This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 50100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 27099.76 5199.34 10399.97 298.93 18199.91 2099.79 6598.68 11899.93 7196.80 27699.56 25399.30 244
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
DROMVSNet99.69 2199.69 1899.68 8999.71 11399.91 299.76 1399.96 499.86 1999.51 18099.39 25399.57 2099.93 7199.64 1899.86 11999.20 264
UA-Net99.78 1399.76 1499.86 1699.72 11099.71 7199.91 399.95 599.96 299.71 10399.91 2099.15 5599.97 1799.50 35100.00 199.90 4
CS-MVS-test99.43 6699.40 6899.53 15499.51 19899.84 1999.60 6399.94 699.52 9199.10 26498.89 33999.24 4699.90 13399.11 9599.66 22798.84 319
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2599.66 8999.69 3499.92 799.67 6199.77 7599.75 8599.61 1799.98 799.35 5499.98 2499.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5599.78 7099.92 1799.37 3199.88 16598.93 11699.95 5299.60 126
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2899.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CS-MVS99.40 7799.43 6299.29 22399.44 23199.72 6899.36 10099.91 1099.71 4799.28 23398.83 34399.22 4899.86 19899.40 4899.77 17598.29 345
Effi-MVS+99.06 16798.97 17399.34 21199.31 27298.98 22598.31 28199.91 1098.81 19698.79 29798.94 33499.14 5899.84 23498.79 12598.74 33399.20 264
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2499.94 1199.95 1299.73 899.90 13399.65 1699.97 3399.69 55
PVSNet_Blended_VisFu99.40 7799.38 7199.44 18099.90 1998.66 25398.94 21499.91 1097.97 27299.79 6799.73 9299.05 7299.97 1799.15 8799.99 1299.68 61
PMMVS299.48 5499.45 5799.57 14199.76 8698.99 22498.09 30099.90 1498.95 17799.78 7099.58 19199.57 2099.93 7199.48 3699.95 5299.79 30
testgi99.29 10899.26 10299.37 20699.75 9798.81 24398.84 22499.89 1598.38 23999.75 8399.04 31799.36 3499.86 19899.08 9899.25 30599.45 204
test20.0399.55 4599.54 4599.58 13699.79 6899.37 16399.02 19599.89 1599.60 8399.82 5299.62 16598.81 9799.89 15099.43 4199.86 11999.47 198
RRT_test8_iter0597.35 30397.25 30097.63 32798.81 34493.13 35999.26 12899.89 1599.51 9299.83 5099.68 12979.03 37799.88 16599.53 3099.72 20299.89 8
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2399.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2599.25 18998.78 23899.88 1898.66 21099.96 899.79 6597.45 23399.93 7199.34 5599.99 1299.78 32
Patchmatch-RL test98.60 23198.36 24099.33 21399.77 8299.07 22098.27 28499.87 2098.91 18499.74 9299.72 9890.57 34099.79 27998.55 14299.85 12399.11 283
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4399.89 2699.87 3299.63 1499.87 17899.54 2899.92 7799.63 100
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2899.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
PM-MVS99.36 9099.29 9599.58 13699.83 3999.66 8998.95 21299.86 2298.85 19199.81 5999.73 9298.40 16299.92 9198.36 15199.83 13899.17 271
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 5299.91 2099.89 2699.60 1999.87 17899.59 2199.74 18999.71 48
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22699.86 2299.68 5799.65 12499.88 2997.67 22299.87 17899.03 10199.86 11999.76 39
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2099.85 2699.70 5299.92 1899.93 1499.45 2399.97 1799.36 53100.00 199.85 13
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4499.68 3799.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
EU-MVSNet99.39 8299.62 2798.72 29199.88 2596.44 33299.56 7099.85 2699.90 799.90 2299.85 4198.09 18999.83 24599.58 2499.95 5299.90 4
casdiffmvs99.63 3299.61 3199.67 9299.79 6899.59 11399.13 17399.85 2699.79 3899.76 7799.72 9899.33 3699.82 25599.21 7399.94 6599.59 135
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3699.93 1499.93 1498.54 13999.93 7199.59 2199.98 2499.76 39
CSCG99.37 8799.29 9599.60 13099.71 11399.46 13699.43 8799.85 2698.79 19999.41 20599.60 18398.92 8599.92 9198.02 18099.92 7799.43 215
IterMVS-SCA-FT99.00 18299.16 11498.51 29899.75 9795.90 34098.07 30399.84 3299.84 2799.89 2699.73 9296.01 28099.99 599.33 58100.00 199.63 100
