This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
v192192099.56 4299.57 4099.55 14899.75 9799.11 21299.05 19099.61 14799.15 15599.88 3299.71 10599.08 6799.87 17899.90 299.97 3399.66 78
v124099.56 4299.58 3799.51 15999.80 5899.00 22399.00 19999.65 12999.15 15599.90 2299.75 8599.09 6399.88 16599.90 299.96 4599.67 68
v1099.69 2199.69 1899.66 9999.81 5399.39 15799.66 4599.75 7599.60 8399.92 1899.87 3298.75 11299.86 19899.90 299.99 1299.73 44
v119299.57 3999.57 4099.57 14199.77 8299.22 19899.04 19299.60 15999.18 14599.87 3999.72 9899.08 6799.85 21799.89 599.98 2499.66 78
v14419299.55 4599.54 4599.58 13699.78 7499.20 20499.11 17999.62 14099.18 14599.89 2699.72 9898.66 12399.87 17899.88 699.97 3399.66 78
v899.68 2499.69 1899.65 10499.80 5899.40 15599.66 4599.76 6899.64 6999.93 1499.85 4198.66 12399.84 23499.88 699.99 1299.71 48
v114499.54 4799.53 4999.59 13299.79 6899.28 18199.10 18099.61 14799.20 14399.84 4599.73 9298.67 12199.84 23499.86 899.98 2499.64 95
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2799.94 1199.91 2099.13 6099.96 3599.83 999.99 1299.83 18
v2v48299.50 5099.47 5399.58 13699.78 7499.25 18999.14 16799.58 17599.25 13499.81 5999.62 16598.24 17699.84 23499.83 999.97 3399.64 95
V4299.56 4299.54 4599.63 11699.79 6899.46 13699.39 9199.59 16699.24 13699.86 4099.70 11298.55 13799.82 25599.79 1199.95 5299.60 126
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2399.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4499.68 3799.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2899.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 50100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2499.94 1199.95 1299.73 899.90 13399.65 1699.97 3399.69 55
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3499.77 6399.78 3999.93 1499.89 2697.94 20199.92 9199.65 1699.98 2499.62 111
DROMVSNet99.69 2199.69 1899.68 8999.71 11399.91 299.76 1399.96 499.86 1999.51 18099.39 25399.57 2099.93 7199.64 1899.86 11999.20 264
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13699.74 1794.97 36799.78 3999.88 3299.88 2993.66 30599.97 1799.61 1999.95 5299.64 95
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3599.90 599.37 9799.79 5599.83 3099.88 3299.85 4198.42 15799.90 13399.60 2099.73 19699.49 188
Anonymous2024052199.44 6599.42 6599.49 16599.89 2198.96 22999.62 5399.76 6899.85 2499.82 5299.88 2996.39 27199.97 1799.59 2199.98 2499.55 152
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 5299.91 2099.89 2699.60 1999.87 17899.59 2199.74 18999.71 48
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3699.93 1499.93 1498.54 13999.93 7199.59 2199.98 2499.76 39
EU-MVSNet99.39 8299.62 2798.72 29199.88 2596.44 33299.56 7099.85 2699.90 799.90 2299.85 4198.09 18999.83 24599.58 2499.95 5299.90 4
mvs_anonymous99.28 10999.39 6998.94 26599.19 29797.81 30199.02 19599.55 18899.78 3999.85 4299.80 5998.24 17699.86 19899.57 2599.50 27099.15 275
test111197.74 28798.16 26196.49 34899.60 15289.86 37799.71 2791.21 37499.89 1199.88 3299.87 3293.73 30499.90 13399.56 2699.99 1299.70 51
lessismore_v099.64 11199.86 3199.38 16090.66 37599.89 2699.83 4794.56 29599.97 1799.56 2699.92 7799.57 146
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4399.89 2699.87 3299.63 1499.87 17899.54 2899.92 7799.63 100
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2899.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RRT_test8_iter0597.35 30397.25 30097.63 32798.81 34493.13 35999.26 12899.89 1599.51 9299.83 5099.68 12979.03 37799.88 16599.53 3099.72 20299.89 8
DSMNet-mixed99.48 5499.65 2498.95 26499.71 11397.27 31699.50 7599.82 3999.59 8599.41 20599.85 4199.62 16100.00 199.53 3099.89 9599.59 135
test250694.73 33894.59 34095.15 35499.59 15685.90 37999.75 1574.01 38099.89 1199.71 10399.86 3879.00 37899.90 13399.52 3299.99 1299.65 86
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3399.97 3399.84 14
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2599.86 1399.72 2399.78 6099.90 799.82 5299.83 4798.45 15499.87 17899.51 3399.97 3399.86 11
UA-Net99.78 1399.76 1499.86 1699.72 11099.71 7199.91 399.95 599.96 299.71 10399.91 2099.15 5599.97 1799.50 35100.00 199.90 4
PMMVS299.48 5499.45 5799.57 14199.76 8698.99 22498.09 30099.90 1498.95 17799.78 7099.58 19199.57 2099.93 7199.48 3699.95 5299.79 30
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13399.75 5599.62 5399.69 10699.85 2499.80 6299.81 5798.81 9799.91 11399.47 3799.88 10399.70 51
ECVR-MVScopyleft97.73 28898.04 26796.78 34199.59 15690.81 37399.72 2390.43 37699.89 1199.86 4099.86 3893.60 30699.89 15099.46 3899.99 1299.65 86
nrg03099.70 1999.66 2299.82 2399.76 8699.84 1999.61 5899.70 10099.93 499.78 7099.68 12999.10 6199.78 28299.45 3999.96 4599.83 18
TAMVS99.49 5299.45 5799.63 11699.48 21699.42 15099.45 8299.57 17799.66 6599.78 7099.83 4797.85 21099.86 19899.44 4099.96 4599.61 122
GeoE99.69 2199.66 2299.78 3799.76 8699.76 5199.60 6399.82 3999.46 10499.75 8399.56 20299.63 1499.95 4599.43 4199.88 10399.62 111
new-patchmatchnet99.35 9299.57 4098.71 29399.82 4696.62 33098.55 25999.75 7599.50 9399.88 3299.87 3299.31 3799.88 16599.43 41100.00 199.62 111
test20.0399.55 4599.54 4599.58 13699.79 6899.37 16399.02 19599.89 1599.60 8399.82 5299.62 16598.81 9799.89 15099.43 4199.86 11999.47 198
MVSFormer99.41 7499.44 5999.31 22099.57 17198.40 27099.77 1199.80 4999.73 4399.63 13099.30 27598.02 19599.98 799.43 4199.69 21199.55 152
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4399.97 699.92 1799.77 799.98 799.43 41100.00 199.90 4
Anonymous2023121199.62 3599.57 4099.76 4799.61 15099.60 11099.81 999.73 8399.82 3299.90 2299.90 2297.97 20099.86 19899.42 4699.96 4599.80 24
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8799.70 2899.14 30799.65 6799.89 2699.90 2296.20 27699.94 5799.42 4699.92 7799.67 68
CS-MVS99.40 7799.43 6299.29 22399.44 23199.72 6899.36 10099.91 1099.71 4799.28 23398.83 34399.22 4899.86 19899.40 4899.77 17598.29 345
bset_n11_16_dypcd98.69 22398.45 23099.42 18699.69 12498.52 26296.06 36596.80 36099.71 4799.73 9699.54 21195.14 28899.96 3599.39 4999.95 5299.79 30
UGNet99.38 8499.34 7999.49 16598.90 33198.90 23999.70 2899.35 26799.86 1998.57 31599.81 5798.50 14999.93 7199.38 5099.98 2499.66 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6899.59 6599.82 3999.39 11599.82 5299.84 4699.38 2999.91 11399.38 5099.93 7399.80 24
FIs99.65 3199.58 3799.84 1999.84 3599.85 1499.66 4599.75 7599.86 1999.74 9299.79 6598.27 17499.85 21799.37 5299.93 7399.83 18
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2099.85 2699.70 5299.92 1899.93 1499.45 2399.97 1799.36 53100.00 199.85 13
