This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 50100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
Gipumacopyleft99.57 3999.59 3499.49 16499.98 399.71 7099.72 2399.84 3299.81 3399.94 1199.78 7098.91 8699.71 30698.41 14899.95 5299.05 297
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2099.85 2699.70 5299.92 1899.93 1499.45 2399.97 1799.36 53100.00 199.85 13
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2799.94 1199.91 2099.13 5999.96 3599.83 999.99 1299.83 18
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4399.68 3799.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2899.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2399.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3699.93 1499.93 1498.54 13899.93 7199.59 2199.98 2499.76 39
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2499.94 1199.95 1299.73 899.90 13299.65 1699.97 3399.69 55
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4399.97 699.92 1799.77 799.98 799.43 41100.00 199.90 4
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3499.77 6399.78 3999.93 1499.89 2697.94 20099.92 9199.65 1699.98 2499.62 111
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13599.74 1794.97 36699.78 3999.88 3299.88 2993.66 30499.97 1799.61 1999.95 5299.64 95
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8699.70 2899.14 30699.65 6799.89 2699.90 2296.20 27599.94 5799.42 4699.92 7799.67 68
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4399.89 2699.87 3299.63 1499.87 17799.54 2899.92 7799.63 100
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 5299.91 2099.89 2699.60 1999.87 17799.59 2199.74 18899.71 48
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22599.86 2299.68 5799.65 12499.88 2997.67 22199.87 17799.03 10199.86 11999.76 39
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2899.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_Blended_VisFu99.40 7799.38 7199.44 17999.90 1998.66 25298.94 21399.91 1097.97 27299.79 6799.73 9199.05 7199.97 1799.15 8799.99 1299.68 61
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5599.78 7099.92 1799.37 3199.88 16498.93 11699.95 5299.60 126
Anonymous2024052199.44 6599.42 6599.49 16499.89 2198.96 22899.62 5399.76 6899.85 2499.82 5299.88 2996.39 27099.97 1799.59 2199.98 2499.55 152
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3399.97 3399.84 14
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6799.59 6599.82 3999.39 11599.82 5299.84 4699.38 2999.91 11299.38 5099.93 7399.80 24
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2499.86 1399.72 2399.78 6099.90 799.82 5299.83 4798.45 15399.87 17799.51 3399.97 3399.86 11
EU-MVSNet99.39 8299.62 2798.72 29099.88 2496.44 33199.56 7099.85 2699.90 799.90 2299.85 4198.09 18899.83 24499.58 2499.95 5299.90 4
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2499.25 18898.78 23799.88 1898.66 21099.96 899.79 6497.45 23299.93 7199.34 5599.99 1299.78 32
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8899.69 3499.92 799.67 6199.77 7599.75 8499.61 1799.98 799.35 5499.98 2499.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tfpnnormal99.43 6699.38 7199.60 12999.87 2899.75 5499.59 6599.78 6099.71 4799.90 2299.69 11798.85 9499.90 13297.25 25099.78 17099.15 274
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2899.66 8899.18 15199.60 15998.55 22199.57 15499.67 13499.03 7399.94 5797.01 26299.80 15999.69 55
Skip Steuart: Steuart Systems R&D Blog.
lessismore_v099.64 11199.86 3099.38 15990.66 37499.89 2699.83 4794.56 29499.97 1799.56 2699.92 7799.57 146
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3099.76 5099.32 10799.77 6399.53 8999.77 7599.76 8099.26 4599.78 28197.77 20499.88 10399.60 126
ACMH98.42 699.59 3899.54 4599.72 7999.86 3099.62 10199.56 7099.79 5598.77 20299.80 6299.85 4199.64 1399.85 21698.70 13499.89 9599.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3399.47 13198.07 30299.83 3498.64 21299.89 2699.60 18292.57 313100.00 199.33 5899.97 3399.72 45
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3499.90 599.37 9699.79 5599.83 3099.88 3299.85 4198.42 15699.90 13299.60 2099.73 19599.49 188
FIs99.65 3199.58 3799.84 1999.84 3499.85 1499.66 4599.75 7599.86 1999.74 9299.79 6498.27 17399.85 21699.37 5299.93 7399.83 18
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3499.64 9598.25 28599.73 8398.39 23899.63 13099.43 24399.70 1199.90 13297.34 23998.64 33699.44 209
PMVScopyleft92.94 2198.82 20898.81 19798.85 27899.84 3497.99 29299.20 14599.47 22999.71 4799.42 19799.82 5398.09 18899.47 36193.88 35399.85 12399.07 295
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FOURS199.83 3899.89 899.74 1799.71 9599.69 5599.63 130
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3899.83 2498.61 24899.63 13796.84 32499.44 19199.58 19098.81 9699.91 11297.70 21499.82 14699.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PM-MVS99.36 9099.29 9599.58 13599.83 3899.66 8898.95 21199.86 2298.85 19199.81 5999.73 9198.40 16199.92 9198.36 15199.83 13799.17 270
PEN-MVS99.66 2699.59 3499.89 799.83 3899.87 1099.66 4599.73 8399.70 5299.84 4599.73 9198.56 13599.96 3599.29 6699.94 6599.83 18
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3899.81 3199.52 7299.70 10098.35 24699.51 18099.50 22299.31 3799.88 16498.18 17099.84 12799.69 55
RPSCF99.18 14399.02 15899.64 11199.83 3899.85 1499.44 8499.82 3998.33 25199.50 18299.78 7097.90 20399.65 34196.78 27699.83 13799.44 209
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3899.70 7799.38 9299.78 6099.53 8999.67 11699.78 7099.19 5199.86 19797.32 24099.87 11299.55 152
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + MP.99.34 9799.24 10699.63 11599.82 4599.37 16299.26 12799.35 26698.77 20299.57 15499.70 11199.27 4499.88 16497.71 21299.75 18099.65 86
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
new-patchmatchnet99.35 9299.57 4098.71 29299.82 4596.62 32998.55 25899.75 7599.50 9399.88 3299.87 3299.31 3799.88 16499.43 41100.00 199.62 111
VPNet99.46 6199.37 7499.71 8399.82 4599.59 11299.48 7899.70 10099.81 3399.69 10999.58 19097.66 22599.86 19799.17 8399.44 27799.67 68
XVG-OURS99.21 13499.06 14599.65 10499.82 4599.62 10197.87 32399.74 8098.36 24199.66 12099.68 12899.71 999.90 13296.84 27399.88 10399.43 215
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11599.82 4599.58 11598.83 22599.72 9298.36 24199.60 14699.71 10498.92 8499.91 11297.08 26099.84 12799.40 221
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4599.63 9999.16 16299.73 8397.56 29299.64 12699.69 11799.37 3199.89 14996.66 28399.87 11299.69 55
LGP-MVS_train99.74 6399.82 4599.63 9999.73 8397.56 29299.64 12699.69 11799.37 3199.89 14996.66 28399.87 11299.69 55
zzz-MVS99.30 10699.14 11899.80 2999.81 5299.81 3198.73 24399.53 20399.27 13099.42 19799.63 15598.21 17999.95 4597.83 20299.79 16499.65 86
MTAPA99.35 9299.20 11099.80 2999.81 5299.81 3199.33 10499.53 20399.27 13099.42 19799.63 15598.21 17999.95 4597.83 20299.79 16499.65 86
