This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
v192192099.56 4099.57 3899.55 14299.75 9399.11 20399.05 17999.61 14299.15 14299.88 3299.71 9999.08 6299.87 16699.90 299.97 2999.66 75
v124099.56 4099.58 3599.51 15299.80 5599.00 21499.00 18899.65 12499.15 14299.90 2299.75 7999.09 5999.88 15399.90 299.96 4199.67 65
v1099.69 2199.69 1899.66 9499.81 5099.39 14899.66 3999.75 7199.60 7499.92 1899.87 3098.75 10699.86 18699.90 299.99 1299.73 42
v119299.57 3799.57 3899.57 13599.77 7999.22 18999.04 18199.60 15399.18 13399.87 3899.72 9299.08 6299.85 20499.89 599.98 2199.66 75
v14419299.55 4399.54 4399.58 13099.78 7199.20 19599.11 16899.62 13599.18 13399.89 2699.72 9298.66 11799.87 16699.88 699.97 2999.66 75
v899.68 2299.69 1899.65 9999.80 5599.40 14699.66 3999.76 6599.64 6099.93 1499.85 3698.66 11799.84 22099.88 699.99 1299.71 46
v114499.54 4599.53 4799.59 12699.79 6599.28 17299.10 16999.61 14299.20 13199.84 4399.73 8698.67 11599.84 22099.86 899.98 2199.64 89
v7n99.82 1099.80 1099.88 1199.96 499.84 1799.82 899.82 3699.84 2299.94 1199.91 1999.13 5699.96 3399.83 999.99 1299.83 18
v2v48299.50 4899.47 5199.58 13099.78 7199.25 18099.14 15699.58 16999.25 12399.81 5699.62 15998.24 16999.84 22099.83 999.97 2999.64 89
V4299.56 4099.54 4399.63 11099.79 6599.46 12799.39 8299.59 16099.24 12599.86 3999.70 10698.55 13099.82 24199.79 1199.95 4899.60 116
mvs_tets99.90 299.90 299.90 499.96 499.79 3599.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 699.77 12100.00 199.92 3
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4099.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 699.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 3899.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 699.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1699.97 1699.75 13100.00 199.84 14
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 2099.94 1199.95 1199.73 899.90 12499.65 1699.97 2999.69 52
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 899.69 2899.77 6099.78 3499.93 1499.89 2597.94 19499.92 8699.65 1699.98 2199.62 105
K. test v398.87 19898.60 20899.69 8499.93 1399.46 12799.74 1594.97 35499.78 3499.88 3299.88 2893.66 29599.97 1699.61 1899.95 4899.64 89
DIV-MVS_2432*160099.63 3099.59 3299.76 4599.84 3399.90 499.37 8899.79 5299.83 2599.88 3299.85 3698.42 15099.90 12499.60 1999.73 18899.49 177
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 1999.70 4699.91 2099.89 2599.60 1899.87 16699.59 2099.74 18199.71 46
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2199.83 699.85 2399.80 3199.93 1499.93 1398.54 13299.93 6799.59 2099.98 2199.76 37
EU-MVSNet99.39 7799.62 2598.72 28199.88 2396.44 32099.56 6199.85 2399.90 799.90 2299.85 3698.09 18299.83 23199.58 2299.95 4899.90 4
mvs_anonymous99.28 10399.39 6498.94 25599.19 28597.81 28999.02 18499.55 18199.78 3499.85 4099.80 5398.24 16999.86 18699.57 2399.50 25799.15 262
lessismore_v099.64 10699.86 2999.38 15190.66 36199.89 2699.83 4294.56 28799.97 1699.56 2499.92 7399.57 136
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2199.76 1399.87 1799.73 3899.89 2699.87 3099.63 1499.87 16699.54 2599.92 7399.63 94
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3099.81 599.95 4399.54 2599.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RRT_test8_iter0597.35 29497.25 29197.63 31798.81 32993.13 34799.26 11799.89 1299.51 8299.83 4899.68 12379.03 36499.88 15399.53 2799.72 19499.89 8
DSMNet-mixed99.48 5299.65 2298.95 25499.71 10997.27 30499.50 6599.82 3699.59 7699.41 19699.85 3699.62 15100.00 199.53 2799.89 9199.59 125
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9199.93 499.95 1099.89 2599.71 999.96 3399.51 2999.97 2999.84 14
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2399.86 1199.72 1999.78 5799.90 799.82 5099.83 4298.45 14799.87 16699.51 2999.97 2999.86 11
UA-Net99.78 1399.76 1499.86 1699.72 10699.71 6399.91 399.95 499.96 299.71 9899.91 1999.15 5299.97 1699.50 31100.00 199.90 4
PMMVS299.48 5299.45 5599.57 13599.76 8398.99 21598.09 28899.90 1198.95 16599.78 6799.58 18399.57 1999.93 6799.48 3299.95 4899.79 30
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12899.75 4899.62 4799.69 10199.85 2099.80 5999.81 5198.81 9199.91 10499.47 3399.88 9999.70 49
nrg03099.70 1999.66 2199.82 2399.76 8399.84 1799.61 5199.70 9599.93 499.78 6799.68 12399.10 5799.78 26899.45 3499.96 4199.83 18
TAMVS99.49 5099.45 5599.63 11099.48 20599.42 14199.45 7299.57 17199.66 5699.78 6799.83 4297.85 20399.86 18699.44 3599.96 4199.61 112
new-patchmatchnet99.35 8699.57 3898.71 28399.82 4396.62 31898.55 24799.75 7199.50 8399.88 3299.87 3099.31 3599.88 15399.43 36100.00 199.62 105
test20.0399.55 4399.54 4399.58 13099.79 6599.37 15499.02 18499.89 1299.60 7499.82 5099.62 15998.81 9199.89 13899.43 3699.86 11499.47 187
MVSFormer99.41 7099.44 5799.31 21199.57 16198.40 25899.77 1199.80 4699.73 3899.63 12399.30 26298.02 18899.98 699.43 3699.69 20399.55 142
test_djsdf99.84 899.81 999.91 299.94 1099.84 1799.77 1199.80 4699.73 3899.97 699.92 1699.77 799.98 699.43 36100.00 199.90 4
Anonymous2023121199.62 3399.57 3899.76 4599.61 14499.60 10299.81 999.73 7999.82 2799.90 2299.90 2197.97 19399.86 18699.42 4099.96 4199.80 24
SixPastTwentyTwo99.42 6699.30 8599.76 4599.92 1499.67 7999.70 2299.14 29599.65 5899.89 2699.90 2196.20 26899.94 5499.42 4099.92 7399.67 65
bset_n11_16_dypcd98.69 21898.45 22599.42 17799.69 11998.52 25096.06 35396.80 34799.71 4299.73 9199.54 20295.14 28099.96 3399.39 4299.95 4899.79 30
UGNet99.38 7999.34 7499.49 15898.90 31698.90 22999.70 2299.35 25799.86 1698.57 30199.81 5198.50 14299.93 6799.38 4399.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6199.59 5699.82 3699.39 10499.82 5099.84 4199.38 2799.91 10499.38 4399.93 6999.80 24
FIs99.65 2999.58 3599.84 1999.84 3399.85 1299.66 3999.75 7199.86 1699.74 8799.79 5998.27 16799.85 20499.37 4599.93 6999.83 18
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2399.70 4699.92 1899.93 1399.45 2199.97 1699.36 46100.00 199.85 13
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2399.66 8199.69 2899.92 599.67 5299.77 7299.75 7999.61 1699.98 699.35 4799.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_part198.63 22298.26 24399.75 5599.40 23299.49 11999.67 3599.68 10499.86 1699.88 3299.86 3586.73 34799.93 6799.34 4899.97 2999.81 23
