This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 13199.20 3999.65 2299.48 2599.92 399.71 1298.07 6799.96 1099.53 9100.00 199.93 1
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8399.39 1399.56 4499.11 6099.70 1599.73 1099.00 1599.97 499.26 1899.98 999.89 2
mvs_tets99.63 599.67 599.49 4999.88 798.61 9499.34 1699.71 1399.27 4799.90 499.74 899.68 299.97 499.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9499.28 3199.66 2199.09 7099.89 699.68 1499.53 499.97 499.50 1099.99 599.87 4
EU-MVSNet97.66 19698.50 9595.13 33599.63 5085.84 36498.35 11898.21 29998.23 12799.54 3199.46 4695.02 23199.68 25698.24 8099.87 5799.87 4
UA-Net99.47 1199.40 1499.70 299.49 8799.29 1899.80 399.72 1299.82 399.04 11799.81 398.05 7099.96 1098.85 4499.99 599.86 6
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
RRT_test8_iter0595.24 29895.13 29895.57 32797.32 35087.02 36197.99 15599.41 9698.06 14199.12 9999.05 11466.85 37799.85 11398.93 3999.47 21399.84 8
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6599.34 1699.69 1698.93 8799.65 2399.72 1198.93 1999.95 1799.11 27100.00 199.82 9
ANet_high99.57 799.67 599.28 8399.89 698.09 13599.14 4799.93 199.82 399.93 299.81 399.17 1299.94 2599.31 16100.00 199.82 9
PS-CasMVS99.40 1899.33 2099.62 699.71 3299.10 6299.29 2799.53 5699.53 2399.46 4499.41 5598.23 5399.95 1798.89 4299.95 1699.81 11
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11299.30 2699.57 3799.61 1999.40 5499.50 3997.12 14199.85 11399.02 3599.94 2499.80 12
CP-MVSNet99.21 2999.09 3699.56 2499.65 4598.96 7199.13 4899.34 12399.42 3299.33 6699.26 7497.01 14999.94 2598.74 5399.93 2899.79 13
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 3099.90 299.86 799.78 599.58 399.95 1799.00 3699.95 1699.78 14
CVMVSNet96.25 27797.21 21793.38 35299.10 17580.56 37897.20 23198.19 30296.94 22899.00 12499.02 12189.50 30099.80 17996.36 21199.59 17499.78 14
Anonymous2023121199.27 2599.27 2499.26 8999.29 13098.18 12899.49 899.51 6099.70 899.80 999.68 1496.84 15799.83 14699.21 2399.91 4399.77 16
PEN-MVS99.41 1799.34 1999.62 699.73 2599.14 5399.29 2799.54 5299.62 1799.56 2999.42 5298.16 6399.96 1098.78 4899.93 2899.77 16
WR-MVS_H99.33 2399.22 2799.65 599.71 3299.24 2499.32 1899.55 4899.46 2899.50 4099.34 6497.30 12999.93 3098.90 4099.93 2899.77 16
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 6199.90 199.78 899.63 1499.78 1099.67 1699.48 699.81 17099.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
patch_mono-298.51 12098.63 7798.17 22999.38 11394.78 27497.36 21799.69 1698.16 13798.49 20399.29 6997.06 14499.97 498.29 7999.91 4399.76 20
nrg03099.40 1899.35 1799.54 2999.58 5399.13 5798.98 6499.48 7299.68 999.46 4499.26 7498.62 3199.73 23299.17 2699.92 3799.76 20
FIs99.14 3299.09 3699.29 8199.70 3898.28 11899.13 4899.52 5999.48 2599.24 8699.41 5596.79 16399.82 15698.69 5799.88 5499.76 20
v7n99.53 899.57 899.41 6199.88 798.54 10299.45 999.61 2699.66 1199.68 1999.66 1798.44 4199.95 1799.73 299.96 1499.75 23
APDe-MVS98.99 4198.79 5699.60 1399.21 14599.15 4898.87 7099.48 7297.57 17399.35 6399.24 7897.83 8499.89 6397.88 10399.70 13199.75 23
test_part197.91 17297.46 20299.27 8698.80 24398.18 12899.07 5499.36 11199.75 599.63 2699.49 4282.20 35099.89 6398.87 4399.95 1699.74 25
DTE-MVSNet99.43 1599.35 1799.66 499.71 3299.30 1799.31 2299.51 6099.64 1299.56 2999.46 4698.23 5399.97 498.78 4899.93 2899.72 26
MSC_two_6792asdad99.32 7898.43 29598.37 11298.86 25299.89 6397.14 14099.60 17099.71 27
No_MVS99.32 7898.43 29598.37 11298.86 25299.89 6397.14 14099.60 17099.71 27
PMMVS298.07 16298.08 15698.04 24099.41 11094.59 28294.59 34499.40 9997.50 17998.82 16198.83 17696.83 15999.84 13197.50 12299.81 7699.71 27
Baseline_NR-MVSNet98.98 4598.86 4999.36 6599.82 1698.55 9997.47 21099.57 3799.37 3699.21 9099.61 2396.76 16699.83 14698.06 9199.83 6999.71 27
XXY-MVS99.14 3299.15 3299.10 11399.76 2397.74 17898.85 7399.62 2498.48 11199.37 5999.49 4298.75 2499.86 9898.20 8399.80 8499.71 27
test_0728_THIRD98.17 13499.08 10799.02 12197.89 8099.88 7497.07 14699.71 12699.70 32
MSP-MVS98.40 13298.00 16299.61 999.57 5799.25 2398.57 9299.35 11797.55 17699.31 7497.71 29694.61 24499.88 7496.14 22499.19 25899.70 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_298.78 7099.11 3397.78 25199.56 6493.67 30899.06 5699.86 499.50 2499.66 2099.26 7497.21 13999.99 298.00 9699.91 4399.68 34
test_0728_SECOND99.60 1399.50 8099.23 2598.02 15199.32 13099.88 7496.99 15299.63 15999.68 34
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6799.63 699.58 3099.44 3099.78 1099.76 696.39 18499.92 3999.44 1399.92 3799.68 34
CHOSEN 1792x268897.49 20797.14 22298.54 19899.68 4196.09 24196.50 27399.62 2491.58 33798.84 15698.97 13992.36 28299.88 7496.76 17599.95 1699.67 37
IU-MVS99.49 8799.15 4898.87 24792.97 32099.41 5196.76 17599.62 16299.66 38
test_241102_TWO99.30 14698.03 14299.26 8199.02 12197.51 11499.88 7496.91 15899.60 17099.66 38
DPE-MVScopyleft98.59 10698.26 13399.57 1899.27 13399.15 4897.01 24299.39 10197.67 16499.44 4898.99 13397.53 11199.89 6395.40 25599.68 14299.66 38
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9799.27 3399.57 3799.39 3499.75 1299.62 2199.17 1299.83 14699.06 3099.62 16299.66 38
EI-MVSNet-UG-set98.69 8698.71 6598.62 18299.10 17596.37 23397.23 22798.87 24799.20 5299.19 9298.99 13397.30 12999.85 11398.77 5199.79 8999.65 42
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 1099.64 1299.84 899.83 299.50 599.87 9199.36 1499.92 3799.64 43
bset_n11_16_dypcd96.99 24996.56 25898.27 22399.00 19995.25 26192.18 36794.05 35998.75 9599.01 12198.38 24788.98 30399.93 3098.77 5199.92 3799.64 43
EI-MVSNet-Vis-set98.68 9098.70 6898.63 18099.09 17896.40 23297.23 22798.86 25299.20 5299.18 9698.97 13997.29 13199.85 11398.72 5499.78 9399.64 43
ACMH96.65 799.25 2799.24 2699.26 8999.72 3198.38 11199.07 5499.55 4898.30 11999.65 2399.45 5099.22 999.76 21798.44 7099.77 9799.64 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 5198.81 5499.28 8399.21 14598.45 10898.46 10899.33 12899.63 1499.48 4199.15 9697.23 13799.75 22497.17 13599.66 15399.63 47
test111196.49 26996.82 24095.52 32999.42 10887.08 36099.22 3687.14 37499.11 6099.46 4499.58 2788.69 30599.86 9898.80 4799.95 1699.62 48
VPA-MVSNet99.30 2499.30 2399.28 8399.49 8798.36 11599.00 6199.45 8399.63 1499.52 3699.44 5198.25 5199.88 7499.09 2899.84 6399.62 48
LPG-MVS_test98.71 8198.46 10499.47 5499.57 5798.97 6898.23 12599.48 7296.60 24199.10 10499.06 10798.71 2799.83 14695.58 25199.78 9399.62 48
LGP-MVS_train99.47 5499.57 5798.97 6899.48 7296.60 24199.10 10499.06 10798.71 2799.83 14695.58 25199.78 9399.62 48
Test_1112_low_res96.99 24996.55 25998.31 21999.35 12395.47 25695.84 30699.53 5691.51 33996.80 30898.48 23891.36 28999.83 14696.58 18999.53 19699.62 48
