This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 10
ANet_high99.88 599.87 599.91 399.99 199.91 399.65 44100.00 199.90 8100.00 199.97 999.61 1699.97 1799.75 13100.00 199.84 15
Gipumacopyleft99.57 3899.59 3399.49 15899.98 399.71 6399.72 2099.84 3099.81 2799.94 1299.78 6598.91 8399.71 29098.41 13599.95 4899.05 284
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 799.73 1799.85 2499.70 4499.92 1999.93 1499.45 2299.97 1799.36 45100.00 199.85 14
v7n99.82 1199.80 1199.88 1299.96 499.84 1799.82 999.82 3799.84 2299.94 1299.91 2099.13 5899.96 3499.83 999.99 1399.83 19
PS-MVSNAJss99.84 999.82 999.89 899.96 499.77 4099.68 3299.85 2499.95 499.98 499.92 1799.28 4199.98 699.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 899.96 499.78 3899.70 2399.86 2099.89 1299.98 499.90 2299.94 199.98 699.75 13100.00 199.90 5
mvs_tets99.90 299.90 299.90 599.96 499.79 3599.72 2099.88 1699.92 799.98 499.93 1499.94 199.98 699.77 12100.00 199.92 3
OurMVSNet-221017-099.75 1699.71 1799.84 2099.96 499.83 2199.83 799.85 2499.80 3099.93 1599.93 1498.54 13499.93 6799.59 2099.98 2299.76 36
pmmvs699.86 799.86 799.83 2299.94 1099.90 599.83 799.91 899.85 2099.94 1299.95 1299.73 899.90 12399.65 1799.97 3099.69 51
test_djsdf99.84 999.81 1099.91 399.94 1099.84 1799.77 1299.80 4799.73 3799.97 799.92 1799.77 799.98 699.43 36100.00 199.90 5
MIMVSNet199.66 2599.62 2699.80 3099.94 1099.87 899.69 2999.77 6099.78 3399.93 1599.89 2697.94 19599.92 8599.65 1799.98 2299.62 105
K. test v398.87 19998.60 20999.69 8399.93 1399.46 12699.74 1694.97 34999.78 3399.88 3399.88 2993.66 29499.97 1799.61 1999.95 4899.64 88
SixPastTwentyTwo99.42 6799.30 8699.76 4699.92 1499.67 7999.70 2399.14 29299.65 5799.89 2799.90 2296.20 26899.94 5499.42 4099.92 7399.67 64
test_part199.89 399.88 499.94 299.91 1599.92 299.92 399.90 1199.98 299.99 399.97 999.50 2199.98 699.73 16100.00 199.92 3
pm-mvs199.79 1399.79 1299.78 3899.91 1599.83 2199.76 1499.87 1899.73 3799.89 2799.87 3199.63 1499.87 16499.54 2599.92 7399.63 93
TransMVSNet (Re)99.78 1499.77 1399.81 2799.91 1599.85 1299.75 1599.86 2099.70 4499.91 2199.89 2699.60 1899.87 16499.59 2099.74 18199.71 45
Baseline_NR-MVSNet99.49 5199.37 7099.82 2499.91 1599.84 1798.83 21599.86 2099.68 4999.65 11699.88 2997.67 21699.87 16499.03 9099.86 11499.76 36
LTVRE_ROB99.19 199.88 599.87 599.88 1299.91 1599.90 599.96 199.92 599.90 899.97 799.87 3199.81 599.95 4399.54 2599.99 1399.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_Blended_VisFu99.40 7499.38 6799.44 17299.90 2098.66 24298.94 20399.91 897.97 25799.79 6499.73 8699.05 6999.97 1799.15 7799.99 1399.68 57
TDRefinement99.72 1899.70 1899.77 4099.90 2099.85 1299.86 699.92 599.69 4799.78 6799.92 1799.37 3099.88 15198.93 10599.95 4899.60 116
UniMVSNet_ETH3D99.85 899.83 899.90 599.89 2299.91 399.89 599.71 9199.93 599.95 1199.89 2699.71 999.96 3499.51 2999.97 3099.84 15
XXY-MVS99.71 1999.67 2199.81 2799.89 2299.72 6199.59 5699.82 3799.39 10399.82 4999.84 4099.38 2899.91 10399.38 4299.93 6999.80 24
FC-MVSNet-test99.70 2099.65 2399.86 1799.88 2499.86 1199.72 2099.78 5799.90 899.82 4999.83 4198.45 14999.87 16499.51 2999.97 3099.86 12
EU-MVSNet99.39 7899.62 2698.72 27899.88 2496.44 31799.56 6199.85 2499.90 899.90 2399.85 3698.09 18399.83 22899.58 2299.95 4899.90 5
CHOSEN 1792x268899.39 7899.30 8699.65 9899.88 2499.25 18098.78 22799.88 1698.66 19799.96 999.79 5897.45 22799.93 6799.34 4799.99 1399.78 31
Vis-MVSNetpermissive99.75 1699.74 1699.79 3599.88 2499.66 8199.69 2999.92 599.67 5199.77 7299.75 7999.61 1699.98 699.35 4699.98 2299.72 42
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tfpnnormal99.43 6499.38 6799.60 12499.87 2899.75 4899.59 5699.78 5799.71 4199.90 2399.69 11298.85 9199.90 12397.25 23499.78 16499.15 261
SteuartSystems-ACMMP99.30 10199.14 11399.76 4699.87 2899.66 8199.18 14099.60 15298.55 20899.57 14599.67 12999.03 7199.94 5497.01 24699.80 15399.69 51
Skip Steuart: Steuart Systems R&D Blog.
lessismore_v099.64 10599.86 3099.38 15190.66 35699.89 2799.83 4194.56 28699.97 1799.56 2499.92 7399.57 136
ACMH+98.40 899.50 4999.43 6199.71 7899.86 3099.76 4699.32 9799.77 6099.53 7999.77 7299.76 7599.26 4599.78 26697.77 19199.88 9999.60 116
ACMH98.42 699.59 3699.54 4499.72 7499.86 3099.62 9499.56 6199.79 5398.77 18999.80 5999.85 3699.64 1399.85 20298.70 12299.89 9199.70 48
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HyFIR lowres test98.91 19198.64 20699.73 6899.85 3399.47 12298.07 29099.83 3298.64 19999.89 2799.60 17592.57 302100.00 199.33 4999.97 3099.72 42
FIs99.65 3099.58 3599.84 2099.84 3499.85 1299.66 3999.75 7199.86 1799.74 8799.79 5898.27 16899.85 20299.37 4499.93 6999.83 19
XVG-OURS-SEG-HR99.16 14398.99 16599.66 9399.84 3499.64 8898.25 27399.73 7998.39 22599.63 12299.43 23299.70 1199.90 12397.34 22398.64 32399.44 197
PMVScopyleft92.94 2198.82 20498.81 19398.85 26699.84 3497.99 27899.20 13499.47 21999.71 4199.42 18699.82 4798.09 18399.47 34393.88 33499.85 11799.07 282
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVS-pluss99.14 14798.92 17899.80 3099.83 3799.83 2198.61 23699.63 13196.84 30699.44 18099.58 18398.81 9399.91 10397.70 19899.82 14099.67 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PM-MVS99.36 8599.29 9199.58 13099.83 3799.66 8198.95 20199.86 2098.85 17899.81 5699.73 8698.40 15699.92 8598.36 13899.83 13199.17 257
PEN-MVS99.66 2599.59 3399.89 899.83 3799.87 899.66 3999.73 7999.70 4499.84 4299.73 8698.56 13199.96 3499.29 5899.94 6199.83 19
HPM-MVS_fast99.43 6499.30 8699.80 3099.83 3799.81 2899.52 6399.70 9598.35 23399.51 17099.50 21299.31 3699.88 15198.18 15899.84 12199.69 51
RPSCF99.18 13899.02 15499.64 10599.83 3799.85 1299.44 7599.82 3798.33 23899.50 17199.78 6597.90 19899.65 32596.78 26099.83 13199.44 197
COLMAP_ROBcopyleft98.06 1299.45 6299.37 7099.70 8299.83 3799.70 7099.38 8499.78 5799.53 7999.67 10899.78 6599.19 4999.86 18497.32 22499.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + MP.99.34 9299.24 10199.63 10999.82 4399.37 15499.26 11699.35 25698.77 18999.57 14599.70 10699.27 4499.88 15197.71 19699.75 17399.65 82
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
new-patchmatchnet99.35 8799.57 3898.71 28099.82 4396.62 31598.55 24699.75 7199.50 8299.88 3399.87 3199.31 3699.88 15199.43 36100.00 199.62 105
VPNet99.46 6099.37 7099.71 7899.82 4399.59 10599.48 6999.70 9599.81 2799.69 10299.58 18397.66 22099.86 18499.17 7399.44 26499.67 64
XVG-OURS99.21 12999.06 14099.65 9899.82 4399.62 9497.87 31199.74 7698.36 22899.66 11299.68 12399.71 999.90 12396.84 25799.88 9999.43 203
XVG-ACMP-BASELINE99.23 11599.10 13199.63 10999.82 4399.58 10898.83 21599.72 8898.36 22899.60 13799.71 9998.92 8199.91 10397.08 24499.84 12199.40 209
LPG-MVS_test99.22 12499.05 14499.74 6099.82 4399.63 9299.16 15199.73 7997.56 27799.64 11899.69 11299.37 3099.89 13696.66 26799.87 10799.69 51
LGP-MVS_train99.74 6099.82 4399.63 9299.73 7997.56 27799.64 11899.69 11299.37 3099.89 13696.66 26799.87 10799.69 51
zzz-MVS99.30 10199.14 11399.80 3099.81 5099.81 2898.73 23299.53 19499.27 11899.42 18699.63 15098.21 17499.95 4397.83 18999.79 15899.65 82