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2599.66 8999.69 3499.92 799.67 6199.77 7599.75 8599.61 1799.98 799.35 5499.98 2499.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_part198.63 22798.26 25099.75 5799.40 24399.49 12999.67 4199.68 10999.86 1999.88 3299.86 3886.73 36099.93 7199.34 5599.97 3399.81 23
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2599.25 18998.78 23899.88 1898.66 21099.96 899.79 6597.45 23399.93 7199.34 5599.99 1299.78 32
CDS-MVSNet99.22 12999.13 12199.50 16299.35 25599.11 21298.96 21199.54 19499.46 10499.61 14499.70 11296.31 27399.83 24599.34 5599.88 10399.55 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 18299.16 11498.51 29899.75 9795.90 34098.07 30399.84 3299.84 2799.89 2699.73 9296.01 28099.99 599.33 58100.00 199.63 100
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3499.47 13298.07 30399.83 3498.64 21299.89 2699.60 18392.57 314100.00 199.33 5899.97 3399.72 45
pmmvs599.19 13999.11 12899.42 18699.76 8698.88 24098.55 25999.73 8398.82 19599.72 9899.62 16596.56 26299.82 25599.32 6099.95 5299.56 149
v14899.40 7799.41 6699.39 19999.76 8698.94 23199.09 18499.59 16699.17 14999.81 5999.61 17498.41 15899.69 31599.32 6099.94 6599.53 165
baseline99.63 3299.62 2799.66 9999.80 5899.62 10299.44 8599.80 4999.71 4799.72 9899.69 11899.15 5599.83 24599.32 6099.94 6599.53 165
CVMVSNet98.61 22998.88 18897.80 32299.58 16193.60 35799.26 12899.64 13599.66 6599.72 9899.67 13593.26 30899.93 7199.30 6399.81 15599.87 9
PS-CasMVS99.66 2699.58 3799.89 799.80 5899.85 1499.66 4599.73 8399.62 7399.84 4599.71 10598.62 12799.96 3599.30 6399.96 4599.86 11
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5899.87 1099.67 4199.71 9599.72 4699.84 4599.78 7198.67 12199.97 1799.30 6399.95 5299.80 24
tmp_tt95.75 33495.42 33296.76 34289.90 37994.42 35298.86 22197.87 35078.01 37099.30 23299.69 11897.70 21795.89 37499.29 6698.14 35299.95 1
PEN-MVS99.66 2699.59 3499.89 799.83 3999.87 1099.66 4599.73 8399.70 5299.84 4599.73 9298.56 13699.96 3599.29 6699.94 6599.83 18
WR-MVS_H99.61 3799.53 4999.87 1499.80 5899.83 2499.67 4199.75 7599.58 8699.85 4299.69 11898.18 18599.94 5799.28 6899.95 5299.83 18
IterMVS98.97 18699.16 11498.42 30299.74 10395.64 34398.06 30599.83 3499.83 3099.85 4299.74 8896.10 27999.99 599.27 69100.00 199.63 100
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3398.61 22998.34 24399.44 18099.60 15298.67 25199.27 12699.44 23999.68 5799.32 22399.49 22892.50 317100.00 199.24 7096.51 36799.65 86
hse-mvs298.52 24398.30 24799.16 24499.29 27898.60 25898.77 23999.02 31499.68 5799.32 22399.04 31792.50 31799.85 21799.24 7097.87 35899.03 300
FMVSNet199.66 2699.63 2699.73 7399.78 7499.77 4499.68 3799.70 10099.67 6199.82 5299.83 4798.98 7899.90 13399.24 7099.97 3399.53 165
casdiffmvs99.63 3299.61 3199.67 9299.79 6899.59 11399.13 17399.85 2699.79 3899.76 7799.72 9899.33 3699.82 25599.21 7399.94 6599.59 135
CP-MVSNet99.54 4799.43 6299.87 1499.76 8699.82 2899.57 6899.61 14799.54 8799.80 6299.64 14697.79 21499.95 4599.21 7399.94 6599.84 14
DELS-MVS99.34 9799.30 9099.48 16999.51 19899.36 16698.12 29699.53 20399.36 11999.41 20599.61 17499.22 4899.87 17899.21 7399.68 21699.20 264
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RRT_MVS98.75 21598.54 22399.41 19498.14 36998.61 25798.98 20899.66 11899.31 12599.84 4599.75 8591.98 32099.98 799.20 7699.95 5299.62 111
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19899.58 11698.98 20899.60 15999.43 11299.70 10699.36 26197.70 21799.88 16599.20 7699.87 11299.59 135
CANet99.11 16099.05 14999.28 22698.83 34098.56 25998.71 24799.41 24699.25 13499.23 24199.22 29497.66 22699.94 5799.19 7899.97 3399.33 238
EI-MVSNet-UG-set99.48 5499.50 5199.42 18699.57 17198.65 25699.24 13699.46 23499.68 5799.80 6299.66 13998.99 7799.89 15099.19 7899.90 8799.72 45
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27199.59 15698.23 27898.47 26899.66 11899.61 7799.68 11198.94 33499.39 2599.97 1799.18 8099.55 25798.51 335
xiu_mvs_v1_base99.23 12099.34 7998.91 27199.59 15698.23 27898.47 26899.66 11899.61 7799.68 11198.94 33499.39 2599.97 1799.18 8099.55 25798.51 335
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27199.59 15698.23 27898.47 26899.66 11899.61 7799.68 11198.94 33499.39 2599.97 1799.18 8099.55 25798.51 335
MVS_030498.88 20198.71 20499.39 19998.85 33898.91 23899.45 8299.30 27998.56 21997.26 35999.68 12996.18 27799.96 3599.17 8399.94 6599.29 247
VPNet99.46 6199.37 7499.71 8399.82 4699.59 11399.48 7999.70 10099.81 3399.69 10999.58 19197.66 22699.86 19899.17 8399.44 27899.67 68
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 22199.56 11998.97 21099.61 14799.43 11299.67 11699.28 28097.85 21099.95 4599.17 8399.81 15599.65 86
DU-MVS99.33 10199.21 10999.71 8399.43 23499.56 11998.83 22699.53 20399.38 11699.67 11699.36 26197.67 22299.95 4599.17 8399.81 15599.63 100
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18699.57 17198.66 25399.24 13699.46 23499.67 6199.79 6799.65 14498.97 8099.89 15099.15 8799.89 9599.71 48
EI-MVSNet99.38 8499.44 5999.21 23899.58 16198.09 28999.26 12899.46 23499.62 7399.75 8399.67 13598.54 13999.85 21799.15 8799.92 7799.68 61
VNet99.18 14399.06 14599.56 14599.24 28899.36 16699.33 10599.31 27699.67 6199.47 18699.57 19996.48 26599.84 23499.15 8799.30 29999.47 198
EG-PatchMatch MVS99.57 3999.56 4499.62 12599.77 8299.33 17399.26 12899.76 6899.32 12499.80 6299.78 7199.29 3999.87 17899.15 8799.91 8699.66 78
PVSNet_Blended_VisFu99.40 7799.38 7199.44 18099.90 1998.66 25398.94 21499.91 1097.97 27299.79 6799.73 9299.05 7299.97 1799.15 8799.99 1299.68 61
IterMVS-LS99.41 7499.47 5399.25 23399.81 5398.09 28998.85 22399.76 6899.62 7399.83 5099.64 14698.54 13999.97 1799.15 8799.99 1299.68 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 16199.64 9699.30 11599.63 13799.61 7799.71 10399.56 20298.76 11099.96 3599.14 9399.92 7799.68 61
MVSTER98.47 25098.22 25399.24 23599.06 31798.35 27599.08 18799.46 23499.27 13099.75 8399.66 13988.61 35099.85 21799.14 9399.92 7799.52 175
CS-MVS-test99.43 6699.40 6899.53 15499.51 19899.84 1999.60 6399.94 699.52 9199.10 26498.89 33999.24 4699.90 13399.11 9599.66 22798.84 319
Anonymous2023120699.35 9299.31 8599.47 17199.74 10399.06 22299.28 12399.74 8099.23 13899.72 9899.53 21497.63 22899.88 16599.11 9599.84 12899.48 193
MVS_Test99.28 10999.31 8599.19 24199.35 25598.79 24599.36 10099.49 22499.17 14999.21 24799.67 13598.78 10699.66 33599.09 9799.66 22799.10 285
testgi99.29 10899.26 10299.37 20699.75 9798.81 24398.84 22499.89 1598.38 23999.75 8399.04 31799.36 3499.86 19899.08 9899.25 30599.45 204
1112_ss99.05 17098.84 19399.67 9299.66 13999.29 17998.52 26499.82 3997.65 28999.43 19599.16 30196.42 26899.91 11399.07 9999.84 12899.80 24
