This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
v192192099.56 4299.57 4099.55 14499.75 9599.11 20699.05 18499.61 14699.15 14999.88 3299.71 10099.08 6499.87 17099.90 299.97 3099.66 75
v124099.56 4299.58 3799.51 15499.80 5699.00 21799.00 19399.65 12899.15 14999.90 2299.75 8099.09 6199.88 15799.90 299.96 4299.67 65
v1099.69 2199.69 1899.66 9599.81 5199.39 15199.66 4099.75 7599.60 7999.92 1899.87 3198.75 10999.86 19199.90 299.99 1299.73 42
v119299.57 3999.57 4099.57 13799.77 8099.22 19299.04 18699.60 15799.18 14099.87 3899.72 9399.08 6499.85 21099.89 599.98 2199.66 75
v14419299.55 4599.54 4599.58 13299.78 7299.20 19899.11 17399.62 13999.18 14099.89 2699.72 9398.66 12099.87 17099.88 699.97 3099.66 75
v899.68 2399.69 1899.65 10099.80 5699.40 14999.66 4099.76 6899.64 6599.93 1499.85 3798.66 12099.84 22799.88 699.99 1299.71 46
v114499.54 4799.53 4999.59 12799.79 6699.28 17599.10 17499.61 14699.20 13899.84 4399.73 8798.67 11899.84 22799.86 899.98 2199.64 90
v7n99.82 1099.80 1099.88 1199.96 499.84 1899.82 899.82 3999.84 2399.94 1199.91 1999.13 5899.96 3599.83 999.99 1299.83 18
v2v48299.50 5099.47 5399.58 13299.78 7299.25 18399.14 16199.58 17399.25 13099.81 5799.62 16098.24 17299.84 22799.83 999.97 3099.64 90
V4299.56 4299.54 4599.63 11199.79 6699.46 13099.39 8499.59 16499.24 13299.86 3999.70 10798.55 13399.82 24899.79 1199.95 4999.60 119
mvs_tets99.90 299.90 299.90 499.96 499.79 3699.72 1999.88 1899.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4299.68 3199.85 2699.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 3999.70 2299.86 2299.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 45100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 999.85 2099.94 1199.95 1199.73 899.90 12999.65 1699.97 3099.69 52
MIMVSNet199.66 2599.62 2699.80 2999.94 1099.87 999.69 2899.77 6399.78 3599.93 1499.89 2597.94 19799.92 9099.65 1699.98 2199.62 106
K. test v398.87 20298.60 21299.69 8599.93 1399.46 13099.74 1594.97 36199.78 3599.88 3299.88 2893.66 30099.97 1799.61 1899.95 4999.64 90
DIV-MVS_2432*160099.63 3199.59 3499.76 4699.84 3499.90 499.37 9099.79 5599.83 2699.88 3299.85 3798.42 15399.90 12999.60 1999.73 19299.49 181
Anonymous2024052199.44 6599.42 6599.49 16099.89 2198.96 22399.62 4899.76 6899.85 2099.82 5099.88 2896.39 26799.97 1799.59 2099.98 2199.55 145
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1399.75 1499.86 2299.70 4999.91 2099.89 2599.60 1999.87 17099.59 2099.74 18599.71 46
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2299.83 699.85 2699.80 3299.93 1499.93 1398.54 13599.93 7199.59 2099.98 2199.76 37
EU-MVSNet99.39 8199.62 2698.72 28799.88 2496.44 32699.56 6499.85 2699.90 799.90 2299.85 3798.09 18599.83 23899.58 2399.95 4999.90 4
mvs_anonymous99.28 10799.39 6898.94 26199.19 29197.81 29599.02 18999.55 18699.78 3599.85 4099.80 5498.24 17299.86 19199.57 2499.50 26299.15 266
lessismore_v099.64 10799.86 3099.38 15490.66 36899.89 2699.83 4394.56 29199.97 1799.56 2599.92 7499.57 139
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2299.76 1399.87 2099.73 4099.89 2699.87 3199.63 1499.87 17099.54 2699.92 7499.63 95
DROMVSNet99.61 3699.62 2699.59 12799.63 14299.89 799.68 3199.95 499.77 3899.40 20399.27 27399.48 2299.91 10899.54 2699.82 14298.98 298
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 699.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RRT_test8_iter0597.35 30097.25 29797.63 32398.81 33593.13 35399.26 12299.89 1599.51 8799.83 4899.68 12479.03 37199.88 15799.53 2999.72 19899.89 8
DSMNet-mixed99.48 5499.65 2398.95 26099.71 11197.27 31099.50 6899.82 3999.59 8199.41 19899.85 3799.62 16100.00 199.53 2999.89 9299.59 128
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2599.71 999.96 3599.51 3199.97 3099.84 14
FC-MVSNet-test99.70 1999.65 2399.86 1699.88 2499.86 1299.72 1999.78 6099.90 799.82 5099.83 4398.45 15099.87 17099.51 3199.97 3099.86 11
UA-Net99.78 1399.76 1499.86 1699.72 10899.71 6799.91 399.95 499.96 299.71 10099.91 1999.15 5499.97 1799.50 33100.00 199.90 4
PMMVS299.48 5499.45 5799.57 13799.76 8498.99 21898.09 29499.90 1398.95 17199.78 6899.58 18499.57 2099.93 7199.48 3499.95 4999.79 30
VPA-MVSNet99.66 2599.62 2699.79 3499.68 13099.75 5199.62 4899.69 10599.85 2099.80 6099.81 5298.81 9499.91 10899.47 3599.88 10099.70 49
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1899.61 5399.70 9999.93 499.78 6899.68 12499.10 5999.78 27599.45 3699.96 4299.83 18
TAMVS99.49 5299.45 5799.63 11199.48 20999.42 14499.45 7599.57 17599.66 6199.78 6899.83 4397.85 20699.86 19199.44 3799.96 4299.61 115
GeoE99.69 2199.66 2199.78 3799.76 8499.76 4899.60 5899.82 3999.46 10099.75 8099.56 19599.63 1499.95 4599.43 3899.88 10099.62 106
new-patchmatchnet99.35 9099.57 4098.71 28999.82 4496.62 32498.55 25399.75 7599.50 8899.88 3299.87 3199.31 3799.88 15799.43 38100.00 199.62 106
test20.0399.55 4599.54 4599.58 13299.79 6699.37 15799.02 18999.89 1599.60 7999.82 5099.62 16098.81 9499.89 14399.43 3899.86 11699.47 191
MVSFormer99.41 7399.44 5999.31 21599.57 16598.40 26499.77 1199.80 4999.73 4099.63 12599.30 26698.02 19199.98 799.43 3899.69 20799.55 145
test_djsdf99.84 899.81 999.91 299.94 1099.84 1899.77 1199.80 4999.73 4099.97 699.92 1699.77 799.98 799.43 38100.00 199.90 4
Anonymous2023121199.62 3499.57 4099.76 4699.61 14799.60 10699.81 999.73 8399.82 2899.90 2299.90 2197.97 19699.86 19199.42 4399.96 4299.80 24
SixPastTwentyTwo99.42 6999.30 8999.76 4699.92 1499.67 8399.70 2299.14 30199.65 6399.89 2699.90 2196.20 27299.94 5799.42 4399.92 7499.67 65
CS-MVS99.40 7699.43 6299.29 21899.44 22499.72 6499.36 9399.91 999.71 4499.28 22698.83 33499.22 4799.86 19199.40 4599.77 17198.29 336
bset_n11_16_dypcd98.69 22298.45 22999.42 18199.69 12198.52 25696.06 35996.80 35499.71 4499.73 9399.54 20495.14 28499.96 3599.39 4699.95 4999.79 30
UGNet99.38 8399.34 7899.49 16098.90 32298.90 23399.70 2299.35 26399.86 1698.57 30899.81 5298.50 14599.93 7199.38 4799.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6499.59 5999.82 3999.39 11199.82 5099.84 4299.38 2999.91 10899.38 4799.93 7099.80 24
FIs99.65 3099.58 3799.84 1999.84 3499.85 1399.66 4099.75 7599.86 1699.74 8999.79 6098.27 17099.85 21099.37 4999.93 7099.83 18
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 899.73 1699.85 2699.70 4999.92 1899.93 1399.45 2399.97 1799.36 50100.00 199.85 13
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8599.69 2899.92 699.67 5799.77 7399.75 8099.61 1799.98 799.35 5199.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_part198.63 22698.26 24999.75 5699.40 23699.49 12399.67 3699.68 10899.86 1699.88 3299.86 3686.73 35499.93 7199.34 5299.97 3099.81 23