MTAPA99.35 8799.20 10599.80 3099.81 5099.81 2899.33 9499.53 19499.27 11899.42 18699.63 15098.21 17499.95 4397.83 18999.79 15899.65 82
testing_299.58 3799.56 4299.62 11899.81 5099.44 13399.14 15599.43 23199.69 4799.82 4999.79 5899.14 5599.79 26299.31 5499.95 4899.63 93
v1099.69 2299.69 1999.66 9399.81 5099.39 14899.66 3999.75 7199.60 7399.92 1999.87 3198.75 10899.86 18499.90 299.99 1399.73 41
HPM-MVScopyleft99.25 11199.07 13899.78 3899.81 5099.75 4899.61 5199.67 10897.72 27199.35 20599.25 27299.23 4699.92 8597.21 23799.82 14099.67 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IterMVS-LS99.41 7199.47 5299.25 22299.81 5098.09 27498.85 21299.76 6599.62 6399.83 4799.64 14098.54 13499.97 1799.15 7799.99 1399.68 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124099.56 4199.58 3599.51 15299.80 5699.00 21499.00 18899.65 12399.15 14199.90 2399.75 7999.09 6199.88 15199.90 299.96 4199.67 64
v899.68 2399.69 1999.65 9899.80 5699.40 14699.66 3999.76 6599.64 5999.93 1599.85 3698.66 11999.84 21799.88 699.99 1399.71 45
MDA-MVSNet-bldmvs99.06 16399.05 14499.07 24399.80 5697.83 28598.89 20599.72 8899.29 11499.63 12299.70 10696.47 25999.89 13698.17 16099.82 14099.50 172
PS-CasMVS99.66 2599.58 3599.89 899.80 5699.85 1299.66 3999.73 7999.62 6399.84 4299.71 9998.62 12399.96 3499.30 5599.96 4199.86 12
DTE-MVSNet99.68 2399.61 3099.88 1299.80 5699.87 899.67 3699.71 9199.72 4099.84 4299.78 6598.67 11799.97 1799.30 5599.95 4899.80 24
WR-MVS_H99.61 3599.53 4899.87 1599.80 5699.83 2199.67 3699.75 7199.58 7699.85 3999.69 11298.18 17999.94 5499.28 6099.95 4899.83 19
baseline99.63 3199.62 2699.66 9399.80 5699.62 9499.44 7599.80 4799.71 4199.72 9299.69 11299.15 5399.83 22899.32 5199.94 6199.53 154
IS-MVSNet99.03 17098.85 18799.55 14299.80 5699.25 18099.73 1799.15 29199.37 10599.61 13599.71 9994.73 28499.81 25497.70 19899.88 9999.58 130
EPP-MVSNet99.17 14299.00 16099.66 9399.80 5699.43 13899.70 2399.24 28299.48 8499.56 15299.77 7294.89 28199.93 6798.72 12199.89 9199.63 93
ACMM98.09 1199.46 6099.38 6799.72 7499.80 5699.69 7499.13 16299.65 12398.99 15899.64 11899.72 9299.39 2499.86 18498.23 15199.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114499.54 4699.53 4899.59 12699.79 6699.28 17299.10 16999.61 14199.20 13099.84 4299.73 8698.67 11799.84 21799.86 899.98 2299.64 88
V4299.56 4199.54 4499.63 10999.79 6699.46 12699.39 8299.59 15999.24 12499.86 3899.70 10698.55 13299.82 23899.79 1199.95 4899.60 116
test20.0399.55 4499.54 4499.58 13099.79 6699.37 15499.02 18499.89 1399.60 7399.82 4999.62 15998.81 9399.89 13699.43 3699.86 11499.47 186
casdiffmvs99.63 3199.61 3099.67 8699.79 6699.59 10599.13 16299.85 2499.79 3299.76 7499.72 9299.33 3599.82 23899.21 6399.94 6199.59 125
test_040299.22 12499.14 11399.45 17099.79 6699.43 13899.28 11299.68 10499.54 7799.40 19999.56 19499.07 6699.82 23896.01 29299.96 4199.11 269
ACMMPcopyleft99.25 11199.08 13499.74 6099.79 6699.68 7799.50 6599.65 12398.07 25199.52 16599.69 11298.57 12999.92 8597.18 23999.79 15899.63 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS99.04 16998.79 19699.81 2799.78 7299.73 5799.35 9199.57 17098.54 21199.54 15998.99 30596.81 25299.93 6796.97 24899.53 25199.77 32
v14419299.55 4499.54 4499.58 13099.78 7299.20 19599.11 16899.62 13499.18 13299.89 2799.72 9298.66 11999.87 16499.88 699.97 3099.66 74
AllTest99.21 12999.07 13899.63 10999.78 7299.64 8899.12 16699.83 3298.63 20099.63 12299.72 9298.68 11499.75 28096.38 28199.83 13199.51 166
TestCases99.63 10999.78 7299.64 8899.83 3298.63 20099.63 12299.72 9298.68 11499.75 28096.38 28199.83 13199.51 166
v2v48299.50 4999.47 5299.58 13099.78 7299.25 18099.14 15599.58 16899.25 12299.81 5699.62 15998.24 17099.84 21799.83 999.97 3099.64 88
FMVSNet199.66 2599.63 2599.73 6899.78 7299.77 4099.68 3299.70 9599.67 5199.82 4999.83 4198.98 7499.90 12399.24 6299.97 3099.53 154
Vis-MVSNet (Re-imp)98.77 20898.58 21499.34 20199.78 7298.88 23099.61 5199.56 17599.11 14799.24 22599.56 19493.00 30099.78 26697.43 21999.89 9199.35 223
ACMP97.51 1499.05 16698.84 18999.67 8699.78 7299.55 11498.88 20699.66 11297.11 30099.47 17599.60 17599.07 6699.89 13696.18 28799.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d99.48 5399.47 5299.51 15299.77 8099.41 14598.81 22099.66 11299.42 10299.75 7999.66 13399.20 4899.76 27698.98 9599.99 1399.36 220
Patchmatch-RL test98.60 22398.36 23499.33 20399.77 8099.07 21198.27 27199.87 1898.91 17199.74 8799.72 9290.57 32699.79 26298.55 13099.85 11799.11 269
v119299.57 3899.57 3899.57 13599.77 8099.22 18999.04 18199.60 15299.18 13299.87 3799.72 9299.08 6499.85 20299.89 599.98 2299.66 74
EG-PatchMatch MVS99.57 3899.56 4299.62 11899.77 8099.33 16499.26 11699.76 6599.32 11299.80 5999.78 6599.29 3999.87 16499.15 7799.91 8299.66 74
ZNCC-MVS99.22 12499.04 15099.77 4099.76 8499.73 5799.28 11299.56 17598.19 24799.14 24399.29 26498.84 9299.92 8597.53 21499.80 15399.64 88
tttt051797.62 28197.20 29098.90 26499.76 8497.40 29899.48 6994.36 35199.06 15599.70 9999.49 21784.55 35099.94 5498.73 12099.65 21999.36 220
pmmvs599.19 13499.11 12399.42 17799.76 8498.88 23098.55 24699.73 7998.82 18299.72 9299.62 15996.56 25599.82 23899.32 5199.95 4899.56 139
nrg03099.70 2099.66 2299.82 2499.76 8499.84 1799.61 5199.70 9599.93 599.78 6799.68 12399.10 5999.78 26699.45 3499.96 4199.83 19
v14899.40 7499.41 6399.39 18999.76 8498.94 22199.09 17399.59 15999.17 13599.81 5699.61 16898.41 15299.69 29899.32 5199.94 6199.53 154
region2R99.23 11599.05 14499.77 4099.76 8499.70 7099.31 10199.59 15998.41 22299.32 21299.36 24798.73 11199.93 6797.29 22699.74 18199.67 64
MP-MVScopyleft99.06 16398.83 19199.76 4699.76 8499.71 6399.32 9799.50 20898.35 23398.97 25899.48 21998.37 15899.92 8595.95 29899.75 17399.63 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMMVS299.48 5399.45 5699.57 13599.76 8498.99 21598.09 28799.90 1198.95 16499.78 6799.58 18399.57 1999.93 6799.48 3299.95 4899.79 30
CP-MVSNet99.54 4699.43 6199.87 1599.76 8499.82 2599.57 5999.61 14199.54 7799.80 5999.64 14097.79 20899.95 4399.21 6399.94 6199.84 15
mPP-MVS99.19 13499.00 16099.76 4699.76 8499.68 7799.38 8499.54 18598.34 23799.01 25699.50 21298.53 13899.93 6797.18 23999.78 16499.66 74
IterMVS-SCA-FT99.00 17899.16 10998.51 28599.75 9495.90 32598.07 29099.84 3099.84 2299.89 2799.73 8696.01 27299.99 499.33 49100.00 199.63 93
ACMMP_NAP99.28 10499.11 12399.79 3599.75 9499.81 2898.95 20199.53 19498.27 24299.53 16399.73 8698.75 10899.87 16497.70 19899.83 13199.68 57
v192192099.56 4199.57 3899.55 14299.75 9499.11 20399.05 17999.61 14199.15 14199.88 3399.71 9999.08 6499.87 16499.90 299.97 3099.66 74
testgi99.29 10399.26 9899.37 19699.75 9498.81 23398.84 21399.89 1398.38 22699.75 7999.04 30299.36 3399.86 18499.08 8799.25 29299.45 192
PGM-MVS99.20 13199.01 15799.77 4099.75 9499.71 6399.16 15199.72 8897.99 25599.42 18699.60 17598.81 9399.93 6796.91 25199.74 18199.66 74
jason99.16 14399.11 12399.32 20799.75 9498.44 25298.26 27299.39 24598.70 19599.74 8799.30 26198.54 13499.97 1798.48 13399.82 14099.55 142
jason: jason.
