This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2199.66 1199.68 1999.66 1798.44 3899.95 1599.73 299.96 1499.75 22
v1098.97 4399.11 3398.55 18799.44 10096.21 22998.90 5999.55 4398.73 8899.48 4099.60 2596.63 16499.83 13599.70 399.99 599.61 48
v124098.55 10698.62 7298.32 21099.22 13395.58 24297.51 19699.45 7797.16 20799.45 4599.24 7296.12 18499.85 10399.60 499.88 4999.55 79
v899.01 3699.16 3098.57 18299.47 9496.31 22798.90 5999.47 7299.03 6899.52 3599.57 2796.93 14499.81 15899.60 499.98 999.60 49
v192192098.54 10998.60 7798.38 20699.20 13995.76 24197.56 19099.36 10597.23 20299.38 5499.17 8496.02 18799.84 12099.57 699.90 4499.54 83
v119298.60 9798.66 6898.41 20399.27 12395.88 23697.52 19499.36 10597.41 18099.33 6299.20 7796.37 17899.82 14599.57 699.92 3499.55 79
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 999.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12199.20 3299.65 1799.48 2499.92 399.71 1298.07 6399.96 899.53 9100.00 199.93 1
v14419298.54 10998.57 8098.45 20099.21 13595.98 23397.63 18199.36 10597.15 20999.32 6899.18 8095.84 20099.84 12099.50 1099.91 4099.54 83
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1699.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
v114498.60 9798.66 6898.41 20399.36 11095.90 23597.58 18899.34 11797.51 16699.27 7399.15 9096.34 18099.80 16799.47 1299.93 2599.51 96
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17599.92 3599.44 1399.92 3499.68 31
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 699.64 1299.84 899.83 299.50 599.87 8299.36 1499.92 3499.64 39
v2v48298.56 10298.62 7298.37 20799.42 10495.81 23997.58 18899.16 18597.90 13999.28 7199.01 12295.98 19399.79 18099.33 1599.90 4499.51 96
ANet_high99.57 799.67 599.28 7999.89 698.09 12599.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15899.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVSFormer98.26 14098.43 10397.77 24398.88 21493.89 29299.39 1199.56 4099.11 5698.16 21398.13 25593.81 25299.97 399.26 1899.57 17299.43 134
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
Anonymous2024052198.69 8098.87 4398.16 22399.77 2095.11 26099.08 4499.44 8099.34 3799.33 6299.55 2994.10 24999.94 2399.25 2099.96 1499.42 137
K. test v398.00 16097.66 17999.03 12299.79 1997.56 17899.19 3692.47 35299.62 1799.52 3599.66 1789.61 28999.96 899.25 2099.81 6999.56 71
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7199.54 4799.31 3999.62 2799.53 3397.36 12099.86 8999.24 2299.71 11699.39 149
Anonymous2023121199.27 2599.27 2499.26 8599.29 12198.18 11899.49 899.51 5499.70 899.80 999.68 1496.84 14899.83 13599.21 2399.91 4099.77 16
V4298.78 6598.78 5298.76 16099.44 10097.04 20698.27 11199.19 17297.87 14199.25 7999.16 8696.84 14899.78 19299.21 2399.84 5699.46 121
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13399.90 4899.21 2399.87 5299.54 83
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5599.48 6699.68 999.46 4399.26 6998.62 2899.73 22099.17 2699.92 3499.76 20
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1298.93 7999.65 2299.72 1198.93 1899.95 1599.11 27100.00 199.82 9
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10699.00 5299.45 7799.63 1499.52 3599.44 4898.25 4999.88 6699.09 2899.84 5699.62 44
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1899.30 4199.65 2299.60 2599.16 1499.82 14599.07 2999.83 6299.56 71
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13599.06 3099.62 15299.66 34
SixPastTwentyTwo98.75 7098.62 7299.16 9699.83 1597.96 14799.28 2798.20 28899.37 3499.70 1599.65 1992.65 27199.93 2899.04 3199.84 5699.60 49
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3697.12 13399.85 10399.02 3299.94 2199.80 12
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
lessismore_v098.97 12999.73 2497.53 18086.71 36299.37 5699.52 3589.93 28799.92 3598.99 3499.72 11299.44 130
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 10999.17 3799.78 499.11 5699.27 7399.48 4198.82 2099.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RRT_test8_iter0595.24 29095.13 29095.57 31797.32 33687.02 34897.99 14599.41 9098.06 12999.12 9399.05 10866.85 36599.85 10398.93 3699.47 20199.84 8
mvs_anonymous97.83 18098.16 13996.87 29098.18 29891.89 32197.31 21198.90 23397.37 18498.83 15099.46 4396.28 18199.79 18098.90 3798.16 30798.95 246
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4399.46 2799.50 3999.34 6097.30 12299.93 2898.90 3799.93 2599.77 16
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5099.53 2399.46 4399.41 5198.23 5199.95 1598.89 3999.95 1699.81 11
test_part197.91 16597.46 19699.27 8298.80 23198.18 11899.07 4699.36 10599.75 599.63 2599.49 3982.20 33899.89 5798.87 4099.95 1699.74 24
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 899.82 399.04 11199.81 398.05 6699.96 898.85 4199.99 599.86 6
new-patchmatchnet98.35 13098.74 5597.18 27699.24 12892.23 31996.42 26799.48 6698.30 10999.69 1799.53 3397.44 11599.82 14598.84 4299.77 9099.49 104
RRT_MVS97.07 23496.57 24998.58 17995.89 35896.33 22597.36 20798.77 25797.85 14399.08 10199.12 9482.30 33599.96 898.82 4399.90 4499.45 125
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 4799.62 1799.56 2899.42 4998.16 5999.96 898.78 4499.93 2599.77 16
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5499.64 1299.56 2899.46 4398.23 5199.97 398.78 4499.93 2599.72 25
EG-PatchMatch MVS98.99 3899.01 3898.94 13399.50 7797.47 18298.04 13899.59 2498.15 12699.40 5299.36 5798.58 3199.76 20598.78 4499.68 13299.59 55
bset_n11_16_dypcd96.99 24396.56 25098.27 21699.00 18795.25 25292.18 35694.05 34798.75 8799.01 11598.38 23688.98 29499.93 2898.77 4799.92 3499.64 39
EI-MVSNet-UG-set98.69 8098.71 6098.62 17499.10 16596.37 22497.23 21698.87 23899.20 4899.19 8698.99 12597.30 12299.85 10398.77 4799.79 8299.65 38
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 11799.42 3099.33 6299.26 6997.01 14099.94 2398.74 4999.93 2599.79 13
EI-MVSNet-Vis-set98.68 8498.70 6398.63 17299.09 16896.40 22397.23 21698.86 24399.20 4899.18 9098.97 13197.29 12499.85 10398.72 5099.78 8699.64 39
baseline98.96 4599.02 3798.76 16099.38 10797.26 19398.49 9299.50 5698.86 8299.19 8699.06 10198.23 5199.69 23598.71 5199.76 9999.33 177
FIs99.14 3299.09 3499.29 7799.70 3698.28 10899.13 4199.52 5399.48 2499.24 8099.41 5196.79 15499.82 14598.69 5299.88 4999.76 20
IterMVS-SCA-FT97.85 17798.18 13596.87 29099.27 12391.16 33495.53 30599.25 15699.10 6299.41 4999.35 5893.10 26299.96 898.65 5399.94 2199.49 104
UniMVSNet (Re)98.87 5498.71 6099.35 6999.24 12898.73 7997.73 17299.38 9798.93 7999.12 9398.73 18396.77 15599.86 8998.63 5499.80 7799.46 121
EI-MVSNet98.40 12598.51 8698.04 23299.10 16594.73 26697.20 22098.87 23898.97 7499.06 10499.02 11596.00 18999.80 16798.58 5599.82 6599.60 49
