This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 1099.78 6100.00 199.92 1100.00 199.87 9
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 51100.00 199.90 8100.00 199.97 1199.61 1799.97 1999.75 13100.00 199.84 14
Gipumacopyleft99.57 4299.59 3699.49 16899.98 399.71 7199.72 2499.84 3499.81 3699.94 1299.78 7398.91 8799.71 30998.41 15099.95 5499.05 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2199.85 2899.70 5599.92 1999.93 1599.45 2499.97 1999.36 55100.00 199.85 13
v7n99.82 1099.80 1099.88 1199.96 499.84 2199.82 899.82 4199.84 3099.94 1299.91 2199.13 6099.96 3799.83 999.99 1299.83 18
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4599.68 3899.85 2899.95 399.98 399.92 1899.28 4299.98 899.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 4299.70 2999.86 2499.89 1499.98 399.90 2399.94 199.98 899.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 499.96 499.79 3999.72 2499.88 1999.92 799.98 399.93 1599.94 199.98 899.77 12100.00 199.92 3
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2599.83 699.85 2899.80 3999.93 1599.93 1598.54 13999.93 7599.59 2399.98 2499.76 41
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1299.85 2799.94 1299.95 1399.73 899.90 13799.65 1799.97 3399.69 57
test_djsdf99.84 899.81 999.91 299.94 1099.84 2199.77 1299.80 5199.73 4699.97 699.92 1899.77 799.98 899.43 43100.00 199.90 4
MIMVSNet199.66 2799.62 2999.80 2999.94 1099.87 1099.69 3599.77 6599.78 4299.93 1599.89 2797.94 20399.92 9599.65 1799.98 2499.62 113
K. test v398.87 20598.60 21599.69 8899.93 1399.46 13699.74 1894.97 36999.78 4299.88 3399.88 3093.66 30799.97 1999.61 2199.95 5499.64 97
SixPastTwentyTwo99.42 7399.30 9299.76 4799.92 1499.67 8799.70 2999.14 30999.65 7099.89 2799.90 2396.20 27899.94 6199.42 4899.92 7999.67 70
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2599.76 1499.87 2199.73 4699.89 2799.87 3399.63 1499.87 18199.54 3099.92 7999.63 102
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1699.75 1699.86 2499.70 5599.91 2199.89 2799.60 1999.87 18199.59 2399.74 19299.71 50
Baseline_NR-MVSNet99.49 5699.37 7699.82 2399.91 1599.84 2198.83 22899.86 2499.68 6099.65 12599.88 3097.67 22499.87 18199.03 10399.86 12399.76 41
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 999.90 899.97 699.87 3399.81 599.95 4799.54 3099.99 1299.80 25
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_Blended_VisFu99.40 8099.38 7399.44 18399.90 1998.66 25598.94 21699.91 1297.97 27499.79 6899.73 9599.05 7299.97 1999.15 9099.99 1299.68 63
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1699.86 599.92 999.69 5899.78 7199.92 1899.37 3299.88 16898.93 11899.95 5499.60 128
EGC-MVSNET89.05 34285.52 34599.64 11199.89 2199.78 4299.56 7299.52 21324.19 37649.96 37799.83 4899.15 5599.92 9597.71 21499.85 12799.21 262
Anonymous2024052199.44 6999.42 6899.49 16899.89 2198.96 23099.62 5499.76 7099.85 2799.82 5399.88 3096.39 27399.97 1999.59 2399.98 2499.55 154
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9799.93 599.95 1199.89 2799.71 999.96 3799.51 3599.97 3399.84 14
XXY-MVS99.71 1899.67 2299.81 2699.89 2199.72 6999.59 6699.82 4199.39 11799.82 5399.84 4799.38 3099.91 11799.38 5199.93 7599.80 25
FC-MVSNet-test99.70 1999.65 2599.86 1699.88 2599.86 1399.72 2499.78 6299.90 899.82 5399.83 4898.45 15499.87 18199.51 3599.97 3399.86 11
EU-MVSNet99.39 8499.62 2998.72 29399.88 2596.44 33499.56 7299.85 2899.90 899.90 2399.85 4298.09 19199.83 24799.58 2699.95 5499.90 4
CHOSEN 1792x268899.39 8499.30 9299.65 10499.88 2599.25 18998.78 24099.88 1998.66 21299.96 899.79 6697.45 23599.93 7599.34 5799.99 1299.78 33
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2599.66 8999.69 3599.92 999.67 6499.77 7699.75 8899.61 1799.98 899.35 5699.98 2499.72 47
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tfpnnormal99.43 7099.38 7399.60 13199.87 2999.75 5699.59 6699.78 6299.71 5099.90 2399.69 12198.85 9599.90 13797.25 25399.78 17599.15 277
SteuartSystems-ACMMP99.30 10899.14 12099.76 4799.87 2999.66 8999.18 15399.60 16198.55 22399.57 15799.67 13899.03 7499.94 6197.01 26599.80 16499.69 57
Skip Steuart: Steuart Systems R&D Blog.
lessismore_v099.64 11199.86 3199.38 16090.66 37799.89 2799.83 4894.56 29799.97 1999.56 2899.92 7999.57 148
ACMH+98.40 899.50 5499.43 6699.71 8399.86 3199.76 5299.32 10999.77 6599.53 9299.77 7699.76 8399.26 4699.78 28497.77 20699.88 10799.60 128
ACMH98.42 699.59 4099.54 4899.72 7999.86 3199.62 10299.56 7299.79 5798.77 20499.80 6399.85 4299.64 1399.85 21998.70 13699.89 9999.70 53
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HyFIR lowres test98.91 19798.64 21299.73 7399.85 3499.47 13298.07 30599.83 3698.64 21499.89 2799.60 18692.57 316100.00 199.33 6199.97 3399.72 47
KD-MVS_self_test99.63 3399.59 3699.76 4799.84 3599.90 599.37 9999.79 5799.83 3399.88 3399.85 4298.42 15899.90 13799.60 2299.73 19999.49 190
FIs99.65 3299.58 4099.84 1999.84 3599.85 1699.66 4699.75 7799.86 2299.74 9399.79 6698.27 17599.85 21999.37 5499.93 7599.83 18
XVG-OURS-SEG-HR99.16 15098.99 17199.66 9999.84 3599.64 9698.25 28899.73 8598.39 24099.63 13199.43 24799.70 1199.90 13797.34 24298.64 33999.44 211
PMVScopyleft92.94 2198.82 21098.81 19998.85 28199.84 3597.99 29599.20 14799.47 23299.71 5099.42 20199.82 5598.09 19199.47 36493.88 35699.85 12799.07 298
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FOURS199.83 3999.89 899.74 1899.71 9799.69 5899.63 131
MP-MVS-pluss99.14 15498.92 18499.80 2999.83 3999.83 2598.61 25199.63 13996.84 32699.44 19599.58 19498.81 9799.91 11797.70 21799.82 15199.67 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PM-MVS99.36 9299.29 9799.58 13999.83 3999.66 8998.95 21499.86 2498.85 19399.81 6099.73 9598.40 16399.92 9598.36 15399.83 14299.17 273
PEN-MVS99.66 2799.59 3699.89 799.83 3999.87 1099.66 4699.73 8599.70 5599.84 4699.73 9598.56 13699.96 3799.29 6999.94 6799.83 18
HPM-MVS_fast99.43 7099.30 9299.80 2999.83 3999.81 3299.52 7599.70 10298.35 24899.51 18399.50 22699.31 3899.88 16898.18 17299.84 13299.69 57
RPSCF99.18 14599.02 16099.64 11199.83 3999.85 1699.44 8799.82 4198.33 25399.50 18599.78 7397.90 20699.65 34496.78 27999.83 14299.44 211
COLMAP_ROBcopyleft98.06 1299.45 6799.37 7699.70 8799.83 3999.70 7899.38 9599.78 6299.53 9299.67 11799.78 7399.19 5199.86 20197.32 24399.87 11699.55 154
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + MP.99.34 9999.24 10899.63 11799.82 4699.37 16399.26 12999.35 26998.77 20499.57 15799.70 11599.27 4599.88 16897.71 21499.75 18499.65 88
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
new-patchmatchnet99.35 9499.57 4398.71 29599.82 4696.62 33298.55 26199.75 7799.50 9599.88 3399.87 3399.31 3899.88 16899.43 43100.00 199.62 113
VPNet99.46 6599.37 7699.71 8399.82 4699.59 11399.48 8199.70 10299.81 3699.69 11099.58 19497.66 22899.86 20199.17 8699.44 28099.67 70
XVG-OURS99.21 13699.06 14799.65 10499.82 4699.62 10297.87 32699.74 8298.36 24399.66 12199.68 13299.71 999.90 13796.84 27699.88 10799.43 217
XVG-ACMP-BASELINE99.23 12299.10 13899.63 11799.82 4699.58 11698.83 22899.72 9498.36 24399.60 14799.71 10898.92 8599.91 11797.08 26399.84 13299.40 223
LPG-MVS_test99.22 13199.05 15199.74 6399.82 4699.63 10099.16 16499.73 8597.56 29499.64 12799.69 12199.37 3299.89 15396.66 28699.87 11699.69 57
LGP-MVS_train99.74 6399.82 4699.63 10099.73 8597.56 29499.64 12799.69 12199.37 3299.89 15396.66 28699.87 11699.69 57
