This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 8
v7n99.53 999.57 999.41 6099.88 798.54 9599.45 1099.61 2299.66 1199.68 2099.66 1898.44 3999.95 1599.73 299.96 1599.75 23
v1098.97 4399.11 3398.55 18499.44 10096.21 22698.90 5899.55 4498.73 8399.48 3999.60 2696.63 16599.83 13199.70 399.99 599.61 47
test_part199.79 299.79 299.78 299.85 1399.46 399.79 499.81 499.98 199.97 299.87 299.27 999.97 399.60 499.99 599.91 2
v124098.55 10698.62 7298.32 20799.22 13395.58 23897.51 19499.45 7797.16 20399.45 4499.24 7196.12 18599.85 9999.60 499.88 4899.55 78
v899.01 3699.16 3098.57 17999.47 9496.31 22498.90 5899.47 7299.03 6499.52 3499.57 2896.93 14599.81 15499.60 499.98 1099.60 48
v192192098.54 10998.60 7798.38 20399.20 13895.76 23797.56 18899.36 10497.23 19899.38 5499.17 8396.02 18899.84 11699.57 799.90 4399.54 82
v119298.60 9798.66 6898.41 20099.27 12395.88 23397.52 19299.36 10497.41 17699.33 6299.20 7696.37 17999.82 14199.57 799.92 3499.55 78
mvs_tets99.63 699.67 699.49 4999.88 798.61 8799.34 1499.71 1099.27 4199.90 599.74 999.68 299.97 399.55 999.99 599.88 4
PS-MVSNAJss99.46 1399.49 1199.35 6999.90 498.15 12099.20 3399.65 1899.48 2499.92 499.71 1398.07 6599.96 999.53 10100.00 199.93 1
v14419298.54 10998.57 8098.45 19799.21 13595.98 23097.63 17999.36 10497.15 20599.32 6799.18 7995.84 20199.84 11699.50 1199.91 3999.54 82
jajsoiax99.58 799.61 899.48 5199.87 1098.61 8799.28 2899.66 1799.09 6199.89 799.68 1599.53 499.97 399.50 1199.99 599.87 5
v114498.60 9798.66 6898.41 20099.36 11095.90 23297.58 18699.34 11597.51 16299.27 7299.15 8996.34 18199.80 16399.47 1399.93 2599.51 95
OurMVSNet-221017-099.37 2299.31 2399.53 3799.91 398.98 6199.63 799.58 2799.44 2999.78 1199.76 796.39 17699.92 3399.44 1499.92 3499.68 31
pmmvs699.67 499.70 499.60 1499.90 499.27 2199.53 899.76 799.64 1299.84 999.83 399.50 599.87 7999.36 1599.92 3499.64 39
v2v48298.56 10298.62 7298.37 20499.42 10495.81 23697.58 18699.16 18397.90 13599.28 7099.01 12095.98 19499.79 17699.33 1699.90 4399.51 95
ANet_high99.57 899.67 699.28 7999.89 698.09 12499.14 4199.93 199.82 499.93 399.81 499.17 1399.94 2399.31 17100.00 199.82 10
LTVRE_ROB98.40 199.67 499.71 399.56 2599.85 1399.11 5699.90 199.78 599.63 1499.78 1199.67 1799.48 699.81 15499.30 1899.97 1299.77 17
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVSFormer98.26 14098.43 10397.77 23798.88 21293.89 28699.39 1299.56 4199.11 5498.16 20898.13 25193.81 25199.97 399.26 1999.57 17099.43 133
test_djsdf99.52 1099.51 1099.53 3799.86 1198.74 7699.39 1299.56 4199.11 5499.70 1699.73 1199.00 1699.97 399.26 1999.98 1099.89 3
K. test v398.00 16097.66 17999.03 12099.79 2097.56 17699.19 3792.47 34499.62 1799.52 3499.66 1889.61 28899.96 999.25 2199.81 6899.56 70
Anonymous2023121199.27 2699.27 2599.26 8499.29 12198.18 11899.49 999.51 5499.70 899.80 1099.68 1596.84 14999.83 13199.21 2299.91 3999.77 17
V4298.78 6698.78 5298.76 15899.44 10097.04 20298.27 10899.19 17097.87 13799.25 7899.16 8596.84 14999.78 18699.21 2299.84 5599.46 120
MIMVSNet199.38 2199.32 2299.55 2799.86 1199.19 3599.41 1199.59 2599.59 2099.71 1599.57 2897.12 13499.90 4699.21 2299.87 5199.54 82
nrg03099.40 1999.35 1899.54 3099.58 5099.13 5298.98 5499.48 6699.68 999.46 4299.26 6898.62 2999.73 21599.17 2599.92 3499.76 21
anonymousdsp99.51 1199.47 1399.62 799.88 799.08 6099.34 1499.69 1398.93 7599.65 2399.72 1298.93 1999.95 1599.11 26100.00 199.82 10
VPA-MVSNet99.30 2599.30 2499.28 7999.49 8498.36 10699.00 5199.45 7799.63 1499.52 3499.44 4698.25 5099.88 6399.09 2799.84 5599.62 43
pm-mvs199.44 1499.48 1299.33 7499.80 1898.63 8499.29 2499.63 1999.30 3999.65 2399.60 2699.16 1599.82 14199.07 2899.83 6199.56 70
TransMVSNet (Re)99.44 1499.47 1399.36 6499.80 1898.58 9099.27 3099.57 3499.39 3299.75 1399.62 2299.17 1399.83 13199.06 2999.62 15099.66 34
SixPastTwentyTwo98.75 7198.62 7299.16 9599.83 1697.96 14699.28 2898.20 28599.37 3499.70 1699.65 2092.65 27099.93 2799.04 3099.84 5599.60 48
FC-MVSNet-test99.27 2699.25 2699.34 7299.77 2198.37 10599.30 2399.57 3499.61 1999.40 5299.50 3597.12 13499.85 9999.02 3199.94 2099.80 13
UniMVSNet_ETH3D99.69 399.69 599.69 499.84 1599.34 1599.69 599.58 2799.90 399.86 899.78 699.58 399.95 1599.00 3299.95 1699.78 15
lessismore_v098.97 12799.73 2497.53 17886.71 35499.37 5699.52 3489.93 28699.92 3398.99 3399.72 11199.44 129
Vis-MVSNetpermissive99.34 2399.36 1799.27 8299.73 2498.26 10999.17 3899.78 599.11 5499.27 7299.48 3998.82 2199.95 1598.94 3499.93 2599.59 54
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RRT_test8_iter0595.24 28495.13 28495.57 31197.32 33087.02 34097.99 14299.41 8998.06 12599.12 9299.05 10766.85 35799.85 9998.93 3599.47 19999.84 9
mvs_anonymous97.83 17998.16 13996.87 28498.18 29291.89 31597.31 20798.90 23297.37 18098.83 14899.46 4196.28 18299.79 17698.90 3698.16 30498.95 243
WR-MVS_H99.33 2499.22 2899.65 699.71 3099.24 2499.32 1699.55 4499.46 2799.50 3899.34 5997.30 12399.93 2798.90 3699.93 2599.77 17
PS-CasMVS99.40 1999.33 2199.62 799.71 3099.10 5799.29 2499.53 5099.53 2399.46 4299.41 5098.23 5299.95 1598.89 3899.95 1699.81 12
UA-Net99.47 1299.40 1599.70 399.49 8499.29 1899.80 399.72 999.82 499.04 11099.81 498.05 6899.96 998.85 3999.99 599.86 7
testing_298.93 4898.99 4198.76 15899.57 5497.03 20397.85 15799.13 19098.46 9899.44 4599.44 4698.22 5599.74 21098.85 3999.94 2099.51 95
new-patchmatchnet98.35 13098.74 5597.18 27099.24 12892.23 31396.42 26399.48 6698.30 10599.69 1899.53 3397.44 11799.82 14198.84 4199.77 8999.49 104
RRT_MVS97.07 23096.57 24598.58 17695.89 35296.33 22297.36 20398.77 25597.85 13999.08 10099.12 9382.30 33199.96 998.82 4299.90 4399.45 124
PEN-MVS99.41 1899.34 2099.62 799.73 2499.14 4999.29 2499.54 4899.62 1799.56 2799.42 4898.16 6199.96 998.78 4399.93 2599.77 17
DTE-MVSNet99.43 1699.35 1899.66 599.71 3099.30 1799.31 1999.51 5499.64 1299.56 2799.46 4198.23 5299.97 398.78 4399.93 2599.72 25
EG-PatchMatch MVS98.99 3899.01 3898.94 13199.50 7797.47 18098.04 13599.59 2598.15 12299.40 5299.36 5698.58 3299.76 19998.78 4399.68 13099.59 54
EI-MVSNet-UG-set98.69 8198.71 6098.62 17299.10 16496.37 22197.23 21298.87 23799.20 4699.19 8598.99 12397.30 12399.85 9998.77 4699.79 8199.65 38
CP-MVSNet99.21 2999.09 3499.56 2599.65 4398.96 6599.13 4299.34 11599.42 3099.33 6299.26 6897.01 14199.94 2398.74 4799.93 2599.79 14
EI-MVSNet-Vis-set98.68 8498.70 6398.63 17099.09 16796.40 22097.23 21298.86 24299.20 4699.18 8998.97 12997.29 12599.85 9998.72 4899.78 8599.64 39
baseline98.96 4599.02 3798.76 15899.38 10797.26 19098.49 9099.50 5698.86 7899.19 8599.06 10098.23 5299.69 23098.71 4999.76 9899.33 174
