This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
HyFIR lowres test97.19 23096.60 25398.96 13699.62 5297.28 20095.17 32499.50 6094.21 30199.01 12098.32 25386.61 31499.99 297.10 14299.84 5999.60 52
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9299.28 3099.66 1999.09 6799.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
mvs_tets99.63 599.67 599.49 4999.88 798.61 9299.34 1599.71 1199.27 4499.90 499.74 899.68 299.97 399.55 899.99 599.88 3
DTE-MVSNet99.43 1599.35 1799.66 499.71 3299.30 1799.31 2199.51 5899.64 1299.56 2899.46 4698.23 5299.97 398.78 4699.93 2899.72 25
MVSFormer98.26 14498.43 10697.77 25098.88 22293.89 30199.39 1399.56 4299.11 5798.16 22198.13 26493.81 25999.97 399.26 1899.57 18199.43 142
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8199.39 1399.56 4299.11 5799.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
h-mvs3397.77 18897.33 20999.10 11199.21 14397.84 16598.35 11698.57 28299.11 5798.58 19099.02 11988.65 30699.96 898.11 8496.34 35299.49 109
IterMVS-SCA-FT97.85 18298.18 14096.87 29799.27 13191.16 34395.53 31499.25 16399.10 6499.41 5099.35 6293.10 26999.96 898.65 5699.94 2499.49 109
UA-Net99.47 1199.40 1499.70 299.49 8699.29 1899.80 399.72 1099.82 399.04 11699.81 398.05 6999.96 898.85 4299.99 599.86 6
RRT_MVS97.07 23896.57 25598.58 18695.89 37096.33 23497.36 21698.77 26697.85 15299.08 10699.12 9882.30 34599.96 898.82 4499.90 4799.45 133
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 13099.20 3899.65 2099.48 2499.92 399.71 1298.07 6699.96 899.53 9100.00 199.93 1
PEN-MVS99.41 1799.34 1999.62 699.73 2599.14 5299.29 2699.54 5099.62 1799.56 2899.42 5298.16 6299.96 898.78 4699.93 2899.77 16
K. test v398.00 16597.66 18499.03 12899.79 1997.56 18699.19 4292.47 36299.62 1799.52 3599.66 1789.61 29699.96 899.25 2099.81 7299.56 74
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3499.95 1699.78 14
Fast-Effi-MVS+-dtu98.27 14298.09 15198.81 15698.43 29398.11 13397.61 19399.50 6098.64 9597.39 27797.52 30598.12 6599.95 1596.90 16198.71 29998.38 307
Effi-MVS+-dtu98.26 14497.90 16899.35 7098.02 31899.49 398.02 15099.16 19298.29 11997.64 25697.99 27696.44 18099.95 1596.66 18398.93 28998.60 296
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6399.34 1599.69 1598.93 8499.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
v7n99.53 899.57 899.41 6199.88 798.54 10099.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
PS-CasMVS99.40 1899.33 2099.62 699.71 3299.10 6099.29 2699.53 5499.53 2399.46 4399.41 5598.23 5299.95 1598.89 4099.95 1699.81 11
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 11698.87 7298.39 11299.42 9399.42 3199.36 6099.06 10598.38 4399.95 1598.34 7599.90 4799.57 69
Vis-MVSNetpermissive99.34 2299.36 1699.27 8699.73 2598.26 11899.17 4399.78 699.11 5799.27 7699.48 4498.82 2199.95 1598.94 3699.93 2899.59 58
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2024052198.69 8398.87 4598.16 22999.77 2095.11 26999.08 5099.44 8499.34 3899.33 6599.55 3294.10 25699.94 2399.25 2099.96 1499.42 145
CP-MVSNet99.21 2999.09 3499.56 2499.65 4598.96 6999.13 4799.34 12199.42 3199.33 6599.26 7397.01 14799.94 2398.74 5199.93 2899.79 13
PVSNet_Blended_VisFu98.17 15498.15 14698.22 22599.73 2595.15 26697.36 21699.68 1694.45 29698.99 12499.27 7196.87 15499.94 2397.13 14099.91 4399.57 69
IterMVS97.73 18998.11 15096.57 30499.24 13690.28 34495.52 31699.21 17298.86 8799.33 6599.33 6693.11 26899.94 2398.49 6599.94 2499.48 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.57 799.67 599.28 8399.89 698.09 13499.14 4699.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
CHOSEN 280x42095.51 29295.47 28395.65 32498.25 30588.27 35293.25 35998.88 24393.53 31294.65 35097.15 32486.17 31899.93 2897.41 12399.93 2898.73 288
bset_n11_16_dypcd96.99 24796.56 25698.27 22299.00 19595.25 26192.18 36594.05 35798.75 9299.01 12098.38 24488.98 30199.93 2898.77 4999.92 3799.64 41
UniMVSNet_NR-MVSNet98.86 5998.68 6899.40 6399.17 15998.74 8197.68 18599.40 9799.14 5599.06 10998.59 22096.71 16899.93 2898.57 6099.77 9399.53 94
DU-MVS98.82 6198.63 7499.39 6499.16 16198.74 8197.54 20199.25 16398.84 8999.06 10998.76 18796.76 16499.93 2898.57 6099.77 9399.50 105
WR-MVS_H99.33 2399.22 2799.65 599.71 3299.24 2499.32 1799.55 4699.46 2799.50 3999.34 6497.30 12999.93 2898.90 3899.93 2899.77 16
SixPastTwentyTwo98.75 7398.62 7599.16 10299.83 1597.96 15599.28 3098.20 29899.37 3599.70 1599.65 1992.65 27899.93 2899.04 3299.84 5999.60 52
IterMVS-LS98.55 10998.70 6598.09 23199.48 9494.73 27597.22 22899.39 9998.97 7999.38 5699.31 6896.00 19699.93 2898.58 5899.97 1199.60 52
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tttt051795.64 28894.98 29997.64 25999.36 11793.81 30398.72 7790.47 36898.08 13698.67 17598.34 25073.88 36799.92 3597.77 10699.51 19999.20 214
xiu_mvs_v1_base_debu97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
zzz-MVS98.79 6598.52 8799.61 999.67 4299.36 1097.33 21899.20 17498.83 9098.89 14598.90 15296.98 14999.92 3597.16 13499.70 12799.56 74
mvs-test197.83 18597.48 19898.89 14698.02 31899.20 3397.20 22999.16 19298.29 11996.46 32097.17 32296.44 18099.92 3596.66 18397.90 32897.54 343
xiu_mvs_v1_base97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
xiu_mvs_v1_base_debi97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
MTAPA98.88 5698.64 7399.61 999.67 4299.36 1098.43 10999.20 17498.83 9098.89 14598.90 15296.98 14999.92 3597.16 13499.70 12799.56 74
LCM-MVSNet-Re98.64 9398.48 9699.11 10998.85 22798.51 10298.49 10199.83 498.37 11199.69 1799.46 4698.21 5799.92 3594.13 28799.30 23898.91 264
lessismore_v098.97 13599.73 2597.53 18886.71 37399.37 5899.52 3889.93 29499.92 3598.99 3599.72 11799.44 138
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6599.63 699.58 2899.44 2999.78 1099.76 696.39 18299.92 3599.44 1399.92 3799.68 33
GeoE99.05 3698.99 4299.25 9199.44 10298.35 11598.73 7699.56 4298.42 11098.91 14198.81 17998.94 1899.91 4598.35 7499.73 11099.49 109
Fast-Effi-MVS+97.67 19397.38 20398.57 18998.71 25297.43 19397.23 22599.45 8194.82 28896.13 32496.51 33398.52 3699.91 4596.19 21898.83 29298.37 309
jason97.45 21097.35 20697.76 25199.24 13693.93 29795.86 30198.42 28994.24 30098.50 20198.13 26494.82 23599.91 4597.22 13199.73 11099.43 142
jason: jason.