zzz-MVS99.30 10899.14 12099.80 2999.81 5399.81 3298.73 24699.53 20599.27 13299.42 20199.63 15998.21 18299.95 4797.83 20499.79 16999.65 88
MTAPA99.35 9499.20 11299.80 2999.81 5399.81 3299.33 10699.53 20599.27 13299.42 20199.63 15998.21 18299.95 4797.83 20499.79 16999.65 88
v1099.69 2199.69 1999.66 9999.81 5399.39 15799.66 4699.75 7799.60 8699.92 1999.87 3398.75 11299.86 20199.90 299.99 1299.73 46
HPM-MVScopyleft99.25 11899.07 14599.78 3799.81 5399.75 5699.61 5999.67 11697.72 28899.35 22099.25 29199.23 4899.92 9597.21 25699.82 15199.67 70
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IterMVS-LS99.41 7799.47 5699.25 23599.81 5398.09 29198.85 22599.76 7099.62 7699.83 5199.64 14998.54 13999.97 1999.15 9099.99 1299.68 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124099.56 4599.58 4099.51 16299.80 5899.00 22499.00 20199.65 13199.15 15799.90 2399.75 8899.09 6399.88 16899.90 299.96 4599.67 70
v899.68 2499.69 1999.65 10499.80 5899.40 15599.66 4699.76 7099.64 7299.93 1599.85 4298.66 12399.84 23699.88 699.99 1299.71 50
MDA-MVSNet-bldmvs99.06 16999.05 15199.07 25899.80 5897.83 30298.89 21899.72 9499.29 12899.63 13199.70 11596.47 26899.89 15398.17 17499.82 15199.50 185
PS-CasMVS99.66 2799.58 4099.89 799.80 5899.85 1699.66 4699.73 8599.62 7699.84 4699.71 10898.62 12799.96 3799.30 6699.96 4599.86 11
DTE-MVSNet99.68 2499.61 3399.88 1199.80 5899.87 1099.67 4299.71 9799.72 4999.84 4699.78 7398.67 12199.97 1999.30 6699.95 5499.80 25
WR-MVS_H99.61 3899.53 5299.87 1499.80 5899.83 2599.67 4299.75 7799.58 8999.85 4399.69 12198.18 18799.94 6199.28 7199.95 5499.83 18
baseline99.63 3399.62 2999.66 9999.80 5899.62 10299.44 8799.80 5199.71 5099.72 9999.69 12199.15 5599.83 24799.32 6399.94 6799.53 167
IS-MVSNet99.03 17698.85 19399.55 15199.80 5899.25 18999.73 2199.15 30899.37 11999.61 14599.71 10894.73 29599.81 27397.70 21799.88 10799.58 142
EPP-MVSNet99.17 14999.00 16699.66 9999.80 5899.43 14799.70 2999.24 29599.48 9799.56 16499.77 8094.89 29299.93 7598.72 13599.89 9999.63 102
ACMM98.09 1199.46 6599.38 7399.72 7999.80 5899.69 8299.13 17499.65 13198.99 17399.64 12799.72 10199.39 2699.86 20198.23 16599.81 15999.60 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dcpmvs_299.61 3899.64 2799.53 15799.79 6898.82 24499.58 6899.97 299.95 399.96 899.76 8398.44 15599.99 599.34 5799.96 4599.78 33
v114499.54 5099.53 5299.59 13499.79 6899.28 18199.10 18199.61 14999.20 14599.84 4699.73 9598.67 12199.84 23699.86 899.98 2499.64 97
V4299.56 4599.54 4899.63 11799.79 6899.46 13699.39 9399.59 16899.24 13899.86 4199.70 11598.55 13799.82 25799.79 1199.95 5499.60 128
test20.0399.55 4899.54 4899.58 13999.79 6899.37 16399.02 19799.89 1699.60 8699.82 5399.62 16898.81 9799.89 15399.43 4399.86 12399.47 200
casdiffmvs99.63 3399.61 3399.67 9299.79 6899.59 11399.13 17499.85 2899.79 4199.76 7899.72 10199.33 3799.82 25799.21 7699.94 6799.59 137
test_040299.22 13199.14 12099.45 18199.79 6899.43 14799.28 12499.68 11199.54 9099.40 21499.56 20599.07 6999.82 25796.01 31499.96 4599.11 285
ACMMPcopyleft99.25 11899.08 14199.74 6399.79 6899.68 8599.50 7799.65 13198.07 26899.52 17899.69 12198.57 13499.92 9597.18 25899.79 16999.63 102
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS99.04 17598.79 20299.81 2699.78 7599.73 6599.35 10399.57 17998.54 22699.54 17198.99 32896.81 26199.93 7596.97 26799.53 26799.77 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v14419299.55 4899.54 4899.58 13999.78 7599.20 20499.11 18099.62 14299.18 14799.89 2799.72 10198.66 12399.87 18199.88 699.97 3399.66 80
AllTest99.21 13699.07 14599.63 11799.78 7599.64 9699.12 17899.83 3698.63 21599.63 13199.72 10198.68 11899.75 29896.38 30199.83 14299.51 179
TestCases99.63 11799.78 7599.64 9699.83 3698.63 21599.63 13199.72 10198.68 11899.75 29896.38 30199.83 14299.51 179
v2v48299.50 5499.47 5699.58 13999.78 7599.25 18999.14 16899.58 17799.25 13699.81 6099.62 16898.24 17799.84 23699.83 999.97 3399.64 97
FMVSNet199.66 2799.63 2899.73 7399.78 7599.77 4599.68 3899.70 10299.67 6499.82 5399.83 4898.98 7899.90 13799.24 7399.97 3399.53 167
Vis-MVSNet (Re-imp)98.77 21498.58 22099.34 21499.78 7598.88 24199.61 5999.56 18499.11 16399.24 24399.56 20593.00 31499.78 28497.43 23899.89 9999.35 237
ACMP97.51 1499.05 17298.84 19599.67 9299.78 7599.55 12298.88 21999.66 12097.11 32099.47 18999.60 18699.07 6999.89 15396.18 30999.85 12799.58 142
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d99.48 5899.47 5699.51 16299.77 8399.41 15498.81 23399.66 12099.42 11699.75 8499.66 14299.20 5099.76 29498.98 10899.99 1299.36 234
Patchmatch-RL test98.60 23398.36 24299.33 21699.77 8399.07 22198.27 28699.87 2198.91 18699.74 9399.72 10190.57 34299.79 28198.55 14499.85 12799.11 285
v119299.57 4299.57 4399.57 14499.77 8399.22 19899.04 19399.60 16199.18 14799.87 4099.72 10199.08 6799.85 21999.89 599.98 2499.66 80
EG-PatchMatch MVS99.57 4299.56 4799.62 12699.77 8399.33 17399.26 12999.76 7099.32 12699.80 6399.78 7399.29 4099.87 18199.15 9099.91 8899.66 80
GeoE99.69 2199.66 2399.78 3799.76 8799.76 5299.60 6499.82 4199.46 10699.75 8499.56 20599.63 1499.95 4799.43 4399.88 10799.62 113
ZNCC-MVS99.22 13199.04 15799.77 4099.76 8799.73 6599.28 12499.56 18498.19 26299.14 26199.29 28298.84 9699.92 9597.53 23399.80 16499.64 97
tttt051797.62 29597.20 30498.90 27999.76 8797.40 31599.48 8194.36 37199.06 17099.70 10799.49 23184.55 36899.94 6198.73 13499.65 23399.36 234
pmmvs599.19 14199.11 13099.42 18999.76 8798.88 24198.55 26199.73 8598.82 19799.72 9999.62 16896.56 26499.82 25799.32 6399.95 5499.56 151
nrg03099.70 1999.66 2399.82 2399.76 8799.84 2199.61 5999.70 10299.93 599.78 7199.68 13299.10 6199.78 28499.45 4199.96 4599.83 18
v14899.40 8099.41 6999.39 20299.76 8798.94 23299.09 18599.59 16899.17 15199.81 6099.61 17798.41 15999.69 31799.32 6399.94 6799.53 167
region2R99.23 12299.05 15199.77 4099.76 8799.70 7899.31 11399.59 16898.41 23799.32 22799.36 26598.73 11599.93 7597.29 24599.74 19299.67 70
MP-MVScopyleft99.06 16998.83 19799.76 4799.76 8799.71 7199.32 10999.50 22198.35 24898.97 27699.48 23498.37 16599.92 9595.95 32099.75 18499.63 102
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMMVS299.48 5899.45 6199.57 14499.76 8798.99 22598.09 30299.90 1598.95 17999.78 7199.58 19499.57 2099.93 7599.48 3899.95 5499.79 31
CP-MVSNet99.54 5099.43 6699.87 1499.76 8799.82 2999.57 7099.61 14999.54 9099.80 6399.64 14997.79 21699.95 4799.21 7699.94 6799.84 14
mPP-MVS99.19 14199.00 16699.76 4799.76 8799.68 8599.38 9599.54 19698.34 25299.01 27499.50 22698.53 14399.93 7597.18 25899.78 17599.66 80
IterMVS-SCA-FT99.00 18499.16 11698.51 30099.75 9895.90 34298.07 30599.84 3499.84 3099.89 2799.73 9596.01 28299.99 599.33 61100.00 199.63 102
ACMMP_NAP99.28 11199.11 13099.79 3499.75 9899.81 3298.95 21499.53 20598.27 25799.53 17699.73 9598.75 11299.87 18197.70 21799.83 14299.68 63
v192192099.56 4599.57 4399.55 15199.75 9899.11 21299.05 19199.61 14999.15 15799.88 3399.71 10899.08 6799.87 18199.90 299.97 3399.66 80
testgi99.29 11099.26 10499.37 20999.75 9898.81 24598.84 22699.89 1698.38 24199.75 8499.04 32199.36 3599.86 20199.08 10099.25 30799.45 206
PGM-MVS99.20 13899.01 16399.77 4099.75 9899.71 7199.16 16499.72 9497.99 27299.42 20199.60 18698.81 9799.93 7596.91 27099.74 19299.66 80
jason99.16 15099.11 13099.32 22099.75 9898.44 26998.26 28799.39 25898.70 21099.74 9399.30 27998.54 13999.97 1998.48 14799.82 15199.55 154
jason: jason.