Anonymous2023120699.35 8799.31 8199.47 16399.74 10099.06 21399.28 11299.74 7699.23 12699.72 9299.53 20497.63 22299.88 15199.11 8599.84 12199.48 181
ACMMPR99.23 11599.06 14099.76 4699.74 10099.69 7499.31 10199.59 15998.36 22899.35 20599.38 24198.61 12599.93 6797.43 21999.75 17399.67 64
IterMVS98.97 18299.16 10998.42 28999.74 10095.64 32898.06 29299.83 3299.83 2599.85 3999.74 8296.10 27199.99 499.27 61100.00 199.63 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GST-MVS99.16 14398.96 17199.75 5599.73 10399.73 5799.20 13499.55 18098.22 24499.32 21299.35 25298.65 12199.91 10396.86 25499.74 18199.62 105
HFP-MVS99.25 11199.08 13499.76 4699.73 10399.70 7099.31 10199.59 15998.36 22899.36 20399.37 24298.80 9799.91 10397.43 21999.75 17399.68 57
#test#99.12 15198.90 18299.76 4699.73 10399.70 7099.10 16999.59 15997.60 27699.36 20399.37 24298.80 9799.91 10396.84 25799.75 17399.68 57
114514_t98.49 23998.11 25499.64 10599.73 10399.58 10899.24 12499.76 6589.94 34899.42 18699.56 19497.76 21099.86 18497.74 19499.82 14099.47 186
UA-Net99.78 1499.76 1599.86 1799.72 10799.71 6399.91 499.95 499.96 399.71 9799.91 2099.15 5399.97 1799.50 31100.00 199.90 5
N_pmnet98.73 21598.53 22099.35 20099.72 10798.67 24198.34 26494.65 35098.35 23399.79 6499.68 12398.03 18799.93 6798.28 14799.92 7399.44 197
DeepC-MVS98.90 499.62 3399.61 3099.67 8699.72 10799.44 13399.24 12499.71 9199.27 11899.93 1599.90 2299.70 1199.93 6798.99 9399.99 1399.64 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS99.27 10899.11 12399.75 5599.71 11099.71 6399.37 8899.61 14199.29 11498.76 28399.47 22498.47 14599.88 15197.62 20699.73 18899.67 64
X-MVStestdata96.09 31594.87 32399.75 5599.71 11099.71 6399.37 8899.61 14199.29 11498.76 28361.30 36098.47 14599.88 15197.62 20699.73 18899.67 64
VDDNet98.97 18298.82 19299.42 17799.71 11098.81 23399.62 4798.68 31099.81 2799.38 20199.80 5294.25 28899.85 20298.79 11499.32 28499.59 125
abl_699.36 8599.23 10399.75 5599.71 11099.74 5499.33 9499.76 6599.07 15199.65 11699.63 15099.09 6199.92 8597.13 24299.76 17099.58 130
DSMNet-mixed99.48 5399.65 2398.95 25199.71 11097.27 30199.50 6599.82 3799.59 7599.41 19499.85 3699.62 15100.00 199.53 2799.89 9199.59 125
CSCG99.37 8299.29 9199.60 12499.71 11099.46 12699.43 7799.85 2498.79 18699.41 19499.60 17598.92 8199.92 8598.02 16899.92 7399.43 203
LF4IMVS99.01 17698.92 17899.27 21799.71 11099.28 17298.59 23999.77 6098.32 23999.39 20099.41 23498.62 12399.84 21796.62 27099.84 12198.69 307
test_0728_SECOND99.83 2299.70 11799.79 3599.14 15599.61 14199.92 8597.88 18099.72 19399.77 32
OPM-MVS99.26 11099.13 11699.63 10999.70 11799.61 10098.58 24099.48 21598.50 21499.52 16599.63 15099.14 5599.76 27697.89 17999.77 16899.51 166
new_pmnet98.88 19798.89 18398.84 26899.70 11797.62 29298.15 27999.50 20897.98 25699.62 12999.54 20298.15 18099.94 5497.55 21199.84 12198.95 291
SED-MVS99.40 7499.28 9399.77 4099.69 12099.82 2599.20 13499.54 18599.13 14399.82 4999.63 15098.91 8399.92 8597.85 18699.70 19999.58 130
IU-MVS99.69 12099.77 4099.22 28497.50 28299.69 10297.75 19399.70 19999.77 32
test_241102_ONE99.69 12099.82 2599.54 18599.12 14699.82 4999.49 21798.91 8399.52 340
D2MVS99.22 12499.19 10699.29 21399.69 12098.74 23798.81 22099.41 23598.55 20899.68 10499.69 11298.13 18199.87 16498.82 11299.98 2299.24 241
DVP-MVS99.32 9899.17 10899.77 4099.69 12099.80 3399.14 15599.31 26599.16 13799.62 12999.61 16898.35 16099.91 10397.88 18099.72 19399.61 112
test072699.69 12099.80 3399.24 12499.57 17099.16 13799.73 9199.65 13898.35 160
wuyk23d97.58 28399.13 11692.93 33799.69 12099.49 11999.52 6399.77 6097.97 25799.96 999.79 5899.84 399.94 5495.85 30099.82 14079.36 351
DeepMVS_CXcopyleft97.98 30399.69 12096.95 30899.26 27675.51 35395.74 35198.28 34396.47 25999.62 32991.23 34197.89 34197.38 343
thisisatest053097.45 28696.95 29798.94 25299.68 12897.73 28999.09 17394.19 35398.61 20399.56 15299.30 26184.30 35199.93 6798.27 14899.54 24999.16 259
VPA-MVSNet99.66 2599.62 2699.79 3599.68 12899.75 4899.62 4799.69 10199.85 2099.80 5999.81 5098.81 9399.91 10399.47 3399.88 9999.70 48
UnsupCasMVSNet_eth98.83 20298.57 21599.59 12699.68 12899.45 13198.99 19399.67 10899.48 8499.55 15799.36 24794.92 28099.86 18498.95 10396.57 34799.45 192
Test_1112_low_res98.95 18898.73 19899.63 10999.68 12899.15 20098.09 28799.80 4797.14 29899.46 17899.40 23696.11 27099.89 13699.01 9299.84 12199.84 15
MVEpermissive92.54 2296.66 30596.11 30998.31 29699.68 12897.55 29497.94 30695.60 34899.37 10590.68 35598.70 32996.56 25598.61 35386.94 35299.55 24398.77 305
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
diffmvs99.34 9299.32 8099.39 18999.67 13398.77 23698.57 24499.81 4699.61 6799.48 17399.41 23498.47 14599.86 18498.97 9799.90 8399.53 154
our_test_398.85 20199.09 13298.13 30199.66 13494.90 33597.72 31699.58 16899.07 15199.64 11899.62 15998.19 17799.93 6798.41 13599.95 4899.55 142
ppachtmachnet_test98.89 19699.12 12098.20 29999.66 13495.24 33297.63 32099.68 10499.08 14999.78 6799.62 15998.65 12199.88 15198.02 16899.96 4199.48 181
CP-MVS99.23 11599.05 14499.75 5599.66 13499.66 8199.38 8499.62 13498.38 22699.06 25499.27 26898.79 10099.94 5497.51 21599.82 14099.66 74
1112_ss99.05 16698.84 18999.67 8699.66 13499.29 17098.52 25199.82 3797.65 27499.43 18499.16 28696.42 26199.91 10399.07 8899.84 12199.80 24
YYNet198.95 18898.99 16598.84 26899.64 13897.14 30598.22 27599.32 26198.92 17099.59 14099.66 13397.40 22999.83 22898.27 14899.90 8399.55 142
MDA-MVSNet_test_wron98.95 18898.99 16598.85 26699.64 13897.16 30498.23 27499.33 25998.93 16899.56 15299.66 13397.39 23199.83 22898.29 14699.88 9999.55 142
thres100view90096.39 30996.03 31197.47 31799.63 14095.93 32499.18 14097.57 33698.75 19398.70 28897.31 35587.04 34099.67 31487.62 34898.51 32896.81 346
thres600view796.60 30696.16 30897.93 30599.63 14096.09 32399.18 14097.57 33698.77 18998.72 28697.32 35487.04 34099.72 28688.57 34598.62 32497.98 337
ITE_SJBPF99.38 19399.63 14099.44 13399.73 7998.56 20699.33 21099.53 20498.88 8899.68 30996.01 29299.65 21999.02 287
test_part299.62 14399.67 7999.55 157
Anonymous2023121199.62 3399.57 3899.76 4699.61 14499.60 10299.81 1099.73 7999.82 2699.90 2399.90 2297.97 19499.86 18499.42 4099.96 4199.80 24
CPTT-MVS98.74 21398.44 22699.64 10599.61 14499.38 15199.18 14099.55 18096.49 31199.27 22099.37 24297.11 24599.92 8595.74 30599.67 21299.62 105
MSDG99.08 16198.98 16899.37 19699.60 14699.13 20197.54 32499.74 7698.84 18199.53 16399.55 20099.10 5999.79 26297.07 24599.86 11499.18 255