Gipumacopyleft99.57 3999.59 3499.49 16599.98 399.71 7199.72 2399.84 3299.81 3399.94 1199.78 7198.91 8799.71 30798.41 14899.95 5299.05 298
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
AllTest99.21 13499.07 14399.63 11699.78 7499.64 9699.12 17799.83 3498.63 21399.63 13099.72 9898.68 11899.75 29696.38 29999.83 13899.51 177
TestCases99.63 11699.78 7499.64 9699.83 3498.63 21399.63 13099.72 9898.68 11899.75 29696.38 29999.83 13899.51 177
door-mid99.83 34
IterMVS98.97 18699.16 11498.42 30299.74 10395.64 34398.06 30599.83 3499.83 3099.85 4299.74 8896.10 27999.99 599.27 69100.00 199.63 100
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3499.47 13298.07 30399.83 3498.64 21299.89 2699.60 18392.57 314100.00 199.33 5899.97 3399.72 45
GeoE99.69 2199.66 2299.78 3799.76 8699.76 5199.60 6399.82 3999.46 10499.75 8399.56 20299.63 1499.95 4599.43 4199.88 10399.62 111
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18499.25 28699.69 8299.05 19099.82 3999.50 9398.97 27499.05 31498.98 7899.98 798.20 16699.24 30798.62 327
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2799.94 1199.91 2099.13 6099.96 3599.83 999.99 1299.83 18
DSMNet-mixed99.48 5499.65 2498.95 26499.71 11397.27 31699.50 7599.82 3999.59 8599.41 20599.85 4199.62 16100.00 199.53 3099.89 9599.59 135
PVSNet_BlendedMVS99.03 17499.01 16199.09 25299.54 18397.99 29398.58 25399.82 3997.62 29099.34 21999.71 10598.52 14699.77 29097.98 18599.97 3399.52 175
PVSNet_Blended98.70 22298.59 21599.02 26099.54 18397.99 29397.58 33699.82 3995.70 34299.34 21998.98 32798.52 14699.77 29097.98 18599.83 13899.30 244
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6899.59 6599.82 3999.39 11599.82 5299.84 4699.38 2999.91 11399.38 5099.93 7399.80 24
1112_ss99.05 17098.84 19399.67 9299.66 13999.29 17998.52 26499.82 3997.65 28999.43 19599.16 30196.42 26899.91 11399.07 9999.84 12899.80 24
RPSCF99.18 14399.02 15899.64 11199.83 3999.85 1499.44 8599.82 3998.33 25199.50 18299.78 7197.90 20499.65 34296.78 27799.83 13899.44 209
diffmvs99.34 9799.32 8499.39 19999.67 13898.77 24698.57 25799.81 4899.61 7799.48 18499.41 24698.47 15099.86 19898.97 10899.90 8799.53 165
MVSFormer99.41 7499.44 5999.31 22099.57 17198.40 27099.77 1199.80 4999.73 4399.63 13099.30 27598.02 19599.98 799.43 4199.69 21199.55 152
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4399.97 699.92 1799.77 799.98 799.43 41100.00 199.90 4
baseline99.63 3299.62 2799.66 9999.80 5899.62 10299.44 8599.80 4999.71 4799.72 9899.69 11899.15 5599.83 24599.32 6099.94 6599.53 165
FMVSNet597.80 28497.25 30099.42 18698.83 34098.97 22799.38 9399.80 4998.87 18999.25 23799.69 11880.60 37299.91 11398.96 11099.90 8799.38 226
Test_1112_low_res98.95 19298.73 20299.63 11699.68 13399.15 20998.09 30099.80 4997.14 31699.46 18999.40 24996.11 27899.89 15099.01 10399.84 12899.84 14
USDC98.96 18998.93 17899.05 25899.54 18397.99 29397.07 35799.80 4998.21 25899.75 8399.77 7898.43 15599.64 34497.90 19199.88 10399.51 177
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3599.90 599.37 9799.79 5599.83 3099.88 3299.85 4198.42 15799.90 13399.60 2099.73 19699.49 188
EIA-MVS99.12 15699.01 16199.45 17899.36 25399.62 10299.34 10399.79 5598.41 23598.84 29198.89 33998.75 11299.84 23498.15 17499.51 26898.89 313
ETV-MVS99.18 14399.18 11299.16 24499.34 26599.28 18199.12 17799.79 5599.48 9598.93 27898.55 35699.40 2499.93 7198.51 14499.52 26798.28 346
Fast-Effi-MVS+99.02 17698.87 18999.46 17499.38 24899.50 12899.04 19299.79 5597.17 31498.62 31098.74 34999.34 3599.95 4598.32 15699.41 28498.92 311
ACMH98.42 699.59 3899.54 4599.72 7999.86 3199.62 10299.56 7099.79 5598.77 20299.80 6299.85 4199.64 1399.85 21798.70 13499.89 9599.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal99.43 6699.38 7199.60 13099.87 2999.75 5599.59 6599.78 6099.71 4799.90 2299.69 11898.85 9599.90 13397.25 25199.78 17199.15 275
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2599.86 1399.72 2399.78 6099.90 799.82 5299.83 4798.45 15499.87 17899.51 3399.97 3399.86 11