Anonymous2023120699.35 9499.31 8799.47 17499.74 10499.06 22399.28 12499.74 8299.23 14099.72 9999.53 21797.63 23099.88 16899.11 9899.84 13299.48 195
ACMMPR99.23 12299.06 14799.76 4799.74 10499.69 8299.31 11399.59 16898.36 24399.35 22099.38 25998.61 12999.93 7597.43 23899.75 18499.67 70
IterMVS98.97 18899.16 11698.42 30499.74 10495.64 34598.06 30799.83 3699.83 3399.85 4399.74 9196.10 28199.99 599.27 72100.00 199.63 102
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GST-MVS99.16 15098.96 17799.75 5799.73 10799.73 6599.20 14799.55 19098.22 25999.32 22799.35 27098.65 12599.91 11796.86 27399.74 19299.62 113
HFP-MVS99.25 11899.08 14199.76 4799.73 10799.70 7899.31 11399.59 16898.36 24399.36 21899.37 26098.80 10199.91 11797.43 23899.75 18499.68 63
#test#99.12 15898.90 18899.76 4799.73 10799.70 7899.10 18199.59 16897.60 29399.36 21899.37 26098.80 10199.91 11796.84 27699.75 18499.68 63
114514_t98.49 25098.11 26699.64 11199.73 10799.58 11699.24 13799.76 7089.94 36899.42 20199.56 20597.76 21899.86 20197.74 21199.82 15199.47 200
UA-Net99.78 1399.76 1499.86 1699.72 11199.71 7199.91 399.95 799.96 299.71 10499.91 2199.15 5599.97 1999.50 37100.00 199.90 4
N_pmnet98.73 22198.53 22799.35 21399.72 11198.67 25398.34 27994.65 37098.35 24899.79 6899.68 13298.03 19599.93 7598.28 16199.92 7999.44 211
DeepC-MVS98.90 499.62 3699.61 3399.67 9299.72 11199.44 14399.24 13799.71 9799.27 13299.93 1599.90 2399.70 1199.93 7598.99 10699.99 1299.64 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS99.27 11599.11 13099.75 5799.71 11499.71 7199.37 9999.61 14999.29 12898.76 30399.47 23998.47 15099.88 16897.62 22599.73 19999.67 70
X-MVStestdata96.09 32994.87 33999.75 5799.71 11499.71 7199.37 9999.61 14999.29 12898.76 30361.30 38398.47 15099.88 16897.62 22599.73 19999.67 70
VDDNet98.97 18898.82 19899.42 18999.71 11498.81 24599.62 5498.68 32999.81 3699.38 21699.80 6094.25 29999.85 21998.79 12799.32 29999.59 137
abl_699.36 9299.23 11099.75 5799.71 11499.74 6299.33 10699.76 7099.07 16699.65 12599.63 15999.09 6399.92 9597.13 26199.76 18199.58 142
DSMNet-mixed99.48 5899.65 2598.95 26699.71 11497.27 31899.50 7799.82 4199.59 8899.41 20999.85 4299.62 16100.00 199.53 3299.89 9999.59 137
DROMVSNet99.69 2199.69 1999.68 8999.71 11499.91 299.76 1499.96 599.86 2299.51 18399.39 25799.57 2099.93 7599.64 2099.86 12399.20 266
CSCG99.37 8999.29 9799.60 13199.71 11499.46 13699.43 8999.85 2898.79 20199.41 20999.60 18698.92 8599.92 9598.02 18299.92 7999.43 217
LF4IMVS99.01 18298.92 18499.27 23099.71 11499.28 18198.59 25499.77 6598.32 25499.39 21599.41 24998.62 12799.84 23696.62 29099.84 13298.69 328
patch_mono-299.51 5399.46 6099.64 11199.70 12299.11 21299.04 19399.87 2199.71 5099.47 18999.79 6698.24 17799.98 899.38 5199.96 4599.83 18
test_0728_SECOND99.83 2199.70 12299.79 3999.14 16899.61 14999.92 9597.88 19599.72 20599.77 37
OPM-MVS99.26 11799.13 12399.63 11799.70 12299.61 10898.58 25599.48 22898.50 22999.52 17899.63 15999.14 5899.76 29497.89 19499.77 17999.51 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
new_pmnet98.88 20398.89 18998.84 28399.70 12297.62 30998.15 29499.50 22197.98 27399.62 13999.54 21498.15 18899.94 6197.55 23099.84 13298.95 312
SED-MVS99.40 8099.28 9999.77 4099.69 12699.82 2999.20 14799.54 19699.13 15999.82 5399.63 15998.91 8799.92 9597.85 20199.70 21199.58 142
IU-MVS99.69 12699.77 4599.22 29997.50 30099.69 11097.75 21099.70 21199.77 37
test_241102_ONE99.69 12699.82 2999.54 19699.12 16299.82 5399.49 23198.91 8799.52 361
D2MVS99.22 13199.19 11399.29 22699.69 12698.74 24998.81 23399.41 24898.55 22399.68 11299.69 12198.13 18999.87 18198.82 12599.98 2499.24 255
DVP-MVScopyleft99.32 10599.17 11599.77 4099.69 12699.80 3799.14 16899.31 27899.16 15399.62 13999.61 17798.35 16799.91 11797.88 19599.72 20599.61 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 12699.80 3799.24 13799.57 17999.16 15399.73 9799.65 14798.35 167
bset_n11_16_dypcd98.69 22598.45 23299.42 18999.69 12698.52 26496.06 36796.80 36299.71 5099.73 9799.54 21495.14 29099.96 3799.39 5099.95 5499.79 31
wuyk23d97.58 29799.13 12392.93 35799.69 12699.49 12999.52 7599.77 6597.97 27499.96 899.79 6699.84 399.94 6195.85 32299.82 15179.36 373
DeepMVS_CXcopyleft97.98 31899.69 12696.95 32599.26 28975.51 37395.74 37198.28 36696.47 26899.62 34891.23 36397.89 35997.38 365
thisisatest053097.45 30096.95 31198.94 26799.68 13597.73 30699.09 18594.19 37398.61 21899.56 16499.30 27984.30 36999.93 7598.27 16299.54 26599.16 275
VPA-MVSNet99.66 2799.62 2999.79 3499.68 13599.75 5699.62 5499.69 10899.85 2799.80 6399.81 5898.81 9799.91 11799.47 3999.88 10799.70 53
UnsupCasMVSNet_eth98.83 20898.57 22199.59 13499.68 13599.45 14198.99 20699.67 11699.48 9799.55 16999.36 26594.92 29199.86 20198.95 11696.57 36899.45 206
Test_1112_low_res98.95 19498.73 20499.63 11799.68 13599.15 20998.09 30299.80 5197.14 31899.46 19399.40 25396.11 28099.89 15399.01 10599.84 13299.84 14
MVEpermissive92.54 2296.66 31996.11 32398.31 31199.68 13597.55 31197.94 32195.60 36899.37 11990.68 37698.70 35396.56 26498.61 37486.94 37499.55 25998.77 326
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
diffmvs99.34 9999.32 8699.39 20299.67 14098.77 24898.57 25999.81 5099.61 8099.48 18799.41 24998.47 15099.86 20198.97 11099.90 8999.53 167
our_test_398.85 20799.09 13998.13 31699.66 14194.90 35297.72 33199.58 17799.07 16699.64 12799.62 16898.19 18599.93 7598.41 15099.95 5499.55 154
ppachtmachnet_test98.89 20299.12 12798.20 31499.66 14195.24 34997.63 33599.68 11199.08 16499.78 7199.62 16898.65 12599.88 16898.02 18299.96 4599.48 195
CP-MVS99.23 12299.05 15199.75 5799.66 14199.66 8999.38 9599.62 14298.38 24199.06 27299.27 28698.79 10499.94 6197.51 23499.82 15199.66 80
1112_ss99.05 17298.84 19599.67 9299.66 14199.29 17998.52 26699.82 4197.65 29199.43 19999.16 30596.42 27099.91 11799.07 10199.84 13299.80 25
YYNet198.95 19498.99 17198.84 28399.64 14597.14 32298.22 29099.32 27498.92 18599.59 15099.66 14297.40 23799.83 24798.27 16299.90 8999.55 154
MDA-MVSNet_test_wron98.95 19498.99 17198.85 28199.64 14597.16 32198.23 28999.33 27298.93 18399.56 16499.66 14297.39 23999.83 24798.29 16099.88 10799.55 154
test_one_060199.63 14799.76 5299.55 19099.23 14099.31 23199.61 17798.59 131
thres100view90096.39 32396.03 32597.47 33299.63 14795.93 34199.18 15397.57 35598.75 20898.70 30897.31 37887.04 35799.67 33387.62 37098.51 34496.81 368
thres600view796.60 32096.16 32297.93 32099.63 14796.09 34099.18 15397.57 35598.77 20498.72 30697.32 37787.04 35799.72 30588.57 36798.62 34097.98 359
ITE_SJBPF99.38 20699.63 14799.44 14399.73 8598.56 22199.33 22599.53 21798.88 9299.68 32896.01 31499.65 23399.02 306
test_part299.62 15199.67 8799.55 169
Anonymous2023121199.62 3699.57 4399.76 4799.61 15299.60 11099.81 999.73 8599.82 3599.90 2399.90 2397.97 20299.86 20199.42 4899.96 4599.80 25
CPTT-MVS98.74 21998.44 23499.64 11199.61 15299.38 16099.18 15399.55 19096.49 33199.27 23899.37 26097.11 25399.92 9595.74 32799.67 22699.62 113