CANet_DTU98.91 19598.85 19199.09 25298.79 34698.13 28498.18 28999.31 27699.48 9598.86 28999.51 22096.56 26299.95 4599.05 10099.95 5299.19 267
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22699.86 2299.68 5799.65 12499.88 2997.67 22299.87 17899.03 10199.86 11999.76 39
FMVSNet299.35 9299.28 9799.55 14899.49 21099.35 17099.45 8299.57 17799.44 10799.70 10699.74 8897.21 24599.87 17899.03 10199.94 6599.44 209
Test_1112_low_res98.95 19298.73 20299.63 11699.68 13399.15 20998.09 30099.80 4997.14 31699.46 18999.40 24996.11 27899.89 15099.01 10399.84 12899.84 14
VDD-MVS99.20 13699.11 12899.44 18099.43 23498.98 22599.50 7598.32 34399.80 3699.56 16199.69 11896.99 25599.85 21798.99 10499.73 19699.50 183
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 11099.44 14399.24 13699.71 9599.27 13099.93 1499.90 2299.70 1199.93 7198.99 10499.99 1299.64 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 5499.47 5399.51 15999.77 8299.41 15498.81 23199.66 11899.42 11499.75 8399.66 13999.20 5099.76 29298.98 10699.99 1299.36 232
EPNet_dtu97.62 29397.79 28797.11 34096.67 37492.31 36398.51 26598.04 34599.24 13695.77 36899.47 23693.78 30399.66 33598.98 10699.62 23699.37 229
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvs99.34 9799.32 8499.39 19999.67 13898.77 24698.57 25799.81 4899.61 7799.48 18499.41 24698.47 15099.86 19898.97 10899.90 8799.53 165
NR-MVSNet99.40 7799.31 8599.68 8999.43 23499.55 12299.73 2099.50 21999.46 10499.88 3299.36 26197.54 23099.87 17898.97 10899.87 11299.63 100
GBi-Net99.42 7099.31 8599.73 7399.49 21099.77 4499.68 3799.70 10099.44 10799.62 13899.83 4797.21 24599.90 13398.96 11099.90 8799.53 165
FMVSNet597.80 28497.25 30099.42 18698.83 34098.97 22799.38 9399.80 4998.87 18999.25 23799.69 11880.60 37299.91 11398.96 11099.90 8799.38 226
test199.42 7099.31 8599.73 7399.49 21099.77 4499.68 3799.70 10099.44 10799.62 13899.83 4797.21 24599.90 13398.96 11099.90 8799.53 165
FMVSNet398.80 21098.63 21299.32 21799.13 30598.72 24899.10 18099.48 22699.23 13899.62 13899.64 14692.57 31499.86 19898.96 11099.90 8799.39 224
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13299.68 13399.45 14198.99 20499.67 11499.48 9599.55 16699.36 26194.92 28999.86 19898.95 11496.57 36699.45 204
CHOSEN 280x42098.41 25598.41 23598.40 30399.34 26595.89 34196.94 35999.44 23998.80 19899.25 23799.52 21693.51 30799.98 798.94 11599.98 2499.32 241
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5599.78 7099.92 1799.37 3199.88 16598.93 11699.95 5299.60 126
Regformer-499.45 6399.44 5999.50 16299.52 19398.94 23199.17 15799.53 20399.64 6999.76 7799.60 18398.96 8399.90 13398.91 11799.84 12899.67 68
Regformer-399.41 7499.41 6699.40 19699.52 19398.70 24999.17 15799.44 23999.62 7399.75 8399.60 18398.90 9099.85 21798.89 11899.84 12899.65 86
alignmvs98.28 26597.96 27399.25 23399.12 30798.93 23599.03 19498.42 33999.64 6998.72 30497.85 36890.86 33699.62 34698.88 11999.13 31099.19 267
sss98.90 19798.77 20199.27 22899.48 21698.44 26798.72 24599.32 27297.94 27699.37 21399.35 26696.31 27399.91 11398.85 12099.63 23599.47 198
xiu_mvs_v2_base99.02 17699.11 12898.77 28899.37 25198.09 28998.13 29599.51 21599.47 10099.42 19798.54 35799.38 2999.97 1798.83 12199.33 29698.24 348
PS-MVSNAJ99.00 18299.08 13998.76 28999.37 25198.10 28898.00 31099.51 21599.47 10099.41 20598.50 35999.28 4199.97 1798.83 12199.34 29498.20 352
D2MVS99.22 12999.19 11199.29 22399.69 12498.74 24798.81 23199.41 24698.55 22199.68 11199.69 11898.13 18799.87 17898.82 12399.98 2499.24 253
PatchT98.45 25298.32 24698.83 28398.94 32998.29 27699.24 13698.82 32299.84 2799.08 26699.76 8191.37 32699.94 5798.82 12399.00 31898.26 347
Effi-MVS+99.06 16798.97 17399.34 21199.31 27298.98 22598.31 28199.91 1098.81 19698.79 29798.94 33499.14 5899.84 23498.79 12598.74 33399.20 264
canonicalmvs99.02 17699.00 16499.09 25299.10 31398.70 24999.61 5899.66 11899.63 7298.64 30997.65 37099.04 7399.54 35598.79 12598.92 32299.04 299
VDDNet98.97 18698.82 19699.42 18699.71 11398.81 24399.62 5398.68 32799.81 3399.38 21299.80 5994.25 29799.85 21798.79 12599.32 29799.59 135
CR-MVSNet98.35 26298.20 25598.83 28399.05 31898.12 28599.30 11599.67 11497.39 30499.16 25499.79 6591.87 32399.91 11398.78 12898.77 32998.44 340
test_method91.72 33992.32 34289.91 35693.49 37870.18 38090.28 36999.56 18261.71 37395.39 37099.52 21693.90 29999.94 5798.76 12998.27 34799.62 111
RPMNet98.60 23198.53 22598.83 28399.05 31898.12 28599.30 11599.62 14099.86 1999.16 25499.74 8892.53 31699.92 9198.75 13098.77 32998.44 340
pmmvs499.13 15499.06 14599.36 20999.57 17199.10 21698.01 30899.25 29098.78 20199.58 15199.44 24398.24 17699.76 29298.74 13199.93 7399.22 258
tttt051797.62 29397.20 30298.90 27799.76 8697.40 31399.48 7994.36 36999.06 16899.70 10699.49 22884.55 36699.94 5798.73 13299.65 23199.36 232
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5899.43 14799.70 2899.24 29399.48 9599.56 16199.77 7894.89 29099.93 7198.72 13399.89 9599.63 100
Anonymous2024052999.42 7099.34 7999.65 10499.53 18899.60 11099.63 5299.39 25699.47 10099.76 7799.78 7198.13 18799.86 19898.70 13499.68 21699.49 188
ACMH98.42 699.59 3899.54 4599.72 7999.86 3199.62 10299.56 7099.79 5598.77 20299.80 6299.85 4199.64 1399.85 21798.70 13499.89 9599.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 10199.28 9799.47 17199.57 17199.39 15799.78 1099.43 24398.87 18999.57 15499.82 5498.06 19299.87 17898.69 13699.73 19699.15 275
LFMVS98.46 25198.19 25899.26 23099.24 28898.52 26299.62 5396.94 35999.87 1799.31 22799.58 19191.04 33199.81 27198.68 13799.42 28399.45 204
WR-MVS99.11 16098.93 17899.66 9999.30 27699.42 15098.42 27499.37 26399.04 16999.57 15499.20 29896.89 25799.86 19898.66 13899.87 11299.70 51
Anonymous20240521198.75 21598.46 22999.63 11699.34 26599.66 8999.47 8197.65 35299.28 12999.56 16199.50 22393.15 30999.84 23498.62 13999.58 25199.40 221
EPNet98.13 27397.77 28899.18 24394.57 37797.99 29399.24 13697.96 34799.74 4297.29 35899.62 16593.13 31099.97 1798.59 14099.83 13899.58 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 17099.09 13798.91 27199.21 29298.36 27498.82 23099.47 23098.85 19198.90 28499.56 20298.78 10699.09 36898.57 14199.68 21699.26 250
Patchmatch-RL test98.60 23198.36 24099.33 21399.77 8299.07 22098.27 28499.87 2098.91 18499.74 9299.72 9890.57 34099.79 27998.55 14299.85 12399.11 283
pmmvs398.08 27697.80 28598.91 27199.41 24097.69 30697.87 32499.66 11895.87 33899.50 18299.51 22090.35 34299.97 1798.55 14299.47 27599.08 291
ETV-MVS99.18 14399.18 11299.16 24499.34 26599.28 18199.12 17799.79 5599.48 9598.93 27898.55 35699.40 2499.93 7198.51 14499.52 26798.28 346
jason99.16 14899.11 12899.32 21799.75 9798.44 26798.26 28599.39 25698.70 20899.74 9299.30 27598.54 13999.97 1798.48 14599.82 14799.55 152
jason: jason.