CHOSEN 1792x268899.39 8199.30 8999.65 10099.88 2499.25 18398.78 23299.88 1898.66 20499.96 899.79 6097.45 22999.93 7199.34 5299.99 1299.78 32
CDS-MVSNet99.22 12799.13 12099.50 15799.35 24899.11 20698.96 20599.54 19199.46 10099.61 13899.70 10796.31 26999.83 23899.34 5299.88 10099.55 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS-SCA-FT99.00 18199.16 11398.51 29499.75 9595.90 33498.07 29799.84 3299.84 2399.89 2699.73 8796.01 27699.99 599.33 55100.00 199.63 95
HyFIR lowres test98.91 19498.64 20999.73 7099.85 3399.47 12698.07 29799.83 3498.64 20699.89 2699.60 17692.57 308100.00 199.33 5599.97 3099.72 43
pmmvs599.19 13899.11 12799.42 18199.76 8498.88 23498.55 25399.73 8398.82 18999.72 9599.62 16096.56 25899.82 24899.32 5799.95 4999.56 142
v14899.40 7699.41 6699.39 19499.76 8498.94 22599.09 17899.59 16499.17 14399.81 5799.61 16998.41 15499.69 30899.32 5799.94 6299.53 158
baseline99.63 3199.62 2699.66 9599.80 5699.62 9899.44 7899.80 4999.71 4499.72 9599.69 11399.15 5499.83 23899.32 5799.94 6299.53 158
CVMVSNet98.61 22898.88 18797.80 31899.58 15593.60 35199.26 12299.64 13499.66 6199.72 9599.67 13093.26 30299.93 7199.30 6099.81 15199.87 9
PS-CasMVS99.66 2599.58 3799.89 799.80 5699.85 1399.66 4099.73 8399.62 6999.84 4399.71 10098.62 12499.96 3599.30 6099.96 4299.86 11
DTE-MVSNet99.68 2399.61 3199.88 1199.80 5699.87 999.67 3699.71 9599.72 4399.84 4399.78 6698.67 11899.97 1799.30 6099.95 4999.80 24
tmp_tt95.75 33195.42 32996.76 33789.90 37094.42 34698.86 21597.87 34478.01 36399.30 22599.69 11397.70 21395.89 36699.29 6398.14 34499.95 1
PEN-MVS99.66 2599.59 3499.89 799.83 3899.87 999.66 4099.73 8399.70 4999.84 4399.73 8798.56 13299.96 3599.29 6399.94 6299.83 18
WR-MVS_H99.61 3699.53 4999.87 1499.80 5699.83 2299.67 3699.75 7599.58 8299.85 4099.69 11398.18 18199.94 5799.28 6599.95 4999.83 18
IterMVS98.97 18599.16 11398.42 29899.74 10195.64 33798.06 29999.83 3499.83 2699.85 4099.74 8396.10 27599.99 599.27 66100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
hse-mvs398.61 22898.34 24299.44 17599.60 14998.67 24599.27 12099.44 23599.68 5399.32 21799.49 22192.50 311100.00 199.24 6796.51 35999.65 83
hse-mvs298.52 24298.30 24699.16 23999.29 27298.60 25298.77 23399.02 30899.68 5399.32 21799.04 30992.50 31199.85 21099.24 6797.87 35099.03 291
FMVSNet199.66 2599.63 2599.73 7099.78 7299.77 4299.68 3199.70 9999.67 5799.82 5099.83 4398.98 7499.90 12999.24 6799.97 3099.53 158
casdiffmvs99.63 3199.61 3199.67 8899.79 6699.59 10999.13 16799.85 2699.79 3499.76 7599.72 9399.33 3699.82 24899.21 7099.94 6299.59 128
CP-MVSNet99.54 4799.43 6299.87 1499.76 8499.82 2699.57 6299.61 14699.54 8399.80 6099.64 14197.79 21099.95 4599.21 7099.94 6299.84 14
DELS-MVS99.34 9599.30 8999.48 16499.51 19299.36 16098.12 29099.53 20099.36 11599.41 19899.61 16999.22 4799.87 17099.21 7099.68 21099.20 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RRT_MVS98.75 21498.54 22299.41 18998.14 36098.61 25198.98 20299.66 11799.31 12199.84 4399.75 8091.98 31499.98 799.20 7399.95 4999.62 106
UniMVSNet (Re)99.37 8599.26 10199.68 8699.51 19299.58 11298.98 20299.60 15799.43 10899.70 10299.36 25297.70 21399.88 15799.20 7399.87 10999.59 128
CANet99.11 15999.05 14899.28 22198.83 33198.56 25398.71 24199.41 24299.25 13099.23 23499.22 28697.66 22299.94 5799.19 7599.97 3099.33 231
EI-MVSNet-UG-set99.48 5499.50 5199.42 18199.57 16598.65 25099.24 13099.46 23099.68 5399.80 6099.66 13498.99 7399.89 14399.19 7599.90 8499.72 43
xiu_mvs_v1_base_debu99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
xiu_mvs_v1_base99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
xiu_mvs_v1_base_debi99.23 11899.34 7898.91 26799.59 15298.23 27298.47 26299.66 11799.61 7399.68 10798.94 32699.39 2599.97 1799.18 7799.55 24898.51 326
MVS_030498.88 20098.71 20399.39 19498.85 32998.91 23299.45 7599.30 27598.56 21397.26 35299.68 12496.18 27399.96 3599.17 8099.94 6299.29 240
VPNet99.46 6199.37 7399.71 8099.82 4499.59 10999.48 7299.70 9999.81 2999.69 10599.58 18497.66 22299.86 19199.17 8099.44 27099.67 65
UniMVSNet_NR-MVSNet99.37 8599.25 10399.72 7699.47 21499.56 11598.97 20499.61 14699.43 10899.67 11199.28 27197.85 20699.95 4599.17 8099.81 15199.65 83
DU-MVS99.33 9999.21 10899.71 8099.43 22799.56 11598.83 22099.53 20099.38 11299.67 11199.36 25297.67 21899.95 4599.17 8099.81 15199.63 95
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18199.57 16598.66 24799.24 13099.46 23099.67 5799.79 6599.65 13998.97 7699.89 14399.15 8499.89 9299.71 46
EI-MVSNet99.38 8399.44 5999.21 23399.58 15598.09 28399.26 12299.46 23099.62 6999.75 8099.67 13098.54 13599.85 21099.15 8499.92 7499.68 58
VNet99.18 14299.06 14499.56 14199.24 28299.36 16099.33 9999.31 27299.67 5799.47 17999.57 19296.48 26199.84 22799.15 8499.30 29199.47 191
EG-PatchMatch MVS99.57 3999.56 4499.62 12099.77 8099.33 16799.26 12299.76 6899.32 12099.80 6099.78 6699.29 3999.87 17099.15 8499.91 8399.66 75
PVSNet_Blended_VisFu99.40 7699.38 7099.44 17599.90 1998.66 24798.94 20899.91 997.97 26699.79 6599.73 8799.05 6999.97 1799.15 8499.99 1299.68 58
IterMVS-LS99.41 7399.47 5399.25 22899.81 5198.09 28398.85 21799.76 6899.62 6999.83 4899.64 14198.54 13599.97 1799.15 8499.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4699.58 15599.64 9299.30 10999.63 13699.61 7399.71 10099.56 19598.76 10799.96 3599.14 9099.92 7499.68 58
MVSTER98.47 24998.22 25299.24 23099.06 31198.35 26999.08 18199.46 23099.27 12699.75 8099.66 13488.61 34499.85 21099.14 9099.92 7499.52 168
Anonymous2023120699.35 9099.31 8499.47 16699.74 10199.06 21699.28 11799.74 8099.23 13499.72 9599.53 20797.63 22499.88 15799.11 9299.84 12399.48 186
CS-MVS-test99.20 13499.22 10799.12 24599.30 26999.78 3999.35 9599.90 1399.47 9598.98 26698.52 34998.83 9399.87 17099.10 9399.55 24897.72 351
MVS_Test99.28 10799.31 8499.19 23699.35 24898.79 23999.36 9399.49 22099.17 14399.21 24099.67 13098.78 10399.66 32899.09 9499.66 22199.10 276
testgi99.29 10699.26 10199.37 20199.75 9598.81 23798.84 21899.89 1598.38 23399.75 8099.04 30999.36 3499.86 19199.08 9599.25 29799.45 197
1112_ss99.05 16998.84 19299.67 8899.66 13699.29 17398.52 25899.82 3997.65 28399.43 18899.16 29396.42 26499.91 10899.07 9699.84 12399.80 24
CANet_DTU98.91 19498.85 19099.09 24898.79 33798.13 27898.18 28399.31 27299.48 9098.86 28299.51 21396.56 25899.95 4599.05 9799.95 4999.19 258
Baseline_NR-MVSNet99.49 5299.37 7399.82 2399.91 1599.84 1898.83 22099.86 2299.68 5399.65 11999.88 2897.67 21899.87 17099.03 9899.86 11699.76 37