CHOSEN 1792x268899.39 7799.30 8599.65 9999.88 2399.25 18098.78 22799.88 1598.66 19899.96 899.79 5997.45 22699.93 6799.34 4899.99 1299.78 32
CDS-MVSNet99.22 12399.13 11599.50 15599.35 24499.11 20398.96 20099.54 18699.46 9499.61 13699.70 10696.31 26599.83 23199.34 4899.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 17799.16 10898.51 28899.75 9395.90 32898.07 29199.84 2999.84 2299.89 2699.73 8696.01 27299.99 499.33 51100.00 199.63 94
HyFIR lowres test98.91 19098.64 20599.73 6999.85 3299.47 12398.07 29199.83 3198.64 20099.89 2699.60 17592.57 303100.00 199.33 5199.97 2999.72 43
pmmvs599.19 13399.11 12299.42 17799.76 8398.88 23098.55 24799.73 7998.82 18399.72 9399.62 15996.56 25599.82 24199.32 5399.95 4899.56 139
v14899.40 7399.41 6299.39 19099.76 8398.94 22199.09 17399.59 16099.17 13699.81 5699.61 16898.41 15199.69 30199.32 5399.94 6199.53 154
baseline99.63 3099.62 2599.66 9499.80 5599.62 9499.44 7599.80 4699.71 4299.72 9399.69 11299.15 5299.83 23199.32 5399.94 6199.53 154
CVMVSNet98.61 22498.88 18397.80 31299.58 15193.60 34599.26 11799.64 13099.66 5699.72 9399.67 12993.26 29799.93 6799.30 5699.81 14899.87 9
PS-CasMVS99.66 2499.58 3599.89 799.80 5599.85 1299.66 3999.73 7999.62 6499.84 4399.71 9998.62 12199.96 3399.30 5699.96 4199.86 11
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5599.87 899.67 3599.71 9199.72 4199.84 4399.78 6598.67 11599.97 1699.30 5699.95 4899.80 24
tmp_tt95.75 32595.42 32396.76 33189.90 36394.42 34098.86 21097.87 33778.01 35799.30 22099.69 11297.70 21095.89 35999.29 5998.14 33999.95 1
PEN-MVS99.66 2499.59 3299.89 799.83 3799.87 899.66 3999.73 7999.70 4699.84 4399.73 8698.56 12999.96 3399.29 5999.94 6199.83 18
WR-MVS_H99.61 3599.53 4799.87 1499.80 5599.83 2199.67 3599.75 7199.58 7799.85 4099.69 11298.18 17899.94 5499.28 6199.95 4899.83 18
IterMVS98.97 18199.16 10898.42 29299.74 9995.64 33198.06 29399.83 3199.83 2599.85 4099.74 8296.10 27199.99 499.27 62100.00 199.63 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet199.66 2499.63 2499.73 6999.78 7199.77 4099.68 3199.70 9599.67 5299.82 5099.83 4298.98 7299.90 12499.24 6399.97 2999.53 154
casdiffmvs99.63 3099.61 2999.67 8799.79 6599.59 10599.13 16299.85 2399.79 3399.76 7499.72 9299.33 3499.82 24199.21 6499.94 6199.59 125
CP-MVSNet99.54 4599.43 6099.87 1499.76 8399.82 2599.57 5999.61 14299.54 7899.80 5999.64 14097.79 20799.95 4399.21 6499.94 6199.84 14
DELS-MVS99.34 9199.30 8599.48 16199.51 18899.36 15798.12 28499.53 19599.36 10899.41 19699.61 16899.22 4699.87 16699.21 6499.68 20699.20 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RRT_MVS98.75 21098.54 21899.41 18598.14 35498.61 24698.98 19799.66 11399.31 11499.84 4399.75 7991.98 30799.98 699.20 6799.95 4899.62 105
UniMVSNet (Re)99.37 8199.26 9799.68 8599.51 18899.58 10898.98 19799.60 15399.43 10199.70 10099.36 24897.70 21099.88 15399.20 6799.87 10799.59 125
CANet99.11 15499.05 14399.28 21698.83 32598.56 24798.71 23599.41 23699.25 12399.23 22899.22 28197.66 21999.94 5499.19 6999.97 2999.33 227
EI-MVSNet-UG-set99.48 5299.50 4999.42 17799.57 16198.65 24599.24 12599.46 22599.68 5099.80 5999.66 13398.99 7199.89 13899.19 6999.90 8399.72 43
xiu_mvs_v1_base_debu99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
xiu_mvs_v1_base99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
xiu_mvs_v1_base_debi99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
MVS_030498.88 19698.71 19999.39 19098.85 32398.91 22899.45 7299.30 26998.56 20797.26 34699.68 12396.18 26999.96 3399.17 7499.94 6199.29 236
VPNet99.46 5999.37 6999.71 7999.82 4399.59 10599.48 6999.70 9599.81 2899.69 10399.58 18397.66 21999.86 18699.17 7499.44 26599.67 65
UniMVSNet_NR-MVSNet99.37 8199.25 9999.72 7599.47 21099.56 11198.97 19999.61 14299.43 10199.67 10999.28 26797.85 20399.95 4399.17 7499.81 14899.65 83
DU-MVS99.33 9599.21 10399.71 7999.43 22399.56 11198.83 21599.53 19599.38 10599.67 10999.36 24897.67 21599.95 4399.17 7499.81 14899.63 94
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17799.57 16198.66 24299.24 12599.46 22599.67 5299.79 6499.65 13898.97 7499.89 13899.15 7899.89 9199.71 46
EI-MVSNet99.38 7999.44 5799.21 22999.58 15198.09 27799.26 11799.46 22599.62 6499.75 7999.67 12998.54 13299.85 20499.15 7899.92 7399.68 58
VNet99.18 13799.06 13999.56 13999.24 27699.36 15799.33 9599.31 26699.67 5299.47 17799.57 19196.48 25899.84 22099.15 7899.30 28799.47 187
EG-PatchMatch MVS99.57 3799.56 4299.62 11999.77 7999.33 16499.26 11799.76 6599.32 11399.80 5999.78 6599.29 3899.87 16699.15 7899.91 8299.66 75
PVSNet_Blended_VisFu99.40 7399.38 6699.44 17299.90 1998.66 24298.94 20399.91 897.97 26099.79 6499.73 8699.05 6799.97 1699.15 7899.99 1299.68 58
IterMVS-LS99.41 7099.47 5199.25 22399.81 5098.09 27798.85 21299.76 6599.62 6499.83 4899.64 14098.54 13299.97 1699.15 7899.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15199.64 8899.30 10599.63 13299.61 6899.71 9899.56 19498.76 10499.96 3399.14 8499.92 7399.68 58
MVSTER98.47 24398.22 24699.24 22699.06 30598.35 26399.08 17699.46 22599.27 11999.75 7999.66 13388.61 33799.85 20499.14 8499.92 7399.52 164
Anonymous2023120699.35 8699.31 8099.47 16399.74 9999.06 21399.28 11399.74 7699.23 12799.72 9399.53 20597.63 22199.88 15399.11 8699.84 12199.48 182
MVS_Test99.28 10399.31 8099.19 23299.35 24498.79 23599.36 9199.49 21599.17 13699.21 23499.67 12998.78 10099.66 32199.09 8799.66 21799.10 272
testgi99.29 10299.26 9799.37 19799.75 9398.81 23398.84 21399.89 1298.38 22799.75 7999.04 30499.36 3299.86 18699.08 8899.25 29399.45 193
1112_ss99.05 16598.84 18899.67 8799.66 13499.29 17098.52 25299.82 3697.65 27799.43 18699.16 28896.42 26199.91 10499.07 8999.84 12199.80 24
CANet_DTU98.91 19098.85 18699.09 24298.79 33198.13 27298.18 27799.31 26699.48 8598.86 27599.51 21096.56 25599.95 4399.05 9099.95 4899.19 254
Baseline_NR-MVSNet99.49 5099.37 6999.82 2399.91 1599.84 1798.83 21599.86 1999.68 5099.65 11799.88 2897.67 21599.87 16699.03 9199.86 11499.76 37
FMVSNet299.35 8699.28 9299.55 14299.49 19999.35 16199.45 7299.57 17199.44 9699.70 10099.74 8297.21 23899.87 16699.03 9199.94 6199.44 198
