.62 17699.10 16696.37 22797.23 21998.87 24199.20 4899.19 8698.99 12597.30 12499.85 10598.77 4899.79 8299.65 38
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 799.64 1299.84 899.83 299.50 599.87 8499.36 1499.92 3499.64 39
bset_n11_16_dypcd96.99 24696.56 25398.27 21799.00 18995.25 25592.18 35994.05 35198.75 8799.01 11598.38 23788.98 29799.93 2898.77 4899.92 3499.64 39
EI-MVSNet-Vis-set98.68 8698.70 6598.63 17499.09 16996.40 22697.23 21998.86 24699.20 4899.18 9098.97 13197.29 12699.85 10598.72 5199.78 8699.64 39
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10599.07 4699.55 4698.30 11199.65 2299.45 4799.22 999.76 20898.44 6599.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 4998.81 5199.28 7999.21 13698.45 10298.46 9999.33 12599.63 1499.48 4099.15 9097.23 13299.75 21597.17 13099.66 14599.63 43
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10799.00 5299.45 8099.63 1499.52 3599.44 4898.25 5099.88 6799.09 2899.84 5699.62 44
LPG-MVS_test98.71 7798.46 9999.47 5399.57 5598.97 6298.23 11699.48 6996.60 23399.10 9899.06 10198.71 2699.83 13695.58 24299.78 8699.62 44
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6996.60 23399.10 9899.06 10198.71 2699.83 13695.58 24299.78 8699.62 44
Test_1112_low_res96.99 24696.55 25498.31 21399.35 11595.47 25095.84 29899.53 5391.51 33096.80 29898.48 22991.36 28399.83 13696.58 18099.53 18799.62 44
v1098.97 4499.11 3398.55 18999.44 10096.21 23298.90 6099.55 4698.73 8899.48 4099.60 2596.63 16799.83 13699.70 399.99 599.61 48
Regformer-498.73 7598.68 6798.89 14299.02 18697.22 19897.17 22799.06 20599.21 4599.17 9198.85 16297.45 11699.86 9198.48 6399.70 12399.60 49
v899.01 3799.16 3098.57 18499.47 9496.31 23098.90 6099.47 7599.03 6899.52 3599.57 2796.93 14799.81 15999.60 499.98 999.60 49
EI-MVSNet98.40 12798.51 8898.04 23399.10 16694.73 26997.20 22398.87 24198.97 7499.06 10499.02 11596.00 19299.80 16898.58 5699.82 6599.60 49
SixPastTwentyTwo98.75 7298.62 7499.16 9799.83 1597.96 14899.28 2798.20 29299.37 3499.70 1599.65 1992.65 27499.93 2899.04 3199.84 5699.60 49
IterMVS-LS98.55 10898.70 6598.09 22699.48 9294.73 26997.22 22299.39 9898.97 7499.38 5499.31 6496.00 19299.93 2898.58 5699.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 22996.60 25098.96 13299.62 5097.28 19495.17 31899.50 5994.21 29599.01 11598.32 24586.61 30899.99 297.10 13799.84 5699.60 49
ACMMP_NAP98.75 7298.48 9599.57 1899.58 5199.29 1797.82 16599.25 15996.94 21998.78 15899.12 9498.02 6899.84 12297.13 13599.67 14099.59 55
VPNet98.87 5598.83 4899.01 12799.70 3697.62 17998.43 10299.35 11499.47 2699.28 7199.05 10896.72 16399.82 14698.09 8499.36 21899.59 55
WR-MVS98.40 12798.19 13799.03 12399.00 18997.65 17696.85 24698.94 22898.57 10098.89 14098.50 22495.60 20999.85 10597.54 11499.85 5499.59 55
HPM-MVScopyleft98.79 6498.53 8599.59 1799.65 4399.29 1799.16 3899.43 8996.74 22898.61 17798.38 23798.62 2999.87 8496.47 19399.67 14099.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 3999.01 3898.94 13599.50 7797.47 18498.04 14099.59 2698.15 12899.40 5299.36 5798.58 3299.76 20898.78 4599.68 13499.59 55
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 11199.17 3799.78 599.11 5699.27 7399.48 4198.82 2199.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 10398.23 13299.60 1399.69 3899.35 1197.16 22999.38 10094.87 28198.97 12498.99 12598.01 6999.88 6797.29 12599.70 12399.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 8298.40 10999.54 2999.53 7099.17 3698.52 8899.31 13297.46 17798.44 19798.51 22197.83 8099.88 6796.46 19499.58 17199.58 61
ACMMPR98.70 8098.42 10799.54 2999.52 7299.14 4898.52 8899.31 13297.47 17298.56 18798.54 21897.75 8799.88 6796.57 18299.59 16599.58 61
PGM-MVS98.66 8998.37 11599.55 2699.53 7099.18 3598.23 11699.49 6797.01 21798.69 16798.88 15598.00 7099.89 5895.87 22699.59 16599.58 61
SteuartSystems-ACMMP98.79 6498.54 8499.54 2999.73 2499.16 4098.23 11699.31 13297.92 13998.90 13798.90 14698.00 7099.88 6796.15 21499.72 11399.58 61
Skip Steuart: Steuart Systems R&D Blog.
Regformer-398.61 9798.61 7798.63 17499.02 18696.53 22497.17 22798.84 24899.13 5599.10 9898.85 16297.24 13199.79 18398.41 6899.70 12399.57 66
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 11098.87 6798.39 10599.42 9299.42 3099.36 5899.06 10198.38 4399.95 1598.34 7299.90 4499.57 66
mPP-MVS98.64 9298.34 11999.54 2999.54 6899.17 3698.63 7699.24 16497.47 17298.09 22198.68 19397.62 9899.89 5896.22 20999.62 15499.57 66
PVSNet_Blended_VisFu98.17 15298.15 14498.22 22099.73 2495.15 26097.36 21099.68 1594.45 29098.99 11999.27 6796.87 15099.94 2397.13 13599.91 4099.57 66
1112_ss97.29 22196.86 23398.58 18199.34 11796.32 22996.75 25399.58 2893.14 31096.89 29397.48 30192.11 27999.86 9196.91 14999.54 18399.57 66
zzz-MVS98.79 6498.52 8699.61 999.67 4099.36 997.33 21299.20 17098.83 8598.89 14098.90 14696.98 14599.92 3597.16 13199.70 12399.56 71
MTAPA98.88 5498.64 7299.61 999.67 4099.36 998.43 10299.20 17098.83 8598.89 14098.90 14696.98 14599.92 3597.16 13199.70 12399.56 71
XVS98.72 7698.45 10199.53 3699.46 9599.21 2698.65 7499.34 12098.62 9497.54 25898.63 20797.50 11099.83 13696.79 16299.53 18799.56 71
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 2199.30 4199.65 2299.60 2599.16 1499.82 14699.07 2999.83 6299.56 71
X-MVStestdata94.32 30592.59 32399.53 3699.46 9599.21 2698.65 7499.34 12098.62 9497.54 25845.85 36597.50 11099.83 13696.79 16299.53 18799.56 71
HPM-MVS_fast99.01 3798.82 4999.57 1899.71 3099.35 1199.00 5299.50 5997.33 19098.94 13398.86 15998.75 2499.82 14697.53 11599.71 11899.56 71
K. test v398.00 16397.66 18399.03 12399.79 1997.56 18099.19 3692.47 35699.62 1799.52 3599.66 1789.61 29299.96 899.25 2099.81 6999.56 71
CP-MVS98.70 8098.42 10799.52 4199.36 11199.12 5398.72 7199.36 10897.54 16798.30 20798.40 23397.86 7999.89 5896.53 19099.72 11399.56 71
ZNCC-MVS98.68 8698.40 10999.54 2999.57 5599.21 2698.46 9999.29 14897.28 19698.11 21998.39 23598.00 7099.87 8496.86 15999.64 14899.55 79
v119298.60 9998.66 7098.41 20499.27 12495.88 23997.52 19799.36 10897.41 18399.33 6299.20 7796.37 18199.82 14699.57 699.92 3499.55 79
v124098.55 10898.62 7498.32 21199.22 13495.58 24597.51 19999.45 8097.16 21099.45 4599.24 7296.12 18799.85 10599.60 499.88 4999.55 79
UGNet98.53 11398.45 10198.79 15697.94 31396.96 21299.08 4498.54 27799.10 6296.82 29799.47 4296.55 17099.84 12298.56 6199.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testtj97.79 18597.25 21099.42 5799.03 18498.85 6897.78 16799.18 17995.83 26098.12 21898.50 22495.50 21499.86 9192.23 32099.07 26499.54 83
v14419298.54 11198.57 8298.45 20199.21 13695.98 23697.63 18499.36 10897.15 21299.32 6899.18 8095.84 20399.84 12299.50 1099.91 4099.54 83
v192192098.54 11198.60 7998.38 20799.20 14095.76 24497.56 19399.36 10897.23 20599.38 5499.17 8496.02 19099.84 12299.57 699.90 4499.54 83
MP-MVScopyleft98.46 12098.09 14999.54 2999.57 5599.22 2598.50 9399.19 17597.61 16097.58 25498.66 19897.40 11999.88 6794.72 25999.60 16399.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2699.59 2099.71 1499.57 2797.12 13599.90 4999.21 2399.87 5299.54 83