FPMVS96.32 31195.50 31998.79 27499.60 14698.17 26898.46 26098.80 30697.16 29796.28 34699.63 15082.19 35299.09 34988.45 34698.89 31199.10 271
xiu_mvs_v1_base_debu99.23 11599.34 7598.91 25899.59 14898.23 26398.47 25599.66 11299.61 6799.68 10498.94 31599.39 2499.97 1799.18 7099.55 24398.51 317
xiu_mvs_v1_base99.23 11599.34 7598.91 25899.59 14898.23 26398.47 25599.66 11299.61 6799.68 10498.94 31599.39 2499.97 1799.18 7099.55 24398.51 317
xiu_mvs_v1_base_debi99.23 11599.34 7598.91 25899.59 14898.23 26398.47 25599.66 11299.61 6799.68 10498.94 31599.39 2499.97 1799.18 7099.55 24398.51 317
SF-MVS99.10 15998.93 17499.62 11899.58 15199.51 11799.13 16299.65 12397.97 25799.42 18699.61 16898.86 8999.87 16496.45 27899.68 20599.49 177
tfpn200view996.30 31295.89 31297.53 31599.58 15196.11 32199.00 18897.54 33998.43 21998.52 30096.98 35786.85 34299.67 31487.62 34898.51 32896.81 346
EI-MVSNet99.38 8099.44 5899.21 22899.58 15198.09 27499.26 11699.46 22399.62 6399.75 7999.67 12998.54 13499.85 20299.15 7799.92 7399.68 57
CVMVSNet98.61 22298.88 18497.80 30999.58 15193.60 34099.26 11699.64 12999.66 5599.72 9299.67 12993.26 29699.93 6799.30 5599.81 14899.87 10
thres40096.40 30895.89 31297.92 30699.58 15196.11 32199.00 18897.54 33998.43 21998.52 30096.98 35786.85 34299.67 31487.62 34898.51 32897.98 337
MCST-MVS99.02 17298.81 19399.65 9899.58 15199.49 11998.58 24099.07 29598.40 22499.04 25599.25 27298.51 14399.80 25997.31 22599.51 25499.65 82
HQP_MVS98.90 19398.68 20599.55 14299.58 15199.24 18598.80 22399.54 18598.94 16599.14 24399.25 27297.24 23799.82 23895.84 30199.78 16499.60 116
plane_prior799.58 15199.38 151
TranMVSNet+NR-MVSNet99.54 4699.47 5299.76 4699.58 15199.64 8899.30 10499.63 13199.61 6799.71 9799.56 19498.76 10699.96 3499.14 8399.92 7399.68 57
MVS_111021_LR99.13 14999.03 15299.42 17799.58 15199.32 16697.91 31099.73 7998.68 19699.31 21499.48 21999.09 6199.66 31897.70 19899.77 16899.29 235
DPE-MVS99.14 14798.92 17899.82 2499.57 16199.77 4098.74 23099.60 15298.55 20899.76 7499.69 11298.23 17399.92 8596.39 28099.75 17399.76 36
EI-MVSNet-UG-set99.48 5399.50 5099.42 17799.57 16198.65 24499.24 12499.46 22399.68 4999.80 5999.66 13398.99 7399.89 13699.19 6899.90 8399.72 42
EI-MVSNet-Vis-set99.47 5999.49 5199.42 17799.57 16198.66 24299.24 12499.46 22399.67 5199.79 6499.65 13898.97 7699.89 13699.15 7799.89 9199.71 45
pmmvs499.13 14999.06 14099.36 19999.57 16199.10 20798.01 29599.25 27998.78 18899.58 14299.44 23198.24 17099.76 27698.74 11999.93 6999.22 246
MVSFormer99.41 7199.44 5899.31 21099.57 16198.40 25599.77 1299.80 4799.73 3799.63 12299.30 26198.02 18999.98 699.43 3699.69 20299.55 142
lupinMVS98.96 18598.87 18599.24 22599.57 16198.40 25598.12 28399.18 28898.28 24199.63 12299.13 28898.02 18999.97 1798.22 15299.69 20299.35 223
ab-mvs99.33 9699.28 9399.47 16399.57 16199.39 14899.78 1199.43 23198.87 17699.57 14599.82 4798.06 18699.87 16498.69 12499.73 18899.15 261
DP-MVS99.48 5399.39 6599.74 6099.57 16199.62 9499.29 11199.61 14199.87 1599.74 8799.76 7598.69 11399.87 16498.20 15499.80 15399.75 39
F-COLMAP98.74 21398.45 22599.62 11899.57 16199.47 12298.84 21399.65 12396.31 31598.93 26299.19 28597.68 21599.87 16496.52 27399.37 27899.53 154
CLD-MVS98.76 21098.57 21599.33 20399.57 16198.97 21897.53 32699.55 18096.41 31299.27 22099.13 28899.07 6699.78 26696.73 26399.89 9199.23 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld98.55 23298.27 24199.40 18699.56 17199.37 15497.97 30399.68 10497.49 28399.08 25099.35 25295.41 27999.82 23897.70 19898.19 33599.01 288
APDe-MVS99.48 5399.36 7399.85 1999.55 17299.81 2899.50 6599.69 10198.99 15899.75 7999.71 9998.79 10099.93 6798.46 13499.85 11799.80 24
SR-MVS-dyc-post99.27 10899.11 12399.73 6899.54 17399.74 5499.26 11699.62 13499.16 13799.52 16599.64 14098.41 15299.91 10397.27 22999.61 23199.54 149
RE-MVS-def99.13 11699.54 17399.74 5499.26 11699.62 13499.16 13799.52 16599.64 14098.57 12997.27 22999.61 23199.54 149
PVSNet_BlendedMVS99.03 17099.01 15799.09 23999.54 17397.99 27898.58 24099.82 3797.62 27599.34 20899.71 9998.52 14199.77 27497.98 17399.97 3099.52 164
PVSNet_Blended98.70 21798.59 21199.02 24799.54 17397.99 27897.58 32399.82 3795.70 32499.34 20898.98 30898.52 14199.77 27497.98 17399.83 13199.30 232
USDC98.96 18598.93 17499.05 24599.54 17397.99 27897.07 34199.80 4798.21 24599.75 7999.77 7298.43 15099.64 32797.90 17899.88 9999.51 166
xxxxxxxxxxxxxcwj99.11 15598.96 17199.54 14699.53 17899.25 18098.29 26999.76 6599.07 15199.42 18699.61 16898.86 8999.87 16496.45 27899.68 20599.49 177
save fliter99.53 17899.25 18098.29 26999.38 25199.07 151
Anonymous2024052999.42 6799.34 7599.65 9899.53 17899.60 10299.63 4699.39 24599.47 8999.76 7499.78 6598.13 18199.86 18498.70 12299.68 20599.49 177
APD-MVS_3200maxsize99.31 10099.16 10999.74 6099.53 17899.75 4899.27 11599.61 14199.19 13199.57 14599.64 14098.76 10699.90 12397.29 22699.62 22499.56 139
MIMVSNet98.43 24498.20 24699.11 23799.53 17898.38 25899.58 5898.61 31498.96 16399.33 21099.76 7590.92 31999.81 25497.38 22299.76 17099.15 261
test117299.23 11599.05 14499.74 6099.52 18399.75 4899.20 13499.61 14198.97 16099.48 17399.58 18398.41 15299.91 10397.15 24199.55 24399.57 136
Regformer-399.41 7199.41 6399.40 18699.52 18398.70 23999.17 14599.44 22899.62 6399.75 7999.60 17598.90 8699.85 20298.89 10799.84 12199.65 82
Regformer-499.45 6299.44 5899.50 15599.52 18398.94 22199.17 14599.53 19499.64 5999.76 7499.60 17598.96 7999.90 12398.91 10699.84 12199.67 64
HPM-MVS++copyleft98.96 18598.70 20399.74 6099.52 18399.71 6398.86 21099.19 28798.47 21898.59 29599.06 29898.08 18599.91 10396.94 24999.60 23499.60 116
GA-MVS97.99 27297.68 28098.93 25599.52 18398.04 27797.19 34099.05 29898.32 23998.81 27698.97 31189.89 33399.41 34698.33 14299.05 30199.34 225
SR-MVS99.19 13499.00 16099.74 6099.51 18899.72 6199.18 14099.60 15298.85 17899.47 17599.58 18398.38 15799.92 8596.92 25099.54 24999.57 136
test22299.51 18899.08 21097.83 31399.29 27095.21 33098.68 28999.31 25997.28 23699.38 27499.43 203
testdata99.42 17799.51 18898.93 22599.30 26896.20 31698.87 27099.40 23698.33 16499.89 13696.29 28499.28 28899.44 197
plane_prior199.51 188
UniMVSNet (Re)99.37 8299.26 9899.68 8499.51 18899.58 10898.98 19799.60 15299.43 10099.70 9999.36 24797.70 21199.88 15199.20 6699.87 10799.59 125
DELS-MVS99.34 9299.30 8699.48 16199.51 18899.36 15798.12 28399.53 19499.36 10799.41 19499.61 16899.22 4799.87 16499.21 6399.68 20599.20 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