v1098.97 4699.11 3398.55 19599.44 10396.21 23898.90 6899.55 4898.73 9699.48 4199.60 2596.63 17399.83 14699.70 399.99 599.61 53
Regformer-498.73 7998.68 7198.89 14899.02 19697.22 20597.17 23599.06 21199.21 4999.17 9798.85 17097.45 12199.86 9898.48 6899.70 13199.60 54
v899.01 3999.16 3098.57 19099.47 9796.31 23698.90 6899.47 7899.03 7699.52 3699.57 2896.93 15399.81 17099.60 499.98 999.60 54
EI-MVSNet98.40 13298.51 9398.04 24099.10 17594.73 27697.20 23198.87 24798.97 8299.06 11099.02 12196.00 19899.80 17998.58 6099.82 7299.60 54
SixPastTwentyTwo98.75 7698.62 7999.16 10499.83 1597.96 15699.28 3198.20 30099.37 3699.70 1599.65 1992.65 28099.93 3099.04 3299.84 6399.60 54
IterMVS-LS98.55 11298.70 6898.09 23399.48 9594.73 27697.22 23099.39 10198.97 8299.38 5799.31 6896.00 19899.93 3098.58 6099.97 1199.60 54
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 23296.60 25598.96 13899.62 5297.28 20195.17 32699.50 6294.21 30399.01 12198.32 25686.61 31699.99 297.10 14499.84 6399.60 54
ACMMP_NAP98.75 7698.48 10099.57 1899.58 5399.29 1897.82 17299.25 16596.94 22898.78 16499.12 10098.02 7199.84 13197.13 14299.67 14899.59 60
VPNet98.87 5998.83 5199.01 13499.70 3897.62 18698.43 11199.35 11799.47 2799.28 7599.05 11496.72 16999.82 15698.09 8999.36 22999.59 60
WR-MVS98.40 13298.19 14199.03 13099.00 19997.65 18396.85 25498.94 23498.57 10898.89 14698.50 23395.60 21599.85 11397.54 11999.85 5999.59 60
HPM-MVScopyleft98.79 6798.53 9099.59 1799.65 4599.29 1899.16 4599.43 9296.74 23698.61 18598.38 24798.62 3199.87 9196.47 20299.67 14899.59 60
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 4199.01 4198.94 14199.50 8097.47 19198.04 14899.59 2898.15 13899.40 5499.36 6198.58 3499.76 21798.78 4899.68 14299.59 60
Vis-MVSNetpermissive99.34 2299.36 1699.27 8699.73 2598.26 11999.17 4499.78 899.11 6099.27 7799.48 4498.82 2199.95 1798.94 3899.93 2899.59 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 10798.23 13799.60 1399.69 4099.35 1297.16 23799.38 10394.87 28998.97 13098.99 13398.01 7299.88 7497.29 13099.70 13199.58 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 8698.40 11499.54 2999.53 7399.17 3998.52 9799.31 13697.46 18798.44 20698.51 23097.83 8499.88 7496.46 20399.58 18099.58 66
ACMMPR98.70 8498.42 11299.54 2999.52 7599.14 5398.52 9799.31 13697.47 18298.56 19598.54 22697.75 9199.88 7496.57 19199.59 17499.58 66
PGM-MVS98.66 9398.37 12099.55 2699.53 7399.18 3898.23 12599.49 7097.01 22698.69 17498.88 16398.00 7399.89 6395.87 23599.59 17499.58 66
SteuartSystems-ACMMP98.79 6798.54 8999.54 2999.73 2599.16 4398.23 12599.31 13697.92 14998.90 14398.90 15498.00 7399.88 7496.15 22399.72 12199.58 66
Skip Steuart: Steuart Systems R&D Blog.
Regformer-398.61 10198.61 8298.63 18099.02 19696.53 23097.17 23598.84 25699.13 5999.10 10498.85 17097.24 13699.79 19298.41 7399.70 13199.57 71
TranMVSNet+NR-MVSNet99.17 3099.07 3899.46 5699.37 11898.87 7498.39 11499.42 9599.42 3299.36 6199.06 10798.38 4499.95 1798.34 7699.90 4999.57 71
mPP-MVS98.64 9698.34 12499.54 2999.54 7199.17 3998.63 8599.24 17097.47 18298.09 23398.68 20197.62 10299.89 6396.22 21899.62 16299.57 71
PVSNet_Blended_VisFu98.17 15798.15 14898.22 22699.73 2595.15 26697.36 21799.68 1894.45 29898.99 12599.27 7296.87 15699.94 2597.13 14299.91 4399.57 71
1112_ss97.29 22496.86 23698.58 18799.34 12596.32 23596.75 26199.58 3093.14 31996.89 30397.48 31192.11 28599.86 9896.91 15899.54 19299.57 71
zzz-MVS98.79 6798.52 9199.61 999.67 4299.36 1097.33 22099.20 17698.83 9398.89 14698.90 15496.98 15199.92 3997.16 13699.70 13199.56 76
MTAPA98.88 5898.64 7699.61 999.67 4299.36 1098.43 11199.20 17698.83 9398.89 14698.90 15496.98 15199.92 3997.16 13699.70 13199.56 76
XVS98.72 8098.45 10699.53 3699.46 9899.21 2798.65 8399.34 12398.62 10297.54 26998.63 21597.50 11599.83 14696.79 17199.53 19699.56 76
pm-mvs199.44 1399.48 1199.33 7699.80 1798.63 9199.29 2799.63 2399.30 4599.65 2399.60 2599.16 1499.82 15699.07 2999.83 6999.56 76
X-MVStestdata94.32 31092.59 32899.53 3699.46 9899.21 2798.65 8399.34 12398.62 10297.54 26945.85 37497.50 11599.83 14696.79 17199.53 19699.56 76
HPM-MVS_fast99.01 3998.82 5299.57 1899.71 3299.35 1299.00 6199.50 6297.33 19998.94 13998.86 16798.75 2499.82 15697.53 12099.71 12699.56 76
K. test v398.00 16797.66 18699.03 13099.79 1997.56 18799.19 4392.47 36499.62 1799.52 3699.66 1789.61 29899.96 1099.25 2099.81 7699.56 76
CP-MVS98.70 8498.42 11299.52 4199.36 11999.12 5998.72 7999.36 11197.54 17798.30 21698.40 24397.86 8299.89 6396.53 19999.72 12199.56 76
ZNCC-MVS98.68 9098.40 11499.54 2999.57 5799.21 2798.46 10899.29 15397.28 20598.11 23198.39 24598.00 7399.87 9196.86 16899.64 15699.55 84
v119298.60 10398.66 7498.41 21099.27 13395.88 24597.52 20499.36 11197.41 19299.33 6699.20 8396.37 18799.82 15699.57 699.92 3799.55 84
v124098.55 11298.62 7998.32 21799.22 14395.58 25197.51 20699.45 8397.16 21999.45 4799.24 7896.12 19399.85 11399.60 499.88 5499.55 84
UGNet98.53 11798.45 10698.79 16297.94 32496.96 21899.08 5198.54 28599.10 6796.82 30799.47 4596.55 17699.84 13198.56 6599.94 2499.55 84
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250692.39 33391.89 33693.89 34699.38 11382.28 37599.32 1866.03 38299.08 7298.77 16799.57 2866.26 37999.84 13198.71 5599.95 1699.54 88
ECVR-MVScopyleft96.42 27296.61 25395.85 32099.38 11388.18 35599.22 3686.00 37699.08 7299.36 6199.57 2888.47 31099.82 15698.52 6699.95 1699.54 88
testtj97.79 18997.25 21399.42 5899.03 19498.85 7597.78 17499.18 18595.83 26898.12 22998.50 23395.50 22099.86 9892.23 33099.07 27499.54 88
v14419298.54 11598.57 8798.45 20799.21 14595.98 24297.63 19199.36 11197.15 22199.32 7299.18 8695.84 20999.84 13199.50 1099.91 4399.54 88
v192192098.54 11598.60 8498.38 21399.20 14995.76 25097.56 20099.36 11197.23 21499.38 5799.17 9096.02 19699.84 13199.57 699.90 4999.54 88
MP-MVScopyleft98.46 12598.09 15399.54 2999.57 5799.22 2698.50 10299.19 18197.61 17097.58 26598.66 20697.40 12499.88 7494.72 26999.60 17099.54 88
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3799.41 1299.59 2899.59 2099.71 1499.57 2897.12 14199.90 5399.21 2399.87 5799.54 88
ACMMPcopyleft98.75 7698.50 9599.52 4199.56 6499.16 4398.87 7099.37 10797.16 21998.82 16199.01 13097.71 9399.87 9196.29 21599.69 13799.54 88
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 13298.03 16099.51 4599.16 16399.21 2798.05 14699.22 17394.16 30598.98 12799.10 10497.52 11399.79 19296.45 20499.64 15699.53 96
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 8198.44 10899.51 4599.49 8799.16 4398.52 9799.31 13697.47 18298.58 19198.50 23397.97 7799.85 11396.57 19199.59 17499.53 96
#test#98.50 12198.16 14699.51 4599.49 8799.16 4398.03 14999.31 13696.30 25398.58 19198.50 23397.97 7799.85 11395.68 24599.59 17499.53 96