test111197.74 28998.16 26396.49 35099.60 15489.86 37999.71 2891.21 37699.89 1499.88 3399.87 3393.73 30699.90 13799.56 2899.99 1299.70 53
h-mvs3398.61 23198.34 24599.44 18399.60 15498.67 25399.27 12799.44 24199.68 6099.32 22799.49 23192.50 319100.00 199.24 7396.51 36999.65 88
MSDG99.08 16798.98 17499.37 20999.60 15499.13 21097.54 33999.74 8298.84 19699.53 17699.55 21299.10 6199.79 28197.07 26499.86 12399.18 271
FPMVS96.32 32595.50 33398.79 28999.60 15498.17 28598.46 27598.80 32597.16 31796.28 36699.63 15982.19 37099.09 37088.45 36898.89 32799.10 287
test250694.73 34094.59 34295.15 35699.59 15885.90 38199.75 1674.01 38299.89 1499.71 10499.86 3979.00 38099.90 13799.52 3499.99 1299.65 88
ECVR-MVScopyleft97.73 29098.04 26996.78 34399.59 15890.81 37599.72 2490.43 37899.89 1499.86 4199.86 3993.60 30899.89 15399.46 4099.99 1299.65 88
xiu_mvs_v1_base_debu99.23 12299.34 8198.91 27399.59 15898.23 28098.47 27099.66 12099.61 8099.68 11298.94 33899.39 2699.97 1999.18 8399.55 25998.51 338
xiu_mvs_v1_base99.23 12299.34 8198.91 27399.59 15898.23 28098.47 27099.66 12099.61 8099.68 11298.94 33899.39 2699.97 1999.18 8399.55 25998.51 338
xiu_mvs_v1_base_debi99.23 12299.34 8198.91 27399.59 15898.23 28098.47 27099.66 12099.61 8099.68 11298.94 33899.39 2699.97 1999.18 8399.55 25998.51 338
SF-MVS99.10 16698.93 18099.62 12699.58 16399.51 12799.13 17499.65 13197.97 27499.42 20199.61 17798.86 9399.87 18196.45 29899.68 21999.49 190
tfpn200view996.30 32695.89 32697.53 33099.58 16396.11 33899.00 20197.54 35898.43 23498.52 32096.98 38086.85 35999.67 33387.62 37098.51 34496.81 368
EI-MVSNet99.38 8699.44 6399.21 24099.58 16398.09 29199.26 12999.46 23699.62 7699.75 8499.67 13898.54 13999.85 21999.15 9099.92 7999.68 63
CVMVSNet98.61 23198.88 19097.80 32499.58 16393.60 35999.26 12999.64 13799.66 6899.72 9999.67 13893.26 31099.93 7599.30 6699.81 15999.87 9
thres40096.40 32295.89 32697.92 32199.58 16396.11 33899.00 20197.54 35898.43 23498.52 32096.98 38086.85 35999.67 33387.62 37098.51 34497.98 359
MCST-MVS99.02 17898.81 19999.65 10499.58 16399.49 12998.58 25599.07 31298.40 23999.04 27399.25 29198.51 14899.80 27897.31 24499.51 27099.65 88
HQP_MVS98.90 19998.68 21199.55 15199.58 16399.24 19498.80 23699.54 19698.94 18099.14 26199.25 29197.24 24599.82 25795.84 32399.78 17599.60 128
plane_prior799.58 16399.38 160
TranMVSNet+NR-MVSNet99.54 5099.47 5699.76 4799.58 16399.64 9699.30 11699.63 13999.61 8099.71 10499.56 20598.76 11099.96 3799.14 9699.92 7999.68 63
MVS_111021_LR99.13 15699.03 15999.42 18999.58 16399.32 17597.91 32599.73 8598.68 21199.31 23199.48 23499.09 6399.66 33797.70 21799.77 17999.29 249
DPE-MVScopyleft99.14 15498.92 18499.82 2399.57 17399.77 4598.74 24499.60 16198.55 22399.76 7899.69 12198.23 18199.92 9596.39 30099.75 18499.76 41
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
EI-MVSNet-UG-set99.48 5899.50 5499.42 18999.57 17398.65 25899.24 13799.46 23699.68 6099.80 6399.66 14298.99 7799.89 15399.19 8199.90 8999.72 47
EI-MVSNet-Vis-set99.47 6499.49 5599.42 18999.57 17398.66 25599.24 13799.46 23699.67 6499.79 6899.65 14798.97 8099.89 15399.15 9099.89 9999.71 50
pmmvs499.13 15699.06 14799.36 21299.57 17399.10 21798.01 31099.25 29298.78 20399.58 15499.44 24698.24 17799.76 29498.74 13399.93 7599.22 260
MVSFormer99.41 7799.44 6399.31 22399.57 17398.40 27299.77 1299.80 5199.73 4699.63 13199.30 27998.02 19799.98 899.43 4399.69 21499.55 154
lupinMVS98.96 19198.87 19199.24 23799.57 17398.40 27298.12 29899.18 30598.28 25699.63 13199.13 30798.02 19799.97 1998.22 16699.69 21499.35 237
ab-mvs99.33 10399.28 9999.47 17499.57 17399.39 15799.78 1199.43 24598.87 19199.57 15799.82 5598.06 19499.87 18198.69 13899.73 19999.15 277
DP-MVS99.48 5899.39 7199.74 6399.57 17399.62 10299.29 12399.61 14999.87 2099.74 9399.76 8398.69 11799.87 18198.20 16899.80 16499.75 44
F-COLMAP98.74 21998.45 23299.62 12699.57 17399.47 13298.84 22699.65 13196.31 33598.93 28099.19 30497.68 22399.87 18196.52 29399.37 29399.53 167
CLD-MVS98.76 21698.57 22199.33 21699.57 17398.97 22897.53 34199.55 19096.41 33299.27 23899.13 30799.07 6999.78 28496.73 28299.89 9999.23 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld98.55 24298.27 25199.40 19999.56 18399.37 16397.97 31899.68 11197.49 30199.08 26899.35 27095.41 28999.82 25797.70 21798.19 35299.01 307
CS-MVS-test99.59 4099.59 3699.60 13199.55 18499.86 1399.60 6499.94 899.90 899.59 15098.89 34399.24 4799.95 4799.66 1699.90 8998.98 309
APDe-MVS99.48 5899.36 7999.85 1899.55 18499.81 3299.50 7799.69 10898.99 17399.75 8499.71 10898.79 10499.93 7598.46 14899.85 12799.80 25
SR-MVS-dyc-post99.27 11599.11 13099.73 7399.54 18699.74 6299.26 12999.62 14299.16 15399.52 17899.64 14998.41 15999.91 11797.27 24899.61 24599.54 162
RE-MVS-def99.13 12399.54 18699.74 6299.26 12999.62 14299.16 15399.52 17899.64 14998.57 13497.27 24899.61 24599.54 162
CS-MVS99.67 2699.70 1799.59 13499.54 18699.86 1399.80 1099.96 599.90 899.59 15099.41 24999.51 2399.95 4799.65 1799.90 8998.97 310
PVSNet_BlendedMVS99.03 17699.01 16399.09 25499.54 18697.99 29598.58 25599.82 4197.62 29299.34 22399.71 10898.52 14699.77 29297.98 18799.97 3399.52 177
PVSNet_Blended98.70 22498.59 21799.02 26299.54 18697.99 29597.58 33899.82 4195.70 34499.34 22398.98 33198.52 14699.77 29297.98 18799.83 14299.30 246
USDC98.96 19198.93 18099.05 26099.54 18697.99 29597.07 35999.80 5198.21 26099.75 8499.77 8098.43 15699.64 34697.90 19399.88 10799.51 179
xxxxxxxxxxxxxcwj99.11 16298.96 17799.54 15599.53 19299.25 18998.29 28499.76 7099.07 16699.42 20199.61 17798.86 9399.87 18196.45 29899.68 21999.49 190
save fliter99.53 19299.25 18998.29 28499.38 26499.07 166
Anonymous2024052999.42 7399.34 8199.65 10499.53 19299.60 11099.63 5399.39 25899.47 10299.76 7899.78 7398.13 18999.86 20198.70 13699.68 21999.49 190
APD-MVS_3200maxsize99.31 10799.16 11699.74 6399.53 19299.75 5699.27 12799.61 14999.19 14699.57 15799.64 14998.76 11099.90 13797.29 24599.62 23899.56 151
MIMVSNet98.43 25598.20 25799.11 25299.53 19298.38 27599.58 6898.61 33398.96 17899.33 22599.76 8390.92 33599.81 27397.38 24199.76 18199.15 277
test117299.23 12299.05 15199.74 6399.52 19799.75 5699.20 14799.61 14998.97 17599.48 18799.58 19498.41 15999.91 11797.15 26099.55 25999.57 148
Regformer-399.41 7799.41 6999.40 19999.52 19798.70 25199.17 15899.44 24199.62 7699.75 8499.60 18698.90 9099.85 21998.89 12099.84 13299.65 88
Regformer-499.45 6799.44 6399.50 16599.52 19798.94 23299.17 15899.53 20599.64 7299.76 7899.60 18698.96 8399.90 13798.91 11999.84 13299.67 70
HPM-MVS++copyleft98.96 19198.70 20999.74 6399.52 19799.71 7198.86 22399.19 30498.47 23398.59 31599.06 31798.08 19399.91 11796.94 26899.60 24899.60 128
GA-MVS97.99 28397.68 29398.93 27099.52 19798.04 29497.19 35599.05 31598.32 25498.81 29698.97 33489.89 34999.41 36798.33 15799.05 31699.34 239
SR-MVS99.19 14199.00 16699.74 6399.51 20299.72 6999.18 15399.60 16198.85 19399.47 18999.58 19498.38 16499.92 9596.92 26999.54 26599.57 148
test22299.51 20299.08 22097.83 32899.29 28395.21 35098.68 30999.31 27797.28 24499.38 28999.43 217