新几何199.52 14999.50 19499.22 18999.26 27695.66 32598.60 29499.28 26697.67 21699.89 13695.95 29899.32 28499.45 192
SD-MVS99.01 17699.30 8698.15 30099.50 19499.40 14698.94 20399.61 14199.22 12999.75 7999.82 4799.54 2095.51 35597.48 21699.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.56 22998.20 24699.61 12299.50 19499.46 12698.32 26799.41 23595.22 32999.21 23299.10 29598.34 16299.82 23895.09 31899.66 21699.56 139
APD-MVScopyleft98.87 19998.59 21199.71 7899.50 19499.62 9499.01 18699.57 17096.80 30899.54 15999.63 15098.29 16699.91 10395.24 31599.71 19799.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR99.12 15199.02 15499.40 18699.50 19499.11 20397.92 30899.71 9198.76 19299.08 25099.47 22499.17 5199.54 33897.85 18699.76 17099.54 149
旧先验199.49 19999.29 17099.26 27699.39 24097.67 21699.36 27999.46 190
112198.56 22998.24 24299.52 14999.49 19999.24 18599.30 10499.22 28495.77 32298.52 30099.29 26497.39 23199.85 20295.79 30399.34 28199.46 190
GBi-Net99.42 6799.31 8199.73 6899.49 19999.77 4099.68 3299.70 9599.44 9599.62 12999.83 4197.21 23999.90 12398.96 9999.90 8399.53 154
test199.42 6799.31 8199.73 6899.49 19999.77 4099.68 3299.70 9599.44 9599.62 12999.83 4197.21 23999.90 12398.96 9999.90 8399.53 154
FMVSNet299.35 8799.28 9399.55 14299.49 19999.35 16199.45 7299.57 17099.44 9599.70 9999.74 8297.21 23999.87 16499.03 9099.94 6199.44 197
DP-MVS Recon98.50 23698.23 24399.31 21099.49 19999.46 12698.56 24599.63 13194.86 33598.85 27299.37 24297.81 20699.59 33596.08 28999.44 26498.88 297
MVP-Stereo99.16 14399.08 13499.43 17599.48 20599.07 21199.08 17699.55 18098.63 20099.31 21499.68 12398.19 17799.78 26698.18 15899.58 23799.45 192
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20096.09 31595.68 31897.33 32299.48 20596.22 32098.53 25097.57 33698.06 25298.37 30796.73 35986.84 34499.61 33386.99 35198.57 32596.16 349
sss98.90 19398.77 19799.27 21799.48 20598.44 25298.72 23399.32 26197.94 26199.37 20299.35 25296.31 26599.91 10398.85 10999.63 22399.47 186
PAPM_NR98.36 25098.04 25799.33 20399.48 20598.93 22598.79 22699.28 27397.54 27998.56 29898.57 33397.12 24499.69 29894.09 33098.90 31099.38 214
TAMVS99.49 5199.45 5699.63 10999.48 20599.42 14199.45 7299.57 17099.66 5599.78 6799.83 4197.85 20499.86 18499.44 3599.96 4199.61 112
ETH3D-3000-0.198.77 20898.50 22299.59 12699.47 21099.53 11698.77 22899.60 15297.33 29199.23 22699.50 21297.91 19799.83 22895.02 31999.67 21299.41 207
原ACMM199.37 19699.47 21098.87 23299.27 27496.74 30998.26 31099.32 25797.93 19699.82 23895.96 29799.38 27499.43 203
plane_prior699.47 21099.26 17697.24 237
UniMVSNet_NR-MVSNet99.37 8299.25 10099.72 7499.47 21099.56 11198.97 19999.61 14199.43 10099.67 10899.28 26697.85 20499.95 4399.17 7399.81 14899.65 82
TAPA-MVS97.92 1398.03 26997.55 28399.46 16699.47 21099.44 13398.50 25399.62 13486.79 34999.07 25399.26 27098.26 16999.62 32997.28 22899.73 18899.31 231
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SMA-MVScopyleft99.19 13499.00 16099.73 6899.46 21599.73 5799.13 16299.52 20297.40 28799.57 14599.64 14098.93 8099.83 22897.61 20899.79 15899.63 93
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PVSNet97.47 1598.42 24598.44 22698.35 29299.46 21596.26 31996.70 34699.34 25897.68 27399.00 25799.13 28897.40 22999.72 28697.59 21099.68 20599.08 277
TinyColmap98.97 18298.93 17499.07 24399.46 21598.19 26697.75 31599.75 7198.79 18699.54 15999.70 10698.97 7699.62 32996.63 26999.83 13199.41 207
9.1498.64 20699.45 21898.81 22099.60 15297.52 28199.28 21999.56 19498.53 13899.83 22895.36 31499.64 221
testtj98.56 22998.17 25199.72 7499.45 21899.60 10298.88 20699.50 20896.88 30399.18 23899.48 21997.08 24699.92 8593.69 33599.38 27499.63 93
CS-MVS99.09 16099.03 15299.25 22299.45 21899.49 11999.41 7899.82 3799.10 14898.03 32498.48 33999.30 3899.89 13698.30 14599.41 27098.35 323
PatchMatch-RL98.68 21898.47 22399.30 21299.44 22199.28 17298.14 28199.54 18597.12 29999.11 24799.25 27297.80 20799.70 29296.51 27499.30 28698.93 293
PCF-MVS96.03 1896.73 30395.86 31499.33 20399.44 22199.16 19896.87 34499.44 22886.58 35098.95 26099.40 23694.38 28799.88 15187.93 34799.80 15398.95 291
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ZD-MVS99.43 22399.61 10099.43 23196.38 31399.11 24799.07 29797.86 20299.92 8594.04 33199.49 258
VDD-MVS99.20 13199.11 12399.44 17299.43 22398.98 21699.50 6598.32 32699.80 3099.56 15299.69 11296.99 24999.85 20298.99 9399.73 18899.50 172
DU-MVS99.33 9699.21 10499.71 7899.43 22399.56 11198.83 21599.53 19499.38 10499.67 10899.36 24797.67 21699.95 4399.17 7399.81 14899.63 93
NR-MVSNet99.40 7499.31 8199.68 8499.43 22399.55 11499.73 1799.50 20899.46 9399.88 3399.36 24797.54 22499.87 16498.97 9799.87 10799.63 93
WTY-MVS98.59 22698.37 23399.26 21999.43 22398.40 25598.74 23099.13 29498.10 25099.21 23299.24 27794.82 28299.90 12397.86 18498.77 31599.49 177
thisisatest051596.98 29796.42 30498.66 28199.42 22897.47 29597.27 33794.30 35297.24 29499.15 24198.86 32285.01 34899.87 16497.10 24399.39 27398.63 308
Regformer-199.32 9899.27 9699.47 16399.41 22998.95 22098.99 19399.48 21599.48 8499.66 11299.52 20698.78 10299.87 16498.36 13899.74 18199.60 116
Regformer-299.34 9299.27 9699.53 14899.41 22999.10 20798.99 19399.53 19499.47 8999.66 11299.52 20698.80 9799.89 13698.31 14499.74 18199.60 116
pmmvs398.08 26797.80 27498.91 25899.41 22997.69 29197.87 31199.66 11295.87 32099.50 17199.51 20990.35 32899.97 1798.55 13099.47 26199.08 277
NP-MVS99.40 23299.13 20198.83 323
QAPM98.40 24897.99 25999.65 9899.39 23399.47 12299.67 3699.52 20291.70 34598.78 28199.80 5298.55 13299.95 4394.71 32399.75 17399.53 154
OMC-MVS98.90 19398.72 19999.44 17299.39 23399.42 14198.58 24099.64 12997.31 29299.44 18099.62 15998.59 12799.69 29896.17 28899.79 15899.22 246
3Dnovator99.15 299.43 6499.36 7399.65 9899.39 23399.42 14199.70 2399.56 17599.23 12699.35 20599.80 5299.17 5199.95 4398.21 15399.84 12199.59 125
ETH3 D test640097.76 27697.19 29199.50 15599.38 23699.26 17698.34 26499.49 21392.99 34298.54 29999.20 28395.92 27499.82 23891.14 34299.66 21699.40 209
Fast-Effi-MVS+99.02 17298.87 18599.46 16699.38 23699.50 11899.04 18199.79 5397.17 29698.62 29298.74 32899.34 3499.95 4398.32 14399.41 27098.92 294
BH-untuned98.22 26298.09 25598.58 28499.38 23697.24 30298.55 24698.98 30097.81 26999.20 23798.76 32797.01 24899.65 32594.83 32098.33 33198.86 299
xiu_mvs_v2_base99.02 17299.11 12398.77 27599.37 23998.09 27498.13 28299.51 20599.47 8999.42 18698.54 33699.38 2899.97 1798.83 11099.33 28398.24 328