UniMVSNet_NR-MVSNet98.86 6198.68 7199.40 6399.17 16198.74 8397.68 18699.40 9999.14 5899.06 11098.59 22296.71 17099.93 3098.57 6299.77 9799.53 96
GST-MVS98.61 10198.30 12999.52 4199.51 7799.20 3398.26 12399.25 16597.44 19098.67 17698.39 24597.68 9499.85 11396.00 22799.51 20299.52 100
Regformer-298.60 10398.46 10499.02 13398.85 23197.71 18096.91 25199.09 20798.98 8199.01 12198.64 21197.37 12699.84 13197.75 11399.57 18499.52 100
TDRefinement99.42 1699.38 1599.55 2699.76 2399.33 1699.68 599.71 1399.38 3599.53 3499.61 2398.64 3099.80 17998.24 8099.84 6399.52 100
v114498.60 10398.66 7498.41 21099.36 11995.90 24497.58 19899.34 12397.51 17899.27 7799.15 9696.34 18999.80 17999.47 1299.93 2899.51 103
Regformer-198.55 11298.44 10898.87 15098.85 23197.29 19996.91 25198.99 23198.97 8298.99 12598.64 21197.26 13599.81 17097.79 10699.57 18499.51 103
v2v48298.56 10898.62 7998.37 21499.42 10895.81 24897.58 19899.16 19497.90 15199.28 7599.01 13095.98 20299.79 19299.33 1599.90 4999.51 103
CPTT-MVS97.84 18597.36 20799.27 8699.31 12698.46 10798.29 12099.27 15994.90 28897.83 24898.37 24994.90 23399.84 13193.85 29999.54 19299.51 103
DU-MVS98.82 6398.63 7799.39 6499.16 16398.74 8397.54 20299.25 16598.84 9299.06 11098.76 18996.76 16699.93 3098.57 6299.77 9799.50 107
NR-MVSNet98.95 4998.82 5299.36 6599.16 16398.72 8899.22 3699.20 17699.10 6799.72 1398.76 18996.38 18699.86 9898.00 9699.82 7299.50 107
abl_698.99 4198.78 5799.61 999.45 10199.46 498.60 8899.50 6298.59 10499.24 8699.04 11798.54 3699.89 6396.45 20499.62 16299.50 107
ACMH+96.62 999.08 3699.00 4299.33 7699.71 3298.83 7798.60 8899.58 3099.11 6099.53 3499.18 8698.81 2299.67 25996.71 18299.77 9799.50 107
DVP-MVS++98.90 5698.70 6899.51 4598.43 29599.15 4899.43 1099.32 13098.17 13499.26 8199.02 12198.18 6099.88 7497.07 14699.45 21699.49 111
PC_three_145293.27 31799.40 5498.54 22698.22 5697.00 37295.17 25799.45 21699.49 111
GeoE99.05 3798.99 4499.25 9199.44 10398.35 11698.73 7899.56 4498.42 11398.91 14298.81 18198.94 1899.91 4998.35 7599.73 11499.49 111
h-mvs3397.77 19097.33 21199.10 11399.21 14597.84 16698.35 11898.57 28499.11 6098.58 19199.02 12188.65 30899.96 1098.11 8696.34 35499.49 111
IterMVS-SCA-FT97.85 18498.18 14296.87 29999.27 13391.16 34595.53 31699.25 16599.10 6799.41 5199.35 6293.10 27199.96 1098.65 5899.94 2499.49 111
new-patchmatchnet98.35 13798.74 6097.18 28599.24 13892.23 33096.42 27899.48 7298.30 11999.69 1799.53 3697.44 12299.82 15698.84 4599.77 9799.49 111
APD-MVScopyleft98.10 15997.67 18399.42 5899.11 17198.93 7297.76 17999.28 15694.97 28698.72 17398.77 18797.04 14599.85 11393.79 30099.54 19299.49 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 14198.04 15999.07 12099.56 6497.83 16799.29 2798.07 30699.03 7698.59 18999.13 9992.16 28499.90 5396.87 16699.68 14299.49 111
DeepC-MVS97.60 498.97 4698.93 4599.10 11399.35 12397.98 15198.01 15499.46 8097.56 17599.54 3199.50 3998.97 1699.84 13198.06 9199.92 3799.49 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 5498.73 6199.48 5199.55 6899.14 5398.07 14299.37 10797.62 16899.04 11798.96 14298.84 2099.79 19297.43 12499.65 15499.49 111
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test117298.76 7498.49 9899.57 1899.18 15999.37 998.39 11499.31 13698.43 11298.90 14398.88 16397.49 11899.86 9896.43 20699.37 22899.48 121
DVP-MVScopyleft98.77 7398.52 9199.52 4199.50 8099.21 2798.02 15198.84 25697.97 14599.08 10799.02 12197.61 10399.88 7496.99 15299.63 15999.48 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 8198.43 11099.57 1899.18 15999.35 1298.36 11799.29 15398.29 12298.88 15098.85 17097.53 11199.87 9196.14 22499.31 23799.48 121
TSAR-MVS + MP.98.63 9898.49 9899.06 12599.64 4897.90 16198.51 10198.94 23496.96 22799.24 8698.89 16297.83 8499.81 17096.88 16599.49 21099.48 121
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 15297.95 16599.01 13499.58 5397.74 17899.01 5997.29 32699.67 1098.97 13099.50 3990.45 29399.80 17997.88 10399.20 25499.48 121
IterMVS97.73 19198.11 15296.57 30699.24 13890.28 34695.52 31899.21 17498.86 9099.33 6699.33 6693.11 27099.94 2598.49 6799.94 2499.48 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 15497.90 17099.08 11799.57 5797.97 15299.31 2298.32 29599.01 7898.98 12799.03 12091.59 28899.79 19295.49 25399.80 8499.48 121
ACMP95.32 1598.41 13098.09 15399.36 6599.51 7798.79 8197.68 18699.38 10395.76 27098.81 16398.82 17998.36 4599.82 15694.75 26699.77 9799.48 121
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 16797.63 18999.10 11399.24 13898.17 13096.89 25398.73 27595.66 27197.92 24197.70 29897.17 14099.66 26796.18 22299.23 25099.47 129
3Dnovator+97.89 398.69 8698.51 9399.24 9498.81 24198.40 10999.02 5899.19 18198.99 7998.07 23499.28 7097.11 14399.84 13196.84 16999.32 23599.47 129
HPM-MVS++copyleft98.10 15997.64 18899.48 5199.09 17899.13 5797.52 20498.75 27297.46 18796.90 30297.83 29096.01 19799.84 13195.82 23999.35 23199.46 131
V4298.78 7098.78 5798.76 16899.44 10397.04 21598.27 12299.19 18197.87 15399.25 8599.16 9296.84 15799.78 20499.21 2399.84 6399.46 131
APD-MVS_3200maxsize98.84 6298.61 8299.53 3699.19 15299.27 2198.49 10399.33 12898.64 9899.03 12098.98 13797.89 8099.85 11396.54 19899.42 22099.46 131
UniMVSNet (Re)98.87 5998.71 6599.35 7099.24 13898.73 8697.73 18299.38 10398.93 8799.12 9998.73 19296.77 16499.86 9898.63 5999.80 8499.46 131
SR-MVS-dyc-post98.81 6598.55 8899.57 1899.20 14999.38 698.48 10699.30 14698.64 9898.95 13398.96 14297.49 11899.86 9896.56 19499.39 22499.45 135
RE-MVS-def98.58 8699.20 14999.38 698.48 10699.30 14698.64 9898.95 13398.96 14297.75 9196.56 19499.39 22499.45 135
RRT_MVS97.07 24096.57 25798.58 18795.89 37296.33 23497.36 21798.77 26897.85 15599.08 10799.12 10082.30 34799.96 1098.82 4699.90 4999.45 135
HQP_MVS97.99 17097.67 18398.93 14299.19 15297.65 18397.77 17799.27 15998.20 13197.79 25197.98 28094.90 23399.70 24394.42 27899.51 20299.45 135
plane_prior599.27 15999.70 24394.42 27899.51 20299.45 135
lessismore_v098.97 13799.73 2597.53 18986.71 37599.37 5999.52 3889.93 29699.92 3998.99 3799.72 12199.44 140
TAMVS98.24 15098.05 15898.80 16099.07 18397.18 21097.88 16598.81 26296.66 24099.17 9799.21 8194.81 23999.77 21096.96 15699.88 5499.44 140
DeepPCF-MVS96.93 598.32 13998.01 16199.23 9698.39 30098.97 6895.03 33099.18 18596.88 23199.33 6698.78 18598.16 6399.28 34696.74 17799.62 16299.44 140
3Dnovator98.27 298.81 6598.73 6199.05 12798.76 24697.81 17299.25 3499.30 14698.57 10898.55 19799.33 6697.95 7999.90 5397.16 13699.67 14899.44 140
MVSFormer98.26 14798.43 11097.77 25298.88 22693.89 30299.39 1399.56 4499.11 6098.16 22598.13 26793.81 26199.97 499.26 1899.57 18499.43 144
jason97.45 21297.35 20897.76 25399.24 13893.93 29895.86 30398.42 29194.24 30298.50 20298.13 26794.82 23799.91 4997.22 13399.73 11499.43 144
jason: jason.