FMVSNet299.35 9099.28 9699.55 14499.49 20399.35 16499.45 7599.57 17599.44 10399.70 10299.74 8397.21 24199.87 17099.03 9899.94 6299.44 202
Test_1112_low_res98.95 19198.73 20199.63 11199.68 13099.15 20398.09 29499.80 4997.14 30999.46 18299.40 24196.11 27499.89 14399.01 10099.84 12399.84 14
VDD-MVS99.20 13499.11 12799.44 17599.43 22798.98 21999.50 6898.32 33799.80 3299.56 15599.69 11396.99 25199.85 21098.99 10199.73 19299.50 176
DeepC-MVS98.90 499.62 3499.61 3199.67 8899.72 10899.44 13799.24 13099.71 9599.27 12699.93 1499.90 2199.70 1199.93 7198.99 10199.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d99.48 5499.47 5399.51 15499.77 8099.41 14898.81 22599.66 11799.42 11099.75 8099.66 13499.20 4999.76 28598.98 10399.99 1299.36 225
EPNet_dtu97.62 29097.79 28497.11 33696.67 36592.31 35798.51 25998.04 33999.24 13295.77 36199.47 22993.78 29999.66 32898.98 10399.62 22999.37 222
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
diffmvs99.34 9599.32 8399.39 19499.67 13598.77 24098.57 25199.81 4899.61 7399.48 17799.41 23998.47 14699.86 19198.97 10599.90 8499.53 158
NR-MVSNet99.40 7699.31 8499.68 8699.43 22799.55 11899.73 1699.50 21599.46 10099.88 3299.36 25297.54 22699.87 17098.97 10599.87 10999.63 95
GBi-Net99.42 6999.31 8499.73 7099.49 20399.77 4299.68 3199.70 9999.44 10399.62 13299.83 4397.21 24199.90 12998.96 10799.90 8499.53 158
FMVSNet597.80 28397.25 29799.42 18198.83 33198.97 22199.38 8699.80 4998.87 18399.25 23099.69 11380.60 36699.91 10898.96 10799.90 8499.38 219
test199.42 6999.31 8499.73 7099.49 20399.77 4299.68 3199.70 9999.44 10399.62 13299.83 4397.21 24199.90 12998.96 10799.90 8499.53 158
FMVSNet398.80 20998.63 21199.32 21299.13 29998.72 24299.10 17499.48 22299.23 13499.62 13299.64 14192.57 30899.86 19198.96 10799.90 8499.39 217
UnsupCasMVSNet_eth98.83 20598.57 21899.59 12799.68 13099.45 13598.99 19899.67 11399.48 9099.55 16099.36 25294.92 28599.86 19198.95 11196.57 35899.45 197
CHOSEN 280x42098.41 25498.41 23498.40 29999.34 25895.89 33596.94 35399.44 23598.80 19299.25 23099.52 20993.51 30199.98 798.94 11299.98 2199.32 234
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1399.86 599.92 699.69 5299.78 6899.92 1699.37 3199.88 15798.93 11399.95 4999.60 119
Regformer-499.45 6399.44 5999.50 15799.52 18798.94 22599.17 15199.53 20099.64 6599.76 7599.60 17698.96 7999.90 12998.91 11499.84 12399.67 65
Regformer-399.41 7399.41 6699.40 19199.52 18798.70 24399.17 15199.44 23599.62 6999.75 8099.60 17698.90 8699.85 21098.89 11599.84 12399.65 83
alignmvs98.28 26497.96 27099.25 22899.12 30198.93 22999.03 18898.42 33399.64 6598.72 29797.85 36090.86 33099.62 33998.88 11699.13 30299.19 258
sss98.90 19698.77 20099.27 22399.48 20998.44 26198.72 23999.32 26897.94 27099.37 20799.35 25796.31 26999.91 10898.85 11799.63 22899.47 191
xiu_mvs_v2_base99.02 17599.11 12798.77 28499.37 24498.09 28398.13 28999.51 21199.47 9599.42 19098.54 34899.38 2999.97 1798.83 11899.33 28898.24 339
PS-MVSNAJ99.00 18199.08 13898.76 28599.37 24498.10 28298.00 30499.51 21199.47 9599.41 19898.50 35199.28 4199.97 1798.83 11899.34 28698.20 343
D2MVS99.22 12799.19 11099.29 21899.69 12198.74 24198.81 22599.41 24298.55 21599.68 10799.69 11398.13 18399.87 17098.82 12099.98 2199.24 246
PatchT98.45 25198.32 24598.83 27998.94 32098.29 27099.24 13098.82 31699.84 2399.08 25899.76 7691.37 32099.94 5798.82 12099.00 31098.26 338
Effi-MVS+99.06 16698.97 17299.34 20699.31 26598.98 21998.31 27599.91 998.81 19098.79 29098.94 32699.14 5699.84 22798.79 12298.74 32599.20 256
canonicalmvs99.02 17599.00 16399.09 24899.10 30798.70 24399.61 5399.66 11799.63 6898.64 30297.65 36299.04 7099.54 34898.79 12298.92 31499.04 290
VDDNet98.97 18598.82 19599.42 18199.71 11198.81 23799.62 4898.68 32199.81 2999.38 20699.80 5494.25 29399.85 21098.79 12299.32 28999.59 128
CR-MVSNet98.35 26198.20 25498.83 27999.05 31298.12 27999.30 10999.67 11397.39 29799.16 24799.79 6091.87 31799.91 10898.78 12598.77 32198.44 331
test_method91.72 33592.32 33889.91 34993.49 36970.18 37190.28 36399.56 18061.71 36695.39 36399.52 20993.90 29599.94 5798.76 12698.27 33999.62 106
RPMNet98.60 23098.53 22498.83 27999.05 31298.12 27999.30 10999.62 13999.86 1699.16 24799.74 8392.53 31099.92 9098.75 12798.77 32198.44 331
pmmvs499.13 15399.06 14499.36 20499.57 16599.10 21098.01 30299.25 28698.78 19599.58 14599.44 23698.24 17299.76 28598.74 12899.93 7099.22 251
tttt051797.62 29097.20 29998.90 27399.76 8497.40 30799.48 7294.36 36399.06 16299.70 10299.49 22184.55 36099.94 5798.73 12999.65 22499.36 225
EPP-MVSNet99.17 14699.00 16399.66 9599.80 5699.43 14199.70 2299.24 28999.48 9099.56 15599.77 7394.89 28699.93 7198.72 13099.89 9299.63 95
Anonymous2024052999.42 6999.34 7899.65 10099.53 18299.60 10699.63 4799.39 25299.47 9599.76 7599.78 6698.13 18399.86 19198.70 13199.68 21099.49 181
ACMH98.42 699.59 3899.54 4599.72 7699.86 3099.62 9899.56 6499.79 5598.77 19699.80 6099.85 3799.64 1399.85 21098.70 13199.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ab-mvs99.33 9999.28 9699.47 16699.57 16599.39 15199.78 1099.43 23998.87 18399.57 14899.82 4998.06 18899.87 17098.69 13399.73 19299.15 266
LFMVS98.46 25098.19 25799.26 22599.24 28298.52 25699.62 4896.94 35399.87 1499.31 22199.58 18491.04 32599.81 26498.68 13499.42 27599.45 197
WR-MVS99.11 15998.93 17799.66 9599.30 26999.42 14498.42 26899.37 25999.04 16399.57 14899.20 29096.89 25399.86 19198.66 13599.87 10999.70 49
Anonymous20240521198.75 21498.46 22899.63 11199.34 25899.66 8599.47 7497.65 34699.28 12599.56 15599.50 21693.15 30399.84 22798.62 13699.58 24299.40 214
EPNet98.13 27297.77 28599.18 23894.57 36897.99 28799.24 13097.96 34199.74 3997.29 35199.62 16093.13 30499.97 1798.59 13799.83 13399.58 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++99.05 16999.09 13698.91 26799.21 28698.36 26898.82 22499.47 22698.85 18598.90 27799.56 19598.78 10399.09 36198.57 13899.68 21099.26 243
Patchmatch-RL test98.60 23098.36 23999.33 20899.77 8099.07 21498.27 27899.87 2098.91 17899.74 8999.72 9390.57 33499.79 27298.55 13999.85 11999.11 274
pmmvs398.08 27597.80 28298.91 26799.41 23397.69 30097.87 31899.66 11795.87 33199.50 17599.51 21390.35 33699.97 1798.55 13999.47 26799.08 282
ETV-MVS99.18 14299.18 11199.16 23999.34 25899.28 17599.12 17199.79 5599.48 9098.93 27198.55 34799.40 2499.93 7198.51 14199.52 25998.28 337
jason99.16 14799.11 12799.32 21299.75 9598.44 26198.26 27999.39 25298.70 20299.74 8999.30 26698.54 13599.97 1798.48 14299.82 14299.55 145
jason: jason.