IterMVS-LS98.55 10698.70 6398.09 22599.48 9294.73 26697.22 21999.39 9598.97 7499.38 5499.31 6496.00 18999.93 2898.58 5599.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_Test98.18 14898.36 11497.67 24898.48 27994.73 26698.18 12099.02 21597.69 15198.04 22599.11 9697.22 13199.56 28798.57 5798.90 27998.71 278
UniMVSNet_NR-MVSNet98.86 5698.68 6599.40 6299.17 15198.74 7697.68 17699.40 9399.14 5499.06 10498.59 21396.71 16199.93 2898.57 5799.77 9099.53 89
DU-MVS98.82 5898.63 7199.39 6399.16 15398.74 7697.54 19299.25 15698.84 8499.06 10498.76 18096.76 15799.93 2898.57 5799.77 9099.50 100
UGNet98.53 11198.45 9998.79 15497.94 31096.96 20999.08 4498.54 27499.10 6296.82 29499.47 4296.55 16799.84 12098.56 6099.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS97.73 18598.11 14596.57 29799.24 12890.28 33595.52 30799.21 16598.86 8299.33 6299.33 6293.11 26199.94 2398.49 6199.94 2199.48 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Regformer-498.73 7398.68 6598.89 14099.02 18497.22 19697.17 22499.06 20299.21 4599.17 9198.85 16297.45 11499.86 8998.48 6299.70 12199.60 49
casdiffmvs98.95 4699.00 3998.81 15099.38 10797.33 18897.82 16299.57 3399.17 5399.35 5999.17 8498.35 4599.69 23598.46 6399.73 10699.41 140
MVSTER96.86 24796.55 25197.79 24297.91 31294.21 27897.56 19098.87 23897.49 16999.06 10499.05 10880.72 34099.80 16798.44 6499.82 6599.37 159
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10499.07 4699.55 4398.30 10999.65 2299.45 4799.22 999.76 20598.44 6499.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet199.17 3099.17 2999.17 9399.55 6598.24 11199.20 3299.44 8099.21 4599.43 4799.55 2997.82 8299.86 8998.42 6699.89 4899.41 140
Regformer-398.61 9598.61 7598.63 17299.02 18496.53 22197.17 22498.84 24599.13 5599.10 9898.85 16297.24 12999.79 18098.41 6799.70 12199.57 66
v14898.45 11998.60 7798.00 23499.44 10094.98 26197.44 20399.06 20298.30 10999.32 6898.97 13196.65 16399.62 26798.37 6899.85 5499.39 149
VDD-MVS98.56 10298.39 11099.07 11299.13 16098.07 13198.59 7997.01 31899.59 2099.11 9599.27 6794.82 22899.79 18098.34 6999.63 14999.34 171
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 10998.87 6798.39 10399.42 8999.42 3099.36 5899.06 10198.38 4199.95 1598.34 6999.90 4499.57 66
pmmvs597.64 19197.49 19198.08 22899.14 15895.12 25996.70 25399.05 20693.77 30098.62 17498.83 16893.23 25899.75 21298.33 7199.76 9999.36 165
EU-MVSNet97.66 19098.50 8895.13 32499.63 4885.84 35198.35 10798.21 28798.23 11799.54 3099.46 4395.02 22299.68 24498.24 7299.87 5299.87 4
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 999.38 3399.53 3399.61 2398.64 2799.80 16798.24 7299.84 5699.52 93
DELS-MVS98.27 13898.20 13298.48 19798.86 21796.70 21895.60 30399.20 16797.73 14998.45 19598.71 18697.50 10899.82 14598.21 7499.59 16298.93 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
XXY-MVS99.14 3299.15 3299.10 10599.76 2297.74 16998.85 6499.62 1998.48 10299.37 5699.49 3998.75 2399.86 8998.20 7599.80 7799.71 26
alignmvs97.35 21296.88 22998.78 15798.54 27498.09 12597.71 17397.69 30499.20 4897.59 25195.90 33388.12 30199.55 29098.18 7698.96 27698.70 280
VNet98.42 12298.30 12298.79 15498.79 23397.29 19098.23 11498.66 26899.31 3998.85 14798.80 17394.80 23199.78 19298.13 7799.13 25599.31 183
hse-mvs397.77 18497.33 20599.10 10599.21 13597.84 15798.35 10798.57 27399.11 5698.58 18299.02 11588.65 29899.96 898.11 7896.34 34199.49 104
hse-mvs297.46 20497.07 21798.64 16998.73 23997.33 18897.45 20297.64 30799.11 5698.58 18297.98 26888.65 29899.79 18098.11 7897.39 32598.81 266
MVS_030497.64 19197.35 20298.52 19197.87 31496.69 21998.59 7998.05 29697.44 17893.74 35198.85 16293.69 25699.88 6698.11 7899.81 6998.98 241
VPNet98.87 5498.83 4799.01 12699.70 3697.62 17798.43 10099.35 11199.47 2699.28 7199.05 10896.72 16099.82 14598.09 8199.36 21599.59 55
canonicalmvs98.34 13198.26 12698.58 17998.46 28197.82 16198.96 5699.46 7499.19 5297.46 26395.46 34198.59 3099.46 31298.08 8298.71 28898.46 290
Baseline_NR-MVSNet98.98 4298.86 4599.36 6499.82 1698.55 9297.47 20099.57 3399.37 3499.21 8499.61 2396.76 15799.83 13598.06 8399.83 6299.71 26
DeepC-MVS97.60 498.97 4398.93 4199.10 10599.35 11497.98 14298.01 14499.46 7497.56 16399.54 3099.50 3698.97 1699.84 12098.06 8399.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v1_base_debu97.86 17298.17 13696.92 28798.98 19293.91 28996.45 26499.17 18297.85 14398.41 20097.14 31398.47 3599.92 3598.02 8599.05 26296.92 338
xiu_mvs_v1_base97.86 17298.17 13696.92 28798.98 19293.91 28996.45 26499.17 18297.85 14398.41 20097.14 31398.47 3599.92 3598.02 8599.05 26296.92 338
xiu_mvs_v1_base_debi97.86 17298.17 13696.92 28798.98 19293.91 28996.45 26499.17 18297.85 14398.41 20097.14 31398.47 3599.92 3598.02 8599.05 26296.92 338
NR-MVSNet98.95 4698.82 4899.36 6499.16 15398.72 8199.22 3199.20 16799.10 6299.72 1398.76 18096.38 17799.86 8998.00 8899.82 6599.50 100
FMVSNet298.49 11598.40 10798.75 16298.90 20897.14 20598.61 7699.13 19298.59 9699.19 8699.28 6594.14 24599.82 14597.97 8999.80 7799.29 190
diffmvs98.22 14498.24 12898.17 22299.00 18795.44 24896.38 26999.58 2697.79 14798.53 19198.50 22396.76 15799.74 21697.95 9099.64 14699.34 171
Anonymous2024052998.93 4898.87 4399.12 10199.19 14298.22 11699.01 5098.99 22299.25 4499.54 3099.37 5497.04 13699.80 16797.89 9199.52 18799.35 169
pmmvs-eth3d98.47 11798.34 11798.86 14499.30 12097.76 16697.16 22699.28 14795.54 26299.42 4899.19 7897.27 12599.63 26597.89 9199.97 1199.20 206
Patchmatch-RL test97.26 21997.02 22097.99 23599.52 7295.53 24496.13 28099.71 997.47 17099.27 7399.16 8684.30 32599.62 26797.89 9199.77 9098.81 266
VDDNet98.21 14597.95 15899.01 12699.58 5197.74 16999.01 5097.29 31499.67 1098.97 12499.50 3690.45 28499.80 16797.88 9499.20 24099.48 111
APDe-MVS98.99 3898.79 5199.60 1399.21 13599.15 4598.87 6199.48 6697.57 16199.35 5999.24 7297.83 7999.89 5797.88 9499.70 12199.75 22
CANet97.87 17197.76 17098.19 22197.75 31895.51 24596.76 24999.05 20697.74 14896.93 28398.21 25195.59 20799.89 5797.86 9699.93 2599.19 211
Regformer-198.55 10698.44 10198.87 14298.85 21997.29 19096.91 24098.99 22298.97 7498.99 11998.64 20297.26 12899.81 15897.79 9799.57 17299.51 96
PM-MVS98.82 5898.72 5899.12 10199.64 4698.54 9597.98 14799.68 1397.62 15699.34 6199.18 8097.54 10299.77 19897.79 9799.74 10399.04 232
tttt051795.64 28294.98 29397.64 25299.36 11093.81 29498.72 6990.47 35898.08 12898.67 16898.34 24173.88 35799.92 3597.77 9999.51 19099.20 206
GBi-Net98.65 8898.47 9599.17 9398.90 20898.24 11199.20 3299.44 8098.59 9698.95 12799.55 2994.14 24599.86 8997.77 9999.69 12799.41 140
test198.65 8898.47 9599.17 9398.90 20898.24 11199.20 3299.44 8098.59 9698.95 12799.55 2994.14 24599.86 8997.77 9999.69 12799.41 140