NCCC97.86 17997.47 20199.05 12798.61 27598.07 14196.98 24498.90 24297.63 16797.04 29397.93 28595.99 20199.66 26795.31 25698.82 29599.43 144
Anonymous2024052198.69 8698.87 4798.16 23199.77 2095.11 26999.08 5199.44 8699.34 4199.33 6699.55 3294.10 25899.94 2599.25 2099.96 1499.42 147
MVS_111021_HR98.25 14998.08 15698.75 17099.09 17897.46 19295.97 29599.27 15997.60 17197.99 24098.25 25998.15 6599.38 33496.87 16699.57 18499.42 147
COLMAP_ROBcopyleft96.50 1098.99 4198.85 5099.41 6199.58 5399.10 6298.74 7699.56 4499.09 7099.33 6699.19 8498.40 4399.72 24095.98 22999.76 10799.42 147
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 5498.72 6399.49 4999.49 8799.17 3998.10 13999.31 13698.03 14299.66 2099.02 12198.36 4599.88 7496.91 15899.62 16299.41 150
OPU-MVS98.82 15698.59 27998.30 11798.10 13998.52 22998.18 6098.75 36694.62 27099.48 21299.41 150
our_test_397.39 21697.73 18196.34 31098.70 25989.78 34894.61 34398.97 23396.50 24499.04 11798.85 17095.98 20299.84 13197.26 13299.67 14899.41 150
casdiffmvs98.95 4999.00 4298.81 15899.38 11397.33 19797.82 17299.57 3799.17 5799.35 6399.17 9098.35 4899.69 24798.46 6999.73 11499.41 150
YYNet197.60 20097.67 18397.39 27999.04 19193.04 31795.27 32398.38 29497.25 20898.92 14198.95 14695.48 22299.73 23296.99 15298.74 29799.41 150
MDA-MVSNet_test_wron97.60 20097.66 18697.41 27899.04 19193.09 31395.27 32398.42 29197.26 20798.88 15098.95 14695.43 22399.73 23297.02 14998.72 29999.41 150
GBi-Net98.65 9498.47 10299.17 10198.90 22098.24 12199.20 3999.44 8698.59 10498.95 13399.55 3294.14 25499.86 9897.77 10899.69 13799.41 150
test198.65 9498.47 10299.17 10198.90 22098.24 12199.20 3999.44 8698.59 10498.95 13399.55 3294.14 25499.86 9897.77 10899.69 13799.41 150
FMVSNet199.17 3099.17 2999.17 10199.55 6898.24 12199.20 3999.44 8699.21 4999.43 4999.55 3297.82 8799.86 9898.42 7299.89 5399.41 150
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 5099.06 6698.69 8299.54 5299.31 4399.62 2899.53 3697.36 12799.86 9899.24 2299.71 12699.39 159
v14898.45 12698.60 8498.00 24299.44 10394.98 27097.44 21399.06 21198.30 11999.32 7298.97 13996.65 17299.62 27998.37 7499.85 5999.39 159
test20.0398.78 7098.77 5998.78 16599.46 9897.20 20897.78 17499.24 17099.04 7599.41 5198.90 15497.65 9799.76 21797.70 11499.79 8999.39 159
CDPH-MVS97.26 22596.66 25199.07 12099.00 19998.15 13196.03 29399.01 22791.21 34397.79 25197.85 28996.89 15599.69 24792.75 32299.38 22799.39 159
EPNet96.14 27995.44 28898.25 22490.76 37995.50 25597.92 16194.65 35198.97 8292.98 36498.85 17089.12 30299.87 9195.99 22899.68 14299.39 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 15797.87 17299.07 12098.67 26898.24 12197.01 24298.93 23697.25 20897.62 26198.34 25397.27 13299.57 29696.42 20799.33 23499.39 159
DeepC-MVS_fast96.85 698.30 14198.15 14898.75 17098.61 27597.23 20397.76 17999.09 20797.31 20298.75 17098.66 20697.56 10799.64 27496.10 22699.55 19199.39 159
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj98.44 12798.24 13599.06 12599.11 17197.97 15296.53 27099.54 5298.24 12598.83 15798.90 15497.80 8899.82 15695.68 24599.52 19999.38 166
SF-MVS98.53 11798.27 13299.32 7899.31 12698.75 8298.19 12999.41 9696.77 23598.83 15798.90 15497.80 8899.82 15695.68 24599.52 19999.38 166
test9_res93.28 31399.15 26499.38 166
OPM-MVS98.56 10898.32 12899.25 9199.41 11098.73 8697.13 23999.18 18597.10 22298.75 17098.92 15098.18 6099.65 27296.68 18499.56 18999.37 169
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 32799.16 26199.37 169
AllTest98.44 12798.20 13999.16 10499.50 8098.55 9998.25 12499.58 3096.80 23398.88 15099.06 10797.65 9799.57 29694.45 27699.61 16899.37 169
TestCases99.16 10499.50 8098.55 9999.58 3096.80 23398.88 15099.06 10797.65 9799.57 29694.45 27699.61 16899.37 169
MDA-MVSNet-bldmvs97.94 17197.91 16998.06 23899.44 10394.96 27196.63 26799.15 20098.35 11598.83 15799.11 10294.31 25199.85 11396.60 18898.72 29999.37 169
MVSTER96.86 25396.55 25997.79 25097.91 32694.21 28897.56 20098.87 24797.49 18199.06 11099.05 11480.72 35299.80 17998.44 7099.82 7299.37 169
pmmvs597.64 19797.49 19798.08 23699.14 16895.12 26896.70 26499.05 21593.77 31198.62 18398.83 17693.23 26799.75 22498.33 7899.76 10799.36 175
Anonymous2023120698.21 15298.21 13898.20 22799.51 7795.43 25898.13 13499.32 13096.16 25698.93 14098.82 17996.00 19899.83 14697.32 12999.73 11499.36 175
train_agg97.10 23796.45 26299.07 12098.71 25598.08 13995.96 29799.03 22091.64 33595.85 33397.53 30696.47 18099.76 21793.67 30299.16 26199.36 175
PVSNet_BlendedMVS97.55 20397.53 19497.60 26398.92 21693.77 30696.64 26699.43 9294.49 29497.62 26199.18 8696.82 16099.67 25994.73 26799.93 2899.36 175
Anonymous2024052998.93 5198.87 4799.12 10999.19 15298.22 12699.01 5998.99 23199.25 4899.54 3199.37 5897.04 14599.80 17997.89 10099.52 19999.35 179
F-COLMAP97.30 22296.68 24899.14 10799.19 15298.39 11097.27 22699.30 14692.93 32196.62 31398.00 27895.73 21299.68 25692.62 32598.46 31199.35 179
ppachtmachnet_test97.50 20597.74 17996.78 30498.70 25991.23 34494.55 34599.05 21596.36 24999.21 9098.79 18496.39 18499.78 20496.74 17799.82 7299.34 181
agg_prior197.06 24196.40 26399.03 13098.68 26697.99 14795.76 30799.01 22791.73 33495.59 33697.50 30996.49 17999.77 21093.71 30199.14 26599.34 181
VDD-MVS98.56 10898.39 11799.07 12099.13 17098.07 14198.59 9097.01 33099.59 2099.11 10199.27 7294.82 23799.79 19298.34 7699.63 15999.34 181
testgi98.32 13998.39 11798.13 23299.57 5795.54 25297.78 17499.49 7097.37 19699.19 9297.65 30098.96 1799.49 31796.50 20198.99 28699.34 181
diffmvs98.22 15198.24 13598.17 22999.00 19995.44 25796.38 28099.58 3097.79 15998.53 20098.50 23396.76 16699.74 22897.95 9999.64 15699.34 181
UnsupCasMVSNet_eth97.89 17597.60 19298.75 17099.31 12697.17 21197.62 19299.35 11798.72 9798.76 16998.68 20192.57 28199.74 22897.76 11295.60 36199.34 181
baseline98.96 4899.02 4098.76 16899.38 11397.26 20298.49 10399.50 6298.86 9099.19 9299.06 10798.23 5399.69 24798.71 5599.76 10799.33 187
MG-MVS96.77 25796.61 25397.26 28398.31 30493.06 31495.93 30098.12 30596.45 24797.92 24198.73 19293.77 26399.39 33291.19 34499.04 27899.33 187
HQP4-MVS95.56 33999.54 30599.32 189
CDS-MVSNet97.69 19397.35 20898.69 17498.73 25097.02 21796.92 25098.75 27295.89 26698.59 18998.67 20392.08 28699.74 22896.72 18099.81 7699.32 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 24896.49 26198.55 19598.67 26896.79 22396.29 28499.04 21896.05 25995.55 34096.84 33093.84 25999.54 30592.82 31999.26 24799.32 189
RPSCF98.62 10098.36 12199.42 5899.65 4599.42 598.55 9499.57 3797.72 16298.90 14399.26 7496.12 19399.52 31195.72 24299.71 12699.32 189
MVP-Stereo98.08 16197.92 16898.57 19098.96 20796.79 22397.90 16499.18 18596.41 24898.46 20498.95 14695.93 20599.60 28696.51 20098.98 28899.31 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 13298.68 7197.54 27098.96 20797.99 14797.88 16599.36 11198.20 13199.63 2699.04 11798.76 2395.33 37596.56 19499.74 11199.31 193
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 12998.30 12998.79 16298.79 24597.29 19998.23 12598.66 27999.31 4398.85 15498.80 18294.80 24099.78 20498.13 8599.13 26899.31 193