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3999.70 7899.38 9399.78 6099.53 8999.67 11699.78 7199.19 5199.86 19897.32 24199.87 11299.55 152
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
door99.77 63
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3499.77 6399.78 3999.93 1499.89 2697.94 20199.92 9199.65 1699.98 2499.62 111
wuyk23d97.58 29599.13 12192.93 35599.69 12499.49 12999.52 7399.77 6397.97 27299.96 899.79 6599.84 399.94 5795.85 32099.82 14779.36 371
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3199.76 5199.32 10899.77 6399.53 8999.77 7599.76 8199.26 4599.78 28297.77 20499.88 10399.60 126
LF4IMVS99.01 18098.92 18299.27 22899.71 11399.28 18198.59 25299.77 6398.32 25299.39 21199.41 24698.62 12799.84 23496.62 28899.84 12898.69 325
Anonymous2024052199.44 6599.42 6599.49 16599.89 2198.96 22999.62 5399.76 6899.85 2499.82 5299.88 2996.39 27199.97 1799.59 2199.98 2499.55 152
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15299.53 18899.25 18998.29 28299.76 6899.07 16499.42 19799.61 17498.86 9399.87 17896.45 29699.68 21699.49 188
v899.68 2499.69 1899.65 10499.80 5899.40 15599.66 4599.76 6899.64 6999.93 1499.85 4198.66 12399.84 23499.88 699.99 1299.71 48
abl_699.36 9099.23 10899.75 5799.71 11399.74 6199.33 10599.76 6899.07 16499.65 12499.63 15699.09 6399.92 9197.13 25999.76 17899.58 140
114514_t98.49 24898.11 26499.64 11199.73 10699.58 11699.24 13699.76 6889.94 36699.42 19799.56 20297.76 21699.86 19897.74 20999.82 14799.47 198
EG-PatchMatch MVS99.57 3999.56 4499.62 12599.77 8299.33 17399.26 12899.76 6899.32 12499.80 6299.78 7199.29 3999.87 17899.15 8799.91 8699.66 78
IterMVS-LS99.41 7499.47 5399.25 23399.81 5398.09 28998.85 22399.76 6899.62 7399.83 5099.64 14698.54 13999.97 1799.15 8799.99 1299.68 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
new-patchmatchnet99.35 9299.57 4098.71 29399.82 4696.62 33098.55 25999.75 7599.50 9399.88 3299.87 3299.31 3799.88 16599.43 41100.00 199.62 111
FIs99.65 3199.58 3799.84 1999.84 3599.85 1499.66 4599.75 7599.86 1999.74 9299.79 6598.27 17499.85 21799.37 5299.93 7399.83 18
v1099.69 2199.69 1899.66 9999.81 5399.39 15799.66 4599.75 7599.60 8399.92 1899.87 3298.75 11299.86 19899.90 299.99 1299.73 44
WR-MVS_H99.61 3799.53 4999.87 1499.80 5899.83 2499.67 4199.75 7599.58 8699.85 4299.69 11898.18 18599.94 5799.28 6899.95 5299.83 18
TinyColmap98.97 18698.93 17899.07 25699.46 22698.19 28197.75 32899.75 7598.79 19999.54 16899.70 11298.97 8099.62 34696.63 28799.83 13899.41 219
Anonymous2023120699.35 9299.31 8599.47 17199.74 10399.06 22299.28 12399.74 8099.23 13899.72 9899.53 21497.63 22899.88 16599.11 9599.84 12899.48 193
XVG-OURS99.21 13499.06 14599.65 10499.82 4699.62 10297.87 32499.74 8098.36 24199.66 12099.68 12999.71 999.90 13396.84 27499.88 10399.43 215
MSDG99.08 16598.98 17299.37 20699.60 15299.13 21097.54 33799.74 8098.84 19499.53 17399.55 20999.10 6199.79 27997.07 26299.86 11999.18 269
pmmvs599.19 13999.11 12899.42 18699.76 8698.88 24098.55 25999.73 8398.82 19599.72 9899.62 16596.56 26299.82 25599.32 6099.95 5299.56 149
Anonymous2023121199.62 3599.57 4099.76 4799.61 15099.60 11099.81 999.73 8399.82 3299.90 2299.90 2297.97 20099.86 19899.42 4699.96 4599.80 24
PS-CasMVS99.66 2699.58 3799.89 799.80 5899.85 1499.66 4599.73 8399.62 7399.84 4599.71 10598.62 12799.96 3599.30 6399.96 4599.86 11
PEN-MVS99.66 2699.59 3499.89 799.83 3999.87 1099.66 4599.73 8399.70 5299.84 4599.73 9298.56 13699.96 3599.29 6699.94 6599.83 18
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3599.64 9698.25 28699.73 8398.39 23899.63 13099.43 24499.70 1199.90 13397.34 24098.64 33799.44 209
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4699.63 10099.16 16399.73 8397.56 29299.64 12699.69 11899.37 3199.89 15096.66 28499.87 11299.69 55
LGP-MVS_train99.74 6399.82 4699.63 10099.73 8397.56 29299.64 12699.69 11899.37 3199.89 15096.66 28499.87 11299.69 55
MVS_111021_LR99.13 15499.03 15799.42 18699.58 16199.32 17597.91 32399.73 8398.68 20999.31 22799.48 23199.09 6399.66 33597.70 21599.77 17599.29 247