testdata99.42 18999.51 20298.93 23699.30 28196.20 33698.87 29099.40 25398.33 17199.89 15396.29 30499.28 30399.44 211
plane_prior199.51 202
UniMVSNet (Re)99.37 8999.26 10499.68 8999.51 20299.58 11698.98 21099.60 16199.43 11499.70 10799.36 26597.70 21999.88 16899.20 7999.87 11699.59 137
DELS-MVS99.34 9999.30 9299.48 17299.51 20299.36 16698.12 29899.53 20599.36 12199.41 20999.61 17799.22 4999.87 18199.21 7699.68 21999.20 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
新几何199.52 15999.50 20899.22 19899.26 28995.66 34598.60 31499.28 28497.67 22499.89 15395.95 32099.32 29999.45 206
SD-MVS99.01 18299.30 9298.15 31599.50 20899.40 15598.94 21699.61 14999.22 14499.75 8499.82 5599.54 2295.51 37797.48 23599.87 11699.54 162
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.56 23998.20 25799.61 12999.50 20899.46 13698.32 28299.41 24895.22 34999.21 25099.10 31498.34 16999.82 25795.09 34099.66 23099.56 151
APD-MVScopyleft98.87 20598.59 21799.71 8399.50 20899.62 10299.01 19999.57 17996.80 32899.54 17199.63 15998.29 17399.91 11795.24 33799.71 20999.61 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR99.12 15899.02 16099.40 19999.50 20899.11 21297.92 32399.71 9798.76 20799.08 26899.47 23999.17 5399.54 35797.85 20199.76 18199.54 162
旧先验199.49 21399.29 17999.26 28999.39 25797.67 22499.36 29499.46 204
112198.56 23998.24 25399.52 15999.49 21399.24 19499.30 11699.22 29995.77 34298.52 32099.29 28297.39 23999.85 21995.79 32599.34 29699.46 204
GBi-Net99.42 7399.31 8799.73 7399.49 21399.77 4599.68 3899.70 10299.44 10999.62 13999.83 4897.21 24799.90 13798.96 11299.90 8999.53 167
test199.42 7399.31 8799.73 7399.49 21399.77 4599.68 3899.70 10299.44 10999.62 13999.83 4897.21 24799.90 13798.96 11299.90 8999.53 167
FMVSNet299.35 9499.28 9999.55 15199.49 21399.35 17099.45 8499.57 17999.44 10999.70 10799.74 9197.21 24799.87 18199.03 10399.94 6799.44 211
DP-MVS Recon98.50 24798.23 25499.31 22399.49 21399.46 13698.56 26099.63 13994.86 35598.85 29299.37 26097.81 21499.59 35496.08 31199.44 28098.88 318
MVP-Stereo99.16 15099.08 14199.43 18799.48 21999.07 22199.08 18899.55 19098.63 21599.31 23199.68 13298.19 18599.78 28498.18 17299.58 25399.45 206
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20096.09 32995.68 33297.33 33799.48 21996.22 33798.53 26597.57 35598.06 26998.37 32796.73 38286.84 36199.61 35286.99 37398.57 34196.16 371
sss98.90 19998.77 20399.27 23099.48 21998.44 26998.72 24799.32 27497.94 27899.37 21799.35 27096.31 27599.91 11798.85 12299.63 23799.47 200
PAPM_NR98.36 26198.04 26999.33 21699.48 21998.93 23698.79 23999.28 28697.54 29798.56 31898.57 35797.12 25299.69 31794.09 35298.90 32699.38 228
TAMVS99.49 5699.45 6199.63 11799.48 21999.42 15099.45 8499.57 17999.66 6899.78 7199.83 4897.85 21299.86 20199.44 4299.96 4599.61 124
ETH3D-3000-0.198.77 21498.50 22999.59 13499.47 22499.53 12498.77 24199.60 16197.33 30999.23 24499.50 22697.91 20599.83 24795.02 34199.67 22699.41 221
原ACMM199.37 20999.47 22498.87 24399.27 28796.74 32998.26 33099.32 27597.93 20499.82 25795.96 31999.38 28999.43 217
plane_prior699.47 22499.26 18597.24 245
UniMVSNet_NR-MVSNet99.37 8999.25 10699.72 7999.47 22499.56 11998.97 21299.61 14999.43 11499.67 11799.28 28497.85 21299.95 4799.17 8699.81 15999.65 88
TAPA-MVS97.92 1398.03 28097.55 29699.46 17799.47 22499.44 14398.50 26899.62 14286.79 36999.07 27199.26 28998.26 17699.62 34897.28 24799.73 19999.31 245
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SMA-MVScopyleft99.19 14199.00 16699.73 7399.46 22999.73 6599.13 17499.52 21397.40 30599.57 15799.64 14998.93 8499.83 24797.61 22799.79 16999.63 102
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PVSNet97.47 1598.42 25698.44 23498.35 30799.46 22996.26 33696.70 36499.34 27197.68 29099.00 27599.13 30797.40 23799.72 30597.59 22999.68 21999.08 293
TinyColmap98.97 18898.93 18099.07 25899.46 22998.19 28397.75 33099.75 7798.79 20199.54 17199.70 11598.97 8099.62 34896.63 28999.83 14299.41 221
9.1498.64 21299.45 23298.81 23399.60 16197.52 29999.28 23799.56 20598.53 14399.83 24795.36 33699.64 235
testtj98.56 23998.17 26299.72 7999.45 23299.60 11098.88 21999.50 22196.88 32399.18 25699.48 23497.08 25499.92 9593.69 35799.38 28999.63 102
PatchMatch-RL98.68 22698.47 23099.30 22599.44 23499.28 18198.14 29699.54 19697.12 31999.11 26599.25 29197.80 21599.70 31196.51 29499.30 30198.93 314
PCF-MVS96.03 1896.73 31795.86 32899.33 21699.44 23499.16 20796.87 36299.44 24186.58 37098.95 27899.40 25394.38 29899.88 16887.93 36999.80 16498.95 312
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ZD-MVS99.43 23699.61 10899.43 24596.38 33399.11 26599.07 31697.86 21099.92 9594.04 35399.49 274
VDD-MVS99.20 13899.11 13099.44 18399.43 23698.98 22699.50 7798.32 34599.80 3999.56 16499.69 12196.99 25799.85 21998.99 10699.73 19999.50 185
DU-MVS99.33 10399.21 11199.71 8399.43 23699.56 11998.83 22899.53 20599.38 11899.67 11799.36 26597.67 22499.95 4799.17 8699.81 15999.63 102
NR-MVSNet99.40 8099.31 8799.68 8999.43 23699.55 12299.73 2199.50 22199.46 10699.88 3399.36 26597.54 23299.87 18198.97 11099.87 11699.63 102
WTY-MVS98.59 23698.37 24199.26 23299.43 23698.40 27298.74 24499.13 31198.10 26599.21 25099.24 29694.82 29399.90 13797.86 19998.77 33199.49 190
thisisatest051596.98 31196.42 31898.66 29699.42 24197.47 31297.27 35294.30 37297.24 31299.15 25998.86 34685.01 36699.87 18197.10 26299.39 28898.63 329
Regformer-199.32 10599.27 10299.47 17499.41 24298.95 23198.99 20699.48 22899.48 9799.66 12199.52 21998.78 10699.87 18198.36 15399.74 19299.60 128
Regformer-299.34 9999.27 10299.53 15799.41 24299.10 21798.99 20699.53 20599.47 10299.66 12199.52 21998.80 10199.89 15398.31 15999.74 19299.60 128
pmmvs398.08 27897.80 28798.91 27399.41 24297.69 30897.87 32699.66 12095.87 34099.50 18599.51 22390.35 34499.97 1998.55 14499.47 27799.08 293
test_part198.63 22998.26 25299.75 5799.40 24599.49 12999.67 4299.68 11199.86 2299.88 3399.86 3986.73 36299.93 7599.34 5799.97 3399.81 24
NP-MVS99.40 24599.13 21098.83 347
QAPM98.40 25997.99 27299.65 10499.39 24799.47 13299.67 4299.52 21391.70 36598.78 30199.80 6098.55 13799.95 4794.71 34599.75 18499.53 167
OMC-MVS98.90 19998.72 20599.44 18399.39 24799.42 15098.58 25599.64 13797.31 31099.44 19599.62 16898.59 13199.69 31796.17 31099.79 16999.22 260
3Dnovator99.15 299.43 7099.36 7999.65 10499.39 24799.42 15099.70 2999.56 18499.23 14099.35 22099.80 6099.17 5399.95 4798.21 16799.84 13299.59 137
ETH3 D test640097.76 28897.19 30599.50 16599.38 25099.26 18598.34 27999.49 22692.99 36298.54 31999.20 30295.92 28499.82 25791.14 36499.66 23099.40 223
Fast-Effi-MVS+99.02 17898.87 19199.46 17799.38 25099.50 12899.04 19399.79 5797.17 31698.62 31298.74 35299.34 3699.95 4798.32 15899.41 28698.92 315
BH-untuned98.22 27398.09 26798.58 29999.38 25097.24 31998.55 26198.98 31997.81 28699.20 25598.76 35197.01 25699.65 34494.83 34298.33 34798.86 320
xiu_mvs_v2_base99.02 17899.11 13098.77 29099.37 25398.09 29198.13 29799.51 21799.47 10299.42 20198.54 36099.38 3099.97 1998.83 12399.33 29898.24 350