ETH3D-3000-0.198.03 16397.62 19099.29 8199.11 17198.80 8097.47 21099.32 13095.54 27398.43 20998.62 21796.61 17499.77 21093.95 29499.49 21099.30 196
test_prior397.48 20997.00 22798.95 13998.69 26397.95 15795.74 30999.03 22096.48 24596.11 32797.63 30295.92 20699.59 29094.16 28499.20 25499.30 196
test_prior98.95 13998.69 26397.95 15799.03 22099.59 29099.30 196
USDC97.41 21597.40 20397.44 27698.94 21093.67 30895.17 32699.53 5694.03 30898.97 13099.10 10495.29 22599.34 33795.84 23899.73 11499.30 196
FMVSNet298.49 12298.40 11498.75 17098.90 22097.14 21498.61 8799.13 20198.59 10499.19 9299.28 7094.14 25499.82 15697.97 9899.80 8499.29 200
ETH3 D test640096.46 27195.59 28399.08 11798.88 22698.21 12796.53 27099.18 18588.87 35797.08 29097.79 29193.64 26699.77 21088.92 35599.40 22399.28 201
XVG-OURS-SEG-HR98.49 12298.28 13199.14 10799.49 8798.83 7796.54 26999.48 7297.32 20199.11 10198.61 22099.33 899.30 34396.23 21798.38 31299.28 201
test1298.93 14298.58 28097.83 16798.66 27996.53 31695.51 21999.69 24799.13 26899.27 203
DSMNet-mixed97.42 21497.60 19296.87 29999.15 16791.46 33698.54 9599.12 20392.87 32397.58 26599.63 2096.21 19199.90 5395.74 24199.54 19299.27 203
N_pmnet97.63 19997.17 21898.99 13699.27 13397.86 16495.98 29493.41 36195.25 28299.47 4398.90 15495.63 21499.85 11396.91 15899.73 11499.27 203
ambc98.24 22598.82 23995.97 24398.62 8699.00 23099.27 7799.21 8196.99 15099.50 31696.55 19799.50 20999.26 206
LFMVS97.20 23196.72 24598.64 17798.72 25296.95 21998.93 6794.14 35899.74 798.78 16499.01 13084.45 33499.73 23297.44 12399.27 24499.25 207
FMVSNet596.01 28195.20 29698.41 21097.53 34296.10 23998.74 7699.50 6297.22 21798.03 23999.04 11769.80 37299.88 7497.27 13199.71 12699.25 207
BH-RMVSNet96.83 25496.58 25697.58 26598.47 29194.05 29196.67 26597.36 32296.70 23997.87 24597.98 28095.14 22999.44 32790.47 35098.58 30999.25 207
112196.73 25896.00 27198.91 14598.95 20997.76 17598.07 14298.73 27587.65 36196.54 31598.13 26794.52 24699.73 23292.38 32899.02 28299.24 210
旧先验198.82 23997.45 19398.76 26998.34 25395.50 22099.01 28499.23 211
test22298.92 21696.93 22095.54 31598.78 26785.72 36596.86 30598.11 27194.43 24799.10 27399.23 211
XVG-ACMP-BASELINE98.56 10898.34 12499.22 9799.54 7198.59 9697.71 18399.46 8097.25 20898.98 12798.99 13397.54 10999.84 13195.88 23299.74 11199.23 211
FMVSNet397.50 20597.24 21598.29 22198.08 31895.83 24797.86 16898.91 24197.89 15298.95 13398.95 14687.06 31399.81 17097.77 10899.69 13799.23 211
无先验95.74 30998.74 27489.38 35499.73 23292.38 32899.22 215
tttt051795.64 29094.98 30197.64 26199.36 11993.81 30498.72 7990.47 37098.08 14098.67 17698.34 25373.88 36999.92 3997.77 10899.51 20299.20 216
pmmvs-eth3d98.47 12498.34 12498.86 15299.30 12997.76 17597.16 23799.28 15695.54 27399.42 5099.19 8497.27 13299.63 27797.89 10099.97 1199.20 216
MS-PatchMatch97.68 19497.75 17897.45 27598.23 31093.78 30597.29 22398.84 25696.10 25898.64 18098.65 20896.04 19599.36 33596.84 16999.14 26599.20 216
新几何198.91 14598.94 21097.76 17598.76 26987.58 36296.75 30998.10 27294.80 24099.78 20492.73 32399.00 28599.20 216
PHI-MVS98.29 14497.95 16599.34 7398.44 29499.16 4398.12 13699.38 10396.01 26298.06 23598.43 24197.80 8899.67 25995.69 24499.58 18099.20 216
Anonymous20240521197.90 17397.50 19699.08 11798.90 22098.25 12098.53 9696.16 34298.87 8999.11 10198.86 16790.40 29499.78 20497.36 12799.31 23799.19 221
CANet97.87 17897.76 17798.19 22897.75 33295.51 25496.76 26099.05 21597.74 16096.93 29698.21 26395.59 21699.89 6397.86 10599.93 2899.19 221
XVG-OURS98.53 11798.34 12499.11 11199.50 8098.82 7995.97 29599.50 6297.30 20399.05 11598.98 13799.35 799.32 34095.72 24299.68 14299.18 223
WTY-MVS96.67 26196.27 26997.87 24698.81 24194.61 28196.77 25997.92 31194.94 28797.12 28797.74 29591.11 29099.82 15693.89 29698.15 32199.18 223
Vis-MVSNet (Re-imp)97.46 21097.16 21998.34 21699.55 6896.10 23998.94 6698.44 29098.32 11898.16 22598.62 21788.76 30499.73 23293.88 29799.79 8999.18 223
TinyColmap97.89 17597.98 16397.60 26398.86 22994.35 28596.21 28899.44 8697.45 18999.06 11098.88 16397.99 7699.28 34694.38 28299.58 18099.18 223
testdata98.09 23398.93 21295.40 25998.80 26490.08 35197.45 27798.37 24995.26 22699.70 24393.58 30598.95 29099.17 227
lupinMVS97.06 24196.86 23697.65 25998.88 22693.89 30295.48 31997.97 30993.53 31498.16 22597.58 30493.81 26199.91 4996.77 17499.57 18499.17 227
Patchmtry97.35 21896.97 22998.50 20397.31 35196.47 23198.18 13098.92 23998.95 8698.78 16499.37 5885.44 32899.85 11395.96 23099.83 6999.17 227
sss97.21 23096.93 23098.06 23898.83 23695.22 26496.75 26198.48 28994.49 29497.27 28497.90 28692.77 27899.80 17996.57 19199.32 23599.16 230
CSCG98.68 9098.50 9599.20 9899.45 10198.63 9198.56 9399.57 3797.87 15398.85 15498.04 27797.66 9699.84 13196.72 18099.81 7699.13 231
ETH3D cwj APD-0.1697.55 20397.00 22799.19 10098.51 28898.64 9096.85 25499.13 20194.19 30497.65 25998.40 24395.78 21099.81 17093.37 31199.16 26199.12 232
MVS_111021_LR98.30 14198.12 15198.83 15599.16 16398.03 14596.09 29299.30 14697.58 17298.10 23298.24 26098.25 5199.34 33796.69 18399.65 15499.12 232
miper_lstm_enhance97.18 23397.16 21997.25 28498.16 31392.85 31995.15 32899.31 13697.25 20898.74 17298.78 18590.07 29599.78 20497.19 13499.80 8499.11 234
原ACMM198.35 21598.90 22096.25 23798.83 26192.48 32796.07 33098.10 27295.39 22499.71 24192.61 32698.99 28699.08 235
QAPM97.31 22196.81 24198.82 15698.80 24397.49 19099.06 5699.19 18190.22 34997.69 25799.16 9296.91 15499.90 5390.89 34899.41 22199.07 236
PAPM_NR96.82 25696.32 26698.30 22099.07 18396.69 22897.48 20898.76 26995.81 26996.61 31496.47 33894.12 25799.17 35390.82 34997.78 33199.06 237
eth_miper_zixun_eth97.23 22997.25 21397.17 28698.00 32292.77 32194.71 33799.18 18597.27 20698.56 19598.74 19191.89 28799.69 24797.06 14899.81 7699.05 238
D2MVS97.84 18597.84 17497.83 24899.14 16894.74 27596.94 24698.88 24595.84 26798.89 14698.96 14294.40 24999.69 24797.55 11799.95 1699.05 238
c3_l97.36 21797.37 20697.31 28098.09 31793.25 31295.01 33199.16 19497.05 22398.77 16798.72 19492.88 27699.64 27496.93 15799.76 10799.05 238
PLCcopyleft94.65 1696.51 26695.73 27798.85 15398.75 24897.91 16096.42 27899.06 21190.94 34695.59 33697.38 31794.41 24899.59 29090.93 34698.04 32899.05 238
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 5698.90 4698.91 14599.67 4297.82 17099.00 6199.44 8699.45 2999.51 3999.24 7898.20 5999.86 9895.92 23199.69 13799.04 242
CANet_DTU97.26 22597.06 22497.84 24797.57 33994.65 28096.19 29098.79 26597.23 21495.14 34998.24 26093.22 26899.84 13197.34 12899.84 6399.04 242
PM-MVS98.82 6398.72 6399.12 10999.64 4898.54 10297.98 15799.68 1897.62 16899.34 6599.18 8697.54 10999.77 21097.79 10699.74 11199.04 242
TSAR-MVS + GP.98.18 15597.98 16398.77 16798.71 25597.88 16296.32 28398.66 27996.33 25099.23 8998.51 23097.48 12099.40 33097.16 13699.46 21499.02 245
DIV-MVS_self_test97.02 24596.84 23897.58 26597.82 33094.03 29394.66 34099.16 19497.04 22498.63 18198.71 19588.69 30599.69 24797.00 15099.81 7699.01 246
GA-MVS95.86 28595.32 29397.49 27398.60 27794.15 29093.83 35797.93 31095.49 27696.68 31097.42 31583.21 34299.30 34396.22 21898.55 31099.01 246