ITE_SJBPF99.38 20399.63 14599.44 14399.73 8398.56 21999.33 22199.53 21498.88 9299.68 32696.01 31299.65 23199.02 304
PGM-MVS99.20 13699.01 16199.77 4099.75 9799.71 7199.16 16399.72 9297.99 27099.42 19799.60 18398.81 9799.93 7196.91 26899.74 18999.66 78
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25699.80 5897.83 30098.89 21699.72 9299.29 12699.63 13099.70 11296.47 26699.89 15098.17 17299.82 14799.50 183
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11699.82 4699.58 11698.83 22699.72 9298.36 24199.60 14699.71 10598.92 8599.91 11397.08 26199.84 12899.40 221
FOURS199.83 3999.89 899.74 1799.71 9599.69 5599.63 130
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3399.97 3399.84 14
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5899.87 1099.67 4199.71 9599.72 4699.84 4599.78 7198.67 12199.97 1799.30 6399.95 5299.80 24
MVS_111021_HR99.12 15699.02 15899.40 19699.50 20599.11 21297.92 32199.71 9598.76 20599.08 26699.47 23699.17 5399.54 35597.85 19999.76 17899.54 160
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 11099.44 14399.24 13699.71 9599.27 13099.93 1499.90 2299.70 1199.93 7198.99 10499.99 1299.64 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03099.70 1999.66 2299.82 2399.76 8699.84 1999.61 5899.70 10099.93 499.78 7099.68 12999.10 6199.78 28299.45 3999.96 4599.83 18
VPNet99.46 6199.37 7499.71 8399.82 4699.59 11399.48 7999.70 10099.81 3399.69 10999.58 19197.66 22699.86 19899.17 8399.44 27899.67 68
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3999.81 3199.52 7399.70 10098.35 24699.51 18099.50 22399.31 3799.88 16598.18 17099.84 12899.69 55
GBi-Net99.42 7099.31 8599.73 7399.49 21099.77 4499.68 3799.70 10099.44 10799.62 13899.83 4797.21 24599.90 13398.96 11099.90 8799.53 165
test199.42 7099.31 8599.73 7399.49 21099.77 4499.68 3799.70 10099.44 10799.62 13899.83 4797.21 24599.90 13398.96 11099.90 8799.53 165
FMVSNet199.66 2699.63 2699.73 7399.78 7499.77 4499.68 3799.70 10099.67 6199.82 5299.83 4798.98 7899.90 13399.24 7099.97 3399.53 165
APDe-MVS99.48 5499.36 7799.85 1899.55 18299.81 3199.50 7599.69 10698.99 17199.75 8399.71 10598.79 10499.93 7198.46 14699.85 12399.80 24
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13399.75 5599.62 5399.69 10699.85 2499.80 6299.81 5798.81 9799.91 11399.47 3799.88 10399.70 51
OpenMVScopyleft98.12 1098.23 27097.89 28499.26 23099.19 29799.26 18599.65 5099.69 10691.33 36498.14 33799.77 7898.28 17399.96 3595.41 33299.55 25798.58 331
ppachtmachnet_test98.89 20099.12 12598.20 31299.66 13995.24 34797.63 33399.68 10999.08 16299.78 7099.62 16598.65 12599.88 16598.02 18099.96 4599.48 193
test_part198.63 22798.26 25099.75 5799.40 24399.49 12999.67 4199.68 10999.86 1999.88 3299.86 3886.73 36099.93 7199.34 5599.97 3399.81 23
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19699.56 18199.37 16397.97 31699.68 10997.49 29999.08 26699.35 26695.41 28799.82 25597.70 21598.19 35099.01 305
test_040299.22 12999.14 11899.45 17899.79 6899.43 14799.28 12399.68 10999.54 8799.40 21099.56 20299.07 6999.82 25596.01 31299.96 4599.11 283
LS3D99.24 11999.11 12899.61 12898.38 36099.79 3899.57 6899.68 10999.61 7799.15 25699.71 10598.70 11699.91 11397.54 22999.68 21699.13 282
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5399.75 5599.61 5899.67 11497.72 28699.35 21699.25 28799.23 4799.92 9197.21 25499.82 14799.67 68
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CR-MVSNet98.35 26298.20 25598.83 28399.05 31898.12 28599.30 11599.67 11497.39 30499.16 25499.79 6591.87 32399.91 11398.78 12898.77 32998.44 340
Patchmtry98.78 21198.54 22399.49 16598.89 33499.19 20599.32 10899.67 11499.65 6799.72 9899.79 6591.87 32399.95 4598.00 18499.97 3399.33 238
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13299.68 13399.45 14198.99 20499.67 11499.48 9599.55 16699.36 26194.92 28999.86 19898.95 11496.57 36699.45 204
miper_lstm_enhance98.65 22698.60 21398.82 28699.20 29597.33 31597.78 32799.66 11899.01 17099.59 14999.50 22394.62 29499.85 21798.12 17599.90 8799.26 250