v1099.69 2199.69 1899.66 9999.81 5299.39 15699.66 4599.75 7599.60 8399.92 1899.87 3298.75 11199.86 19799.90 299.99 1299.73 44
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5299.75 5499.61 5899.67 11497.72 28699.35 21699.25 28699.23 4799.92 9197.21 25399.82 14699.67 68
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IterMVS-LS99.41 7499.47 5399.25 23299.81 5298.09 28898.85 22299.76 6899.62 7399.83 5099.64 14598.54 13899.97 1799.15 8799.99 1299.68 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124099.56 4299.58 3799.51 15899.80 5799.00 22299.00 19899.65 12999.15 15599.90 2299.75 8499.09 6299.88 16499.90 299.96 4599.67 68
v899.68 2499.69 1899.65 10499.80 5799.40 15499.66 4599.76 6899.64 6999.93 1499.85 4198.66 12299.84 23399.88 699.99 1299.71 48
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25599.80 5797.83 29998.89 21599.72 9299.29 12699.63 13099.70 11196.47 26599.89 14998.17 17299.82 14699.50 183
PS-CasMVS99.66 2699.58 3799.89 799.80 5799.85 1499.66 4599.73 8399.62 7399.84 4599.71 10498.62 12699.96 3599.30 6399.96 4599.86 11
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5799.87 1099.67 4199.71 9599.72 4699.84 4599.78 7098.67 12099.97 1799.30 6399.95 5299.80 24
WR-MVS_H99.61 3799.53 4999.87 1499.80 5799.83 2499.67 4199.75 7599.58 8699.85 4299.69 11798.18 18499.94 5799.28 6899.95 5299.83 18
baseline99.63 3299.62 2799.66 9999.80 5799.62 10199.44 8499.80 4999.71 4799.72 9899.69 11799.15 5599.83 24499.32 6099.94 6599.53 165
IS-MVSNet99.03 17498.85 19199.55 14799.80 5799.25 18899.73 2099.15 30599.37 11799.61 14499.71 10494.73 29299.81 27097.70 21499.88 10399.58 140
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5799.43 14699.70 2899.24 29299.48 9599.56 16199.77 7794.89 28999.93 7198.72 13399.89 9599.63 100
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5799.69 8199.13 17299.65 12998.99 17199.64 12699.72 9799.39 2599.86 19798.23 16399.81 15499.60 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114499.54 4799.53 4999.59 13199.79 6799.28 18099.10 17999.61 14799.20 14399.84 4599.73 9198.67 12099.84 23399.86 899.98 2499.64 95
V4299.56 4299.54 4599.63 11599.79 6799.46 13599.39 9099.59 16699.24 13699.86 4099.70 11198.55 13699.82 25499.79 1199.95 5299.60 126
test20.0399.55 4599.54 4599.58 13599.79 6799.37 16299.02 19499.89 1599.60 8399.82 5299.62 16498.81 9699.89 14999.43 4199.86 11999.47 198
casdiffmvs99.63 3299.61 3199.67 9299.79 6799.59 11299.13 17299.85 2699.79 3899.76 7799.72 9799.33 3699.82 25499.21 7399.94 6599.59 135
test_040299.22 12999.14 11899.45 17799.79 6799.43 14699.28 12299.68 10999.54 8799.40 21099.56 20199.07 6899.82 25496.01 31199.96 4599.11 282
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6799.68 8499.50 7499.65 12998.07 26699.52 17599.69 11798.57 13399.92 9197.18 25599.79 16499.63 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS99.04 17398.79 20099.81 2699.78 7399.73 6399.35 10199.57 17798.54 22499.54 16898.99 32396.81 25899.93 7196.97 26499.53 26499.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v14419299.55 4599.54 4599.58 13599.78 7399.20 20399.11 17899.62 14099.18 14599.89 2699.72 9798.66 12299.87 17799.88 699.97 3399.66 78
AllTest99.21 13499.07 14399.63 11599.78 7399.64 9599.12 17699.83 3498.63 21399.63 13099.72 9798.68 11799.75 29596.38 29899.83 13799.51 177
TestCases99.63 11599.78 7399.64 9599.83 3498.63 21399.63 13099.72 9798.68 11799.75 29596.38 29899.83 13799.51 177
v2v48299.50 5099.47 5399.58 13599.78 7399.25 18899.14 16699.58 17599.25 13499.81 5999.62 16498.24 17599.84 23399.83 999.97 3399.64 95
FMVSNet199.66 2699.63 2699.73 7399.78 7399.77 4399.68 3799.70 10099.67 6199.82 5299.83 4798.98 7799.90 13299.24 7099.97 3399.53 165
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21099.78 7398.88 23999.61 5899.56 18299.11 16199.24 24099.56 20193.00 31199.78 28197.43 23599.89 9599.35 235
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7399.55 12198.88 21699.66 11897.11 31899.47 18699.60 18299.07 6899.89 14996.18 30699.85 12399.58 140
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d99.48 5499.47 5399.51 15899.77 8199.41 15398.81 23099.66 11899.42 11499.75 8399.66 13899.20 5099.76 29198.98 10699.99 1299.36 232
Patchmatch-RL test98.60 23198.36 24099.33 21299.77 8199.07 21998.27 28399.87 2098.91 18499.74 9299.72 9790.57 33999.79 27898.55 14299.85 12399.11 282
v119299.57 3999.57 4099.57 14099.77 8199.22 19799.04 19199.60 15999.18 14599.87 3999.72 9799.08 6699.85 21699.89 599.98 2499.66 78
EG-PatchMatch MVS99.57 3999.56 4499.62 12499.77 8199.33 17299.26 12799.76 6899.32 12499.80 6299.78 7099.29 3999.87 17799.15 8799.91 8699.66 78
GeoE99.69 2199.66 2299.78 3799.76 8599.76 5099.60 6399.82 3999.46 10499.75 8399.56 20199.63 1499.95 4599.43 4199.88 10399.62 111
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8599.73 6399.28 12299.56 18298.19 26099.14 25899.29 27798.84 9599.92 9197.53 23099.80 15999.64 95
tttt051797.62 29397.20 30298.90 27699.76 8597.40 31299.48 7894.36 36899.06 16899.70 10699.49 22784.55 36599.94 5798.73 13299.65 23099.36 232
pmmvs599.19 13999.11 12899.42 18599.76 8598.88 23998.55 25899.73 8398.82 19599.72 9899.62 16496.56 26199.82 25499.32 6099.95 5299.56 149
nrg03099.70 1999.66 2299.82 2399.76 8599.84 1999.61 5899.70 10099.93 499.78 7099.68 12899.10 6099.78 28199.45 3999.96 4599.83 18
v14899.40 7799.41 6699.39 19899.76 8598.94 23099.09 18399.59 16699.17 14999.81 5999.61 17398.41 15799.69 31499.32 6099.94 6599.53 165
region2R99.23 12099.05 14999.77 4099.76 8599.70 7799.31 11199.59 16698.41 23599.32 22399.36 26098.73 11499.93 7197.29 24299.74 18899.67 68
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8599.71 7099.32 10799.50 21898.35 24698.97 27499.48 23098.37 16399.92 9195.95 31799.75 18099.63 100
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMMVS299.48 5499.45 5799.57 14099.76 8598.99 22398.09 29999.90 1498.95 17799.78 7099.58 19099.57 2099.93 7199.48 3699.95 5299.79 30
CP-MVSNet99.54 4799.43 6299.87 1499.76 8599.82 2899.57 6899.61 14799.54 8799.80 6299.64 14597.79 21399.95 4599.21 7399.94 6599.84 14
mPP-MVS99.19 13999.00 16499.76 4799.76 8599.68 8499.38 9299.54 19498.34 25099.01 27299.50 22298.53 14299.93 7197.18 25599.78 17099.66 78
IterMVS-SCA-FT99.00 18299.16 11498.51 29799.75 9695.90 33998.07 30299.84 3299.84 2799.89 2699.73 9196.01 27999.99 599.33 58100.00 199.63 100
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9699.81 3198.95 21199.53 20398.27 25599.53 17399.73 9198.75 11199.87 17797.70 21499.83 13799.68 61
v192192099.56 4299.57 4099.55 14799.75 9699.11 21199.05 18999.61 14799.15 15599.88 3299.71 10499.08 6699.87 17799.90 299.97 3399.66 78
testgi99.29 10899.26 10299.37 20599.75 9698.81 24298.84 22399.89 1598.38 23999.75 8399.04 31699.36 3499.86 19799.08 9899.25 30499.45 204
PGM-MVS99.20 13699.01 16199.77 4099.75 9699.71 7099.16 16299.72 9297.99 27099.42 19799.60 18298.81 9699.93 7196.91 26799.74 18899.66 78
jason99.16 14899.11 12899.32 21699.75 9698.44 26698.26 28499.39 25598.70 20899.74 9299.30 27498.54 13899.97 1798.48 14599.82 14699.55 152
jason: jason.