PS-MVSNAJ99.00 17899.08 13498.76 27699.37 23998.10 27398.00 29799.51 20599.47 8999.41 19498.50 33899.28 4199.97 1798.83 11099.34 28198.20 332
EIA-MVS99.12 15199.01 15799.45 17099.36 24199.62 9499.34 9299.79 5398.41 22298.84 27398.89 32098.75 10899.84 21798.15 16299.51 25498.89 296
DPM-MVS98.28 25697.94 26799.32 20799.36 24199.11 20397.31 33698.78 30796.88 30398.84 27399.11 29497.77 20999.61 33394.03 33299.36 27999.23 244
ambc99.20 23099.35 24398.53 24799.17 14599.46 22399.67 10899.80 5298.46 14899.70 29297.92 17799.70 19999.38 214
TEST999.35 24399.35 16198.11 28599.41 23594.83 33797.92 32798.99 30598.02 18999.85 202
train_agg98.35 25397.95 26399.57 13599.35 24399.35 16198.11 28599.41 23594.90 33397.92 32798.99 30598.02 18999.85 20295.38 31399.44 26499.50 172
agg_prior198.33 25597.92 26999.57 13599.35 24399.36 15797.99 29999.39 24594.85 33697.76 33698.98 30898.03 18799.85 20295.49 30999.44 26499.51 166
agg_prior99.35 24399.36 15799.39 24597.76 33699.85 202
test_prior398.62 22198.34 23799.46 16699.35 24399.22 18997.95 30499.39 24597.87 26498.05 32199.05 29997.90 19899.69 29895.99 29499.49 25899.48 181
test_prior99.46 16699.35 24399.22 18999.39 24599.69 29899.48 181
MVS_Test99.28 10499.31 8199.19 23199.35 24398.79 23599.36 9099.49 21399.17 13599.21 23299.67 12998.78 10299.66 31899.09 8699.66 21699.10 271
CDS-MVSNet99.22 12499.13 11699.50 15599.35 24399.11 20398.96 20099.54 18599.46 9399.61 13599.70 10696.31 26599.83 22899.34 4799.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator+98.92 399.35 8799.24 10199.67 8699.35 24399.47 12299.62 4799.50 20899.44 9599.12 24699.78 6598.77 10599.94 5497.87 18399.72 19399.62 105
ETV-MVS99.18 13899.18 10799.16 23499.34 25399.28 17299.12 16699.79 5399.48 8498.93 26298.55 33599.40 2399.93 6798.51 13299.52 25398.28 326
Anonymous20240521198.75 21198.46 22499.63 10999.34 25399.66 8199.47 7197.65 33599.28 11799.56 15299.50 21293.15 29799.84 21798.62 12799.58 23799.40 209
CHOSEN 280x42098.41 24698.41 22998.40 29099.34 25395.89 32696.94 34399.44 22898.80 18599.25 22299.52 20693.51 29599.98 698.94 10499.98 2299.32 229
test_899.34 25399.31 16798.08 28999.40 24294.90 33397.87 33198.97 31198.02 18999.84 217
TSAR-MVS + GP.99.12 15199.04 15099.38 19399.34 25399.16 19898.15 27999.29 27098.18 24899.63 12299.62 15999.18 5099.68 30998.20 15499.74 18199.30 232
LCM-MVSNet-Re99.28 10499.15 11299.67 8699.33 25899.76 4699.34 9299.97 298.93 16899.91 2199.79 5898.68 11499.93 6796.80 25999.56 23999.30 232
PLCcopyleft97.35 1698.36 25097.99 25999.48 16199.32 25999.24 18598.50 25399.51 20595.19 33198.58 29698.96 31396.95 25099.83 22895.63 30699.25 29299.37 217
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+99.06 16398.97 16999.34 20199.31 26098.98 21698.31 26899.91 898.81 18398.79 27998.94 31599.14 5599.84 21798.79 11498.74 31999.20 251
HQP-NCC99.31 26097.98 30097.45 28498.15 315
ACMP_Plane99.31 26097.98 30097.45 28498.15 315
HQP-MVS98.36 25098.02 25899.39 18999.31 26098.94 22197.98 30099.37 25297.45 28498.15 31598.83 32396.67 25399.70 29294.73 32199.67 21299.53 154
baseline197.73 27797.33 28598.96 25099.30 26497.73 28999.40 8098.42 32299.33 11199.46 17899.21 28191.18 31599.82 23898.35 14091.26 35299.32 229
WR-MVS99.11 15598.93 17499.66 9399.30 26499.42 14198.42 26199.37 25299.04 15699.57 14599.20 28396.89 25199.86 18498.66 12699.87 10799.70 48
test1299.54 14699.29 26699.33 16499.16 29098.43 30597.54 22499.82 23899.47 26199.48 181
OpenMVS_ROBcopyleft97.31 1797.36 29096.84 30198.89 26599.29 26699.45 13198.87 20999.48 21586.54 35199.44 18099.74 8297.34 23499.86 18491.61 33999.28 28897.37 344
MVS-HIRNet97.86 27398.22 24496.76 32699.28 26891.53 35298.38 26392.60 35599.13 14399.31 21499.96 1197.18 24399.68 30998.34 14199.83 13199.07 282
DeepC-MVS_fast98.47 599.23 11599.12 12099.56 13999.28 26899.22 18998.99 19399.40 24299.08 14999.58 14299.64 14098.90 8699.83 22897.44 21899.75 17399.63 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Patchmatch-test98.10 26697.98 26198.48 28799.27 27096.48 31699.40 8099.07 29598.81 18399.23 22699.57 19190.11 33099.87 16496.69 26499.64 22199.09 274
ET-MVSNet_ETH3D96.78 30196.07 31098.91 25899.26 27197.92 28497.70 31896.05 34697.96 26092.37 35498.43 34087.06 33999.90 12398.27 14897.56 34498.91 295
Fast-Effi-MVS+-dtu99.20 13199.12 12099.43 17599.25 27299.69 7499.05 17999.82 3799.50 8298.97 25899.05 29998.98 7499.98 698.20 15499.24 29498.62 309
CNVR-MVS98.99 18198.80 19599.56 13999.25 27299.43 13898.54 24999.27 27498.58 20598.80 27899.43 23298.53 13899.70 29297.22 23699.59 23699.54 149
LFMVS98.46 24298.19 24999.26 21999.24 27498.52 24899.62 4796.94 34299.87 1599.31 21499.58 18391.04 31799.81 25498.68 12599.42 26999.45 192
VNet99.18 13899.06 14099.56 13999.24 27499.36 15799.33 9499.31 26599.67 5199.47 17599.57 19196.48 25899.84 21799.15 7799.30 28699.47 186
DeepPCF-MVS98.42 699.18 13899.02 15499.67 8699.22 27699.75 4897.25 33899.47 21998.72 19499.66 11299.70 10699.29 3999.63 32898.07 16799.81 14899.62 105
MSLP-MVS++99.05 16699.09 13298.91 25899.21 27798.36 25998.82 21999.47 21998.85 17898.90 26899.56 19498.78 10299.09 34998.57 12999.68 20599.26 238
NCCC98.82 20498.57 21599.58 13099.21 27799.31 16798.61 23699.25 27998.65 19898.43 30599.26 27097.86 20299.81 25496.55 27199.27 29199.61 112
BH-RMVSNet98.41 24698.14 25399.21 22899.21 27798.47 24998.60 23898.26 32798.35 23398.93 26299.31 25997.20 24299.66 31894.32 32699.10 29999.51 166
miper_lstm_enhance98.65 22098.60 20998.82 27399.20 28097.33 30097.78 31499.66 11299.01 15799.59 14099.50 21294.62 28599.85 20298.12 16399.90 8399.26 238
SCA98.11 26598.36 23497.36 32099.20 28092.99 34398.17 27898.49 32098.24 24399.10 24999.57 19196.01 27299.94 5496.86 25499.62 22499.14 265
mvs_anonymous99.28 10499.39 6598.94 25299.19 28297.81 28699.02 18499.55 18099.78 3399.85 3999.80 5298.24 17099.86 18499.57 2399.50 25699.15 261
OpenMVScopyleft98.12 1098.23 26197.89 27399.26 21999.19 28299.26 17699.65 4499.69 10191.33 34698.14 31999.77 7298.28 16799.96 3495.41 31299.55 24398.58 313
CNLPA98.57 22898.34 23799.28 21599.18 28499.10 20798.34 26499.41 23598.48 21798.52 30098.98 30897.05 24799.78 26695.59 30799.50 25698.96 290
test_yl98.25 25897.95 26399.13 23599.17 28598.47 24999.00 18898.67 31298.97 16099.22 23099.02 30391.31 31399.69 29897.26 23198.93 30699.24 241
DCV-MVSNet98.25 25897.95 26399.13 23599.17 28598.47 24999.00 18898.67 31298.97 16099.22 23099.02 30391.31 31399.69 29897.26 23198.93 30699.24 241