APDe-MVS99.48 5499.36 7799.85 1899.55 18299.81 3199.50 7599.69 10698.99 17199.75 8399.71 10598.79 10499.93 7198.46 14699.85 12399.80 24
CL-MVSNet_self_test98.71 22198.56 22299.15 24699.22 29098.66 25397.14 35499.51 21598.09 26599.54 16899.27 28296.87 25899.74 29898.43 14798.96 31999.03 300
our_test_398.85 20599.09 13798.13 31499.66 13994.90 35097.72 32999.58 17599.07 16499.64 12699.62 16598.19 18399.93 7198.41 14899.95 5299.55 152
Gipumacopyleft99.57 3999.59 3499.49 16599.98 399.71 7199.72 2399.84 3299.81 3399.94 1199.78 7198.91 8799.71 30798.41 14899.95 5299.05 298
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 30196.91 31298.74 29097.72 37097.57 30897.60 33597.36 35898.00 26899.21 24798.02 36690.04 34599.79 27998.37 15095.89 37098.86 316
Regformer-199.32 10399.27 10099.47 17199.41 24098.95 23098.99 20499.48 22699.48 9599.66 12099.52 21698.78 10699.87 17898.36 15199.74 18999.60 126
PM-MVS99.36 9099.29 9599.58 13699.83 3999.66 8998.95 21299.86 2298.85 19199.81 5999.73 9298.40 16299.92 9198.36 15199.83 13899.17 271
baseline197.73 28897.33 29798.96 26399.30 27697.73 30499.40 8998.42 33999.33 12399.46 18999.21 29691.18 32999.82 25598.35 15391.26 37299.32 241
MVS-HIRNet97.86 28298.22 25396.76 34299.28 28191.53 36998.38 27692.60 37399.13 15799.31 22799.96 1197.18 24999.68 32698.34 15499.83 13899.07 296
GA-MVS97.99 28197.68 29198.93 26899.52 19398.04 29297.19 35399.05 31398.32 25298.81 29498.97 33089.89 34799.41 36598.33 15599.05 31499.34 237
Fast-Effi-MVS+99.02 17698.87 18999.46 17499.38 24899.50 12899.04 19299.79 5597.17 31498.62 31098.74 34999.34 3599.95 4598.32 15699.41 28498.92 311
Regformer-299.34 9799.27 10099.53 15499.41 24099.10 21698.99 20499.53 20399.47 10099.66 12099.52 21698.80 10199.89 15098.31 15799.74 18999.60 126
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27999.64 14397.16 31998.23 28799.33 27098.93 18199.56 16199.66 13997.39 23799.83 24598.29 15899.88 10399.55 152
N_pmnet98.73 21998.53 22599.35 21099.72 11098.67 25198.34 27794.65 36898.35 24699.79 6799.68 12998.03 19399.93 7198.28 15999.92 7799.44 209
ET-MVSNet_ETH3D96.78 31396.07 32298.91 27199.26 28597.92 29997.70 33196.05 36497.96 27592.37 37398.43 36087.06 35499.90 13398.27 16097.56 36198.91 312
thisisatest053097.45 29896.95 30998.94 26599.68 13397.73 30499.09 18494.19 37198.61 21699.56 16199.30 27584.30 36799.93 7198.27 16099.54 26399.16 273
YYNet198.95 19298.99 16998.84 28199.64 14397.14 32098.22 28899.32 27298.92 18399.59 14999.66 13997.40 23599.83 24598.27 16099.90 8799.55 152
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5899.69 8299.13 17399.65 12998.99 17199.64 12699.72 9899.39 2599.86 19898.23 16399.81 15599.60 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 18998.87 18999.24 23599.57 17198.40 27098.12 29699.18 30398.28 25499.63 13099.13 30398.02 19599.97 1798.22 16499.69 21199.35 235
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24599.42 15099.70 2899.56 18299.23 13899.35 21699.80 5999.17 5399.95 4598.21 16599.84 12899.59 135
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18499.25 28699.69 8299.05 19099.82 3999.50 9398.97 27499.05 31498.98 7899.98 798.20 16699.24 30798.62 327
MS-PatchMatch99.00 18298.97 17399.09 25299.11 31298.19 28198.76 24199.33 27098.49 22999.44 19199.58 19198.21 18099.69 31598.20 16699.62 23699.39 224
TSAR-MVS + GP.99.12 15699.04 15599.38 20399.34 26599.16 20798.15 29299.29 28198.18 26199.63 13099.62 16599.18 5299.68 32698.20 16699.74 18999.30 244
DP-MVS99.48 5499.39 6999.74 6399.57 17199.62 10299.29 12299.61 14799.87 1799.74 9299.76 8198.69 11799.87 17898.20 16699.80 16099.75 42
MVP-Stereo99.16 14899.08 13999.43 18499.48 21699.07 22099.08 18799.55 18898.63 21399.31 22799.68 12998.19 18399.78 28298.18 17099.58 25199.45 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3999.81 3199.52 7399.70 10098.35 24699.51 18099.50 22399.31 3799.88 16598.18 17099.84 12899.69 55
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25699.80 5897.83 30098.89 21699.72 9299.29 12699.63 13099.70 11296.47 26699.89 15098.17 17299.82 14799.50 183
JIA-IIPM98.06 27797.92 28098.50 29998.59 35597.02 32298.80 23498.51 33599.88 1697.89 34699.87 3291.89 32299.90 13398.16 17397.68 36098.59 329
EIA-MVS99.12 15699.01 16199.45 17899.36 25399.62 10299.34 10399.79 5598.41 23598.84 29198.89 33998.75 11299.84 23498.15 17499.51 26898.89 313
miper_lstm_enhance98.65 22698.60 21398.82 28699.20 29597.33 31597.78 32799.66 11899.01 17099.59 14999.50 22394.62 29499.85 21798.12 17599.90 8799.26 250
Effi-MVS+-dtu99.07 16698.92 18299.52 15698.89 33499.78 4199.15 16599.66 11899.34 12098.92 28199.24 29297.69 21999.98 798.11 17699.28 30198.81 321
mvs-test198.83 20698.70 20799.22 23798.89 33499.65 9498.88 21799.66 11899.34 12098.29 32698.94 33497.69 21999.96 3598.11 17698.54 34198.04 356
tpm97.15 30596.95 30997.75 32498.91 33094.24 35399.32 10897.96 34797.71 28798.29 32699.32 27186.72 36199.92 9198.10 17896.24 36999.09 288
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 29099.75 5597.25 35199.47 23098.72 20799.66 12099.70 11299.29 3999.63 34598.07 17999.81 15599.62 111
ppachtmachnet_test98.89 20099.12 12598.20 31299.66 13995.24 34797.63 33399.68 10999.08 16299.78 7099.62 16598.65 12599.88 16598.02 18099.96 4599.48 193
tpmrst97.73 28898.07 26696.73 34498.71 35292.00 36499.10 18098.86 31998.52 22598.92 28199.54 21191.90 32199.82 25598.02 18099.03 31698.37 342
CSCG99.37 8799.29 9599.60 13099.71 11399.46 13699.43 8799.85 2698.79 19999.41 20599.60 18398.92 8599.92 9198.02 18099.92 7799.43 215
eth_miper_zixun_eth98.68 22498.71 20498.60 29599.10 31396.84 32797.52 34199.54 19498.94 17899.58 15199.48 23196.25 27599.76 29298.01 18399.93 7399.21 260
Patchmtry98.78 21198.54 22399.49 16598.89 33499.19 20599.32 10899.67 11499.65 6799.72 9899.79 6591.87 32399.95 4598.00 18499.97 3399.33 238
PVSNet_BlendedMVS99.03 17499.01 16199.09 25299.54 18397.99 29398.58 25399.82 3997.62 29099.34 21999.71 10598.52 14699.77 29097.98 18599.97 3399.52 175
PVSNet_Blended98.70 22298.59 21599.02 26099.54 18397.99 29397.58 33699.82 3995.70 34299.34 21998.98 32798.52 14699.77 29097.98 18599.83 13899.30 244
cl____98.54 24198.41 23598.92 26999.03 32197.80 30297.46 34399.59 16698.90 18599.60 14699.46 23993.85 30199.78 28297.97 18799.89 9599.17 271
DIV-MVS_self_test98.54 24198.42 23498.92 26999.03 32197.80 30297.46 34399.59 16698.90 18599.60 14699.46 23993.87 30099.78 28297.97 18799.89 9599.18 269
AUN-MVS97.82 28397.38 29699.14 24799.27 28398.53 26098.72 24599.02 31498.10 26397.18 36199.03 32189.26 34999.85 21797.94 18997.91 35699.03 300
ambc99.20 24099.35 25598.53 26099.17 15799.46 23499.67 11699.80 5998.46 15399.70 30997.92 19099.70 20899.38 226
USDC98.96 18998.93 17899.05 25899.54 18397.99 29397.07 35799.80 4998.21 25899.75 8399.77 7898.43 15599.64 34497.90 19199.88 10399.51 177
OPM-MVS99.26 11599.13 12199.63 11699.70 12199.61 10898.58 25399.48 22698.50 22799.52 17599.63 15699.14 5899.76 29297.89 19299.77 17599.51 177