Test_1112_low_res98.95 18798.73 19799.63 11099.68 12899.15 20098.09 28899.80 4697.14 30399.46 18099.40 23796.11 27099.89 13899.01 9399.84 12199.84 14
VDD-MVS99.20 13099.11 12299.44 17299.43 22398.98 21699.50 6598.32 33099.80 3199.56 15399.69 11296.99 24899.85 20498.99 9499.73 18899.50 172
DeepC-MVS98.90 499.62 3399.61 2999.67 8799.72 10699.44 13499.24 12599.71 9199.27 11999.93 1499.90 2199.70 1199.93 6798.99 9499.99 1299.64 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 5299.47 5199.51 15299.77 7999.41 14598.81 22099.66 11399.42 10399.75 7999.66 13399.20 4799.76 27898.98 9699.99 1299.36 221
EPNet_dtu97.62 28497.79 27897.11 33096.67 35992.31 35198.51 25398.04 33299.24 12595.77 35599.47 22593.78 29499.66 32198.98 9699.62 22599.37 218
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvs99.34 9199.32 7999.39 19099.67 13398.77 23698.57 24599.81 4599.61 6899.48 17599.41 23598.47 14399.86 18698.97 9899.90 8399.53 154
NR-MVSNet99.40 7399.31 8099.68 8599.43 22399.55 11499.73 1699.50 21099.46 9499.88 3299.36 24897.54 22399.87 16698.97 9899.87 10799.63 94
GBi-Net99.42 6699.31 8099.73 6999.49 19999.77 4099.68 3199.70 9599.44 9699.62 13099.83 4297.21 23899.90 12498.96 10099.90 8399.53 154
FMVSNet597.80 27797.25 29199.42 17798.83 32598.97 21899.38 8499.80 4698.87 17799.25 22499.69 11280.60 35999.91 10498.96 10099.90 8399.38 215
test199.42 6699.31 8099.73 6999.49 19999.77 4099.68 3199.70 9599.44 9699.62 13099.83 4297.21 23899.90 12498.96 10099.90 8399.53 154
FMVSNet398.80 20598.63 20799.32 20899.13 29398.72 23899.10 16999.48 21799.23 12799.62 13099.64 14092.57 30399.86 18698.96 10099.90 8399.39 213
UnsupCasMVSNet_eth98.83 20198.57 21499.59 12699.68 12899.45 13298.99 19399.67 10999.48 8599.55 15899.36 24894.92 28199.86 18698.95 10496.57 35299.45 193
CHOSEN 280x42098.41 24898.41 23098.40 29399.34 25495.89 32996.94 34799.44 23098.80 18699.25 22499.52 20793.51 29699.98 698.94 10599.98 2199.32 230
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1299.86 599.92 599.69 4999.78 6799.92 1699.37 2999.88 15398.93 10699.95 4899.60 116
Regformer-499.45 6199.44 5799.50 15599.52 18398.94 22199.17 14699.53 19599.64 6099.76 7499.60 17598.96 7799.90 12498.91 10799.84 12199.67 65
Regformer-399.41 7099.41 6299.40 18799.52 18398.70 23999.17 14699.44 23099.62 6499.75 7999.60 17598.90 8499.85 20498.89 10899.84 12199.65 83
alignmvs98.28 25897.96 26499.25 22399.12 29598.93 22599.03 18398.42 32699.64 6098.72 29097.85 35390.86 32399.62 33298.88 10999.13 29899.19 254
sss98.90 19298.77 19699.27 21899.48 20598.44 25598.72 23399.32 26297.94 26499.37 20499.35 25396.31 26599.91 10498.85 11099.63 22499.47 187
xiu_mvs_v2_base99.02 17199.11 12298.77 27899.37 24098.09 27798.13 28399.51 20699.47 9099.42 18898.54 34199.38 2799.97 1698.83 11199.33 28498.24 333
PS-MVSNAJ99.00 17799.08 13398.76 27999.37 24098.10 27698.00 29899.51 20699.47 9099.41 19698.50 34399.28 4099.97 1698.83 11199.34 28298.20 337
D2MVS99.22 12399.19 10599.29 21499.69 11998.74 23798.81 22099.41 23698.55 20999.68 10599.69 11298.13 18099.87 16698.82 11399.98 2199.24 242
PatchT98.45 24598.32 24098.83 27398.94 31498.29 26499.24 12598.82 30999.84 2299.08 25299.76 7591.37 31399.94 5498.82 11399.00 30698.26 332
Effi-MVS+99.06 16298.97 16899.34 20299.31 26198.98 21698.31 26999.91 898.81 18498.79 28398.94 32099.14 5499.84 22098.79 11598.74 32199.20 252
canonicalmvs99.02 17199.00 15999.09 24299.10 30198.70 23999.61 5199.66 11399.63 6398.64 29597.65 35599.04 6899.54 34198.79 11598.92 31099.04 286
VDDNet98.97 18198.82 19199.42 17799.71 10998.81 23399.62 4798.68 31499.81 2899.38 20399.80 5394.25 28999.85 20498.79 11599.32 28599.59 125
CR-MVSNet98.35 25598.20 24898.83 27399.05 30698.12 27399.30 10599.67 10997.39 29199.16 24199.79 5991.87 31099.91 10498.78 11898.77 31798.44 325
RPMNet98.60 22598.53 22098.83 27399.05 30698.12 27399.30 10599.62 13599.86 1699.16 24199.74 8292.53 30599.92 8698.75 11998.77 31798.44 325
pmmvs499.13 14899.06 13999.36 20099.57 16199.10 20798.01 29699.25 28098.78 18999.58 14399.44 23298.24 16999.76 27898.74 12099.93 6999.22 247
tttt051797.62 28497.20 29398.90 26799.76 8397.40 30199.48 6994.36 35699.06 15699.70 10099.49 21884.55 35399.94 5498.73 12199.65 22099.36 221
EPP-MVSNet99.17 14199.00 15999.66 9499.80 5599.43 13899.70 2299.24 28399.48 8599.56 15399.77 7294.89 28299.93 6798.72 12299.89 9199.63 94
Anonymous2024052999.42 6699.34 7499.65 9999.53 17899.60 10299.63 4699.39 24699.47 9099.76 7499.78 6598.13 18099.86 18698.70 12399.68 20699.49 177
ACMH98.42 699.59 3699.54 4399.72 7599.86 2999.62 9499.56 6199.79 5298.77 19099.80 5999.85 3699.64 1399.85 20498.70 12399.89 9199.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 9599.28 9299.47 16399.57 16199.39 14899.78 1099.43 23398.87 17799.57 14699.82 4898.06 18599.87 16698.69 12599.73 18899.15 262
LFMVS98.46 24498.19 25199.26 22099.24 27698.52 25099.62 4796.94 34699.87 1499.31 21699.58 18391.04 31899.81 25798.68 12699.42 27099.45 193
WR-MVS99.11 15498.93 17399.66 9499.30 26599.42 14198.42 26299.37 25399.04 15799.57 14699.20 28596.89 25099.86 18698.66 12799.87 10799.70 49
Anonymous20240521198.75 21098.46 22499.63 11099.34 25499.66 8199.47 7197.65 33999.28 11899.56 15399.50 21393.15 29899.84 22098.62 12899.58 23899.40 210
EPNet98.13 26697.77 27999.18 23494.57 36297.99 28199.24 12597.96 33499.74 3797.29 34599.62 15993.13 29999.97 1698.59 12999.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 16599.09 13198.91 26199.21 28098.36 26298.82 21999.47 22198.85 17998.90 27099.56 19498.78 10099.09 35498.57 13099.68 20699.26 239
Patchmatch-RL test98.60 22598.36 23599.33 20499.77 7999.07 21198.27 27299.87 1798.91 17299.74 8799.72 9290.57 32799.79 26598.55 13199.85 11799.11 270
pmmvs398.08 26997.80 27698.91 26199.41 22997.69 29497.87 31299.66 11395.87 32599.50 17399.51 21090.35 32999.97 1698.55 13199.47 26299.08 278
ETV-MVS99.18 13799.18 10699.16 23599.34 25499.28 17299.12 16699.79 5299.48 8598.93 26498.55 34099.40 2299.93 6798.51 13399.52 25498.28 331
jason99.16 14299.11 12299.32 20899.75 9398.44 25598.26 27399.39 24698.70 19699.74 8799.30 26298.54 13299.97 1698.48 13499.82 14099.55 142
jason: jason.