APDe-MVS99.48 5499.36 7699.85 1899.55 17699.81 2999.50 6899.69 10598.99 16599.75 8099.71 10098.79 10199.93 7198.46 14399.85 11999.80 24
CL-MVSNet_2432*160098.71 22098.56 22199.15 24199.22 28498.66 24797.14 34899.51 21198.09 25999.54 16299.27 27396.87 25499.74 29198.43 14498.96 31199.03 291
our_test_398.85 20499.09 13698.13 31099.66 13694.90 34497.72 32399.58 17399.07 15899.64 12199.62 16098.19 17999.93 7198.41 14599.95 4999.55 145
Gipumacopyleft99.57 3999.59 3499.49 16099.98 399.71 6799.72 1999.84 3299.81 2999.94 1199.78 6698.91 8399.71 30098.41 14599.95 4999.05 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 197.37 29896.91 30998.74 28697.72 36197.57 30297.60 32997.36 35298.00 26299.21 24098.02 35890.04 33999.79 27298.37 14795.89 36298.86 308
Regformer-199.32 10199.27 9999.47 16699.41 23398.95 22498.99 19899.48 22299.48 9099.66 11599.52 20998.78 10399.87 17098.36 14899.74 18599.60 119
PM-MVS99.36 8899.29 9499.58 13299.83 3899.66 8598.95 20699.86 2298.85 18599.81 5799.73 8798.40 15899.92 9098.36 14899.83 13399.17 262
baseline197.73 28697.33 29498.96 25999.30 26997.73 29899.40 8298.42 33399.33 11999.46 18299.21 28891.18 32399.82 24898.35 15091.26 36499.32 234
MVS-HIRNet97.86 28198.22 25296.76 33799.28 27591.53 36398.38 27092.60 36799.13 15199.31 22199.96 1097.18 24599.68 31998.34 15199.83 13399.07 287
GA-MVS97.99 28097.68 28898.93 26499.52 18798.04 28697.19 34799.05 30798.32 24698.81 28798.97 32289.89 34199.41 35898.33 15299.05 30699.34 230
Fast-Effi-MVS+99.02 17598.87 18899.46 16999.38 24199.50 12299.04 18699.79 5597.17 30798.62 30398.74 34099.34 3599.95 4598.32 15399.41 27698.92 303
Regformer-299.34 9599.27 9999.53 15099.41 23399.10 21098.99 19899.53 20099.47 9599.66 11599.52 20998.80 9899.89 14398.31 15499.74 18599.60 119
MDA-MVSNet_test_wron98.95 19198.99 16898.85 27599.64 14097.16 31398.23 28199.33 26698.93 17599.56 15599.66 13497.39 23399.83 23898.29 15599.88 10099.55 145
N_pmnet98.73 21898.53 22499.35 20599.72 10898.67 24598.34 27194.65 36298.35 24099.79 6599.68 12498.03 18999.93 7198.28 15699.92 7499.44 202
ET-MVSNet_ETH3D96.78 31096.07 31998.91 26799.26 27997.92 29397.70 32596.05 35897.96 26992.37 36698.43 35287.06 34899.90 12998.27 15797.56 35398.91 304
thisisatest053097.45 29596.95 30698.94 26199.68 13097.73 29899.09 17894.19 36598.61 21099.56 15599.30 26684.30 36199.93 7198.27 15799.54 25599.16 264
YYNet198.95 19198.99 16898.84 27799.64 14097.14 31498.22 28299.32 26898.92 17799.59 14399.66 13497.40 23199.83 23898.27 15799.90 8499.55 145
ACMM98.09 1199.46 6199.38 7099.72 7699.80 5699.69 7899.13 16799.65 12898.99 16599.64 12199.72 9399.39 2599.86 19198.23 16099.81 15199.60 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lupinMVS98.96 18898.87 18899.24 23099.57 16598.40 26498.12 29099.18 29798.28 24899.63 12599.13 29598.02 19199.97 1798.22 16199.69 20799.35 228
3Dnovator99.15 299.43 6699.36 7699.65 10099.39 23899.42 14499.70 2299.56 18099.23 13499.35 21099.80 5499.17 5299.95 4598.21 16299.84 12399.59 128
Fast-Effi-MVS+-dtu99.20 13499.12 12499.43 17999.25 28099.69 7899.05 18499.82 3999.50 8898.97 26799.05 30698.98 7499.98 798.20 16399.24 29998.62 318
MS-PatchMatch99.00 18198.97 17299.09 24899.11 30698.19 27598.76 23599.33 26698.49 22399.44 18499.58 18498.21 17699.69 30898.20 16399.62 22999.39 217
TSAR-MVS + GP.99.12 15599.04 15499.38 19899.34 25899.16 20198.15 28699.29 27798.18 25599.63 12599.62 16099.18 5199.68 31998.20 16399.74 18599.30 237
DP-MVS99.48 5499.39 6899.74 6299.57 16599.62 9899.29 11699.61 14699.87 1499.74 8999.76 7698.69 11499.87 17098.20 16399.80 15699.75 40
MVP-Stereo99.16 14799.08 13899.43 17999.48 20999.07 21499.08 18199.55 18698.63 20799.31 22199.68 12498.19 17999.78 27598.18 16799.58 24299.45 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS_fast99.43 6699.30 8999.80 2999.83 3899.81 2999.52 6699.70 9998.35 24099.51 17499.50 21699.31 3799.88 15798.18 16799.84 12399.69 52
MDA-MVSNet-bldmvs99.06 16699.05 14899.07 25299.80 5697.83 29498.89 21099.72 9299.29 12299.63 12599.70 10796.47 26299.89 14398.17 16999.82 14299.50 176
JIA-IIPM98.06 27697.92 27798.50 29598.59 34697.02 31698.80 22898.51 32999.88 1397.89 33999.87 3191.89 31699.90 12998.16 17097.68 35298.59 320
EIA-MVS99.12 15599.01 16099.45 17399.36 24699.62 9899.34 9799.79 5598.41 22998.84 28498.89 33198.75 10999.84 22798.15 17199.51 26098.89 305
miper_lstm_enhance98.65 22598.60 21298.82 28299.20 28997.33 30997.78 32199.66 11799.01 16499.59 14399.50 21694.62 29099.85 21098.12 17299.90 8499.26 243
Effi-MVS+-dtu99.07 16598.92 18199.52 15198.89 32599.78 3999.15 15999.66 11799.34 11698.92 27499.24 28497.69 21599.98 798.11 17399.28 29398.81 312
mvs-test198.83 20598.70 20699.22 23298.89 32599.65 9098.88 21199.66 11799.34 11698.29 31998.94 32697.69 21599.96 3598.11 17398.54 33398.04 347
tpm97.15 30296.95 30697.75 32098.91 32194.24 34799.32 10297.96 34197.71 28198.29 31999.32 26286.72 35599.92 9098.10 17596.24 36199.09 279
DeepPCF-MVS98.42 699.18 14299.02 15799.67 8899.22 28499.75 5197.25 34599.47 22698.72 20199.66 11599.70 10799.29 3999.63 33898.07 17699.81 15199.62 106
ppachtmachnet_test98.89 19999.12 12498.20 30899.66 13695.24 34197.63 32799.68 10899.08 15699.78 6899.62 16098.65 12299.88 15798.02 17799.96 4299.48 186
tpmrst97.73 28698.07 26496.73 33998.71 34392.00 35899.10 17498.86 31398.52 21998.92 27499.54 20491.90 31599.82 24898.02 17799.03 30898.37 333
CSCG99.37 8599.29 9499.60 12599.71 11199.46 13099.43 8099.85 2698.79 19399.41 19899.60 17698.92 8199.92 9098.02 17799.92 7499.43 208
eth_miper_zixun_eth98.68 22398.71 20398.60 29199.10 30796.84 32197.52 33599.54 19198.94 17299.58 14599.48 22496.25 27199.76 28598.01 18099.93 7099.21 253
Patchmtry98.78 21098.54 22299.49 16098.89 32599.19 19999.32 10299.67 11399.65 6399.72 9599.79 6091.87 31799.95 4598.00 18199.97 3099.33 231
PVSNet_BlendedMVS99.03 17399.01 16099.09 24899.54 17797.99 28798.58 24799.82 3997.62 28499.34 21399.71 10098.52 14299.77 28397.98 18299.97 3099.52 168
PVSNet_Blended98.70 22198.59 21499.02 25699.54 17797.99 28797.58 33099.82 3995.70 33599.34 21398.98 31998.52 14299.77 28397.98 18299.83 13399.30 237
cl-mvsnet____98.54 24098.41 23498.92 26599.03 31597.80 29697.46 33799.59 16498.90 17999.60 14099.46 23293.85 29799.78 27597.97 18499.89 9299.17 262
cl-mvsnet198.54 24098.42 23398.92 26599.03 31597.80 29697.46 33799.59 16498.90 17999.60 14099.46 23293.87 29699.78 27597.97 18499.89 9299.18 260
AUN-MVS97.82 28297.38 29399.14 24299.27 27798.53 25498.72 23999.02 30898.10 25797.18 35499.03 31389.26 34399.85 21097.94 18697.91 34899.03 291
ambc99.20 23599.35 24898.53 25499.17 15199.46 23099.67 11199.80 5498.46 14999.70 30297.92 18799.70 20499.38 219
USDC98.96 18898.93 17799.05 25499.54 17797.99 28797.07 35199.80 4998.21 25299.75 8099.77 7398.43 15199.64 33797.90 18899.88 10099.51 170
OPM-MVS99.26 11399.13 12099.63 11199.70 11899.61 10498.58 24799.48 22298.50 22199.52 16999.63 15199.14 5699.76 28597.89 18999.77 17199.51 170