PS-MVSNAJ99.00 18499.08 14198.76 29199.37 25398.10 29098.00 31299.51 21799.47 10299.41 20998.50 36299.28 4299.97 1998.83 12399.34 29698.20 354
EIA-MVS99.12 15899.01 16399.45 18199.36 25599.62 10299.34 10499.79 5798.41 23798.84 29398.89 34398.75 11299.84 23698.15 17699.51 27098.89 317
DPM-MVS98.28 26797.94 28099.32 22099.36 25599.11 21297.31 35198.78 32696.88 32398.84 29399.11 31397.77 21799.61 35294.03 35499.36 29499.23 258
ambc99.20 24299.35 25798.53 26299.17 15899.46 23699.67 11799.80 6098.46 15399.70 31197.92 19299.70 21199.38 228
TEST999.35 25799.35 17098.11 30099.41 24894.83 35797.92 34698.99 32898.02 19799.85 219
train_agg98.35 26497.95 27699.57 14499.35 25799.35 17098.11 30099.41 24894.90 35397.92 34698.99 32898.02 19799.85 21995.38 33599.44 28099.50 185
agg_prior198.33 26697.92 28299.57 14499.35 25799.36 16697.99 31499.39 25894.85 35697.76 35598.98 33198.03 19599.85 21995.49 33199.44 28099.51 179
agg_prior99.35 25799.36 16699.39 25897.76 35599.85 219
test_prior398.62 23098.34 24599.46 17799.35 25799.22 19897.95 31999.39 25897.87 28198.05 34199.05 31897.90 20699.69 31795.99 31699.49 27499.48 195
test_prior99.46 17799.35 25799.22 19899.39 25899.69 31799.48 195
MVS_Test99.28 11199.31 8799.19 24399.35 25798.79 24799.36 10299.49 22699.17 15199.21 25099.67 13898.78 10699.66 33799.09 9999.66 23099.10 287
CDS-MVSNet99.22 13199.13 12399.50 16599.35 25799.11 21298.96 21399.54 19699.46 10699.61 14599.70 11596.31 27599.83 24799.34 5799.88 10799.55 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator+98.92 399.35 9499.24 10899.67 9299.35 25799.47 13299.62 5499.50 22199.44 10999.12 26499.78 7398.77 10999.94 6197.87 19899.72 20599.62 113
ETV-MVS99.18 14599.18 11499.16 24699.34 26799.28 18199.12 17899.79 5799.48 9798.93 28098.55 35999.40 2599.93 7598.51 14699.52 26998.28 348
Anonymous20240521198.75 21798.46 23199.63 11799.34 26799.66 8999.47 8397.65 35499.28 13199.56 16499.50 22693.15 31199.84 23698.62 14199.58 25399.40 223
CHOSEN 280x42098.41 25798.41 23798.40 30599.34 26795.89 34396.94 36199.44 24198.80 20099.25 24099.52 21993.51 30999.98 898.94 11799.98 2499.32 243
test_899.34 26799.31 17698.08 30499.40 25594.90 35397.87 35098.97 33498.02 19799.84 236
TSAR-MVS + GP.99.12 15899.04 15799.38 20699.34 26799.16 20798.15 29499.29 28398.18 26399.63 13199.62 16899.18 5299.68 32898.20 16899.74 19299.30 246
LCM-MVSNet-Re99.28 11199.15 11999.67 9299.33 27299.76 5299.34 10499.97 298.93 18399.91 2199.79 6698.68 11899.93 7596.80 27899.56 25599.30 246
PLCcopyleft97.35 1698.36 26197.99 27299.48 17299.32 27399.24 19498.50 26899.51 21795.19 35198.58 31698.96 33696.95 25899.83 24795.63 32899.25 30799.37 231
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+99.06 16998.97 17599.34 21499.31 27498.98 22698.31 28399.91 1298.81 19898.79 29998.94 33899.14 5899.84 23698.79 12798.74 33599.20 266
HQP-NCC99.31 27497.98 31597.45 30298.15 335
ACMP_Plane99.31 27497.98 31597.45 30298.15 335
HQP-MVS98.36 26198.02 27199.39 20299.31 27498.94 23297.98 31599.37 26597.45 30298.15 33598.83 34796.67 26299.70 31194.73 34399.67 22699.53 167
baseline197.73 29097.33 29998.96 26599.30 27897.73 30699.40 9198.42 34199.33 12599.46 19399.21 30091.18 33199.82 25798.35 15591.26 37499.32 243
WR-MVS99.11 16298.93 18099.66 9999.30 27899.42 15098.42 27699.37 26599.04 17199.57 15799.20 30296.89 25999.86 20198.66 14099.87 11699.70 53
hse-mvs298.52 24598.30 24999.16 24699.29 28098.60 26098.77 24199.02 31699.68 6099.32 22799.04 32192.50 31999.85 21999.24 7397.87 36099.03 302
test1299.54 15599.29 28099.33 17399.16 30798.43 32597.54 23299.82 25799.47 27799.48 195
OpenMVS_ROBcopyleft97.31 1797.36 30496.84 31598.89 28099.29 28099.45 14198.87 22299.48 22886.54 37199.44 19599.74 9197.34 24299.86 20191.61 36199.28 30397.37 366
MVS-HIRNet97.86 28498.22 25596.76 34499.28 28391.53 37198.38 27892.60 37599.13 15999.31 23199.96 1297.18 25199.68 32898.34 15699.83 14299.07 298
DeepC-MVS_fast98.47 599.23 12299.12 12799.56 14899.28 28399.22 19898.99 20699.40 25599.08 16499.58 15499.64 14998.90 9099.83 24797.44 23799.75 18499.63 102
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS97.82 28597.38 29899.14 24999.27 28598.53 26298.72 24799.02 31698.10 26597.18 36399.03 32589.26 35199.85 21997.94 19197.91 35899.03 302
Patchmatch-test98.10 27797.98 27498.48 30299.27 28596.48 33399.40 9199.07 31298.81 19899.23 24499.57 20290.11 34699.87 18196.69 28399.64 23599.09 290
ET-MVSNet_ETH3D96.78 31596.07 32498.91 27399.26 28797.92 30197.70 33396.05 36697.96 27792.37 37598.43 36387.06 35699.90 13798.27 16297.56 36398.91 316
Fast-Effi-MVS+-dtu99.20 13899.12 12799.43 18799.25 28899.69 8299.05 19199.82 4199.50 9598.97 27699.05 31898.98 7899.98 898.20 16899.24 30998.62 330
CNVR-MVS98.99 18798.80 20199.56 14899.25 28899.43 14798.54 26499.27 28798.58 22098.80 29899.43 24798.53 14399.70 31197.22 25599.59 25299.54 162
LFMVS98.46 25398.19 26099.26 23299.24 29098.52 26499.62 5496.94 36199.87 2099.31 23199.58 19491.04 33399.81 27398.68 13999.42 28599.45 206
VNet99.18 14599.06 14799.56 14899.24 29099.36 16699.33 10699.31 27899.67 6499.47 18999.57 20296.48 26799.84 23699.15 9099.30 30199.47 200
CL-MVSNet_self_test98.71 22398.56 22499.15 24899.22 29298.66 25597.14 35699.51 21798.09 26799.54 17199.27 28696.87 26099.74 30098.43 14998.96 32199.03 302
DeepPCF-MVS98.42 699.18 14599.02 16099.67 9299.22 29299.75 5697.25 35399.47 23298.72 20999.66 12199.70 11599.29 4099.63 34798.07 18199.81 15999.62 113
MSLP-MVS++99.05 17299.09 13998.91 27399.21 29498.36 27698.82 23299.47 23298.85 19398.90 28699.56 20598.78 10699.09 37098.57 14399.68 21999.26 252
NCCC98.82 21098.57 22199.58 13999.21 29499.31 17698.61 25199.25 29298.65 21398.43 32599.26 28997.86 21099.81 27396.55 29199.27 30699.61 124
BH-RMVSNet98.41 25798.14 26599.21 24099.21 29498.47 26698.60 25398.26 34698.35 24898.93 28099.31 27797.20 25099.66 33794.32 34899.10 31499.51 179
miper_lstm_enhance98.65 22898.60 21598.82 28899.20 29797.33 31797.78 32999.66 12099.01 17299.59 15099.50 22694.62 29699.85 21998.12 17799.90 8999.26 252
SCA98.11 27698.36 24297.36 33599.20 29792.99 36298.17 29398.49 33998.24 25899.10 26799.57 20296.01 28299.94 6196.86 27399.62 23899.14 281
mvs_anonymous99.28 11199.39 7198.94 26799.19 29997.81 30399.02 19799.55 19099.78 4299.85 4399.80 6098.24 17799.86 20199.57 2799.50 27299.15 277
OpenMVScopyleft98.12 1098.23 27297.89 28699.26 23299.19 29999.26 18599.65 5199.69 10891.33 36698.14 33999.77 8098.28 17499.96 3795.41 33499.55 25998.58 334
CNLPA98.57 23898.34 24599.28 22899.18 30199.10 21798.34 27999.41 24898.48 23298.52 32098.98 33197.05 25599.78 28495.59 32999.50 27298.96 311
test_yl98.25 26997.95 27699.13 25099.17 30298.47 26699.00 20198.67 33198.97 17599.22 24899.02 32691.31 32999.69 31797.26 25098.93 32299.24 255
DCV-MVSNet98.25 26997.95 27699.13 25099.17 30298.47 26699.00 20198.67 33198.97 17599.22 24899.02 32691.31 32999.69 31797.26 25098.93 32299.24 255