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12499.80 3699.14 16799.31 27699.16 15199.62 13899.61 17498.35 16699.91 11397.88 19399.72 20299.61 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2199.70 12199.79 3899.14 16799.61 14799.92 9197.88 19399.72 20299.77 35
c3_l98.72 22098.71 20498.72 29199.12 30797.22 31897.68 33299.56 18298.90 18599.54 16899.48 23196.37 27299.73 30197.88 19399.88 10399.21 260
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25599.47 13299.62 5399.50 21999.44 10799.12 26199.78 7198.77 10999.94 5797.87 19699.72 20299.62 111
miper_ehance_all_eth98.59 23498.59 21598.59 29698.98 32797.07 32197.49 34299.52 21198.50 22799.52 17599.37 25696.41 27099.71 30797.86 19799.62 23699.00 306
WTY-MVS98.59 23498.37 23999.26 23099.43 23498.40 27098.74 24299.13 30998.10 26399.21 24799.24 29294.82 29199.90 13397.86 19798.77 32999.49 188
SED-MVS99.40 7799.28 9799.77 4099.69 12499.82 2899.20 14699.54 19499.13 15799.82 5299.63 15698.91 8799.92 9197.85 19999.70 20899.58 140
test_241102_TWO99.54 19499.13 15799.76 7799.63 15698.32 17199.92 9197.85 19999.69 21199.75 42
MVS_111021_HR99.12 15699.02 15899.40 19699.50 20599.11 21297.92 32199.71 9598.76 20599.08 26699.47 23699.17 5399.54 35597.85 19999.76 17899.54 160
zzz-MVS99.30 10699.14 11899.80 2999.81 5399.81 3198.73 24499.53 20399.27 13099.42 19799.63 15698.21 18099.95 4597.83 20299.79 16599.65 86
MTAPA99.35 9299.20 11099.80 2999.81 5399.81 3199.33 10599.53 20399.27 13099.42 19799.63 15698.21 18099.95 4597.83 20299.79 16599.65 86
MSC_two_6792asdad99.74 6399.03 32199.53 12499.23 29499.92 9197.77 20499.69 21199.78 32
No_MVS99.74 6399.03 32199.53 12499.23 29499.92 9197.77 20499.69 21199.78 32
TESTMET0.1,196.24 32595.84 32797.41 33298.24 36493.84 35697.38 34595.84 36598.43 23297.81 35098.56 35579.77 37399.89 15097.77 20498.77 32998.52 334
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3199.76 5199.32 10899.77 6399.53 8999.77 7599.76 8199.26 4599.78 28297.77 20499.88 10399.60 126
IU-MVS99.69 12499.77 4499.22 29797.50 29899.69 10997.75 20899.70 20899.77 35
114514_t98.49 24898.11 26499.64 11199.73 10699.58 11699.24 13699.76 6889.94 36699.42 19799.56 20297.76 21699.86 19897.74 20999.82 14799.47 198
DVP-MVS++99.38 8499.25 10499.77 4099.03 32199.77 4499.74 1799.61 14799.18 14599.76 7799.61 17499.00 7599.92 9197.72 21099.60 24699.62 111
test_0728_THIRD99.18 14599.62 13899.61 17498.58 13399.91 11397.72 21099.80 16099.77 35
EGC-MVSNET89.05 34085.52 34399.64 11199.89 2199.78 4199.56 7099.52 21124.19 37449.96 37599.83 4799.15 5599.92 9197.71 21299.85 12399.21 260
miper_enhance_ethall98.03 27897.94 27898.32 30798.27 36396.43 33396.95 35899.41 24696.37 33299.43 19598.96 33294.74 29299.69 31597.71 21299.62 23698.83 320
TSAR-MVS + MP.99.34 9799.24 10699.63 11699.82 4699.37 16399.26 12899.35 26798.77 20299.57 15499.70 11299.27 4499.88 16597.71 21299.75 18199.65 86
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl2297.56 29697.28 29898.40 30398.37 36196.75 32897.24 35299.37 26397.31 30899.41 20599.22 29487.30 35299.37 36697.70 21599.62 23699.08 291
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3999.83 2498.61 24999.63 13796.84 32499.44 19199.58 19198.81 9799.91 11397.70 21599.82 14799.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9799.81 3198.95 21299.53 20398.27 25599.53 17399.73 9298.75 11299.87 17897.70 21599.83 13899.68 61
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19699.56 18199.37 16397.97 31699.68 10997.49 29999.08 26699.35 26695.41 28799.82 25597.70 21598.19 35099.01 305
MVS_111021_LR99.13 15499.03 15799.42 18699.58 16199.32 17597.91 32399.73 8398.68 20999.31 22799.48 23199.09 6399.66 33597.70 21599.77 17599.29 247
IS-MVSNet99.03 17498.85 19199.55 14899.80 5899.25 18999.73 2099.15 30699.37 11799.61 14499.71 10594.73 29399.81 27197.70 21599.88 10399.58 140
test-LLR97.15 30596.95 30997.74 32598.18 36695.02 34897.38 34596.10 36198.00 26897.81 35098.58 35290.04 34599.91 11397.69 22198.78 32798.31 343
test-mter96.23 32695.73 32997.74 32598.18 36695.02 34897.38 34596.10 36197.90 27797.81 35098.58 35279.12 37699.91 11397.69 22198.78 32798.31 343
XVS99.27 11399.11 12899.75 5799.71 11399.71 7199.37 9799.61 14799.29 12698.76 30199.47 23698.47 15099.88 16597.62 22399.73 19699.67 68
X-MVStestdata96.09 32794.87 33799.75 5799.71 11399.71 7199.37 9799.61 14799.29 12698.76 30161.30 38098.47 15099.88 16597.62 22399.73 19699.67 68
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22699.73 6499.13 17399.52 21197.40 30399.57 15499.64 14698.93 8499.83 24597.61 22599.79 16599.63 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 31696.79 31596.46 34998.90 33190.71 37499.41 8898.68 32794.69 35698.14 33799.34 26986.32 36399.80 27697.60 22698.07 35498.88 314
PVSNet97.47 1598.42 25498.44 23298.35 30599.46 22696.26 33496.70 36299.34 26997.68 28899.00 27399.13 30397.40 23599.72 30397.59 22799.68 21699.08 291
new_pmnet98.88 20198.89 18798.84 28199.70 12197.62 30798.15 29299.50 21997.98 27199.62 13899.54 21198.15 18699.94 5797.55 22899.84 12898.95 308
IB-MVS95.41 2095.30 33794.46 34197.84 32198.76 35095.33 34697.33 34896.07 36396.02 33695.37 37197.41 37376.17 37999.96 3597.54 22995.44 37198.22 349
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 11999.11 12899.61 12898.38 36099.79 3899.57 6899.68 10999.61 7799.15 25699.71 10598.70 11699.91 11397.54 22999.68 21699.13 282
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8699.73 6499.28 12399.56 18298.19 26099.14 25899.29 27898.84 9699.92 9197.53 23199.80 16099.64 95
CP-MVS99.23 12099.05 14999.75 5799.66 13999.66 8999.38 9399.62 14098.38 23999.06 27099.27 28298.79 10499.94 5797.51 23299.82 14799.66 78
SD-MVS99.01 18099.30 9098.15 31399.50 20599.40 15598.94 21499.61 14799.22 14299.75 8399.82 5499.54 2295.51 37597.48 23399.87 11299.54 160
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 24898.29 24899.11 25098.96 32898.42 26997.54 33799.32 27297.53 29698.47 32298.15 36597.88 20799.82 25597.46 23499.24 30799.09 288
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14599.28 28199.22 19898.99 20499.40 25399.08 16299.58 15199.64 14698.90 9099.83 24597.44 23599.75 18199.63 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 11699.08 13999.76 4799.73 10699.70 7899.31 11299.59 16698.36 24199.36 21499.37 25698.80 10199.91 11397.43 23699.75 18199.68 61
ACMMPR99.23 12099.06 14599.76 4799.74 10399.69 8299.31 11299.59 16698.36 24199.35 21699.38 25598.61 12999.93 7197.43 23699.75 18199.67 68
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21199.78 7498.88 24099.61 5899.56 18299.11 16199.24 24099.56 20293.00 31299.78 28297.43 23699.89 9599.35 235
MIMVSNet98.43 25398.20 25599.11 25099.53 18898.38 27399.58 6798.61 33198.96 17699.33 22199.76 8190.92 33399.81 27197.38 23999.76 17899.15 275
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3599.64 9698.25 28699.73 8398.39 23899.63 13099.43 24499.70 1199.90 13397.34 24098.64 33799.44 209
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3999.70 7899.38 9399.78 6099.53 8999.67 11699.78 7199.19 5199.86 19897.32 24199.87 11299.55 152
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 17698.81 19799.65 10499.58 16199.49 12998.58 25399.07 31098.40 23799.04 27199.25 28798.51 14899.80 27697.31 24299.51 26899.65 86