DVP-MVS99.32 10199.17 11299.77 4099.69 12199.80 3499.14 16199.31 27299.16 14599.62 13299.61 16998.35 16299.91 10897.88 19099.72 19899.61 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2199.70 11899.79 3699.14 16199.61 14699.92 9097.88 19099.72 19899.77 33
cl_fuxian98.72 21998.71 20398.72 28799.12 30197.22 31297.68 32699.56 18098.90 17999.54 16299.48 22496.37 26899.73 29497.88 19099.88 10099.21 253
3Dnovator+98.92 399.35 9099.24 10499.67 8899.35 24899.47 12699.62 4899.50 21599.44 10399.12 25499.78 6698.77 10699.94 5797.87 19399.72 19899.62 106
miper_ehance_all_eth98.59 23398.59 21498.59 29298.98 31897.07 31597.49 33699.52 20898.50 22199.52 16999.37 24796.41 26699.71 30097.86 19499.62 22999.00 297
WTY-MVS98.59 23398.37 23899.26 22599.43 22798.40 26498.74 23699.13 30398.10 25799.21 24099.24 28494.82 28799.90 12997.86 19498.77 32199.49 181
SED-MVS99.40 7699.28 9699.77 4099.69 12199.82 2699.20 14099.54 19199.13 15199.82 5099.63 15198.91 8399.92 9097.85 19699.70 20499.58 133
test_241102_TWO99.54 19199.13 15199.76 7599.63 15198.32 16799.92 9097.85 19699.69 20799.75 40
MVS_111021_HR99.12 15599.02 15799.40 19199.50 19899.11 20697.92 31599.71 9598.76 19999.08 25899.47 22999.17 5299.54 34897.85 19699.76 17499.54 153
zzz-MVS99.30 10499.14 11799.80 2999.81 5199.81 2998.73 23899.53 20099.27 12699.42 19099.63 15198.21 17699.95 4597.83 19999.79 16199.65 83
MTAPA99.35 9099.20 10999.80 2999.81 5199.81 2999.33 9999.53 20099.27 12699.42 19099.63 15198.21 17699.95 4597.83 19999.79 16199.65 83
TESTMET0.1,196.24 32295.84 32497.41 32898.24 35593.84 35097.38 33995.84 35998.43 22697.81 34398.56 34679.77 36799.89 14397.77 20198.77 32198.52 325
ACMH+98.40 899.50 5099.43 6299.71 8099.86 3099.76 4899.32 10299.77 6399.53 8599.77 7399.76 7699.26 4599.78 27597.77 20199.88 10099.60 119
IU-MVS99.69 12199.77 4299.22 29197.50 29199.69 10597.75 20399.70 20499.77 33
114514_t98.49 24798.11 26299.64 10799.73 10499.58 11299.24 13099.76 6889.94 35999.42 19099.56 19597.76 21299.86 19197.74 20499.82 14299.47 191
test_0728_THIRD99.18 14099.62 13299.61 16998.58 12999.91 10897.72 20599.80 15699.77 33
miper_enhance_ethall98.03 27797.94 27598.32 30398.27 35496.43 32796.95 35299.41 24296.37 32599.43 18898.96 32494.74 28899.69 30897.71 20699.62 22998.83 311
TSAR-MVS + MP.99.34 9599.24 10499.63 11199.82 4499.37 15799.26 12299.35 26398.77 19699.57 14899.70 10799.27 4499.88 15797.71 20699.75 17799.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
cl-mvsnet297.56 29397.28 29598.40 29998.37 35296.75 32297.24 34699.37 25997.31 30199.41 19899.22 28687.30 34699.37 35997.70 20899.62 22999.08 282
MP-MVS-pluss99.14 15198.92 18199.80 2999.83 3899.83 2298.61 24399.63 13696.84 31799.44 18499.58 18498.81 9499.91 10897.70 20899.82 14299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.28 10799.11 12799.79 3499.75 9599.81 2998.95 20699.53 20098.27 24999.53 16799.73 8798.75 10999.87 17097.70 20899.83 13399.68 58
UnsupCasMVSNet_bld98.55 23998.27 24899.40 19199.56 17599.37 15797.97 31099.68 10897.49 29299.08 25899.35 25795.41 28399.82 24897.70 20898.19 34299.01 296
MVS_111021_LR99.13 15399.03 15699.42 18199.58 15599.32 16997.91 31799.73 8398.68 20399.31 22199.48 22499.09 6199.66 32897.70 20899.77 17199.29 240
IS-MVSNet99.03 17398.85 19099.55 14499.80 5699.25 18399.73 1699.15 30099.37 11399.61 13899.71 10094.73 28999.81 26497.70 20899.88 10099.58 133
test-LLR97.15 30296.95 30697.74 32198.18 35795.02 34297.38 33996.10 35598.00 26297.81 34398.58 34390.04 33999.91 10897.69 21498.78 31998.31 334
test-mter96.23 32395.73 32697.74 32198.18 35795.02 34297.38 33996.10 35597.90 27197.81 34398.58 34379.12 37099.91 10897.69 21498.78 31998.31 334
XVS99.27 11199.11 12799.75 5699.71 11199.71 6799.37 9099.61 14699.29 12298.76 29499.47 22998.47 14699.88 15797.62 21699.73 19299.67 65
X-MVStestdata96.09 32494.87 33499.75 5699.71 11199.71 6799.37 9099.61 14699.29 12298.76 29461.30 37298.47 14699.88 15797.62 21699.73 19299.67 65
SMA-MVScopyleft99.19 13899.00 16399.73 7099.46 21999.73 6099.13 16799.52 20897.40 29699.57 14899.64 14198.93 8099.83 23897.61 21899.79 16199.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CostFormer96.71 31396.79 31296.46 34398.90 32290.71 36799.41 8198.68 32194.69 34998.14 33099.34 26086.32 35799.80 26997.60 21998.07 34698.88 306
PVSNet97.47 1598.42 25398.44 23198.35 30199.46 21996.26 32896.70 35699.34 26597.68 28299.00 26599.13 29597.40 23199.72 29697.59 22099.68 21099.08 282
new_pmnet98.88 20098.89 18698.84 27799.70 11897.62 30198.15 28699.50 21597.98 26599.62 13299.54 20498.15 18299.94 5797.55 22199.84 12398.95 300
IB-MVS95.41 2095.30 33494.46 33797.84 31798.76 34195.33 34097.33 34296.07 35796.02 32995.37 36497.41 36576.17 37299.96 3597.54 22295.44 36398.22 340
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LS3D99.24 11799.11 12799.61 12398.38 35199.79 3699.57 6299.68 10899.61 7399.15 24999.71 10098.70 11399.91 10897.54 22299.68 21099.13 273
ZNCC-MVS99.22 12799.04 15499.77 4099.76 8499.73 6099.28 11799.56 18098.19 25499.14 25199.29 26998.84 9299.92 9097.53 22499.80 15699.64 90
CP-MVS99.23 11899.05 14899.75 5699.66 13699.66 8599.38 8699.62 13998.38 23399.06 26299.27 27398.79 10199.94 5797.51 22599.82 14299.66 75
SD-MVS99.01 17999.30 8998.15 30999.50 19899.40 14998.94 20899.61 14699.22 13799.75 8099.82 4999.54 2195.51 36797.48 22699.87 10999.54 153
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS98.49 24798.29 24799.11 24698.96 31998.42 26397.54 33199.32 26897.53 28998.47 31598.15 35797.88 20399.82 24897.46 22799.24 29999.09 279
DeepC-MVS_fast98.47 599.23 11899.12 12499.56 14199.28 27599.22 19298.99 19899.40 24999.08 15699.58 14599.64 14198.90 8699.83 23897.44 22899.75 17799.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.25 11499.08 13899.76 4699.73 10499.70 7499.31 10699.59 16498.36 23599.36 20899.37 24798.80 9899.91 10897.43 22999.75 17799.68 58
ACMMPR99.23 11899.06 14499.76 4699.74 10199.69 7899.31 10699.59 16498.36 23599.35 21099.38 24698.61 12699.93 7197.43 22999.75 17799.67 65
Vis-MVSNet (Re-imp)98.77 21198.58 21799.34 20699.78 7298.88 23499.61 5399.56 18099.11 15599.24 23399.56 19593.00 30699.78 27597.43 22999.89 9299.35 228
MIMVSNet98.43 25298.20 25499.11 24699.53 18298.38 26799.58 6198.61 32598.96 17099.33 21599.76 7690.92 32799.81 26497.38 23299.76 17499.15 266
XVG-OURS-SEG-HR99.16 14798.99 16899.66 9599.84 3499.64 9298.25 28099.73 8398.39 23299.63 12599.43 23799.70 1199.90 12997.34 23398.64 32999.44 202
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7399.70 8499.83 3899.70 7499.38 8699.78 6099.53 8599.67 11199.78 6699.19 5099.86 19197.32 23499.87 10999.55 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MCST-MVS99.02 17598.81 19699.65 10099.58 15599.49 12398.58 24799.07 30498.40 23199.04 26399.25 27998.51 14499.80 26997.31 23599.51 26099.65 83
region2R99.23 11899.05 14899.77 4099.76 8499.70 7499.31 10699.59 16498.41 22999.32 21799.36 25298.73 11299.93 7197.29 23699.74 18599.67 65