MG-MVS98.52 24598.39 23998.94 26799.15 30497.39 31698.18 29199.21 30398.89 19099.23 24499.63 15997.37 24199.74 30094.22 35099.61 24599.69 57
ADS-MVSNet297.78 28797.66 29598.12 31799.14 30595.36 34799.22 14498.75 32796.97 32198.25 33199.64 14990.90 33699.94 6196.51 29499.56 25599.08 293
ADS-MVSNet97.72 29397.67 29497.86 32299.14 30594.65 35399.22 14498.86 32196.97 32198.25 33199.64 14990.90 33699.84 23696.51 29499.56 25599.08 293
FMVSNet398.80 21298.63 21499.32 22099.13 30798.72 25099.10 18199.48 22899.23 14099.62 13999.64 14992.57 31699.86 20198.96 11299.90 8999.39 226
PHI-MVS99.11 16298.95 17999.59 13499.13 30799.59 11399.17 15899.65 13197.88 28099.25 24099.46 24298.97 8099.80 27897.26 25099.82 15199.37 231
OPU-MVS99.29 22699.12 30999.44 14399.20 14799.40 25399.00 7598.84 37296.54 29299.60 24899.58 142
c3_l98.72 22298.71 20698.72 29399.12 30997.22 32097.68 33499.56 18498.90 18799.54 17199.48 23496.37 27499.73 30397.88 19599.88 10799.21 262
alignmvs98.28 26797.96 27599.25 23599.12 30998.93 23699.03 19698.42 34199.64 7298.72 30697.85 37190.86 33899.62 34898.88 12199.13 31299.19 269
PAPM95.61 33894.71 34098.31 31199.12 30996.63 33196.66 36598.46 34090.77 36796.25 36798.68 35493.01 31399.69 31781.60 37597.86 36198.62 330
AdaColmapbinary98.60 23398.35 24499.38 20699.12 30999.22 19898.67 25099.42 24797.84 28598.81 29699.27 28697.32 24399.81 27395.14 33899.53 26799.10 287
MS-PatchMatch99.00 18498.97 17599.09 25499.11 31498.19 28398.76 24399.33 27298.49 23199.44 19599.58 19498.21 18299.69 31798.20 16899.62 23899.39 226
eth_miper_zixun_eth98.68 22698.71 20698.60 29799.10 31596.84 32997.52 34399.54 19698.94 18099.58 15499.48 23496.25 27799.76 29498.01 18599.93 7599.21 262
canonicalmvs99.02 17899.00 16699.09 25499.10 31598.70 25199.61 5999.66 12099.63 7598.64 31197.65 37399.04 7399.54 35798.79 12798.92 32499.04 301
baseline296.83 31496.28 32098.46 30399.09 31796.91 32798.83 22893.87 37497.23 31396.23 36998.36 36488.12 35399.90 13796.68 28498.14 35498.57 335
BH-w/o97.20 30697.01 30997.76 32599.08 31895.69 34498.03 30998.52 33695.76 34397.96 34598.02 36995.62 28799.47 36492.82 35997.25 36598.12 356
MVSTER98.47 25298.22 25599.24 23799.06 31998.35 27799.08 18899.46 23699.27 13299.75 8499.66 14288.61 35299.85 21999.14 9699.92 7999.52 177
CR-MVSNet98.35 26498.20 25798.83 28599.05 32098.12 28799.30 11699.67 11697.39 30699.16 25799.79 6691.87 32599.91 11798.78 13098.77 33198.44 343
RPMNet98.60 23398.53 22798.83 28599.05 32098.12 28799.30 11699.62 14299.86 2299.16 25799.74 9192.53 31899.92 9598.75 13298.77 33198.44 343
ETH3D cwj APD-0.1698.50 24798.16 26399.51 16299.04 32299.39 15798.47 27099.47 23296.70 33098.78 30199.33 27497.62 23199.86 20194.69 34699.38 28999.28 251
DVP-MVS++99.38 8699.25 10699.77 4099.03 32399.77 4599.74 1899.61 14999.18 14799.76 7899.61 17799.00 7599.92 9597.72 21299.60 24899.62 113
MSC_two_6792asdad99.74 6399.03 32399.53 12499.23 29699.92 9597.77 20699.69 21499.78 33
No_MVS99.74 6399.03 32399.53 12499.23 29699.92 9597.77 20699.69 21499.78 33
cl____98.54 24398.41 23798.92 27199.03 32397.80 30497.46 34599.59 16898.90 18799.60 14799.46 24293.85 30399.78 28497.97 18999.89 9999.17 273
DIV-MVS_self_test98.54 24398.42 23698.92 27199.03 32397.80 30497.46 34599.59 16898.90 18799.60 14799.46 24293.87 30299.78 28497.97 18999.89 9999.18 271
HY-MVS98.23 998.21 27497.95 27698.99 26399.03 32398.24 27999.61 5998.72 32896.81 32798.73 30599.51 22394.06 30099.86 20196.91 27098.20 35098.86 320
miper_ehance_all_eth98.59 23698.59 21798.59 29898.98 32997.07 32397.49 34499.52 21398.50 22999.52 17899.37 26096.41 27299.71 30997.86 19999.62 23899.00 308
PMMVS98.49 25098.29 25099.11 25298.96 33098.42 27197.54 33999.32 27497.53 29898.47 32498.15 36897.88 20999.82 25797.46 23699.24 30999.09 290
PatchT98.45 25498.32 24898.83 28598.94 33198.29 27899.24 13798.82 32499.84 3099.08 26899.76 8391.37 32899.94 6198.82 12599.00 32098.26 349
tpm97.15 30796.95 31197.75 32698.91 33294.24 35599.32 10997.96 34997.71 28998.29 32899.32 27586.72 36399.92 9598.10 18096.24 37199.09 290
131498.00 28297.90 28598.27 31398.90 33397.45 31499.30 11699.06 31494.98 35297.21 36299.12 31198.43 15699.67 33395.58 33098.56 34297.71 362
CostFormer96.71 31896.79 31796.46 35198.90 33390.71 37699.41 9098.68 32994.69 35898.14 33999.34 27386.32 36599.80 27897.60 22898.07 35698.88 318
UGNet99.38 8699.34 8199.49 16898.90 33398.90 24099.70 2999.35 26999.86 2298.57 31799.81 5898.50 14999.93 7599.38 5199.98 2499.66 80
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu99.07 16898.92 18499.52 15998.89 33699.78 4299.15 16699.66 12099.34 12298.92 28399.24 29697.69 22199.98 898.11 17899.28 30398.81 324
mvs-test198.83 20898.70 20999.22 23998.89 33699.65 9498.88 21999.66 12099.34 12298.29 32898.94 33897.69 22199.96 3798.11 17898.54 34398.04 358
Patchmtry98.78 21398.54 22599.49 16898.89 33699.19 20599.32 10999.67 11699.65 7099.72 9999.79 6691.87 32599.95 4798.00 18699.97 3399.33 240
tpm296.35 32496.22 32196.73 34698.88 33991.75 36999.21 14698.51 33793.27 36197.89 34899.21 30084.83 36799.70 31196.04 31398.18 35398.75 327
MVS_030498.88 20398.71 20699.39 20298.85 34098.91 23999.45 8499.30 28198.56 22197.26 36199.68 13296.18 27999.96 3799.17 8699.94 6799.29 249
tpm cat196.78 31596.98 31096.16 35498.85 34090.59 37799.08 18899.32 27492.37 36397.73 35799.46 24291.15 33299.69 31796.07 31298.80 32898.21 352
CANet99.11 16299.05 15199.28 22898.83 34298.56 26198.71 24999.41 24899.25 13699.23 24499.22 29897.66 22899.94 6199.19 8199.97 3399.33 240
FMVSNet597.80 28697.25 30299.42 18998.83 34298.97 22899.38 9599.80 5198.87 19199.25 24099.69 12180.60 37499.91 11798.96 11299.90 8999.38 228
API-MVS98.38 26098.39 23998.35 30798.83 34299.26 18599.14 16899.18 30598.59 21998.66 31098.78 35098.61 12999.57 35694.14 35199.56 25596.21 370
PatchmatchNetpermissive97.65 29497.80 28797.18 34098.82 34592.49 36499.17 15898.39 34398.12 26498.79 29999.58 19490.71 34099.89 15397.23 25499.41 28699.16 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RRT_test8_iter0597.35 30597.25 30297.63 32998.81 34693.13 36199.26 12999.89 1699.51 9499.83 5199.68 13279.03 37999.88 16899.53 3299.72 20599.89 8
PAPR97.56 29897.07 30799.04 26198.80 34798.11 28997.63 33599.25 29294.56 35998.02 34498.25 36797.43 23699.68 32890.90 36598.74 33599.33 240
CANet_DTU98.91 19798.85 19399.09 25498.79 34898.13 28698.18 29199.31 27899.48 9798.86 29199.51 22396.56 26499.95 4799.05 10299.95 5499.19 269
E-PMN97.14 30997.43 29796.27 35298.79 34891.62 37095.54 36999.01 31899.44 10998.88 28799.12 31192.78 31599.68 32894.30 34999.03 31897.50 363
PVSNet_095.53 1995.85 33595.31 33797.47 33298.78 35093.48 36095.72 36899.40 25596.18 33797.37 35897.73 37295.73 28599.58 35595.49 33181.40 37599.36 234
MAR-MVS98.24 27197.92 28299.19 24398.78 35099.65 9499.17 15899.14 30995.36 34798.04 34398.81 34997.47 23499.72 30595.47 33399.06 31598.21 352