FIs99.14 3299.09 3499.29 7799.70 3698.28 10899.13 4299.52 5399.48 2499.24 7999.41 5096.79 15599.82 14198.69 5099.88 4899.76 21
IterMVS-SCA-FT97.85 17698.18 13596.87 28499.27 12391.16 32895.53 30199.25 15499.10 5899.41 4999.35 5793.10 26199.96 998.65 5199.94 2099.49 104
UniMVSNet (Re)98.87 5598.71 6099.35 6999.24 12898.73 7997.73 17099.38 9698.93 7599.12 9298.73 18196.77 15699.86 8698.63 5299.80 7699.46 120
EI-MVSNet98.40 12598.51 8698.04 22699.10 16494.73 26097.20 21698.87 23798.97 7099.06 10399.02 11496.00 19099.80 16398.58 5399.82 6499.60 48
IterMVS-LS98.55 10698.70 6398.09 22099.48 9294.73 26097.22 21599.39 9498.97 7099.38 5499.31 6396.00 19099.93 2798.58 5399.97 1299.60 48
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_Test98.18 14898.36 11497.67 24298.48 27394.73 26098.18 11799.02 21497.69 14798.04 22099.11 9597.22 13299.56 28198.57 5598.90 27798.71 272
UniMVSNet_NR-MVSNet98.86 5798.68 6599.40 6299.17 15098.74 7697.68 17499.40 9299.14 5299.06 10398.59 21196.71 16299.93 2798.57 5599.77 8999.53 88
DU-MVS98.82 5998.63 7199.39 6399.16 15298.74 7697.54 19099.25 15498.84 8099.06 10398.76 17896.76 15899.93 2798.57 5599.77 8999.50 100
UGNet98.53 11198.45 9998.79 15297.94 30496.96 20699.08 4598.54 27199.10 5896.82 28799.47 4096.55 16899.84 11698.56 5899.94 2099.55 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS97.73 18398.11 14596.57 29199.24 12890.28 32995.52 30399.21 16398.86 7899.33 6299.33 6193.11 26099.94 2398.49 5999.94 2099.48 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Regformer-498.73 7498.68 6598.89 13899.02 18397.22 19397.17 22099.06 20199.21 4399.17 9098.85 16097.45 11699.86 8698.48 6099.70 11999.60 48
casdiffmvs98.95 4699.00 3998.81 14899.38 10797.33 18697.82 16099.57 3499.17 5199.35 5999.17 8398.35 4699.69 23098.46 6199.73 10599.41 138
MVSTER96.86 24296.55 24697.79 23697.91 30694.21 27297.56 18898.87 23797.49 16599.06 10399.05 10780.72 33499.80 16398.44 6299.82 6499.37 156
ACMH96.65 799.25 2899.24 2799.26 8499.72 2998.38 10499.07 4699.55 4498.30 10599.65 2399.45 4599.22 1099.76 19998.44 6299.77 8999.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet199.17 3099.17 2999.17 9299.55 6598.24 11199.20 3399.44 8099.21 4399.43 4799.55 3097.82 8499.86 8698.42 6499.89 4799.41 138
Regformer-398.61 9598.61 7598.63 17099.02 18396.53 21897.17 22098.84 24499.13 5399.10 9798.85 16097.24 13099.79 17698.41 6599.70 11999.57 65
v14898.45 11998.60 7798.00 22899.44 10094.98 25597.44 20099.06 20198.30 10599.32 6798.97 12996.65 16499.62 26198.37 6699.85 5399.39 147
VDD-MVS98.56 10298.39 11099.07 11099.13 15998.07 13098.59 7797.01 31199.59 2099.11 9499.27 6694.82 22999.79 17698.34 6799.63 14799.34 168
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 10998.87 6798.39 10199.42 8899.42 3099.36 5899.06 10098.38 4299.95 1598.34 6799.90 4399.57 65
pmmvs597.64 18997.49 19198.08 22399.14 15795.12 25496.70 24999.05 20593.77 29298.62 17298.83 16693.23 25799.75 20698.33 6999.76 9899.36 162
EU-MVSNet97.66 18898.50 8895.13 31699.63 4885.84 34398.35 10598.21 28498.23 11399.54 2999.46 4195.02 22399.68 23998.24 7099.87 5199.87 5
TDRefinement99.42 1799.38 1699.55 2799.76 2299.33 1699.68 699.71 1099.38 3399.53 3299.61 2498.64 2899.80 16398.24 7099.84 5599.52 92
DELS-MVS98.27 13898.20 13298.48 19498.86 21596.70 21595.60 29999.20 16597.73 14598.45 19098.71 18497.50 11099.82 14198.21 7299.59 16098.93 248
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
XXY-MVS99.14 3299.15 3299.10 10499.76 2297.74 16798.85 6399.62 2098.48 9799.37 5699.49 3898.75 2499.86 8698.20 7399.80 7699.71 26
alignmvs97.35 20896.88 22598.78 15598.54 26898.09 12497.71 17197.69 29999.20 4697.59 24695.90 32588.12 29799.55 28498.18 7498.96 27498.70 274
VNet98.42 12298.30 12298.79 15298.79 23097.29 18798.23 11198.66 26699.31 3898.85 14598.80 17194.80 23299.78 18698.13 7599.13 25399.31 180
MVS_030497.64 18997.35 20198.52 18897.87 30896.69 21698.59 7798.05 29197.44 17493.74 34398.85 16093.69 25599.88 6398.11 7699.81 6898.98 238
VPNet98.87 5598.83 4799.01 12499.70 3697.62 17598.43 9899.35 10999.47 2699.28 7099.05 10796.72 16199.82 14198.09 7799.36 21399.59 54
canonicalmvs98.34 13198.26 12698.58 17698.46 27597.82 15998.96 5599.46 7499.19 5097.46 25895.46 33398.59 3199.46 30698.08 7898.71 28598.46 284
Baseline_NR-MVSNet98.98 4298.86 4599.36 6499.82 1798.55 9297.47 19899.57 3499.37 3499.21 8399.61 2496.76 15899.83 13198.06 7999.83 6199.71 26
DeepC-MVS97.60 498.97 4398.93 4299.10 10499.35 11497.98 14198.01 14199.46 7497.56 15999.54 2999.50 3598.97 1799.84 11698.06 7999.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v1_base_debu97.86 17198.17 13696.92 28198.98 19093.91 28396.45 26099.17 18097.85 13998.41 19597.14 30798.47 3699.92 3398.02 8199.05 26096.92 330
xiu_mvs_v1_base97.86 17198.17 13696.92 28198.98 19093.91 28396.45 26099.17 18097.85 13998.41 19597.14 30798.47 3699.92 3398.02 8199.05 26096.92 330
xiu_mvs_v1_base_debi97.86 17198.17 13696.92 28198.98 19093.91 28396.45 26099.17 18097.85 13998.41 19597.14 30798.47 3699.92 3398.02 8199.05 26096.92 330
NR-MVSNet98.95 4698.82 4899.36 6499.16 15298.72 8199.22 3299.20 16599.10 5899.72 1498.76 17896.38 17899.86 8698.00 8499.82 6499.50 100
FMVSNet298.49 11598.40 10798.75 16198.90 20697.14 20198.61 7499.13 19098.59 9199.19 8599.28 6494.14 24599.82 14197.97 8599.80 7699.29 187
diffmvs98.22 14498.24 12898.17 21899.00 18695.44 24496.38 26599.58 2797.79 14398.53 18698.50 22196.76 15899.74 21097.95 8699.64 14499.34 168
Anonymous2024052998.93 4898.87 4499.12 10099.19 14198.22 11699.01 4998.99 22199.25 4299.54 2999.37 5397.04 13799.80 16397.89 8799.52 18599.35 166
pmmvs-eth3d98.47 11798.34 11798.86 14299.30 12097.76 16497.16 22299.28 14595.54 25699.42 4899.19 7797.27 12699.63 25997.89 8799.97 1299.20 203
Patchmatch-RL test97.26 21597.02 21697.99 22999.52 7295.53 24096.13 27699.71 1097.47 16699.27 7299.16 8584.30 32199.62 26197.89 8799.77 8998.81 262
VDDNet98.21 14597.95 15899.01 12499.58 5097.74 16799.01 4997.29 30799.67 1098.97 12299.50 3590.45 28399.80 16397.88 9099.20 23899.48 110
APDe-MVS98.99 3898.79 5199.60 1499.21 13599.15 4698.87 6099.48 6697.57 15799.35 5999.24 7197.83 8199.89 5597.88 9099.70 11999.75 23
CANet97.87 17097.76 17098.19 21797.75 31295.51 24196.76 24599.05 20597.74 14496.93 27698.21 24895.59 20899.89 5597.86 9299.93 2599.19 208
Regformer-198.55 10698.44 10198.87 14098.85 21797.29 18796.91 23698.99 22198.97 7098.99 11798.64 20097.26 12999.81 15497.79 9399.57 17099.51 95
PM-MVS98.82 5998.72 5899.12 10099.64 4698.54 9597.98 14499.68 1497.62 15299.34 6199.18 7997.54 10499.77 19297.79 9399.74 10299.04 229