APDe-MVS99.48 5299.36 7299.85 1899.55 17299.81 2899.50 6599.69 10198.99 15999.75 7999.71 9998.79 9899.93 6798.46 13599.85 11799.80 24
CL-MVSNet_2432*160098.71 21698.56 21799.15 23699.22 27898.66 24297.14 34299.51 20698.09 25399.54 16099.27 26996.87 25199.74 28498.43 13698.96 30799.03 287
our_test_398.85 20099.09 13198.13 30499.66 13494.90 33897.72 31799.58 16999.07 15299.64 11999.62 15998.19 17699.93 6798.41 13799.95 4899.55 142
Gipumacopyleft99.57 3799.59 3299.49 15899.98 399.71 6399.72 1999.84 2999.81 2899.94 1199.78 6598.91 8199.71 29398.41 13799.95 4899.05 285
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 29296.91 30398.74 28097.72 35597.57 29697.60 32397.36 34598.00 25699.21 23498.02 35190.04 33299.79 26598.37 13995.89 35598.86 302
Regformer-199.32 9799.27 9599.47 16399.41 22998.95 22098.99 19399.48 21799.48 8599.66 11399.52 20798.78 10099.87 16698.36 14099.74 18199.60 116
PM-MVS99.36 8499.29 9099.58 13099.83 3799.66 8198.95 20199.86 1998.85 17999.81 5699.73 8698.40 15599.92 8698.36 14099.83 13199.17 258
baseline197.73 28097.33 28898.96 25399.30 26597.73 29299.40 8098.42 32699.33 11299.46 18099.21 28391.18 31699.82 24198.35 14291.26 35799.32 230
MVS-HIRNet97.86 27598.22 24696.76 33199.28 26991.53 35798.38 26492.60 36099.13 14499.31 21699.96 1097.18 24299.68 31298.34 14399.83 13199.07 283
GA-MVS97.99 27497.68 28298.93 25899.52 18398.04 28097.19 34199.05 30198.32 24098.81 28098.97 31689.89 33499.41 35198.33 14499.05 30299.34 226
Fast-Effi-MVS+99.02 17198.87 18499.46 16699.38 23799.50 11899.04 18199.79 5297.17 30198.62 29698.74 33399.34 3399.95 4398.32 14599.41 27198.92 297
Regformer-299.34 9199.27 9599.53 14899.41 22999.10 20798.99 19399.53 19599.47 9099.66 11399.52 20798.80 9599.89 13898.31 14699.74 18199.60 116
CS-MVS99.09 15999.03 15199.25 22399.45 21899.49 11999.41 7899.82 3699.10 14998.03 32898.48 34499.30 3799.89 13898.30 14799.41 27198.35 328
MDA-MVSNet_test_wron98.95 18798.99 16498.85 26999.64 13897.16 30798.23 27599.33 26098.93 16999.56 15399.66 13397.39 23099.83 23198.29 14899.88 9999.55 142
N_pmnet98.73 21498.53 22099.35 20199.72 10698.67 24198.34 26594.65 35598.35 23499.79 6499.68 12398.03 18699.93 6798.28 14999.92 7399.44 198
ET-MVSNet_ETH3D96.78 30496.07 31398.91 26199.26 27397.92 28797.70 31996.05 35197.96 26392.37 35998.43 34587.06 34199.90 12498.27 15097.56 34798.91 298
thisisatest053097.45 28996.95 30098.94 25599.68 12897.73 29299.09 17394.19 35898.61 20499.56 15399.30 26284.30 35499.93 6798.27 15099.54 25099.16 260
YYNet198.95 18798.99 16498.84 27199.64 13897.14 30898.22 27699.32 26298.92 17199.59 14199.66 13397.40 22899.83 23198.27 15099.90 8399.55 142
ACMM98.09 1199.46 5999.38 6699.72 7599.80 5599.69 7499.13 16299.65 12498.99 15999.64 11999.72 9299.39 2399.86 18698.23 15399.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 18498.87 18499.24 22699.57 16198.40 25898.12 28499.18 29198.28 24299.63 12399.13 29098.02 18899.97 1698.22 15499.69 20399.35 224
3Dnovator99.15 299.43 6399.36 7299.65 9999.39 23499.42 14199.70 2299.56 17699.23 12799.35 20799.80 5399.17 5099.95 4398.21 15599.84 12199.59 125
Fast-Effi-MVS+-dtu99.20 13099.12 11999.43 17599.25 27499.69 7499.05 17999.82 3699.50 8398.97 26099.05 30198.98 7299.98 698.20 15699.24 29598.62 312
MS-PatchMatch99.00 17798.97 16899.09 24299.11 30098.19 26998.76 22999.33 26098.49 21799.44 18299.58 18398.21 17399.69 30198.20 15699.62 22599.39 213
TSAR-MVS + GP.99.12 15099.04 14999.38 19499.34 25499.16 19898.15 28099.29 27198.18 24999.63 12399.62 15999.18 4999.68 31298.20 15699.74 18199.30 233
DP-MVS99.48 5299.39 6499.74 6199.57 16199.62 9499.29 11299.61 14299.87 1499.74 8799.76 7598.69 11199.87 16698.20 15699.80 15399.75 40
MVP-Stereo99.16 14299.08 13399.43 17599.48 20599.07 21199.08 17699.55 18198.63 20199.31 21699.68 12398.19 17699.78 26898.18 16099.58 23899.45 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 6399.30 8599.80 2999.83 3799.81 2899.52 6399.70 9598.35 23499.51 17299.50 21399.31 3599.88 15398.18 16099.84 12199.69 52
MDA-MVSNet-bldmvs99.06 16299.05 14399.07 24699.80 5597.83 28898.89 20599.72 8899.29 11599.63 12399.70 10696.47 25999.89 13898.17 16299.82 14099.50 172
JIA-IIPM98.06 27097.92 27198.50 28998.59 34097.02 31098.80 22398.51 32299.88 1397.89 33399.87 3091.89 30999.90 12498.16 16397.68 34698.59 314
EIA-MVS99.12 15099.01 15699.45 17099.36 24299.62 9499.34 9399.79 5298.41 22398.84 27798.89 32598.75 10699.84 22098.15 16499.51 25598.89 299
miper_lstm_enhance98.65 22198.60 20898.82 27699.20 28397.33 30397.78 31599.66 11399.01 15899.59 14199.50 21394.62 28699.85 20498.12 16599.90 8399.26 239
Effi-MVS+-dtu99.07 16198.92 17799.52 14998.89 31999.78 3899.15 15499.66 11399.34 10998.92 26799.24 27997.69 21299.98 698.11 16699.28 28998.81 306
mvs-test198.83 20198.70 20299.22 22898.89 31999.65 8698.88 20699.66 11399.34 10998.29 31298.94 32097.69 21299.96 3398.11 16698.54 32998.04 341
tpm97.15 29696.95 30097.75 31498.91 31594.24 34199.32 9897.96 33497.71 27598.29 31299.32 25886.72 34899.92 8698.10 16896.24 35499.09 275
DeepPCF-MVS98.42 699.18 13799.02 15399.67 8799.22 27899.75 4897.25 33999.47 22198.72 19599.66 11399.70 10699.29 3899.63 33198.07 16999.81 14899.62 105
ppachtmachnet_test98.89 19599.12 11998.20 30299.66 13495.24 33597.63 32199.68 10499.08 15099.78 6799.62 15998.65 11999.88 15398.02 17099.96 4199.48 182
tpmrst97.73 28098.07 25896.73 33398.71 33792.00 35299.10 16998.86 30698.52 21398.92 26799.54 20291.90 30899.82 24198.02 17099.03 30498.37 327
CSCG99.37 8199.29 9099.60 12499.71 10999.46 12799.43 7799.85 2398.79 18799.41 19699.60 17598.92 7999.92 8698.02 17099.92 7399.43 204
eth_miper_zixun_eth98.68 21998.71 19998.60 28599.10 30196.84 31597.52 32999.54 18698.94 16699.58 14399.48 22096.25 26799.76 27898.01 17399.93 6999.21 249
Patchmtry98.78 20698.54 21899.49 15898.89 31999.19 19699.32 9899.67 10999.65 5899.72 9399.79 5991.87 31099.95 4398.00 17499.97 2999.33 227
PVSNet_BlendedMVS99.03 16999.01 15699.09 24299.54 17397.99 28198.58 24199.82 3697.62 27899.34 21099.71 9998.52 13999.77 27697.98 17599.97 2999.52 164
PVSNet_Blended98.70 21798.59 21099.02 25099.54 17397.99 28197.58 32499.82 3695.70 32999.34 21098.98 31398.52 13999.77 27697.98 17599.83 13199.30 233
cl-mvsnet_98.54 23598.41 23098.92 25999.03 30997.80 29097.46 33199.59 16098.90 17399.60 13899.46 22893.85 29299.78 26897.97 17799.89 9199.17 258
cl-mvsnet198.54 23598.42 22998.92 25999.03 30997.80 29097.46 33199.59 16098.90 17399.60 13899.46 22893.87 29199.78 26897.97 17799.89 9199.18 256
AUN-MVS97.82 27697.38 28799.14 23799.27 27198.53 24898.72 23399.02 30298.10 25197.18 34899.03 30789.26 33699.85 20497.94 17997.91 34399.03 287
ambc99.20 23199.35 24498.53 24899.17 14699.46 22599.67 10999.80 5398.46 14699.70 29597.92 18099.70 20099.38 215
USDC98.96 18498.93 17399.05 24899.54 17397.99 28197.07 34599.80 4698.21 24699.75 7999.77 7298.43 14899.64 33097.90 18199.88 9999.51 166