Anonymous2023120699.35 9299.31 8599.47 17099.74 10299.06 22199.28 12299.74 8099.23 13899.72 9899.53 21397.63 22799.88 16499.11 9599.84 12799.48 193
ACMMPR99.23 12099.06 14599.76 4799.74 10299.69 8199.31 11199.59 16698.36 24199.35 21699.38 25498.61 12899.93 7197.43 23599.75 18099.67 68
IterMVS98.97 18699.16 11498.42 30199.74 10295.64 34298.06 30499.83 3499.83 3099.85 4299.74 8796.10 27899.99 599.27 69100.00 199.63 100
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GST-MVS99.16 14898.96 17599.75 5799.73 10599.73 6399.20 14599.55 18898.22 25799.32 22399.35 26598.65 12499.91 11296.86 27099.74 18899.62 111
HFP-MVS99.25 11699.08 13999.76 4799.73 10599.70 7799.31 11199.59 16698.36 24199.36 21499.37 25598.80 10099.91 11297.43 23599.75 18099.68 61
#test#99.12 15698.90 18699.76 4799.73 10599.70 7799.10 17999.59 16697.60 29199.36 21499.37 25598.80 10099.91 11296.84 27399.75 18099.68 61
114514_t98.49 24898.11 26499.64 11199.73 10599.58 11599.24 13599.76 6889.94 36699.42 19799.56 20197.76 21599.86 19797.74 20999.82 14699.47 198
UA-Net99.78 1399.76 1499.86 1699.72 10999.71 7099.91 399.95 599.96 299.71 10399.91 2099.15 5599.97 1799.50 35100.00 199.90 4
N_pmnet98.73 21998.53 22599.35 20999.72 10998.67 25098.34 27694.65 36798.35 24699.79 6799.68 12898.03 19299.93 7198.28 15999.92 7799.44 209
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 10999.44 14299.24 13599.71 9599.27 13099.93 1499.90 2299.70 1199.93 7198.99 10499.99 1299.64 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS99.27 11399.11 12899.75 5799.71 11299.71 7099.37 9699.61 14799.29 12698.76 30199.47 23598.47 14999.88 16497.62 22299.73 19599.67 68
X-MVStestdata96.09 32794.87 33799.75 5799.71 11299.71 7099.37 9699.61 14799.29 12698.76 30161.30 37998.47 14999.88 16497.62 22299.73 19599.67 68
VDDNet98.97 18698.82 19699.42 18599.71 11298.81 24299.62 5398.68 32699.81 3399.38 21299.80 5894.25 29699.85 21698.79 12599.32 29699.59 135
abl_699.36 9099.23 10899.75 5799.71 11299.74 6099.33 10499.76 6899.07 16499.65 12499.63 15599.09 6299.92 9197.13 25899.76 17799.58 140
DSMNet-mixed99.48 5499.65 2498.95 26399.71 11297.27 31599.50 7499.82 3999.59 8599.41 20599.85 4199.62 16100.00 199.53 3099.89 9599.59 135
DROMVSNet99.69 2199.69 1899.68 8999.71 11299.91 299.76 1399.96 499.86 1999.51 18099.39 25299.57 2099.93 7199.64 1899.86 11999.20 263
CSCG99.37 8799.29 9599.60 12999.71 11299.46 13599.43 8699.85 2698.79 19999.41 20599.60 18298.92 8499.92 9198.02 18099.92 7799.43 215
LF4IMVS99.01 18098.92 18299.27 22799.71 11299.28 18098.59 25199.77 6398.32 25299.39 21199.41 24598.62 12699.84 23396.62 28799.84 12798.69 324
test_0728_SECOND99.83 2199.70 12099.79 3899.14 16699.61 14799.92 9197.88 19399.72 20199.77 35
OPM-MVS99.26 11599.13 12199.63 11599.70 12099.61 10798.58 25299.48 22598.50 22799.52 17599.63 15599.14 5799.76 29197.89 19299.77 17499.51 177
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
new_pmnet98.88 20198.89 18798.84 28099.70 12097.62 30698.15 29199.50 21897.98 27199.62 13899.54 21098.15 18599.94 5797.55 22799.84 12798.95 307
SED-MVS99.40 7799.28 9799.77 4099.69 12399.82 2899.20 14599.54 19499.13 15799.82 5299.63 15598.91 8699.92 9197.85 19999.70 20799.58 140
IU-MVS99.69 12399.77 4399.22 29697.50 29899.69 10997.75 20899.70 20799.77 35
test_241102_ONE99.69 12399.82 2899.54 19499.12 16099.82 5299.49 22798.91 8699.52 358
D2MVS99.22 12999.19 11199.29 22299.69 12398.74 24698.81 23099.41 24598.55 22199.68 11199.69 11798.13 18699.87 17798.82 12399.98 2499.24 253
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12399.80 3699.14 16699.31 27599.16 15199.62 13899.61 17398.35 16599.91 11297.88 19399.72 20199.61 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 12399.80 3699.24 13599.57 17799.16 15199.73 9699.65 14398.35 165
bset_n11_16_dypcd98.69 22398.45 23099.42 18599.69 12398.52 26196.06 36496.80 35999.71 4799.73 9699.54 21095.14 28799.96 3599.39 4999.95 5299.79 30
wuyk23d97.58 29599.13 12192.93 35499.69 12399.49 12899.52 7299.77 6397.97 27299.96 899.79 6499.84 399.94 5795.85 31999.82 14679.36 370
DeepMVS_CXcopyleft97.98 31599.69 12396.95 32299.26 28675.51 37195.74 36998.28 36296.47 26599.62 34591.23 36097.89 35697.38 362
thisisatest053097.45 29896.95 30998.94 26499.68 13297.73 30399.09 18394.19 37098.61 21699.56 16199.30 27484.30 36699.93 7198.27 16099.54 26299.16 272
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13299.75 5499.62 5399.69 10699.85 2499.80 6299.81 5698.81 9699.91 11299.47 3799.88 10399.70 51
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13199.68 13299.45 14098.99 20399.67 11499.48 9599.55 16699.36 26094.92 28899.86 19798.95 11496.57 36599.45 204
Test_1112_low_res98.95 19298.73 20299.63 11599.68 13299.15 20898.09 29999.80 4997.14 31699.46 18999.40 24896.11 27799.89 14999.01 10399.84 12799.84 14
MVEpermissive92.54 2296.66 31796.11 32198.31 30899.68 13297.55 30897.94 31895.60 36599.37 11790.68 37498.70 34996.56 26198.61 37186.94 37199.55 25698.77 322
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
diffmvs99.34 9799.32 8499.39 19899.67 13798.77 24598.57 25699.81 4899.61 7799.48 18499.41 24598.47 14999.86 19798.97 10899.90 8799.53 165
our_test_398.85 20599.09 13798.13 31399.66 13894.90 34997.72 32899.58 17599.07 16499.64 12699.62 16498.19 18299.93 7198.41 14899.95 5299.55 152
ppachtmachnet_test98.89 20099.12 12598.20 31199.66 13895.24 34697.63 33299.68 10999.08 16299.78 7099.62 16498.65 12499.88 16498.02 18099.96 4599.48 193
CP-MVS99.23 12099.05 14999.75 5799.66 13899.66 8899.38 9299.62 14098.38 23999.06 27099.27 28198.79 10399.94 5797.51 23199.82 14699.66 78
1112_ss99.05 17098.84 19399.67 9299.66 13899.29 17898.52 26399.82 3997.65 28999.43 19599.16 30096.42 26799.91 11299.07 9999.84 12799.80 24
YYNet198.95 19298.99 16998.84 28099.64 14297.14 31998.22 28799.32 27198.92 18399.59 14999.66 13897.40 23499.83 24498.27 16099.90 8799.55 152
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27899.64 14297.16 31898.23 28699.33 26998.93 18199.56 16199.66 13897.39 23699.83 24498.29 15899.88 10399.55 152
test_one_060199.63 14499.76 5099.55 18899.23 13899.31 22799.61 17398.59 130
thres100view90096.39 32196.03 32397.47 32999.63 14495.93 33899.18 15197.57 35298.75 20698.70 30697.31 37487.04 35499.67 33087.62 36798.51 34196.81 365
thres600view796.60 31896.16 32097.93 31799.63 14496.09 33799.18 15197.57 35298.77 20298.72 30497.32 37387.04 35499.72 30288.57 36498.62 33797.98 356
ITE_SJBPF99.38 20299.63 14499.44 14299.73 8398.56 21999.33 22199.53 21398.88 9199.68 32596.01 31199.65 23099.02 303
test_part299.62 14899.67 8699.55 166
Anonymous2023121199.62 3599.57 4099.76 4799.61 14999.60 10999.81 999.73 8399.82 3299.90 2299.90 2297.97 19999.86 19799.42 4699.96 4599.80 24
CPTT-MVS98.74 21798.44 23299.64 11199.61 14999.38 15999.18 15199.55 18896.49 32999.27 23599.37 25597.11 25099.92 9195.74 32499.67 22299.62 111