tttt051795.64 27694.98 28797.64 24699.36 11093.81 28898.72 6890.47 35098.08 12498.67 16698.34 23873.88 35199.92 3397.77 9599.51 18899.20 203
GBi-Net98.65 8898.47 9599.17 9298.90 20698.24 11199.20 3399.44 8098.59 9198.95 12599.55 3094.14 24599.86 8697.77 9599.69 12599.41 138
test198.65 8898.47 9599.17 9298.90 20698.24 11199.20 3399.44 8098.59 9198.95 12599.55 3094.14 24599.86 8697.77 9599.69 12599.41 138
FMVSNet397.50 19797.24 20798.29 21198.08 29895.83 23597.86 15598.91 23197.89 13698.95 12598.95 13687.06 29899.81 15497.77 9599.69 12599.23 198
UnsupCasMVSNet_eth97.89 16797.60 18598.75 16199.31 11797.17 19897.62 18099.35 10998.72 8498.76 15998.68 19092.57 27199.74 21097.76 9995.60 34099.34 168
Regformer-298.60 9798.46 9799.02 12398.85 21797.71 16996.91 23699.09 19798.98 6999.01 11498.64 20097.37 12199.84 11697.75 10099.57 17099.52 92
test20.0398.78 6698.77 5498.78 15599.46 9597.20 19597.78 16299.24 15999.04 6399.41 4998.90 14497.65 9499.76 19997.70 10199.79 8199.39 147
Gipumacopyleft99.03 3599.16 3098.64 16899.94 298.51 9799.32 1699.75 899.58 2298.60 17699.62 2298.22 5599.51 29797.70 10199.73 10597.89 304
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PatchT96.65 25196.35 25197.54 25597.40 32795.32 24797.98 14496.64 31999.33 3796.89 28399.42 4884.32 32099.81 15497.69 10397.49 31897.48 325
D2MVS97.84 17797.84 16797.83 23499.14 15794.74 25996.94 23198.88 23595.84 25098.89 13798.96 13294.40 24099.69 23097.55 10499.95 1699.05 225
MSLP-MVS++98.02 15898.14 14397.64 24698.58 26495.19 25197.48 19699.23 16197.47 16697.90 22598.62 20697.04 13798.81 34597.55 10499.41 20598.94 247
WR-MVS98.40 12598.19 13499.03 12099.00 18697.65 17296.85 23998.94 22498.57 9598.89 13798.50 22195.60 20799.85 9997.54 10699.85 5399.59 54
HPM-MVS_fast99.01 3698.82 4899.57 1999.71 3099.35 1299.00 5199.50 5697.33 18398.94 13198.86 15798.75 2499.82 14197.53 10799.71 11599.56 70
RPMNet97.02 23596.93 22097.30 26697.71 31494.22 27098.11 12499.30 13699.37 3496.91 27999.34 5986.72 30099.87 7997.53 10797.36 32397.81 310
PMMVS298.07 15598.08 14998.04 22699.41 10594.59 26694.59 32999.40 9297.50 16398.82 15298.83 16696.83 15199.84 11697.50 10999.81 6899.71 26
LFMVS97.20 22196.72 23498.64 16898.72 23796.95 20798.93 5794.14 33999.74 798.78 15599.01 12084.45 31899.73 21597.44 11099.27 22899.25 194
ACMM96.08 1298.91 5198.73 5699.48 5199.55 6599.14 4998.07 12999.37 10097.62 15299.04 11098.96 13298.84 2099.79 17697.43 11199.65 14299.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42095.51 28095.47 27295.65 31098.25 28788.27 33593.25 34398.88 23593.53 29594.65 33297.15 30686.17 30599.93 2797.41 11299.93 2598.73 271
CR-MVSNet96.28 26395.95 26097.28 26797.71 31494.22 27098.11 12498.92 22992.31 30996.91 27999.37 5385.44 31399.81 15497.39 11397.36 32397.81 310
Anonymous20240521197.90 16597.50 19099.08 10798.90 20698.25 11098.53 8396.16 32398.87 7799.11 9498.86 15790.40 28499.78 18697.36 11499.31 22199.19 208
CANet_DTU97.26 21597.06 21497.84 23397.57 31994.65 26496.19 27598.79 25397.23 19895.14 32998.24 24593.22 25899.84 11697.34 11599.84 5599.04 229
Anonymous2023120698.21 14598.21 13198.20 21699.51 7495.43 24598.13 12199.32 12296.16 24098.93 13298.82 16996.00 19099.83 13197.32 11699.73 10599.36 162
MP-MVS-pluss98.57 10198.23 13099.60 1499.69 3899.35 1297.16 22299.38 9694.87 27098.97 12298.99 12398.01 7099.88 6397.29 11799.70 11999.58 60
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FMVSNet596.01 26795.20 28298.41 20097.53 32296.10 22798.74 6699.50 5697.22 20198.03 22199.04 11069.80 35499.88 6397.27 11899.71 11599.25 194
our_test_397.39 20697.73 17496.34 29598.70 24489.78 33194.61 32898.97 22396.50 22899.04 11098.85 16095.98 19499.84 11697.26 11999.67 13699.41 138
jason97.45 20397.35 20197.76 23899.24 12893.93 28295.86 28898.42 27794.24 28398.50 18898.13 25194.82 22999.91 4397.22 12099.73 10599.43 133
jason: jason.
miper_lstm_enhance97.18 22397.16 21097.25 26998.16 29392.85 30295.15 31399.31 12797.25 19298.74 16298.78 17490.07 28599.78 18697.19 12199.80 7699.11 221
DP-MVS98.93 4898.81 5099.28 7999.21 13598.45 10198.46 9599.33 12099.63 1499.48 3999.15 8997.23 13199.75 20697.17 12299.66 14199.63 42
zzz-MVS98.79 6398.52 8499.61 1099.67 4099.36 1097.33 20599.20 16598.83 8198.89 13798.90 14496.98 14399.92 3397.16 12399.70 11999.56 70
MTAPA98.88 5498.64 7099.61 1099.67 4099.36 1098.43 9899.20 16598.83 8198.89 13798.90 14496.98 14399.92 3397.16 12399.70 11999.56 70
TSAR-MVS + GP.98.18 14897.98 15698.77 15798.71 24097.88 15296.32 26898.66 26696.33 23499.23 8298.51 21897.48 11599.40 31297.16 12399.46 20099.02 232
3Dnovator98.27 298.81 6198.73 5699.05 11798.76 23197.81 16199.25 3199.30 13698.57 9598.55 18399.33 6197.95 7799.90 4697.16 12399.67 13699.44 129
ACMMP_NAP98.75 7198.48 9399.57 1999.58 5099.29 1897.82 16099.25 15496.94 21398.78 15599.12 9398.02 6999.84 11697.13 12799.67 13699.59 54
PVSNet_Blended_VisFu98.17 15098.15 14198.22 21599.73 2495.15 25297.36 20399.68 1494.45 27998.99 11799.27 6696.87 14899.94 2397.13 12799.91 3999.57 65
HyFIR lowres test97.19 22296.60 24398.96 12899.62 4997.28 18995.17 31199.50 5694.21 28499.01 11498.32 24186.61 30199.99 297.10 12999.84 5599.60 48
test_0728_THIRD98.17 12099.08 10099.02 11497.89 7899.88 6397.07 13099.71 11599.70 29
eth_miper_zixun_eth97.23 21997.25 20597.17 27198.00 30292.77 30494.71 32299.18 17497.27 19098.56 18198.74 18091.89 27799.69 23097.06 13199.81 6899.05 225
MDA-MVSNet_test_wron97.60 19297.66 17997.41 26399.04 17893.09 29695.27 30898.42 27797.26 19198.88 14198.95 13695.43 21599.73 21597.02 13298.72 28399.41 138
cl-mvsnet_97.02 23596.83 22997.58 25097.82 31094.04 27694.66 32599.16 18397.04 20998.63 17098.71 18488.68 29599.69 23097.00 13399.81 6899.00 236
cl-mvsnet197.02 23596.84 22897.58 25097.82 31094.03 27794.66 32599.16 18397.04 20998.63 17098.71 18488.69 29499.69 23097.00 13399.81 6899.01 233
DVP-MVS98.77 6898.52 8499.52 4299.50 7799.21 2798.02 13898.84 24497.97 12999.08 10099.02 11497.61 9999.88 6396.99 13599.63 14799.48 110
test_0728_SECOND99.60 1499.50 7799.23 2598.02 13899.32 12299.88 6396.99 13599.63 14799.68 31
YYNet197.60 19297.67 17697.39 26499.04 17893.04 30095.27 30898.38 27997.25 19298.92 13398.95 13695.48 21499.73 21596.99 13598.74 28199.41 138
pmmvs497.58 19497.28 20498.51 19198.84 22096.93 20895.40 30798.52 27393.60 29498.61 17498.65 19795.10 22299.60 26896.97 13899.79 8198.99 237
TAMVS98.24 14398.05 15198.80 15099.07 17197.18 19797.88 15298.81 25096.66 22599.17 9099.21 7494.81 23199.77 19296.96 13999.88 4899.44 129
cl_fuxian97.36 20797.37 19997.31 26598.09 29793.25 29595.01 31699.16 18397.05 20898.77 15898.72 18392.88 26699.64 25796.93 14099.76 9899.05 225