OPM-MVS99.26 10999.13 11599.63 11099.70 11699.61 10098.58 24199.48 21798.50 21599.52 16799.63 15099.14 5499.76 27897.89 18299.77 16899.51 166
DVP-MVS99.32 9799.17 10799.77 3999.69 11999.80 3399.14 15699.31 26699.16 13899.62 13099.61 16898.35 15999.91 10497.88 18399.72 19499.61 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2199.70 11699.79 3599.14 15699.61 14299.92 8697.88 18399.72 19499.77 33
cl_fuxian98.72 21598.71 19998.72 28199.12 29597.22 30697.68 32099.56 17698.90 17399.54 16099.48 22096.37 26499.73 28797.88 18399.88 9999.21 249
3Dnovator+98.92 399.35 8699.24 10099.67 8799.35 24499.47 12399.62 4799.50 21099.44 9699.12 24899.78 6598.77 10399.94 5497.87 18699.72 19499.62 105
miper_ehance_all_eth98.59 22898.59 21098.59 28698.98 31297.07 30997.49 33099.52 20398.50 21599.52 16799.37 24396.41 26399.71 29397.86 18799.62 22599.00 292
WTY-MVS98.59 22898.37 23499.26 22099.43 22398.40 25898.74 23099.13 29798.10 25199.21 23499.24 27994.82 28399.90 12497.86 18798.77 31799.49 177
SED-MVS99.40 7399.28 9299.77 3999.69 11999.82 2599.20 13599.54 18699.13 14499.82 5099.63 15098.91 8199.92 8697.85 18999.70 20099.58 130
test_241102_TWO99.54 18699.13 14499.76 7499.63 15098.32 16499.92 8697.85 18999.69 20399.75 40
MVS_111021_HR99.12 15099.02 15399.40 18799.50 19499.11 20397.92 30999.71 9198.76 19399.08 25299.47 22599.17 5099.54 34197.85 18999.76 17099.54 149
zzz-MVS99.30 10099.14 11299.80 2999.81 5099.81 2898.73 23299.53 19599.27 11999.42 18899.63 15098.21 17399.95 4397.83 19299.79 15899.65 83
MTAPA99.35 8699.20 10499.80 2999.81 5099.81 2899.33 9599.53 19599.27 11999.42 18899.63 15098.21 17399.95 4397.83 19299.79 15899.65 83
TESTMET0.1,196.24 31695.84 31897.41 32298.24 34993.84 34497.38 33395.84 35298.43 22097.81 33798.56 33979.77 36099.89 13897.77 19498.77 31798.52 319
ACMH+98.40 899.50 4899.43 6099.71 7999.86 2999.76 4699.32 9899.77 6099.53 8099.77 7299.76 7599.26 4499.78 26897.77 19499.88 9999.60 116
IU-MVS99.69 11999.77 4099.22 28597.50 28599.69 10397.75 19699.70 20099.77 33
114514_t98.49 24198.11 25699.64 10699.73 10299.58 10899.24 12599.76 6589.94 35399.42 18899.56 19497.76 20999.86 18697.74 19799.82 14099.47 187
test_0728_THIRD99.18 13399.62 13099.61 16898.58 12699.91 10497.72 19899.80 15399.77 33
miper_enhance_ethall98.03 27197.94 26998.32 29798.27 34896.43 32196.95 34699.41 23696.37 31999.43 18698.96 31894.74 28499.69 30197.71 19999.62 22598.83 305
TSAR-MVS + MP.99.34 9199.24 10099.63 11099.82 4399.37 15499.26 11799.35 25798.77 19099.57 14699.70 10699.27 4399.88 15397.71 19999.75 17399.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl-mvsnet297.56 28797.28 28998.40 29398.37 34696.75 31697.24 34099.37 25397.31 29599.41 19699.22 28187.30 33999.37 35297.70 20199.62 22599.08 278
MP-MVS-pluss99.14 14698.92 17799.80 2999.83 3799.83 2198.61 23799.63 13296.84 31199.44 18299.58 18398.81 9199.91 10497.70 20199.82 14099.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 10399.11 12299.79 3499.75 9399.81 2898.95 20199.53 19598.27 24399.53 16599.73 8698.75 10699.87 16697.70 20199.83 13199.68 58
UnsupCasMVSNet_bld98.55 23498.27 24299.40 18799.56 17199.37 15497.97 30499.68 10497.49 28699.08 25299.35 25395.41 27999.82 24197.70 20198.19 33799.01 291
MVS_111021_LR99.13 14899.03 15199.42 17799.58 15199.32 16697.91 31199.73 7998.68 19799.31 21699.48 22099.09 5999.66 32197.70 20199.77 16899.29 236
IS-MVSNet99.03 16998.85 18699.55 14299.80 5599.25 18099.73 1699.15 29499.37 10699.61 13699.71 9994.73 28599.81 25797.70 20199.88 9999.58 130
test-LLR97.15 29696.95 30097.74 31598.18 35195.02 33697.38 33396.10 34898.00 25697.81 33798.58 33690.04 33299.91 10497.69 20798.78 31598.31 329
test-mter96.23 31795.73 32097.74 31598.18 35195.02 33697.38 33396.10 34897.90 26597.81 33798.58 33679.12 36399.91 10497.69 20798.78 31598.31 329
XVS99.27 10799.11 12299.75 5599.71 10999.71 6399.37 8899.61 14299.29 11598.76 28799.47 22598.47 14399.88 15397.62 20999.73 18899.67 65
X-MVStestdata96.09 31894.87 32899.75 5599.71 10999.71 6399.37 8899.61 14299.29 11598.76 28761.30 36598.47 14399.88 15397.62 20999.73 18899.67 65
SMA-MVScopyleft99.19 13399.00 15999.73 6999.46 21599.73 5799.13 16299.52 20397.40 29099.57 14699.64 14098.93 7899.83 23197.61 21199.79 15899.63 94
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 30796.79 30696.46 33798.90 31690.71 36199.41 7898.68 31494.69 34398.14 32399.34 25686.32 35099.80 26297.60 21298.07 34198.88 300
PVSNet97.47 1598.42 24798.44 22798.35 29599.46 21596.26 32296.70 35099.34 25997.68 27699.00 25999.13 29097.40 22899.72 28997.59 21399.68 20699.08 278
new_pmnet98.88 19698.89 18298.84 27199.70 11697.62 29598.15 28099.50 21097.98 25999.62 13099.54 20298.15 17999.94 5497.55 21499.84 12198.95 294
IB-MVS95.41 2095.30 32894.46 33197.84 31198.76 33595.33 33497.33 33696.07 35096.02 32395.37 35797.41 35876.17 36599.96 3397.54 21595.44 35698.22 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 11399.11 12299.61 12298.38 34599.79 3599.57 5999.68 10499.61 6899.15 24399.71 9998.70 11099.91 10497.54 21599.68 20699.13 269
ZNCC-MVS99.22 12399.04 14999.77 3999.76 8399.73 5799.28 11399.56 17698.19 24899.14 24599.29 26598.84 9099.92 8697.53 21799.80 15399.64 89
CP-MVS99.23 11499.05 14399.75 5599.66 13499.66 8199.38 8499.62 13598.38 22799.06 25699.27 26998.79 9899.94 5497.51 21899.82 14099.66 75
SD-MVS99.01 17599.30 8598.15 30399.50 19499.40 14698.94 20399.61 14299.22 13099.75 7999.82 4899.54 2095.51 36097.48 21999.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 24198.29 24199.11 24098.96 31398.42 25797.54 32599.32 26297.53 28398.47 30898.15 35097.88 20099.82 24197.46 22099.24 29599.09 275
DeepC-MVS_fast98.47 599.23 11499.12 11999.56 13999.28 26999.22 18998.99 19399.40 24399.08 15099.58 14399.64 14098.90 8499.83 23197.44 22199.75 17399.63 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 11099.08 13399.76 4599.73 10299.70 7099.31 10299.59 16098.36 22999.36 20599.37 24398.80 9599.91 10497.43 22299.75 17399.68 58
ACMMPR99.23 11499.06 13999.76 4599.74 9999.69 7499.31 10299.59 16098.36 22999.35 20799.38 24298.61 12399.93 6797.43 22299.75 17399.67 65
Vis-MVSNet (Re-imp)98.77 20798.58 21399.34 20299.78 7198.88 23099.61 5199.56 17699.11 14899.24 22799.56 19493.00 30199.78 26897.43 22299.89 9199.35 224
MIMVSNet98.43 24698.20 24899.11 24099.53 17898.38 26199.58 5898.61 31898.96 16499.33 21299.76 7590.92 32099.81 25797.38 22599.76 17099.15 262
XVG-OURS-SEG-HR99.16 14298.99 16499.66 9499.84 3399.64 8898.25 27499.73 7998.39 22699.63 12399.43 23399.70 1199.90 12497.34 22698.64 32599.44 198
COLMAP_ROBcopyleft98.06 1299.45 6199.37 6999.70 8399.83 3799.70 7099.38 8499.78 5799.53 8099.67 10999.78 6599.19 4899.86 18697.32 22799.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 17198.81 19299.65 9999.58 15199.49 11998.58 24199.07 29898.40 22599.04 25799.25 27498.51 14199.80 26297.31 22899.51 25599.65 83
region2R99.23 11499.05 14399.77 3999.76 8399.70 7099.31 10299.59 16098.41 22399.32 21499.36 24898.73 10999.93 6797.29 22999.74 18199.67 65