ACMMPcopyleft98.75 7298.50 9099.52 4199.56 6299.16 4098.87 6299.37 10497.16 21098.82 15599.01 12297.71 9099.87 8496.29 20699.69 12999.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 12798.03 15699.51 4599.16 15499.21 2698.05 13899.22 16794.16 29798.98 12199.10 9897.52 10899.79 18396.45 19599.64 14899.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 7798.44 10399.51 4599.49 8499.16 4098.52 8899.31 13297.47 17298.58 18398.50 22497.97 7499.85 10596.57 18299.59 16599.53 89
#test#98.50 11698.16 14299.51 4599.49 8499.16 4098.03 14199.31 13296.30 24598.58 18398.50 22497.97 7499.85 10595.68 23699.59 16599.53 89
UniMVSNet_NR-MVSNet98.86 5798.68 6799.40 6299.17 15298.74 7697.68 17999.40 9699.14 5499.06 10498.59 21496.71 16499.93 2898.57 5899.77 9099.53 89
GST-MVS98.61 9798.30 12499.52 4199.51 7499.20 3298.26 11499.25 15997.44 18198.67 16998.39 23597.68 9199.85 10596.00 21899.51 19399.52 93
Regformer-298.60 9998.46 9999.02 12698.85 22197.71 17296.91 24399.09 20198.98 7399.01 11598.64 20397.37 12199.84 12297.75 10799.57 17599.52 93
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 1099.38 3399.53 3399.61 2398.64 2899.80 16898.24 7599.84 5699.52 93
v114498.60 9998.66 7098.41 20499.36 11195.90 23897.58 19199.34 12097.51 16899.27 7399.15 9096.34 18399.80 16899.47 1299.93 2599.51 96
Regformer-198.55 10898.44 10398.87 14498.85 22197.29 19296.91 24398.99 22598.97 7498.99 11998.64 20397.26 13099.81 15997.79 10099.57 17599.51 96
v2v48298.56 10498.62 7498.37 20899.42 10595.81 24297.58 19199.16 18897.90 14199.28 7199.01 12295.98 19699.79 18399.33 1599.90 4499.51 96
CPTT-MVS97.84 18197.36 20499.27 8299.31 11898.46 10198.29 11199.27 15394.90 28097.83 23698.37 23994.90 22799.84 12293.85 28999.54 18399.51 96
DU-MVS98.82 6098.63 7399.39 6399.16 15498.74 7697.54 19599.25 15998.84 8499.06 10498.76 18196.76 16099.93 2898.57 5899.77 9099.50 100
NR-MVSNet98.95 4798.82 4999.36 6499.16 15498.72 8199.22 3199.20 17099.10 6299.72 1398.76 18196.38 18099.86 9198.00 9199.82 6599.50 100
abl_698.99 3998.78 5499.61 999.45 9899.46 398.60 7999.50 5998.59 9699.24 8099.04 11198.54 3499.89 5896.45 19599.62 15499.50 100
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7999.58 2899.11 5699.53 3399.18 8098.81 2299.67 25096.71 17399.77 9099.50 100
GeoE99.05 3598.99 4199.25 8799.44 10098.35 10898.73 7099.56 4298.42 10598.91 13698.81 17398.94 1899.91 4598.35 7199.73 10699.49 104
hse-mvs397.77 18697.33 20899.10 10699.21 13697.84 15898.35 10998.57 27699.11 5698.58 18399.02 11588.65 30199.96 898.11 8196.34 34499.49 104
IterMVS-SCA-FT97.85 18098.18 13896.87 29399.27 12491.16 33795.53 30899.25 15999.10 6299.41 4999.35 5893.10 26599.96 898.65 5499.94 2199.49 104
new-patchmatchnet98.35 13298.74 5797.18 27999.24 12992.23 32296.42 27099.48 6998.30 11199.69 1799.53 3397.44 11799.82 14698.84 4299.77 9099.49 104
APD-MVScopyleft98.10 15597.67 18099.42 5799.11 16298.93 6697.76 17299.28 15094.97 27898.72 16698.77 17997.04 13899.85 10593.79 29099.54 18399.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 13698.04 15599.07 11399.56 6297.83 15999.29 2398.07 29899.03 6898.59 18199.13 9392.16 27899.90 4996.87 15799.68 13499.49 104
DeepC-MVS97.60 498.97 4498.93 4299.10 10699.35 11597.98 14398.01 14699.46 7797.56 16599.54 3099.50 3698.97 1699.84 12298.06 8699.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 5198.73 5899.48 5099.55 6599.14 4898.07 13499.37 10497.62 15899.04 11198.96 13498.84 2099.79 18397.43 11999.65 14699.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test117298.76 7098.49 9399.57 1899.18 15099.37 898.39 10599.31 13298.43 10498.90 13798.88 15597.49 11399.86 9196.43 19799.37 21799.48 112
DVP-MVS98.77 6998.52 8699.52 4199.50 7799.21 2698.02 14398.84 24897.97 13599.08 10199.02 11597.61 9999.88 6796.99 14399.63 15199.48 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 7798.43 10599.57 1899.18 15099.35 1198.36 10899.29 14898.29 11498.88 14498.85 16297.53 10699.87 8496.14 21599.31 22699.48 112
TSAR-MVS + MP.98.63 9498.49 9399.06 11899.64 4697.90 15398.51 9298.94 22896.96 21899.24 8098.89 15497.83 8099.81 15996.88 15699.49 20199.48 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 14797.95 16199.01 12799.58 5197.74 17099.01 5097.29 31899.67 1098.97 12499.50 3690.45 28799.80 16897.88 9799.20 24499.48 112
IterMVS97.73 18898.11 14896.57 30099.24 12990.28 33895.52 31099.21 16898.86 8299.33 6299.33 6293.11 26499.94 2398.49 6299.94 2199.48 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 14997.90 16699.08 11099.57 5597.97 14499.31 1898.32 28799.01 7098.98 12199.03 11491.59 28299.79 18395.49 24499.80 7799.48 112
ACMP95.32 1598.41 12598.09 14999.36 6499.51 7498.79 7497.68 17999.38 10095.76 26298.81 15798.82 17198.36 4499.82 14694.75 25699.77 9099.48 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 16397.63 18699.10 10699.24 12998.17 12296.89 24598.73 26795.66 26397.92 22997.70 28897.17 13499.66 25896.18 21399.23 24099.47 120
3Dnovator+97.89 398.69 8298.51 8899.24 8998.81 23198.40 10399.02 4999.19 17598.99 7198.07 22299.28 6597.11 13799.84 12296.84 16099.32 22499.47 120
HPM-MVS++copyleft98.10 15597.64 18599.48 5099.09 16999.13 5197.52 19798.75 26497.46 17796.90 29297.83 28096.01 19199.84 12295.82 23099.35 22099.46 122
V4298.78 6798.78 5498.76 16299.44 10097.04 20898.27 11399.19 17597.87 14399.25 7999.16 8696.84 15199.78 19599.21 2399.84 5699.46 122
APD-MVS_3200maxsize98.84 5998.61 7799.53 3699.19 14399.27 2098.49 9499.33 12598.64 9099.03 11498.98 12997.89 7799.85 10596.54 18999.42 20999.46 122
UniMVSNet (Re)98.87 5598.71 6299.35 6999.24 12998.73 7997.73 17599.38 10098.93 7999.12 9398.73 18496.77 15899.86 9198.63 5599.80 7799.46 122
SR-MVS-dyc-post98.81 6298.55 8399.57 1899.20 14099.38 598.48 9799.30 14198.64 9098.95 12798.96 13497.49 11399.86 9196.56 18599.39 21399.45 126
RE-MVS-def98.58 8199.20 14099.38 598.48 9799.30 14198.64 9098.95 12798.96 13497.75 8796.56 18599.39 21399.45 126
RRT_MVS97.07 23796.57 25298.58 18195.89 36196.33 22897.36 21098.77 26097.85 14599.08 10199.12 9482.30 33999.96 898.82 4399.90 4499.45 126
HQP_MVS97.99 16697.67 18098.93 13699.19 14397.65 17697.77 17099.27 15398.20 12397.79 23997.98 27094.90 22799.70 23494.42 26899.51 19399.45 126
plane_prior599.27 15399.70 23494.42 26899.51 19399.45 126
lessismore_v098.97 13099.73 2497.53 18286.71 36699.37 5699.52 3589.93 29099.92 3598.99 3499.72 11399.44 131
TAMVS98.24 14598.05 15498.80 15499.07 17497.18 20397.88 15898.81 25496.66 23299.17 9199.21 7594.81 23399.77 20196.96 14799.88 4999.44 131
DeepPCF-MVS96.93 598.32 13498.01 15799.23 9098.39 28898.97 6295.03 32299.18 17996.88 22399.33 6298.78 17798.16 6099.28 33796.74 16899.62 15499.44 131
3Dnovator98.27 298.81 6298.73 5899.05 12098.76 23697.81 16499.25 3099.30 14198.57 10098.55 18999.33 6297.95 7699.90 4997.16 13199.67 14099.44 131
MVSFormer98.26 14298.43 10597.77 24698.88 21693.89 29599.39 1199.56 4299.11 5698.16 21498.13 25693.81 25599.97 399.26 1899.57 17599.43 135
jason97.45 20997.35 20597.76 24799.24 12993.93 29195.86 29598.42 28394.24 29498.50 19498.13 25694.82 23199.91 4597.22 12899.73 10699.43 135
jason: jason.