MG-MVS98.52 23598.39 23198.94 25299.15 28797.39 29998.18 27699.21 28698.89 17599.23 22699.63 15097.37 23399.74 28294.22 32899.61 23199.69 51
ADS-MVSNet297.78 27597.66 28298.12 30299.14 28895.36 33099.22 13198.75 30896.97 30198.25 31199.64 14090.90 32099.94 5496.51 27499.56 23999.08 277
ADS-MVSNet97.72 27997.67 28197.86 30799.14 28894.65 33699.22 13198.86 30296.97 30198.25 31199.64 14090.90 32099.84 21796.51 27499.56 23999.08 277
FMVSNet398.80 20698.63 20899.32 20799.13 29098.72 23899.10 16999.48 21599.23 12699.62 12999.64 14092.57 30299.86 18498.96 9999.90 8399.39 212
PHI-MVS99.11 15598.95 17399.59 12699.13 29099.59 10599.17 14599.65 12397.88 26399.25 22299.46 22798.97 7699.80 25997.26 23199.82 14099.37 217
OPU-MVS99.29 21399.12 29299.44 13399.20 13499.40 23699.00 7298.84 35196.54 27299.60 23499.58 130
cl_fuxian98.72 21698.71 20098.72 27899.12 29297.22 30397.68 31999.56 17598.90 17299.54 15999.48 21996.37 26499.73 28497.88 18099.88 9999.21 248
alignmvs98.28 25697.96 26299.25 22299.12 29298.93 22599.03 18398.42 32299.64 5998.72 28697.85 34890.86 32299.62 32998.88 10899.13 29799.19 253
PAPM95.61 32294.71 32498.31 29699.12 29296.63 31496.66 34798.46 32190.77 34796.25 34798.68 33093.01 29999.69 29881.60 35397.86 34298.62 309
AdaColmapbinary98.60 22398.35 23699.38 19399.12 29299.22 18998.67 23599.42 23497.84 26898.81 27699.27 26897.32 23599.81 25495.14 31699.53 25199.10 271
MS-PatchMatch99.00 17898.97 16999.09 23999.11 29798.19 26698.76 22999.33 25998.49 21699.44 18099.58 18398.21 17499.69 29898.20 15499.62 22499.39 212
eth_miper_zixun_eth98.68 21898.71 20098.60 28299.10 29896.84 31297.52 32899.54 18598.94 16599.58 14299.48 21996.25 26799.76 27698.01 17199.93 6999.21 248
canonicalmvs99.02 17299.00 16099.09 23999.10 29898.70 23999.61 5199.66 11299.63 6298.64 29197.65 35099.04 7099.54 33898.79 11498.92 30899.04 285
baseline296.83 30096.28 30698.46 28899.09 30096.91 31098.83 21593.87 35497.23 29596.23 34998.36 34188.12 33699.90 12396.68 26598.14 33798.57 314
BH-w/o97.20 29297.01 29597.76 31099.08 30195.69 32798.03 29498.52 31795.76 32397.96 32698.02 34695.62 27799.47 34392.82 33797.25 34698.12 334
MVSTER98.47 24198.22 24499.24 22599.06 30298.35 26099.08 17699.46 22399.27 11899.75 7999.66 13388.61 33599.85 20299.14 8399.92 7399.52 164
CR-MVSNet98.35 25398.20 24698.83 27099.05 30398.12 27099.30 10499.67 10897.39 28899.16 23999.79 5891.87 30999.91 10398.78 11798.77 31598.44 320
RPMNet98.60 22398.53 22098.83 27099.05 30398.12 27099.30 10499.62 13499.86 1799.16 23999.74 8292.53 30499.92 8598.75 11898.77 31598.44 320
ETH3D cwj APD-0.1698.50 23698.16 25299.51 15299.04 30599.39 14898.47 25599.47 21996.70 31098.78 28199.33 25697.62 22399.86 18494.69 32499.38 27499.28 237
cl-mvsnet_98.54 23398.41 22998.92 25699.03 30697.80 28797.46 33099.59 15998.90 17299.60 13799.46 22793.85 29199.78 26697.97 17599.89 9199.17 257
cl-mvsnet198.54 23398.42 22898.92 25699.03 30697.80 28797.46 33099.59 15998.90 17299.60 13799.46 22793.87 29099.78 26697.97 17599.89 9199.18 255
HY-MVS98.23 998.21 26397.95 26398.99 24899.03 30698.24 26299.61 5198.72 30996.81 30798.73 28599.51 20994.06 28999.86 18496.91 25198.20 33398.86 299
miper_ehance_all_eth98.59 22698.59 21198.59 28398.98 30997.07 30697.49 32999.52 20298.50 21499.52 16599.37 24296.41 26399.71 29097.86 18499.62 22499.00 289
PMMVS98.49 23998.29 24099.11 23798.96 31098.42 25497.54 32499.32 26197.53 28098.47 30498.15 34597.88 20199.82 23897.46 21799.24 29499.09 274
PatchT98.45 24398.32 23998.83 27098.94 31198.29 26199.24 12498.82 30599.84 2299.08 25099.76 7591.37 31299.94 5498.82 11299.00 30598.26 327
tpm97.15 29396.95 29797.75 31198.91 31294.24 33899.32 9797.96 33097.71 27298.29 30899.32 25786.72 34599.92 8598.10 16696.24 34999.09 274
131498.00 27197.90 27298.27 29898.90 31397.45 29799.30 10499.06 29794.98 33297.21 34399.12 29298.43 15099.67 31495.58 30898.56 32697.71 340
CostFormer96.71 30496.79 30396.46 33298.90 31390.71 35699.41 7898.68 31094.69 33898.14 31999.34 25586.32 34799.80 25997.60 20998.07 33998.88 297
UGNet99.38 8099.34 7599.49 15898.90 31398.90 22999.70 2399.35 25699.86 1798.57 29799.81 5098.50 14499.93 6799.38 4299.98 2299.66 74
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu99.07 16298.92 17899.52 14998.89 31699.78 3899.15 15399.66 11299.34 10898.92 26599.24 27797.69 21399.98 698.11 16499.28 28898.81 303
mvs-test198.83 20298.70 20399.22 22798.89 31699.65 8698.88 20699.66 11299.34 10898.29 30898.94 31597.69 21399.96 3498.11 16498.54 32798.04 336
Patchmtry98.78 20798.54 21899.49 15898.89 31699.19 19699.32 9799.67 10899.65 5799.72 9299.79 5891.87 30999.95 4398.00 17299.97 3099.33 226
tpm296.35 31096.22 30796.73 32898.88 31991.75 35099.21 13398.51 31893.27 34197.89 32999.21 28184.83 34999.70 29296.04 29198.18 33698.75 306
MVS_030498.88 19798.71 20099.39 18998.85 32098.91 22899.45 7299.30 26898.56 20697.26 34299.68 12396.18 26999.96 3499.17 7399.94 6199.29 235
tpm cat196.78 30196.98 29696.16 33598.85 32090.59 35799.08 17699.32 26192.37 34397.73 33899.46 22791.15 31699.69 29896.07 29098.80 31298.21 330
CANet99.11 15599.05 14499.28 21598.83 32298.56 24698.71 23499.41 23599.25 12299.23 22699.22 27997.66 22099.94 5499.19 6899.97 3099.33 226
FMVSNet597.80 27497.25 28899.42 17798.83 32298.97 21899.38 8499.80 4798.87 17699.25 22299.69 11280.60 35699.91 10398.96 9999.90 8399.38 214
API-MVS98.38 24998.39 23198.35 29298.83 32299.26 17699.14 15599.18 28898.59 20498.66 29098.78 32698.61 12599.57 33794.14 32999.56 23996.21 348
PatchmatchNetpermissive97.65 28097.80 27497.18 32398.82 32592.49 34599.17 14598.39 32498.12 24998.79 27999.58 18390.71 32499.89 13697.23 23599.41 27099.16 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RRT_test8_iter0597.35 29197.25 28897.63 31498.81 32693.13 34299.26 11699.89 1399.51 8199.83 4799.68 12379.03 35999.88 15199.53 2799.72 19399.89 9
PAPR97.56 28497.07 29399.04 24698.80 32798.11 27297.63 32099.25 27994.56 33998.02 32598.25 34497.43 22899.68 30990.90 34398.74 31999.33 226
CANet_DTU98.91 19198.85 18799.09 23998.79 32898.13 26998.18 27699.31 26599.48 8498.86 27199.51 20996.56 25599.95 4399.05 8999.95 4899.19 253
E-PMN97.14 29597.43 28496.27 33398.79 32891.62 35195.54 35099.01 29999.44 9598.88 26999.12 29292.78 30199.68 30994.30 32799.03 30397.50 341
PVSNet_095.53 1995.85 31995.31 32197.47 31798.78 33093.48 34195.72 34999.40 24296.18 31797.37 33997.73 34995.73 27599.58 33695.49 30981.40 35399.36 220
MAR-MVS98.24 26097.92 26999.19 23198.78 33099.65 8699.17 14599.14 29295.36 32798.04 32398.81 32597.47 22699.72 28695.47 31199.06 30098.21 330