APD-MVS_3200maxsize99.31 9999.16 10899.74 6199.53 17899.75 4899.27 11699.61 14299.19 13299.57 14699.64 14098.76 10499.90 12497.29 22999.62 22599.56 139
TAPA-MVS97.92 1398.03 27197.55 28599.46 16699.47 21099.44 13498.50 25499.62 13586.79 35499.07 25599.26 27298.26 16899.62 33297.28 23199.73 18899.31 232
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 10799.11 12299.73 6999.54 17399.74 5499.26 11799.62 13599.16 13899.52 16799.64 14098.41 15199.91 10497.27 23299.61 23299.54 149
RE-MVS-def99.13 11599.54 17399.74 5499.26 11799.62 13599.16 13899.52 16799.64 14098.57 12797.27 23299.61 23299.54 149
test_yl98.25 26097.95 26599.13 23899.17 28898.47 25299.00 18898.67 31698.97 16199.22 23299.02 30891.31 31499.69 30197.26 23498.93 30899.24 242
DCV-MVSNet98.25 26097.95 26599.13 23899.17 28898.47 25299.00 18898.67 31698.97 16199.22 23299.02 30891.31 31499.69 30197.26 23498.93 30899.24 242
PHI-MVS99.11 15498.95 17299.59 12699.13 29399.59 10599.17 14699.65 12497.88 26699.25 22499.46 22898.97 7499.80 26297.26 23499.82 14099.37 218
tfpnnormal99.43 6399.38 6699.60 12499.87 2799.75 4899.59 5699.78 5799.71 4299.90 2299.69 11298.85 8999.90 12497.25 23799.78 16499.15 262
PatchmatchNetpermissive97.65 28397.80 27697.18 32898.82 32892.49 35099.17 14698.39 32898.12 25098.79 28399.58 18390.71 32599.89 13897.23 23899.41 27199.16 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 18098.80 19499.56 13999.25 27499.43 13898.54 25099.27 27598.58 20698.80 28299.43 23398.53 13699.70 29597.22 23999.59 23799.54 149
HPM-MVScopyleft99.25 11099.07 13799.78 3799.81 5099.75 4899.61 5199.67 10997.72 27499.35 20799.25 27499.23 4599.92 8697.21 24099.82 14099.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DWT-MVSNet_test96.03 32095.80 31996.71 33598.50 34391.93 35399.25 12497.87 33795.99 32496.81 35097.61 35681.02 35799.66 32197.20 24197.98 34298.54 318
mPP-MVS99.19 13399.00 15999.76 4599.76 8399.68 7799.38 8499.54 18698.34 23899.01 25899.50 21398.53 13699.93 6797.18 24299.78 16499.66 75
ACMMPcopyleft99.25 11099.08 13399.74 6199.79 6599.68 7799.50 6599.65 12498.07 25499.52 16799.69 11298.57 12799.92 8697.18 24299.79 15899.63 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117299.23 11499.05 14399.74 6199.52 18399.75 4899.20 13599.61 14298.97 16199.48 17599.58 18398.41 15199.91 10497.15 24499.55 24499.57 136
abl_699.36 8499.23 10299.75 5599.71 10999.74 5499.33 9599.76 6599.07 15299.65 11799.63 15099.09 5999.92 8697.13 24599.76 17099.58 130
thisisatest051596.98 30096.42 30798.66 28499.42 22897.47 29897.27 33894.30 35797.24 29799.15 24398.86 32785.01 35199.87 16697.10 24699.39 27498.63 311
XVG-ACMP-BASELINE99.23 11499.10 13099.63 11099.82 4399.58 10898.83 21599.72 8898.36 22999.60 13899.71 9998.92 7999.91 10497.08 24799.84 12199.40 210
MSDG99.08 16098.98 16799.37 19799.60 14699.13 20197.54 32599.74 7698.84 18299.53 16599.55 20099.10 5799.79 26597.07 24899.86 11499.18 256
SteuartSystems-ACMMP99.30 10099.14 11299.76 4599.87 2799.66 8199.18 14199.60 15398.55 20999.57 14699.67 12999.03 6999.94 5497.01 24999.80 15399.69 52
Skip Steuart: Steuart Systems R&D Blog.
EPMVS96.53 31096.32 30897.17 32998.18 35192.97 34999.39 8289.95 36298.21 24698.61 29799.59 18186.69 34999.72 28996.99 25099.23 29798.81 306
MSP-MVS99.04 16898.79 19599.81 2699.78 7199.73 5799.35 9299.57 17198.54 21299.54 16098.99 31096.81 25299.93 6796.97 25199.53 25299.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 18498.70 20299.74 6199.52 18399.71 6398.86 21099.19 29098.47 21998.59 29999.06 30098.08 18499.91 10496.94 25299.60 23599.60 116
SR-MVS99.19 13399.00 15999.74 6199.51 18899.72 6199.18 14199.60 15398.85 17999.47 17799.58 18398.38 15699.92 8696.92 25399.54 25099.57 136
PGM-MVS99.20 13099.01 15699.77 3999.75 9399.71 6399.16 15299.72 8897.99 25899.42 18899.60 17598.81 9199.93 6796.91 25499.74 18199.66 75
HY-MVS98.23 998.21 26597.95 26598.99 25199.03 30998.24 26599.61 5198.72 31396.81 31298.73 28999.51 21094.06 29099.86 18696.91 25498.20 33598.86 302
MDTV_nov1_ep1397.73 28098.70 33890.83 36099.15 15498.02 33398.51 21498.82 27999.61 16890.98 31999.66 32196.89 25698.92 310
GST-MVS99.16 14298.96 17099.75 5599.73 10299.73 5799.20 13599.55 18198.22 24599.32 21499.35 25398.65 11999.91 10496.86 25799.74 18199.62 105
test_post199.14 15651.63 36789.54 33599.82 24196.86 257
SCA98.11 26798.36 23597.36 32399.20 28392.99 34898.17 27998.49 32498.24 24499.10 25199.57 19196.01 27299.94 5496.86 25799.62 22599.14 266
#test#99.12 15098.90 18199.76 4599.73 10299.70 7099.10 16999.59 16097.60 27999.36 20599.37 24398.80 9599.91 10496.84 26099.75 17399.68 58
XVG-OURS99.21 12899.06 13999.65 9999.82 4399.62 9497.87 31299.74 7698.36 22999.66 11399.68 12399.71 999.90 12496.84 26099.88 9999.43 204
LCM-MVSNet-Re99.28 10399.15 11199.67 8799.33 25999.76 4699.34 9399.97 298.93 16999.91 2099.79 5998.68 11299.93 6796.80 26299.56 24099.30 233
RPSCF99.18 13799.02 15399.64 10699.83 3799.85 1299.44 7599.82 3698.33 23999.50 17399.78 6597.90 19799.65 32896.78 26399.83 13199.44 198
旧先验297.94 30795.33 33398.94 26399.88 15396.75 264
MDTV_nov1_ep13_2view91.44 35899.14 15697.37 29299.21 23491.78 31296.75 26499.03 287
CLD-MVS98.76 20998.57 21499.33 20499.57 16198.97 21897.53 32799.55 18196.41 31799.27 22299.13 29099.07 6499.78 26896.73 26699.89 9199.23 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 26897.98 26398.48 29099.27 27196.48 31999.40 8099.07 29898.81 18499.23 22899.57 19190.11 33199.87 16696.69 26799.64 22299.09 275
baseline296.83 30396.28 30998.46 29199.09 30396.91 31398.83 21593.87 35997.23 29896.23 35498.36 34688.12 33899.90 12496.68 26898.14 33998.57 317
cascas96.99 29996.82 30597.48 31997.57 35895.64 33196.43 35299.56 17691.75 34997.13 34997.61 35695.58 27898.63 35796.68 26899.11 29998.18 338
LPG-MVS_test99.22 12399.05 14399.74 6199.82 4399.63 9299.16 15299.73 7997.56 28099.64 11999.69 11299.37 2999.89 13896.66 27099.87 10799.69 52
LGP-MVS_train99.74 6199.82 4399.63 9299.73 7997.56 28099.64 11999.69 11299.37 2999.89 13896.66 27099.87 10799.69 52
TinyColmap98.97 18198.93 17399.07 24699.46 21598.19 26997.75 31699.75 7198.79 18799.54 16099.70 10698.97 7499.62 33296.63 27299.83 13199.41 208
LF4IMVS99.01 17598.92 17799.27 21899.71 10999.28 17298.59 24099.77 6098.32 24099.39 20299.41 23598.62 12199.84 22096.62 27399.84 12198.69 310
NCCC98.82 20398.57 21499.58 13099.21 28099.31 16798.61 23799.25 28098.65 19998.43 30999.26 27297.86 20199.81 25796.55 27499.27 29299.61 112
OPU-MVS99.29 21499.12 29599.44 13499.20 13599.40 23799.00 7098.84 35696.54 27599.60 23599.58 130
F-COLMAP98.74 21298.45 22599.62 11999.57 16199.47 12398.84 21399.65 12496.31 32098.93 26499.19 28797.68 21499.87 16696.52 27699.37 27999.53 154
ADS-MVSNet297.78 27897.66 28498.12 30599.14 29195.36 33399.22 13298.75 31296.97 30698.25 31599.64 14090.90 32199.94 5496.51 27799.56 24099.08 278