SED-MVS98.91 5198.72 5899.49 4999.49 8499.17 3798.10 12699.31 12798.03 12699.66 2199.02 11498.36 4399.88 6396.91 14199.62 15099.41 138
test_241102_TWO99.30 13698.03 12699.26 7699.02 11497.51 10999.88 6396.91 14199.60 15899.66 34
ET-MVSNet_ETH3D94.30 29893.21 30897.58 25098.14 29494.47 26794.78 32193.24 34394.72 27289.56 35195.87 32678.57 34599.81 15496.91 14197.11 32898.46 284
N_pmnet97.63 19197.17 20998.99 12699.27 12397.86 15495.98 27993.41 34195.25 26399.47 4198.90 14495.63 20699.85 9996.91 14199.73 10599.27 190
1112_ss97.29 21496.86 22698.58 17699.34 11696.32 22396.75 24699.58 2793.14 29996.89 28397.48 29292.11 27599.86 8696.91 14199.54 17899.57 65
thisisatest053095.27 28394.45 29397.74 24099.19 14194.37 26897.86 15590.20 35197.17 20298.22 20597.65 28173.53 35299.90 4696.90 14699.35 21598.95 243
Fast-Effi-MVS+-dtu98.27 13898.09 14698.81 14898.43 27898.11 12397.61 18299.50 5698.64 8597.39 26397.52 28998.12 6499.95 1596.90 14698.71 28598.38 290
TSAR-MVS + MP.98.63 9298.49 9199.06 11599.64 4697.90 15198.51 8898.94 22496.96 21299.24 7998.89 15297.83 8199.81 15496.88 14899.49 19699.48 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_111021_HR98.25 14298.08 14998.75 16199.09 16797.46 18195.97 28099.27 14897.60 15597.99 22298.25 24498.15 6399.38 31696.87 14999.57 17099.42 136
EPP-MVSNet98.30 13498.04 15299.07 11099.56 6297.83 15699.29 2498.07 28999.03 6498.59 17799.13 9292.16 27499.90 4696.87 14999.68 13099.49 104
ZNCC-MVS98.68 8498.40 10799.54 3099.57 5499.21 2798.46 9599.29 14397.28 18998.11 21398.39 23298.00 7199.87 7996.86 15199.64 14499.55 78
MS-PatchMatch97.68 18697.75 17197.45 26098.23 29093.78 28997.29 20898.84 24496.10 24298.64 16998.65 19796.04 18799.36 31796.84 15299.14 25099.20 203
3Dnovator+97.89 398.69 8198.51 8699.24 8798.81 22798.40 10299.02 4899.19 17098.99 6798.07 21699.28 6497.11 13699.84 11696.84 15299.32 21999.47 118
miper_ehance_all_eth97.06 23197.03 21597.16 27397.83 30993.06 29794.66 32599.09 19795.99 24798.69 16498.45 22792.73 26999.61 26796.79 15499.03 26498.82 260
XVS98.72 7598.45 9999.53 3799.46 9599.21 2798.65 7099.34 11598.62 8997.54 25198.63 20497.50 11099.83 13196.79 15499.53 18299.56 70
X-MVStestdata94.32 29692.59 31499.53 3799.46 9599.21 2798.65 7099.34 11598.62 8997.54 25145.85 35397.50 11099.83 13196.79 15499.53 18299.56 70
lupinMVS97.06 23196.86 22697.65 24498.88 21293.89 28695.48 30497.97 29293.53 29598.16 20897.58 28593.81 25199.91 4396.77 15799.57 17099.17 214
IU-MVS99.49 8499.15 4698.87 23792.97 30099.41 4996.76 15899.62 15099.66 34
CHOSEN 1792x268897.49 19997.14 21398.54 18799.68 3996.09 22996.50 25899.62 2091.58 31798.84 14798.97 12992.36 27299.88 6396.76 15899.95 1699.67 33
ppachtmachnet_test97.50 19797.74 17296.78 28998.70 24491.23 32794.55 33099.05 20596.36 23399.21 8398.79 17396.39 17699.78 18696.74 16099.82 6499.34 168
DeepPCF-MVS96.93 598.32 13298.01 15499.23 8898.39 28098.97 6295.03 31599.18 17496.88 21699.33 6298.78 17498.16 6199.28 32896.74 16099.62 15099.44 129
EIA-MVS98.00 16097.74 17298.80 15098.72 23798.09 12498.05 13399.60 2497.39 17896.63 29295.55 33097.68 9199.80 16396.73 16299.27 22898.52 282
CDS-MVSNet97.69 18597.35 20198.69 16598.73 23697.02 20596.92 23598.75 25995.89 24998.59 17798.67 19292.08 27699.74 21096.72 16399.81 6899.32 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG98.68 8498.50 8899.20 9099.45 9898.63 8498.56 8099.57 3497.87 13798.85 14598.04 26197.66 9399.84 11696.72 16399.81 6899.13 218
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7599.58 2799.11 5499.53 3299.18 7998.81 2299.67 24296.71 16599.77 8999.50 100
MVS_111021_LR98.30 13498.12 14498.83 14599.16 15298.03 13596.09 27799.30 13697.58 15698.10 21498.24 24598.25 5099.34 31996.69 16699.65 14299.12 219
OPM-MVS98.56 10298.32 12199.25 8699.41 10598.73 7997.13 22499.18 17497.10 20698.75 16098.92 14098.18 5999.65 25596.68 16799.56 17599.37 156
Effi-MVS+-dtu98.26 14097.90 16399.35 6998.02 30099.49 298.02 13899.16 18398.29 10897.64 24297.99 26396.44 17499.95 1596.66 16898.93 27698.60 279
mvs-test197.83 17997.48 19498.89 13898.02 30099.20 3397.20 21699.16 18398.29 10896.46 30297.17 30496.44 17499.92 3396.66 16897.90 31497.54 324
Effi-MVS+98.02 15897.82 16898.62 17298.53 27097.19 19697.33 20599.68 1497.30 18796.68 29097.46 29498.56 3399.80 16396.63 17098.20 30198.86 257
MDA-MVSNet-bldmvs97.94 16497.91 16298.06 22499.44 10094.96 25696.63 25299.15 18998.35 10198.83 14899.11 9594.31 24299.85 9996.60 17198.72 28399.37 156
Test_1112_low_res96.99 23996.55 24698.31 20999.35 11495.47 24395.84 29199.53 5091.51 31996.80 28898.48 22691.36 27999.83 13196.58 17299.53 18299.62 43
LS3D98.63 9298.38 11299.36 6497.25 33299.38 699.12 4499.32 12299.21 4398.44 19198.88 15397.31 12299.80 16396.58 17299.34 21798.92 249
HFP-MVS98.71 7698.44 10199.51 4699.49 8499.16 4198.52 8499.31 12797.47 16698.58 17998.50 22197.97 7599.85 9996.57 17499.59 16099.53 88
ACMMPR98.70 7998.42 10599.54 3099.52 7299.14 4998.52 8499.31 12797.47 16698.56 18198.54 21597.75 8899.88 6396.57 17499.59 16099.58 60
sss97.21 22096.93 22098.06 22498.83 22295.22 25096.75 24698.48 27594.49 27597.27 26697.90 26892.77 26899.80 16396.57 17499.32 21999.16 217
SR-MVS-dyc-post98.81 6198.55 8199.57 1999.20 13899.38 698.48 9399.30 13698.64 8598.95 12598.96 13297.49 11399.86 8696.56 17799.39 20899.45 124
RE-MVS-def98.58 7999.20 13899.38 698.48 9399.30 13698.64 8598.95 12598.96 13297.75 8896.56 17799.39 20899.45 124
SD-MVS98.40 12598.68 6597.54 25598.96 19397.99 13797.88 15299.36 10498.20 11799.63 2699.04 11098.76 2395.33 35396.56 17799.74 10299.31 180
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ambc98.24 21498.82 22595.97 23198.62 7399.00 22099.27 7299.21 7496.99 14299.50 29896.55 18099.50 19599.26 193
APD-MVS_3200maxsize98.84 5898.61 7599.53 3799.19 14199.27 2198.49 9099.33 12098.64 8599.03 11398.98 12797.89 7899.85 9996.54 18199.42 20499.46 120
CP-MVS98.70 7998.42 10599.52 4299.36 11099.12 5498.72 6899.36 10497.54 16198.30 20198.40 23097.86 8099.89 5596.53 18299.72 11199.56 70
MVP-Stereo98.08 15497.92 16198.57 17998.96 19396.79 21197.90 15199.18 17496.41 23298.46 18998.95 13695.93 19799.60 26896.51 18398.98 27399.31 180
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testgi98.32 13298.39 11098.13 21999.57 5495.54 23997.78 16299.49 6497.37 18099.19 8597.65 28198.96 1899.49 29996.50 18498.99 27199.34 168
HPM-MVScopyleft98.79 6398.53 8399.59 1899.65 4399.29 1899.16 3999.43 8596.74 22198.61 17498.38 23498.62 2999.87 7996.47 18599.67 13699.59 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R98.69 8198.40 10799.54 3099.53 7099.17 3798.52 8499.31 12797.46 17198.44 19198.51 21897.83 8199.88 6396.46 18699.58 16699.58 60