lupinMVS97.06 23996.86 23497.65 25798.88 22293.89 30195.48 31797.97 30793.53 31298.16 22197.58 30193.81 25999.91 4596.77 17299.57 18199.17 225
thisisatest053095.27 29594.45 30597.74 25399.19 15094.37 28397.86 16790.20 36997.17 21698.22 21897.65 29773.53 36899.90 4996.90 16199.35 22998.95 255
xiu_mvs_v2_base97.16 23397.49 19596.17 31398.54 28392.46 32395.45 31898.84 25497.25 20697.48 27196.49 33498.31 4999.90 4996.34 21098.68 30196.15 361
PS-MVSNAJ97.08 23797.39 20296.16 31598.56 28092.46 32395.24 32398.85 25397.25 20697.49 27095.99 34398.07 6699.90 4996.37 20798.67 30296.12 362
DSMNet-mixed97.42 21297.60 19096.87 29799.15 16591.46 33498.54 9399.12 20192.87 32197.58 26199.63 2096.21 18999.90 4995.74 23999.54 18999.27 201
DROMVSNet99.09 3499.05 3799.20 9699.28 12998.93 7099.24 3499.84 399.08 6998.12 22598.37 24698.72 2699.90 4999.05 3199.77 9398.77 283
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3799.41 1299.59 2699.59 2099.71 1499.57 2897.12 14099.90 4999.21 2399.87 5599.54 86
QAPM97.31 21996.81 23998.82 15498.80 24097.49 18999.06 5599.19 17990.22 34797.69 25399.16 9096.91 15299.90 4990.89 34699.41 21999.07 234
EPP-MVSNet98.30 13898.04 15799.07 11899.56 6497.83 16699.29 2698.07 30499.03 7398.59 18899.13 9792.16 28299.90 4996.87 16499.68 13899.49 109
3Dnovator98.27 298.81 6398.73 5899.05 12598.76 24397.81 17199.25 3399.30 14498.57 10598.55 19699.33 6697.95 7899.90 4997.16 13499.67 14499.44 138
OpenMVScopyleft96.65 797.09 23696.68 24698.32 21698.32 30197.16 21198.86 7099.37 10589.48 35196.29 32399.15 9496.56 17399.90 4992.90 31499.20 25297.89 324
MSC_two_6792asdad99.32 7898.43 29398.37 11198.86 25099.89 5997.14 13899.60 16799.71 26
No_MVS99.32 7898.43 29398.37 11198.86 25099.89 5997.14 13899.60 16799.71 26
DPE-MVScopyleft98.59 10398.26 13099.57 1899.27 13199.15 4897.01 24099.39 9997.67 16199.44 4798.99 13197.53 11199.89 5995.40 25399.68 13899.66 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part197.91 17097.46 20099.27 8698.80 24098.18 12799.07 5399.36 10999.75 599.63 2599.49 4282.20 34899.89 5998.87 4199.95 1699.74 24
CANet97.87 17697.76 17598.19 22797.75 33095.51 25496.76 25899.05 21397.74 15796.93 29398.21 26095.59 21499.89 5997.86 10299.93 2899.19 219
APDe-MVS98.99 4098.79 5399.60 1399.21 14399.15 4898.87 6899.48 7097.57 17099.35 6299.24 7697.83 8399.89 5997.88 10099.70 12799.75 22
PGM-MVS98.66 9098.37 11699.55 2699.53 7299.18 3898.23 12399.49 6897.01 22498.69 17398.88 16198.00 7299.89 5995.87 23399.59 17199.58 64
abl_698.99 4098.78 5499.61 999.45 10099.46 498.60 8699.50 6098.59 10199.24 8599.04 11598.54 3599.89 5996.45 20299.62 15899.50 105
mPP-MVS98.64 9398.34 12099.54 2999.54 7099.17 3998.63 8399.24 16897.47 17998.09 22998.68 19997.62 10299.89 5996.22 21699.62 15899.57 69
CP-MVS98.70 8198.42 10899.52 4199.36 11799.12 5798.72 7799.36 10997.54 17498.30 21498.40 24097.86 8199.89 5996.53 19799.72 11799.56 74
IB-MVS91.63 1992.24 33490.90 33896.27 31097.22 35191.24 34194.36 34793.33 36092.37 32692.24 36594.58 36466.20 37899.89 5993.16 31294.63 36497.66 338
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DVP-MVS++98.90 5498.70 6599.51 4598.43 29399.15 4899.43 1099.32 12898.17 13199.26 8099.02 11998.18 5999.88 7097.07 14499.45 21499.49 109
SED-MVS98.91 5298.72 6099.49 4999.49 8699.17 3998.10 13799.31 13498.03 13899.66 2099.02 11998.36 4499.88 7096.91 15699.62 15899.41 148
test_241102_TWO99.30 14498.03 13899.26 8099.02 11997.51 11499.88 7096.91 15699.60 16799.66 36
ETV-MVS98.03 16197.86 17198.56 19398.69 26098.07 14097.51 20599.50 6098.10 13597.50 26995.51 35198.41 4199.88 7096.27 21499.24 24797.71 337
DVP-MVScopyleft98.77 7098.52 8799.52 4199.50 7999.21 2798.02 15098.84 25497.97 14299.08 10699.02 11997.61 10399.88 7096.99 15099.63 15599.48 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 13199.08 10699.02 11997.89 7999.88 7097.07 14499.71 12299.70 31
test_0728_SECOND99.60 1399.50 7999.23 2598.02 15099.32 12899.88 7096.99 15099.63 15599.68 33
MVS_030497.64 19597.35 20698.52 19897.87 32696.69 22898.59 8898.05 30697.44 18893.74 36198.85 16893.69 26399.88 7098.11 8499.81 7298.98 249
MP-MVS-pluss98.57 10498.23 13499.60 1399.69 4099.35 1297.16 23599.38 10194.87 28798.97 12998.99 13198.01 7199.88 7097.29 12899.70 12799.58 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 12998.00 16099.61 999.57 5799.25 2398.57 9099.35 11597.55 17399.31 7397.71 29394.61 24299.88 7096.14 22299.19 25699.70 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R98.69 8398.40 11099.54 2999.53 7299.17 3998.52 9599.31 13497.46 18498.44 20498.51 22897.83 8399.88 7096.46 20199.58 17799.58 64
VPA-MVSNet99.30 2499.30 2399.28 8399.49 8698.36 11499.00 5999.45 8199.63 1499.52 3599.44 5198.25 5099.88 7099.09 2899.84 5999.62 46
ACMMPR98.70 8198.42 10899.54 2999.52 7499.14 5298.52 9599.31 13497.47 17998.56 19498.54 22497.75 9099.88 7096.57 18999.59 17199.58 64
MP-MVScopyleft98.46 12198.09 15199.54 2999.57 5799.22 2698.50 10099.19 17997.61 16797.58 26198.66 20497.40 12499.88 7094.72 26799.60 16799.54 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CHOSEN 1792x268897.49 20597.14 22098.54 19799.68 4196.09 24196.50 27199.62 2291.58 33598.84 15598.97 13792.36 28099.88 7096.76 17399.95 1699.67 35
SteuartSystems-ACMMP98.79 6598.54 8599.54 2999.73 2599.16 4398.23 12399.31 13497.92 14698.90 14298.90 15298.00 7299.88 7096.15 22199.72 11799.58 64
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet596.01 27995.20 29498.41 20997.53 34096.10 23998.74 7499.50 6097.22 21598.03 23599.04 11569.80 37099.88 7097.27 12999.71 12299.25 205
ZNCC-MVS98.68 8798.40 11099.54 2999.57 5799.21 2798.46 10699.29 15197.28 20398.11 22798.39 24298.00 7299.87 8796.86 16699.64 15299.55 82
SR-MVS98.71 7898.43 10699.57 1899.18 15799.35 1298.36 11599.29 15198.29 11998.88 14998.85 16897.53 11199.87 8796.14 22299.31 23599.48 119
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 899.64 1299.84 899.83 299.50 599.87 8799.36 1499.92 3799.64 41
HPM-MVScopyleft98.79 6598.53 8699.59 1799.65 4599.29 1899.16 4499.43 9096.74 23498.61 18498.38 24498.62 3099.87 8796.47 20099.67 14499.59 58
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet96.14 27795.44 28698.25 22390.76 37795.50 25597.92 16094.65 34998.97 7992.98 36298.85 16889.12 30099.87 8795.99 22699.68 13899.39 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet97.02 24396.93 22897.30 27997.71 33294.22 28598.11 13599.30 14499.37 3596.91 29699.34 6486.72 31399.87 8797.53 11897.36 33997.81 330
ACMMPcopyleft98.75 7398.50 9199.52 4199.56 6499.16 4398.87 6899.37 10597.16 21798.82 16099.01 12897.71 9399.87 8796.29 21399.69 13399.54 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test111196.49 26796.82 23895.52 32799.42 10787.08 35899.22 3587.14 37299.11 5799.46 4399.58 2788.69 30399.86 9498.80 4599.95 1699.62 46
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 5099.06 6498.69 8099.54 5099.31 4099.62 2799.53 3697.36 12799.86 9499.24 2299.71 12299.39 157
ZD-MVS99.01 19498.84 7499.07 20894.10 30498.05 23398.12 26796.36 18699.86 9492.70 32299.19 256