test111197.74 28798.16 26196.49 34799.60 15189.86 37699.71 2791.21 37399.89 1199.88 3299.87 3293.73 30399.90 13299.56 2699.99 1299.70 51
h-mvs3398.61 22998.34 24399.44 17999.60 15198.67 25099.27 12599.44 23899.68 5799.32 22399.49 22792.50 316100.00 199.24 7096.51 36699.65 86
MSDG99.08 16598.98 17299.37 20599.60 15199.13 20997.54 33699.74 8098.84 19499.53 17399.55 20899.10 6099.79 27897.07 26199.86 11999.18 268
FPMVS96.32 32395.50 33198.79 28699.60 15198.17 28298.46 27298.80 32297.16 31596.28 36499.63 15582.19 36799.09 36788.45 36598.89 32499.10 284
test250694.73 33894.59 34095.15 35399.59 15585.90 37899.75 1574.01 37999.89 1199.71 10399.86 3879.00 37799.90 13299.52 3299.99 1299.65 86
ECVR-MVScopyleft97.73 28898.04 26796.78 34099.59 15590.81 37299.72 2390.43 37599.89 1199.86 4099.86 3893.60 30599.89 14999.46 3899.99 1299.65 86
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
xiu_mvs_v1_base99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27099.59 15598.23 27798.47 26799.66 11899.61 7799.68 11198.94 33399.39 2599.97 1799.18 8099.55 25698.51 334
SF-MVS99.10 16498.93 17899.62 12499.58 16099.51 12699.13 17299.65 12997.97 27299.42 19799.61 17398.86 9299.87 17796.45 29599.68 21599.49 188
tfpn200view996.30 32495.89 32497.53 32799.58 16096.11 33599.00 19897.54 35598.43 23298.52 31896.98 37686.85 35699.67 33087.62 36798.51 34196.81 365
EI-MVSNet99.38 8499.44 5999.21 23799.58 16098.09 28899.26 12799.46 23399.62 7399.75 8399.67 13498.54 13899.85 21699.15 8799.92 7799.68 61
CVMVSNet98.61 22998.88 18897.80 32199.58 16093.60 35699.26 12799.64 13599.66 6599.72 9899.67 13493.26 30799.93 7199.30 6399.81 15499.87 9
thres40096.40 32095.89 32497.92 31899.58 16096.11 33599.00 19897.54 35598.43 23298.52 31896.98 37686.85 35699.67 33087.62 36798.51 34197.98 356
MCST-MVS99.02 17698.81 19799.65 10499.58 16099.49 12898.58 25299.07 30998.40 23799.04 27199.25 28698.51 14799.80 27597.31 24199.51 26799.65 86
HQP_MVS98.90 19798.68 20999.55 14799.58 16099.24 19398.80 23399.54 19498.94 17899.14 25899.25 28697.24 24299.82 25495.84 32099.78 17099.60 126
plane_prior799.58 16099.38 159
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 16099.64 9599.30 11499.63 13799.61 7799.71 10399.56 20198.76 10999.96 3599.14 9399.92 7799.68 61
MVS_111021_LR99.13 15499.03 15799.42 18599.58 16099.32 17497.91 32299.73 8398.68 20999.31 22799.48 23099.09 6299.66 33497.70 21499.77 17499.29 247
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 17099.77 4398.74 24199.60 15998.55 22199.76 7799.69 11798.23 17899.92 9196.39 29799.75 18099.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
EI-MVSNet-UG-set99.48 5499.50 5199.42 18599.57 17098.65 25599.24 13599.46 23399.68 5799.80 6299.66 13898.99 7699.89 14999.19 7899.90 8799.72 45
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18599.57 17098.66 25299.24 13599.46 23399.67 6199.79 6799.65 14398.97 7999.89 14999.15 8799.89 9599.71 48
pmmvs499.13 15499.06 14599.36 20899.57 17099.10 21598.01 30799.25 28998.78 20199.58 15199.44 24298.24 17599.76 29198.74 13199.93 7399.22 258
MVSFormer99.41 7499.44 5999.31 21999.57 17098.40 26999.77 1199.80 4999.73 4399.63 13099.30 27498.02 19499.98 799.43 4199.69 21099.55 152
lupinMVS98.96 18998.87 18999.24 23499.57 17098.40 26998.12 29599.18 30298.28 25499.63 13099.13 30298.02 19499.97 1798.22 16499.69 21099.35 235
ab-mvs99.33 10199.28 9799.47 17099.57 17099.39 15699.78 1099.43 24298.87 18999.57 15499.82 5398.06 19199.87 17798.69 13699.73 19599.15 274
DP-MVS99.48 5499.39 6999.74 6399.57 17099.62 10199.29 12199.61 14799.87 1799.74 9299.76 8098.69 11699.87 17798.20 16699.80 15999.75 42
F-COLMAP98.74 21798.45 23099.62 12499.57 17099.47 13198.84 22399.65 12996.31 33398.93 27899.19 29997.68 22099.87 17796.52 29099.37 29099.53 165
CLD-MVS98.76 21498.57 21999.33 21299.57 17098.97 22697.53 33899.55 18896.41 33099.27 23599.13 30299.07 6899.78 28196.73 27999.89 9599.23 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19599.56 18099.37 16297.97 31599.68 10997.49 29999.08 26699.35 26595.41 28699.82 25497.70 21498.19 34999.01 304
APDe-MVS99.48 5499.36 7799.85 1899.55 18199.81 3199.50 7499.69 10698.99 17199.75 8399.71 10498.79 10399.93 7198.46 14699.85 12399.80 24
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 18299.74 6099.26 12799.62 14099.16 15199.52 17599.64 14598.41 15799.91 11297.27 24599.61 24299.54 160
RE-MVS-def99.13 12199.54 18299.74 6099.26 12799.62 14099.16 15199.52 17599.64 14598.57 13397.27 24599.61 24299.54 160
PVSNet_BlendedMVS99.03 17499.01 16199.09 25199.54 18297.99 29298.58 25299.82 3997.62 29099.34 21999.71 10498.52 14599.77 28997.98 18599.97 3399.52 175
PVSNet_Blended98.70 22298.59 21599.02 25999.54 18297.99 29297.58 33599.82 3995.70 34299.34 21998.98 32698.52 14599.77 28997.98 18599.83 13799.30 244
USDC98.96 18998.93 17899.05 25799.54 18297.99 29297.07 35699.80 4998.21 25899.75 8399.77 7798.43 15499.64 34397.90 19199.88 10399.51 177
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15199.53 18799.25 18898.29 28199.76 6899.07 16499.42 19799.61 17398.86 9299.87 17796.45 29599.68 21599.49 188
save fliter99.53 18799.25 18898.29 28199.38 26199.07 164
Anonymous2024052999.42 7099.34 7999.65 10499.53 18799.60 10999.63 5299.39 25599.47 10099.76 7799.78 7098.13 18699.86 19798.70 13499.68 21599.49 188
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18799.75 5499.27 12599.61 14799.19 14499.57 15499.64 14598.76 10999.90 13297.29 24299.62 23599.56 149
MIMVSNet98.43 25398.20 25599.11 24999.53 18798.38 27299.58 6798.61 33098.96 17699.33 22199.76 8090.92 33299.81 27097.38 23899.76 17799.15 274
test117299.23 12099.05 14999.74 6399.52 19299.75 5499.20 14599.61 14798.97 17399.48 18499.58 19098.41 15799.91 11297.15 25799.55 25699.57 146
Regformer-399.41 7499.41 6699.40 19599.52 19298.70 24899.17 15699.44 23899.62 7399.75 8399.60 18298.90 8999.85 21698.89 11899.84 12799.65 86
Regformer-499.45 6399.44 5999.50 16199.52 19298.94 23099.17 15699.53 20399.64 6999.76 7799.60 18298.96 8299.90 13298.91 11799.84 12799.67 68
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 19299.71 7098.86 22099.19 30198.47 23198.59 31399.06 31298.08 19099.91 11296.94 26599.60 24599.60 126
GA-MVS97.99 28197.68 29198.93 26799.52 19298.04 29197.19 35299.05 31298.32 25298.81 29498.97 32989.89 34699.41 36498.33 15599.05 31399.34 237
SR-MVS99.19 13999.00 16499.74 6399.51 19799.72 6799.18 15199.60 15998.85 19199.47 18699.58 19098.38 16299.92 9196.92 26699.54 26299.57 146
CS-MVS-test99.43 6699.40 6899.53 15399.51 19799.84 1999.60 6399.94 699.52 9199.10 26498.89 33899.24 4699.90 13299.11 9599.66 22698.84 318
test22299.51 19799.08 21897.83 32599.29 28095.21 34898.68 30799.31 27297.28 24199.38 28699.43 215
testdata99.42 18599.51 19798.93 23499.30 27896.20 33498.87 28899.40 24898.33 16999.89 14996.29 30199.28 30099.44 209
plane_prior199.51 197
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19799.58 11598.98 20799.60 15999.43 11299.70 10699.36 26097.70 21699.88 16499.20 7699.87 11299.59 135