Effi-MVS+-dtu99.07 16698.92 18299.52 15698.89 33499.78 4199.15 16599.66 11899.34 12098.92 28199.24 29297.69 21999.98 798.11 17699.28 30198.81 321
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27199.59 15698.23 27898.47 26899.66 11899.61 7799.68 11198.94 33499.39 2599.97 1799.18 8099.55 25798.51 335
mvs-test198.83 20698.70 20799.22 23798.89 33499.65 9498.88 21799.66 11899.34 12098.29 32698.94 33497.69 21999.96 3598.11 17698.54 34198.04 356
xiu_mvs_v1_base99.23 12099.34 7998.91 27199.59 15698.23 27898.47 26899.66 11899.61 7799.68 11198.94 33499.39 2599.97 1799.18 8099.55 25798.51 335
pmmvs-eth3d99.48 5499.47 5399.51 15999.77 8299.41 15498.81 23199.66 11899.42 11499.75 8399.66 13999.20 5099.76 29298.98 10699.99 1299.36 232
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27199.59 15698.23 27898.47 26899.66 11899.61 7799.68 11198.94 33499.39 2599.97 1799.18 8099.55 25798.51 335
canonicalmvs99.02 17699.00 16499.09 25299.10 31398.70 24999.61 5899.66 11899.63 7298.64 30997.65 37099.04 7399.54 35598.79 12598.92 32299.04 299
RRT_MVS98.75 21598.54 22399.41 19498.14 36998.61 25798.98 20899.66 11899.31 12599.84 4599.75 8591.98 32099.98 799.20 7699.95 5299.62 111
pmmvs398.08 27697.80 28598.91 27199.41 24097.69 30697.87 32499.66 11895.87 33899.50 18299.51 22090.35 34299.97 1798.55 14299.47 27599.08 291
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7499.55 12298.88 21799.66 11897.11 31899.47 18699.60 18399.07 6999.89 15096.18 30799.85 12399.58 140
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SF-MVS99.10 16498.93 17899.62 12599.58 16199.51 12799.13 17399.65 12997.97 27299.42 19799.61 17498.86 9399.87 17896.45 29699.68 21699.49 188
v124099.56 4299.58 3799.51 15999.80 5899.00 22399.00 19999.65 12999.15 15599.90 2299.75 8599.09 6399.88 16599.90 299.96 4599.67 68
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6899.68 8599.50 7599.65 12998.07 26699.52 17599.69 11898.57 13499.92 9197.18 25699.79 16599.63 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS99.11 16098.95 17799.59 13299.13 30599.59 11399.17 15799.65 12997.88 27899.25 23799.46 23998.97 8099.80 27697.26 24899.82 14799.37 229
F-COLMAP98.74 21798.45 23099.62 12599.57 17199.47 13298.84 22499.65 12996.31 33398.93 27899.19 30097.68 22199.87 17896.52 29199.37 29199.53 165
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5899.69 8299.13 17399.65 12998.99 17199.64 12699.72 9899.39 2599.86 19898.23 16399.81 15599.60 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CVMVSNet98.61 22998.88 18897.80 32299.58 16193.60 35799.26 12899.64 13599.66 6599.72 9899.67 13593.26 30899.93 7199.30 6399.81 15599.87 9
OMC-MVS98.90 19798.72 20399.44 18099.39 24599.42 15098.58 25399.64 13597.31 30899.44 19199.62 16598.59 13199.69 31596.17 30899.79 16599.22 258
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3999.83 2498.61 24999.63 13796.84 32499.44 19199.58 19198.81 9799.91 11397.70 21599.82 14799.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 16199.64 9699.30 11599.63 13799.61 7799.71 10399.56 20298.76 11099.96 3599.14 9399.92 7799.68 61
DP-MVS Recon98.50 24598.23 25299.31 22099.49 21099.46 13698.56 25899.63 13794.86 35398.85 29099.37 25697.81 21299.59 35296.08 30999.44 27898.88 314
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 18399.74 6199.26 12899.62 14099.16 15199.52 17599.64 14698.41 15899.91 11397.27 24699.61 24399.54 160
RE-MVS-def99.13 12199.54 18399.74 6199.26 12899.62 14099.16 15199.52 17599.64 14698.57 13497.27 24699.61 24399.54 160
cdsmvs_eth3d_5k24.88 34333.17 3450.00 3590.00 3820.00 3830.00 37099.62 1400.00 3770.00 37899.13 30399.82 40.00 3780.00 3760.00 3760.00 374
v14419299.55 4599.54 4599.58 13699.78 7499.20 20499.11 17999.62 14099.18 14599.89 2699.72 9898.66 12399.87 17899.88 699.97 3399.66 78
CP-MVS99.23 12099.05 14999.75 5799.66 13999.66 8999.38 9399.62 14098.38 23999.06 27099.27 28298.79 10499.94 5797.51 23299.82 14799.66 78
RPMNet98.60 23198.53 22598.83 28399.05 31898.12 28599.30 11599.62 14099.86 1999.16 25499.74 8892.53 31699.92 9198.75 13098.77 32998.44 340