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EMVS96.96 31297.28 30095.99 35598.76 35291.03 37395.26 37098.61 33399.34 12298.92 28398.88 34593.79 30499.66 33792.87 35899.05 31697.30 367
IB-MVS95.41 2095.30 33994.46 34397.84 32398.76 35295.33 34897.33 35096.07 36596.02 33895.37 37397.41 37676.17 38199.96 3797.54 23195.44 37398.22 351
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst97.73 29098.07 26896.73 34698.71 35492.00 36699.10 18198.86 32198.52 22798.92 28399.54 21491.90 32399.82 25798.02 18299.03 31898.37 345
MDTV_nov1_ep1397.73 29198.70 35590.83 37499.15 16698.02 34898.51 22898.82 29599.61 17790.98 33499.66 33796.89 27298.92 324
dp96.86 31397.07 30796.24 35398.68 35690.30 37899.19 15298.38 34497.35 30898.23 33399.59 19287.23 35599.82 25796.27 30598.73 33798.59 332
JIA-IIPM98.06 27997.92 28298.50 30198.59 35797.02 32498.80 23698.51 33799.88 1997.89 34899.87 3391.89 32499.90 13798.16 17597.68 36298.59 332
MVS95.72 33794.63 34198.99 26398.56 35897.98 30099.30 11698.86 32172.71 37497.30 35999.08 31598.34 16999.74 30089.21 36698.33 34799.26 252
TR-MVS97.44 30197.15 30698.32 30998.53 35997.46 31398.47 27097.91 35196.85 32598.21 33498.51 36196.42 27099.51 36292.16 36097.29 36497.98 359
DWT-MVSNet_test96.03 33195.80 33096.71 34898.50 36091.93 36799.25 13697.87 35295.99 33996.81 36597.61 37481.02 37299.66 33797.20 25797.98 35798.54 336
tpmvs97.39 30297.69 29296.52 34998.41 36191.76 36899.30 11698.94 32097.74 28797.85 35199.55 21292.40 32199.73 30396.25 30698.73 33798.06 357
LS3D99.24 12199.11 13099.61 12998.38 36299.79 3999.57 7099.68 11199.61 8099.15 25999.71 10898.70 11699.91 11797.54 23199.68 21999.13 284
cl2297.56 29897.28 30098.40 30598.37 36396.75 33097.24 35499.37 26597.31 31099.41 20999.22 29887.30 35499.37 36897.70 21799.62 23899.08 293
CMPMVSbinary77.52 2398.50 24798.19 26099.41 19798.33 36499.56 11999.01 19999.59 16895.44 34699.57 15799.80 6095.64 28699.46 36696.47 29799.92 7999.21 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall98.03 28097.94 28098.32 30998.27 36596.43 33596.95 36099.41 24896.37 33499.43 19998.96 33694.74 29499.69 31797.71 21499.62 23898.83 323
TESTMET0.1,196.24 32795.84 32997.41 33498.24 36693.84 35897.38 34795.84 36798.43 23497.81 35298.56 35879.77 37599.89 15397.77 20698.77 33198.52 337
gg-mvs-nofinetune95.87 33495.17 33897.97 31998.19 36796.95 32599.69 3589.23 38099.89 1496.24 36899.94 1481.19 37199.51 36293.99 35598.20 35097.44 364
test-LLR97.15 30796.95 31197.74 32798.18 36895.02 35097.38 34796.10 36398.00 27097.81 35298.58 35590.04 34799.91 11797.69 22398.78 32998.31 346
test-mter96.23 32895.73 33197.74 32798.18 36895.02 35097.38 34796.10 36397.90 27997.81 35298.58 35579.12 37899.91 11797.69 22398.78 32998.31 346
EPMVS96.53 32196.32 31997.17 34198.18 36892.97 36399.39 9389.95 37998.21 26098.61 31399.59 19286.69 36499.72 30596.99 26699.23 31198.81 324
RRT_MVS98.75 21798.54 22599.41 19798.14 37198.61 25998.98 21099.66 12099.31 12799.84 4699.75 8891.98 32299.98 899.20 7999.95 5499.62 113
test0.0.03 197.37 30396.91 31498.74 29297.72 37297.57 31097.60 33797.36 36098.00 27099.21 25098.02 36990.04 34799.79 28198.37 15295.89 37298.86 320
GG-mvs-BLEND97.36 33597.59 37396.87 32899.70 2988.49 38194.64 37497.26 37980.66 37399.12 36991.50 36296.50 37096.08 372
gm-plane-assit97.59 37389.02 38093.47 36098.30 36599.84 23696.38 301
cascas96.99 31096.82 31697.48 33197.57 37595.64 34596.43 36699.56 18491.75 36497.13 36497.61 37495.58 28898.63 37396.68 28499.11 31398.18 355
EPNet_dtu97.62 29597.79 28997.11 34296.67 37692.31 36598.51 26798.04 34799.24 13895.77 37099.47 23993.78 30599.66 33798.98 10899.62 23899.37 231
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160095.89 33295.41 33597.31 33894.96 37793.89 35697.09 35799.22 29997.23 31398.88 28799.04 32179.23 37699.54 35796.24 30796.81 36698.50 341
miper_refine_blended95.89 33295.41 33597.31 33894.96 37793.89 35697.09 35799.22 29997.23 31398.88 28799.04 32179.23 37699.54 35796.24 30796.81 36698.50 341
EPNet98.13 27597.77 29099.18 24594.57 37997.99 29599.24 13797.96 34999.74 4597.29 36099.62 16893.13 31299.97 1998.59 14299.83 14299.58 142
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method91.72 34192.32 34489.91 35893.49 38070.18 38290.28 37199.56 18461.71 37595.39 37299.52 21993.90 30199.94 6198.76 13198.27 34999.62 113
tmp_tt95.75 33695.42 33496.76 34489.90 38194.42 35498.86 22397.87 35278.01 37299.30 23699.69 12197.70 21995.89 37699.29 6998.14 35499.95 1
testmvs28.94 34433.33 34615.79 36026.03 3829.81 38496.77 36315.67 38311.55 37823.87 37950.74 38619.03 3838.53 37923.21 37733.07 37629.03 375
test12329.31 34333.05 34818.08 35925.93 38312.24 38397.53 34110.93 38411.78 37724.21 37850.08 38721.04 3828.60 37823.51 37632.43 37733.39 374
test_blank8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
eth-test20.00 384
eth-test0.00 384
uanet_test8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k24.88 34533.17 3470.00 3610.00 3840.00 3850.00 37299.62 1420.00 3790.00 38099.13 30799.82 40.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas16.61 34622.14 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 199.28 420.00 3800.00 3780.00 3780.00 376
sosnet-low-res8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
sosnet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
Regformer8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.26 35511.02 3580.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.16 3050.00 3840.00 3800.00 3780.00 3780.00 376
uanet8.33 34711.11 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 380100.00 10.00 3840.00 3800.00 3780.00 3780.00 376
PC_three_145297.56 29499.68 11299.41 24999.09 6397.09 37596.66 28699.60 24899.62 113
test_241102_TWO99.54 19699.13 15999.76 7899.63 15998.32 17299.92 9597.85 20199.69 21499.75 44
test_0728_THIRD99.18 14799.62 13999.61 17798.58 13399.91 11797.72 21299.80 16499.77 37
GSMVS99.14 281
sam_mvs190.81 33999.14 281
sam_mvs90.52 343
MTGPAbinary99.53 205
test_post199.14 16851.63 38589.54 35099.82 25796.86 273
test_post52.41 38490.25 34599.86 201
patchmatchnet-post99.62 16890.58 34199.94 61
MTMP99.09 18598.59 335
test9_res95.10 33999.44 28099.50 185
agg_prior294.58 34799.46 27999.50 185
test_prior499.19 20598.00 312
test_prior297.95 31997.87 28198.05 34199.05 31897.90 20695.99 31699.49 274
旧先验297.94 32195.33 34898.94 27999.88 16896.75 280
新几何298.04 308
无先验98.01 31099.23 29695.83 34199.85 21995.79 32599.44 211
原ACMM297.92 323
testdata299.89 15395.99 316
segment_acmp98.37 165
testdata197.72 33197.86 284
plane_prior599.54 19699.82 25795.84 32399.78 17599.60 128
plane_prior499.25 291
plane_prior399.31 17698.36 24399.14 261
plane_prior298.80 23698.94 180
plane_prior99.24 19498.42 27697.87 28199.71 209
n20.00 385
nn0.00 385
door-mid99.83 36
test1199.29 283
door99.77 65
HQP5-MVS98.94 232
BP-MVS94.73 343
HQP4-MVS98.15 33599.70 31199.53 167
HQP3-MVS99.37 26599.67 226
HQP2-MVS96.67 262
MDTV_nov1_ep13_2view91.44 37299.14 16897.37 30799.21 25091.78 32796.75 28099.03 302
ACMMP++_ref99.94 67
ACMMP++99.79 169
Test By Simon98.41 159