region2R99.23 12099.05 14999.77 4099.76 8699.70 7899.31 11299.59 16698.41 23599.32 22399.36 26198.73 11599.93 7197.29 24399.74 18999.67 68
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18899.75 5599.27 12699.61 14799.19 14499.57 15499.64 14698.76 11099.90 13397.29 24399.62 23699.56 149
TAPA-MVS97.92 1398.03 27897.55 29499.46 17499.47 22199.44 14398.50 26699.62 14086.79 36799.07 26999.26 28598.26 17599.62 34697.28 24599.73 19699.31 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 18399.74 6199.26 12899.62 14099.16 15199.52 17599.64 14698.41 15899.91 11397.27 24699.61 24399.54 160
RE-MVS-def99.13 12199.54 18399.74 6199.26 12899.62 14099.16 15199.52 17599.64 14698.57 13497.27 24699.61 24399.54 160
test_yl98.25 26797.95 27499.13 24899.17 30098.47 26499.00 19998.67 32998.97 17399.22 24599.02 32291.31 32799.69 31597.26 24898.93 32099.24 253
DCV-MVSNet98.25 26797.95 27499.13 24899.17 30098.47 26499.00 19998.67 32998.97 17399.22 24599.02 32291.31 32799.69 31597.26 24898.93 32099.24 253
PHI-MVS99.11 16098.95 17799.59 13299.13 30599.59 11399.17 15799.65 12997.88 27899.25 23799.46 23998.97 8099.80 27697.26 24899.82 14799.37 229
tfpnnormal99.43 6699.38 7199.60 13099.87 2999.75 5599.59 6599.78 6099.71 4799.90 2299.69 11898.85 9599.90 13397.25 25199.78 17199.15 275
PatchmatchNetpermissive97.65 29297.80 28597.18 33898.82 34392.49 36299.17 15798.39 34198.12 26298.79 29799.58 19190.71 33899.89 15097.23 25299.41 28499.16 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 18598.80 19999.56 14599.25 28699.43 14798.54 26299.27 28598.58 21898.80 29699.43 24498.53 14399.70 30997.22 25399.59 25099.54 160
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5399.75 5599.61 5899.67 11497.72 28699.35 21699.25 28799.23 4799.92 9197.21 25499.82 14799.67 68
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DWT-MVSNet_test96.03 32995.80 32896.71 34698.50 35891.93 36599.25 13597.87 35095.99 33796.81 36397.61 37181.02 37099.66 33597.20 25597.98 35598.54 333
mPP-MVS99.19 13999.00 16499.76 4799.76 8699.68 8599.38 9399.54 19498.34 25099.01 27299.50 22398.53 14399.93 7197.18 25699.78 17199.66 78
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6899.68 8599.50 7599.65 12998.07 26699.52 17599.69 11898.57 13499.92 9197.18 25699.79 16599.63 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117299.23 12099.05 14999.74 6399.52 19399.75 5599.20 14699.61 14798.97 17399.48 18499.58 19198.41 15899.91 11397.15 25899.55 25799.57 146
abl_699.36 9099.23 10899.75 5799.71 11399.74 6199.33 10599.76 6899.07 16499.65 12499.63 15699.09 6399.92 9197.13 25999.76 17899.58 140
thisisatest051596.98 30996.42 31698.66 29499.42 23997.47 31097.27 35094.30 37097.24 31099.15 25698.86 34285.01 36499.87 17897.10 26099.39 28698.63 326
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11699.82 4699.58 11698.83 22699.72 9298.36 24199.60 14699.71 10598.92 8599.91 11397.08 26199.84 12899.40 221
MSDG99.08 16598.98 17299.37 20699.60 15299.13 21097.54 33799.74 8098.84 19499.53 17399.55 20999.10 6199.79 27997.07 26299.86 11999.18 269
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2999.66 8999.18 15299.60 15998.55 22199.57 15499.67 13599.03 7499.94 5797.01 26399.80 16099.69 55
Skip Steuart: Steuart Systems R&D Blog.
EPMVS96.53 31996.32 31797.17 33998.18 36692.97 36199.39 9189.95 37798.21 25898.61 31199.59 18986.69 36299.72 30396.99 26499.23 30998.81 321
MSP-MVS99.04 17398.79 20099.81 2699.78 7499.73 6499.35 10299.57 17798.54 22499.54 16898.99 32496.81 25999.93 7196.97 26599.53 26599.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 19399.71 7198.86 22199.19 30298.47 23198.59 31399.06 31398.08 19199.91 11396.94 26699.60 24699.60 126
SR-MVS99.19 13999.00 16499.74 6399.51 19899.72 6899.18 15299.60 15998.85 19199.47 18699.58 19198.38 16399.92 9196.92 26799.54 26399.57 146
PGM-MVS99.20 13699.01 16199.77 4099.75 9799.71 7199.16 16399.72 9297.99 27099.42 19799.60 18398.81 9799.93 7196.91 26899.74 18999.66 78
HY-MVS98.23 998.21 27297.95 27498.99 26199.03 32198.24 27799.61 5898.72 32696.81 32598.73 30399.51 22094.06 29899.86 19896.91 26898.20 34898.86 316
MDTV_nov1_ep1397.73 28998.70 35390.83 37299.15 16598.02 34698.51 22698.82 29399.61 17490.98 33299.66 33596.89 27098.92 322
GST-MVS99.16 14898.96 17599.75 5799.73 10699.73 6499.20 14699.55 18898.22 25799.32 22399.35 26698.65 12599.91 11396.86 27199.74 18999.62 111
test_post199.14 16751.63 38289.54 34899.82 25596.86 271
SCA98.11 27498.36 24097.36 33399.20 29592.99 36098.17 29198.49 33798.24 25699.10 26499.57 19996.01 28099.94 5796.86 27199.62 23699.14 279
#test#99.12 15698.90 18699.76 4799.73 10699.70 7899.10 18099.59 16697.60 29199.36 21499.37 25698.80 10199.91 11396.84 27499.75 18199.68 61
XVG-OURS99.21 13499.06 14599.65 10499.82 4699.62 10297.87 32499.74 8098.36 24199.66 12099.68 12999.71 999.90 13396.84 27499.88 10399.43 215
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 27099.76 5199.34 10399.97 298.93 18199.91 2099.79 6598.68 11899.93 7196.80 27699.56 25399.30 244
RPSCF99.18 14399.02 15899.64 11199.83 3999.85 1499.44 8599.82 3998.33 25199.50 18299.78 7197.90 20499.65 34296.78 27799.83 13899.44 209
旧先验297.94 31995.33 34698.94 27799.88 16596.75 278
MDTV_nov1_ep13_2view91.44 37099.14 16797.37 30599.21 24791.78 32596.75 27899.03 300
CLD-MVS98.76 21498.57 21999.33 21399.57 17198.97 22797.53 33999.55 18896.41 33099.27 23599.13 30399.07 6999.78 28296.73 28099.89 9599.23 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 27597.98 27298.48 30099.27 28396.48 33199.40 8999.07 31098.81 19699.23 24199.57 19990.11 34499.87 17896.69 28199.64 23399.09 288
baseline296.83 31296.28 31898.46 30199.09 31596.91 32598.83 22693.87 37297.23 31196.23 36798.36 36188.12 35199.90 13396.68 28298.14 35298.57 332
cascas96.99 30896.82 31497.48 32997.57 37395.64 34396.43 36499.56 18291.75 36297.13 36297.61 37195.58 28698.63 37196.68 28299.11 31198.18 353
PC_three_145297.56 29299.68 11199.41 24699.09 6397.09 37396.66 28499.60 24699.62 111
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4699.63 10099.16 16399.73 8397.56 29299.64 12699.69 11899.37 3199.89 15096.66 28499.87 11299.69 55
LGP-MVS_train99.74 6399.82 4699.63 10099.73 8397.56 29299.64 12699.69 11899.37 3199.89 15096.66 28499.87 11299.69 55
TinyColmap98.97 18698.93 17899.07 25699.46 22698.19 28197.75 32899.75 7598.79 19999.54 16899.70 11298.97 8099.62 34696.63 28799.83 13899.41 219
LF4IMVS99.01 18098.92 18299.27 22899.71 11399.28 18198.59 25299.77 6398.32 25299.39 21199.41 24698.62 12799.84 23496.62 28899.84 12898.69 325
NCCC98.82 20898.57 21999.58 13699.21 29299.31 17698.61 24999.25 29098.65 21198.43 32399.26 28597.86 20899.81 27196.55 28999.27 30499.61 122
OPU-MVS99.29 22399.12 30799.44 14399.20 14699.40 24999.00 7598.84 37096.54 29099.60 24699.58 140
F-COLMAP98.74 21798.45 23099.62 12599.57 17199.47 13298.84 22499.65 12996.31 33398.93 27899.19 30097.68 22199.87 17896.52 29199.37 29199.53 165
ADS-MVSNet297.78 28597.66 29398.12 31599.14 30395.36 34599.22 14398.75 32596.97 31998.25 32999.64 14690.90 33499.94 5796.51 29299.56 25399.08 291