test117298.76 7198.49 9499.57 1899.18 15799.37 998.39 11299.31 13498.43 10998.90 14298.88 16197.49 11899.86 9496.43 20499.37 22699.48 119
SR-MVS-dyc-post98.81 6398.55 8499.57 1899.20 14799.38 698.48 10499.30 14498.64 9598.95 13298.96 14097.49 11899.86 9496.56 19299.39 22299.45 133
testtj97.79 18797.25 21199.42 5899.03 19098.85 7397.78 17399.18 18395.83 26698.12 22598.50 23195.50 21899.86 9492.23 32899.07 27299.54 86
tfpnnormal98.90 5498.90 4498.91 14399.67 4297.82 16999.00 5999.44 8499.45 2899.51 3899.24 7698.20 5899.86 9495.92 22999.69 13399.04 240
Regformer-498.73 7698.68 6898.89 14699.02 19297.22 20497.17 23399.06 20999.21 4699.17 9698.85 16897.45 12199.86 9498.48 6699.70 12799.60 52
UniMVSNet (Re)98.87 5798.71 6299.35 7099.24 13698.73 8497.73 18199.38 10198.93 8499.12 9898.73 19096.77 16299.86 9498.63 5799.80 8099.46 129
NR-MVSNet98.95 4898.82 5099.36 6599.16 16198.72 8699.22 3599.20 17499.10 6499.72 1398.76 18796.38 18499.86 9498.00 9499.82 6899.50 105
GBi-Net98.65 9198.47 9899.17 9998.90 21698.24 12099.20 3899.44 8498.59 10198.95 13299.55 3294.14 25299.86 9497.77 10699.69 13399.41 148
test198.65 9198.47 9899.17 9998.90 21698.24 12099.20 3899.44 8498.59 10198.95 13299.55 3294.14 25299.86 9497.77 10699.69 13399.41 148
FMVSNet199.17 3099.17 2999.17 9999.55 6798.24 12099.20 3899.44 8499.21 4699.43 4899.55 3297.82 8699.86 9498.42 7099.89 5199.41 148
XXY-MVS99.14 3299.15 3299.10 11199.76 2397.74 17798.85 7199.62 2298.48 10899.37 5899.49 4298.75 2499.86 9498.20 8199.80 8099.71 26
1112_ss97.29 22296.86 23498.58 18699.34 12396.32 23596.75 25999.58 2893.14 31796.89 30097.48 30892.11 28399.86 9496.91 15699.54 18999.57 69
EGC-MVSNET85.24 33880.54 34199.34 7399.77 2099.20 3399.08 5099.29 15112.08 37420.84 37599.42 5297.55 10899.85 10997.08 14399.72 11798.96 254
GST-MVS98.61 9898.30 12599.52 4199.51 7699.20 3398.26 12199.25 16397.44 18898.67 17598.39 24297.68 9499.85 10996.00 22599.51 19999.52 98
patchmatchnet-post98.77 18584.37 33399.85 109
SCA96.41 27196.66 24995.67 32298.24 30688.35 35195.85 30396.88 33396.11 25597.67 25498.67 20193.10 26999.85 10994.16 28299.22 24998.81 275
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11199.30 2599.57 3599.61 1999.40 5399.50 3997.12 14099.85 10999.02 3399.94 2499.80 12
HFP-MVS98.71 7898.44 10499.51 4599.49 8699.16 4398.52 9599.31 13497.47 17998.58 19098.50 23197.97 7699.85 10996.57 18999.59 17199.53 94
#test#98.50 11798.16 14499.51 4599.49 8699.16 4398.03 14899.31 13496.30 25198.58 19098.50 23197.97 7699.85 10995.68 24399.59 17199.53 94
EI-MVSNet-UG-set98.69 8398.71 6298.62 18199.10 17396.37 23397.23 22598.87 24599.20 4999.19 9198.99 13197.30 12999.85 10998.77 4999.79 8599.65 40
EI-MVSNet-Vis-set98.68 8798.70 6598.63 17999.09 17696.40 23297.23 22598.86 25099.20 4999.18 9598.97 13797.29 13199.85 10998.72 5299.78 8999.64 41
v124098.55 10998.62 7598.32 21699.22 14195.58 25197.51 20599.45 8197.16 21799.45 4699.24 7696.12 19199.85 10999.60 499.88 5299.55 82
APD-MVS_3200maxsize98.84 6098.61 7899.53 3699.19 15099.27 2198.49 10199.33 12698.64 9599.03 11998.98 13597.89 7999.85 10996.54 19699.42 21899.46 129
ADS-MVSNet295.43 29394.98 29996.76 30398.14 31291.74 33197.92 16097.76 31190.23 34596.51 31698.91 14985.61 32399.85 10992.88 31596.90 34598.69 292
MDA-MVSNet-bldmvs97.94 16997.91 16798.06 23699.44 10294.96 27196.63 26599.15 19898.35 11298.83 15699.11 10094.31 24999.85 10996.60 18698.72 29799.37 167
WR-MVS98.40 12998.19 13999.03 12899.00 19597.65 18296.85 25298.94 23298.57 10598.89 14598.50 23195.60 21399.85 10997.54 11799.85 5799.59 58
RRT_test8_iter0595.24 29695.13 29695.57 32597.32 34887.02 35997.99 15499.41 9498.06 13799.12 9899.05 11266.85 37599.85 10998.93 3799.47 21099.84 8
APD-MVScopyleft98.10 15797.67 18199.42 5899.11 16998.93 7097.76 17899.28 15494.97 28498.72 17298.77 18597.04 14399.85 10993.79 29899.54 18999.49 109
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmtry97.35 21696.97 22798.50 20297.31 34996.47 23198.18 12898.92 23798.95 8398.78 16399.37 5885.44 32699.85 10995.96 22899.83 6599.17 225
N_pmnet97.63 19797.17 21698.99 13499.27 13197.86 16395.98 29293.41 35995.25 28099.47 4298.90 15295.63 21299.85 10996.91 15699.73 11099.27 201
test250692.39 33191.89 33493.89 34499.38 11282.28 37399.32 1766.03 38099.08 6998.77 16699.57 2866.26 37799.84 12798.71 5399.95 1699.54 86
our_test_397.39 21497.73 17996.34 30898.70 25689.78 34694.61 34198.97 23196.50 24299.04 11698.85 16895.98 20099.84 12797.26 13099.67 14499.41 148
CANet_DTU97.26 22397.06 22297.84 24697.57 33794.65 27996.19 28898.79 26397.23 21295.14 34798.24 25793.22 26699.84 12797.34 12699.84 5999.04 240
ACMMP_NAP98.75 7398.48 9699.57 1899.58 5399.29 1897.82 17199.25 16396.94 22698.78 16399.12 9898.02 7099.84 12797.13 14099.67 14499.59 58
v14419298.54 11298.57 8398.45 20699.21 14395.98 24297.63 19099.36 10997.15 21999.32 7199.18 8495.84 20799.84 12799.50 1099.91 4399.54 86
v192192098.54 11298.60 8098.38 21299.20 14795.76 25097.56 19999.36 10997.23 21299.38 5699.17 8896.02 19499.84 12799.57 699.90 4799.54 86
Regformer-298.60 10098.46 10099.02 13198.85 22797.71 17996.91 24999.09 20598.98 7899.01 12098.64 20997.37 12699.84 12797.75 11199.57 18199.52 98
HPM-MVS++copyleft98.10 15797.64 18699.48 5199.09 17699.13 5597.52 20398.75 27097.46 18496.90 29997.83 28796.01 19599.84 12795.82 23799.35 22999.46 129
PMMVS298.07 16098.08 15498.04 23899.41 10994.59 28194.59 34299.40 9797.50 17698.82 16098.83 17496.83 15799.84 12797.50 12099.81 7299.71 26
XVG-ACMP-BASELINE98.56 10598.34 12099.22 9599.54 7098.59 9497.71 18299.46 7897.25 20698.98 12698.99 13197.54 10999.84 12795.88 23099.74 10799.23 209
CPTT-MVS97.84 18397.36 20599.27 8699.31 12498.46 10598.29 11899.27 15794.90 28697.83 24498.37 24694.90 23199.84 12793.85 29799.54 18999.51 101
UGNet98.53 11498.45 10298.79 16097.94 32296.96 21899.08 5098.54 28399.10 6496.82 30599.47 4596.55 17499.84 12798.56 6399.94 2499.55 82
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG98.68 8798.50 9199.20 9699.45 10098.63 8998.56 9199.57 3597.87 15098.85 15398.04 27497.66 9699.84 12796.72 17899.81 7299.13 229
DeepC-MVS97.60 498.97 4598.93 4399.10 11199.35 12197.98 15098.01 15399.46 7897.56 17299.54 3099.50 3998.97 1699.84 12798.06 8999.92 3799.49 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+97.89 398.69 8398.51 8999.24 9398.81 23898.40 10799.02 5699.19 17998.99 7698.07 23099.28 6997.11 14299.84 12796.84 16799.32 23399.47 127
CS-MVS-test98.41 12698.30 12598.73 17298.84 23098.39 10898.71 7999.79 597.98 14096.86 30297.38 31497.86 8199.83 14297.81 10399.46 21197.97 322
Anonymous2023121199.27 2599.27 2499.26 8999.29 12898.18 12799.49 899.51 5899.70 899.80 999.68 1496.84 15599.83 14299.21 2399.91 4399.77 16
Anonymous2023120698.21 14998.21 13698.20 22699.51 7695.43 25898.13 13299.32 12896.16 25498.93 13998.82 17796.00 19699.83 14297.32 12799.73 11099.36 173
XVS98.72 7798.45 10299.53 3699.46 9799.21 2798.65 8199.34 12198.62 9997.54 26598.63 21397.50 11599.83 14296.79 16999.53 19399.56 74