NCCC97.86 17597.47 19899.05 12098.61 26598.07 13396.98 23698.90 23697.63 15797.04 28397.93 27595.99 19599.66 25895.31 24798.82 28599.43 135
Anonymous2024052198.69 8298.87 4498.16 22499.77 2095.11 26399.08 4499.44 8399.34 3799.33 6299.55 2994.10 25299.94 2399.25 2099.96 1499.42 138
MVS_111021_HR98.25 14498.08 15298.75 16499.09 16997.46 18595.97 28799.27 15397.60 16197.99 22898.25 24898.15 6299.38 32596.87 15799.57 17599.42 138
COLMAP_ROBcopyleft96.50 1098.99 3998.85 4799.41 6099.58 5199.10 5698.74 6899.56 4299.09 6599.33 6299.19 7898.40 4299.72 23195.98 22099.76 9999.42 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 5198.72 6099.49 4899.49 8499.17 3698.10 13099.31 13298.03 13299.66 2099.02 11598.36 4499.88 6796.91 14999.62 15499.41 141
OPU-MVS98.82 15098.59 26998.30 10998.10 13098.52 22098.18 5898.75 35794.62 26099.48 20399.41 141
our_test_397.39 21397.73 17796.34 30498.70 24989.78 34094.61 33598.97 22796.50 23699.04 11198.85 16295.98 19699.84 12297.26 12799.67 14099.41 141
casdiffmvs98.95 4799.00 3998.81 15299.38 10897.33 19097.82 16599.57 3599.17 5399.35 5999.17 8498.35 4799.69 23898.46 6499.73 10699.41 141
YYNet197.60 19797.67 18097.39 27399.04 18193.04 30995.27 31598.38 28697.25 19998.92 13598.95 13895.48 21699.73 22396.99 14398.74 28799.41 141
MDA-MVSNet_test_wron97.60 19797.66 18397.41 27299.04 18193.09 30595.27 31598.42 28397.26 19898.88 14498.95 13895.43 21799.73 22397.02 14098.72 28999.41 141
GBi-Net98.65 9098.47 9799.17 9498.90 21098.24 11399.20 3299.44 8398.59 9698.95 12799.55 2994.14 24899.86 9197.77 10299.69 12999.41 141
test198.65 9098.47 9799.17 9498.90 21098.24 11399.20 3299.44 8398.59 9698.95 12799.55 2994.14 24899.86 9197.77 10299.69 12999.41 141
FMVSNet199.17 3099.17 2999.17 9499.55 6598.24 11399.20 3299.44 8399.21 4599.43 4799.55 2997.82 8399.86 9198.42 6799.89 4899.41 141
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7399.54 5099.31 3999.62 2799.53 3397.36 12299.86 9199.24 2299.71 11899.39 150
v14898.45 12198.60 7998.00 23599.44 10094.98 26497.44 20699.06 20598.30 11199.32 6898.97 13196.65 16699.62 27098.37 6999.85 5499.39 150
test20.0398.78 6798.77 5698.78 15999.46 9597.20 20197.78 16799.24 16499.04 6799.41 4998.90 14697.65 9499.76 20897.70 10899.79 8299.39 150
CDPH-MVS97.26 22296.66 24799.07 11399.00 18998.15 12396.03 28599.01 22191.21 33497.79 23997.85 27996.89 14999.69 23892.75 31299.38 21699.39 150
EPNet96.14 27495.44 28398.25 21890.76 36895.50 24997.92 15494.65 34398.97 7492.98 35598.85 16289.12 29699.87 8495.99 21999.68 13499.39 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 15297.87 16899.07 11398.67 25898.24 11397.01 23498.93 23097.25 19997.62 25098.34 24297.27 12799.57 28796.42 19899.33 22399.39 150
DeepC-MVS_fast96.85 698.30 13698.15 14498.75 16498.61 26597.23 19697.76 17299.09 20197.31 19398.75 16398.66 19897.56 10399.64 26596.10 21799.55 18299.39 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj98.44 12298.24 13099.06 11899.11 16297.97 14496.53 26299.54 5098.24 11798.83 15198.90 14697.80 8499.82 14695.68 23699.52 19099.38 157
SF-MVS98.53 11398.27 12799.32 7699.31 11898.75 7598.19 12099.41 9396.77 22798.83 15198.90 14697.80 8499.82 14695.68 23699.52 19099.38 157
test9_res93.28 30399.15 25499.38 157
OPM-MVS98.56 10498.32 12399.25 8799.41 10698.73 7997.13 23199.18 17997.10 21398.75 16398.92 14298.18 5899.65 26396.68 17599.56 18099.37 160
agg_prior292.50 31799.16 25199.37 160
AllTest98.44 12298.20 13599.16 9799.50 7798.55 9398.25 11599.58 2896.80 22598.88 14499.06 10197.65 9499.57 28794.45 26699.61 16199.37 160
TestCases99.16 9799.50 7798.55 9399.58 2896.80 22598.88 14499.06 10197.65 9499.57 28794.45 26699.61 16199.37 160
MDA-MVSNet-bldmvs97.94 16797.91 16598.06 23199.44 10094.96 26596.63 25999.15 19498.35 10798.83 15199.11 9694.31 24599.85 10596.60 17998.72 28999.37 160
MVSTER96.86 25096.55 25497.79 24597.91 31594.21 28197.56 19398.87 24197.49 17199.06 10499.05 10880.72 34499.80 16898.44 6599.82 6599.37 160
pmmvs597.64 19497.49 19498.08 22999.14 15995.12 26296.70 25699.05 20993.77 30398.62 17598.83 16893.23 26199.75 21598.33 7499.76 9999.36 166
Anonymous2023120698.21 14798.21 13498.20 22199.51 7495.43 25298.13 12599.32 12796.16 24898.93 13498.82 17196.00 19299.83 13697.32 12499.73 10699.36 166
train_agg97.10 23496.45 25799.07 11398.71 24598.08 13195.96 28999.03 21491.64 32695.85 32497.53 29696.47 17499.76 20893.67 29299.16 25199.36 166
PVSNet_BlendedMVS97.55 20097.53 19197.60 25798.92 20693.77 29996.64 25899.43 8994.49 28697.62 25099.18 8096.82 15499.67 25094.73 25799.93 2599.36 166
Anonymous2024052998.93 4998.87 4499.12 10299.19 14398.22 11899.01 5098.99 22599.25 4499.54 3099.37 5497.04 13899.80 16897.89 9499.52 19099.35 170
F-COLMAP97.30 21996.68 24499.14 10099.19 14398.39 10497.27 21899.30 14192.93 31296.62 30398.00 26895.73 20699.68 24792.62 31598.46 30199.35 170
ppachtmachnet_test97.50 20297.74 17596.78 29898.70 24991.23 33694.55 33799.05 20996.36 24199.21 8498.79 17696.39 17899.78 19596.74 16899.82 6599.34 172
agg_prior197.06 23896.40 25899.03 12398.68 25697.99 13995.76 29999.01 22191.73 32595.59 32797.50 29996.49 17399.77 20193.71 29199.14 25599.34 172
VDD-MVS98.56 10498.39 11299.07 11399.13 16198.07 13398.59 8197.01 32299.59 2099.11 9599.27 6794.82 23199.79 18398.34 7299.63 15199.34 172
testgi98.32 13498.39 11298.13 22599.57 5595.54 24697.78 16799.49 6797.37 18799.19 8697.65 29098.96 1799.49 30896.50 19298.99 27699.34 172
diffmvs98.22 14698.24 13098.17 22399.00 18995.44 25196.38 27299.58 2897.79 14998.53 19298.50 22496.76 16099.74 21997.95 9399.64 14899.34 172
UnsupCasMVSNet_eth97.89 17197.60 18998.75 16499.31 11897.17 20497.62 18599.35 11498.72 8998.76 16298.68 19392.57 27599.74 21997.76 10695.60 35199.34 172
baseline98.96 4699.02 3798.76 16299.38 10897.26 19598.49 9499.50 5998.86 8299.19 8699.06 10198.23 5299.69 23898.71 5299.76 9999.33 178