FMVSNet397.50 19997.24 20998.29 21498.08 30495.83 23897.86 15898.91 23297.89 14098.95 12798.95 13887.06 30299.81 15897.77 9999.69 12799.23 201
UnsupCasMVSNet_eth97.89 16897.60 18598.75 16299.31 11797.17 20297.62 18299.35 11198.72 8998.76 16198.68 19292.57 27299.74 21697.76 10395.60 34899.34 171
Regformer-298.60 9798.46 9799.02 12598.85 21997.71 17196.91 24099.09 19898.98 7399.01 11598.64 20297.37 11999.84 12097.75 10499.57 17299.52 93
test20.0398.78 6598.77 5498.78 15799.46 9597.20 19997.78 16499.24 16199.04 6799.41 4998.90 14697.65 9299.76 20597.70 10599.79 8299.39 149
Gipumacopyleft99.03 3599.16 3098.64 16999.94 298.51 9799.32 1599.75 799.58 2298.60 17899.62 2198.22 5499.51 30397.70 10599.73 10697.89 312
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PatchT96.65 25696.35 25697.54 26197.40 33395.32 25197.98 14796.64 32699.33 3896.89 29099.42 4984.32 32499.81 15897.69 10797.49 32197.48 333
D2MVS97.84 17897.84 16797.83 24099.14 15894.74 26596.94 23598.88 23695.84 25698.89 13998.96 13494.40 24099.69 23597.55 10899.95 1699.05 228
MSLP-MVS++98.02 15898.14 14397.64 25298.58 26995.19 25697.48 19899.23 16397.47 17097.90 23098.62 20897.04 13698.81 35397.55 10899.41 20798.94 250
WR-MVS98.40 12598.19 13499.03 12299.00 18797.65 17496.85 24398.94 22598.57 10098.89 13998.50 22395.60 20699.85 10397.54 11099.85 5499.59 55
HPM-MVS_fast99.01 3698.82 4899.57 1899.71 3099.35 1199.00 5299.50 5697.33 18798.94 13398.86 15998.75 2399.82 14597.53 11199.71 11699.56 71
RPMNet97.02 23996.93 22497.30 27297.71 32094.22 27698.11 12799.30 13899.37 3496.91 28699.34 6086.72 30499.87 8297.53 11197.36 32897.81 318
PMMVS298.07 15598.08 14998.04 23299.41 10594.59 27294.59 33399.40 9397.50 16798.82 15498.83 16896.83 15099.84 12097.50 11399.81 6999.71 26
LFMVS97.20 22596.72 23898.64 16998.72 24196.95 21098.93 5894.14 34699.74 798.78 15799.01 12284.45 32299.73 22097.44 11499.27 23099.25 197
ACMM96.08 1298.91 5098.73 5699.48 5099.55 6599.14 4898.07 13299.37 10197.62 15699.04 11198.96 13498.84 1999.79 18097.43 11599.65 14499.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42095.51 28695.47 27795.65 31698.25 29388.27 34393.25 35098.88 23693.53 30394.65 34097.15 31286.17 30999.93 2897.41 11699.93 2598.73 277
CR-MVSNet96.28 26895.95 26597.28 27397.71 32094.22 27698.11 12798.92 23092.31 31796.91 28699.37 5485.44 31799.81 15897.39 11797.36 32897.81 318
Anonymous20240521197.90 16697.50 19099.08 10998.90 20898.25 11098.53 8596.16 33098.87 8199.11 9598.86 15990.40 28599.78 19297.36 11899.31 22399.19 211
CANet_DTU97.26 21997.06 21897.84 23997.57 32594.65 27096.19 27998.79 25497.23 20295.14 33798.24 24893.22 25999.84 12097.34 11999.84 5699.04 232
Anonymous2023120698.21 14598.21 13198.20 22099.51 7495.43 24998.13 12499.32 12496.16 24598.93 13498.82 17196.00 18999.83 13597.32 12099.73 10699.36 165
MP-MVS-pluss98.57 10198.23 13099.60 1399.69 3899.35 1197.16 22699.38 9794.87 27898.97 12498.99 12598.01 6899.88 6697.29 12199.70 12199.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FMVSNet596.01 27395.20 28898.41 20397.53 32896.10 23098.74 6799.50 5697.22 20598.03 22699.04 11169.80 36099.88 6697.27 12299.71 11699.25 197
our_test_397.39 21097.73 17496.34 30198.70 24889.78 33794.61 33298.97 22496.50 23399.04 11198.85 16295.98 19399.84 12097.26 12399.67 13899.41 140
jason97.45 20697.35 20297.76 24499.24 12893.93 28895.86 29298.42 28094.24 29198.50 19398.13 25594.82 22899.91 4597.22 12499.73 10699.43 134
jason: jason.
miper_lstm_enhance97.18 22797.16 21397.25 27598.16 29992.85 30895.15 31799.31 12997.25 19698.74 16498.78 17690.07 28699.78 19297.19 12599.80 7799.11 224
DP-MVS98.93 4898.81 5099.28 7999.21 13598.45 10198.46 9799.33 12299.63 1499.48 4099.15 9097.23 13099.75 21297.17 12699.66 14399.63 43
zzz-MVS98.79 6298.52 8499.61 999.67 4099.36 997.33 20999.20 16798.83 8598.89 13998.90 14696.98 14299.92 3597.16 12799.70 12199.56 71
MTAPA98.88 5398.64 7099.61 999.67 4099.36 998.43 10099.20 16798.83 8598.89 13998.90 14696.98 14299.92 3597.16 12799.70 12199.56 71
TSAR-MVS + GP.98.18 14897.98 15698.77 15998.71 24497.88 15396.32 27298.66 26896.33 23999.23 8398.51 22097.48 11399.40 31897.16 12799.46 20299.02 235
3Dnovator98.27 298.81 6098.73 5699.05 11998.76 23497.81 16399.25 3099.30 13898.57 10098.55 18899.33 6297.95 7599.90 4897.16 12799.67 13899.44 130
ACMMP_NAP98.75 7098.48 9399.57 1899.58 5199.29 1797.82 16299.25 15696.94 21798.78 15799.12 9498.02 6799.84 12097.13 13199.67 13899.59 55
PVSNet_Blended_VisFu98.17 15098.15 14198.22 21999.73 2495.15 25797.36 20799.68 1394.45 28798.99 11999.27 6796.87 14799.94 2397.13 13199.91 4099.57 66
HyFIR lowres test97.19 22696.60 24798.96 13099.62 5097.28 19295.17 31599.50 5694.21 29299.01 11598.32 24486.61 30599.99 297.10 13399.84 5699.60 49
test_0728_THIRD98.17 12499.08 10199.02 11597.89 7699.88 6697.07 13499.71 11699.70 29
eth_miper_zixun_eth97.23 22397.25 20797.17 27798.00 30892.77 31094.71 32699.18 17697.27 19498.56 18698.74 18291.89 27899.69 23597.06 13599.81 6999.05 228
MDA-MVSNet_test_wron97.60 19497.66 17997.41 26999.04 17993.09 30295.27 31298.42 28097.26 19598.88 14398.95 13895.43 21499.73 22097.02 13698.72 28699.41 140
cl-mvsnet_97.02 23996.83 23397.58 25697.82 31694.04 28294.66 32999.16 18597.04 21398.63 17298.71 18688.68 29799.69 23597.00 13799.81 6999.00 239
cl-mvsnet197.02 23996.84 23297.58 25697.82 31694.03 28394.66 32999.16 18597.04 21398.63 17298.71 18688.69 29699.69 23597.00 13799.81 6999.01 236
DVP-MVS98.77 6798.52 8499.52 4199.50 7799.21 2698.02 14198.84 24597.97 13399.08 10199.02 11597.61 9799.88 6696.99 13999.63 14999.48 111
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14199.32 12499.88 6696.99 13999.63 14999.68 31
YYNet197.60 19497.67 17697.39 27099.04 17993.04 30695.27 31298.38 28297.25 19698.92 13598.95 13895.48 21399.73 22096.99 13998.74 28499.41 140
pmmvs497.58 19697.28 20698.51 19498.84 22296.93 21195.40 31198.52 27693.60 30298.61 17698.65 19995.10 22199.60 27496.97 14299.79 8298.99 240
TAMVS98.24 14398.05 15198.80 15299.07 17297.18 20197.88 15598.81 25196.66 22999.17 9199.21 7594.81 23099.77 19896.96 14399.88 4999.44 130
cl_fuxian97.36 21197.37 20097.31 27198.09 30393.25 30195.01 32099.16 18597.05 21298.77 16098.72 18592.88 26799.64 26296.93 14499.76 9999.05 228
SED-MVS98.91 5098.72 5899.49 4899.49 8499.17 3698.10 12999.31 12998.03 13099.66 2099.02 11598.36 4299.88 6696.91 14599.62 15299.41 140
test_241102_TWO99.30 13898.03 13099.26 7799.02 11597.51 10799.88 6696.91 14599.60 16099.66 34
ET-MVSNet_ETH3D94.30 30493.21 31497.58 25698.14 30094.47 27394.78 32593.24 35194.72 28089.56 35995.87 33478.57 35199.81 15896.91 14597.11 33398.46 290