ADS-MVSNet97.72 29197.67 29297.86 32099.14 30394.65 35199.22 14398.86 31996.97 31998.25 32999.64 14690.90 33499.84 23496.51 29299.56 25399.08 291
PatchMatch-RL98.68 22498.47 22899.30 22299.44 23199.28 18198.14 29499.54 19497.12 31799.11 26299.25 28797.80 21399.70 30996.51 29299.30 29998.93 310
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19498.33 36299.56 11999.01 19799.59 16695.44 34499.57 15499.80 5995.64 28499.46 36496.47 29599.92 7799.21 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15299.53 18899.25 18998.29 28299.76 6899.07 16499.42 19799.61 17498.86 9399.87 17896.45 29699.68 21699.49 188
SF-MVS99.10 16498.93 17899.62 12599.58 16199.51 12799.13 17399.65 12997.97 27299.42 19799.61 17498.86 9399.87 17896.45 29699.68 21699.49 188
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 17199.77 4498.74 24299.60 15998.55 22199.76 7799.69 11898.23 17999.92 9196.39 29899.75 18199.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 37189.02 37893.47 35898.30 36299.84 23496.38 299
AllTest99.21 13499.07 14399.63 11699.78 7499.64 9699.12 17799.83 3498.63 21399.63 13099.72 9898.68 11899.75 29696.38 29999.83 13899.51 177
TestCases99.63 11699.78 7499.64 9699.83 3498.63 21399.63 13099.72 9898.68 11899.75 29696.38 29999.83 13899.51 177
testdata99.42 18699.51 19898.93 23599.30 27996.20 33498.87 28899.40 24998.33 17099.89 15096.29 30299.28 30199.44 209
dp96.86 31197.07 30596.24 35198.68 35490.30 37699.19 15198.38 34297.35 30698.23 33199.59 18987.23 35399.82 25596.27 30398.73 33598.59 329
tpmvs97.39 30097.69 29096.52 34798.41 35991.76 36699.30 11598.94 31897.74 28597.85 34999.55 20992.40 31999.73 30196.25 30498.73 33598.06 355
KD-MVS_2432*160095.89 33095.41 33397.31 33694.96 37593.89 35497.09 35599.22 29797.23 31198.88 28599.04 31779.23 37499.54 35596.24 30596.81 36498.50 338
miper_refine_blended95.89 33095.41 33397.31 33694.96 37593.89 35497.09 35599.22 29797.23 31198.88 28599.04 31779.23 37499.54 35596.24 30596.81 36498.50 338
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7499.55 12298.88 21799.66 11897.11 31899.47 18699.60 18399.07 6999.89 15096.18 30799.85 12399.58 140
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 19798.72 20399.44 18099.39 24599.42 15098.58 25399.64 13597.31 30899.44 19199.62 16598.59 13199.69 31596.17 30899.79 16599.22 258
DP-MVS Recon98.50 24598.23 25299.31 22099.49 21099.46 13698.56 25899.63 13794.86 35398.85 29099.37 25697.81 21299.59 35296.08 30999.44 27898.88 314
tpm cat196.78 31396.98 30896.16 35298.85 33890.59 37599.08 18799.32 27292.37 36197.73 35599.46 23991.15 33099.69 31596.07 31098.80 32698.21 350
tpm296.35 32296.22 31996.73 34498.88 33791.75 36799.21 14598.51 33593.27 35997.89 34699.21 29684.83 36599.70 30996.04 31198.18 35198.75 324
test_040299.22 12999.14 11899.45 17899.79 6899.43 14799.28 12399.68 10999.54 8799.40 21099.56 20299.07 6999.82 25596.01 31299.96 4599.11 283
ITE_SJBPF99.38 20399.63 14599.44 14399.73 8398.56 21999.33 22199.53 21498.88 9299.68 32696.01 31299.65 23199.02 304
test_prior398.62 22898.34 24399.46 17499.35 25599.22 19897.95 31799.39 25697.87 27998.05 33999.05 31497.90 20499.69 31595.99 31499.49 27299.48 193
test_prior297.95 31797.87 27998.05 33999.05 31497.90 20495.99 31499.49 272
testdata299.89 15095.99 314
原ACMM199.37 20699.47 22198.87 24299.27 28596.74 32798.26 32899.32 27197.93 20299.82 25595.96 31799.38 28799.43 215
新几何199.52 15699.50 20599.22 19899.26 28795.66 34398.60 31299.28 28097.67 22299.89 15095.95 31899.32 29799.45 204
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8699.71 7199.32 10899.50 21998.35 24698.97 27499.48 23198.37 16499.92 9195.95 31899.75 18199.63 100
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
wuyk23d97.58 29599.13 12192.93 35599.69 12499.49 12999.52 7399.77 6397.97 27299.96 899.79 6599.84 399.94 5795.85 32099.82 14779.36 371
HQP_MVS98.90 19798.68 20999.55 14899.58 16199.24 19498.80 23499.54 19498.94 17899.14 25899.25 28797.24 24399.82 25595.84 32199.78 17199.60 126
plane_prior599.54 19499.82 25595.84 32199.78 17199.60 126
无先验98.01 30899.23 29495.83 33999.85 21795.79 32399.44 209
112198.56 23798.24 25199.52 15699.49 21099.24 19499.30 11599.22 29795.77 34098.52 31899.29 27897.39 23799.85 21795.79 32399.34 29499.46 202
CPTT-MVS98.74 21798.44 23299.64 11199.61 15099.38 16099.18 15299.55 18896.49 32999.27 23599.37 25697.11 25199.92 9195.74 32599.67 22399.62 111
PLCcopyleft97.35 1698.36 25997.99 27099.48 16999.32 27199.24 19498.50 26699.51 21595.19 34998.58 31498.96 33296.95 25699.83 24595.63 32699.25 30599.37 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 23698.34 24399.28 22699.18 29999.10 21698.34 27799.41 24698.48 23098.52 31898.98 32797.05 25399.78 28295.59 32799.50 27098.96 307
131498.00 28097.90 28398.27 31198.90 33197.45 31299.30 11599.06 31294.98 35097.21 36099.12 30798.43 15599.67 33195.58 32898.56 34097.71 360
agg_prior198.33 26497.92 28099.57 14199.35 25599.36 16697.99 31299.39 25694.85 35497.76 35398.98 32798.03 19399.85 21795.49 32999.44 27899.51 177
PVSNet_095.53 1995.85 33395.31 33597.47 33098.78 34893.48 35895.72 36699.40 25396.18 33597.37 35697.73 36995.73 28399.58 35395.49 32981.40 37399.36 232
MAR-MVS98.24 26997.92 28099.19 24198.78 34899.65 9499.17 15799.14 30795.36 34598.04 34198.81 34697.47 23299.72 30395.47 33199.06 31398.21 350
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 27097.89 28499.26 23099.19 29799.26 18599.65 5099.69 10691.33 36498.14 33799.77 7898.28 17399.96 3595.41 33299.55 25798.58 331
train_agg98.35 26297.95 27499.57 14199.35 25599.35 17098.11 29899.41 24694.90 35197.92 34498.99 32498.02 19599.85 21795.38 33399.44 27899.50 183
9.1498.64 21099.45 22998.81 23199.60 15997.52 29799.28 23399.56 20298.53 14399.83 24595.36 33499.64 233
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20599.62 10299.01 19799.57 17796.80 32699.54 16899.63 15698.29 17299.91 11395.24 33599.71 20699.61 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
AdaColmapbinary98.60 23198.35 24299.38 20399.12 30799.22 19898.67 24899.42 24597.84 28398.81 29499.27 28297.32 24199.81 27195.14 33699.53 26599.10 285
test9_res95.10 33799.44 27899.50 183
CDPH-MVS98.56 23798.20 25599.61 12899.50 20599.46 13698.32 28099.41 24695.22 34799.21 24799.10 31098.34 16899.82 25595.09 33899.66 22799.56 149
ETH3D-3000-0.198.77 21298.50 22799.59 13299.47 22199.53 12498.77 23999.60 15997.33 30799.23 24199.50 22397.91 20399.83 24595.02 33999.67 22399.41 219
BH-untuned98.22 27198.09 26598.58 29799.38 24897.24 31798.55 25998.98 31797.81 28499.20 25298.76 34897.01 25499.65 34294.83 34098.33 34598.86 316
BP-MVS94.73 341
HQP-MVS98.36 25998.02 26999.39 19999.31 27298.94 23197.98 31399.37 26397.45 30098.15 33398.83 34396.67 26099.70 30994.73 34199.67 22399.53 165
QAPM98.40 25797.99 27099.65 10499.39 24599.47 13299.67 4199.52 21191.70 36398.78 29999.80 5998.55 13799.95 4594.71 34399.75 18199.53 165
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15999.04 32099.39 15798.47 26899.47 23096.70 32898.78 29999.33 27097.62 22999.86 19894.69 34499.38 28799.28 249