MG-MVS96.77 25496.61 24997.26 27798.31 29293.06 30695.93 29298.12 29796.45 23997.92 22998.73 18493.77 25799.39 32391.19 33499.04 26899.33 178
HQP4-MVS95.56 33099.54 29699.32 180
CDS-MVSNet97.69 19097.35 20598.69 16898.73 24097.02 21096.92 24298.75 26495.89 25898.59 18198.67 19592.08 28099.74 21996.72 17199.81 6999.32 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 24596.49 25698.55 18998.67 25896.79 21796.29 27699.04 21296.05 25195.55 33196.84 32093.84 25399.54 29692.82 30999.26 23799.32 180
RPSCF98.62 9698.36 11699.42 5799.65 4399.42 498.55 8599.57 3597.72 15298.90 13799.26 6996.12 18799.52 30295.72 23399.71 11899.32 180
MVP-Stereo98.08 15797.92 16498.57 18498.96 19796.79 21797.90 15799.18 17996.41 24098.46 19598.95 13895.93 19999.60 27796.51 19198.98 27899.31 184
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 12798.68 6797.54 26498.96 19797.99 13997.88 15899.36 10898.20 12399.63 2599.04 11198.76 2395.33 36596.56 18599.74 10399.31 184
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 12498.30 12498.79 15698.79 23597.29 19298.23 11698.66 27199.31 3998.85 14898.80 17494.80 23499.78 19598.13 8099.13 25899.31 184
ETH3D-3000-0.198.03 15997.62 18799.29 7799.11 16298.80 7397.47 20399.32 12795.54 26598.43 20098.62 20996.61 16899.77 20193.95 28499.49 20199.30 187
test_prior397.48 20697.00 22498.95 13398.69 25397.95 14995.74 30199.03 21496.48 23796.11 31897.63 29295.92 20099.59 28194.16 27499.20 24499.30 187
test_prior98.95 13398.69 25397.95 14999.03 21499.59 28199.30 187
USDC97.41 21297.40 20097.44 27098.94 20093.67 30195.17 31899.53 5394.03 30098.97 12499.10 9895.29 21999.34 32895.84 22999.73 10699.30 187
FMVSNet298.49 11798.40 10998.75 16498.90 21097.14 20798.61 7899.13 19598.59 9699.19 8699.28 6594.14 24899.82 14697.97 9299.80 7799.29 191
ETH3 D test640096.46 26795.59 27899.08 11098.88 21698.21 11996.53 26299.18 17988.87 34897.08 28097.79 28193.64 26099.77 20188.92 34599.40 21299.28 192
XVG-OURS-SEG-HR98.49 11798.28 12699.14 10099.49 8498.83 7096.54 26199.48 6997.32 19299.11 9598.61 21299.33 899.30 33496.23 20898.38 30299.28 192
test1298.93 13698.58 27097.83 15998.66 27196.53 30695.51 21399.69 23899.13 25899.27 194
DSMNet-mixed97.42 21197.60 18996.87 29399.15 15891.46 32898.54 8699.12 19792.87 31497.58 25499.63 2096.21 18599.90 4995.74 23299.54 18399.27 194
N_pmnet97.63 19697.17 21598.99 12999.27 12497.86 15695.98 28693.41 35395.25 27499.47 4298.90 14695.63 20899.85 10596.91 14999.73 10699.27 194
ambc98.24 21998.82 22995.97 23798.62 7799.00 22499.27 7399.21 7596.99 14499.50 30796.55 18899.50 20099.26 197
LFMVS97.20 22896.72 24198.64 17198.72 24296.95 21398.93 5994.14 35099.74 798.78 15899.01 12284.45 32699.73 22397.44 11899.27 23499.25 198
FMVSNet596.01 27695.20 29198.41 20497.53 33196.10 23398.74 6899.50 5997.22 20898.03 22799.04 11169.80 36499.88 6797.27 12699.71 11899.25 198
BH-RMVSNet96.83 25196.58 25197.58 25998.47 28294.05 28496.67 25797.36 31496.70 23197.87 23397.98 27095.14 22399.44 31890.47 34098.58 29999.25 198
112196.73 25596.00 26698.91 13998.95 19997.76 16798.07 13498.73 26787.65 35296.54 30598.13 25694.52 24099.73 22392.38 31899.02 27299.24 201
旧先验198.82 22997.45 18698.76 26198.34 24295.50 21499.01 27499.23 202
test22298.92 20696.93 21495.54 30798.78 25985.72 35696.86 29598.11 26094.43 24199.10 26399.23 202
XVG-ACMP-BASELINE98.56 10498.34 11999.22 9199.54 6898.59 9097.71 17699.46 7797.25 19998.98 12198.99 12597.54 10499.84 12295.88 22399.74 10399.23 202
FMVSNet397.50 20297.24 21298.29 21598.08 30795.83 24197.86 16198.91 23597.89 14298.95 12798.95 13887.06 30599.81 15997.77 10299.69 12999.23 202
无先验95.74 30198.74 26689.38 34599.73 22392.38 31899.22 206
tttt051795.64 28594.98 29697.64 25599.36 11193.81 29798.72 7190.47 36298.08 13098.67 16998.34 24273.88 36199.92 3597.77 10299.51 19399.20 207
pmmvs-eth3d98.47 11998.34 11998.86 14699.30 12197.76 16797.16 22999.28 15095.54 26599.42 4899.19 7897.27 12799.63 26897.89 9499.97 1199.20 207
MS-PatchMatch97.68 19197.75 17497.45 26998.23 29993.78 29897.29 21598.84 24896.10 25098.64 17298.65 20096.04 18999.36 32696.84 16099.14 25599.20 207
新几何198.91 13998.94 20097.76 16798.76 26187.58 35396.75 29998.10 26194.80 23499.78 19592.73 31399.00 27599.20 207
PHI-MVS98.29 13997.95 16199.34 7298.44 28599.16 4098.12 12799.38 10096.01 25498.06 22398.43 23197.80 8499.67 25095.69 23599.58 17199.20 207
Anonymous20240521197.90 16997.50 19399.08 11098.90 21098.25 11298.53 8796.16 33498.87 8199.11 9598.86 15990.40 28899.78 19597.36 12299.31 22699.19 212
CANet97.87 17497.76 17398.19 22297.75 32195.51 24896.76 25299.05 20997.74 15096.93 28698.21 25295.59 21099.89 5897.86 9999.93 2599.19 212
XVG-OURS98.53 11398.34 11999.11 10499.50 7798.82 7295.97 28799.50 5997.30 19499.05 10998.98 12999.35 799.32 33195.72 23399.68 13499.18 214
WTY-MVS96.67 25896.27 26497.87 24198.81 23194.61 27496.77 25197.92 30394.94 27997.12 27797.74 28591.11 28499.82 14693.89 28698.15 31199.18 214
Vis-MVSNet (Re-imp)97.46 20797.16 21698.34 21099.55 6596.10 23398.94 5898.44 28298.32 11098.16 21498.62 20988.76 29899.73 22393.88 28799.79 8299.18 214
TinyColmap97.89 17197.98 15997.60 25798.86 21994.35 27896.21 28099.44 8397.45 17999.06 10498.88 15597.99 7399.28 33794.38 27299.58 17199.18 214
testdata98.09 22698.93 20295.40 25398.80 25690.08 34297.45 26698.37 23995.26 22099.70 23493.58 29598.95 28099.17 218
lupinMVS97.06 23896.86 23397.65 25398.88 21693.89 29595.48 31197.97 30193.53 30698.16 21497.58 29493.81 25599.91 4596.77 16599.57 17599.17 218
Patchmtry97.35 21596.97 22698.50 19797.31 34096.47 22598.18 12198.92 23398.95 7898.78 15899.37 5485.44 32099.85 10595.96 22199.83 6299.17 218
sss97.21 22796.93 22798.06 23198.83 22695.22 25896.75 25398.48 28194.49 28697.27 27497.90 27692.77 27299.80 16896.57 18299.32 22499.16 221