OMC-MVS97.88 17797.49 19799.04 12998.89 22598.63 9196.94 24699.25 16595.02 28498.53 20098.51 23097.27 13299.47 32293.50 30899.51 20299.01 246
cl____97.02 24596.83 23997.58 26597.82 33094.04 29294.66 34099.16 19497.04 22498.63 18198.71 19588.68 30799.69 24797.00 15099.81 7699.00 249
pmmvs497.58 20297.28 21298.51 20198.84 23496.93 22095.40 32298.52 28793.60 31398.61 18598.65 20895.10 23099.60 28696.97 15599.79 8998.99 250
MVS_030497.64 19797.35 20898.52 19997.87 32896.69 22898.59 9098.05 30897.44 19093.74 36398.85 17093.69 26599.88 7498.11 8699.81 7698.98 251
EPNet_dtu94.93 30494.78 30595.38 33393.58 37687.68 35796.78 25895.69 34897.35 19889.14 37298.09 27488.15 31199.49 31794.95 26399.30 24098.98 251
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 26895.77 27598.69 17499.48 9597.43 19497.84 17099.55 4881.42 37096.51 31898.58 22395.53 21799.67 25993.41 31099.58 18098.98 251
PVSNet_Blended96.88 25296.68 24897.47 27498.92 21693.77 30694.71 33799.43 9290.98 34597.62 26197.36 32096.82 16099.67 25994.73 26799.56 18998.98 251
PAPR95.29 29694.47 30697.75 25497.50 34695.14 26794.89 33498.71 27791.39 34195.35 34795.48 35494.57 24599.14 35684.95 36397.37 33998.97 255
EGC-MVSNET85.24 34080.54 34399.34 7399.77 2099.20 3399.08 5199.29 15312.08 37620.84 37799.42 5297.55 10899.85 11397.08 14599.72 12198.96 256
thisisatest053095.27 29794.45 30797.74 25599.19 15294.37 28497.86 16890.20 37197.17 21898.22 22097.65 30073.53 37099.90 5396.90 16399.35 23198.95 257
mvs_anonymous97.83 18798.16 14696.87 29998.18 31291.89 33297.31 22298.90 24297.37 19698.83 15799.46 4696.28 19099.79 19298.90 4098.16 32098.95 257
baseline195.96 28395.44 28897.52 27298.51 28893.99 29698.39 11496.09 34498.21 12898.40 21497.76 29486.88 31499.63 27795.42 25489.27 37398.95 257
CLD-MVS97.49 20797.16 21998.48 20499.07 18397.03 21694.71 33799.21 17494.46 29698.06 23597.16 32597.57 10699.48 32094.46 27599.78 9398.95 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 16598.14 15097.64 26198.58 28095.19 26597.48 20899.23 17297.47 18297.90 24398.62 21797.04 14598.81 36597.55 11799.41 22198.94 261
DELS-MVS98.27 14598.20 13998.48 20498.86 22996.70 22795.60 31499.20 17697.73 16198.45 20598.71 19597.50 11599.82 15698.21 8299.59 17498.93 262
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 28795.39 29196.98 29396.77 36092.79 32094.40 34898.53 28694.59 29397.89 24498.17 26682.82 34699.24 34896.37 20999.03 27998.92 263
LS3D98.63 9898.38 11999.36 6597.25 35299.38 699.12 5099.32 13099.21 4998.44 20698.88 16397.31 12899.80 17996.58 18999.34 23398.92 263
CMPMVSbinary75.91 2396.29 27595.44 28898.84 15496.25 36898.69 8997.02 24199.12 20388.90 35697.83 24898.86 16789.51 29998.90 36391.92 33199.51 20298.92 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 9698.48 10099.11 11198.85 23198.51 10498.49 10399.83 698.37 11499.69 1799.46 4698.21 5899.92 3994.13 28999.30 24098.91 266
DPM-MVS96.32 27495.59 28398.51 20198.76 24697.21 20794.54 34698.26 29791.94 33396.37 32397.25 32293.06 27399.43 32891.42 34098.74 29798.89 267
test_yl96.69 25996.29 26797.90 24498.28 30595.24 26297.29 22397.36 32298.21 12898.17 22397.86 28786.27 31899.55 30294.87 26498.32 31398.89 267
DCV-MVSNet96.69 25996.29 26797.90 24498.28 30595.24 26297.29 22397.36 32298.21 12898.17 22397.86 28786.27 31899.55 30294.87 26498.32 31398.89 267
UnsupCasMVSNet_bld97.30 22296.92 23298.45 20799.28 13196.78 22696.20 28999.27 15995.42 27898.28 21898.30 25793.16 26999.71 24194.99 26197.37 33998.87 270
Effi-MVS+98.02 16597.82 17598.62 18298.53 28797.19 20997.33 22099.68 1897.30 20396.68 31097.46 31398.56 3599.80 17996.63 18798.20 31798.86 271
test_040298.76 7498.71 6598.93 14299.56 6498.14 13398.45 11099.34 12399.28 4698.95 13398.91 15198.34 4999.79 19295.63 24899.91 4398.86 271
PatchmatchNetpermissive95.58 29195.67 28095.30 33497.34 34987.32 35897.65 19096.65 33795.30 28197.07 29198.69 19984.77 33199.75 22494.97 26298.64 30598.83 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CL-MVSNet_self_test97.44 21397.22 21698.08 23698.57 28295.78 24994.30 35098.79 26596.58 24398.60 18798.19 26594.74 24399.64 27496.41 20898.84 29398.82 274
miper_ehance_all_eth97.06 24197.03 22597.16 28897.83 32993.06 31494.66 34099.09 20795.99 26398.69 17498.45 24092.73 27999.61 28596.79 17199.03 27998.82 274
MIMVSNet96.62 26496.25 27097.71 25699.04 19194.66 27999.16 4596.92 33497.23 21497.87 24599.10 10486.11 32299.65 27291.65 33599.21 25398.82 274
hse-mvs297.46 21097.07 22398.64 17798.73 25097.33 19797.45 21297.64 31999.11 6098.58 19197.98 28088.65 30899.79 19298.11 8697.39 33898.81 277
GSMVS98.81 277
sam_mvs184.74 33298.81 277
SCA96.41 27396.66 25195.67 32498.24 30888.35 35395.85 30596.88 33596.11 25797.67 25898.67 20393.10 27199.85 11394.16 28499.22 25198.81 277
Patchmatch-RL test97.26 22597.02 22697.99 24399.52 7595.53 25396.13 29199.71 1397.47 18299.27 7799.16 9284.30 33799.62 27997.89 10099.77 9798.81 277
AUN-MVS96.24 27895.45 28798.60 18598.70 25997.22 20597.38 21597.65 31795.95 26495.53 34497.96 28482.11 35199.79 19296.31 21397.44 33698.80 282
ITE_SJBPF98.87 15099.22 14398.48 10699.35 11797.50 17998.28 21898.60 22197.64 10099.35 33693.86 29899.27 24498.79 283
tpm94.67 30694.34 31095.66 32597.68 33888.42 35297.88 16594.90 35094.46 29696.03 33298.56 22578.66 36199.79 19295.88 23295.01 36498.78 284
Patchmatch-test96.55 26596.34 26597.17 28698.35 30193.06 31498.40 11397.79 31297.33 19998.41 21098.67 20383.68 34199.69 24795.16 25899.31 23798.77 285
DROMVSNet99.09 3599.05 3999.20 9899.28 13198.93 7299.24 3599.84 599.08 7298.12 22998.37 24998.72 2699.90 5399.05 3199.77 9798.77 285
PMMVS96.51 26695.98 27298.09 23397.53 34295.84 24694.92 33398.84 25691.58 33796.05 33195.58 35195.68 21399.66 26795.59 25098.09 32498.76 287
test_method79.78 34179.50 34480.62 35780.21 38045.76 38270.82 37198.41 29331.08 37580.89 37697.71 29684.85 33097.37 37191.51 33980.03 37498.75 288
ab-mvs98.41 13098.36 12198.59 18699.19 15297.23 20399.32 1898.81 26297.66 16598.62 18399.40 5796.82 16099.80 17995.88 23299.51 20298.75 288
CHOSEN 280x42095.51 29495.47 28595.65 32698.25 30788.27 35493.25 36198.88 24593.53 31494.65 35297.15 32686.17 32099.93 3097.41 12599.93 2898.73 290
MVS_Test98.18 15598.36 12197.67 25798.48 29094.73 27698.18 13099.02 22497.69 16398.04 23899.11 10297.22 13899.56 29998.57 6298.90 29298.71 291
PVSNet93.40 1795.67 28995.70 27895.57 32798.83 23688.57 35192.50 36497.72 31492.69 32596.49 32196.44 33993.72 26499.43 32893.61 30399.28 24398.71 291
alignmvs97.35 21896.88 23598.78 16598.54 28598.09 13597.71 18397.69 31699.20 5297.59 26495.90 34788.12 31299.55 30298.18 8498.96 28998.70 293
ADS-MVSNet295.43 29594.98 30196.76 30598.14 31491.74 33397.92 16197.76 31390.23 34796.51 31898.91 15185.61 32599.85 11392.88 31796.90 34798.69 294
ADS-MVSNet95.24 29894.93 30396.18 31498.14 31490.10 34797.92 16197.32 32590.23 34796.51 31898.91 15185.61 32599.74 22892.88 31796.90 34798.69 294
MDTV_nov1_ep13_2view74.92 38097.69 18590.06 35297.75 25485.78 32493.52 30698.69 294
MSDG97.71 19297.52 19598.28 22298.91 21996.82 22294.42 34799.37 10797.65 16698.37 21598.29 25897.40 12499.33 33994.09 29099.22 25198.68 297