N_pmnet97.63 19397.17 21298.99 12899.27 12397.86 15595.98 28393.41 34995.25 27199.47 4298.90 14695.63 20599.85 10396.91 14599.73 10699.27 193
1112_ss97.29 21896.86 23098.58 17999.34 11696.32 22696.75 25099.58 2693.14 30796.89 29097.48 29892.11 27699.86 8996.91 14599.54 18099.57 66
thisisatest053095.27 28994.45 29997.74 24699.19 14294.37 27497.86 15890.20 35997.17 20698.22 21097.65 28773.53 35899.90 4896.90 15099.35 21798.95 246
Fast-Effi-MVS+-dtu98.27 13898.09 14698.81 15098.43 28498.11 12497.61 18499.50 5698.64 9097.39 26897.52 29598.12 6299.95 1596.90 15098.71 28898.38 296
TSAR-MVS + MP.98.63 9298.49 9199.06 11799.64 4697.90 15298.51 9098.94 22596.96 21699.24 8098.89 15497.83 7999.81 15896.88 15299.49 19899.48 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_111021_HR98.25 14298.08 14998.75 16299.09 16897.46 18395.97 28499.27 15097.60 15997.99 22798.25 24798.15 6199.38 32296.87 15399.57 17299.42 137
EPP-MVSNet98.30 13498.04 15299.07 11299.56 6297.83 15899.29 2398.07 29499.03 6898.59 18099.13 9392.16 27599.90 4896.87 15399.68 13299.49 104
ZNCC-MVS98.68 8498.40 10799.54 2999.57 5599.21 2698.46 9799.29 14597.28 19398.11 21898.39 23498.00 6999.87 8296.86 15599.64 14699.55 79
MS-PatchMatch97.68 18897.75 17197.45 26698.23 29693.78 29597.29 21298.84 24596.10 24798.64 17198.65 19996.04 18699.36 32396.84 15699.14 25299.20 206
3Dnovator+97.89 398.69 8098.51 8699.24 8898.81 22998.40 10299.02 4999.19 17298.99 7198.07 22199.28 6597.11 13599.84 12096.84 15699.32 22199.47 119
miper_ehance_all_eth97.06 23597.03 21997.16 27997.83 31593.06 30394.66 32999.09 19895.99 25298.69 16698.45 22992.73 27099.61 27396.79 15899.03 26698.82 263
XVS98.72 7498.45 9999.53 3699.46 9599.21 2698.65 7299.34 11798.62 9497.54 25698.63 20697.50 10899.83 13596.79 15899.53 18499.56 71
X-MVStestdata94.32 30292.59 32099.53 3699.46 9599.21 2698.65 7299.34 11798.62 9497.54 25645.85 36197.50 10899.83 13596.79 15899.53 18499.56 71
lupinMVS97.06 23596.86 23097.65 25098.88 21493.89 29295.48 30897.97 29793.53 30398.16 21397.58 29193.81 25299.91 4596.77 16199.57 17299.17 217
IU-MVS99.49 8499.15 4598.87 23892.97 30899.41 4996.76 16299.62 15299.66 34
CHOSEN 1792x268897.49 20197.14 21698.54 19099.68 3996.09 23296.50 26299.62 1991.58 32598.84 14998.97 13192.36 27399.88 6696.76 16299.95 1699.67 33
ppachtmachnet_test97.50 19997.74 17296.78 29598.70 24891.23 33394.55 33499.05 20696.36 23899.21 8498.79 17596.39 17599.78 19296.74 16499.82 6599.34 171
DeepPCF-MVS96.93 598.32 13298.01 15499.23 8998.39 28698.97 6295.03 31999.18 17696.88 22099.33 6298.78 17698.16 5999.28 33496.74 16499.62 15299.44 130
EIA-MVS98.00 16097.74 17298.80 15298.72 24198.09 12598.05 13699.60 2397.39 18296.63 29995.55 33897.68 8999.80 16796.73 16699.27 23098.52 288
CDS-MVSNet97.69 18797.35 20298.69 16698.73 23997.02 20896.92 23998.75 26195.89 25598.59 18098.67 19492.08 27799.74 21696.72 16799.81 6999.32 179
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG98.68 8498.50 8899.20 9199.45 9898.63 8498.56 8299.57 3397.87 14198.85 14798.04 26597.66 9199.84 12096.72 16799.81 6999.13 221
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7799.58 2699.11 5699.53 3399.18 8098.81 2199.67 24796.71 16999.77 9099.50 100
MVS_111021_LR98.30 13498.12 14498.83 14799.16 15398.03 13696.09 28199.30 13897.58 16098.10 21998.24 24898.25 4999.34 32596.69 17099.65 14499.12 222
OPM-MVS98.56 10298.32 12199.25 8799.41 10598.73 7997.13 22899.18 17697.10 21098.75 16298.92 14298.18 5799.65 26096.68 17199.56 17799.37 159
Effi-MVS+-dtu98.26 14097.90 16399.35 6998.02 30699.49 298.02 14199.16 18598.29 11297.64 24797.99 26796.44 17399.95 1596.66 17298.93 27898.60 285
mvs-test197.83 18097.48 19498.89 14098.02 30699.20 3297.20 22099.16 18598.29 11296.46 30997.17 31096.44 17399.92 3596.66 17297.90 31797.54 332
Effi-MVS+98.02 15897.82 16898.62 17498.53 27697.19 20097.33 20999.68 1397.30 19196.68 29797.46 30098.56 3299.80 16796.63 17498.20 30498.86 260
MDA-MVSNet-bldmvs97.94 16497.91 16298.06 23099.44 10094.96 26296.63 25699.15 19198.35 10598.83 15099.11 9694.31 24299.85 10396.60 17598.72 28699.37 159
Test_1112_low_res96.99 24396.55 25198.31 21299.35 11495.47 24795.84 29599.53 5091.51 32796.80 29598.48 22891.36 28099.83 13596.58 17699.53 18499.62 44
LS3D98.63 9298.38 11299.36 6497.25 33899.38 599.12 4399.32 12499.21 4598.44 19698.88 15597.31 12199.80 16796.58 17699.34 21998.92 252
HFP-MVS98.71 7598.44 10199.51 4599.49 8499.16 4098.52 8699.31 12997.47 17098.58 18298.50 22397.97 7399.85 10396.57 17899.59 16299.53 89
ACMMPR98.70 7898.42 10599.54 2999.52 7299.14 4898.52 8699.31 12997.47 17098.56 18698.54 21797.75 8699.88 6696.57 17899.59 16299.58 61
sss97.21 22496.93 22498.06 23098.83 22495.22 25596.75 25098.48 27894.49 28397.27 27197.90 27492.77 26999.80 16796.57 17899.32 22199.16 220
SR-MVS-dyc-post98.81 6098.55 8199.57 1899.20 13999.38 598.48 9599.30 13898.64 9098.95 12798.96 13497.49 11199.86 8996.56 18199.39 21099.45 125
RE-MVS-def98.58 7999.20 13999.38 598.48 9599.30 13898.64 9098.95 12798.96 13497.75 8696.56 18199.39 21099.45 125
SD-MVS98.40 12598.68 6597.54 26198.96 19597.99 13897.88 15599.36 10598.20 12199.63 2599.04 11198.76 2295.33 36196.56 18199.74 10399.31 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ambc98.24 21898.82 22795.97 23498.62 7599.00 22199.27 7399.21 7596.99 14199.50 30496.55 18499.50 19799.26 196
APD-MVS_3200maxsize98.84 5798.61 7599.53 3699.19 14299.27 2098.49 9299.33 12298.64 9099.03 11498.98 12997.89 7699.85 10396.54 18599.42 20699.46 121
CP-MVS98.70 7898.42 10599.52 4199.36 11099.12 5398.72 6999.36 10597.54 16598.30 20698.40 23297.86 7899.89 5796.53 18699.72 11299.56 71
MVP-Stereo98.08 15497.92 16198.57 18298.96 19596.79 21497.90 15499.18 17696.41 23798.46 19498.95 13895.93 19699.60 27496.51 18798.98 27599.31 183
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testgi98.32 13298.39 11098.13 22499.57 5595.54 24397.78 16499.49 6497.37 18499.19 8697.65 28798.96 1799.49 30596.50 18898.99 27399.34 171
HPM-MVScopyleft98.79 6298.53 8399.59 1799.65 4399.29 1799.16 3899.43 8696.74 22598.61 17698.38 23698.62 2899.87 8296.47 18999.67 13899.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R98.69 8098.40 10799.54 2999.53 7099.17 3698.52 8699.31 12997.46 17598.44 19698.51 22097.83 7999.88 6696.46 19099.58 16899.58 61
SMA-MVScopyleft98.40 12598.03 15399.51 4599.16 15399.21 2698.05 13699.22 16494.16 29498.98 12199.10 9897.52 10699.79 18096.45 19199.64 14699.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
abl_698.99 3898.78 5299.61 999.45 9899.46 398.60 7799.50 5698.59 9699.24 8099.04 11198.54 3399.89 5796.45 19199.62 15299.50 100
test117298.76 6898.49 9199.57 1899.18 14999.37 898.39 10399.31 12998.43 10398.90 13698.88 15597.49 11199.86 8996.43 19399.37 21499.48 111