CSCG98.68 8698.50 9099.20 9299.45 9898.63 8498.56 8499.57 3597.87 14398.85 14898.04 26797.66 9399.84 12296.72 17199.81 6999.13 222
ETH3D cwj APD-0.1697.55 20097.00 22499.19 9398.51 27998.64 8396.85 24699.13 19594.19 29697.65 24898.40 23395.78 20499.81 15993.37 30199.16 25199.12 223
MVS_111021_LR98.30 13698.12 14798.83 14999.16 15498.03 13796.09 28499.30 14197.58 16298.10 22098.24 24998.25 5099.34 32896.69 17499.65 14699.12 223
miper_lstm_enhance97.18 23097.16 21697.25 27898.16 30292.85 31195.15 32099.31 13297.25 19998.74 16598.78 17790.07 28999.78 19597.19 12999.80 7799.11 225
原ACMM198.35 20998.90 21096.25 23198.83 25392.48 31896.07 32198.10 26195.39 21899.71 23292.61 31698.99 27699.08 226
QAPM97.31 21896.81 23798.82 15098.80 23397.49 18399.06 4899.19 17590.22 34097.69 24699.16 8696.91 14899.90 4990.89 33899.41 21099.07 227
PAPM_NR96.82 25396.32 26198.30 21499.07 17496.69 22297.48 20198.76 26195.81 26196.61 30496.47 32894.12 25199.17 34490.82 33997.78 32199.06 228
eth_miper_zixun_eth97.23 22697.25 21097.17 28098.00 31192.77 31394.71 32999.18 17997.27 19798.56 18798.74 18391.89 28199.69 23897.06 13999.81 6999.05 229
D2MVS97.84 18197.84 17097.83 24399.14 15994.74 26896.94 23898.88 23995.84 25998.89 14098.96 13494.40 24399.69 23897.55 11299.95 1699.05 229
cl_fuxian97.36 21497.37 20397.31 27498.09 30693.25 30495.01 32399.16 18897.05 21498.77 16198.72 18692.88 27099.64 26596.93 14899.76 9999.05 229
PLCcopyleft94.65 1696.51 26395.73 27298.85 14798.75 23897.91 15296.42 27099.06 20590.94 33795.59 32797.38 30794.41 24299.59 28190.93 33698.04 31899.05 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 5398.90 4398.91 13999.67 4097.82 16299.00 5299.44 8399.45 2899.51 3899.24 7298.20 5799.86 9195.92 22299.69 12999.04 233
CANet_DTU97.26 22297.06 22197.84 24297.57 32894.65 27396.19 28298.79 25797.23 20595.14 34098.24 24993.22 26299.84 12297.34 12399.84 5699.04 233
PM-MVS98.82 6098.72 6099.12 10299.64 4698.54 9697.98 14999.68 1597.62 15899.34 6199.18 8097.54 10499.77 20197.79 10099.74 10399.04 233
TSAR-MVS + GP.98.18 15097.98 15998.77 16198.71 24597.88 15496.32 27598.66 27196.33 24299.23 8398.51 22197.48 11599.40 32197.16 13199.46 20599.02 236
cl-mvsnet197.02 24296.84 23597.58 25997.82 31994.03 28694.66 33299.16 18897.04 21598.63 17398.71 18788.69 29999.69 23897.00 14199.81 6999.01 237
GA-MVS95.86 28095.32 28897.49 26798.60 26794.15 28393.83 34997.93 30295.49 26896.68 30097.42 30583.21 33499.30 33496.22 20998.55 30099.01 237
OMC-MVS97.88 17397.49 19499.04 12298.89 21598.63 8496.94 23899.25 15995.02 27698.53 19298.51 22197.27 12799.47 31393.50 29899.51 19399.01 237
cl-mvsnet____97.02 24296.83 23697.58 25997.82 31994.04 28594.66 33299.16 18897.04 21598.63 17398.71 18788.68 30099.69 23897.00 14199.81 6999.00 240
pmmvs497.58 19997.28 20998.51 19598.84 22496.93 21495.40 31498.52 27993.60 30598.61 17798.65 20095.10 22499.60 27796.97 14699.79 8298.99 241
MVS_030497.64 19497.35 20598.52 19397.87 31796.69 22298.59 8198.05 30097.44 18193.74 35498.85 16293.69 25999.88 6798.11 8199.81 6998.98 242
EPNet_dtu94.93 29994.78 30095.38 32593.58 36587.68 34896.78 25095.69 34097.35 18989.14 36398.09 26388.15 30399.49 30894.95 25399.30 22998.98 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 26595.77 27098.69 16899.48 9297.43 18797.84 16399.55 4681.42 36196.51 30898.58 21595.53 21199.67 25093.41 30099.58 17198.98 242
PVSNet_Blended96.88 24996.68 24497.47 26898.92 20693.77 29994.71 32999.43 8990.98 33697.62 25097.36 30996.82 15499.67 25094.73 25799.56 18098.98 242
PAPR95.29 29194.47 30197.75 24897.50 33595.14 26194.89 32698.71 26991.39 33295.35 33895.48 34594.57 23999.14 34784.95 35397.37 32998.97 246
thisisatest053095.27 29294.45 30297.74 24999.19 14394.37 27797.86 16190.20 36397.17 20998.22 21197.65 29073.53 36299.90 4996.90 15499.35 22098.95 247
mvs_anonymous97.83 18398.16 14296.87 29398.18 30191.89 32497.31 21498.90 23697.37 18798.83 15199.46 4396.28 18499.79 18398.90 3798.16 31098.95 247
baseline195.96 27895.44 28397.52 26698.51 27993.99 28998.39 10596.09 33698.21 12098.40 20597.76 28486.88 30699.63 26895.42 24589.27 36398.95 247
CLD-MVS97.49 20497.16 21698.48 19899.07 17497.03 20994.71 32999.21 16894.46 28898.06 22397.16 31597.57 10299.48 31194.46 26599.78 8698.95 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 16198.14 14697.64 25598.58 27095.19 25997.48 20199.23 16697.47 17297.90 23198.62 20997.04 13898.81 35697.55 11299.41 21098.94 251
DELS-MVS98.27 14098.20 13598.48 19898.86 21996.70 22195.60 30699.20 17097.73 15198.45 19698.71 18797.50 11099.82 14698.21 7799.59 16598.93 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl-mvsnet295.79 28295.39 28696.98 28796.77 34992.79 31294.40 34098.53 27894.59 28597.89 23298.17 25582.82 33899.24 33996.37 20099.03 26998.92 253
LS3D98.63 9498.38 11499.36 6497.25 34199.38 599.12 4399.32 12799.21 4598.44 19798.88 15597.31 12399.80 16896.58 18099.34 22298.92 253
CMPMVSbinary75.91 2396.29 27095.44 28398.84 14896.25 35798.69 8297.02 23399.12 19788.90 34797.83 23698.86 15989.51 29398.90 35491.92 32199.51 19398.92 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 9298.48 9599.11 10498.85 22198.51 9898.49 9499.83 398.37 10699.69 1799.46 4398.21 5699.92 3594.13 27999.30 22998.91 256
DPM-MVS96.32 26995.59 27898.51 19598.76 23697.21 20094.54 33898.26 28991.94 32496.37 31397.25 31193.06 26799.43 31991.42 33098.74 28798.89 257
test_yl96.69 25696.29 26297.90 23898.28 29495.24 25697.29 21597.36 31498.21 12098.17 21297.86 27786.27 31099.55 29394.87 25498.32 30398.89 257
DCV-MVSNet96.69 25696.29 26297.90 23898.28 29495.24 25697.29 21597.36 31498.21 12098.17 21297.86 27786.27 31099.55 29394.87 25498.32 30398.89 257
UnsupCasMVSNet_bld97.30 21996.92 22998.45 20199.28 12396.78 22096.20 28199.27 15395.42 27098.28 20998.30 24693.16 26399.71 23294.99 25197.37 32998.87 260