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EMVS96.96 29897.28 28695.99 33698.76 33291.03 35495.26 35198.61 31499.34 10898.92 26598.88 32193.79 29299.66 31892.87 33699.05 30197.30 345
IB-MVS95.41 2095.30 32394.46 32697.84 30898.76 33295.33 33197.33 33596.07 34596.02 31895.37 35297.41 35376.17 36099.96 3497.54 21295.44 35198.22 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst97.73 27798.07 25696.73 32898.71 33492.00 34799.10 16998.86 30298.52 21298.92 26599.54 20291.90 30799.82 23898.02 16899.03 30398.37 322
MDTV_nov1_ep1397.73 27898.70 33590.83 35599.15 15398.02 32998.51 21398.82 27599.61 16890.98 31899.66 31896.89 25398.92 308
dp96.86 29997.07 29396.24 33498.68 33690.30 35899.19 13998.38 32597.35 29098.23 31399.59 18187.23 33899.82 23896.27 28598.73 32198.59 311
JIA-IIPM98.06 26897.92 26998.50 28698.59 33797.02 30798.80 22398.51 31899.88 1497.89 32999.87 3191.89 30899.90 12398.16 16197.68 34398.59 311
MVS95.72 32194.63 32598.99 24898.56 33897.98 28399.30 10498.86 30272.71 35497.30 34099.08 29698.34 16299.74 28289.21 34498.33 33199.26 238
TR-MVS97.44 28797.15 29298.32 29498.53 33997.46 29698.47 25597.91 33296.85 30598.21 31498.51 33796.42 26199.51 34192.16 33897.29 34597.98 337
DWT-MVSNet_test96.03 31795.80 31696.71 33098.50 34091.93 34899.25 12397.87 33395.99 31996.81 34597.61 35181.02 35499.66 31897.20 23897.98 34098.54 315
tpmvs97.39 28897.69 27996.52 33198.41 34191.76 34999.30 10498.94 30197.74 27097.85 33299.55 20092.40 30599.73 28496.25 28698.73 32198.06 335
LS3D99.24 11499.11 12399.61 12298.38 34299.79 3599.57 5999.68 10499.61 6799.15 24199.71 9998.70 11299.91 10397.54 21299.68 20599.13 268
cl-mvsnet297.56 28497.28 28698.40 29098.37 34396.75 31397.24 33999.37 25297.31 29299.41 19499.22 27987.30 33799.37 34797.70 19899.62 22499.08 277
CMPMVSbinary77.52 2398.50 23698.19 24999.41 18498.33 34499.56 11199.01 18699.59 15995.44 32699.57 14599.80 5295.64 27699.46 34596.47 27799.92 7399.21 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall98.03 26997.94 26798.32 29498.27 34596.43 31896.95 34299.41 23596.37 31499.43 18498.96 31394.74 28399.69 29897.71 19699.62 22498.83 302
TESTMET0.1,196.24 31395.84 31597.41 31998.24 34693.84 33997.38 33295.84 34798.43 21997.81 33398.56 33479.77 35799.89 13697.77 19198.77 31598.52 316
gg-mvs-nofinetune95.87 31895.17 32297.97 30498.19 34796.95 30899.69 2989.23 35899.89 1296.24 34899.94 1381.19 35399.51 34193.99 33398.20 33397.44 342
test-LLR97.15 29396.95 29797.74 31298.18 34895.02 33397.38 33296.10 34398.00 25397.81 33398.58 33190.04 33199.91 10397.69 20498.78 31398.31 324
test-mter96.23 31495.73 31797.74 31298.18 34895.02 33397.38 33296.10 34397.90 26297.81 33398.58 33179.12 35899.91 10397.69 20498.78 31398.31 324
EPMVS96.53 30796.32 30597.17 32498.18 34892.97 34499.39 8289.95 35798.21 24598.61 29399.59 18186.69 34699.72 28696.99 24799.23 29698.81 303
RRT_MVS98.75 21198.54 21899.41 18498.14 35198.61 24598.98 19799.66 11299.31 11399.84 4299.75 7991.98 30699.98 699.20 6699.95 4899.62 105
test0.0.03 197.37 28996.91 30098.74 27797.72 35297.57 29397.60 32297.36 34198.00 25399.21 23298.02 34690.04 33199.79 26298.37 13795.89 35098.86 299
GG-mvs-BLEND97.36 32097.59 35396.87 31199.70 2388.49 35994.64 35397.26 35680.66 35599.12 34891.50 34096.50 34896.08 350
gm-plane-assit97.59 35389.02 35993.47 34098.30 34299.84 21796.38 281
cascas96.99 29696.82 30297.48 31697.57 35595.64 32896.43 34899.56 17591.75 34497.13 34497.61 35195.58 27898.63 35296.68 26599.11 29898.18 333
EPNet_dtu97.62 28197.79 27697.11 32596.67 35692.31 34698.51 25298.04 32899.24 12495.77 35099.47 22493.78 29399.66 31898.98 9599.62 22499.37 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.13 26497.77 27799.18 23394.57 35797.99 27899.24 12497.96 33099.74 3697.29 34199.62 15993.13 29899.97 1798.59 12899.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tmp_tt95.75 32095.42 32096.76 32689.90 35894.42 33798.86 21097.87 33378.01 35299.30 21899.69 11297.70 21195.89 35499.29 5898.14 33799.95 1
testmvs28.94 32533.33 32715.79 33926.03 3599.81 36196.77 34515.67 36011.55 35623.87 35750.74 36319.03 3628.53 35723.21 35533.07 35429.03 353
test12329.31 32433.05 32918.08 33825.93 36012.24 36097.53 32610.93 36111.78 35524.21 35650.08 36421.04 3618.60 35623.51 35432.43 35533.39 352
uanet_test8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k24.88 32633.17 3280.00 3400.00 3610.00 3620.00 35299.62 1340.00 3570.00 35899.13 28899.82 40.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas16.61 32722.14 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 199.28 410.00 3580.00 3560.00 3560.00 354
sosnet-low-res8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
sosnet8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
Regformer8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.26 33411.02 3370.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35899.16 2860.00 3630.00 3580.00 3560.00 3560.00 354
uanet8.33 32811.11 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 358100.00 10.00 3630.00 3580.00 3560.00 3560.00 354
test_241102_TWO99.54 18599.13 14399.76 7499.63 15098.32 16599.92 8597.85 18699.69 20299.75 39
test_0728_THIRD99.18 13299.62 12999.61 16898.58 12899.91 10397.72 19599.80 15399.77 32
GSMVS99.14 265
sam_mvs190.81 32399.14 265
sam_mvs90.52 327
MTGPAbinary99.53 194
test_post199.14 15551.63 36289.54 33499.82 23896.86 254
test_post52.41 36190.25 32999.86 184
patchmatchnet-post99.62 15990.58 32599.94 54
MTMP99.09 17398.59 316
test9_res95.10 31799.44 26499.50 172
agg_prior294.58 32599.46 26399.50 172
test_prior499.19 19698.00 297
test_prior297.95 30497.87 26498.05 32199.05 29997.90 19895.99 29499.49 258
旧先验297.94 30695.33 32898.94 26199.88 15196.75 261
新几何298.04 293
无先验98.01 29599.23 28395.83 32199.85 20295.79 30399.44 197
原ACMM297.92 308
testdata299.89 13695.99 294
segment_acmp98.37 158
testdata197.72 31697.86 267
plane_prior599.54 18599.82 23895.84 30199.78 16499.60 116
plane_prior499.25 272
plane_prior399.31 16798.36 22899.14 243
plane_prior298.80 22398.94 165
plane_prior99.24 18598.42 26197.87 26499.71 197
n20.00 362
nn0.00 362
door-mid99.83 32
test1199.29 270
door99.77 60
HQP5-MVS98.94 221
BP-MVS94.73 321
HQP4-MVS98.15 31599.70 29299.53 154
HQP3-MVS99.37 25299.67 212
HQP2-MVS96.67 253
MDTV_nov1_ep13_2view91.44 35399.14 15597.37 28999.21 23291.78 31196.75 26199.03 286
ACMMP++_ref99.94 61
ACMMP++99.79 158
Test By Simon98.41 152