CNVR-MVS98.17 15097.87 16599.07 11298.67 25798.24 11197.01 23198.93 22797.25 19697.62 24898.34 24197.27 12599.57 28496.42 19499.33 22099.39 149
CL-MVSNet_2432*160097.44 20797.22 21098.08 22898.57 27195.78 24094.30 33998.79 25496.58 23298.60 17898.19 25394.74 23499.64 26296.41 19598.84 28098.82 263
cl-mvsnet295.79 27995.39 28396.98 28496.77 34692.79 30994.40 33798.53 27594.59 28297.89 23198.17 25482.82 33499.24 33696.37 19699.03 26698.92 252
PS-MVSNAJ97.08 23397.39 19896.16 30898.56 27292.46 31495.24 31498.85 24497.25 19697.49 26195.99 33198.07 6399.90 4896.37 19698.67 29196.12 350
CVMVSNet96.25 26997.21 21193.38 34099.10 16580.56 36497.20 22098.19 29096.94 21799.00 11899.02 11589.50 29199.80 16796.36 19899.59 16299.78 14
xiu_mvs_v2_base97.16 22997.49 19196.17 30698.54 27492.46 31495.45 30998.84 24597.25 19697.48 26296.49 32298.31 4799.90 4896.34 19998.68 29096.15 349
AUN-MVS96.24 27095.45 27998.60 17798.70 24897.22 19697.38 20597.65 30595.95 25395.53 33297.96 27282.11 33999.79 18096.31 20097.44 32398.80 271
miper_enhance_ethall96.01 27395.74 26896.81 29496.41 35292.27 31893.69 34898.89 23591.14 33298.30 20697.35 30790.58 28399.58 28396.31 20099.03 26698.60 285
CS-MVS97.82 18297.59 18798.52 19198.76 23498.04 13598.20 11899.61 2197.10 21096.02 32094.87 35198.27 4899.84 12096.31 20099.17 24797.69 326
ACMMPcopyleft98.75 7098.50 8899.52 4199.56 6299.16 4098.87 6199.37 10197.16 20798.82 15499.01 12297.71 8899.87 8296.29 20399.69 12799.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ETV-MVS98.03 15697.86 16698.56 18698.69 25298.07 13197.51 19699.50 5698.10 12797.50 26095.51 33998.41 3999.88 6696.27 20499.24 23597.71 325
XVG-OURS-SEG-HR98.49 11598.28 12499.14 9999.49 8498.83 7096.54 25899.48 6697.32 18999.11 9598.61 21199.33 899.30 33196.23 20598.38 29999.28 191
GA-MVS95.86 27795.32 28597.49 26498.60 26694.15 28093.83 34697.93 29895.49 26596.68 29797.42 30283.21 33099.30 33196.22 20698.55 29799.01 236
mPP-MVS98.64 9098.34 11799.54 2999.54 6899.17 3698.63 7499.24 16197.47 17098.09 22098.68 19297.62 9699.89 5796.22 20699.62 15299.57 66
Fast-Effi-MVS+97.67 18997.38 19998.57 18298.71 24497.43 18597.23 21699.45 7794.82 27996.13 31396.51 32198.52 3499.91 4596.19 20898.83 28198.37 298
pmmvs395.03 29494.40 30096.93 28697.70 32292.53 31395.08 31897.71 30388.57 34697.71 24298.08 26379.39 34799.82 14596.19 20899.11 25998.43 294
MCST-MVS98.00 16097.63 18299.10 10599.24 12898.17 12096.89 24298.73 26495.66 26097.92 22897.70 28597.17 13299.66 25596.18 21099.23 23699.47 119
SteuartSystems-ACMMP98.79 6298.54 8299.54 2999.73 2499.16 4098.23 11499.31 12997.92 13798.90 13698.90 14698.00 6999.88 6696.15 21199.72 11299.58 61
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.71 7598.43 10399.57 1899.18 14999.35 1198.36 10699.29 14598.29 11298.88 14398.85 16297.53 10499.87 8296.14 21299.31 22399.48 111
MSP-MVS98.40 12598.00 15599.61 999.57 5599.25 2298.57 8199.35 11197.55 16499.31 7097.71 28494.61 23599.88 6696.14 21299.19 24499.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS_fast96.85 698.30 13498.15 14198.75 16298.61 26497.23 19497.76 16999.09 19897.31 19098.75 16298.66 19797.56 10199.64 26296.10 21499.55 17999.39 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS98.61 9598.30 12299.52 4199.51 7499.20 3298.26 11299.25 15697.44 17898.67 16898.39 23497.68 8999.85 10396.00 21599.51 19099.52 93
EPNet96.14 27195.44 28098.25 21790.76 36595.50 24697.92 15194.65 33998.97 7492.98 35298.85 16289.12 29399.87 8295.99 21699.68 13299.39 149
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4699.41 6099.58 5199.10 5698.74 6799.56 4099.09 6599.33 6299.19 7898.40 4099.72 22895.98 21799.76 9999.42 137
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmtry97.35 21296.97 22398.50 19697.31 33796.47 22298.18 12098.92 23098.95 7898.78 15799.37 5485.44 31799.85 10395.96 21899.83 6299.17 217
tfpnnormal98.90 5298.90 4298.91 13799.67 4097.82 16199.00 5299.44 8099.45 2899.51 3899.24 7298.20 5699.86 8995.92 21999.69 12799.04 232
XVG-ACMP-BASELINE98.56 10298.34 11799.22 9099.54 6898.59 8997.71 17399.46 7497.25 19698.98 12198.99 12597.54 10299.84 12095.88 22099.74 10399.23 201
tpm94.67 29894.34 30295.66 31597.68 32488.42 34197.88 15594.90 33894.46 28596.03 31998.56 21678.66 34999.79 18095.88 22095.01 35198.78 273
ab-mvs98.41 12398.36 11498.59 17899.19 14297.23 19499.32 1598.81 25197.66 15398.62 17499.40 5396.82 15199.80 16795.88 22099.51 19098.75 276
test-LLR93.90 31193.85 30594.04 33296.53 34884.62 35694.05 34392.39 35396.17 24394.12 34595.07 34382.30 33599.67 24795.87 22398.18 30597.82 316
test-mter92.33 32691.76 32994.04 33296.53 34884.62 35694.05 34392.39 35394.00 29894.12 34595.07 34365.63 36899.67 24795.87 22398.18 30597.82 316
PGM-MVS98.66 8798.37 11399.55 2699.53 7099.18 3598.23 11499.49 6497.01 21598.69 16698.88 15598.00 6999.89 5795.87 22399.59 16299.58 61
USDC97.41 20997.40 19797.44 26798.94 19893.67 29895.17 31599.53 5094.03 29798.97 12499.10 9895.29 21699.34 32595.84 22699.73 10699.30 186
HPM-MVS++copyleft98.10 15297.64 18199.48 5099.09 16899.13 5197.52 19498.75 26197.46 17596.90 28997.83 27896.01 18899.84 12095.82 22799.35 21799.46 121
TESTMET0.1,192.19 32891.77 32893.46 33896.48 35082.80 36194.05 34391.52 35694.45 28794.00 34894.88 34966.65 36699.56 28795.78 22898.11 31098.02 308
DSMNet-mixed97.42 20897.60 18596.87 29099.15 15791.46 32598.54 8499.12 19492.87 31197.58 25299.63 2096.21 18299.90 4895.74 22999.54 18099.27 193
XVG-OURS98.53 11198.34 11799.11 10399.50 7798.82 7295.97 28499.50 5697.30 19199.05 10998.98 12999.35 799.32 32895.72 23099.68 13299.18 213
RPSCF98.62 9498.36 11499.42 5799.65 4399.42 498.55 8399.57 3397.72 15098.90 13699.26 6996.12 18499.52 29995.72 23099.71 11699.32 179
PHI-MVS98.29 13797.95 15899.34 7298.44 28399.16 4098.12 12699.38 9796.01 25198.06 22298.43 23097.80 8399.67 24795.69 23299.58 16899.20 206
xxxxxxxxxxxxxcwj98.44 12098.24 12899.06 11799.11 16197.97 14396.53 25999.54 4798.24 11598.83 15098.90 14697.80 8399.82 14595.68 23399.52 18799.38 156
SF-MVS98.53 11198.27 12599.32 7699.31 11798.75 7598.19 11999.41 9096.77 22498.83 15098.90 14697.80 8399.82 14595.68 23399.52 18799.38 156
#test#98.50 11498.16 13999.51 4599.49 8499.16 4098.03 13999.31 12996.30 24298.58 18298.50 22397.97 7399.85 10395.68 23399.59 16299.53 89
test_040298.76 6898.71 6098.93 13499.56 6298.14 12398.45 9999.34 11799.28 4298.95 12798.91 14398.34 4699.79 18095.63 23699.91 4098.86 260
tpmrst95.07 29395.46 27893.91 33497.11 34084.36 35897.62 18296.96 31994.98 27496.35 31198.80 17385.46 31699.59 27895.60 23796.23 34397.79 321
PMMVS96.51 26095.98 26498.09 22597.53 32895.84 23794.92 32298.84 24591.58 32596.05 31895.58 33795.68 20499.66 25595.59 23898.09 31198.76 275