Effi-MVS+98.02 16197.82 17198.62 17698.53 27897.19 20297.33 21299.68 1597.30 19496.68 30097.46 30398.56 3399.80 16896.63 17898.20 30798.86 261
test_040298.76 7098.71 6298.93 13699.56 6298.14 12598.45 10199.34 12099.28 4298.95 12798.91 14398.34 4899.79 18395.63 23999.91 4098.86 261
PatchmatchNetpermissive95.58 28695.67 27595.30 32697.34 33887.32 34997.65 18396.65 32995.30 27397.07 28198.69 19184.77 32399.75 21594.97 25298.64 29598.83 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CL-MVSNet_2432*160097.44 21097.22 21398.08 22998.57 27295.78 24394.30 34298.79 25796.58 23598.60 17998.19 25494.74 23799.64 26596.41 19998.84 28398.82 264
miper_ehance_all_eth97.06 23897.03 22297.16 28297.83 31893.06 30694.66 33299.09 20195.99 25598.69 16798.45 23092.73 27399.61 27696.79 16299.03 26998.82 264
MIMVSNet96.62 26196.25 26597.71 25099.04 18194.66 27299.16 3896.92 32697.23 20597.87 23399.10 9886.11 31499.65 26391.65 32599.21 24398.82 264
hse-mvs297.46 20797.07 22098.64 17198.73 24097.33 19097.45 20597.64 31199.11 5698.58 18397.98 27088.65 30199.79 18398.11 8197.39 32898.81 267
GSMVS98.81 267
sam_mvs184.74 32498.81 267
SCA96.41 26896.66 24795.67 31798.24 29788.35 34595.85 29796.88 32796.11 24997.67 24798.67 19593.10 26599.85 10594.16 27499.22 24198.81 267
Patchmatch-RL test97.26 22297.02 22397.99 23699.52 7295.53 24796.13 28399.71 1097.47 17299.27 7399.16 8684.30 32999.62 27097.89 9499.77 9098.81 267
AUN-MVS96.24 27395.45 28298.60 17998.70 24997.22 19897.38 20897.65 30995.95 25695.53 33597.96 27482.11 34399.79 18396.31 20497.44 32698.80 272
ITE_SJBPF98.87 14499.22 13498.48 10099.35 11497.50 16998.28 20998.60 21397.64 9799.35 32793.86 28899.27 23498.79 273
tpm94.67 30194.34 30595.66 31897.68 32788.42 34497.88 15894.90 34294.46 28896.03 32398.56 21778.66 35399.79 18395.88 22395.01 35498.78 274
Patchmatch-test96.55 26296.34 26097.17 28098.35 28993.06 30698.40 10497.79 30497.33 19098.41 20198.67 19583.68 33399.69 23895.16 24899.31 22698.77 275
PMMVS96.51 26395.98 26798.09 22697.53 33195.84 24094.92 32598.84 24891.58 32896.05 32295.58 34295.68 20799.66 25895.59 24198.09 31498.76 276
test_method79.78 33479.50 33780.62 34880.21 36945.76 37170.82 36398.41 28531.08 36680.89 36797.71 28684.85 32297.37 36291.51 32980.03 36498.75 277
ab-mvs98.41 12598.36 11698.59 18099.19 14397.23 19699.32 1598.81 25497.66 15598.62 17599.40 5396.82 15499.80 16895.88 22399.51 19398.75 277
CHOSEN 280x42095.51 28995.47 28095.65 31998.25 29688.27 34693.25 35398.88 23993.53 30694.65 34397.15 31686.17 31299.93 2897.41 12099.93 2598.73 279
MVS_Test98.18 15098.36 11697.67 25198.48 28194.73 26998.18 12199.02 21897.69 15398.04 22699.11 9697.22 13399.56 29098.57 5898.90 28298.71 280
PVSNet93.40 1795.67 28495.70 27395.57 32098.83 22688.57 34392.50 35697.72 30692.69 31696.49 31196.44 32993.72 25899.43 31993.61 29399.28 23298.71 280
alignmvs97.35 21596.88 23298.78 15998.54 27698.09 12797.71 17697.69 30899.20 4897.59 25395.90 33888.12 30499.55 29398.18 7998.96 27998.70 282
ADS-MVSNet295.43 29094.98 29696.76 29998.14 30391.74 32597.92 15497.76 30590.23 33896.51 30898.91 14385.61 31799.85 10592.88 30796.90 33798.69 283
ADS-MVSNet95.24 29394.93 29896.18 30898.14 30390.10 33997.92 15497.32 31790.23 33896.51 30898.91 14385.61 31799.74 21992.88 30796.90 33798.69 283
MDTV_nov1_ep13_2view74.92 36997.69 17890.06 34397.75 24285.78 31693.52 29698.69 283
MSDG97.71 18997.52 19298.28 21698.91 20996.82 21694.42 33999.37 10497.65 15698.37 20698.29 24797.40 11999.33 33094.09 28099.22 24198.68 286
miper_enhance_ethall96.01 27695.74 27196.81 29796.41 35592.27 32193.69 35198.89 23891.14 33598.30 20797.35 31090.58 28699.58 28696.31 20499.03 26998.60 287
Effi-MVS+-dtu98.26 14297.90 16699.35 6998.02 30999.49 298.02 14399.16 18898.29 11497.64 24997.99 26996.44 17699.95 1596.66 17698.93 28198.60 287
new_pmnet96.99 24696.76 23997.67 25198.72 24294.89 26695.95 29198.20 29292.62 31798.55 18998.54 21894.88 23099.52 30293.96 28399.44 20898.59 289
EIA-MVS98.00 16397.74 17598.80 15498.72 24298.09 12798.05 13899.60 2597.39 18596.63 30295.55 34397.68 9199.80 16896.73 17099.27 23498.52 290
PatchMatch-RL97.24 22596.78 23898.61 17899.03 18497.83 15996.36 27399.06 20593.49 30897.36 27297.78 28295.75 20599.49 30893.44 29998.77 28698.52 290
ET-MVSNet_ETH3D94.30 30793.21 31797.58 25998.14 30394.47 27694.78 32893.24 35594.72 28389.56 36295.87 33978.57 35599.81 15996.91 14997.11 33698.46 292
canonicalmvs98.34 13398.26 12898.58 18198.46 28397.82 16298.96 5799.46 7799.19 5297.46 26595.46 34698.59 3199.46 31598.08 8598.71 29198.46 292
TAPA-MVS96.21 1196.63 26095.95 26898.65 17098.93 20298.09 12796.93 24099.28 15083.58 35998.13 21797.78 28296.13 18699.40 32193.52 29699.29 23198.45 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-untuned96.83 25196.75 24097.08 28398.74 23993.33 30396.71 25598.26 28996.72 22998.44 19797.37 30895.20 22199.47 31391.89 32297.43 32798.44 295
pmmvs395.03 29794.40 30396.93 28997.70 32592.53 31695.08 32197.71 30788.57 34997.71 24498.08 26479.39 35199.82 14696.19 21199.11 26298.43 296
DROMVSNet98.85 5898.81 5198.97 13099.08 17398.61 8798.99 5599.81 498.54 10297.73 24398.07 26598.50 3699.88 6798.81 4499.72 11398.42 297
DP-MVS Recon97.33 21796.92 22998.57 18499.09 16997.99 13996.79 24999.35 11493.18 30997.71 24498.07 26595.00 22699.31 33293.97 28299.13 25898.42 297
Fast-Effi-MVS+-dtu98.27 14098.09 14998.81 15298.43 28698.11 12697.61 18799.50 5998.64 9097.39 27097.52 29898.12 6399.95 1596.90 15498.71 29198.38 299
LF4IMVS97.90 16997.69 17998.52 19399.17 15297.66 17497.19 22699.47 7596.31 24497.85 23598.20 25396.71 16499.52 30294.62 26099.72 11398.38 299
Fast-Effi-MVS+97.67 19297.38 20298.57 18498.71 24597.43 18797.23 21999.45 8094.82 28296.13 31796.51 32598.52 3599.91 4596.19 21198.83 28498.37 301