SMA-MVScopyleft98.40 12598.03 15399.51 4699.16 15299.21 2798.05 13399.22 16294.16 28698.98 11999.10 9797.52 10899.79 17696.45 18799.64 14499.53 88
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
abl_698.99 3898.78 5299.61 1099.45 9899.46 398.60 7599.50 5698.59 9199.24 7999.04 11098.54 3499.89 5596.45 18799.62 15099.50 100
test117298.76 6998.49 9199.57 1999.18 14899.37 998.39 10199.31 12798.43 9998.90 13498.88 15397.49 11399.86 8696.43 18999.37 21299.48 110
CNVR-MVS98.17 15097.87 16599.07 11098.67 25298.24 11197.01 22798.93 22697.25 19297.62 24398.34 23897.27 12699.57 27896.42 19099.33 21899.39 147
cl-mvsnet295.79 27395.39 27796.98 27896.77 34092.79 30394.40 33398.53 27294.59 27497.89 22698.17 25082.82 33099.24 33096.37 19199.03 26498.92 249
PS-MVSNAJ97.08 22997.39 19796.16 30298.56 26692.46 30895.24 31098.85 24397.25 19297.49 25695.99 32398.07 6599.90 4696.37 19198.67 28896.12 342
CVMVSNet96.25 26497.21 20893.38 33299.10 16480.56 35697.20 21698.19 28796.94 21399.00 11699.02 11489.50 29099.80 16396.36 19399.59 16099.78 15
xiu_mvs_v2_base97.16 22597.49 19196.17 30098.54 26892.46 30895.45 30598.84 24497.25 19297.48 25796.49 31698.31 4899.90 4696.34 19498.68 28796.15 341
miper_enhance_ethall96.01 26795.74 26396.81 28896.41 34692.27 31293.69 34198.89 23491.14 32498.30 20197.35 30190.58 28299.58 27796.31 19599.03 26498.60 279
CS-MVS97.82 18197.59 18798.52 18898.76 23198.04 13498.20 11599.61 2297.10 20696.02 31394.87 34398.27 4999.84 11696.31 19599.17 24597.69 318
ACMMPcopyleft98.75 7198.50 8899.52 4299.56 6299.16 4198.87 6099.37 10097.16 20398.82 15299.01 12097.71 9099.87 7996.29 19799.69 12599.54 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ETV-MVS98.03 15697.86 16698.56 18398.69 24798.07 13097.51 19499.50 5698.10 12397.50 25595.51 33198.41 4099.88 6396.27 19899.24 23397.71 317
XVG-OURS-SEG-HR98.49 11598.28 12499.14 9899.49 8498.83 7096.54 25499.48 6697.32 18599.11 9498.61 20999.33 899.30 32596.23 19998.38 29699.28 188
GA-MVS95.86 27195.32 27997.49 25898.60 26194.15 27493.83 33997.93 29395.49 25996.68 29097.42 29683.21 32699.30 32596.22 20098.55 29499.01 233
mPP-MVS98.64 9098.34 11799.54 3099.54 6899.17 3798.63 7299.24 15997.47 16698.09 21598.68 19097.62 9899.89 5596.22 20099.62 15099.57 65
Fast-Effi-MVS+97.67 18797.38 19898.57 17998.71 24097.43 18397.23 21299.45 7794.82 27196.13 30696.51 31598.52 3599.91 4396.19 20298.83 27898.37 292
pmmvs395.03 28894.40 29496.93 28097.70 31692.53 30795.08 31497.71 29888.57 33897.71 23798.08 25979.39 34199.82 14196.19 20299.11 25798.43 288
MCST-MVS98.00 16097.63 18299.10 10499.24 12898.17 11996.89 23898.73 26295.66 25497.92 22397.70 27997.17 13399.66 25096.18 20499.23 23499.47 118
SteuartSystems-ACMMP98.79 6398.54 8299.54 3099.73 2499.16 4198.23 11199.31 12797.92 13398.90 13498.90 14498.00 7199.88 6396.15 20599.72 11199.58 60
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.71 7698.43 10399.57 1999.18 14899.35 1298.36 10499.29 14398.29 10898.88 14198.85 16097.53 10699.87 7996.14 20699.31 22199.48 110
MSP-MVS98.40 12598.00 15599.61 1099.57 5499.25 2398.57 7999.35 10997.55 16099.31 6997.71 27894.61 23599.88 6396.14 20699.19 24299.70 29
DeepC-MVS_fast96.85 698.30 13498.15 14198.75 16198.61 25997.23 19197.76 16799.09 19797.31 18698.75 16098.66 19597.56 10399.64 25796.10 20899.55 17799.39 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS98.61 9598.30 12299.52 4299.51 7499.20 3398.26 10999.25 15497.44 17498.67 16698.39 23297.68 9199.85 9996.00 20999.51 18899.52 92
EPNet96.14 26595.44 27498.25 21390.76 35795.50 24297.92 14894.65 33298.97 7092.98 34498.85 16089.12 29299.87 7995.99 21099.68 13099.39 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4699.41 6099.58 5099.10 5798.74 6699.56 4199.09 6199.33 6299.19 7798.40 4199.72 22395.98 21199.76 9899.42 136
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmtry97.35 20896.97 21998.50 19397.31 33196.47 21998.18 11798.92 22998.95 7498.78 15599.37 5385.44 31399.85 9995.96 21299.83 6199.17 214
tfpnnormal98.90 5398.90 4398.91 13599.67 4097.82 15999.00 5199.44 8099.45 2899.51 3799.24 7198.20 5899.86 8695.92 21399.69 12599.04 229
XVG-ACMP-BASELINE98.56 10298.34 11799.22 8999.54 6898.59 8997.71 17199.46 7497.25 19298.98 11998.99 12397.54 10499.84 11695.88 21499.74 10299.23 198
tpm94.67 29294.34 29695.66 30997.68 31888.42 33397.88 15294.90 33194.46 27796.03 31298.56 21478.66 34399.79 17695.88 21495.01 34398.78 267
ab-mvs98.41 12398.36 11498.59 17599.19 14197.23 19199.32 1698.81 25097.66 14998.62 17299.40 5296.82 15299.80 16395.88 21499.51 18898.75 270
test-LLR93.90 30593.85 29994.04 32496.53 34284.62 34894.05 33692.39 34596.17 23894.12 33795.07 33582.30 33199.67 24295.87 21798.18 30297.82 308
test-mter92.33 31891.76 32194.04 32496.53 34284.62 34894.05 33692.39 34594.00 29094.12 33795.07 33565.63 36099.67 24295.87 21798.18 30297.82 308
PGM-MVS98.66 8798.37 11399.55 2799.53 7099.18 3698.23 11199.49 6497.01 21198.69 16498.88 15398.00 7199.89 5595.87 21799.59 16099.58 60
USDC97.41 20597.40 19697.44 26198.94 19693.67 29295.17 31199.53 5094.03 28998.97 12299.10 9795.29 21799.34 31995.84 22099.73 10599.30 183
HPM-MVS++copyleft98.10 15297.64 18199.48 5199.09 16799.13 5297.52 19298.75 25997.46 17196.90 28297.83 27296.01 18999.84 11695.82 22199.35 21599.46 120
TESTMET0.1,192.19 32091.77 32093.46 33096.48 34482.80 35394.05 33691.52 34894.45 27994.00 34094.88 34166.65 35899.56 28195.78 22298.11 30798.02 302
DSMNet-mixed97.42 20497.60 18596.87 28499.15 15691.46 31998.54 8299.12 19392.87 30397.58 24799.63 2196.21 18399.90 4695.74 22399.54 17899.27 190
XVG-OURS98.53 11198.34 11799.11 10299.50 7798.82 7295.97 28099.50 5697.30 18799.05 10898.98 12799.35 799.32 32295.72 22499.68 13099.18 210
RPSCF98.62 9498.36 11499.42 5799.65 4399.42 598.55 8199.57 3497.72 14698.90 13499.26 6896.12 18599.52 29395.72 22499.71 11599.32 176
PHI-MVS98.29 13797.95 15899.34 7298.44 27799.16 4198.12 12399.38 9696.01 24698.06 21798.43 22897.80 8599.67 24295.69 22699.58 16699.20 203
xxxxxxxxxxxxxcwj98.44 12098.24 12899.06 11599.11 16097.97 14296.53 25599.54 4898.24 11198.83 14898.90 14497.80 8599.82 14195.68 22799.52 18599.38 153
SF-MVS98.53 11198.27 12599.32 7699.31 11798.75 7598.19 11699.41 8996.77 22098.83 14898.90 14497.80 8599.82 14195.68 22799.52 18599.38 153
#test#98.50 11498.16 13999.51 4699.49 8499.16 4198.03 13699.31 12796.30 23798.58 17998.50 22197.97 7599.85 9995.68 22799.59 16099.53 88