APD-MVS_3200maxsize99.31 10399.16 11399.74 6299.53 18299.75 5199.27 12099.61 14699.19 13999.57 14899.64 14198.76 10799.90 12997.29 23699.62 22999.56 142
TAPA-MVS97.92 1398.03 27797.55 29199.46 16999.47 21499.44 13798.50 26099.62 13986.79 36099.07 26199.26 27798.26 17199.62 33997.28 23899.73 19299.31 236
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SR-MVS-dyc-post99.27 11199.11 12799.73 7099.54 17799.74 5799.26 12299.62 13999.16 14599.52 16999.64 14198.41 15499.91 10897.27 23999.61 23699.54 153
RE-MVS-def99.13 12099.54 17799.74 5799.26 12299.62 13999.16 14599.52 16999.64 14198.57 13097.27 23999.61 23699.54 153
test_yl98.25 26697.95 27199.13 24399.17 29498.47 25899.00 19398.67 32398.97 16799.22 23899.02 31491.31 32199.69 30897.26 24198.93 31299.24 246
DCV-MVSNet98.25 26697.95 27199.13 24399.17 29498.47 25899.00 19398.67 32398.97 16799.22 23899.02 31491.31 32199.69 30897.26 24198.93 31299.24 246
PHI-MVS99.11 15998.95 17699.59 12799.13 29999.59 10999.17 15199.65 12897.88 27299.25 23099.46 23298.97 7699.80 26997.26 24199.82 14299.37 222
tfpnnormal99.43 6699.38 7099.60 12599.87 2899.75 5199.59 5999.78 6099.71 4499.90 2299.69 11398.85 9199.90 12997.25 24499.78 16799.15 266
PatchmatchNetpermissive97.65 28997.80 28297.18 33498.82 33492.49 35699.17 15198.39 33598.12 25698.79 29099.58 18490.71 33299.89 14397.23 24599.41 27699.16 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNVR-MVS98.99 18498.80 19899.56 14199.25 28099.43 14198.54 25699.27 28198.58 21298.80 28999.43 23798.53 13999.70 30297.22 24699.59 24199.54 153
HPM-MVScopyleft99.25 11499.07 14299.78 3799.81 5199.75 5199.61 5399.67 11397.72 28099.35 21099.25 27999.23 4699.92 9097.21 24799.82 14299.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DWT-MVSNet_test96.03 32695.80 32596.71 34198.50 34991.93 35999.25 12997.87 34495.99 33096.81 35697.61 36381.02 36499.66 32897.20 24897.98 34798.54 324
mPP-MVS99.19 13899.00 16399.76 4699.76 8499.68 8199.38 8699.54 19198.34 24499.01 26499.50 21698.53 13999.93 7197.18 24999.78 16799.66 75
ACMMPcopyleft99.25 11499.08 13899.74 6299.79 6699.68 8199.50 6899.65 12898.07 26099.52 16999.69 11398.57 13099.92 9097.18 24999.79 16199.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117299.23 11899.05 14899.74 6299.52 18799.75 5199.20 14099.61 14698.97 16799.48 17799.58 18498.41 15499.91 10897.15 25199.55 24899.57 139
abl_699.36 8899.23 10699.75 5699.71 11199.74 5799.33 9999.76 6899.07 15899.65 11999.63 15199.09 6199.92 9097.13 25299.76 17499.58 133
thisisatest051596.98 30696.42 31398.66 29099.42 23297.47 30497.27 34494.30 36497.24 30399.15 24998.86 33385.01 35899.87 17097.10 25399.39 27898.63 317
XVG-ACMP-BASELINE99.23 11899.10 13599.63 11199.82 4499.58 11298.83 22099.72 9298.36 23599.60 14099.71 10098.92 8199.91 10897.08 25499.84 12399.40 214
MSDG99.08 16498.98 17199.37 20199.60 14999.13 20497.54 33199.74 8098.84 18899.53 16799.55 20299.10 5999.79 27297.07 25599.86 11699.18 260
SteuartSystems-ACMMP99.30 10499.14 11799.76 4699.87 2899.66 8599.18 14699.60 15798.55 21599.57 14899.67 13099.03 7199.94 5797.01 25699.80 15699.69 52
Skip Steuart: Steuart Systems R&D Blog.
EPMVS96.53 31696.32 31497.17 33598.18 35792.97 35599.39 8489.95 36998.21 25298.61 30499.59 18286.69 35699.72 29696.99 25799.23 30198.81 312
MSP-MVS99.04 17298.79 19999.81 2699.78 7299.73 6099.35 9599.57 17598.54 21899.54 16298.99 31696.81 25599.93 7196.97 25899.53 25799.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.96 18898.70 20699.74 6299.52 18799.71 6798.86 21599.19 29698.47 22598.59 30699.06 30598.08 18799.91 10896.94 25999.60 23999.60 119
SR-MVS99.19 13899.00 16399.74 6299.51 19299.72 6499.18 14699.60 15798.85 18599.47 17999.58 18498.38 15999.92 9096.92 26099.54 25599.57 139
PGM-MVS99.20 13499.01 16099.77 4099.75 9599.71 6799.16 15799.72 9297.99 26499.42 19099.60 17698.81 9499.93 7196.91 26199.74 18599.66 75
HY-MVS98.23 998.21 27197.95 27198.99 25799.03 31598.24 27199.61 5398.72 32096.81 31898.73 29699.51 21394.06 29499.86 19196.91 26198.20 34098.86 308
MDTV_nov1_ep1397.73 28698.70 34490.83 36699.15 15998.02 34098.51 22098.82 28699.61 16990.98 32699.66 32896.89 26398.92 314
GST-MVS99.16 14798.96 17499.75 5699.73 10499.73 6099.20 14099.55 18698.22 25199.32 21799.35 25798.65 12299.91 10896.86 26499.74 18599.62 106
test_post199.14 16151.63 37489.54 34299.82 24896.86 264
SCA98.11 27398.36 23997.36 32999.20 28992.99 35498.17 28598.49 33198.24 25099.10 25799.57 19296.01 27699.94 5796.86 26499.62 22999.14 270
#test#99.12 15598.90 18599.76 4699.73 10499.70 7499.10 17499.59 16497.60 28599.36 20899.37 24798.80 9899.91 10896.84 26799.75 17799.68 58
XVG-OURS99.21 13299.06 14499.65 10099.82 4499.62 9897.87 31899.74 8098.36 23599.66 11599.68 12499.71 999.90 12996.84 26799.88 10099.43 208
LCM-MVSNet-Re99.28 10799.15 11699.67 8899.33 26399.76 4899.34 9799.97 298.93 17599.91 2099.79 6098.68 11599.93 7196.80 26999.56 24499.30 237
RPSCF99.18 14299.02 15799.64 10799.83 3899.85 1399.44 7899.82 3998.33 24599.50 17599.78 6697.90 20099.65 33596.78 27099.83 13399.44 202
旧先验297.94 31395.33 33998.94 27099.88 15796.75 271
MDTV_nov1_ep13_2view91.44 36499.14 16197.37 29899.21 24091.78 31996.75 27199.03 291
CLD-MVS98.76 21398.57 21899.33 20899.57 16598.97 22197.53 33399.55 18696.41 32399.27 22899.13 29599.07 6699.78 27596.73 27399.89 9299.23 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Patchmatch-test98.10 27497.98 26998.48 29699.27 27796.48 32599.40 8299.07 30498.81 19099.23 23499.57 19290.11 33899.87 17096.69 27499.64 22699.09 279
baseline296.83 30996.28 31598.46 29799.09 30996.91 31998.83 22093.87 36697.23 30496.23 36098.36 35388.12 34599.90 12996.68 27598.14 34498.57 323
cascas96.99 30596.82 31197.48 32597.57 36495.64 33796.43 35899.56 18091.75 35597.13 35597.61 36395.58 28298.63 36496.68 27599.11 30398.18 344
LPG-MVS_test99.22 12799.05 14899.74 6299.82 4499.63 9699.16 15799.73 8397.56 28699.64 12199.69 11399.37 3199.89 14396.66 27799.87 10999.69 52
LGP-MVS_train99.74 6299.82 4499.63 9699.73 8397.56 28699.64 12199.69 11399.37 3199.89 14396.66 27799.87 10999.69 52
TinyColmap98.97 18598.93 17799.07 25299.46 21998.19 27597.75 32299.75 7598.79 19399.54 16299.70 10798.97 7699.62 33996.63 27999.83 13399.41 212
LF4IMVS99.01 17998.92 18199.27 22399.71 11199.28 17598.59 24699.77 6398.32 24699.39 20599.41 23998.62 12499.84 22796.62 28099.84 12398.69 316
NCCC98.82 20798.57 21899.58 13299.21 28699.31 17098.61 24399.25 28698.65 20598.43 31699.26 27797.86 20499.81 26496.55 28199.27 29699.61 115
OPU-MVS99.29 21899.12 30199.44 13799.20 14099.40 24199.00 7298.84 36396.54 28299.60 23999.58 133
F-COLMAP98.74 21698.45 22999.62 12099.57 16599.47 12698.84 21899.65 12896.31 32698.93 27199.19 29297.68 21799.87 17096.52 28399.37 28399.53 158
ADS-MVSNet297.78 28497.66 29098.12 31199.14 29795.36 33999.22 13798.75 31996.97 31298.25 32299.64 14190.90 32899.94 5796.51 28499.56 24499.08 282
ADS-MVSNet97.72 28897.67 28997.86 31699.14 29794.65 34599.22 13798.86 31396.97 31298.25 32299.64 14190.90 32899.84 22796.51 28499.56 24499.08 282