X-MVStestdata94.32 30892.59 32699.53 3699.46 9799.21 2798.65 8199.34 12198.62 9997.54 26545.85 37297.50 11599.83 14296.79 16999.53 19399.56 74
v1098.97 4599.11 3398.55 19499.44 10296.21 23898.90 6699.55 4698.73 9399.48 4099.60 2596.63 17199.83 14299.70 399.99 599.61 51
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9599.27 3299.57 3599.39 3399.75 1299.62 2199.17 1299.83 14299.06 3099.62 15899.66 36
Baseline_NR-MVSNet98.98 4498.86 4799.36 6599.82 1698.55 9797.47 20999.57 3599.37 3599.21 8999.61 2396.76 16499.83 14298.06 8999.83 6599.71 26
LPG-MVS_test98.71 7898.46 10099.47 5499.57 5798.97 6698.23 12399.48 7096.60 23999.10 10399.06 10598.71 2799.83 14295.58 24999.78 8999.62 46
LGP-MVS_train99.47 5499.57 5798.97 6699.48 7096.60 23999.10 10399.06 10598.71 2799.83 14295.58 24999.78 8999.62 46
Test_1112_low_res96.99 24796.55 25798.31 21899.35 12195.47 25695.84 30499.53 5491.51 33796.80 30698.48 23691.36 28799.83 14296.58 18799.53 19399.62 46
ECVR-MVScopyleft96.42 27096.61 25195.85 31899.38 11288.18 35399.22 3586.00 37499.08 6999.36 6099.57 2888.47 30899.82 15398.52 6499.95 1699.54 86
xxxxxxxxxxxxxcwj98.44 12398.24 13299.06 12399.11 16997.97 15196.53 26899.54 5098.24 12298.83 15698.90 15297.80 8799.82 15395.68 24399.52 19699.38 164
SF-MVS98.53 11498.27 12999.32 7899.31 12498.75 8098.19 12799.41 9496.77 23398.83 15698.90 15297.80 8799.82 15395.68 24399.52 19699.38 164
new-patchmatchnet98.35 13498.74 5797.18 28399.24 13692.23 32896.42 27699.48 7098.30 11699.69 1799.53 3697.44 12299.82 15398.84 4399.77 9399.49 109
FIs99.14 3299.09 3499.29 8199.70 3898.28 11799.13 4799.52 5799.48 2499.24 8599.41 5596.79 16199.82 15398.69 5599.88 5299.76 20
v119298.60 10098.66 7198.41 20999.27 13195.88 24597.52 20399.36 10997.41 19099.33 6599.20 8196.37 18599.82 15399.57 699.92 3799.55 82
pm-mvs199.44 1399.48 1199.33 7699.80 1798.63 8999.29 2699.63 2199.30 4299.65 2299.60 2599.16 1499.82 15399.07 2999.83 6599.56 74
VPNet98.87 5798.83 4999.01 13299.70 3897.62 18598.43 10999.35 11599.47 2699.28 7499.05 11296.72 16799.82 15398.09 8799.36 22799.59 58
pmmvs395.03 30094.40 30696.93 29397.70 33492.53 32295.08 32797.71 31388.57 35697.71 25198.08 27279.39 35799.82 15396.19 21899.11 27098.43 305
HPM-MVS_fast99.01 3898.82 5099.57 1899.71 3299.35 1299.00 5999.50 6097.33 19798.94 13898.86 16598.75 2499.82 15397.53 11899.71 12299.56 74
DELS-MVS98.27 14298.20 13798.48 20398.86 22596.70 22795.60 31299.20 17497.73 15898.45 20398.71 19397.50 11599.82 15398.21 8099.59 17198.93 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet298.49 11898.40 11098.75 16898.90 21697.14 21398.61 8599.13 19998.59 10199.19 9199.28 6994.14 25299.82 15397.97 9599.80 8099.29 198
WTY-MVS96.67 25996.27 26797.87 24598.81 23894.61 28096.77 25797.92 30994.94 28597.12 28497.74 29291.11 28899.82 15393.89 29498.15 31999.18 221
ACMP95.32 1598.41 12698.09 15199.36 6599.51 7698.79 7997.68 18599.38 10195.76 26898.81 16298.82 17798.36 4499.82 15394.75 26499.77 9399.48 119
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETH3D cwj APD-0.1697.55 20197.00 22599.19 9898.51 28698.64 8896.85 25299.13 19994.19 30297.65 25598.40 24095.78 20899.81 16793.37 30999.16 25999.12 230
ET-MVSNet_ETH3D94.30 31093.21 32097.58 26398.14 31294.47 28294.78 33493.24 36194.72 28989.56 36995.87 34678.57 36199.81 16796.91 15697.11 34498.46 301
TSAR-MVS + MP.98.63 9598.49 9499.06 12399.64 4897.90 16098.51 9998.94 23296.96 22599.24 8598.89 16097.83 8399.81 16796.88 16399.49 20799.48 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-198.55 10998.44 10498.87 14898.85 22797.29 19896.91 24998.99 22998.97 7998.99 12498.64 20997.26 13599.81 16797.79 10499.57 18199.51 101
v899.01 3899.16 3098.57 18999.47 9696.31 23698.90 6699.47 7699.03 7399.52 3599.57 2896.93 15199.81 16799.60 499.98 999.60 52
CR-MVSNet96.28 27495.95 27197.28 28097.71 33294.22 28598.11 13598.92 23792.31 32796.91 29699.37 5885.44 32699.81 16797.39 12497.36 33997.81 330
PatchT96.65 26096.35 26297.54 26897.40 34595.32 26097.98 15696.64 33699.33 3996.89 30099.42 5284.32 33499.81 16797.69 11497.49 33297.48 344
FMVSNet397.50 20397.24 21398.29 22098.08 31695.83 24797.86 16798.91 23997.89 14998.95 13298.95 14487.06 31199.81 16797.77 10699.69 13399.23 209
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5999.90 199.78 699.63 1499.78 1099.67 1699.48 699.81 16799.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EIA-MVS98.00 16597.74 17798.80 15898.72 24998.09 13498.05 14599.60 2597.39 19296.63 31095.55 35097.68 9499.80 17696.73 17799.27 24298.52 299
CS-MVS98.16 15698.22 13597.97 24298.56 28097.01 21798.10 13799.70 1497.45 18697.29 28097.19 32097.72 9299.80 17698.37 7299.62 15897.11 349
Anonymous2024052998.93 5098.87 4599.12 10799.19 15098.22 12599.01 5798.99 22999.25 4599.54 3099.37 5897.04 14399.80 17697.89 9799.52 19699.35 177
thisisatest051594.12 31493.16 32196.97 29298.60 27492.90 31693.77 35690.61 36794.10 30496.91 29695.87 34674.99 36699.80 17694.52 27199.12 26998.20 312
Effi-MVS+98.02 16397.82 17398.62 18198.53 28597.19 20897.33 21899.68 1697.30 20196.68 30897.46 31098.56 3499.80 17696.63 18598.20 31598.86 269
v114498.60 10098.66 7198.41 20999.36 11795.90 24497.58 19799.34 12197.51 17599.27 7699.15 9496.34 18799.80 17699.47 1299.93 2899.51 101
VDDNet98.21 14997.95 16399.01 13299.58 5397.74 17799.01 5797.29 32499.67 1098.97 12999.50 3990.45 29199.80 17697.88 10099.20 25299.48 119
EI-MVSNet98.40 12998.51 8998.04 23899.10 17394.73 27597.20 22998.87 24598.97 7999.06 10999.02 11996.00 19699.80 17698.58 5899.82 6899.60 52
CVMVSNet96.25 27597.21 21593.38 35099.10 17380.56 37697.20 22998.19 30096.94 22699.00 12399.02 11989.50 29899.80 17696.36 20999.59 17199.78 14
MVSTER96.86 25196.55 25797.79 24997.91 32494.21 28797.56 19998.87 24597.49 17899.06 10999.05 11280.72 35099.80 17698.44 6899.82 6899.37 167
sss97.21 22896.93 22898.06 23698.83 23395.22 26496.75 25998.48 28794.49 29297.27 28197.90 28392.77 27699.80 17696.57 18999.32 23399.16 228
ab-mvs98.41 12698.36 11798.59 18599.19 15097.23 20299.32 1798.81 26097.66 16298.62 18299.40 5796.82 15899.80 17695.88 23099.51 19998.75 286
TDRefinement99.42 1699.38 1599.55 2699.76 2399.33 1699.68 599.71 1199.38 3499.53 3399.61 2398.64 2999.80 17698.24 7899.84 5999.52 98
LS3D98.63 9598.38 11599.36 6597.25 35099.38 699.12 4999.32 12899.21 4698.44 20498.88 16197.31 12899.80 17696.58 18799.34 23198.92 261
hse-mvs297.46 20897.07 22198.64 17698.73 24797.33 19697.45 21197.64 31799.11 5798.58 19097.98 27788.65 30699.79 19098.11 8497.39 33698.81 275
AUN-MVS96.24 27695.45 28598.60 18498.70 25697.22 20497.38 21497.65 31595.95 26295.53 34297.96 28182.11 34999.79 19096.31 21197.44 33498.80 280
SMA-MVScopyleft98.40 12998.03 15899.51 4599.16 16199.21 2798.05 14599.22 17194.16 30398.98 12699.10 10297.52 11399.79 19096.45 20299.64 15299.53 94
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Regformer-398.61 9898.61 7898.63 17999.02 19296.53 23097.17 23398.84 25499.13 5699.10 10398.85 16897.24 13699.79 19098.41 7199.70 12799.57 69
testdata299.79 19092.80 319