test0.0.03 194.51 30293.69 31196.99 28696.05 35893.61 30294.97 32493.49 35296.17 24697.57 25694.88 35482.30 33999.01 35193.60 29494.17 35998.37 301
baseline293.73 31692.83 32296.42 30397.70 32591.28 33496.84 24889.77 36493.96 30292.44 35795.93 33779.14 35299.77 20192.94 30596.76 34198.21 303
thisisatest051594.12 31193.16 31896.97 28898.60 26792.90 31093.77 35090.61 36194.10 29896.91 28995.87 33974.99 36099.80 16894.52 26399.12 26198.20 304
EPMVS93.72 31793.27 31695.09 32896.04 35987.76 34798.13 12585.01 36794.69 28496.92 28798.64 20378.47 35799.31 33295.04 24996.46 34398.20 304
dp93.47 31993.59 31393.13 34596.64 35081.62 36697.66 18196.42 33292.80 31596.11 31898.64 20378.55 35699.59 28193.31 30292.18 36298.16 306
CNLPA97.17 23196.71 24298.55 18998.56 27398.05 13696.33 27498.93 23096.91 22197.06 28297.39 30694.38 24499.45 31791.66 32499.18 25098.14 307
HY-MVS95.94 1395.90 27995.35 28797.55 26397.95 31294.79 26798.81 6796.94 32592.28 32195.17 33998.57 21689.90 29199.75 21591.20 33397.33 33398.10 308
CostFormer93.97 31393.78 31094.51 33297.53 33185.83 35597.98 14995.96 33789.29 34694.99 34298.63 20778.63 35499.62 27094.54 26296.50 34298.09 309
AdaColmapbinary97.14 23396.71 24298.46 20098.34 29097.80 16596.95 23798.93 23095.58 26496.92 28797.66 28995.87 20299.53 29890.97 33599.14 25598.04 310
KD-MVS_2432*160092.87 32491.99 32895.51 32291.37 36689.27 34194.07 34498.14 29595.42 27097.25 27596.44 32967.86 36699.24 33991.28 33196.08 34898.02 311
miper_refine_blended92.87 32491.99 32895.51 32291.37 36689.27 34194.07 34498.14 29595.42 27097.25 27596.44 32967.86 36699.24 33991.28 33196.08 34898.02 311
TESTMET0.1,192.19 33191.77 33193.46 34196.48 35382.80 36494.05 34691.52 36094.45 29094.00 35194.88 35466.65 37099.56 29095.78 23198.11 31398.02 311
PCF-MVS92.86 1894.36 30493.00 32198.42 20398.70 24997.56 18093.16 35499.11 19979.59 36297.55 25797.43 30492.19 27799.73 22379.85 36299.45 20797.97 314
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 23596.68 24498.32 21198.32 29197.16 20598.86 6499.37 10489.48 34496.29 31599.15 9096.56 16999.90 4992.90 30699.20 24497.89 315
Gipumacopyleft99.03 3699.16 3098.64 17199.94 298.51 9899.32 1599.75 899.58 2298.60 17999.62 2198.22 5599.51 30697.70 10899.73 10697.89 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DWT-MVSNet_test92.75 32692.05 32794.85 32996.48 35387.21 35097.83 16494.99 34192.22 32292.72 35694.11 36070.75 36399.46 31595.01 25094.33 35897.87 317
PVSNet_089.98 2191.15 33390.30 33693.70 33997.72 32284.34 36290.24 36097.42 31290.20 34193.79 35293.09 36290.90 28598.89 35586.57 35172.76 36597.87 317
test-LLR93.90 31493.85 30894.04 33596.53 35184.62 35994.05 34692.39 35796.17 24694.12 34895.07 34882.30 33999.67 25095.87 22698.18 30897.82 319
test-mter92.33 32991.76 33294.04 33596.53 35184.62 35994.05 34692.39 35794.00 30194.12 34895.07 34865.63 37299.67 25095.87 22698.18 30897.82 319
tpm293.09 32392.58 32494.62 33197.56 32986.53 35297.66 18195.79 33986.15 35594.07 35098.23 25175.95 35899.53 29890.91 33796.86 34097.81 321
CR-MVSNet96.28 27195.95 26897.28 27697.71 32394.22 27998.11 12898.92 23392.31 32096.91 28999.37 5485.44 32099.81 15997.39 12197.36 33197.81 321
RPMNet97.02 24296.93 22797.30 27597.71 32394.22 27998.11 12899.30 14199.37 3496.91 28999.34 6086.72 30799.87 8497.53 11597.36 33197.81 321
tpmrst95.07 29695.46 28193.91 33797.11 34384.36 36197.62 18596.96 32394.98 27796.35 31498.80 17485.46 31999.59 28195.60 24096.23 34697.79 324
PAPM91.88 33290.34 33596.51 30198.06 30892.56 31592.44 35797.17 31986.35 35490.38 36196.01 33586.61 30899.21 34270.65 36595.43 35297.75 325
FPMVS93.44 32092.23 32597.08 28399.25 12897.86 15695.61 30597.16 32092.90 31393.76 35398.65 20075.94 35995.66 36379.30 36397.49 32497.73 326
MAR-MVS96.47 26695.70 27398.79 15697.92 31499.12 5398.28 11298.60 27592.16 32395.54 33496.17 33494.77 23699.52 30289.62 34398.23 30597.72 327
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 15997.86 16998.56 18898.69 25398.07 13397.51 19999.50 5998.10 12997.50 26295.51 34498.41 4199.88 6796.27 20799.24 23997.71 328
thres600view794.45 30393.83 30996.29 30599.06 17891.53 32797.99 14794.24 34898.34 10897.44 26795.01 35079.84 34799.67 25084.33 35498.23 30597.66 329
thres40094.14 31093.44 31496.24 30798.93 20291.44 32997.60 18894.29 34697.94 13797.10 27894.31 35879.67 34999.62 27083.05 35698.08 31597.66 329
IB-MVS91.63 1992.24 33090.90 33496.27 30697.22 34291.24 33594.36 34193.33 35492.37 31992.24 35894.58 35766.20 37199.89 5893.16 30494.63 35697.66 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 29895.25 28994.33 33396.39 35685.87 35398.08 13396.83 32895.46 26995.51 33698.69 19185.91 31599.53 29894.16 27496.23 34697.58 332
cascas94.79 30094.33 30696.15 31296.02 36092.36 32092.34 35899.26 15885.34 35795.08 34194.96 35392.96 26998.53 35894.41 27198.59 29897.56 333
mvs-test197.83 18397.48 19798.89 14298.02 30999.20 3297.20 22399.16 18898.29 11496.46 31297.17 31496.44 17699.92 3596.66 17697.90 32097.54 334
PatchT96.65 25996.35 25997.54 26497.40 33695.32 25497.98 14996.64 33099.33 3896.89 29399.42 4984.32 32899.81 15997.69 11097.49 32497.48 335
TR-MVS95.55 28795.12 29496.86 29697.54 33093.94 29096.49 26696.53 33194.36 29397.03 28496.61 32494.26 24799.16 34586.91 35096.31 34597.47 336
JIA-IIPM95.52 28895.03 29597.00 28596.85 34794.03 28696.93 24095.82 33899.20 4894.63 34499.71 1283.09 33599.60 27794.42 26894.64 35597.36 337
BH-w/o95.13 29594.89 29995.86 31398.20 30091.31 33295.65 30497.37 31393.64 30496.52 30795.70 34193.04 26899.02 34988.10 34795.82 35097.24 338
tpm cat193.29 32193.13 32093.75 33897.39 33784.74 35897.39 20797.65 30983.39 36094.16 34798.41 23282.86 33799.39 32391.56 32895.35 35397.14 339
CS-MVS98.16 15498.22 13397.97 23798.56 27397.01 21198.10 13099.70 1397.45 17997.29 27397.19 31297.72 8999.80 16898.37 6999.62 15497.11 340