DELS-MVS99.34 9799.30 9099.48 16899.51 19799.36 16598.12 29599.53 20399.36 11999.41 20599.61 17399.22 4899.87 17799.21 7399.68 21599.20 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
新几何199.52 15599.50 20499.22 19799.26 28695.66 34398.60 31299.28 27997.67 22199.89 14995.95 31799.32 29699.45 204
SD-MVS99.01 18099.30 9098.15 31299.50 20499.40 15498.94 21399.61 14799.22 14299.75 8399.82 5399.54 2295.51 37497.48 23299.87 11299.54 160
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.56 23798.20 25599.61 12799.50 20499.46 13598.32 27999.41 24595.22 34799.21 24799.10 30998.34 16799.82 25495.09 33799.66 22699.56 149
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20499.62 10199.01 19699.57 17796.80 32699.54 16899.63 15598.29 17199.91 11295.24 33499.71 20599.61 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR99.12 15699.02 15899.40 19599.50 20499.11 21197.92 32099.71 9598.76 20599.08 26699.47 23599.17 5399.54 35497.85 19999.76 17799.54 160
旧先验199.49 20999.29 17899.26 28699.39 25297.67 22199.36 29199.46 202
112198.56 23798.24 25199.52 15599.49 20999.24 19399.30 11499.22 29695.77 34098.52 31899.29 27797.39 23699.85 21695.79 32299.34 29399.46 202
GBi-Net99.42 7099.31 8599.73 7399.49 20999.77 4399.68 3799.70 10099.44 10799.62 13899.83 4797.21 24499.90 13298.96 11099.90 8799.53 165
test199.42 7099.31 8599.73 7399.49 20999.77 4399.68 3799.70 10099.44 10799.62 13899.83 4797.21 24499.90 13298.96 11099.90 8799.53 165
FMVSNet299.35 9299.28 9799.55 14799.49 20999.35 16999.45 8199.57 17799.44 10799.70 10699.74 8797.21 24499.87 17799.03 10199.94 6599.44 209
DP-MVS Recon98.50 24598.23 25299.31 21999.49 20999.46 13598.56 25799.63 13794.86 35398.85 29099.37 25597.81 21199.59 35196.08 30899.44 27798.88 313
MVP-Stereo99.16 14899.08 13999.43 18399.48 21599.07 21999.08 18699.55 18898.63 21399.31 22799.68 12898.19 18299.78 28198.18 17099.58 25099.45 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20096.09 32795.68 33097.33 33499.48 21596.22 33498.53 26297.57 35298.06 26798.37 32596.73 37886.84 35899.61 34986.99 37098.57 33896.16 368
sss98.90 19798.77 20199.27 22799.48 21598.44 26698.72 24499.32 27197.94 27699.37 21399.35 26596.31 27299.91 11298.85 12099.63 23499.47 198
PAPM_NR98.36 25998.04 26799.33 21299.48 21598.93 23498.79 23699.28 28397.54 29598.56 31698.57 35397.12 24999.69 31494.09 34998.90 32399.38 226
TAMVS99.49 5299.45 5799.63 11599.48 21599.42 14999.45 8199.57 17799.66 6599.78 7099.83 4797.85 20999.86 19799.44 4099.96 4599.61 122
ETH3D-3000-0.198.77 21298.50 22799.59 13199.47 22099.53 12398.77 23899.60 15997.33 30799.23 24199.50 22297.91 20299.83 24495.02 33899.67 22299.41 219
原ACMM199.37 20599.47 22098.87 24199.27 28496.74 32798.26 32899.32 27097.93 20199.82 25495.96 31699.38 28699.43 215
plane_prior699.47 22099.26 18497.24 242
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 22099.56 11898.97 20999.61 14799.43 11299.67 11699.28 27997.85 20999.95 4599.17 8399.81 15499.65 86
TAPA-MVS97.92 1398.03 27897.55 29499.46 17399.47 22099.44 14298.50 26599.62 14086.79 36799.07 26999.26 28498.26 17499.62 34597.28 24499.73 19599.31 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22599.73 6399.13 17299.52 21197.40 30399.57 15499.64 14598.93 8399.83 24497.61 22499.79 16499.63 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PVSNet97.47 1598.42 25498.44 23298.35 30499.46 22596.26 33396.70 36199.34 26897.68 28899.00 27399.13 30297.40 23499.72 30297.59 22699.68 21599.08 290
TinyColmap98.97 18698.93 17899.07 25599.46 22598.19 28097.75 32799.75 7598.79 19999.54 16899.70 11198.97 7999.62 34596.63 28699.83 13799.41 219
9.1498.64 21099.45 22898.81 23099.60 15997.52 29799.28 23399.56 20198.53 14299.83 24495.36 33399.64 232
testtj98.56 23798.17 26099.72 7999.45 22899.60 10998.88 21699.50 21896.88 32199.18 25399.48 23097.08 25199.92 9193.69 35499.38 28699.63 100
CS-MVS99.40 7799.43 6299.29 22299.44 23099.72 6799.36 9999.91 1099.71 4799.28 23398.83 34299.22 4899.86 19799.40 4899.77 17498.29 344
PatchMatch-RL98.68 22498.47 22899.30 22199.44 23099.28 18098.14 29399.54 19497.12 31799.11 26299.25 28697.80 21299.70 30896.51 29199.30 29898.93 309
PCF-MVS96.03 1896.73 31595.86 32699.33 21299.44 23099.16 20696.87 35999.44 23886.58 36898.95 27699.40 24894.38 29599.88 16487.93 36699.80 15998.95 307
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ZD-MVS99.43 23399.61 10799.43 24296.38 33199.11 26299.07 31197.86 20799.92 9194.04 35099.49 271
VDD-MVS99.20 13699.11 12899.44 17999.43 23398.98 22499.50 7498.32 34299.80 3699.56 16199.69 11796.99 25499.85 21698.99 10499.73 19599.50 183
DU-MVS99.33 10199.21 10999.71 8399.43 23399.56 11898.83 22599.53 20399.38 11699.67 11699.36 26097.67 22199.95 4599.17 8399.81 15499.63 100
NR-MVSNet99.40 7799.31 8599.68 8999.43 23399.55 12199.73 2099.50 21899.46 10499.88 3299.36 26097.54 22999.87 17798.97 10899.87 11299.63 100
WTY-MVS98.59 23498.37 23999.26 22999.43 23398.40 26998.74 24199.13 30898.10 26399.21 24799.24 29194.82 29099.90 13297.86 19798.77 32899.49 188
thisisatest051596.98 30996.42 31698.66 29399.42 23897.47 30997.27 34994.30 36997.24 31099.15 25698.86 34185.01 36399.87 17797.10 25999.39 28598.63 325
Regformer-199.32 10399.27 10099.47 17099.41 23998.95 22998.99 20399.48 22599.48 9599.66 12099.52 21598.78 10599.87 17798.36 15199.74 18899.60 126
Regformer-299.34 9799.27 10099.53 15399.41 23999.10 21598.99 20399.53 20399.47 10099.66 12099.52 21598.80 10099.89 14998.31 15799.74 18899.60 126
pmmvs398.08 27697.80 28598.91 27099.41 23997.69 30597.87 32399.66 11895.87 33899.50 18299.51 21990.35 34199.97 1798.55 14299.47 27499.08 290
test_part198.63 22798.26 25099.75 5799.40 24299.49 12899.67 4199.68 10999.86 1999.88 3299.86 3886.73 35999.93 7199.34 5599.97 3399.81 23
NP-MVS99.40 24299.13 20998.83 342
QAPM98.40 25797.99 27099.65 10499.39 24499.47 13199.67 4199.52 21191.70 36398.78 29999.80 5898.55 13699.95 4594.71 34299.75 18099.53 165
OMC-MVS98.90 19798.72 20399.44 17999.39 24499.42 14998.58 25299.64 13597.31 30899.44 19199.62 16498.59 13099.69 31496.17 30799.79 16499.22 258
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24499.42 14999.70 2899.56 18299.23 13899.35 21699.80 5899.17 5399.95 4598.21 16599.84 12799.59 135
ETH3 D test640097.76 28697.19 30399.50 16199.38 24799.26 18498.34 27699.49 22392.99 36098.54 31799.20 29795.92 28199.82 25491.14 36199.66 22699.40 221
Fast-Effi-MVS+99.02 17698.87 18999.46 17399.38 24799.50 12799.04 19199.79 5597.17 31498.62 31098.74 34899.34 3599.95 4598.32 15699.41 28398.92 310
BH-untuned98.22 27198.09 26598.58 29699.38 24797.24 31698.55 25898.98 31697.81 28499.20 25298.76 34797.01 25399.65 34194.83 33998.33 34498.86 315
xiu_mvs_v2_base99.02 17699.11 12898.77 28799.37 25098.09 28898.13 29499.51 21499.47 10099.42 19798.54 35699.38 2999.97 1798.83 12199.33 29598.24 347
PS-MVSNAJ99.00 18299.08 13998.76 28899.37 25098.10 28798.00 30999.51 21499.47 10099.41 20598.50 35899.28 4199.97 1798.83 12199.34 29398.20 351