CS-MVS-test98.92 5398.81 5499.25 9199.08 18299.15 4898.71 8199.79 799.37 3698.20 22197.38 31797.86 8299.93 3099.04 3299.85 5998.67 298
CS-MVS99.13 3499.10 3599.24 9499.07 18399.14 5399.36 1599.88 399.36 4098.20 22198.46 23998.66 2999.93 3099.03 3499.85 5998.65 299
miper_enhance_ethall96.01 28195.74 27696.81 30396.41 36692.27 32993.69 35998.89 24491.14 34498.30 21697.35 32190.58 29299.58 29596.31 21399.03 27998.60 300
Effi-MVS+-dtu98.26 14797.90 17099.35 7098.02 32099.49 398.02 15199.16 19498.29 12297.64 26097.99 27996.44 18299.95 1796.66 18598.93 29198.60 300
new_pmnet96.99 24996.76 24397.67 25798.72 25294.89 27295.95 29998.20 30092.62 32698.55 19798.54 22694.88 23699.52 31193.96 29399.44 21998.59 302
EIA-MVS98.00 16797.74 17998.80 16098.72 25298.09 13598.05 14699.60 2797.39 19496.63 31295.55 35297.68 9499.80 17996.73 17999.27 24498.52 303
PatchMatch-RL97.24 22896.78 24298.61 18499.03 19497.83 16796.36 28199.06 21193.49 31697.36 28397.78 29295.75 21199.49 31793.44 30998.77 29698.52 303
ET-MVSNet_ETH3D94.30 31293.21 32297.58 26598.14 31494.47 28394.78 33693.24 36394.72 29189.56 37195.87 34878.57 36399.81 17096.91 15897.11 34698.46 305
canonicalmvs98.34 13898.26 13398.58 18798.46 29297.82 17098.96 6599.46 8099.19 5697.46 27695.46 35598.59 3399.46 32498.08 9098.71 30198.46 305
TAPA-MVS96.21 1196.63 26395.95 27398.65 17698.93 21298.09 13596.93 24899.28 15683.58 36898.13 22897.78 29296.13 19299.40 33093.52 30699.29 24298.45 307
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-untuned96.83 25496.75 24497.08 28998.74 24993.33 31196.71 26398.26 29796.72 23798.44 20697.37 31995.20 22799.47 32291.89 33297.43 33798.44 308
pmmvs395.03 30294.40 30896.93 29597.70 33692.53 32495.08 32997.71 31588.57 35897.71 25598.08 27579.39 35999.82 15696.19 22099.11 27298.43 309
DP-MVS Recon97.33 22096.92 23298.57 19099.09 17897.99 14796.79 25799.35 11793.18 31897.71 25598.07 27695.00 23299.31 34193.97 29299.13 26898.42 310
Fast-Effi-MVS+-dtu98.27 14598.09 15398.81 15898.43 29598.11 13497.61 19499.50 6298.64 9897.39 28197.52 30898.12 6699.95 1796.90 16398.71 30198.38 311
LF4IMVS97.90 17397.69 18298.52 19999.17 16197.66 18297.19 23499.47 7896.31 25297.85 24798.20 26496.71 17099.52 31194.62 27099.72 12198.38 311
Fast-Effi-MVS+97.67 19597.38 20598.57 19098.71 25597.43 19497.23 22799.45 8394.82 29096.13 32696.51 33598.52 3799.91 4996.19 22098.83 29498.37 313
test0.0.03 194.51 30793.69 31696.99 29296.05 36993.61 31094.97 33293.49 36096.17 25497.57 26794.88 36382.30 34799.01 36093.60 30494.17 36998.37 313
baseline293.73 32192.83 32796.42 30997.70 33691.28 34296.84 25689.77 37293.96 31092.44 36695.93 34679.14 36099.77 21092.94 31596.76 35198.21 315
thisisatest051594.12 31693.16 32396.97 29498.60 27792.90 31893.77 35890.61 36994.10 30696.91 29995.87 34874.99 36899.80 17994.52 27399.12 27198.20 316
EPMVS93.72 32293.27 32195.09 33696.04 37087.76 35698.13 13485.01 37794.69 29296.92 29798.64 21178.47 36599.31 34195.04 25996.46 35398.20 316
dp93.47 32493.59 31893.13 35496.64 36181.62 37797.66 18896.42 34092.80 32496.11 32798.64 21178.55 36499.59 29093.31 31292.18 37298.16 318
CNLPA97.17 23496.71 24698.55 19598.56 28398.05 14496.33 28298.93 23696.91 23097.06 29297.39 31694.38 25099.45 32691.66 33499.18 26098.14 319
HY-MVS95.94 1395.90 28495.35 29297.55 26997.95 32394.79 27398.81 7596.94 33392.28 33095.17 34898.57 22489.90 29799.75 22491.20 34397.33 34398.10 320
CostFormer93.97 31893.78 31594.51 34097.53 34285.83 36597.98 15795.96 34589.29 35594.99 35198.63 21578.63 36299.62 27994.54 27296.50 35298.09 321
AdaColmapbinary97.14 23696.71 24698.46 20698.34 30297.80 17396.95 24598.93 23695.58 27296.92 29797.66 29995.87 20899.53 30790.97 34599.14 26598.04 322
KD-MVS_2432*160092.87 32991.99 33395.51 33091.37 37789.27 34994.07 35298.14 30395.42 27897.25 28596.44 33967.86 37499.24 34891.28 34196.08 35898.02 323
miper_refine_blended92.87 32991.99 33395.51 33091.37 37789.27 34994.07 35298.14 30395.42 27897.25 28596.44 33967.86 37499.24 34891.28 34196.08 35898.02 323
TESTMET0.1,192.19 33791.77 33793.46 35096.48 36482.80 37494.05 35491.52 36894.45 29894.00 36094.88 36366.65 37899.56 29995.78 24098.11 32398.02 323
PCF-MVS92.86 1894.36 30993.00 32698.42 20998.70 25997.56 18793.16 36299.11 20579.59 37197.55 26897.43 31492.19 28399.73 23279.85 37299.45 21697.97 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 23896.68 24898.32 21798.32 30397.16 21298.86 7299.37 10789.48 35396.29 32599.15 9696.56 17599.90 5392.90 31699.20 25497.89 327
Gipumacopyleft99.03 3899.16 3098.64 17799.94 298.51 10499.32 1899.75 1199.58 2298.60 18799.62 2198.22 5699.51 31597.70 11499.73 11497.89 327
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DWT-MVSNet_test92.75 33192.05 33294.85 33796.48 36487.21 35997.83 17194.99 34992.22 33192.72 36594.11 36970.75 37199.46 32495.01 26094.33 36897.87 329
PVSNet_089.98 2191.15 33990.30 34293.70 34897.72 33384.34 37290.24 36897.42 32090.20 35093.79 36193.09 37190.90 29198.89 36486.57 36172.76 37597.87 329
test-LLR93.90 31993.85 31394.04 34396.53 36284.62 36994.05 35492.39 36596.17 25494.12 35795.07 35782.30 34799.67 25995.87 23598.18 31897.82 331
test-mter92.33 33591.76 33894.04 34396.53 36284.62 36994.05 35492.39 36594.00 30994.12 35795.07 35765.63 38199.67 25995.87 23598.18 31897.82 331
tpm293.09 32892.58 32994.62 33997.56 34086.53 36297.66 18895.79 34786.15 36494.07 35998.23 26275.95 36699.53 30790.91 34796.86 35097.81 333
CR-MVSNet96.28 27695.95 27397.28 28297.71 33494.22 28698.11 13798.92 23992.31 32996.91 29999.37 5885.44 32899.81 17097.39 12697.36 34197.81 333
RPMNet97.02 24596.93 23097.30 28197.71 33494.22 28698.11 13799.30 14699.37 3696.91 29999.34 6486.72 31599.87 9197.53 12097.36 34197.81 333
tpmrst95.07 30195.46 28693.91 34597.11 35484.36 37197.62 19296.96 33194.98 28596.35 32498.80 18285.46 32799.59 29095.60 24996.23 35697.79 336
PAPM91.88 33890.34 34196.51 30798.06 31992.56 32392.44 36597.17 32786.35 36390.38 37096.01 34486.61 31699.21 35170.65 37595.43 36297.75 337
FPMVS93.44 32592.23 33097.08 28999.25 13797.86 16495.61 31397.16 32892.90 32293.76 36298.65 20875.94 36795.66 37379.30 37397.49 33497.73 338
MAR-MVS96.47 27095.70 27898.79 16297.92 32599.12 5998.28 12198.60 28392.16 33295.54 34396.17 34394.77 24299.52 31189.62 35398.23 31597.72 339
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 16397.86 17398.56 19498.69 26398.07 14197.51 20699.50 6298.10 13997.50 27395.51 35398.41 4299.88 7496.27 21699.24 24997.71 340
thres600view794.45 30893.83 31496.29 31199.06 18891.53 33597.99 15594.24 35698.34 11697.44 27895.01 35979.84 35599.67 25984.33 36498.23 31597.66 341
thres40094.14 31593.44 31996.24 31398.93 21291.44 33797.60 19594.29 35497.94 14797.10 28894.31 36779.67 35799.62 27983.05 36698.08 32597.66 341
IB-MVS91.63 1992.24 33690.90 34096.27 31297.22 35391.24 34394.36 34993.33 36292.37 32892.24 36794.58 36666.20 38099.89 6393.16 31494.63 36697.66 341
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 30395.25 29494.33 34196.39 36785.87 36398.08 14196.83 33695.46 27795.51 34598.69 19985.91 32399.53 30794.16 28496.23 35697.58 344