xiu_mvs_v1_base_debu97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
xiu_mvs_v1_base97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
xiu_mvs_v1_base_debi97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
PMVScopyleft91.26 2097.86 17597.94 16397.65 25399.71 3097.94 15198.52 8898.68 27098.99 7197.52 26099.35 5897.41 11898.18 36091.59 32799.67 14096.82 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 28395.60 27796.17 30997.53 33192.75 31498.07 13498.31 28891.22 33394.25 34696.68 32395.53 21199.03 34891.64 32697.18 33496.74 345
MVS-HIRNet94.32 30595.62 27690.42 34798.46 28375.36 36896.29 27689.13 36595.25 27495.38 33799.75 792.88 27099.19 34394.07 28199.39 21396.72 346
OpenMVS_ROBcopyleft95.38 1495.84 28195.18 29297.81 24498.41 28797.15 20697.37 20998.62 27483.86 35898.65 17198.37 23994.29 24699.68 24788.41 34698.62 29796.60 347
thres100view90094.19 30893.67 31295.75 31699.06 17891.35 33198.03 14194.24 34898.33 10997.40 26994.98 35279.84 34799.62 27083.05 35698.08 31596.29 348
tfpn200view994.03 31293.44 31495.78 31598.93 20291.44 32997.60 18894.29 34697.94 13797.10 27894.31 35879.67 34999.62 27083.05 35698.08 31596.29 348
CS-MVS-test97.75 18797.70 17897.90 23898.30 29397.66 17497.93 15299.65 1996.91 22196.27 31696.28 33397.00 14399.80 16897.64 11199.28 23296.24 350
MVS93.19 32292.09 32696.50 30296.91 34594.03 28698.07 13498.06 29968.01 36394.56 34596.48 32795.96 19899.30 33483.84 35596.89 33996.17 351
gg-mvs-nofinetune92.37 32891.20 33395.85 31495.80 36292.38 31999.31 1881.84 36999.75 591.83 35999.74 868.29 36599.02 34987.15 34997.12 33596.16 352
xiu_mvs_v2_base97.16 23297.49 19496.17 30998.54 27692.46 31795.45 31298.84 24897.25 19997.48 26496.49 32698.31 4999.90 4996.34 20398.68 29396.15 353
PS-MVSNAJ97.08 23697.39 20196.16 31198.56 27392.46 31795.24 31798.85 24797.25 19997.49 26395.99 33698.07 6499.90 4996.37 20098.67 29496.12 354
E-PMN94.17 30994.37 30493.58 34096.86 34685.71 35690.11 36197.07 32198.17 12697.82 23897.19 31284.62 32598.94 35289.77 34297.68 32396.09 355
EMVS93.83 31594.02 30793.23 34496.83 34884.96 35789.77 36296.32 33397.92 13997.43 26896.36 33286.17 31298.93 35387.68 34897.73 32295.81 356
MVEpermissive83.40 2292.50 32791.92 33094.25 33498.83 22691.64 32692.71 35583.52 36895.92 25786.46 36695.46 34695.20 22195.40 36480.51 36198.64 29595.73 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 31793.14 31995.46 32498.66 26391.29 33396.61 26094.63 34497.39 18596.83 29693.71 36179.88 34699.56 29082.40 35998.13 31295.54 358
API-MVS97.04 24196.91 23197.42 27197.88 31698.23 11798.18 12198.50 28097.57 16397.39 27096.75 32296.77 15899.15 34690.16 34199.02 27294.88 359
GG-mvs-BLEND94.76 33094.54 36492.13 32399.31 1880.47 37088.73 36491.01 36467.59 36898.16 36182.30 36094.53 35793.98 360
DeepMVS_CXcopyleft93.44 34298.24 29794.21 28194.34 34564.28 36491.34 36094.87 35689.45 29592.77 36677.54 36493.14 36093.35 361
tmp_tt78.77 33578.73 33878.90 34958.45 37074.76 37094.20 34378.26 37139.16 36586.71 36592.82 36380.50 34575.19 36786.16 35292.29 36186.74 362
wuyk23d96.06 27597.62 18791.38 34698.65 26498.57 9298.85 6596.95 32496.86 22499.90 499.16 8699.18 1198.40 35989.23 34499.77 9077.18 363
test12317.04 33820.11 3417.82 35010.25 3724.91 37294.80 3274.47 3734.93 36710.00 36924.28 3679.69 3733.64 36810.14 36612.43 36714.92 364
testmvs17.12 33720.53 3406.87 35112.05 3714.20 37393.62 3526.73 3724.62 36810.41 36824.33 3668.28 3743.56 3699.69 36715.07 36612.86 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.66 33632.88 3390.00 3520.00 3730.00 3740.00 36499.10 2000.00 3690.00 37097.58 29499.21 100.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas8.17 33910.90 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37098.07 640.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.12 34010.83 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37097.48 3010.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
ZD-MVS99.01 18898.84 6999.07 20494.10 29898.05 22598.12 25996.36 18299.86 9192.70 31499.19 248
test_241102_ONE99.49 8499.17 3699.31 13297.98 13499.66 2098.90 14698.36 4499.48 311
9.1497.78 17299.07 17497.53 19699.32 12795.53 26798.54 19198.70 19097.58 10199.76 20894.32 27399.46 205
save fliter99.11 16297.97 14496.53 26299.02 21898.24 117
test072699.50 7799.21 2698.17 12499.35 11497.97 13599.26 7799.06 10197.61 99
test_part299.36 11199.10 5699.05 109
sam_mvs84.29 330
MTGPAbinary99.20 170
test_post197.59 19020.48 36983.07 33699.66 25894.16 274
test_post21.25 36883.86 33299.70 234
patchmatchnet-post98.77 17984.37 32799.85 105
MTMP97.93 15291.91 359
gm-plane-assit94.83 36381.97 36588.07 35194.99 35199.60 27791.76 323
TEST998.71 24598.08 13195.96 28999.03 21491.40 33195.85 32497.53 29696.52 17199.76 208
test_898.67 25898.01 13895.91 29499.02 21891.64 32695.79 32697.50 29996.47 17499.76 208
agg_prior98.68 25697.99 13999.01 22195.59 32799.77 201
test_prior497.97 14495.86 295
test_prior295.74 30196.48 23796.11 31897.63 29295.92 20094.16 27499.20 244
旧先验295.76 29988.56 35097.52 26099.66 25894.48 264
新几何295.93 292
原ACMM295.53 308
testdata299.79 18392.80 311
segment_acmp97.02 141
testdata195.44 31396.32 243
plane_prior799.19 14397.87 155
plane_prior698.99 19397.70 17394.90 227
plane_prior497.98 270
plane_prior397.78 16697.41 18397.79 239
plane_prior297.77 17098.20 123
plane_prior199.05 180
plane_prior97.65 17697.07 23296.72 22999.36 218
n20.00 374
nn0.00 374
door-mid99.57 35
test1198.87 241
door99.41 93
HQP5-MVS96.79 217
HQP-NCC98.67 25896.29 27696.05 25195.55 331
ACMP_Plane98.67 25896.29 27696.05 25195.55 331
BP-MVS92.82 309
HQP3-MVS99.04 21299.26 237
HQP2-MVS93.84 253
NP-MVS98.84 22497.39 18996.84 320
MDTV_nov1_ep1395.22 29097.06 34483.20 36397.74 17496.16 33494.37 29296.99 28598.83 16883.95 33199.53 29893.90 28597.95 319
ACMMP++_ref99.77 90
ACMMP++99.68 134
Test By Simon96.52 171