TAPA-MVS97.92 1398.03 27897.55 29499.46 17499.47 22199.44 14398.50 26699.62 14086.79 36799.07 26999.26 28598.26 17599.62 34697.28 24599.73 19699.31 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVS++99.38 8499.25 10499.77 4099.03 32199.77 4499.74 1799.61 14799.18 14599.76 7799.61 17499.00 7599.92 9197.72 21099.60 24699.62 111
test117299.23 12099.05 14999.74 6399.52 19399.75 5599.20 14699.61 14798.97 17399.48 18499.58 19198.41 15899.91 11397.15 25899.55 25799.57 146
test_0728_SECOND99.83 2199.70 12199.79 3899.14 16799.61 14799.92 9197.88 19399.72 20299.77 35
v192192099.56 4299.57 4099.55 14899.75 9799.11 21299.05 19099.61 14799.15 15599.88 3299.71 10599.08 6799.87 17899.90 299.97 3399.66 78
v114499.54 4799.53 4999.59 13299.79 6899.28 18199.10 18099.61 14799.20 14399.84 4599.73 9298.67 12199.84 23499.86 899.98 2499.64 95
XVS99.27 11399.11 12899.75 5799.71 11399.71 7199.37 9799.61 14799.29 12698.76 30199.47 23698.47 15099.88 16597.62 22399.73 19699.67 68
X-MVStestdata96.09 32794.87 33799.75 5799.71 11399.71 7199.37 9799.61 14799.29 12698.76 30161.30 38098.47 15099.88 16597.62 22399.73 19699.67 68
SD-MVS99.01 18099.30 9098.15 31399.50 20599.40 15598.94 21499.61 14799.22 14299.75 8399.82 5499.54 2295.51 37597.48 23399.87 11299.54 160
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18899.75 5599.27 12699.61 14799.19 14499.57 15499.64 14698.76 11099.90 13397.29 24399.62 23699.56 149
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 22199.56 11998.97 21099.61 14799.43 11299.67 11699.28 28097.85 21099.95 4599.17 8399.81 15599.65 86
CP-MVSNet99.54 4799.43 6299.87 1499.76 8699.82 2899.57 6899.61 14799.54 8799.80 6299.64 14697.79 21499.95 4599.21 7399.94 6599.84 14
DP-MVS99.48 5499.39 6999.74 6399.57 17199.62 10299.29 12299.61 14799.87 1799.74 9299.76 8198.69 11799.87 17898.20 16699.80 16099.75 42
9.1498.64 21099.45 22998.81 23199.60 15997.52 29799.28 23399.56 20298.53 14399.83 24595.36 33499.64 233
ETH3D-3000-0.198.77 21298.50 22799.59 13299.47 22199.53 12498.77 23999.60 15997.33 30799.23 24199.50 22397.91 20399.83 24595.02 33999.67 22399.41 219
SR-MVS99.19 13999.00 16499.74 6399.51 19899.72 6899.18 15299.60 15998.85 19199.47 18699.58 19198.38 16399.92 9196.92 26799.54 26399.57 146
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 17199.77 4498.74 24299.60 15998.55 22199.76 7799.69 11898.23 17999.92 9196.39 29899.75 18199.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
v119299.57 3999.57 4099.57 14199.77 8299.22 19899.04 19299.60 15999.18 14599.87 3999.72 9899.08 6799.85 21799.89 599.98 2499.66 78
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19899.58 11698.98 20899.60 15999.43 11299.70 10699.36 26197.70 21799.88 16599.20 7699.87 11299.59 135
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2999.66 8999.18 15299.60 15998.55 22199.57 15499.67 13599.03 7499.94 5797.01 26399.80 16099.69 55
Skip Steuart: Steuart Systems R&D Blog.
cl____98.54 24198.41 23598.92 26999.03 32197.80 30297.46 34399.59 16698.90 18599.60 14699.46 23993.85 30199.78 28297.97 18799.89 9599.17 271
DIV-MVS_self_test98.54 24198.42 23498.92 26999.03 32197.80 30297.46 34399.59 16698.90 18599.60 14699.46 23993.87 30099.78 28297.97 18799.89 9599.18 269
HFP-MVS99.25 11699.08 13999.76 4799.73 10699.70 7899.31 11299.59 16698.36 24199.36 21499.37 25698.80 10199.91 11397.43 23699.75 18199.68 61
v14899.40 7799.41 6699.39 19999.76 8698.94 23199.09 18499.59 16699.17 14999.81 5999.61 17498.41 15899.69 31599.32 6099.94 6599.53 165
region2R99.23 12099.05 14999.77 4099.76 8699.70 7899.31 11299.59 16698.41 23599.32 22399.36 26198.73 11599.93 7197.29 24399.74 18999.67 68
#test#99.12 15698.90 18699.76 4799.73 10699.70 7899.10 18099.59 16697.60 29199.36 21499.37 25698.80 10199.91 11396.84 27499.75 18199.68 61
V4299.56 4299.54 4599.63 11699.79 6899.46 13699.39 9199.59 16699.24 13699.86 4099.70 11298.55 13799.82 25599.79 1199.95 5299.60 126
ACMMPR99.23 12099.06 14599.76 4799.74 10399.69 8299.31 11299.59 16698.36 24199.35 21699.38 25598.61 12999.93 7197.43 23699.75 18199.67 68