test_040298.76 6998.71 6098.93 13299.56 6298.14 12298.45 9799.34 11599.28 4098.95 12598.91 14198.34 4799.79 17695.63 23099.91 3998.86 257
tpmrst95.07 28795.46 27393.91 32697.11 33484.36 35097.62 18096.96 31294.98 26696.35 30498.80 17185.46 31299.59 27295.60 23196.23 33797.79 313
PMMVS96.51 25595.98 25998.09 22097.53 32295.84 23494.92 31898.84 24491.58 31796.05 31195.58 32995.68 20599.66 25095.59 23298.09 30898.76 269
LPG-MVS_test98.71 7698.46 9799.47 5499.57 5498.97 6298.23 11199.48 6696.60 22699.10 9799.06 10098.71 2699.83 13195.58 23399.78 8599.62 43
LGP-MVS_train99.47 5499.57 5498.97 6299.48 6696.60 22699.10 9799.06 10098.71 2699.83 13195.58 23399.78 8599.62 43
IS-MVSNet98.19 14797.90 16399.08 10799.57 5497.97 14299.31 1998.32 28099.01 6698.98 11999.03 11391.59 27899.79 17695.49 23599.80 7699.48 110
baseline195.96 26995.44 27497.52 25798.51 27193.99 28098.39 10196.09 32598.21 11498.40 19997.76 27686.88 29999.63 25995.42 23689.27 35298.95 243
DPE-MVS98.59 10098.26 12699.57 1999.27 12399.15 4697.01 22799.39 9497.67 14899.44 4598.99 12397.53 10699.89 5595.40 23799.68 13099.66 34
NCCC97.86 17197.47 19599.05 11798.61 25998.07 13096.98 22998.90 23297.63 15197.04 27397.93 26795.99 19399.66 25095.31 23898.82 27999.43 133
Patchmatch-test96.55 25496.34 25297.17 27198.35 28193.06 29798.40 10097.79 29597.33 18398.41 19598.67 19283.68 32599.69 23095.16 23999.31 22198.77 268
EPMVS93.72 30893.27 30795.09 31796.04 35087.76 33698.13 12185.01 35594.69 27396.92 27798.64 20078.47 34799.31 32395.04 24096.46 33598.20 295
DWT-MVSNet_test92.75 31592.05 31894.85 31896.48 34487.21 33997.83 15994.99 33092.22 31192.72 34594.11 34870.75 35399.46 30695.01 24194.33 34797.87 306
UnsupCasMVSNet_bld97.30 21296.92 22298.45 19799.28 12296.78 21496.20 27499.27 14895.42 26198.28 20398.30 24293.16 25999.71 22494.99 24297.37 32198.87 256
PatchmatchNetpermissive95.58 27795.67 26795.30 31597.34 32987.32 33897.65 17896.65 31895.30 26297.07 27198.69 18884.77 31599.75 20694.97 24398.64 28998.83 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu94.93 29094.78 29195.38 31493.58 35687.68 33796.78 24395.69 32997.35 18289.14 35298.09 25888.15 29699.49 29994.95 24499.30 22498.98 238
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl96.69 24896.29 25497.90 23098.28 28595.24 24897.29 20897.36 30398.21 11498.17 20697.86 26986.27 30399.55 28494.87 24598.32 29798.89 253
DCV-MVSNet96.69 24896.29 25497.90 23098.28 28595.24 24897.29 20897.36 30398.21 11498.17 20697.86 26986.27 30399.55 28494.87 24598.32 29798.89 253
ACMP95.32 1598.41 12398.09 14699.36 6499.51 7498.79 7497.68 17499.38 9695.76 25398.81 15498.82 16998.36 4399.82 14194.75 24799.77 8999.48 110
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet_BlendedMVS97.55 19597.53 18897.60 24898.92 20293.77 29096.64 25199.43 8594.49 27597.62 24399.18 7996.82 15299.67 24294.73 24899.93 2599.36 162
PVSNet_Blended96.88 24196.68 23797.47 25998.92 20293.77 29094.71 32299.43 8590.98 32597.62 24397.36 30096.82 15299.67 24294.73 24899.56 17598.98 238
MP-MVScopyleft98.46 11898.09 14699.54 3099.57 5499.22 2698.50 8999.19 17097.61 15497.58 24798.66 19597.40 11999.88 6394.72 25099.60 15899.54 82
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
OPU-MVS98.82 14698.59 26398.30 10798.10 12698.52 21798.18 5998.75 34694.62 25199.48 19899.41 138
LF4IMVS97.90 16597.69 17598.52 18899.17 15097.66 17197.19 21999.47 7296.31 23697.85 22998.20 24996.71 16299.52 29394.62 25199.72 11198.38 290
CostFormer93.97 30493.78 30194.51 32197.53 32285.83 34497.98 14495.96 32689.29 33594.99 33198.63 20478.63 34499.62 26194.54 25396.50 33498.09 300
thisisatest051594.12 30293.16 30996.97 27998.60 26192.90 30193.77 34090.61 34994.10 28796.91 27995.87 32674.99 35099.80 16394.52 25499.12 25698.20 295
旧先验295.76 29288.56 33997.52 25399.66 25094.48 255
CLD-MVS97.49 19997.16 21098.48 19499.07 17197.03 20394.71 32299.21 16394.46 27798.06 21797.16 30597.57 10299.48 30294.46 25699.78 8598.95 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AllTest98.44 12098.20 13299.16 9599.50 7798.55 9298.25 11099.58 2796.80 21898.88 14199.06 10097.65 9499.57 27894.45 25799.61 15699.37 156
TestCases99.16 9599.50 7798.55 9299.58 2796.80 21898.88 14199.06 10097.65 9499.57 27894.45 25799.61 15699.37 156
HQP_MVS97.99 16397.67 17698.93 13299.19 14197.65 17297.77 16599.27 14898.20 11797.79 23397.98 26494.90 22599.70 22694.42 25999.51 18899.45 124
plane_prior599.27 14899.70 22694.42 25999.51 18899.45 124
JIA-IIPM95.52 27995.03 28697.00 27696.85 33894.03 27796.93 23395.82 32799.20 4694.63 33399.71 1383.09 32799.60 26894.42 25994.64 34497.36 327
cascas94.79 29194.33 29796.15 30396.02 35192.36 31192.34 34899.26 15385.34 34695.08 33094.96 34092.96 26598.53 34794.41 26298.59 29297.56 323
TinyColmap97.89 16797.98 15697.60 24898.86 21594.35 26996.21 27399.44 8097.45 17399.06 10398.88 15397.99 7499.28 32894.38 26399.58 16699.18 210
9.1497.78 16999.07 17197.53 19199.32 12295.53 25898.54 18598.70 18797.58 10199.76 19994.32 26499.46 200
test_post197.59 18520.48 35783.07 32899.66 25094.16 265
SCA96.41 26096.66 24095.67 30898.24 28888.35 33495.85 29096.88 31696.11 24197.67 24098.67 19293.10 26199.85 9994.16 26599.22 23598.81 262
test_prior397.48 20197.00 21798.95 12998.69 24797.95 14795.74 29499.03 21096.48 22996.11 30797.63 28395.92 19899.59 27294.16 26599.20 23899.30 183
test_prior295.74 29496.48 22996.11 30797.63 28395.92 19894.16 26599.20 238
tpmvs95.02 28995.25 28094.33 32296.39 34785.87 34298.08 12896.83 31795.46 26095.51 32598.69 18885.91 30899.53 28994.16 26596.23 33797.58 322
LCM-MVSNet-Re98.64 9098.48 9399.11 10298.85 21798.51 9798.49 9099.83 398.37 10099.69 1899.46 4198.21 5799.92 3394.13 27099.30 22498.91 252
MSDG97.71 18497.52 18998.28 21298.91 20596.82 21094.42 33299.37 10097.65 15098.37 20098.29 24397.40 11999.33 32194.09 27199.22 23598.68 278
MVS-HIRNet94.32 29695.62 26890.42 33698.46 27575.36 35796.29 26989.13 35395.25 26395.38 32699.75 892.88 26699.19 33294.07 27299.39 20896.72 335
DP-MVS Recon97.33 21096.92 22298.57 17999.09 16797.99 13796.79 24299.35 10993.18 29897.71 23798.07 26095.00 22499.31 32393.97 27399.13 25398.42 289
new_pmnet96.99 23996.76 23297.67 24298.72 23794.89 25795.95 28498.20 28592.62 30698.55 18398.54 21594.88 22899.52 29393.96 27499.44 20398.59 281
ETH3D-3000-0.198.03 15697.62 18399.29 7799.11 16098.80 7397.47 19899.32 12295.54 25698.43 19498.62 20696.61 16699.77 19293.95 27599.49 19699.30 183
MDTV_nov1_ep1395.22 28197.06 33583.20 35297.74 16996.16 32394.37 28196.99 27598.83 16683.95 32399.53 28993.90 27697.95 313
WTY-MVS96.67 25096.27 25697.87 23298.81 22794.61 26596.77 24497.92 29494.94 26897.12 26797.74 27791.11 28099.82 14193.89 27798.15 30599.18 210