LPG-MVS_test98.71 7598.46 9799.47 5399.57 5598.97 6298.23 11499.48 6696.60 23099.10 9899.06 10198.71 2599.83 13595.58 23999.78 8699.62 44
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6696.60 23099.10 9899.06 10198.71 2599.83 13595.58 23999.78 8699.62 44
IS-MVSNet98.19 14797.90 16399.08 10999.57 5597.97 14399.31 1898.32 28399.01 7098.98 12199.03 11491.59 27999.79 18095.49 24199.80 7799.48 111
baseline195.96 27595.44 28097.52 26398.51 27793.99 28698.39 10396.09 33298.21 11898.40 20497.76 28286.88 30399.63 26595.42 24289.27 36098.95 246
DPE-MVScopyleft98.59 10098.26 12699.57 1899.27 12399.15 4597.01 23199.39 9597.67 15299.44 4698.99 12597.53 10499.89 5795.40 24399.68 13299.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC97.86 17297.47 19599.05 11998.61 26498.07 13196.98 23398.90 23397.63 15597.04 28097.93 27395.99 19299.66 25595.31 24498.82 28299.43 134
Patchmatch-test96.55 25996.34 25797.17 27798.35 28793.06 30398.40 10297.79 30097.33 18798.41 20098.67 19483.68 32999.69 23595.16 24599.31 22398.77 274
EPMVS93.72 31493.27 31395.09 32596.04 35687.76 34498.13 12485.01 36394.69 28196.92 28498.64 20278.47 35399.31 32995.04 24696.46 34098.20 301
DWT-MVSNet_test92.75 32392.05 32494.85 32696.48 35087.21 34797.83 16194.99 33792.22 31992.72 35394.11 35670.75 35999.46 31295.01 24794.33 35597.87 314
UnsupCasMVSNet_bld97.30 21696.92 22698.45 20099.28 12296.78 21796.20 27899.27 15095.42 26798.28 20898.30 24593.16 26099.71 22994.99 24897.37 32698.87 259
PatchmatchNetpermissive95.58 28395.67 27295.30 32397.34 33587.32 34697.65 18096.65 32595.30 27097.07 27898.69 19084.77 31999.75 21294.97 24998.64 29298.83 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu94.93 29694.78 29795.38 32293.58 36287.68 34596.78 24795.69 33697.35 18689.14 36098.09 26288.15 30099.49 30594.95 25099.30 22698.98 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl96.69 25396.29 25997.90 23698.28 29195.24 25397.29 21297.36 31098.21 11898.17 21197.86 27586.27 30799.55 29094.87 25198.32 30098.89 256
DCV-MVSNet96.69 25396.29 25997.90 23698.28 29195.24 25397.29 21297.36 31098.21 11898.17 21197.86 27586.27 30799.55 29094.87 25198.32 30098.89 256
ACMP95.32 1598.41 12398.09 14699.36 6499.51 7498.79 7497.68 17699.38 9795.76 25998.81 15698.82 17198.36 4299.82 14594.75 25399.77 9099.48 111
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet_BlendedMVS97.55 19797.53 18897.60 25498.92 20493.77 29696.64 25599.43 8694.49 28397.62 24899.18 8096.82 15199.67 24794.73 25499.93 2599.36 165
PVSNet_Blended96.88 24696.68 24197.47 26598.92 20493.77 29694.71 32699.43 8690.98 33397.62 24897.36 30696.82 15199.67 24794.73 25499.56 17798.98 241
MP-MVScopyleft98.46 11898.09 14699.54 2999.57 5599.22 2598.50 9199.19 17297.61 15897.58 25298.66 19797.40 11799.88 6694.72 25699.60 16099.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
OPU-MVS98.82 14898.59 26898.30 10798.10 12998.52 21998.18 5798.75 35494.62 25799.48 20099.41 140
LF4IMVS97.90 16697.69 17598.52 19199.17 15197.66 17397.19 22399.47 7296.31 24197.85 23498.20 25296.71 16199.52 29994.62 25799.72 11298.38 296
CostFormer93.97 31093.78 30794.51 32997.53 32885.83 35297.98 14795.96 33389.29 34394.99 33998.63 20678.63 35099.62 26794.54 25996.50 33998.09 306
thisisatest051594.12 30893.16 31596.97 28598.60 26692.90 30793.77 34790.61 35794.10 29596.91 28695.87 33474.99 35699.80 16794.52 26099.12 25898.20 301
旧先验295.76 29688.56 34797.52 25899.66 25594.48 261
CLD-MVS97.49 20197.16 21398.48 19799.07 17297.03 20794.71 32699.21 16594.46 28598.06 22297.16 31197.57 10099.48 30894.46 26299.78 8698.95 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AllTest98.44 12098.20 13299.16 9699.50 7798.55 9298.25 11399.58 2696.80 22298.88 14399.06 10197.65 9299.57 28494.45 26399.61 15899.37 159
TestCases99.16 9699.50 7798.55 9299.58 2696.80 22298.88 14399.06 10197.65 9299.57 28494.45 26399.61 15899.37 159
HQP_MVS97.99 16397.67 17698.93 13499.19 14297.65 17497.77 16799.27 15098.20 12197.79 23897.98 26894.90 22499.70 23194.42 26599.51 19099.45 125
plane_prior599.27 15099.70 23194.42 26599.51 19099.45 125
JIA-IIPM95.52 28595.03 29297.00 28296.85 34494.03 28396.93 23795.82 33499.20 4894.63 34199.71 1283.09 33199.60 27494.42 26594.64 35297.36 335
cascas94.79 29794.33 30396.15 30996.02 35792.36 31792.34 35599.26 15585.34 35495.08 33894.96 34892.96 26698.53 35594.41 26898.59 29597.56 331
TinyColmap97.89 16897.98 15697.60 25498.86 21794.35 27596.21 27799.44 8097.45 17799.06 10498.88 15597.99 7299.28 33494.38 26999.58 16899.18 213
9.1497.78 16999.07 17297.53 19399.32 12495.53 26498.54 19098.70 18997.58 9999.76 20594.32 27099.46 202
test_post197.59 18720.48 36583.07 33299.66 25594.16 271
SCA96.41 26596.66 24495.67 31498.24 29488.35 34295.85 29496.88 32396.11 24697.67 24598.67 19493.10 26299.85 10394.16 27199.22 23798.81 266
test_prior397.48 20397.00 22198.95 13198.69 25297.95 14895.74 29899.03 21196.48 23496.11 31497.63 28995.92 19799.59 27894.16 27199.20 24099.30 186
test_prior295.74 29896.48 23496.11 31497.63 28995.92 19794.16 27199.20 240
tpmvs95.02 29595.25 28694.33 33096.39 35385.87 35098.08 13196.83 32495.46 26695.51 33398.69 19085.91 31299.53 29594.16 27196.23 34397.58 330
LCM-MVSNet-Re98.64 9098.48 9399.11 10398.85 21998.51 9798.49 9299.83 398.37 10499.69 1799.46 4398.21 5599.92 3594.13 27699.30 22698.91 255
MSDG97.71 18697.52 18998.28 21598.91 20796.82 21394.42 33699.37 10197.65 15498.37 20598.29 24697.40 11799.33 32794.09 27799.22 23798.68 284
MVS-HIRNet94.32 30295.62 27390.42 34498.46 28175.36 36596.29 27389.13 36195.25 27195.38 33499.75 792.88 26799.19 34094.07 27899.39 21096.72 343
DP-MVS Recon97.33 21496.92 22698.57 18299.09 16897.99 13896.79 24699.35 11193.18 30697.71 24298.07 26495.00 22399.31 32993.97 27999.13 25598.42 295
new_pmnet96.99 24396.76 23697.67 24898.72 24194.89 26395.95 28898.20 28892.62 31498.55 18898.54 21794.88 22799.52 29993.96 28099.44 20598.59 287
ETH3D-3000-0.198.03 15697.62 18399.29 7799.11 16198.80 7397.47 20099.32 12495.54 26298.43 19998.62 20896.61 16599.77 19893.95 28199.49 19899.30 186
MDTV_nov1_ep1395.22 28797.06 34183.20 36097.74 17196.16 33094.37 28996.99 28298.83 16883.95 32799.53 29593.90 28297.95 316
WTY-MVS96.67 25596.27 26197.87 23898.81 22994.61 27196.77 24897.92 29994.94 27697.12 27497.74 28391.11 28199.82 14593.89 28398.15 30899.18 213
Vis-MVSNet (Re-imp)97.46 20497.16 21398.34 20999.55 6596.10 23098.94 5798.44 27998.32 10898.16 21398.62 20888.76 29599.73 22093.88 28499.79 8299.18 213
ITE_SJBPF98.87 14299.22 13398.48 9999.35 11197.50 16798.28 20898.60 21297.64 9599.35 32493.86 28599.27 23098.79 272
CPTT-MVS97.84 17897.36 20199.27 8299.31 11798.46 10098.29 10999.27 15094.90 27797.83 23598.37 23894.90 22499.84 12093.85 28699.54 18099.51 96