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19498.33 36299.56 11999.01 19799.59 16695.44 34499.57 15499.80 5995.64 28499.46 36496.47 29599.92 7799.21 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
our_test_398.85 20599.09 13798.13 31499.66 13994.90 35097.72 32999.58 17599.07 16499.64 12699.62 16598.19 18399.93 7198.41 14899.95 5299.55 152
v2v48299.50 5099.47 5399.58 13699.78 7499.25 18999.14 16799.58 17599.25 13499.81 5999.62 16598.24 17699.84 23499.83 999.97 3399.64 95
test072699.69 12499.80 3699.24 13699.57 17799.16 15199.73 9699.65 14498.35 166
MSP-MVS99.04 17398.79 20099.81 2699.78 7499.73 6499.35 10299.57 17798.54 22499.54 16898.99 32496.81 25999.93 7196.97 26599.53 26599.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20599.62 10299.01 19799.57 17796.80 32699.54 16899.63 15698.29 17299.91 11395.24 33599.71 20699.61 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FMVSNet299.35 9299.28 9799.55 14899.49 21099.35 17099.45 8299.57 17799.44 10799.70 10699.74 8897.21 24599.87 17899.03 10199.94 6599.44 209
TAMVS99.49 5299.45 5799.63 11699.48 21699.42 15099.45 8299.57 17799.66 6599.78 7099.83 4797.85 21099.86 19899.44 4099.96 4599.61 122
test_method91.72 33992.32 34289.91 35693.49 37870.18 38090.28 36999.56 18261.71 37395.39 37099.52 21693.90 29999.94 5798.76 12998.27 34799.62 111
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8699.73 6499.28 12399.56 18298.19 26099.14 25899.29 27898.84 9699.92 9197.53 23199.80 16099.64 95
c3_l98.72 22098.71 20498.72 29199.12 30797.22 31897.68 33299.56 18298.90 18599.54 16899.48 23196.37 27299.73 30197.88 19399.88 10399.21 260
cascas96.99 30896.82 31497.48 32997.57 37395.64 34396.43 36499.56 18291.75 36297.13 36297.61 37195.58 28698.63 37196.68 28299.11 31198.18 353
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21199.78 7498.88 24099.61 5899.56 18299.11 16199.24 24099.56 20293.00 31299.78 28297.43 23699.89 9599.35 235
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24599.42 15099.70 2899.56 18299.23 13899.35 21699.80 5999.17 5399.95 4598.21 16599.84 12899.59 135
test_one_060199.63 14599.76 5199.55 18899.23 13899.31 22799.61 17498.59 131
GST-MVS99.16 14898.96 17599.75 5799.73 10699.73 6499.20 14699.55 18898.22 25799.32 22399.35 26698.65 12599.91 11396.86 27199.74 18999.62 111
MVP-Stereo99.16 14899.08 13999.43 18499.48 21699.07 22099.08 18799.55 18898.63 21399.31 22799.68 12998.19 18399.78 28298.18 17099.58 25199.45 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous99.28 10999.39 6998.94 26599.19 29797.81 30199.02 19599.55 18899.78 3999.85 4299.80 5998.24 17699.86 19899.57 2599.50 27099.15 275
CPTT-MVS98.74 21798.44 23299.64 11199.61 15099.38 16099.18 15299.55 18896.49 32999.27 23599.37 25697.11 25199.92 9195.74 32599.67 22399.62 111
CLD-MVS98.76 21498.57 21999.33 21399.57 17198.97 22797.53 33999.55 18896.41 33099.27 23599.13 30399.07 6999.78 28296.73 28099.89 9599.23 256
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SED-MVS99.40 7799.28 9799.77 4099.69 12499.82 2899.20 14699.54 19499.13 15799.82 5299.63 15698.91 8799.92 9197.85 19999.70 20899.58 140
test_241102_TWO99.54 19499.13 15799.76 7799.63 15698.32 17199.92 9197.85 19999.69 21199.75 42
test_241102_ONE99.69 12499.82 2899.54 19499.12 16099.82 5299.49 22898.91 8799.52 359
eth_miper_zixun_eth98.68 22498.71 20498.60 29599.10 31396.84 32797.52 34199.54 19498.94 17899.58 15199.48 23196.25 27599.76 29298.01 18399.93 7399.21 260
HQP_MVS98.90 19798.68 20999.55 14899.58 16199.24 19498.80 23499.54 19498.94 17899.14 25899.25 28797.24 24399.82 25595.84 32199.78 17199.60 126
plane_prior599.54 19499.82 25595.84 32199.78 17199.60 126
mPP-MVS99.19 13999.00 16499.76 4799.76 8699.68 8599.38 9399.54 19498.34 25099.01 27299.50 22398.53 14399.93 7197.18 25699.78 17199.66 78
CDS-MVSNet99.22 12999.13 12199.50 16299.35 25599.11 21298.96 21199.54 19499.46 10499.61 14499.70 11296.31 27399.83 24599.34 5599.88 10399.55 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PatchMatch-RL98.68 22498.47 22899.30 22299.44 23199.28 18198.14 29499.54 19497.12 31799.11 26299.25 28797.80 21399.70 30996.51 29299.30 29998.93 310