Vis-MVSNet (Re-imp)97.46 20297.16 21098.34 20699.55 6596.10 22798.94 5698.44 27698.32 10498.16 20898.62 20688.76 29399.73 21593.88 27899.79 8199.18 210
ITE_SJBPF98.87 14099.22 13398.48 9999.35 10997.50 16398.28 20398.60 21097.64 9799.35 31893.86 27999.27 22898.79 266
CPTT-MVS97.84 17797.36 20099.27 8299.31 11798.46 10098.29 10699.27 14894.90 26997.83 23098.37 23594.90 22599.84 11693.85 28099.54 17899.51 95
APD-MVScopyleft98.10 15297.67 17699.42 5799.11 16098.93 6697.76 16799.28 14594.97 26798.72 16398.77 17697.04 13799.85 9993.79 28199.54 17899.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
agg_prior197.06 23196.40 25099.03 12098.68 25097.99 13795.76 29299.01 21791.73 31495.59 31797.50 29096.49 17199.77 19293.71 28299.14 25099.34 168
train_agg97.10 22796.45 24999.07 11098.71 24098.08 12895.96 28299.03 21091.64 31595.85 31497.53 28796.47 17299.76 19993.67 28399.16 24699.36 162
PVSNet93.40 1795.67 27595.70 26595.57 31198.83 22288.57 33292.50 34697.72 29792.69 30596.49 30196.44 31993.72 25499.43 31093.61 28499.28 22798.71 272
test0.0.03 194.51 29393.69 30296.99 27796.05 34993.61 29394.97 31793.49 34096.17 23897.57 24994.88 34182.30 33199.01 34093.60 28594.17 34898.37 292
testdata98.09 22098.93 19895.40 24698.80 25290.08 33197.45 25998.37 23595.26 21899.70 22693.58 28698.95 27599.17 214
MDTV_nov1_ep13_2view74.92 35897.69 17390.06 33297.75 23685.78 30993.52 28798.69 275
TAPA-MVS96.21 1196.63 25295.95 26098.65 16798.93 19898.09 12496.93 23399.28 14583.58 34898.13 21197.78 27496.13 18499.40 31293.52 28799.29 22698.45 286
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS97.88 16997.49 19199.04 11998.89 21198.63 8496.94 23199.25 15495.02 26598.53 18698.51 21897.27 12699.47 30493.50 28999.51 18899.01 233
PatchMatch-RL97.24 21896.78 23198.61 17499.03 18197.83 15696.36 26699.06 20193.49 29797.36 26597.78 27495.75 20399.49 29993.44 29098.77 28098.52 282
114514_t96.50 25795.77 26298.69 16599.48 9297.43 18397.84 15899.55 4481.42 35096.51 29898.58 21295.53 20999.67 24293.41 29199.58 16698.98 238
ETH3D cwj APD-0.1697.55 19597.00 21799.19 9198.51 27198.64 8396.85 23999.13 19094.19 28597.65 24198.40 23095.78 20299.81 15493.37 29299.16 24699.12 219
dp93.47 31093.59 30493.13 33496.64 34181.62 35597.66 17696.42 32192.80 30496.11 30798.64 20078.55 34699.59 27293.31 29392.18 35198.16 297
test9_res93.28 29499.15 24999.38 153
IB-MVS91.63 1992.24 31990.90 32396.27 29797.22 33391.24 32694.36 33493.33 34292.37 30892.24 34794.58 34566.20 35999.89 5593.16 29594.63 34597.66 319
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline293.73 30792.83 31396.42 29497.70 31691.28 32596.84 24189.77 35293.96 29192.44 34695.93 32479.14 34299.77 19292.94 29696.76 33398.21 294
OpenMVScopyleft96.65 797.09 22896.68 23798.32 20798.32 28397.16 19998.86 6299.37 10089.48 33396.29 30599.15 8996.56 16799.90 4692.90 29799.20 23897.89 304
ADS-MVSNet295.43 28194.98 28796.76 29098.14 29491.74 31697.92 14897.76 29690.23 32796.51 29898.91 14185.61 31099.85 9992.88 29896.90 32998.69 275
ADS-MVSNet95.24 28494.93 28996.18 29998.14 29490.10 33097.92 14897.32 30690.23 32796.51 29898.91 14185.61 31099.74 21092.88 29896.90 32998.69 275
BP-MVS92.82 300
HQP-MVS97.00 23896.49 24898.55 18498.67 25296.79 21196.29 26999.04 20896.05 24395.55 32196.84 31093.84 24999.54 28792.82 30099.26 23199.32 176
testdata299.79 17692.80 302
CDPH-MVS97.26 21596.66 24099.07 11099.00 18698.15 12096.03 27899.01 21791.21 32397.79 23397.85 27196.89 14799.69 23092.75 30399.38 21199.39 147
新几何198.91 13598.94 19697.76 16498.76 25687.58 34296.75 28998.10 25694.80 23299.78 18692.73 30499.00 27099.20 203
ZD-MVS99.01 18598.84 6999.07 20094.10 28798.05 21998.12 25496.36 18099.86 8692.70 30599.19 242
F-COLMAP97.30 21296.68 23799.14 9899.19 14198.39 10397.27 21199.30 13692.93 30196.62 29398.00 26295.73 20499.68 23992.62 30698.46 29599.35 166
原ACMM198.35 20598.90 20696.25 22598.83 24992.48 30796.07 31098.10 25695.39 21699.71 22492.61 30798.99 27199.08 222
agg_prior292.50 30899.16 24699.37 156
无先验95.74 29498.74 26189.38 33499.73 21592.38 30999.22 202
112196.73 24796.00 25898.91 13598.95 19597.76 16498.07 12998.73 26287.65 34196.54 29598.13 25194.52 23799.73 21592.38 30999.02 26799.24 197
testtj97.79 18297.25 20599.42 5799.03 18198.85 6897.78 16299.18 17495.83 25198.12 21298.50 22195.50 21299.86 8692.23 31199.07 25999.54 82
CMPMVSbinary75.91 2396.29 26295.44 27498.84 14496.25 34898.69 8297.02 22699.12 19388.90 33697.83 23098.86 15789.51 28998.90 34391.92 31299.51 18898.92 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
BH-untuned96.83 24396.75 23397.08 27498.74 23593.33 29496.71 24898.26 28296.72 22298.44 19197.37 29995.20 21999.47 30491.89 31397.43 32098.44 287
gm-plane-assit94.83 35481.97 35488.07 34094.99 33899.60 26891.76 314
CNLPA97.17 22496.71 23598.55 18498.56 26698.05 13396.33 26798.93 22696.91 21597.06 27297.39 29794.38 24199.45 30891.66 31599.18 24498.14 298
MIMVSNet96.62 25396.25 25797.71 24199.04 17894.66 26399.16 3996.92 31597.23 19897.87 22799.10 9786.11 30799.65 25591.65 31699.21 23798.82 260
131495.74 27495.60 26996.17 30097.53 32292.75 30598.07 12998.31 28191.22 32294.25 33596.68 31395.53 20999.03 33791.64 31797.18 32696.74 334
PMVScopyleft91.26 2097.86 17197.94 16097.65 24499.71 3097.94 14998.52 8498.68 26598.99 6797.52 25399.35 5797.41 11898.18 34991.59 31899.67 13696.82 333
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tpm cat193.29 31293.13 31193.75 32797.39 32884.74 34797.39 20197.65 30083.39 34994.16 33698.41 22982.86 32999.39 31491.56 31995.35 34297.14 329
DPM-MVS96.32 26195.59 27098.51 19198.76 23197.21 19494.54 33198.26 28291.94 31396.37 30397.25 30293.06 26399.43 31091.42 32098.74 28198.89 253
HY-MVS95.94 1395.90 27095.35 27897.55 25497.95 30394.79 25898.81 6596.94 31492.28 31095.17 32898.57 21389.90 28799.75 20691.20 32197.33 32598.10 299
MG-MVS96.77 24696.61 24297.26 26898.31 28493.06 29795.93 28598.12 28896.45 23197.92 22398.73 18193.77 25399.39 31491.19 32299.04 26399.33 174
AdaColmapbinary97.14 22696.71 23598.46 19698.34 28297.80 16296.95 23098.93 22695.58 25596.92 27797.66 28095.87 20099.53 28990.97 32399.14 25098.04 301
PLCcopyleft94.65 1696.51 25595.73 26498.85 14398.75 23497.91 15096.42 26399.06 20190.94 32695.59 31797.38 29894.41 23999.59 27290.93 32498.04 31299.05 225
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm293.09 31492.58 31594.62 32097.56 32086.53 34197.66 17695.79 32886.15 34494.07 33998.23 24775.95 34899.53 28990.91 32596.86 33297.81 310