PatchMatch-RL98.68 22398.47 22799.30 21799.44 22499.28 17598.14 28899.54 19197.12 31099.11 25599.25 27997.80 20999.70 30296.51 28499.30 29198.93 302
CMPMVSbinary77.52 2398.50 24498.19 25799.41 18998.33 35399.56 11599.01 19199.59 16495.44 33799.57 14899.80 5495.64 28099.46 35796.47 28799.92 7499.21 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
xxxxxxxxxxxxxcwj99.11 15998.96 17499.54 14899.53 18299.25 18398.29 27699.76 6899.07 15899.42 19099.61 16998.86 8999.87 17096.45 28899.68 21099.49 181
SF-MVS99.10 16398.93 17799.62 12099.58 15599.51 12199.13 16799.65 12897.97 26699.42 19099.61 16998.86 8999.87 17096.45 28899.68 21099.49 181
DPE-MVScopyleft99.14 15198.92 18199.82 2399.57 16599.77 4298.74 23699.60 15798.55 21599.76 7599.69 11398.23 17599.92 9096.39 29099.75 17799.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
gm-plane-assit97.59 36289.02 37093.47 35198.30 35499.84 22796.38 291
AllTest99.21 13299.07 14299.63 11199.78 7299.64 9299.12 17199.83 3498.63 20799.63 12599.72 9398.68 11599.75 28996.38 29199.83 13399.51 170
TestCases99.63 11199.78 7299.64 9299.83 3498.63 20799.63 12599.72 9398.68 11599.75 28996.38 29199.83 13399.51 170
testdata99.42 18199.51 19298.93 22999.30 27596.20 32798.87 28199.40 24198.33 16699.89 14396.29 29499.28 29399.44 202
dp96.86 30897.07 30296.24 34598.68 34590.30 36999.19 14598.38 33697.35 29998.23 32499.59 18287.23 34799.82 24896.27 29598.73 32798.59 320
tpmvs97.39 29797.69 28796.52 34298.41 35091.76 36099.30 10998.94 31297.74 27997.85 34299.55 20292.40 31399.73 29496.25 29698.73 32798.06 346
KD-MVS_2432*160095.89 32795.41 33097.31 33294.96 36693.89 34897.09 34999.22 29197.23 30498.88 27899.04 30979.23 36899.54 34896.24 29796.81 35698.50 329
miper_refine_blended95.89 32795.41 33097.31 33294.96 36693.89 34897.09 34999.22 29197.23 30498.88 27899.04 30979.23 36899.54 34896.24 29796.81 35698.50 329
ACMP97.51 1499.05 16998.84 19299.67 8899.78 7299.55 11898.88 21199.66 11797.11 31199.47 17999.60 17699.07 6699.89 14396.18 29999.85 11999.58 133
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS98.90 19698.72 20299.44 17599.39 23899.42 14498.58 24799.64 13497.31 30199.44 18499.62 16098.59 12899.69 30896.17 30099.79 16199.22 251
DP-MVS Recon98.50 24498.23 25199.31 21599.49 20399.46 13098.56 25299.63 13694.86 34698.85 28399.37 24797.81 20899.59 34596.08 30199.44 27098.88 306
tpm cat196.78 31096.98 30596.16 34698.85 32990.59 36899.08 18199.32 26892.37 35497.73 34899.46 23291.15 32499.69 30896.07 30298.80 31898.21 341
tpm296.35 31996.22 31696.73 33998.88 32891.75 36199.21 13998.51 32993.27 35297.89 33999.21 28884.83 35999.70 30296.04 30398.18 34398.75 315
test_040299.22 12799.14 11799.45 17399.79 6699.43 14199.28 11799.68 10899.54 8399.40 20399.56 19599.07 6699.82 24896.01 30499.96 4299.11 274
ITE_SJBPF99.38 19899.63 14299.44 13799.73 8398.56 21399.33 21599.53 20798.88 8899.68 31996.01 30499.65 22499.02 295
test_prior398.62 22798.34 24299.46 16999.35 24899.22 19297.95 31199.39 25297.87 27398.05 33299.05 30697.90 20099.69 30895.99 30699.49 26499.48 186
test_prior297.95 31197.87 27398.05 33299.05 30697.90 20095.99 30699.49 264
testdata299.89 14395.99 306
原ACMM199.37 20199.47 21498.87 23699.27 28196.74 32098.26 32199.32 26297.93 19899.82 24895.96 30999.38 27999.43 208
新几何199.52 15199.50 19899.22 19299.26 28395.66 33698.60 30599.28 27197.67 21899.89 14395.95 31099.32 28999.45 197
MP-MVScopyleft99.06 16698.83 19499.76 4699.76 8499.71 6799.32 10299.50 21598.35 24098.97 26799.48 22498.37 16099.92 9095.95 31099.75 17799.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
wuyk23d97.58 29299.13 12092.93 34899.69 12199.49 12399.52 6699.77 6397.97 26699.96 899.79 6099.84 399.94 5795.85 31299.82 14279.36 363
HQP_MVS98.90 19698.68 20899.55 14499.58 15599.24 18898.80 22899.54 19198.94 17299.14 25199.25 27997.24 23999.82 24895.84 31399.78 16799.60 119
plane_prior599.54 19199.82 24895.84 31399.78 16799.60 119
无先验98.01 30299.23 29095.83 33299.85 21095.79 31599.44 202
112198.56 23698.24 25099.52 15199.49 20399.24 18899.30 10999.22 29195.77 33398.52 31199.29 26997.39 23399.85 21095.79 31599.34 28699.46 195
CPTT-MVS98.74 21698.44 23199.64 10799.61 14799.38 15499.18 14699.55 18696.49 32299.27 22899.37 24797.11 24799.92 9095.74 31799.67 21799.62 106
PLCcopyleft97.35 1698.36 25897.99 26799.48 16499.32 26499.24 18898.50 26099.51 21195.19 34298.58 30798.96 32496.95 25299.83 23895.63 31899.25 29799.37 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA98.57 23598.34 24299.28 22199.18 29399.10 21098.34 27199.41 24298.48 22498.52 31198.98 31997.05 24999.78 27595.59 31999.50 26298.96 299
131498.00 27997.90 28098.27 30798.90 32297.45 30699.30 10999.06 30694.98 34397.21 35399.12 29998.43 15199.67 32495.58 32098.56 33297.71 352
agg_prior198.33 26397.92 27799.57 13799.35 24899.36 16097.99 30699.39 25294.85 34797.76 34698.98 31998.03 18999.85 21095.49 32199.44 27099.51 170
PVSNet_095.53 1995.85 33095.31 33297.47 32698.78 33993.48 35295.72 36099.40 24996.18 32897.37 34997.73 36195.73 27999.58 34695.49 32181.40 36599.36 225
MAR-MVS98.24 26897.92 27799.19 23698.78 33999.65 9099.17 15199.14 30195.36 33898.04 33498.81 33797.47 22899.72 29695.47 32399.06 30598.21 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 26997.89 28199.26 22599.19 29199.26 17999.65 4599.69 10591.33 35798.14 33099.77 7398.28 16999.96 3595.41 32499.55 24898.58 322
train_agg98.35 26197.95 27199.57 13799.35 24899.35 16498.11 29299.41 24294.90 34497.92 33798.99 31698.02 19199.85 21095.38 32599.44 27099.50 176
9.1498.64 20999.45 22298.81 22599.60 15797.52 29099.28 22699.56 19598.53 13999.83 23895.36 32699.64 226
APD-MVScopyleft98.87 20298.59 21499.71 8099.50 19899.62 9899.01 19199.57 17596.80 31999.54 16299.63 15198.29 16899.91 10895.24 32799.71 20299.61 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
AdaColmapbinary98.60 23098.35 24199.38 19899.12 30199.22 19298.67 24299.42 24197.84 27798.81 28799.27 27397.32 23799.81 26495.14 32899.53 25799.10 276
test9_res95.10 32999.44 27099.50 176
CDPH-MVS98.56 23698.20 25499.61 12399.50 19899.46 13098.32 27499.41 24295.22 34099.21 24099.10 30298.34 16499.82 24895.09 33099.66 22199.56 142
ETH3D-3000-0.198.77 21198.50 22699.59 12799.47 21499.53 12098.77 23399.60 15797.33 30099.23 23499.50 21697.91 19999.83 23895.02 33199.67 21799.41 212
BH-untuned98.22 27098.09 26398.58 29399.38 24197.24 31198.55 25398.98 31197.81 27899.20 24598.76 33997.01 25099.65 33594.83 33298.33 33798.86 308
BP-MVS94.73 333
HQP-MVS98.36 25898.02 26699.39 19499.31 26598.94 22597.98 30799.37 25997.45 29398.15 32698.83 33496.67 25699.70 30294.73 33399.67 21799.53 158
QAPM98.40 25697.99 26799.65 10099.39 23899.47 12699.67 3699.52 20891.70 35698.78 29299.80 5498.55 13399.95 4594.71 33599.75 17799.53 158
ETH3D cwj APD-0.1698.50 24498.16 26099.51 15499.04 31499.39 15198.47 26299.47 22696.70 32198.78 29299.33 26197.62 22599.86 19194.69 33699.38 27999.28 242