APD-MVScopyleft98.10 15297.67 17699.42 5799.11 16198.93 6697.76 16999.28 14794.97 27598.72 16598.77 17897.04 13699.85 10393.79 28799.54 18099.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
agg_prior197.06 23596.40 25599.03 12298.68 25597.99 13895.76 29699.01 21891.73 32295.59 32497.50 29696.49 17099.77 19893.71 28899.14 25299.34 171
train_agg97.10 23196.45 25499.07 11298.71 24498.08 12995.96 28699.03 21191.64 32395.85 32197.53 29396.47 17199.76 20593.67 28999.16 24899.36 165
PVSNet93.40 1795.67 28195.70 27095.57 31798.83 22488.57 34092.50 35397.72 30292.69 31396.49 30896.44 32593.72 25599.43 31693.61 29099.28 22998.71 278
test0.0.03 194.51 29993.69 30896.99 28396.05 35593.61 29994.97 32193.49 34896.17 24397.57 25494.88 34982.30 33599.01 34893.60 29194.17 35698.37 298
testdata98.09 22598.93 20095.40 25098.80 25390.08 33997.45 26498.37 23895.26 21799.70 23193.58 29298.95 27799.17 217
MDTV_nov1_ep13_2view74.92 36697.69 17590.06 34097.75 24185.78 31393.52 29398.69 281
TAPA-MVS96.21 1196.63 25795.95 26598.65 16898.93 20098.09 12596.93 23799.28 14783.58 35698.13 21697.78 28096.13 18399.40 31893.52 29399.29 22898.45 292
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS97.88 17097.49 19199.04 12198.89 21398.63 8496.94 23599.25 15695.02 27398.53 19198.51 22097.27 12599.47 31093.50 29599.51 19099.01 236
PatchMatch-RL97.24 22296.78 23598.61 17699.03 18297.83 15896.36 27099.06 20293.49 30597.36 27097.78 28095.75 20299.49 30593.44 29698.77 28398.52 288
114514_t96.50 26295.77 26798.69 16699.48 9297.43 18597.84 16099.55 4381.42 35896.51 30598.58 21495.53 20899.67 24793.41 29799.58 16898.98 241
ETH3D cwj APD-0.1697.55 19797.00 22199.19 9298.51 27798.64 8396.85 24399.13 19294.19 29397.65 24698.40 23295.78 20199.81 15893.37 29899.16 24899.12 222
dp93.47 31693.59 31093.13 34296.64 34781.62 36397.66 17896.42 32892.80 31296.11 31498.64 20278.55 35299.59 27893.31 29992.18 35998.16 303
test9_res93.28 30099.15 25199.38 156
IB-MVS91.63 1992.24 32790.90 33196.27 30397.22 33991.24 33294.36 33893.33 35092.37 31692.24 35594.58 35366.20 36799.89 5793.16 30194.63 35397.66 327
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline293.73 31392.83 31996.42 30097.70 32291.28 33196.84 24589.77 36093.96 29992.44 35495.93 33279.14 34899.77 19892.94 30296.76 33898.21 300
OpenMVScopyleft96.65 797.09 23296.68 24198.32 21098.32 28997.16 20398.86 6399.37 10189.48 34196.29 31299.15 9096.56 16699.90 4892.90 30399.20 24097.89 312
ADS-MVSNet295.43 28794.98 29396.76 29698.14 30091.74 32297.92 15197.76 30190.23 33596.51 30598.91 14385.61 31499.85 10392.88 30496.90 33498.69 281
ADS-MVSNet95.24 29094.93 29596.18 30598.14 30090.10 33697.92 15197.32 31390.23 33596.51 30598.91 14385.61 31499.74 21692.88 30496.90 33498.69 281
BP-MVS92.82 306
HQP-MVS97.00 24296.49 25398.55 18798.67 25796.79 21496.29 27399.04 20996.05 24895.55 32896.84 31693.84 25099.54 29392.82 30699.26 23399.32 179
testdata299.79 18092.80 308
CDPH-MVS97.26 21996.66 24499.07 11299.00 18798.15 12196.03 28299.01 21891.21 33197.79 23897.85 27796.89 14699.69 23592.75 30999.38 21399.39 149
新几何198.91 13798.94 19897.76 16698.76 25887.58 35096.75 29698.10 26094.80 23199.78 19292.73 31099.00 27299.20 206
ZD-MVS99.01 18698.84 6999.07 20194.10 29598.05 22498.12 25896.36 17999.86 8992.70 31199.19 244
F-COLMAP97.30 21696.68 24199.14 9999.19 14298.39 10397.27 21599.30 13892.93 30996.62 30098.00 26695.73 20399.68 24492.62 31298.46 29899.35 169
原ACMM198.35 20898.90 20896.25 22898.83 25092.48 31596.07 31798.10 26095.39 21599.71 22992.61 31398.99 27399.08 225
agg_prior292.50 31499.16 24899.37 159
无先验95.74 29898.74 26389.38 34299.73 22092.38 31599.22 205
112196.73 25296.00 26398.91 13798.95 19797.76 16698.07 13298.73 26487.65 34996.54 30298.13 25594.52 23799.73 22092.38 31599.02 26999.24 200
testtj97.79 18397.25 20799.42 5799.03 18298.85 6897.78 16499.18 17695.83 25798.12 21798.50 22395.50 21199.86 8992.23 31799.07 26199.54 83
CMPMVSbinary75.91 2396.29 26795.44 28098.84 14696.25 35498.69 8297.02 23099.12 19488.90 34497.83 23598.86 15989.51 29098.90 35191.92 31899.51 19098.92 252
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
BH-untuned96.83 24896.75 23797.08 28098.74 23893.33 30096.71 25298.26 28596.72 22698.44 19697.37 30595.20 21899.47 31091.89 31997.43 32498.44 293
gm-plane-assit94.83 36081.97 36288.07 34894.99 34699.60 27491.76 320
CNLPA97.17 22896.71 23998.55 18798.56 27298.05 13496.33 27198.93 22796.91 21997.06 27997.39 30394.38 24199.45 31491.66 32199.18 24698.14 304
MIMVSNet96.62 25896.25 26297.71 24799.04 17994.66 26999.16 3896.92 32297.23 20297.87 23299.10 9886.11 31199.65 26091.65 32299.21 23998.82 263
131495.74 28095.60 27496.17 30697.53 32892.75 31198.07 13298.31 28491.22 33094.25 34396.68 31995.53 20899.03 34591.64 32397.18 33196.74 342
PMVScopyleft91.26 2097.86 17297.94 16097.65 25099.71 3097.94 15098.52 8698.68 26798.99 7197.52 25899.35 5897.41 11698.18 35791.59 32499.67 13896.82 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tpm cat193.29 31893.13 31793.75 33597.39 33484.74 35597.39 20497.65 30583.39 35794.16 34498.41 23182.86 33399.39 32091.56 32595.35 35097.14 337
DPM-MVS96.32 26695.59 27598.51 19498.76 23497.21 19894.54 33598.26 28591.94 32196.37 31097.25 30893.06 26499.43 31691.42 32698.74 28498.89 256
KD-MVS_2432*160092.87 32191.99 32595.51 31991.37 36389.27 33894.07 34198.14 29195.42 26797.25 27296.44 32567.86 36299.24 33691.28 32796.08 34598.02 308
miper_refine_blended92.87 32191.99 32595.51 31991.37 36389.27 33894.07 34198.14 29195.42 26797.25 27296.44 32567.86 36299.24 33691.28 32796.08 34598.02 308
HY-MVS95.94 1395.90 27695.35 28497.55 26097.95 30994.79 26498.81 6696.94 32192.28 31895.17 33698.57 21589.90 28899.75 21291.20 32997.33 33098.10 305
MG-MVS96.77 25196.61 24697.26 27498.31 29093.06 30395.93 28998.12 29396.45 23697.92 22898.73 18393.77 25499.39 32091.19 33099.04 26599.33 177
AdaColmapbinary97.14 23096.71 23998.46 19998.34 28897.80 16496.95 23498.93 22795.58 26196.92 28497.66 28695.87 19999.53 29590.97 33199.14 25298.04 307
PLCcopyleft94.65 1696.51 26095.73 26998.85 14598.75 23797.91 15196.42 26799.06 20290.94 33495.59 32497.38 30494.41 23999.59 27890.93 33298.04 31599.05 228
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm293.09 32092.58 32194.62 32897.56 32686.53 34997.66 17895.79 33586.15 35294.07 34798.23 25075.95 35499.53 29590.91 33396.86 33797.81 318
QAPM97.31 21596.81 23498.82 14898.80 23197.49 18199.06 4899.19 17290.22 33797.69 24499.16 8696.91 14599.90 4890.89 33499.41 20799.07 226
PAPM_NR96.82 25096.32 25898.30 21399.07 17296.69 21997.48 19898.76 25895.81 25896.61 30196.47 32494.12 24899.17 34190.82 33597.78 31899.06 227