EIA-MVS99.12 15699.01 16199.45 17799.36 25299.62 10199.34 10299.79 5598.41 23598.84 29198.89 33898.75 11199.84 23398.15 17499.51 26798.89 312
DPM-MVS98.28 26597.94 27899.32 21699.36 25299.11 21197.31 34898.78 32396.88 32198.84 29199.11 30897.77 21499.61 34994.03 35199.36 29199.23 256
ambc99.20 23999.35 25498.53 25999.17 15699.46 23399.67 11699.80 5898.46 15299.70 30897.92 19099.70 20799.38 226
TEST999.35 25499.35 16998.11 29799.41 24594.83 35597.92 34498.99 32398.02 19499.85 216
train_agg98.35 26297.95 27499.57 14099.35 25499.35 16998.11 29799.41 24594.90 35197.92 34498.99 32398.02 19499.85 21695.38 33299.44 27799.50 183
agg_prior198.33 26497.92 28099.57 14099.35 25499.36 16597.99 31199.39 25594.85 35497.76 35398.98 32698.03 19299.85 21695.49 32899.44 27799.51 177
agg_prior99.35 25499.36 16599.39 25597.76 35399.85 216
test_prior398.62 22898.34 24399.46 17399.35 25499.22 19797.95 31699.39 25597.87 27998.05 33999.05 31397.90 20399.69 31495.99 31399.49 27199.48 193
test_prior99.46 17399.35 25499.22 19799.39 25599.69 31499.48 193
MVS_Test99.28 10999.31 8599.19 24099.35 25498.79 24499.36 9999.49 22399.17 14999.21 24799.67 13498.78 10599.66 33499.09 9799.66 22699.10 284
CDS-MVSNet99.22 12999.13 12199.50 16199.35 25499.11 21198.96 21099.54 19499.46 10499.61 14499.70 11196.31 27299.83 24499.34 5599.88 10399.55 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25499.47 13199.62 5399.50 21899.44 10799.12 26199.78 7098.77 10899.94 5797.87 19699.72 20199.62 111
ETV-MVS99.18 14399.18 11299.16 24399.34 26499.28 18099.12 17699.79 5599.48 9598.93 27898.55 35599.40 2499.93 7198.51 14499.52 26698.28 345
Anonymous20240521198.75 21598.46 22999.63 11599.34 26499.66 8899.47 8097.65 35199.28 12999.56 16199.50 22293.15 30899.84 23398.62 13999.58 25099.40 221
CHOSEN 280x42098.41 25598.41 23598.40 30299.34 26495.89 34096.94 35899.44 23898.80 19899.25 23799.52 21593.51 30699.98 798.94 11599.98 2499.32 241
test_899.34 26499.31 17598.08 30199.40 25294.90 35197.87 34898.97 32998.02 19499.84 233
TSAR-MVS + GP.99.12 15699.04 15599.38 20299.34 26499.16 20698.15 29199.29 28098.18 26199.63 13099.62 16499.18 5299.68 32598.20 16699.74 18899.30 244
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 26999.76 5099.34 10299.97 298.93 18199.91 2099.79 6498.68 11799.93 7196.80 27599.56 25299.30 244
PLCcopyleft97.35 1698.36 25997.99 27099.48 16899.32 27099.24 19398.50 26599.51 21495.19 34998.58 31498.96 33196.95 25599.83 24495.63 32599.25 30499.37 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+99.06 16798.97 17399.34 21099.31 27198.98 22498.31 28099.91 1098.81 19698.79 29798.94 33399.14 5799.84 23398.79 12598.74 33299.20 263
HQP-NCC99.31 27197.98 31297.45 30098.15 333
ACMP_Plane99.31 27197.98 31297.45 30098.15 333
HQP-MVS98.36 25998.02 26999.39 19899.31 27198.94 23097.98 31299.37 26297.45 30098.15 33398.83 34296.67 25999.70 30894.73 34099.67 22299.53 165
baseline197.73 28897.33 29798.96 26299.30 27597.73 30399.40 8898.42 33899.33 12399.46 18999.21 29591.18 32899.82 25498.35 15391.26 37199.32 241
WR-MVS99.11 16098.93 17899.66 9999.30 27599.42 14998.42 27399.37 26299.04 16999.57 15499.20 29796.89 25699.86 19798.66 13899.87 11299.70 51
hse-mvs298.52 24398.30 24799.16 24399.29 27798.60 25798.77 23899.02 31399.68 5799.32 22399.04 31692.50 31699.85 21699.24 7097.87 35799.03 299
test1299.54 15199.29 27799.33 17299.16 30498.43 32397.54 22999.82 25499.47 27499.48 193
OpenMVS_ROBcopyleft97.31 1797.36 30296.84 31398.89 27799.29 27799.45 14098.87 21999.48 22586.54 36999.44 19199.74 8797.34 23999.86 19791.61 35899.28 30097.37 363
MVS-HIRNet97.86 28298.22 25396.76 34199.28 28091.53 36898.38 27592.60 37299.13 15799.31 22799.96 1197.18 24899.68 32598.34 15499.83 13799.07 295
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14499.28 28099.22 19798.99 20399.40 25299.08 16299.58 15199.64 14598.90 8999.83 24497.44 23499.75 18099.63 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS97.82 28397.38 29699.14 24699.27 28298.53 25998.72 24499.02 31398.10 26397.18 36199.03 32089.26 34899.85 21697.94 18997.91 35599.03 299
Patchmatch-test98.10 27597.98 27298.48 29999.27 28296.48 33099.40 8899.07 30998.81 19699.23 24199.57 19890.11 34399.87 17796.69 28099.64 23299.09 287
ET-MVSNet_ETH3D96.78 31396.07 32298.91 27099.26 28497.92 29897.70 33096.05 36397.96 27592.37 37398.43 35987.06 35399.90 13298.27 16097.56 36098.91 311
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18399.25 28599.69 8199.05 18999.82 3999.50 9398.97 27499.05 31398.98 7799.98 798.20 16699.24 30698.62 326
CNVR-MVS98.99 18598.80 19999.56 14499.25 28599.43 14698.54 26199.27 28498.58 21898.80 29699.43 24398.53 14299.70 30897.22 25299.59 24999.54 160
LFMVS98.46 25198.19 25899.26 22999.24 28798.52 26199.62 5396.94 35899.87 1799.31 22799.58 19091.04 33099.81 27098.68 13799.42 28299.45 204
VNet99.18 14399.06 14599.56 14499.24 28799.36 16599.33 10499.31 27599.67 6199.47 18699.57 19896.48 26499.84 23399.15 8799.30 29899.47 198
CL-MVSNet_self_test98.71 22198.56 22299.15 24599.22 28998.66 25297.14 35399.51 21498.09 26599.54 16899.27 28196.87 25799.74 29798.43 14798.96 31899.03 299
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 28999.75 5497.25 35099.47 22998.72 20799.66 12099.70 11199.29 3999.63 34498.07 17999.81 15499.62 111
MSLP-MVS++99.05 17099.09 13798.91 27099.21 29198.36 27398.82 22999.47 22998.85 19198.90 28499.56 20198.78 10599.09 36798.57 14199.68 21599.26 250
NCCC98.82 20898.57 21999.58 13599.21 29199.31 17598.61 24899.25 28998.65 21198.43 32399.26 28497.86 20799.81 27096.55 28899.27 30399.61 122
BH-RMVSNet98.41 25598.14 26399.21 23799.21 29198.47 26398.60 25098.26 34398.35 24698.93 27899.31 27297.20 24799.66 33494.32 34599.10 31199.51 177
miper_lstm_enhance98.65 22698.60 21398.82 28599.20 29497.33 31497.78 32699.66 11899.01 17099.59 14999.50 22294.62 29399.85 21698.12 17599.90 8799.26 250
SCA98.11 27498.36 24097.36 33299.20 29492.99 35998.17 29098.49 33698.24 25699.10 26499.57 19896.01 27999.94 5796.86 27099.62 23599.14 278
mvs_anonymous99.28 10999.39 6998.94 26499.19 29697.81 30099.02 19499.55 18899.78 3999.85 4299.80 5898.24 17599.86 19799.57 2599.50 26999.15 274
OpenMVScopyleft98.12 1098.23 27097.89 28499.26 22999.19 29699.26 18499.65 5099.69 10691.33 36498.14 33799.77 7798.28 17299.96 3595.41 33199.55 25698.58 330
CNLPA98.57 23698.34 24399.28 22599.18 29899.10 21598.34 27699.41 24598.48 23098.52 31898.98 32697.05 25299.78 28195.59 32699.50 26998.96 306
test_yl98.25 26797.95 27499.13 24799.17 29998.47 26399.00 19898.67 32898.97 17399.22 24599.02 32191.31 32699.69 31497.26 24798.93 31999.24 253
DCV-MVSNet98.25 26797.95 27499.13 24799.17 29998.47 26399.00 19898.67 32898.97 17399.22 24599.02 32191.31 32699.69 31497.26 24798.93 31999.24 253
MG-MVS98.52 24398.39 23798.94 26499.15 30197.39 31398.18 28899.21 30098.89 18899.23 24199.63 15597.37 23899.74 29794.22 34799.61 24299.69 55