cascas94.79 30594.33 31196.15 31896.02 37192.36 32892.34 36699.26 16485.34 36695.08 35094.96 36292.96 27598.53 36794.41 28198.59 30897.56 345
mvs-test197.83 18797.48 20098.89 14898.02 32099.20 3397.20 23199.16 19498.29 12296.46 32297.17 32496.44 18299.92 3996.66 18597.90 33097.54 346
PatchT96.65 26296.35 26497.54 27097.40 34795.32 26097.98 15796.64 33899.33 4296.89 30399.42 5284.32 33699.81 17097.69 11697.49 33497.48 347
TR-MVS95.55 29295.12 29996.86 30297.54 34193.94 29796.49 27496.53 33994.36 30197.03 29496.61 33494.26 25399.16 35486.91 36096.31 35597.47 348
JIA-IIPM95.52 29395.03 30097.00 29196.85 35894.03 29396.93 24895.82 34699.20 5294.63 35399.71 1283.09 34399.60 28694.42 27894.64 36597.36 349
BH-w/o95.13 30094.89 30495.86 31998.20 31191.31 34095.65 31297.37 32193.64 31296.52 31795.70 35093.04 27499.02 35888.10 35795.82 36097.24 350
tpm cat193.29 32693.13 32593.75 34797.39 34884.74 36897.39 21497.65 31783.39 36994.16 35698.41 24282.86 34599.39 33291.56 33895.35 36397.14 351
xiu_mvs_v1_base_debu97.86 17998.17 14396.92 29698.98 20493.91 29996.45 27599.17 19197.85 15598.41 21097.14 32798.47 3899.92 3998.02 9399.05 27596.92 352
xiu_mvs_v1_base97.86 17998.17 14396.92 29698.98 20493.91 29996.45 27599.17 19197.85 15598.41 21097.14 32798.47 3899.92 3998.02 9399.05 27596.92 352
xiu_mvs_v1_base_debi97.86 17998.17 14396.92 29698.98 20493.91 29996.45 27599.17 19197.85 15598.41 21097.14 32798.47 3899.92 3998.02 9399.05 27596.92 352
PMVScopyleft91.26 2097.86 17997.94 16797.65 25999.71 3297.94 15998.52 9798.68 27898.99 7997.52 27199.35 6297.41 12398.18 36991.59 33799.67 14896.82 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 28895.60 28296.17 31597.53 34292.75 32298.07 14298.31 29691.22 34294.25 35596.68 33395.53 21799.03 35791.64 33697.18 34496.74 356
MVS-HIRNet94.32 31095.62 28190.42 35698.46 29275.36 37996.29 28489.13 37395.25 28295.38 34699.75 792.88 27699.19 35294.07 29199.39 22496.72 357
OpenMVS_ROBcopyleft95.38 1495.84 28695.18 29797.81 24998.41 29997.15 21397.37 21698.62 28283.86 36798.65 17998.37 24994.29 25299.68 25688.41 35698.62 30796.60 358
thres100view90094.19 31393.67 31795.75 32399.06 18891.35 33998.03 14994.24 35698.33 11797.40 28094.98 36179.84 35599.62 27983.05 36698.08 32596.29 359
tfpn200view994.03 31793.44 31995.78 32298.93 21291.44 33797.60 19594.29 35497.94 14797.10 28894.31 36779.67 35799.62 27983.05 36698.08 32596.29 359
MVS93.19 32792.09 33196.50 30896.91 35694.03 29398.07 14298.06 30768.01 37294.56 35496.48 33795.96 20499.30 34383.84 36596.89 34996.17 361
gg-mvs-nofinetune92.37 33491.20 33995.85 32095.80 37392.38 32799.31 2281.84 37999.75 591.83 36899.74 868.29 37399.02 35887.15 35997.12 34596.16 362
xiu_mvs_v2_base97.16 23597.49 19796.17 31598.54 28592.46 32595.45 32098.84 25697.25 20897.48 27596.49 33698.31 5099.90 5396.34 21298.68 30396.15 363
PS-MVSNAJ97.08 23997.39 20496.16 31798.56 28392.46 32595.24 32598.85 25597.25 20897.49 27495.99 34598.07 6799.90 5396.37 20998.67 30496.12 364
E-PMN94.17 31494.37 30993.58 34996.86 35785.71 36690.11 36997.07 32998.17 13497.82 25097.19 32384.62 33398.94 36189.77 35297.68 33396.09 365
EMVS93.83 32094.02 31293.23 35396.83 35984.96 36789.77 37096.32 34197.92 14997.43 27996.36 34286.17 32098.93 36287.68 35897.73 33295.81 366
MVEpermissive83.40 2292.50 33291.92 33594.25 34298.83 23691.64 33492.71 36383.52 37895.92 26586.46 37595.46 35595.20 22795.40 37480.51 37198.64 30595.73 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 32293.14 32495.46 33298.66 27391.29 34196.61 26894.63 35297.39 19496.83 30693.71 37079.88 35499.56 29982.40 36998.13 32295.54 368
API-MVS97.04 24496.91 23497.42 27797.88 32798.23 12598.18 13098.50 28897.57 17397.39 28196.75 33296.77 16499.15 35590.16 35199.02 28294.88 369
GG-mvs-BLEND94.76 33894.54 37592.13 33199.31 2280.47 38088.73 37391.01 37367.59 37698.16 37082.30 37094.53 36793.98 370
DeepMVS_CXcopyleft93.44 35198.24 30894.21 28894.34 35364.28 37391.34 36994.87 36589.45 30192.77 37677.54 37493.14 37093.35 371
tmp_tt78.77 34278.73 34578.90 35858.45 38174.76 38194.20 35178.26 38139.16 37486.71 37492.82 37280.50 35375.19 37786.16 36292.29 37186.74 372
wuyk23d96.06 28097.62 19091.38 35598.65 27498.57 9898.85 7396.95 33296.86 23299.90 499.16 9299.18 1198.40 36889.23 35499.77 9777.18 373
test12317.04 34520.11 3487.82 35910.25 3834.91 38394.80 3354.47 3844.93 37710.00 37924.28 3769.69 3823.64 37810.14 37612.43 37714.92 374
testmvs17.12 34420.53 3476.87 36012.05 3824.20 38493.62 3606.73 3834.62 37810.41 37824.33 3758.28 3833.56 3799.69 37715.07 37612.86 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k24.66 34332.88 3460.00 3610.00 3840.00 3850.00 37299.10 2060.00 3790.00 38097.58 30499.21 100.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas8.17 34610.90 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37998.07 670.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.12 34710.83 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38097.48 3110.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.73 2599.67 299.43 1099.54 5299.43 3199.26 81
test_one_060199.39 11299.20 3399.31 13698.49 11098.66 17899.02 12197.64 100
eth-test20.00 384
eth-test0.00 384
ZD-MVS99.01 19898.84 7699.07 21094.10 30698.05 23798.12 27096.36 18899.86 9892.70 32499.19 258
test_241102_ONE99.49 8799.17 3999.31 13697.98 14499.66 2098.90 15498.36 4599.48 320
9.1497.78 17699.07 18397.53 20399.32 13095.53 27598.54 19998.70 19897.58 10599.76 21794.32 28399.46 214
save fliter99.11 17197.97 15296.53 27099.02 22498.24 125
test072699.50 8099.21 2798.17 13399.35 11797.97 14599.26 8199.06 10797.61 103
test_part299.36 11999.10 6299.05 115
sam_mvs84.29 338
MTGPAbinary99.20 176
test_post197.59 19720.48 37883.07 34499.66 26794.16 284
test_post21.25 37783.86 34099.70 243
patchmatchnet-post98.77 18784.37 33599.85 113
MTMP97.93 16091.91 367
gm-plane-assit94.83 37481.97 37688.07 36094.99 36099.60 28691.76 333
TEST998.71 25598.08 13995.96 29799.03 22091.40 34095.85 33397.53 30696.52 17799.76 217
test_898.67 26898.01 14695.91 30299.02 22491.64 33595.79 33597.50 30996.47 18099.76 217
agg_prior98.68 26697.99 14799.01 22795.59 33699.77 210
test_prior497.97 15295.86 303
test_prior295.74 30996.48 24596.11 32797.63 30295.92 20694.16 28499.20 254
旧先验295.76 30788.56 35997.52 27199.66 26794.48 274
新几何295.93 300
原ACMM295.53 316
testdata299.79 19292.80 321
segment_acmp97.02 148
testdata195.44 32196.32 251
plane_prior799.19 15297.87 163
plane_prior698.99 20397.70 18194.90 233
plane_prior497.98 280
plane_prior397.78 17497.41 19297.79 251
plane_prior297.77 17798.20 131
plane_prior199.05 190
plane_prior97.65 18397.07 24096.72 23799.36 229
n20.00 385
nn0.00 385
door-mid99.57 37
test1198.87 247
door99.41 96
HQP5-MVS96.79 223
HQP-NCC98.67 26896.29 28496.05 25995.55 340
ACMP_Plane98.67 26896.29 28496.05 25995.55 340
BP-MVS92.82 319
HQP3-MVS99.04 21899.26 247
HQP2-MVS93.84 259
NP-MVS98.84 23497.39 19696.84 330
MDTV_nov1_ep1395.22 29597.06 35583.20 37397.74 18196.16 34294.37 30096.99 29598.83 17683.95 33999.53 30793.90 29597.95 329
ACMMP++_ref99.77 97
ACMMP++99.68 142
Test By Simon96.52 177