VDD-MVS98.56 10598.39 11399.07 11899.13 16898.07 14098.59 8897.01 32899.59 2099.11 10099.27 7194.82 23599.79 19098.34 7599.63 15599.34 179
v2v48298.56 10598.62 7598.37 21399.42 10795.81 24897.58 19799.16 19297.90 14899.28 7499.01 12895.98 20099.79 19099.33 1599.90 4799.51 101
mvs_anonymous97.83 18598.16 14496.87 29798.18 31091.89 33097.31 22098.90 24097.37 19498.83 15699.46 4696.28 18899.79 19098.90 3898.16 31898.95 255
tpm94.67 30494.34 30895.66 32397.68 33688.42 35097.88 16494.90 34894.46 29496.03 33098.56 22378.66 35999.79 19095.88 23095.01 36298.78 282
IS-MVSNet98.19 15197.90 16899.08 11599.57 5797.97 15199.31 2198.32 29399.01 7598.98 12699.03 11891.59 28699.79 19095.49 25199.80 8099.48 119
test_040298.76 7198.71 6298.93 14099.56 6498.14 13298.45 10899.34 12199.28 4398.95 13298.91 14998.34 4899.79 19095.63 24699.91 4398.86 269
ACMM96.08 1298.91 5298.73 5899.48 5199.55 6799.14 5298.07 14199.37 10597.62 16599.04 11698.96 14098.84 2099.79 19097.43 12299.65 15099.49 109
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_lstm_enhance97.18 23197.16 21797.25 28298.16 31192.85 31795.15 32699.31 13497.25 20698.74 17198.78 18390.07 29399.78 20297.19 13299.80 8099.11 232
Anonymous20240521197.90 17197.50 19499.08 11598.90 21698.25 11998.53 9496.16 34098.87 8699.11 10098.86 16590.40 29299.78 20297.36 12599.31 23599.19 219
ppachtmachnet_test97.50 20397.74 17796.78 30298.70 25691.23 34294.55 34399.05 21396.36 24799.21 8998.79 18296.39 18299.78 20296.74 17599.82 6899.34 179
新几何198.91 14398.94 20697.76 17498.76 26787.58 36096.75 30798.10 26994.80 23899.78 20292.73 32199.00 28399.20 214
V4298.78 6898.78 5498.76 16699.44 10297.04 21498.27 12099.19 17997.87 15099.25 8499.16 9096.84 15599.78 20299.21 2399.84 5999.46 129
VNet98.42 12598.30 12598.79 16098.79 24297.29 19898.23 12398.66 27799.31 4098.85 15398.80 18094.80 23899.78 20298.13 8399.13 26699.31 191
ETH3 D test640096.46 26995.59 28199.08 11598.88 22298.21 12696.53 26899.18 18388.87 35597.08 28797.79 28893.64 26499.77 20888.92 35399.40 22199.28 199
ETH3D-3000-0.198.03 16197.62 18899.29 8199.11 16998.80 7897.47 20999.32 12895.54 27198.43 20798.62 21596.61 17299.77 20893.95 29299.49 20799.30 194
agg_prior197.06 23996.40 26199.03 12898.68 26397.99 14695.76 30599.01 22591.73 33295.59 33497.50 30696.49 17799.77 20893.71 29999.14 26399.34 179
agg_prior98.68 26397.99 14699.01 22595.59 33499.77 208
baseline293.73 31992.83 32596.42 30797.70 33491.28 34096.84 25489.77 37093.96 30892.44 36495.93 34479.14 35899.77 20892.94 31396.76 34998.21 311
PM-MVS98.82 6198.72 6099.12 10799.64 4898.54 10097.98 15699.68 1697.62 16599.34 6499.18 8497.54 10999.77 20897.79 10499.74 10799.04 240
TAMVS98.24 14798.05 15698.80 15899.07 18097.18 20997.88 16498.81 26096.66 23899.17 9699.21 7994.81 23799.77 20896.96 15499.88 5299.44 138
9.1497.78 17499.07 18097.53 20299.32 12895.53 27398.54 19898.70 19697.58 10599.76 21594.32 28199.46 211
TEST998.71 25298.08 13895.96 29599.03 21891.40 33895.85 33197.53 30396.52 17599.76 215
train_agg97.10 23596.45 26099.07 11898.71 25298.08 13895.96 29599.03 21891.64 33395.85 33197.53 30396.47 17899.76 21593.67 30099.16 25999.36 173
test_898.67 26598.01 14595.91 30099.02 22291.64 33395.79 33397.50 30696.47 17899.76 215
test20.0398.78 6898.77 5698.78 16399.46 9797.20 20797.78 17399.24 16899.04 7299.41 5098.90 15297.65 9799.76 21597.70 11299.79 8599.39 157
EG-PatchMatch MVS98.99 4099.01 3998.94 13999.50 7997.47 19098.04 14799.59 2698.15 13499.40 5399.36 6198.58 3399.76 21598.78 4699.68 13899.59 58
ACMH96.65 799.25 2799.24 2699.26 8999.72 3198.38 11099.07 5399.55 4698.30 11699.65 2299.45 5099.22 999.76 21598.44 6899.77 9399.64 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.64 19597.49 19598.08 23499.14 16695.12 26896.70 26299.05 21393.77 30998.62 18298.83 17493.23 26599.75 22298.33 7799.76 10399.36 173
HY-MVS95.94 1395.90 28295.35 29097.55 26797.95 32194.79 27398.81 7396.94 33192.28 32895.17 34698.57 22289.90 29599.75 22291.20 34197.33 34198.10 316
DP-MVS98.93 5098.81 5299.28 8399.21 14398.45 10698.46 10699.33 12699.63 1499.48 4099.15 9497.23 13799.75 22297.17 13399.66 14999.63 45
PatchmatchNetpermissive95.58 28995.67 27895.30 33297.34 34787.32 35697.65 18996.65 33595.30 27997.07 28898.69 19784.77 32999.75 22294.97 26098.64 30398.83 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet95.24 29694.93 30196.18 31298.14 31290.10 34597.92 16097.32 32390.23 34596.51 31698.91 14985.61 32399.74 22692.88 31596.90 34598.69 292
diffmvs98.22 14898.24 13298.17 22899.00 19595.44 25796.38 27899.58 2897.79 15698.53 19998.50 23196.76 16499.74 22697.95 9699.64 15299.34 179
UnsupCasMVSNet_eth97.89 17397.60 19098.75 16899.31 12497.17 21097.62 19199.35 11598.72 9498.76 16898.68 19992.57 27999.74 22697.76 11095.60 35999.34 179
CDS-MVSNet97.69 19197.35 20698.69 17398.73 24797.02 21696.92 24898.75 27095.89 26498.59 18898.67 20192.08 28499.74 22696.72 17899.81 7299.32 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
nrg03099.40 1899.35 1799.54 2999.58 5399.13 5598.98 6299.48 7099.68 999.46 4399.26 7398.62 3099.73 23099.17 2699.92 3799.76 20
无先验95.74 30798.74 27289.38 35299.73 23092.38 32699.22 213
112196.73 25696.00 26998.91 14398.95 20597.76 17498.07 14198.73 27387.65 35996.54 31398.13 26494.52 24499.73 23092.38 32699.02 28099.24 208
LFMVS97.20 22996.72 24398.64 17698.72 24996.95 21998.93 6594.14 35699.74 798.78 16399.01 12884.45 33299.73 23097.44 12199.27 24299.25 205
YYNet197.60 19897.67 18197.39 27799.04 18793.04 31595.27 32198.38 29297.25 20698.92 14098.95 14495.48 22099.73 23096.99 15098.74 29599.41 148
MDA-MVSNet_test_wron97.60 19897.66 18497.41 27699.04 18793.09 31195.27 32198.42 28997.26 20598.88 14998.95 14495.43 22199.73 23097.02 14798.72 29799.41 148
Vis-MVSNet (Re-imp)97.46 20897.16 21798.34 21599.55 6796.10 23998.94 6498.44 28898.32 11598.16 22198.62 21588.76 30299.73 23093.88 29599.79 8599.18 221
PCF-MVS92.86 1894.36 30793.00 32498.42 20898.70 25697.56 18693.16 36099.11 20379.59 36997.55 26497.43 31192.19 28199.73 23079.85 37099.45 21497.97 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft96.50 1098.99 4098.85 4899.41 6199.58 5399.10 6098.74 7499.56 4299.09 6799.33 6599.19 8298.40 4299.72 23895.98 22799.76 10399.42 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
原ACMM198.35 21498.90 21696.25 23798.83 25992.48 32596.07 32898.10 26995.39 22299.71 23992.61 32498.99 28499.08 233
UnsupCasMVSNet_bld97.30 22096.92 23098.45 20699.28 12996.78 22696.20 28799.27 15795.42 27698.28 21698.30 25493.16 26799.71 23994.99 25997.37 33798.87 268
test_post21.25 37583.86 33899.70 241
testdata98.09 23198.93 20895.40 25998.80 26290.08 34997.45 27398.37 24695.26 22499.70 24193.58 30398.95 28899.17 225
HQP_MVS97.99 16897.67 18198.93 14099.19 15097.65 18297.77 17699.27 15798.20 12897.79 24797.98 27794.90 23199.70 24194.42 27699.51 19999.45 133
plane_prior599.27 15799.70 24194.42 27699.51 19999.45 133
cl____97.02 24396.83 23797.58 26397.82 32894.04 29194.66 33899.16 19297.04 22298.63 18098.71 19388.68 30599.69 24597.00 14899.81 7299.00 247