ADS-MVSNet97.72 28297.67 28397.86 31099.14 29194.65 33999.22 13298.86 30696.97 30698.25 31599.64 14090.90 32199.84 22096.51 27799.56 24099.08 278
PatchMatch-RL98.68 21998.47 22399.30 21399.44 22199.28 17298.14 28299.54 18697.12 30499.11 24999.25 27497.80 20699.70 29596.51 27799.30 28798.93 296
CMPMVSbinary77.52 2398.50 23898.19 25199.41 18598.33 34799.56 11199.01 18699.59 16095.44 33199.57 14699.80 5395.64 27699.46 35096.47 28099.92 7399.21 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
xxxxxxxxxxxxxcwj99.11 15498.96 17099.54 14699.53 17899.25 18098.29 27099.76 6599.07 15299.42 18899.61 16898.86 8799.87 16696.45 28199.68 20699.49 177
SF-MVS99.10 15898.93 17399.62 11999.58 15199.51 11799.13 16299.65 12497.97 26099.42 18899.61 16898.86 8799.87 16696.45 28199.68 20699.49 177
DPE-MVS99.14 14698.92 17799.82 2399.57 16199.77 4098.74 23099.60 15398.55 20999.76 7499.69 11298.23 17299.92 8696.39 28399.75 17399.76 37
gm-plane-assit97.59 35689.02 36493.47 34598.30 34799.84 22096.38 284
AllTest99.21 12899.07 13799.63 11099.78 7199.64 8899.12 16699.83 3198.63 20199.63 12399.72 9298.68 11299.75 28296.38 28499.83 13199.51 166
TestCases99.63 11099.78 7199.64 8899.83 3198.63 20199.63 12399.72 9298.68 11299.75 28296.38 28499.83 13199.51 166
testdata99.42 17799.51 18898.93 22599.30 26996.20 32198.87 27499.40 23798.33 16399.89 13896.29 28799.28 28999.44 198
dp96.86 30297.07 29696.24 33998.68 33990.30 36399.19 14098.38 32997.35 29398.23 31799.59 18187.23 34099.82 24196.27 28898.73 32398.59 314
tpmvs97.39 29197.69 28196.52 33698.41 34491.76 35499.30 10598.94 30597.74 27397.85 33699.55 20092.40 30699.73 28796.25 28998.73 32398.06 340
KD-MVS_2432*160095.89 32195.41 32497.31 32694.96 36093.89 34297.09 34399.22 28597.23 29898.88 27199.04 30479.23 36199.54 34196.24 29096.81 35098.50 323
miper_refine_blended95.89 32195.41 32497.31 32694.96 36093.89 34297.09 34399.22 28597.23 29898.88 27199.04 30479.23 36199.54 34196.24 29096.81 35098.50 323
ACMP97.51 1499.05 16598.84 18899.67 8799.78 7199.55 11498.88 20699.66 11397.11 30599.47 17799.60 17599.07 6499.89 13896.18 29299.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 19298.72 19899.44 17299.39 23499.42 14198.58 24199.64 13097.31 29599.44 18299.62 15998.59 12599.69 30196.17 29399.79 15899.22 247
DP-MVS Recon98.50 23898.23 24599.31 21199.49 19999.46 12798.56 24699.63 13294.86 34098.85 27699.37 24397.81 20599.59 33896.08 29499.44 26598.88 300
tpm cat196.78 30496.98 29996.16 34098.85 32390.59 36299.08 17699.32 26292.37 34897.73 34299.46 22891.15 31799.69 30196.07 29598.80 31498.21 335
tpm296.35 31396.22 31096.73 33398.88 32291.75 35599.21 13498.51 32293.27 34697.89 33399.21 28384.83 35299.70 29596.04 29698.18 33898.75 309
test_040299.22 12399.14 11299.45 17099.79 6599.43 13899.28 11399.68 10499.54 7899.40 20199.56 19499.07 6499.82 24196.01 29799.96 4199.11 270
ITE_SJBPF99.38 19499.63 14099.44 13499.73 7998.56 20799.33 21299.53 20598.88 8699.68 31296.01 29799.65 22099.02 290
test_prior398.62 22398.34 23899.46 16699.35 24499.22 18997.95 30599.39 24697.87 26798.05 32599.05 30197.90 19799.69 30195.99 29999.49 25999.48 182
test_prior297.95 30597.87 26798.05 32599.05 30197.90 19795.99 29999.49 259
testdata299.89 13895.99 299
原ACMM199.37 19799.47 21098.87 23299.27 27596.74 31498.26 31499.32 25897.93 19599.82 24195.96 30299.38 27599.43 204
新几何199.52 14999.50 19499.22 18999.26 27795.66 33098.60 29899.28 26797.67 21599.89 13895.95 30399.32 28599.45 193
MP-MVScopyleft99.06 16298.83 19099.76 4599.76 8399.71 6399.32 9899.50 21098.35 23498.97 26099.48 22098.37 15799.92 8695.95 30399.75 17399.63 94
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
wuyk23d97.58 28699.13 11592.93 34299.69 11999.49 11999.52 6399.77 6097.97 26099.96 899.79 5999.84 399.94 5495.85 30599.82 14079.36 356
HQP_MVS98.90 19298.68 20499.55 14299.58 15199.24 18598.80 22399.54 18698.94 16699.14 24599.25 27497.24 23699.82 24195.84 30699.78 16499.60 116
plane_prior599.54 18699.82 24195.84 30699.78 16499.60 116
无先验98.01 29699.23 28495.83 32699.85 20495.79 30899.44 198
112198.56 23198.24 24499.52 14999.49 19999.24 18599.30 10599.22 28595.77 32798.52 30499.29 26597.39 23099.85 20495.79 30899.34 28299.46 191
CPTT-MVS98.74 21298.44 22799.64 10699.61 14499.38 15199.18 14199.55 18196.49 31699.27 22299.37 24397.11 24499.92 8695.74 31099.67 21399.62 105
PLCcopyleft97.35 1698.36 25297.99 26199.48 16199.32 26099.24 18598.50 25499.51 20695.19 33698.58 30098.96 31896.95 24999.83 23195.63 31199.25 29399.37 218
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 23098.34 23899.28 21699.18 28799.10 20798.34 26599.41 23698.48 21898.52 30498.98 31397.05 24699.78 26895.59 31299.50 25798.96 293
131498.00 27397.90 27498.27 30198.90 31697.45 30099.30 10599.06 30094.98 33797.21 34799.12 29498.43 14899.67 31795.58 31398.56 32897.71 345
agg_prior198.33 25797.92 27199.57 13599.35 24499.36 15797.99 30099.39 24694.85 34197.76 34098.98 31398.03 18699.85 20495.49 31499.44 26599.51 166
PVSNet_095.53 1995.85 32495.31 32697.47 32098.78 33393.48 34695.72 35499.40 24396.18 32297.37 34397.73 35495.73 27599.58 33995.49 31481.40 35899.36 221
MAR-MVS98.24 26297.92 27199.19 23298.78 33399.65 8699.17 14699.14 29595.36 33298.04 32798.81 33097.47 22599.72 28995.47 31699.06 30198.21 335
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 26397.89 27599.26 22099.19 28599.26 17699.65 4499.69 10191.33 35198.14 32399.77 7298.28 16699.96 3395.41 31799.55 24498.58 316
train_agg98.35 25597.95 26599.57 13599.35 24499.35 16198.11 28699.41 23694.90 33897.92 33198.99 31098.02 18899.85 20495.38 31899.44 26599.50 172
9.1498.64 20599.45 21898.81 22099.60 15397.52 28499.28 22199.56 19498.53 13699.83 23195.36 31999.64 222
APD-MVScopyleft98.87 19898.59 21099.71 7999.50 19499.62 9499.01 18699.57 17196.80 31399.54 16099.63 15098.29 16599.91 10495.24 32099.71 19899.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
AdaColmapbinary98.60 22598.35 23799.38 19499.12 29599.22 18998.67 23699.42 23597.84 27198.81 28099.27 26997.32 23499.81 25795.14 32199.53 25299.10 272
test9_res95.10 32299.44 26599.50 172
CDPH-MVS98.56 23198.20 24899.61 12299.50 19499.46 12798.32 26899.41 23695.22 33499.21 23499.10 29798.34 16199.82 24195.09 32399.66 21799.56 139
ETH3D-3000-0.198.77 20798.50 22299.59 12699.47 21099.53 11698.77 22899.60 15397.33 29499.23 22899.50 21397.91 19699.83 23195.02 32499.67 21399.41 208
BH-untuned98.22 26498.09 25798.58 28799.38 23797.24 30598.55 24798.98 30497.81 27299.20 23998.76 33297.01 24799.65 32894.83 32598.33 33398.86 302
BP-MVS94.73 326
HQP-MVS98.36 25298.02 26099.39 19099.31 26198.94 22197.98 30199.37 25397.45 28798.15 31998.83 32896.67 25399.70 29594.73 32699.67 21399.53 154
QAPM98.40 25097.99 26199.65 9999.39 23499.47 12399.67 3599.52 20391.70 35098.78 28599.80 5398.55 13099.95 4394.71 32899.75 17399.53 154
ETH3D cwj APD-0.1698.50 23898.16 25499.51 15299.04 30899.39 14898.47 25699.47 22196.70 31598.78 28599.33 25797.62 22299.86 18694.69 32999.38 27599.28 238