ADS-MVSNet297.78 28597.66 29398.12 31499.14 30295.36 34499.22 14298.75 32496.97 31998.25 32999.64 14590.90 33399.94 5796.51 29199.56 25299.08 290
ADS-MVSNet97.72 29197.67 29297.86 31999.14 30294.65 35099.22 14298.86 31896.97 31998.25 32999.64 14590.90 33399.84 23396.51 29199.56 25299.08 290
FMVSNet398.80 21098.63 21299.32 21699.13 30498.72 24799.10 17999.48 22599.23 13899.62 13899.64 14592.57 31399.86 19798.96 11099.90 8799.39 224
PHI-MVS99.11 16098.95 17799.59 13199.13 30499.59 11299.17 15699.65 12997.88 27899.25 23799.46 23898.97 7999.80 27597.26 24799.82 14699.37 229
OPU-MVS99.29 22299.12 30699.44 14299.20 14599.40 24899.00 7498.84 36996.54 28999.60 24599.58 140
c3_l98.72 22098.71 20498.72 29099.12 30697.22 31797.68 33199.56 18298.90 18599.54 16899.48 23096.37 27199.73 30097.88 19399.88 10399.21 260
alignmvs98.28 26597.96 27399.25 23299.12 30698.93 23499.03 19398.42 33899.64 6998.72 30497.85 36790.86 33599.62 34598.88 11999.13 30999.19 266
PAPM95.61 33694.71 33898.31 30899.12 30696.63 32896.66 36298.46 33790.77 36596.25 36598.68 35093.01 31099.69 31481.60 37297.86 35898.62 326
AdaColmapbinary98.60 23198.35 24299.38 20299.12 30699.22 19798.67 24799.42 24497.84 28398.81 29499.27 28197.32 24099.81 27095.14 33599.53 26499.10 284
MS-PatchMatch99.00 18298.97 17399.09 25199.11 31198.19 28098.76 24099.33 26998.49 22999.44 19199.58 19098.21 17999.69 31498.20 16699.62 23599.39 224
eth_miper_zixun_eth98.68 22498.71 20498.60 29499.10 31296.84 32697.52 34099.54 19498.94 17899.58 15199.48 23096.25 27499.76 29198.01 18399.93 7399.21 260
canonicalmvs99.02 17699.00 16499.09 25199.10 31298.70 24899.61 5899.66 11899.63 7298.64 30997.65 36999.04 7299.54 35498.79 12598.92 32199.04 298
baseline296.83 31296.28 31898.46 30099.09 31496.91 32498.83 22593.87 37197.23 31196.23 36798.36 36088.12 35099.90 13296.68 28198.14 35198.57 331
BH-w/o97.20 30497.01 30797.76 32299.08 31595.69 34198.03 30698.52 33395.76 34197.96 34398.02 36595.62 28499.47 36192.82 35697.25 36298.12 353
MVSTER98.47 25098.22 25399.24 23499.06 31698.35 27499.08 18699.46 23399.27 13099.75 8399.66 13888.61 34999.85 21699.14 9399.92 7799.52 175
CR-MVSNet98.35 26298.20 25598.83 28299.05 31798.12 28499.30 11499.67 11497.39 30499.16 25499.79 6491.87 32299.91 11298.78 12898.77 32898.44 339
RPMNet98.60 23198.53 22598.83 28299.05 31798.12 28499.30 11499.62 14099.86 1999.16 25499.74 8792.53 31599.92 9198.75 13098.77 32898.44 339
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15899.04 31999.39 15698.47 26799.47 22996.70 32898.78 29999.33 26997.62 22899.86 19794.69 34399.38 28699.28 249
DVP-MVS++99.38 8499.25 10499.77 4099.03 32099.77 4399.74 1799.61 14799.18 14599.76 7799.61 17399.00 7499.92 9197.72 21099.60 24599.62 111
MSC_two_6792asdad99.74 6399.03 32099.53 12399.23 29399.92 9197.77 20499.69 21099.78 32
No_MVS99.74 6399.03 32099.53 12399.23 29399.92 9197.77 20499.69 21099.78 32
cl____98.54 24198.41 23598.92 26899.03 32097.80 30197.46 34299.59 16698.90 18599.60 14699.46 23893.85 30099.78 28197.97 18799.89 9599.17 270
DIV-MVS_self_test98.54 24198.42 23498.92 26899.03 32097.80 30197.46 34299.59 16698.90 18599.60 14699.46 23893.87 29999.78 28197.97 18799.89 9599.18 268
HY-MVS98.23 998.21 27297.95 27498.99 26099.03 32098.24 27699.61 5898.72 32596.81 32598.73 30399.51 21994.06 29799.86 19796.91 26798.20 34798.86 315
miper_ehance_all_eth98.59 23498.59 21598.59 29598.98 32697.07 32097.49 34199.52 21198.50 22799.52 17599.37 25596.41 26999.71 30697.86 19799.62 23599.00 305
PMMVS98.49 24898.29 24899.11 24998.96 32798.42 26897.54 33699.32 27197.53 29698.47 32298.15 36497.88 20699.82 25497.46 23399.24 30699.09 287
PatchT98.45 25298.32 24698.83 28298.94 32898.29 27599.24 13598.82 32199.84 2799.08 26699.76 8091.37 32599.94 5798.82 12399.00 31798.26 346
tpm97.15 30596.95 30997.75 32398.91 32994.24 35299.32 10797.96 34697.71 28798.29 32699.32 27086.72 36099.92 9198.10 17896.24 36899.09 287
131498.00 28097.90 28398.27 31098.90 33097.45 31199.30 11499.06 31194.98 35097.21 36099.12 30698.43 15499.67 33095.58 32798.56 33997.71 359
CostFormer96.71 31696.79 31596.46 34898.90 33090.71 37399.41 8798.68 32694.69 35698.14 33799.34 26886.32 36299.80 27597.60 22598.07 35398.88 313
UGNet99.38 8499.34 7999.49 16498.90 33098.90 23899.70 2899.35 26699.86 1998.57 31599.81 5698.50 14899.93 7199.38 5099.98 2499.66 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu99.07 16698.92 18299.52 15598.89 33399.78 4199.15 16499.66 11899.34 12098.92 28199.24 29197.69 21899.98 798.11 17699.28 30098.81 320
mvs-test198.83 20698.70 20799.22 23698.89 33399.65 9398.88 21699.66 11899.34 12098.29 32698.94 33397.69 21899.96 3598.11 17698.54 34098.04 355
Patchmtry98.78 21198.54 22399.49 16498.89 33399.19 20499.32 10799.67 11499.65 6799.72 9899.79 6491.87 32299.95 4598.00 18499.97 3399.33 238
tpm296.35 32296.22 31996.73 34398.88 33691.75 36699.21 14498.51 33493.27 35997.89 34699.21 29584.83 36499.70 30896.04 31098.18 35098.75 323
MVS_030498.88 20198.71 20499.39 19898.85 33798.91 23799.45 8199.30 27898.56 21997.26 35999.68 12896.18 27699.96 3599.17 8399.94 6599.29 247
tpm cat196.78 31396.98 30896.16 35198.85 33790.59 37499.08 18699.32 27192.37 36197.73 35599.46 23891.15 32999.69 31496.07 30998.80 32598.21 349
CANet99.11 16099.05 14999.28 22598.83 33998.56 25898.71 24699.41 24599.25 13499.23 24199.22 29397.66 22599.94 5799.19 7899.97 3399.33 238
FMVSNet597.80 28497.25 30099.42 18598.83 33998.97 22699.38 9299.80 4998.87 18999.25 23799.69 11780.60 37199.91 11298.96 11099.90 8799.38 226
API-MVS98.38 25898.39 23798.35 30498.83 33999.26 18499.14 16699.18 30298.59 21798.66 30898.78 34698.61 12899.57 35394.14 34899.56 25296.21 367
PatchmatchNetpermissive97.65 29297.80 28597.18 33798.82 34292.49 36199.17 15698.39 34098.12 26298.79 29799.58 19090.71 33799.89 14997.23 25199.41 28399.16 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RRT_test8_iter0597.35 30397.25 30097.63 32698.81 34393.13 35899.26 12799.89 1599.51 9299.83 5099.68 12879.03 37699.88 16499.53 3099.72 20199.89 8
PAPR97.56 29697.07 30599.04 25898.80 34498.11 28697.63 33299.25 28994.56 35798.02 34298.25 36397.43 23399.68 32590.90 36298.74 33299.33 238
CANet_DTU98.91 19598.85 19199.09 25198.79 34598.13 28398.18 28899.31 27599.48 9598.86 28999.51 21996.56 26199.95 4599.05 10099.95 5299.19 266
E-PMN97.14 30797.43 29596.27 34998.79 34591.62 36795.54 36699.01 31599.44 10798.88 28599.12 30692.78 31299.68 32594.30 34699.03 31597.50 360
PVSNet_095.53 1995.85 33395.31 33597.47 32998.78 34793.48 35795.72 36599.40 25296.18 33597.37 35697.73 36895.73 28299.58 35295.49 32881.40 37299.36 232
MAR-MVS98.24 26997.92 28099.19 24098.78 34799.65 9399.17 15699.14 30695.36 34598.04 34198.81 34597.47 23199.72 30295.47 33099.06 31298.21 349
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EMVS96.96 31097.28 29895.99 35298.76 34991.03 37095.26 36798.61 33099.34 12098.92 28198.88 34093.79 30199.66 33492.87 35599.05 31397.30 364