DIV-MVS_self_test97.02 24396.84 23697.58 26397.82 32894.03 29294.66 33899.16 19297.04 22298.63 18098.71 19388.69 30399.69 24597.00 14899.81 7299.01 244
eth_miper_zixun_eth97.23 22797.25 21197.17 28498.00 32092.77 31994.71 33599.18 18397.27 20498.56 19498.74 18991.89 28599.69 24597.06 14699.81 7299.05 236
D2MVS97.84 18397.84 17297.83 24799.14 16694.74 27496.94 24498.88 24395.84 26598.89 14598.96 14094.40 24799.69 24597.55 11599.95 1699.05 236
Patchmatch-test96.55 26396.34 26397.17 28498.35 29993.06 31298.40 11197.79 31097.33 19798.41 20898.67 20183.68 33999.69 24595.16 25699.31 23598.77 283
CDPH-MVS97.26 22396.66 24999.07 11899.00 19598.15 13096.03 29199.01 22591.21 34197.79 24797.85 28696.89 15399.69 24592.75 32099.38 22599.39 157
test1298.93 14098.58 27797.83 16698.66 27796.53 31495.51 21799.69 24599.13 26699.27 201
casdiffmvs98.95 4899.00 4098.81 15699.38 11297.33 19697.82 17199.57 3599.17 5499.35 6299.17 8898.35 4799.69 24598.46 6799.73 11099.41 148
baseline98.96 4799.02 3898.76 16699.38 11297.26 20198.49 10199.50 6098.86 8799.19 9199.06 10598.23 5299.69 24598.71 5399.76 10399.33 185
EU-MVSNet97.66 19498.50 9195.13 33399.63 5085.84 36298.35 11698.21 29798.23 12499.54 3099.46 4695.02 22999.68 25498.24 7899.87 5599.87 4
F-COLMAP97.30 22096.68 24699.14 10599.19 15098.39 10897.27 22499.30 14492.93 31996.62 31198.00 27595.73 21099.68 25492.62 32398.46 30999.35 177
OpenMVS_ROBcopyleft95.38 1495.84 28495.18 29597.81 24898.41 29797.15 21297.37 21598.62 28083.86 36598.65 17898.37 24694.29 25099.68 25488.41 35498.62 30596.60 356
test-LLR93.90 31793.85 31194.04 34196.53 36084.62 36794.05 35292.39 36396.17 25294.12 35595.07 35582.30 34599.67 25795.87 23398.18 31697.82 328
test-mter92.33 33391.76 33694.04 34196.53 36084.62 36794.05 35292.39 36394.00 30794.12 35595.07 35565.63 37999.67 25795.87 23398.18 31697.82 328
thres600view794.45 30693.83 31296.29 30999.06 18491.53 33397.99 15494.24 35498.34 11397.44 27495.01 35779.84 35399.67 25784.33 36298.23 31397.66 338
114514_t96.50 26695.77 27398.69 17399.48 9497.43 19397.84 16999.55 4681.42 36896.51 31698.58 22195.53 21599.67 25793.41 30899.58 17798.98 249
PVSNet_BlendedMVS97.55 20197.53 19297.60 26198.92 21293.77 30596.64 26499.43 9094.49 29297.62 25799.18 8496.82 15899.67 25794.73 26599.93 2899.36 173
PVSNet_Blended96.88 25096.68 24697.47 27298.92 21293.77 30594.71 33599.43 9090.98 34397.62 25797.36 31796.82 15899.67 25794.73 26599.56 18698.98 249
PHI-MVS98.29 14197.95 16399.34 7398.44 29299.16 4398.12 13499.38 10196.01 26098.06 23198.43 23897.80 8799.67 25795.69 24299.58 17799.20 214
ACMH+96.62 999.08 3599.00 4099.33 7699.71 3298.83 7598.60 8699.58 2899.11 5799.53 3399.18 8498.81 2299.67 25796.71 18099.77 9399.50 105
test_post197.59 19620.48 37683.07 34299.66 26594.16 282
旧先验295.76 30588.56 35797.52 26799.66 26594.48 272
MCST-MVS98.00 16597.63 18799.10 11199.24 13698.17 12996.89 25198.73 27395.66 26997.92 23797.70 29597.17 13999.66 26596.18 22099.23 24899.47 127
NCCC97.86 17797.47 19999.05 12598.61 27298.07 14096.98 24298.90 24097.63 16497.04 29097.93 28295.99 19999.66 26595.31 25498.82 29399.43 142
PMMVS96.51 26495.98 27098.09 23197.53 34095.84 24694.92 33198.84 25491.58 33596.05 32995.58 34995.68 21199.66 26595.59 24898.09 32298.76 285
OPM-MVS98.56 10598.32 12499.25 9199.41 10998.73 8497.13 23799.18 18397.10 22098.75 16998.92 14898.18 5999.65 27096.68 18299.56 18699.37 167
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MIMVSNet96.62 26296.25 26897.71 25499.04 18794.66 27899.16 4496.92 33297.23 21297.87 24199.10 10286.11 32099.65 27091.65 33399.21 25198.82 272
CL-MVSNet_self_test97.44 21197.22 21498.08 23498.57 27995.78 24994.30 34898.79 26396.58 24198.60 18698.19 26294.74 24199.64 27296.41 20698.84 29198.82 272
c3_l97.36 21597.37 20497.31 27898.09 31593.25 31095.01 32999.16 19297.05 22198.77 16698.72 19292.88 27499.64 27296.93 15599.76 10399.05 236
DeepC-MVS_fast96.85 698.30 13898.15 14698.75 16898.61 27297.23 20297.76 17899.09 20597.31 20098.75 16998.66 20497.56 10799.64 27296.10 22499.55 18899.39 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d98.47 12098.34 12098.86 15099.30 12797.76 17497.16 23599.28 15495.54 27199.42 4999.19 8297.27 13299.63 27597.89 9799.97 1199.20 214
baseline195.96 28195.44 28697.52 27098.51 28693.99 29598.39 11296.09 34298.21 12598.40 21297.76 29186.88 31299.63 27595.42 25289.27 37198.95 255
thres100view90094.19 31193.67 31595.75 32199.06 18491.35 33798.03 14894.24 35498.33 11497.40 27694.98 35979.84 35399.62 27783.05 36498.08 32396.29 357
tfpn200view994.03 31593.44 31795.78 32098.93 20891.44 33597.60 19494.29 35297.94 14497.10 28594.31 36579.67 35599.62 27783.05 36498.08 32396.29 357
Patchmatch-RL test97.26 22397.02 22497.99 24199.52 7495.53 25396.13 28999.71 1197.47 17999.27 7699.16 9084.30 33599.62 27797.89 9799.77 9398.81 275
v14898.45 12298.60 8098.00 24099.44 10294.98 27097.44 21299.06 20998.30 11699.32 7198.97 13796.65 17099.62 27798.37 7299.85 5799.39 157
thres40094.14 31393.44 31796.24 31198.93 20891.44 33597.60 19494.29 35297.94 14497.10 28594.31 36579.67 35599.62 27783.05 36498.08 32397.66 338
CostFormer93.97 31693.78 31394.51 33897.53 34085.83 36397.98 15695.96 34389.29 35394.99 34998.63 21378.63 36099.62 27794.54 27096.50 35098.09 317
miper_ehance_all_eth97.06 23997.03 22397.16 28697.83 32793.06 31294.66 33899.09 20595.99 26198.69 17398.45 23792.73 27799.61 28396.79 16999.03 27798.82 272
gm-plane-assit94.83 37281.97 37488.07 35894.99 35899.60 28491.76 331
MVP-Stereo98.08 15997.92 16698.57 18998.96 20396.79 22397.90 16399.18 18396.41 24698.46 20298.95 14495.93 20399.60 28496.51 19898.98 28699.31 191
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs497.58 20097.28 21098.51 20098.84 23096.93 22095.40 32098.52 28593.60 31198.61 18498.65 20695.10 22899.60 28496.97 15399.79 8598.99 248
JIA-IIPM95.52 29195.03 29897.00 28996.85 35694.03 29296.93 24695.82 34499.20 4994.63 35199.71 1283.09 34199.60 28494.42 27694.64 36397.36 346
test_prior397.48 20797.00 22598.95 13798.69 26097.95 15695.74 30799.03 21896.48 24396.11 32597.63 29995.92 20499.59 28894.16 28299.20 25299.30 194
test_prior98.95 13798.69 26097.95 15699.03 21899.59 28899.30 194
tpmrst95.07 29995.46 28493.91 34397.11 35284.36 36997.62 19196.96 32994.98 28396.35 32298.80 18085.46 32599.59 28895.60 24796.23 35497.79 333
dp93.47 32293.59 31693.13 35296.64 35981.62 37597.66 18796.42 33892.80 32296.11 32598.64 20978.55 36299.59 28893.31 31092.18 37098.16 314
PLCcopyleft94.65 1696.51 26495.73 27598.85 15198.75 24597.91 15996.42 27699.06 20990.94 34495.59 33497.38 31494.41 24699.59 28890.93 34498.04 32699.05 236
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
miper_enhance_ethall96.01 27995.74 27496.81 30196.41 36492.27 32793.69 35798.89 24291.14 34298.30 21497.35 31890.58 29099.58 29396.31 21199.03 27798.60 296
AllTest98.44 12398.20 13799.16 10299.50 7998.55 9798.25 12299.58 2896.80 23198.88 14999.06 10597.65 9799.57 29494.45 27499.61 16599.37 167
TestCases99.16 10299.50 7998.55 9799.58 2896.80 23198.88 14999.06 10597.65 9799.57 29494.45 27499.61 16599.37 167