agg_prior294.58 33099.46 26499.50 172
BH-RMVSNet98.41 24898.14 25599.21 22999.21 28098.47 25298.60 23998.26 33198.35 23498.93 26499.31 26097.20 24199.66 32194.32 33199.10 30099.51 166
E-PMN97.14 29897.43 28696.27 33898.79 33191.62 35695.54 35599.01 30399.44 9698.88 27199.12 29492.78 30299.68 31294.30 33299.03 30497.50 346
MG-MVS98.52 23798.39 23298.94 25599.15 29097.39 30298.18 27799.21 28998.89 17699.23 22899.63 15097.37 23299.74 28494.22 33399.61 23299.69 52
API-MVS98.38 25198.39 23298.35 29598.83 32599.26 17699.14 15699.18 29198.59 20598.66 29498.78 33198.61 12399.57 34094.14 33499.56 24096.21 353
PAPM_NR98.36 25298.04 25999.33 20499.48 20598.93 22598.79 22699.28 27497.54 28298.56 30298.57 33897.12 24399.69 30194.09 33598.90 31299.38 215
ZD-MVS99.43 22399.61 10099.43 23396.38 31899.11 24999.07 29997.86 20199.92 8694.04 33699.49 259
DPM-MVS98.28 25897.94 26999.32 20899.36 24299.11 20397.31 33798.78 31196.88 30898.84 27799.11 29697.77 20899.61 33694.03 33799.36 28099.23 245
gg-mvs-nofinetune95.87 32395.17 32797.97 30798.19 35096.95 31199.69 2889.23 36399.89 1196.24 35399.94 1281.19 35699.51 34693.99 33898.20 33597.44 347
PMVScopyleft92.94 2198.82 20398.81 19298.85 26999.84 3397.99 28199.20 13599.47 22199.71 4299.42 18899.82 4898.09 18299.47 34893.88 33999.85 11799.07 283
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testtj98.56 23198.17 25399.72 7599.45 21899.60 10298.88 20699.50 21096.88 30899.18 24099.48 22097.08 24599.92 8693.69 34099.38 27599.63 94
EMVS96.96 30197.28 28995.99 34198.76 33591.03 35995.26 35698.61 31899.34 10998.92 26798.88 32693.79 29399.66 32192.87 34199.05 30297.30 350
BH-w/o97.20 29597.01 29897.76 31399.08 30495.69 33098.03 29598.52 32195.76 32897.96 33098.02 35195.62 27799.47 34892.82 34297.25 34998.12 339
TR-MVS97.44 29097.15 29598.32 29798.53 34297.46 29998.47 25697.91 33696.85 31098.21 31898.51 34296.42 26199.51 34692.16 34397.29 34897.98 342
OpenMVS_ROBcopyleft97.31 1797.36 29396.84 30498.89 26899.29 26799.45 13298.87 20999.48 21786.54 35699.44 18299.74 8297.34 23399.86 18691.61 34499.28 28997.37 349
GG-mvs-BLEND97.36 32397.59 35696.87 31499.70 2288.49 36494.64 35897.26 36180.66 35899.12 35391.50 34596.50 35396.08 355
DeepMVS_CXcopyleft97.98 30699.69 11996.95 31199.26 27775.51 35895.74 35698.28 34896.47 25999.62 33291.23 34697.89 34497.38 348
ETH3 D test640097.76 27997.19 29499.50 15599.38 23799.26 17698.34 26599.49 21592.99 34798.54 30399.20 28595.92 27499.82 24191.14 34799.66 21799.40 210
PAPR97.56 28797.07 29699.04 24998.80 33098.11 27597.63 32199.25 28094.56 34498.02 32998.25 34997.43 22799.68 31290.90 34898.74 32199.33 227
MVS95.72 32694.63 33098.99 25198.56 34197.98 28699.30 10598.86 30672.71 35997.30 34499.08 29898.34 16199.74 28489.21 34998.33 33399.26 239
thres600view796.60 30996.16 31197.93 30899.63 14096.09 32699.18 14197.57 34098.77 19098.72 29097.32 35987.04 34299.72 28988.57 35098.62 32697.98 342
FPMVS96.32 31495.50 32298.79 27799.60 14698.17 27198.46 26198.80 31097.16 30296.28 35199.63 15082.19 35599.09 35488.45 35198.89 31399.10 272
PCF-MVS96.03 1896.73 30695.86 31799.33 20499.44 22199.16 19896.87 34899.44 23086.58 35598.95 26299.40 23794.38 28899.88 15387.93 35299.80 15398.95 294
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 31296.03 31497.47 32099.63 14095.93 32799.18 14197.57 34098.75 19498.70 29297.31 36087.04 34299.67 31787.62 35398.51 33096.81 351
tfpn200view996.30 31595.89 31597.53 31899.58 15196.11 32499.00 18897.54 34398.43 22098.52 30496.98 36286.85 34499.67 31787.62 35398.51 33096.81 351
thres40096.40 31195.89 31597.92 30999.58 15196.11 32499.00 18897.54 34398.43 22098.52 30496.98 36286.85 34499.67 31787.62 35398.51 33097.98 342
thres20096.09 31895.68 32197.33 32599.48 20596.22 32398.53 25197.57 34098.06 25598.37 31196.73 36486.84 34699.61 33686.99 35698.57 32796.16 354
MVEpermissive92.54 2296.66 30896.11 31298.31 29999.68 12897.55 29797.94 30795.60 35399.37 10690.68 36098.70 33496.56 25598.61 35886.94 35799.55 24498.77 308
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM95.61 32794.71 32998.31 29999.12 29596.63 31796.66 35198.46 32590.77 35296.25 35298.68 33593.01 30099.69 30181.60 35897.86 34598.62 312
test12329.31 32933.05 33418.08 34325.93 36512.24 36597.53 32710.93 36611.78 36024.21 36150.08 36921.04 3668.60 36123.51 35932.43 36033.39 357
testmvs28.94 33033.33 33215.79 34426.03 3649.81 36696.77 34915.67 36511.55 36123.87 36250.74 36819.03 3678.53 36223.21 36033.07 35929.03 358
uanet_test8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k24.88 33133.17 3330.00 3450.00 3660.00 3670.00 35799.62 1350.00 3620.00 36399.13 29099.82 40.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas16.61 33222.14 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 199.28 400.00 3630.00 3610.00 3610.00 359
sosnet-low-res8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
sosnet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
Regformer8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.26 33911.02 3420.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.16 2880.00 3680.00 3630.00 3610.00 3610.00 359
uanet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
test_241102_ONE99.69 11999.82 2599.54 18699.12 14799.82 5099.49 21898.91 8199.52 345
save fliter99.53 17899.25 18098.29 27099.38 25299.07 152
test072699.69 11999.80 3399.24 12599.57 17199.16 13899.73 9199.65 13898.35 159
GSMVS99.14 266
test_part299.62 14399.67 7999.55 158
sam_mvs190.81 32499.14 266
sam_mvs90.52 328
MTGPAbinary99.53 195
test_post52.41 36690.25 33099.86 186
patchmatchnet-post99.62 15990.58 32699.94 54
MTMP99.09 17398.59 320
TEST999.35 24499.35 16198.11 28699.41 23694.83 34297.92 33198.99 31098.02 18899.85 204
test_899.34 25499.31 16798.08 29099.40 24394.90 33897.87 33598.97 31698.02 18899.84 220
agg_prior99.35 24499.36 15799.39 24697.76 34099.85 204
test_prior499.19 19698.00 298
test_prior99.46 16699.35 24499.22 18999.39 24699.69 30199.48 182
新几何298.04 294
旧先验199.49 19999.29 17099.26 27799.39 24197.67 21599.36 28099.46 191
原ACMM297.92 309
test22299.51 18899.08 21097.83 31499.29 27195.21 33598.68 29399.31 26097.28 23599.38 27599.43 204
segment_acmp98.37 157
testdata197.72 31797.86 270
test1299.54 14699.29 26799.33 16499.16 29398.43 30997.54 22399.82 24199.47 26299.48 182
plane_prior799.58 15199.38 151
plane_prior699.47 21099.26 17697.24 236
plane_prior499.25 274
plane_prior399.31 16798.36 22999.14 245
plane_prior298.80 22398.94 166
plane_prior199.51 188
plane_prior99.24 18598.42 26297.87 26799.71 198
n20.00 367
nn0.00 367
door-mid99.83 31
test1199.29 271
door99.77 60
HQP5-MVS98.94 221
HQP-NCC99.31 26197.98 30197.45 28798.15 319
ACMP_Plane99.31 26197.98 30197.45 28798.15 319
HQP4-MVS98.15 31999.70 29599.53 154
HQP3-MVS99.37 25399.67 213
HQP2-MVS96.67 253
NP-MVS99.40 23299.13 20198.83 328
ACMMP++_ref99.94 61
ACMMP++99.79 158
Test By Simon98.41 151