agg_prior294.58 34599.46 27799.50 183
BH-RMVSNet98.41 25598.14 26399.21 23899.21 29298.47 26498.60 25198.26 34498.35 24698.93 27899.31 27397.20 24899.66 33594.32 34699.10 31299.51 177
E-PMN97.14 30797.43 29596.27 35098.79 34691.62 36895.54 36799.01 31699.44 10798.88 28599.12 30792.78 31399.68 32694.30 34799.03 31697.50 361
MG-MVS98.52 24398.39 23798.94 26599.15 30297.39 31498.18 28999.21 30198.89 18899.23 24199.63 15697.37 23999.74 29894.22 34899.61 24399.69 55
API-MVS98.38 25898.39 23798.35 30598.83 34099.26 18599.14 16799.18 30398.59 21798.66 30898.78 34798.61 12999.57 35494.14 34999.56 25396.21 368
PAPM_NR98.36 25998.04 26799.33 21399.48 21698.93 23598.79 23799.28 28497.54 29598.56 31698.57 35497.12 25099.69 31594.09 35098.90 32499.38 226
ZD-MVS99.43 23499.61 10899.43 24396.38 33199.11 26299.07 31297.86 20899.92 9194.04 35199.49 272
DPM-MVS98.28 26597.94 27899.32 21799.36 25399.11 21297.31 34998.78 32496.88 32198.84 29199.11 30997.77 21599.61 35094.03 35299.36 29299.23 256
gg-mvs-nofinetune95.87 33295.17 33697.97 31798.19 36596.95 32399.69 3489.23 37899.89 1196.24 36699.94 1381.19 36999.51 36093.99 35398.20 34897.44 362
PMVScopyleft92.94 2198.82 20898.81 19798.85 27999.84 3597.99 29399.20 14699.47 23099.71 4799.42 19799.82 5498.09 18999.47 36293.88 35499.85 12399.07 296
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testtj98.56 23798.17 26099.72 7999.45 22999.60 11098.88 21799.50 21996.88 32199.18 25399.48 23197.08 25299.92 9193.69 35599.38 28799.63 100
EMVS96.96 31097.28 29895.99 35398.76 35091.03 37195.26 36898.61 33199.34 12098.92 28198.88 34193.79 30299.66 33592.87 35699.05 31497.30 365
BH-w/o97.20 30497.01 30797.76 32399.08 31695.69 34298.03 30798.52 33495.76 34197.96 34398.02 36695.62 28599.47 36292.82 35797.25 36398.12 354
TR-MVS97.44 29997.15 30498.32 30798.53 35797.46 31198.47 26897.91 34996.85 32398.21 33298.51 35896.42 26899.51 36092.16 35897.29 36297.98 357
OpenMVS_ROBcopyleft97.31 1797.36 30296.84 31398.89 27899.29 27899.45 14198.87 22099.48 22686.54 36999.44 19199.74 8897.34 24099.86 19891.61 35999.28 30197.37 364
GG-mvs-BLEND97.36 33397.59 37196.87 32699.70 2888.49 37994.64 37297.26 37680.66 37199.12 36791.50 36096.50 36896.08 370
DeepMVS_CXcopyleft97.98 31699.69 12496.95 32399.26 28775.51 37195.74 36998.28 36396.47 26699.62 34691.23 36197.89 35797.38 363
ETH3 D test640097.76 28697.19 30399.50 16299.38 24899.26 18598.34 27799.49 22492.99 36098.54 31799.20 29895.92 28299.82 25591.14 36299.66 22799.40 221
PAPR97.56 29697.07 30599.04 25998.80 34598.11 28797.63 33399.25 29094.56 35798.02 34298.25 36497.43 23499.68 32690.90 36398.74 33399.33 238
MVS95.72 33594.63 33998.99 26198.56 35697.98 29899.30 11598.86 31972.71 37297.30 35799.08 31198.34 16899.74 29889.21 36498.33 34599.26 250
thres600view796.60 31896.16 32097.93 31899.63 14596.09 33899.18 15297.57 35398.77 20298.72 30497.32 37487.04 35599.72 30388.57 36598.62 33897.98 357
FPMVS96.32 32395.50 33198.79 28799.60 15298.17 28398.46 27398.80 32397.16 31596.28 36499.63 15682.19 36899.09 36888.45 36698.89 32599.10 285
PCF-MVS96.03 1896.73 31595.86 32699.33 21399.44 23199.16 20796.87 36099.44 23986.58 36898.95 27699.40 24994.38 29699.88 16587.93 36799.80 16098.95 308
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 32196.03 32397.47 33099.63 14595.93 33999.18 15297.57 35398.75 20698.70 30697.31 37587.04 35599.67 33187.62 36898.51 34296.81 366
tfpn200view996.30 32495.89 32497.53 32899.58 16196.11 33699.00 19997.54 35698.43 23298.52 31896.98 37786.85 35799.67 33187.62 36898.51 34296.81 366
thres40096.40 32095.89 32497.92 31999.58 16196.11 33699.00 19997.54 35698.43 23298.52 31896.98 37786.85 35799.67 33187.62 36898.51 34297.98 357
thres20096.09 32795.68 33097.33 33599.48 21696.22 33598.53 26397.57 35398.06 26798.37 32596.73 37986.84 35999.61 35086.99 37198.57 33996.16 369
MVEpermissive92.54 2296.66 31796.11 32198.31 30999.68 13397.55 30997.94 31995.60 36699.37 11790.68 37498.70 35096.56 26298.61 37286.94 37299.55 25798.77 323
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM95.61 33694.71 33898.31 30999.12 30796.63 32996.66 36398.46 33890.77 36596.25 36598.68 35193.01 31199.69 31581.60 37397.86 35998.62 327
test12329.31 34133.05 34618.08 35725.93 38112.24 38197.53 33910.93 38211.78 37524.21 37650.08 38421.04 3808.60 37623.51 37432.43 37533.39 372
testmvs28.94 34233.33 34415.79 35826.03 3809.81 38296.77 36115.67 38111.55 37623.87 37750.74 38319.03 3818.53 37723.21 37533.07 37429.03 373
test_blank8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.88 34333.17 3450.00 3590.00 3820.00 3830.00 37099.62 1400.00 3770.00 37899.13 30399.82 40.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas16.61 34422.14 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 199.28 410.00 3780.00 3760.00 3760.00 374
sosnet-low-res8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
sosnet8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
Regformer8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.26 35211.02 3550.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.16 3010.00 3820.00 3780.00 3760.00 3760.00 374
uanet8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.83 3999.89 899.74 1799.71 9599.69 5599.63 130
test_one_060199.63 14599.76 5199.55 18899.23 13899.31 22799.61 17498.59 131
eth-test20.00 382
eth-test0.00 382
test_241102_ONE99.69 12499.82 2899.54 19499.12 16099.82 5299.49 22898.91 8799.52 359
save fliter99.53 18899.25 18998.29 28299.38 26299.07 164
test072699.69 12499.80 3699.24 13699.57 17799.16 15199.73 9699.65 14498.35 166
GSMVS99.14 279
test_part299.62 14999.67 8799.55 166
sam_mvs190.81 33799.14 279
sam_mvs90.52 341
MTGPAbinary99.53 203
test_post52.41 38190.25 34399.86 198
patchmatchnet-post99.62 16590.58 33999.94 57
MTMP99.09 18498.59 333
TEST999.35 25599.35 17098.11 29899.41 24694.83 35597.92 34498.99 32498.02 19599.85 217
test_899.34 26599.31 17698.08 30299.40 25394.90 35197.87 34898.97 33098.02 19599.84 234
agg_prior99.35 25599.36 16699.39 25697.76 35399.85 217
test_prior499.19 20598.00 310
test_prior99.46 17499.35 25599.22 19899.39 25699.69 31599.48 193
新几何298.04 306
旧先验199.49 21099.29 17999.26 28799.39 25397.67 22299.36 29299.46 202
原ACMM297.92 321
test22299.51 19899.08 21997.83 32699.29 28195.21 34898.68 30799.31 27397.28 24299.38 28799.43 215
segment_acmp98.37 164
testdata197.72 32997.86 282
test1299.54 15299.29 27899.33 17399.16 30598.43 32397.54 23099.82 25599.47 27599.48 193
plane_prior799.58 16199.38 160
plane_prior699.47 22199.26 18597.24 243
plane_prior499.25 287
plane_prior399.31 17698.36 24199.14 258
plane_prior298.80 23498.94 178
plane_prior199.51 198
plane_prior99.24 19498.42 27497.87 27999.71 206
n20.00 383
nn0.00 383
door-mid99.83 34
test1199.29 281
door99.77 63
HQP5-MVS98.94 231
HQP-NCC99.31 27297.98 31397.45 30098.15 333
ACMP_Plane99.31 27297.98 31397.45 30098.15 333
HQP4-MVS98.15 33399.70 30999.53 165
HQP3-MVS99.37 26399.67 223
HQP2-MVS96.67 260
NP-MVS99.40 24399.13 21098.83 343
ACMMP++_ref99.94 65
ACMMP++99.79 165
Test By Simon98.41 158