IB-MVS95.41 2095.30 33794.46 34197.84 32098.76 34995.33 34597.33 34796.07 36296.02 33695.37 37197.41 37276.17 37899.96 3597.54 22895.44 37098.22 348
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst97.73 28898.07 26696.73 34398.71 35192.00 36399.10 17998.86 31898.52 22598.92 28199.54 21091.90 32099.82 25498.02 18099.03 31598.37 341
MDTV_nov1_ep1397.73 28998.70 35290.83 37199.15 16498.02 34598.51 22698.82 29399.61 17390.98 33199.66 33496.89 26998.92 321
dp96.86 31197.07 30596.24 35098.68 35390.30 37599.19 15098.38 34197.35 30698.23 33199.59 18887.23 35299.82 25496.27 30298.73 33498.59 328
JIA-IIPM98.06 27797.92 28098.50 29898.59 35497.02 32198.80 23398.51 33499.88 1697.89 34699.87 3291.89 32199.90 13298.16 17397.68 35998.59 328
MVS95.72 33594.63 33998.99 26098.56 35597.98 29799.30 11498.86 31872.71 37297.30 35799.08 31098.34 16799.74 29789.21 36398.33 34499.26 250
TR-MVS97.44 29997.15 30498.32 30698.53 35697.46 31098.47 26797.91 34896.85 32398.21 33298.51 35796.42 26799.51 35992.16 35797.29 36197.98 356
DWT-MVSNet_test96.03 32995.80 32896.71 34598.50 35791.93 36499.25 13497.87 34995.99 33796.81 36397.61 37081.02 36999.66 33497.20 25497.98 35498.54 332
tpmvs97.39 30097.69 29096.52 34698.41 35891.76 36599.30 11498.94 31797.74 28597.85 34999.55 20892.40 31899.73 30096.25 30398.73 33498.06 354
LS3D99.24 11999.11 12899.61 12798.38 35999.79 3899.57 6899.68 10999.61 7799.15 25699.71 10498.70 11599.91 11297.54 22899.68 21599.13 281
cl2297.56 29697.28 29898.40 30298.37 36096.75 32797.24 35199.37 26297.31 30899.41 20599.22 29387.30 35199.37 36597.70 21499.62 23599.08 290
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19398.33 36199.56 11899.01 19699.59 16695.44 34499.57 15499.80 5895.64 28399.46 36396.47 29499.92 7799.21 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall98.03 27897.94 27898.32 30698.27 36296.43 33296.95 35799.41 24596.37 33299.43 19598.96 33194.74 29199.69 31497.71 21299.62 23598.83 319
TESTMET0.1,196.24 32595.84 32797.41 33198.24 36393.84 35597.38 34495.84 36498.43 23297.81 35098.56 35479.77 37299.89 14997.77 20498.77 32898.52 333
gg-mvs-nofinetune95.87 33295.17 33697.97 31698.19 36496.95 32299.69 3489.23 37799.89 1196.24 36699.94 1381.19 36899.51 35993.99 35298.20 34797.44 361
test-LLR97.15 30596.95 30997.74 32498.18 36595.02 34797.38 34496.10 36098.00 26897.81 35098.58 35190.04 34499.91 11297.69 22098.78 32698.31 342
test-mter96.23 32695.73 32997.74 32498.18 36595.02 34797.38 34496.10 36097.90 27797.81 35098.58 35179.12 37599.91 11297.69 22098.78 32698.31 342
EPMVS96.53 31996.32 31797.17 33898.18 36592.97 36099.39 9089.95 37698.21 25898.61 31199.59 18886.69 36199.72 30296.99 26399.23 30898.81 320
RRT_MVS98.75 21598.54 22399.41 19398.14 36898.61 25698.98 20799.66 11899.31 12599.84 4599.75 8491.98 31999.98 799.20 7699.95 5299.62 111
test0.0.03 197.37 30196.91 31298.74 28997.72 36997.57 30797.60 33497.36 35798.00 26899.21 24798.02 36590.04 34499.79 27898.37 15095.89 36998.86 315
GG-mvs-BLEND97.36 33297.59 37096.87 32599.70 2888.49 37894.64 37297.26 37580.66 37099.12 36691.50 35996.50 36796.08 369
gm-plane-assit97.59 37089.02 37793.47 35898.30 36199.84 23396.38 298
cascas96.99 30896.82 31497.48 32897.57 37295.64 34296.43 36399.56 18291.75 36297.13 36297.61 37095.58 28598.63 37096.68 28199.11 31098.18 352
EPNet_dtu97.62 29397.79 28797.11 33996.67 37392.31 36298.51 26498.04 34499.24 13695.77 36899.47 23593.78 30299.66 33498.98 10699.62 23599.37 229
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160095.89 33095.41 33397.31 33594.96 37493.89 35397.09 35499.22 29697.23 31198.88 28599.04 31679.23 37399.54 35496.24 30496.81 36398.50 337
miper_refine_blended95.89 33095.41 33397.31 33594.96 37493.89 35397.09 35499.22 29697.23 31198.88 28599.04 31679.23 37399.54 35496.24 30496.81 36398.50 337
EPNet98.13 27397.77 28899.18 24294.57 37697.99 29299.24 13597.96 34699.74 4297.29 35899.62 16493.13 30999.97 1798.59 14099.83 13799.58 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method91.72 33992.32 34289.91 35593.49 37770.18 37990.28 36899.56 18261.71 37395.39 37099.52 21593.90 29899.94 5798.76 12998.27 34699.62 111
tmp_tt95.75 33495.42 33296.76 34189.90 37894.42 35198.86 22097.87 34978.01 37099.30 23299.69 11797.70 21695.89 37399.29 6698.14 35199.95 1
testmvs28.94 34133.33 34315.79 35726.03 3799.81 38196.77 36015.67 38011.55 37523.87 37650.74 38219.03 3808.53 37623.21 37433.07 37329.03 372
test12329.31 34033.05 34518.08 35625.93 38012.24 38097.53 33810.93 38111.78 37424.21 37550.08 38321.04 3798.60 37523.51 37332.43 37433.39 371
test_blank8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
eth-test20.00 381
eth-test0.00 381
uanet_test8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
cdsmvs_eth3d_5k24.88 34233.17 3440.00 3580.00 3810.00 3820.00 36999.62 1400.00 3760.00 37799.13 30299.82 40.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas16.61 34322.14 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 199.28 410.00 3770.00 3750.00 3750.00 373
sosnet-low-res8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
sosnet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
Regformer8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re8.26 35111.02 3540.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37799.16 3000.00 3810.00 3770.00 3750.00 3750.00 373
uanet8.33 34411.11 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 377100.00 10.00 3810.00 3770.00 3750.00 3750.00 373
PC_three_145297.56 29299.68 11199.41 24599.09 6297.09 37296.66 28399.60 24599.62 111
test_241102_TWO99.54 19499.13 15799.76 7799.63 15598.32 17099.92 9197.85 19999.69 21099.75 42
test_0728_THIRD99.18 14599.62 13899.61 17398.58 13299.91 11297.72 21099.80 15999.77 35
GSMVS99.14 278
sam_mvs190.81 33699.14 278
sam_mvs90.52 340
MTGPAbinary99.53 203
test_post199.14 16651.63 38189.54 34799.82 25496.86 270
test_post52.41 38090.25 34299.86 197
patchmatchnet-post99.62 16490.58 33899.94 57
MTMP99.09 18398.59 332
test9_res95.10 33699.44 27799.50 183
agg_prior294.58 34499.46 27699.50 183
test_prior499.19 20498.00 309
test_prior297.95 31697.87 27998.05 33999.05 31397.90 20395.99 31399.49 271
旧先验297.94 31895.33 34698.94 27799.88 16496.75 277
新几何298.04 305
无先验98.01 30799.23 29395.83 33999.85 21695.79 32299.44 209
原ACMM297.92 320
testdata299.89 14995.99 313
segment_acmp98.37 163
testdata197.72 32897.86 282
plane_prior599.54 19499.82 25495.84 32099.78 17099.60 126
plane_prior499.25 286
plane_prior399.31 17598.36 24199.14 258
plane_prior298.80 23398.94 178
plane_prior99.24 19398.42 27397.87 27999.71 205
n20.00 382
nn0.00 382
door-mid99.83 34
test1199.29 280
door99.77 63
HQP5-MVS98.94 230
BP-MVS94.73 340
HQP4-MVS98.15 33399.70 30899.53 165
HQP3-MVS99.37 26299.67 222
HQP2-MVS96.67 259
MDTV_nov1_ep13_2view91.44 36999.14 16697.37 30599.21 24791.78 32496.75 27799.03 299
ACMMP++_ref99.94 65
ACMMP++99.79 164
Test By Simon98.41 157