CNVR-MVS98.17 15497.87 17099.07 11898.67 26598.24 12097.01 24098.93 23497.25 20697.62 25798.34 25097.27 13299.57 29496.42 20599.33 23299.39 157
TESTMET0.1,192.19 33591.77 33593.46 34896.48 36282.80 37294.05 35291.52 36694.45 29694.00 35894.88 36166.65 37699.56 29795.78 23898.11 32198.02 319
thres20093.72 32093.14 32295.46 33098.66 27091.29 33996.61 26694.63 35097.39 19296.83 30493.71 36879.88 35299.56 29782.40 36798.13 32095.54 366
MVS_Test98.18 15298.36 11797.67 25598.48 28894.73 27598.18 12899.02 22297.69 16098.04 23499.11 10097.22 13899.56 29798.57 6098.90 29098.71 289
test_yl96.69 25796.29 26597.90 24398.28 30395.24 26297.29 22197.36 32098.21 12598.17 21997.86 28486.27 31699.55 30094.87 26298.32 31198.89 265
DCV-MVSNet96.69 25796.29 26597.90 24398.28 30395.24 26297.29 22197.36 32098.21 12598.17 21997.86 28486.27 31699.55 30094.87 26298.32 31198.89 265
alignmvs97.35 21696.88 23398.78 16398.54 28398.09 13497.71 18297.69 31499.20 4997.59 26095.90 34588.12 31099.55 30098.18 8298.96 28798.70 291
HQP4-MVS95.56 33799.54 30399.32 187
HQP-MVS97.00 24696.49 25998.55 19498.67 26596.79 22396.29 28299.04 21696.05 25795.55 33896.84 32893.84 25799.54 30392.82 31799.26 24599.32 187
tpmvs95.02 30195.25 29294.33 33996.39 36585.87 36198.08 14096.83 33495.46 27595.51 34398.69 19785.91 32199.53 30594.16 28296.23 35497.58 341
tpm293.09 32692.58 32794.62 33797.56 33886.53 36097.66 18795.79 34586.15 36294.07 35798.23 25975.95 36499.53 30590.91 34596.86 34897.81 330
MDTV_nov1_ep1395.22 29397.06 35383.20 37197.74 18096.16 34094.37 29896.99 29298.83 17483.95 33799.53 30593.90 29397.95 327
AdaColmapbinary97.14 23496.71 24498.46 20598.34 30097.80 17296.95 24398.93 23495.58 27096.92 29497.66 29695.87 20699.53 30590.97 34399.14 26398.04 318
new_pmnet96.99 24796.76 24197.67 25598.72 24994.89 27295.95 29798.20 29892.62 32498.55 19698.54 22494.88 23499.52 30993.96 29199.44 21798.59 298
RPSCF98.62 9798.36 11799.42 5899.65 4599.42 598.55 9299.57 3597.72 15998.90 14299.26 7396.12 19199.52 30995.72 24099.71 12299.32 187
MAR-MVS96.47 26895.70 27698.79 16097.92 32399.12 5798.28 11998.60 28192.16 33095.54 34196.17 34194.77 24099.52 30989.62 35198.23 31397.72 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 17197.69 18098.52 19899.17 15997.66 18197.19 23299.47 7696.31 25097.85 24398.20 26196.71 16899.52 30994.62 26899.72 11798.38 307
Gipumacopyleft99.03 3799.16 3098.64 17699.94 298.51 10299.32 1799.75 999.58 2298.60 18699.62 2198.22 5599.51 31397.70 11299.73 11097.89 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc98.24 22498.82 23695.97 24398.62 8499.00 22899.27 7699.21 7996.99 14899.50 31496.55 19599.50 20699.26 204
testgi98.32 13698.39 11398.13 23099.57 5795.54 25297.78 17399.49 6897.37 19499.19 9197.65 29798.96 1799.49 31596.50 19998.99 28499.34 179
EPNet_dtu94.93 30294.78 30395.38 33193.58 37487.68 35596.78 25695.69 34697.35 19689.14 37098.09 27188.15 30999.49 31594.95 26199.30 23898.98 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL97.24 22696.78 24098.61 18399.03 19097.83 16696.36 27999.06 20993.49 31497.36 27997.78 28995.75 20999.49 31593.44 30798.77 29498.52 299
test_241102_ONE99.49 8699.17 3999.31 13497.98 14099.66 2098.90 15298.36 4499.48 318
CLD-MVS97.49 20597.16 21798.48 20399.07 18097.03 21594.71 33599.21 17294.46 29498.06 23197.16 32397.57 10699.48 31894.46 27399.78 8998.95 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-untuned96.83 25296.75 24297.08 28798.74 24693.33 30996.71 26198.26 29596.72 23598.44 20497.37 31695.20 22599.47 32091.89 33097.43 33598.44 304
OMC-MVS97.88 17597.49 19599.04 12798.89 22198.63 8996.94 24499.25 16395.02 28298.53 19998.51 22897.27 13299.47 32093.50 30699.51 19999.01 244
canonicalmvs98.34 13598.26 13098.58 18698.46 29097.82 16998.96 6399.46 7899.19 5397.46 27295.46 35398.59 3299.46 32298.08 8898.71 29998.46 301
DWT-MVSNet_test92.75 32992.05 33094.85 33596.48 36287.21 35797.83 17094.99 34792.22 32992.72 36394.11 36770.75 36999.46 32295.01 25894.33 36697.87 326
CNLPA97.17 23296.71 24498.55 19498.56 28098.05 14396.33 28098.93 23496.91 22897.06 28997.39 31394.38 24899.45 32491.66 33299.18 25898.14 315
BH-RMVSNet96.83 25296.58 25497.58 26398.47 28994.05 29096.67 26397.36 32096.70 23797.87 24197.98 27795.14 22799.44 32590.47 34898.58 30799.25 205
DPM-MVS96.32 27295.59 28198.51 20098.76 24397.21 20694.54 34498.26 29591.94 33196.37 32197.25 31993.06 27199.43 32691.42 33898.74 29598.89 265
PVSNet93.40 1795.67 28795.70 27695.57 32598.83 23388.57 34992.50 36297.72 31292.69 32396.49 31996.44 33793.72 26299.43 32693.61 30199.28 24198.71 289
TSAR-MVS + GP.98.18 15297.98 16198.77 16598.71 25297.88 16196.32 28198.66 27796.33 24899.23 8898.51 22897.48 12099.40 32897.16 13499.46 21199.02 243
TAPA-MVS96.21 1196.63 26195.95 27198.65 17598.93 20898.09 13496.93 24699.28 15483.58 36698.13 22497.78 28996.13 19099.40 32893.52 30499.29 24098.45 303
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 32493.13 32393.75 34597.39 34684.74 36697.39 21397.65 31583.39 36794.16 35498.41 23982.86 34399.39 33091.56 33695.35 36197.14 348
MG-MVS96.77 25596.61 25197.26 28198.31 30293.06 31295.93 29898.12 30396.45 24597.92 23798.73 19093.77 26199.39 33091.19 34299.04 27699.33 185
MVS_111021_HR98.25 14698.08 15498.75 16899.09 17697.46 19195.97 29399.27 15797.60 16897.99 23698.25 25698.15 6499.38 33296.87 16499.57 18199.42 145
MS-PatchMatch97.68 19297.75 17697.45 27398.23 30893.78 30497.29 22198.84 25496.10 25698.64 17998.65 20696.04 19399.36 33396.84 16799.14 26399.20 214
ITE_SJBPF98.87 14899.22 14198.48 10499.35 11597.50 17698.28 21698.60 21997.64 10099.35 33493.86 29699.27 24298.79 281
MVS_111021_LR98.30 13898.12 14998.83 15399.16 16198.03 14496.09 29099.30 14497.58 16998.10 22898.24 25798.25 5099.34 33596.69 18199.65 15099.12 230
USDC97.41 21397.40 20197.44 27498.94 20693.67 30795.17 32499.53 5494.03 30698.97 12999.10 10295.29 22399.34 33595.84 23699.73 11099.30 194
MSDG97.71 19097.52 19398.28 22198.91 21596.82 22294.42 34599.37 10597.65 16398.37 21398.29 25597.40 12499.33 33794.09 28899.22 24998.68 295
XVG-OURS98.53 11498.34 12099.11 10999.50 7998.82 7795.97 29399.50 6097.30 20199.05 11498.98 13599.35 799.32 33895.72 24099.68 13899.18 221
DP-MVS Recon97.33 21896.92 23098.57 18999.09 17697.99 14696.79 25599.35 11593.18 31697.71 25198.07 27395.00 23099.31 33993.97 29099.13 26698.42 306
EPMVS93.72 32093.27 31995.09 33496.04 36887.76 35498.13 13285.01 37594.69 29096.92 29498.64 20978.47 36399.31 33995.04 25796.46 35198.20 312
MVS93.19 32592.09 32996.50 30696.91 35494.03 29298.07 14198.06 30568.01 37094.56 35296.48 33595.96 20299.30 34183.84 36396.89 34796.17 359
GA-MVS95.86 28395.32 29197.49 27198.60 27494.15 28993.83 35597.93 30895.49 27496.68 30897.42 31283.21 34099.30 34196.22 21698.55 30899.01 244
XVG-OURS-SEG-HR98.49 11898.28 12899.14 10599.49 8698.83 7596.54 26799.48 7097.32 19999.11 10098.61 21899.33 899.30 34196.23 21598.38 31099.28 199
DeepPCF-MVS96.93 598.32 13698.01 15999.23 9498.39 29898.97 6695.03 32899.18 18396.88 22999.33 6598.78 18398.16 6299.28 34496.74 17599.62 15899.44 138