agg_prior294.58 33799.46 26999.50 176
BH-RMVSNet98.41 25498.14 26199.21 23399.21 28698.47 25898.60 24598.26 33898.35 24098.93 27199.31 26497.20 24499.66 32894.32 33899.10 30499.51 170
E-PMN97.14 30497.43 29296.27 34498.79 33791.62 36295.54 36199.01 31099.44 10398.88 27899.12 29992.78 30799.68 31994.30 33999.03 30897.50 353
MG-MVS98.52 24298.39 23698.94 26199.15 29697.39 30898.18 28399.21 29598.89 18299.23 23499.63 15197.37 23599.74 29194.22 34099.61 23699.69 52
API-MVS98.38 25798.39 23698.35 30198.83 33199.26 17999.14 16199.18 29798.59 21198.66 30198.78 33898.61 12699.57 34794.14 34199.56 24496.21 360
PAPM_NR98.36 25898.04 26599.33 20899.48 20998.93 22998.79 23199.28 28097.54 28898.56 30998.57 34597.12 24699.69 30894.09 34298.90 31699.38 219
ZD-MVS99.43 22799.61 10499.43 23996.38 32499.11 25599.07 30497.86 20499.92 9094.04 34399.49 264
DPM-MVS98.28 26497.94 27599.32 21299.36 24699.11 20697.31 34398.78 31896.88 31498.84 28499.11 30197.77 21199.61 34394.03 34499.36 28499.23 249
gg-mvs-nofinetune95.87 32995.17 33397.97 31398.19 35696.95 31799.69 2889.23 37099.89 1196.24 35999.94 1281.19 36399.51 35393.99 34598.20 34097.44 354
PMVScopyleft92.94 2198.82 20798.81 19698.85 27599.84 3497.99 28799.20 14099.47 22699.71 4499.42 19099.82 4998.09 18599.47 35593.88 34699.85 11999.07 287
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testtj98.56 23698.17 25999.72 7699.45 22299.60 10698.88 21199.50 21596.88 31499.18 24699.48 22497.08 24899.92 9093.69 34799.38 27999.63 95
EMVS96.96 30797.28 29595.99 34798.76 34191.03 36595.26 36298.61 32599.34 11698.92 27498.88 33293.79 29899.66 32892.87 34899.05 30697.30 357
BH-w/o97.20 30197.01 30497.76 31999.08 31095.69 33698.03 30198.52 32895.76 33497.96 33698.02 35895.62 28199.47 35592.82 34997.25 35598.12 345
TR-MVS97.44 29697.15 30198.32 30398.53 34897.46 30598.47 26297.91 34396.85 31698.21 32598.51 35096.42 26499.51 35392.16 35097.29 35497.98 348
OpenMVS_ROBcopyleft97.31 1797.36 29996.84 31098.89 27499.29 27299.45 13598.87 21499.48 22286.54 36299.44 18499.74 8397.34 23699.86 19191.61 35199.28 29397.37 356
GG-mvs-BLEND97.36 32997.59 36296.87 32099.70 2288.49 37194.64 36597.26 36880.66 36599.12 36091.50 35296.50 36096.08 362
DeepMVS_CXcopyleft97.98 31299.69 12196.95 31799.26 28375.51 36495.74 36298.28 35596.47 26299.62 33991.23 35397.89 34997.38 355
ETH3 D test640097.76 28597.19 30099.50 15799.38 24199.26 17998.34 27199.49 22092.99 35398.54 31099.20 29095.92 27899.82 24891.14 35499.66 22199.40 214
PAPR97.56 29397.07 30299.04 25598.80 33698.11 28197.63 32799.25 28694.56 35098.02 33598.25 35697.43 23099.68 31990.90 35598.74 32599.33 231
MVS95.72 33294.63 33698.99 25798.56 34797.98 29299.30 10998.86 31372.71 36597.30 35099.08 30398.34 16499.74 29189.21 35698.33 33799.26 243
thres600view796.60 31596.16 31797.93 31499.63 14296.09 33299.18 14697.57 34798.77 19698.72 29797.32 36687.04 34999.72 29688.57 35798.62 33097.98 348
FPMVS96.32 32095.50 32898.79 28399.60 14998.17 27798.46 26798.80 31797.16 30896.28 35799.63 15182.19 36299.09 36188.45 35898.89 31799.10 276
PCF-MVS96.03 1896.73 31295.86 32399.33 20899.44 22499.16 20196.87 35499.44 23586.58 36198.95 26999.40 24194.38 29299.88 15787.93 35999.80 15698.95 300
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres100view90096.39 31896.03 32097.47 32699.63 14295.93 33399.18 14697.57 34798.75 20098.70 29997.31 36787.04 34999.67 32487.62 36098.51 33496.81 358
tfpn200view996.30 32195.89 32197.53 32499.58 15596.11 33099.00 19397.54 35098.43 22698.52 31196.98 36986.85 35199.67 32487.62 36098.51 33496.81 358
thres40096.40 31795.89 32197.92 31599.58 15596.11 33099.00 19397.54 35098.43 22698.52 31196.98 36986.85 35199.67 32487.62 36098.51 33497.98 348
thres20096.09 32495.68 32797.33 33199.48 20996.22 32998.53 25797.57 34798.06 26198.37 31896.73 37186.84 35399.61 34386.99 36398.57 33196.16 361
MVEpermissive92.54 2296.66 31496.11 31898.31 30599.68 13097.55 30397.94 31395.60 36099.37 11390.68 36798.70 34196.56 25898.61 36586.94 36499.55 24898.77 314
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM95.61 33394.71 33598.31 30599.12 30196.63 32396.66 35798.46 33290.77 35896.25 35898.68 34293.01 30599.69 30881.60 36597.86 35198.62 318
test12329.31 33633.05 34118.08 35025.93 37212.24 37297.53 33310.93 37311.78 36724.21 36850.08 37621.04 3738.60 36823.51 36632.43 36733.39 364
testmvs28.94 33733.33 33915.79 35126.03 3719.81 37396.77 35515.67 37211.55 36823.87 36950.74 37519.03 3748.53 36923.21 36733.07 36629.03 365
uanet_test8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.88 33833.17 3400.00 3520.00 3730.00 3740.00 36499.62 1390.00 3690.00 37099.13 29599.82 40.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas16.61 33922.14 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 199.28 410.00 3700.00 3680.00 3680.00 366
sosnet-low-res8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
sosnet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
Regformer8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.26 34611.02 3490.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.16 2930.00 3750.00 3700.00 3680.00 3680.00 366
uanet8.33 34011.11 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 370100.00 10.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
test_241102_ONE99.69 12199.82 2699.54 19199.12 15499.82 5099.49 22198.91 8399.52 352
save fliter99.53 18299.25 18398.29 27699.38 25899.07 158
test072699.69 12199.80 3499.24 13099.57 17599.16 14599.73 9399.65 13998.35 162
GSMVS99.14 270
test_part299.62 14699.67 8399.55 160
sam_mvs190.81 33199.14 270
sam_mvs90.52 335
MTGPAbinary99.53 200
test_post52.41 37390.25 33799.86 191
patchmatchnet-post99.62 16090.58 33399.94 57
MTMP99.09 17898.59 327
TEST999.35 24899.35 16498.11 29299.41 24294.83 34897.92 33798.99 31698.02 19199.85 210
test_899.34 25899.31 17098.08 29699.40 24994.90 34497.87 34198.97 32298.02 19199.84 227
agg_prior99.35 24899.36 16099.39 25297.76 34699.85 210
test_prior499.19 19998.00 304
test_prior99.46 16999.35 24899.22 19299.39 25299.69 30899.48 186
新几何298.04 300
旧先验199.49 20399.29 17399.26 28399.39 24597.67 21899.36 28499.46 195
原ACMM297.92 315
test22299.51 19299.08 21397.83 32099.29 27795.21 34198.68 30099.31 26497.28 23899.38 27999.43 208
segment_acmp98.37 160
testdata197.72 32397.86 276
test1299.54 14899.29 27299.33 16799.16 29998.43 31697.54 22699.82 24899.47 26799.48 186
plane_prior799.58 15599.38 154
plane_prior699.47 21499.26 17997.24 239
plane_prior499.25 279
plane_prior399.31 17098.36 23599.14 251
plane_prior298.80 22898.94 172
plane_prior199.51 192
plane_prior99.24 18898.42 26897.87 27399.71 202
n20.00 374
nn0.00 374
door-mid99.83 34
test1199.29 277
door99.77 63
HQP5-MVS98.94 225
HQP-NCC99.31 26597.98 30797.45 29398.15 326
ACMP_Plane99.31 26597.98 30797.45 29398.15 326
HQP4-MVS98.15 32699.70 30299.53 158
HQP3-MVS99.37 25999.67 217
HQP2-MVS96.67 256
NP-MVS99.40 23699.13 20498.83 334
ACMMP++_ref99.94 62
ACMMP++99.79 161
Test By Simon98.41 154