BH-RMVSNet96.83 24896.58 24897.58 25698.47 28094.05 28196.67 25497.36 31096.70 22897.87 23297.98 26895.14 22099.44 31590.47 33698.58 29699.25 197
API-MVS97.04 23896.91 22897.42 26897.88 31398.23 11598.18 12098.50 27797.57 16197.39 26896.75 31896.77 15599.15 34390.16 33799.02 26994.88 355
E-PMN94.17 30694.37 30193.58 33796.86 34385.71 35390.11 35897.07 31798.17 12497.82 23797.19 30984.62 32198.94 34989.77 33897.68 32096.09 351
MAR-MVS96.47 26395.70 27098.79 15497.92 31199.12 5398.28 11098.60 27292.16 32095.54 33196.17 32994.77 23399.52 29989.62 33998.23 30297.72 324
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
wuyk23d96.06 27297.62 18391.38 34398.65 26398.57 9198.85 6496.95 32096.86 22199.90 499.16 8699.18 1198.40 35689.23 34099.77 9077.18 359
ETH3 D test640096.46 26495.59 27599.08 10998.88 21498.21 11796.53 25999.18 17688.87 34597.08 27797.79 27993.64 25799.77 19888.92 34199.40 20999.28 191
OpenMVS_ROBcopyleft95.38 1495.84 27895.18 28997.81 24198.41 28597.15 20497.37 20698.62 27183.86 35598.65 17098.37 23894.29 24399.68 24488.41 34298.62 29496.60 344
BH-w/o95.13 29294.89 29695.86 31098.20 29791.31 32995.65 30197.37 30993.64 30196.52 30495.70 33693.04 26599.02 34688.10 34395.82 34797.24 336
EMVS93.83 31294.02 30493.23 34196.83 34584.96 35489.77 35996.32 32997.92 13797.43 26696.36 32886.17 30998.93 35087.68 34497.73 31995.81 352
gg-mvs-nofinetune92.37 32591.20 33095.85 31195.80 35992.38 31699.31 1881.84 36599.75 591.83 35699.74 868.29 36199.02 34687.15 34597.12 33296.16 348
TR-MVS95.55 28495.12 29196.86 29397.54 32793.94 28796.49 26396.53 32794.36 29097.03 28196.61 32094.26 24499.16 34286.91 34696.31 34297.47 334
PVSNet_089.98 2191.15 33090.30 33393.70 33697.72 31984.34 35990.24 35797.42 30890.20 33893.79 34993.09 35890.90 28298.89 35286.57 34772.76 36197.87 314
tmp_tt78.77 33178.73 33478.90 34558.45 36674.76 36794.20 34078.26 36739.16 36286.71 36292.82 35980.50 34175.19 36386.16 34892.29 35886.74 358
PAPR95.29 28894.47 29897.75 24597.50 33295.14 25894.89 32398.71 26691.39 32995.35 33595.48 34094.57 23699.14 34484.95 34997.37 32698.97 245
thres600view794.45 30093.83 30696.29 30299.06 17691.53 32497.99 14594.24 34498.34 10697.44 26595.01 34579.84 34399.67 24784.33 35098.23 30297.66 327
MVS93.19 31992.09 32396.50 29996.91 34294.03 28398.07 13298.06 29568.01 36094.56 34296.48 32395.96 19599.30 33183.84 35196.89 33696.17 347
thres100view90094.19 30593.67 30995.75 31399.06 17691.35 32898.03 13994.24 34498.33 10797.40 26794.98 34779.84 34399.62 26783.05 35298.08 31296.29 345
tfpn200view994.03 30993.44 31195.78 31298.93 20091.44 32697.60 18594.29 34297.94 13597.10 27594.31 35479.67 34599.62 26783.05 35298.08 31296.29 345
thres40094.14 30793.44 31196.24 30498.93 20091.44 32697.60 18594.29 34297.94 13597.10 27594.31 35479.67 34599.62 26783.05 35298.08 31297.66 327
thres20093.72 31493.14 31695.46 32198.66 26291.29 33096.61 25794.63 34097.39 18296.83 29393.71 35779.88 34299.56 28782.40 35598.13 30995.54 354
GG-mvs-BLEND94.76 32794.54 36192.13 32099.31 1880.47 36688.73 36191.01 36067.59 36498.16 35882.30 35694.53 35493.98 356
MVEpermissive83.40 2292.50 32491.92 32794.25 33198.83 22491.64 32392.71 35283.52 36495.92 25486.46 36395.46 34195.20 21895.40 36080.51 35798.64 29295.73 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PCF-MVS92.86 1894.36 30193.00 31898.42 20298.70 24897.56 17893.16 35199.11 19679.59 35997.55 25597.43 30192.19 27499.73 22079.85 35899.45 20497.97 311
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FPMVS93.44 31792.23 32297.08 28099.25 12797.86 15595.61 30297.16 31692.90 31093.76 35098.65 19975.94 35595.66 35979.30 35997.49 32197.73 323
DeepMVS_CXcopyleft93.44 33998.24 29494.21 27894.34 34164.28 36191.34 35794.87 35189.45 29292.77 36277.54 36093.14 35793.35 357
PAPM91.88 32990.34 33296.51 29898.06 30592.56 31292.44 35497.17 31586.35 35190.38 35896.01 33086.61 30599.21 33970.65 36195.43 34997.75 322
test12317.04 33420.11 3377.82 34610.25 3684.91 36894.80 3244.47 3694.93 36310.00 36524.28 3639.69 3693.64 36410.14 36212.43 36314.92 360
testmvs17.12 33320.53 3366.87 34712.05 3674.20 36993.62 3496.73 3684.62 36410.41 36424.33 3628.28 3703.56 3659.69 36315.07 36212.86 361
uanet_test0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
cdsmvs_eth3d_5k24.66 33232.88 3350.00 3480.00 3690.00 3700.00 36099.10 1970.00 3650.00 36697.58 29199.21 100.00 3660.00 3640.00 3640.00 362
pcd_1.5k_mvsjas8.17 33510.90 3380.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 36698.07 630.00 3660.00 3640.00 3640.00 362
sosnet-low-res0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
sosnet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
uncertanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
Regformer0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
ab-mvs-re8.12 33610.83 3390.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 36697.48 2980.00 3710.00 3660.00 3640.00 3640.00 362
uanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
test_241102_ONE99.49 8499.17 3699.31 12997.98 13299.66 2098.90 14698.36 4299.48 308
save fliter99.11 16197.97 14396.53 25999.02 21598.24 115
test072699.50 7799.21 2698.17 12399.35 11197.97 13399.26 7799.06 10197.61 97
GSMVS98.81 266
test_part299.36 11099.10 5699.05 109
sam_mvs184.74 32098.81 266
sam_mvs84.29 326
MTGPAbinary99.20 167
test_post21.25 36483.86 32899.70 231
patchmatchnet-post98.77 17884.37 32399.85 103
MTMP97.93 15091.91 355
TEST998.71 24498.08 12995.96 28699.03 21191.40 32895.85 32197.53 29396.52 16899.76 205
test_898.67 25798.01 13795.91 29199.02 21591.64 32395.79 32397.50 29696.47 17199.76 205
agg_prior98.68 25597.99 13899.01 21895.59 32499.77 198
test_prior497.97 14395.86 292
test_prior98.95 13198.69 25297.95 14899.03 21199.59 27899.30 186
新几何295.93 289
旧先验198.82 22797.45 18498.76 25898.34 24195.50 21199.01 27199.23 201
原ACMM295.53 305
test22298.92 20496.93 21195.54 30498.78 25685.72 35396.86 29298.11 25994.43 23899.10 26099.23 201
segment_acmp97.02 139
testdata195.44 31096.32 240
test1298.93 13498.58 26997.83 15898.66 26896.53 30395.51 21099.69 23599.13 25599.27 193
plane_prior799.19 14297.87 154
plane_prior698.99 19197.70 17294.90 224
plane_prior497.98 268
plane_prior397.78 16597.41 18097.79 238
plane_prior297.77 16798.20 121
plane_prior199.05 178
plane_prior97.65 17497.07 22996.72 22699.36 215
n20.00 370
nn0.00 370
door-mid99.57 33
test1198.87 238
door99.41 90
HQP5-MVS96.79 214
HQP-NCC98.67 25796.29 27396.05 24895.55 328
ACMP_Plane98.67 25796.29 27396.05 24895.55 328
HQP4-MVS95.56 32799.54 29399.32 179
HQP3-MVS99.04 20999.26 233
HQP2-MVS93.84 250
NP-MVS98.84 22297.39 18796.84 316
ACMMP++_ref99.77 90
ACMMP++99.68 132
Test By Simon96.52 168