TinyColmap97.89 17397.98 16197.60 26198.86 22594.35 28496.21 28699.44 8497.45 18699.06 10998.88 16197.99 7599.28 34494.38 28099.58 17799.18 221
KD-MVS_2432*160092.87 32791.99 33195.51 32891.37 37589.27 34794.07 35098.14 30195.42 27697.25 28296.44 33767.86 37299.24 34691.28 33996.08 35698.02 319
cl2295.79 28595.39 28996.98 29196.77 35892.79 31894.40 34698.53 28494.59 29197.89 24098.17 26382.82 34499.24 34696.37 20799.03 27798.92 261
miper_refine_blended92.87 32791.99 33195.51 32891.37 37589.27 34794.07 35098.14 30195.42 27697.25 28296.44 33767.86 37299.24 34691.28 33996.08 35698.02 319
PAPM91.88 33690.34 33996.51 30598.06 31792.56 32192.44 36397.17 32586.35 36190.38 36896.01 34286.61 31499.21 34970.65 37395.43 36097.75 334
MVS-HIRNet94.32 30895.62 27990.42 35498.46 29075.36 37796.29 28289.13 37195.25 28095.38 34499.75 792.88 27499.19 35094.07 28999.39 22296.72 355
PAPM_NR96.82 25496.32 26498.30 21999.07 18096.69 22897.48 20798.76 26795.81 26796.61 31296.47 33694.12 25599.17 35190.82 34797.78 32999.06 235
TR-MVS95.55 29095.12 29796.86 30097.54 33993.94 29696.49 27296.53 33794.36 29997.03 29196.61 33294.26 25199.16 35286.91 35896.31 35397.47 345
API-MVS97.04 24296.91 23297.42 27597.88 32598.23 12498.18 12898.50 28697.57 17097.39 27796.75 33096.77 16299.15 35390.16 34999.02 28094.88 367
PAPR95.29 29494.47 30497.75 25297.50 34495.14 26794.89 33298.71 27591.39 33995.35 34595.48 35294.57 24399.14 35484.95 36197.37 33798.97 253
131495.74 28695.60 28096.17 31397.53 34092.75 32098.07 14198.31 29491.22 34094.25 35396.68 33195.53 21599.03 35591.64 33497.18 34296.74 354
gg-mvs-nofinetune92.37 33291.20 33795.85 31895.80 37192.38 32599.31 2181.84 37799.75 591.83 36699.74 868.29 37199.02 35687.15 35797.12 34396.16 360
BH-w/o95.13 29894.89 30295.86 31798.20 30991.31 33895.65 31097.37 31993.64 31096.52 31595.70 34893.04 27299.02 35688.10 35595.82 35897.24 347
test0.0.03 194.51 30593.69 31496.99 29096.05 36793.61 30894.97 33093.49 35896.17 25297.57 26394.88 36182.30 34599.01 35893.60 30294.17 36798.37 309
E-PMN94.17 31294.37 30793.58 34796.86 35585.71 36490.11 36797.07 32798.17 13197.82 24697.19 32084.62 33198.94 35989.77 35097.68 33196.09 363
EMVS93.83 31894.02 31093.23 35196.83 35784.96 36589.77 36896.32 33997.92 14697.43 27596.36 34086.17 31898.93 36087.68 35697.73 33095.81 364
CMPMVSbinary75.91 2396.29 27395.44 28698.84 15296.25 36698.69 8797.02 23999.12 20188.90 35497.83 24498.86 16589.51 29798.90 36191.92 32999.51 19998.92 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_089.98 2191.15 33790.30 34093.70 34697.72 33184.34 37090.24 36697.42 31890.20 34893.79 35993.09 36990.90 28998.89 36286.57 35972.76 37397.87 326
MSLP-MVS++98.02 16398.14 14897.64 25998.58 27795.19 26597.48 20799.23 17097.47 17997.90 23998.62 21597.04 14398.81 36397.55 11599.41 21998.94 259
OPU-MVS98.82 15498.59 27698.30 11698.10 13798.52 22798.18 5998.75 36494.62 26899.48 20999.41 148
cascas94.79 30394.33 30996.15 31696.02 36992.36 32692.34 36499.26 16285.34 36495.08 34894.96 36092.96 27398.53 36594.41 27998.59 30697.56 342
wuyk23d96.06 27897.62 18891.38 35398.65 27198.57 9698.85 7196.95 33096.86 23099.90 499.16 9099.18 1198.40 36689.23 35299.77 9377.18 371
PMVScopyleft91.26 2097.86 17797.94 16597.65 25799.71 3297.94 15898.52 9598.68 27698.99 7697.52 26799.35 6297.41 12398.18 36791.59 33599.67 14496.82 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND94.76 33694.54 37392.13 32999.31 2180.47 37888.73 37191.01 37167.59 37498.16 36882.30 36894.53 36593.98 368
test_method79.78 33979.50 34280.62 35580.21 37845.76 38070.82 36998.41 29131.08 37380.89 37497.71 29384.85 32897.37 36991.51 33780.03 37298.75 286
PC_three_145293.27 31599.40 5398.54 22498.22 5597.00 37095.17 25599.45 21499.49 109
FPMVS93.44 32392.23 32897.08 28799.25 13597.86 16395.61 31197.16 32692.90 32093.76 36098.65 20675.94 36595.66 37179.30 37197.49 33297.73 335
MVEpermissive83.40 2292.50 33091.92 33394.25 34098.83 23391.64 33292.71 36183.52 37695.92 26386.46 37395.46 35395.20 22595.40 37280.51 36998.64 30395.73 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SD-MVS98.40 12998.68 6897.54 26898.96 20397.99 14697.88 16499.36 10998.20 12899.63 2599.04 11598.76 2395.33 37396.56 19299.74 10799.31 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepMVS_CXcopyleft93.44 34998.24 30694.21 28794.34 35164.28 37191.34 36794.87 36389.45 29992.77 37477.54 37293.14 36893.35 369
tmp_tt78.77 34078.73 34378.90 35658.45 37974.76 37994.20 34978.26 37939.16 37286.71 37292.82 37080.50 35175.19 37586.16 36092.29 36986.74 370
test12317.04 34320.11 3467.82 35710.25 3814.91 38194.80 3334.47 3824.93 37510.00 37724.28 3749.69 3803.64 37610.14 37412.43 37514.92 372
testmvs17.12 34220.53 3456.87 35812.05 3804.20 38293.62 3586.73 3814.62 37610.41 37624.33 3738.28 3813.56 3779.69 37515.07 37412.86 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.66 34132.88 3440.00 3590.00 3820.00 3830.00 37099.10 2040.00 3770.00 37897.58 30199.21 100.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas8.17 34410.90 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37798.07 660.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.12 34510.83 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37897.48 3080.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.73 2599.67 299.43 1099.54 5099.43 3099.26 80
test_one_060199.39 11199.20 3399.31 13498.49 10798.66 17799.02 11997.64 100
eth-test20.00 382
eth-test0.00 382
RE-MVS-def98.58 8299.20 14799.38 698.48 10499.30 14498.64 9598.95 13298.96 14097.75 9096.56 19299.39 22299.45 133
IU-MVS99.49 8699.15 4898.87 24592.97 31899.41 5096.76 17399.62 15899.66 36
save fliter99.11 16997.97 15196.53 26899.02 22298.24 122
test072699.50 7999.21 2798.17 13199.35 11597.97 14299.26 8099.06 10597.61 103
GSMVS98.81 275
test_part299.36 11799.10 6099.05 114
sam_mvs184.74 33098.81 275
sam_mvs84.29 336
MTGPAbinary99.20 174
MTMP97.93 15991.91 365
test9_res93.28 31199.15 26299.38 164
agg_prior292.50 32599.16 25999.37 167
test_prior497.97 15195.86 301
test_prior295.74 30796.48 24396.11 32597.63 29995.92 20494.16 28299.20 252
新几何295.93 298
旧先验198.82 23697.45 19298.76 26798.34 25095.50 21899.01 28299.23 209
原ACMM295.53 314
test22298.92 21296.93 22095.54 31398.78 26585.72 36396.86 30298.11 26894.43 24599.10 27199.23 209
segment_acmp97.02 146
testdata195.44 31996.32 249
plane_prior799.19 15097.87 162
plane_prior698.99 19997.70 18094.90 231
plane_prior497.98 277
plane_prior397.78 17397.41 19097.79 247
plane_prior297.77 17698.20 128
plane_prior199.05 186
plane_prior97.65 18297.07 23896.72 23599.36 227
n20.00 383
nn0.00 383
door-mid99.57 35
test1198.87 245
door99.41 94
HQP5-MVS96.79 223
HQP-NCC98.67 26596.29 28296.05 25795.55 338
ACMP_Plane98.67 26596.29 28296.05 25795.55 338
BP-MVS92.82 317
HQP3-MVS99.04 21699.26 245
HQP2-MVS93.84 257
NP-MVS98.84 23097.39 19596.84 328
MDTV_nov1_ep13_2view74.92 37897.69 18490.06 35097.75 25085.78 32293.52 30498.69 292
ACMMP++_ref99.77 93
ACMMP++99.68 138
Test By Simon96.52 175