QAPM97.31 21196.81 23098.82 14698.80 22997.49 17999.06 4799.19 17090.22 32997.69 23999.16 8596.91 14699.90 4690.89 32699.41 20599.07 223
PAPM_NR96.82 24596.32 25398.30 21099.07 17196.69 21697.48 19698.76 25695.81 25296.61 29496.47 31894.12 24899.17 33390.82 32797.78 31599.06 224
BH-RMVSNet96.83 24396.58 24497.58 25098.47 27494.05 27596.67 25097.36 30396.70 22497.87 22797.98 26495.14 22199.44 30990.47 32898.58 29399.25 194
API-MVS97.04 23496.91 22497.42 26297.88 30798.23 11598.18 11798.50 27497.57 15797.39 26396.75 31296.77 15699.15 33590.16 32999.02 26794.88 347
E-PMN94.17 30094.37 29593.58 32996.86 33785.71 34590.11 35097.07 31098.17 12097.82 23297.19 30384.62 31798.94 34189.77 33097.68 31796.09 343
MAR-MVS96.47 25895.70 26598.79 15297.92 30599.12 5498.28 10798.60 27092.16 31295.54 32496.17 32194.77 23499.52 29389.62 33198.23 29997.72 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
wuyk23d96.06 26697.62 18391.38 33598.65 25898.57 9198.85 6396.95 31396.86 21799.90 599.16 8599.18 1298.40 34889.23 33299.77 8977.18 351
ETH3 D test640096.46 25995.59 27099.08 10798.88 21298.21 11796.53 25599.18 17488.87 33797.08 27097.79 27393.64 25699.77 19288.92 33399.40 20799.28 188
OpenMVS_ROBcopyleft95.38 1495.84 27295.18 28397.81 23598.41 27997.15 20097.37 20298.62 26983.86 34798.65 16898.37 23594.29 24399.68 23988.41 33498.62 29196.60 336
BH-w/o95.13 28694.89 29095.86 30498.20 29191.31 32395.65 29797.37 30293.64 29396.52 29795.70 32893.04 26499.02 33888.10 33595.82 33997.24 328
EMVS93.83 30694.02 29893.23 33396.83 33984.96 34689.77 35196.32 32297.92 13397.43 26196.36 32086.17 30598.93 34287.68 33697.73 31695.81 344
gg-mvs-nofinetune92.37 31791.20 32295.85 30595.80 35392.38 31099.31 1981.84 35799.75 691.83 34899.74 968.29 35599.02 33887.15 33797.12 32796.16 340
TR-MVS95.55 27895.12 28596.86 28797.54 32193.94 28196.49 25996.53 32094.36 28297.03 27496.61 31494.26 24499.16 33486.91 33896.31 33697.47 326
PVSNet_089.98 2191.15 32290.30 32593.70 32897.72 31384.34 35190.24 34997.42 30190.20 33093.79 34193.09 35090.90 28198.89 34486.57 33972.76 35397.87 306
tmp_tt78.77 32378.73 32678.90 33758.45 35874.76 35994.20 33578.26 35939.16 35486.71 35492.82 35180.50 33575.19 35586.16 34092.29 35086.74 350
PAPR95.29 28294.47 29297.75 23997.50 32695.14 25394.89 31998.71 26491.39 32195.35 32795.48 33294.57 23699.14 33684.95 34197.37 32198.97 242
thres600view794.45 29493.83 30096.29 29699.06 17591.53 31897.99 14294.24 33798.34 10297.44 26095.01 33779.84 33799.67 24284.33 34298.23 29997.66 319
MVS93.19 31392.09 31796.50 29396.91 33694.03 27798.07 12998.06 29068.01 35294.56 33496.48 31795.96 19699.30 32583.84 34396.89 33196.17 339
thres100view90094.19 29993.67 30395.75 30799.06 17591.35 32298.03 13694.24 33798.33 10397.40 26294.98 33979.84 33799.62 26183.05 34498.08 30996.29 337
tfpn200view994.03 30393.44 30595.78 30698.93 19891.44 32097.60 18394.29 33597.94 13197.10 26894.31 34679.67 33999.62 26183.05 34498.08 30996.29 337
thres40094.14 30193.44 30596.24 29898.93 19891.44 32097.60 18394.29 33597.94 13197.10 26894.31 34679.67 33999.62 26183.05 34498.08 30997.66 319
thres20093.72 30893.14 31095.46 31398.66 25791.29 32496.61 25394.63 33397.39 17896.83 28693.71 34979.88 33699.56 28182.40 34798.13 30695.54 346
GG-mvs-BLEND94.76 31994.54 35592.13 31499.31 1980.47 35888.73 35391.01 35267.59 35698.16 35082.30 34894.53 34693.98 348
MVEpermissive83.40 2292.50 31691.92 31994.25 32398.83 22291.64 31792.71 34583.52 35695.92 24886.46 35595.46 33395.20 21995.40 35280.51 34998.64 28995.73 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PCF-MVS92.86 1894.36 29593.00 31298.42 19998.70 24497.56 17693.16 34499.11 19579.59 35197.55 25097.43 29592.19 27399.73 21579.85 35099.45 20297.97 303
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FPMVS93.44 31192.23 31697.08 27499.25 12797.86 15495.61 29897.16 30992.90 30293.76 34298.65 19775.94 34995.66 35179.30 35197.49 31897.73 315
DeepMVS_CXcopyleft93.44 33198.24 28894.21 27294.34 33464.28 35391.34 34994.87 34389.45 29192.77 35477.54 35293.14 34993.35 349
PAPM91.88 32190.34 32496.51 29298.06 29992.56 30692.44 34797.17 30886.35 34390.38 35096.01 32286.61 30199.21 33170.65 35395.43 34197.75 314
test12317.04 32620.11 3297.82 33810.25 3604.91 36094.80 3204.47 3614.93 35510.00 35724.28 3559.69 3613.64 35610.14 35412.43 35514.92 352
testmvs17.12 32520.53 3286.87 33912.05 3594.20 36193.62 3426.73 3604.62 35610.41 35624.33 3548.28 3623.56 3579.69 35515.07 35412.86 353
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k24.66 32432.88 3270.00 3400.00 3610.00 3620.00 35299.10 1960.00 3570.00 35897.58 28599.21 110.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas8.17 32710.90 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35898.07 650.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.12 32810.83 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35897.48 2920.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
test_241102_ONE99.49 8499.17 3799.31 12797.98 12899.66 2198.90 14498.36 4399.48 302
save fliter99.11 16097.97 14296.53 25599.02 21498.24 111
test072699.50 7799.21 2798.17 12099.35 10997.97 12999.26 7699.06 10097.61 99
GSMVS98.81 262
test_part299.36 11099.10 5799.05 108
sam_mvs184.74 31698.81 262
sam_mvs84.29 322
MTGPAbinary99.20 165
test_post21.25 35683.86 32499.70 226
patchmatchnet-post98.77 17684.37 31999.85 99
MTMP97.93 14791.91 347
TEST998.71 24098.08 12895.96 28299.03 21091.40 32095.85 31497.53 28796.52 16999.76 199
test_898.67 25298.01 13695.91 28799.02 21491.64 31595.79 31697.50 29096.47 17299.76 199
agg_prior98.68 25097.99 13799.01 21795.59 31799.77 192
test_prior497.97 14295.86 288
test_prior98.95 12998.69 24797.95 14799.03 21099.59 27299.30 183
新几何295.93 285
旧先验198.82 22597.45 18298.76 25698.34 23895.50 21299.01 26999.23 198
原ACMM295.53 301
test22298.92 20296.93 20895.54 30098.78 25485.72 34596.86 28598.11 25594.43 23899.10 25899.23 198
segment_acmp97.02 140
testdata195.44 30696.32 235
test1298.93 13298.58 26497.83 15698.66 26696.53 29695.51 21199.69 23099.13 25399.27 190
plane_prior799.19 14197.87 153
plane_prior698.99 18997.70 17094.90 225
plane_prior497.98 264
plane_prior397.78 16397.41 17697.79 233
plane_prior297.77 16598.20 117
plane_prior199.05 177
plane_prior97.65 17297.07 22596.72 22299.36 213
n20.00 362
nn0.00 362
door-mid99.57 34
test1198.87 237
door99.41 89
HQP5-MVS96.79 211
HQP-NCC98.67 25296.29 26996.05 24395.55 321
ACMP_Plane98.67 25296.29 26996.05 24395.55 321
HQP4-MVS95.56 32099.54 28799.32 176
HQP3-MVS99.04 20899.26 231
HQP2-MVS93.84 249
NP-MVS98.84 22097.39 18596.84 310
ACMMP++_ref99.77 89
ACMMP++99.68 130
Test By Simon96.52 169