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9799.81 3198.95 21299.53 20398.27 25599.53 17399.73 9298.75 11299.87 17897.70 21599.83 13899.68 61
zzz-MVS99.30 10699.14 11899.80 2999.81 5399.81 3198.73 24499.53 20399.27 13099.42 19799.63 15698.21 18099.95 4597.83 20299.79 16599.65 86
MTGPAbinary99.53 203
MTAPA99.35 9299.20 11099.80 2999.81 5399.81 3199.33 10599.53 20399.27 13099.42 19799.63 15698.21 18099.95 4597.83 20299.79 16599.65 86
Regformer-499.45 6399.44 5999.50 16299.52 19398.94 23199.17 15799.53 20399.64 6999.76 7799.60 18398.96 8399.90 13398.91 11799.84 12899.67 68
Regformer-299.34 9799.27 10099.53 15499.41 24099.10 21698.99 20499.53 20399.47 10099.66 12099.52 21698.80 10199.89 15098.31 15799.74 18999.60 126
DU-MVS99.33 10199.21 10999.71 8399.43 23499.56 11998.83 22699.53 20399.38 11699.67 11699.36 26197.67 22299.95 4599.17 8399.81 15599.63 100
DELS-MVS99.34 9799.30 9099.48 16999.51 19899.36 16698.12 29699.53 20399.36 11999.41 20599.61 17499.22 4899.87 17899.21 7399.68 21699.20 264
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EGC-MVSNET89.05 34085.52 34399.64 11199.89 2199.78 4199.56 7099.52 21124.19 37449.96 37599.83 4799.15 5599.92 9197.71 21299.85 12399.21 260
miper_ehance_all_eth98.59 23498.59 21598.59 29698.98 32797.07 32197.49 34299.52 21198.50 22799.52 17599.37 25696.41 27099.71 30797.86 19799.62 23699.00 306
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22699.73 6499.13 17399.52 21197.40 30399.57 15499.64 14698.93 8499.83 24597.61 22599.79 16599.63 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
QAPM98.40 25797.99 27099.65 10499.39 24599.47 13299.67 4199.52 21191.70 36398.78 29999.80 5998.55 13799.95 4594.71 34399.75 18199.53 165
CL-MVSNet_self_test98.71 22198.56 22299.15 24699.22 29098.66 25397.14 35499.51 21598.09 26599.54 16899.27 28296.87 25899.74 29898.43 14798.96 31999.03 300
xiu_mvs_v2_base99.02 17699.11 12898.77 28899.37 25198.09 28998.13 29599.51 21599.47 10099.42 19798.54 35799.38 2999.97 1798.83 12199.33 29698.24 348
PS-MVSNAJ99.00 18299.08 13998.76 28999.37 25198.10 28898.00 31099.51 21599.47 10099.41 20598.50 35999.28 4199.97 1798.83 12199.34 29498.20 352
PLCcopyleft97.35 1698.36 25997.99 27099.48 16999.32 27199.24 19498.50 26699.51 21595.19 34998.58 31498.96 33296.95 25699.83 24595.63 32699.25 30599.37 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testtj98.56 23798.17 26099.72 7999.45 22999.60 11098.88 21799.50 21996.88 32199.18 25399.48 23197.08 25299.92 9193.69 35599.38 28799.63 100
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8699.71 7199.32 10899.50 21998.35 24698.97 27499.48 23198.37 16499.92 9195.95 31899.75 18199.63 100
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NR-MVSNet99.40 7799.31 8599.68 8999.43 23499.55 12299.73 2099.50 21999.46 10499.88 3299.36 26197.54 23099.87 17898.97 10899.87 11299.63 100
new_pmnet98.88 20198.89 18798.84 28199.70 12197.62 30798.15 29299.50 21997.98 27199.62 13899.54 21198.15 18699.94 5797.55 22899.84 12898.95 308
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25599.47 13299.62 5399.50 21999.44 10799.12 26199.78 7198.77 10999.94 5797.87 19699.72 20299.62 111
ETH3 D test640097.76 28697.19 30399.50 16299.38 24899.26 18598.34 27799.49 22492.99 36098.54 31799.20 29895.92 28299.82 25591.14 36299.66 22799.40 221
MVS_Test99.28 10999.31 8599.19 24199.35 25598.79 24599.36 10099.49 22499.17 14999.21 24799.67 13598.78 10699.66 33599.09 9799.66 22799.10 285
OPM-MVS99.26 11599.13 12199.63 11699.70 12199.61 10898.58 25399.48 22698.50 22799.52 17599.63 15699.14 5899.76 29297.89 19299.77 17599.51 177
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Regformer-199.32 10399.27 10099.47 17199.41 24098.95 23098.99 20499.48 22699.48 9599.66 12099.52 21698.78 10699.87 17898.36 15199.74 18999.60 126
FMVSNet398.80 21098.63 21299.32 21799.13 30598.72 24899.10 18099.48 22699.23 13899.62 13899.64 14692.57 31499.86 19898.96 11099.90 8799.39 224
OpenMVS_ROBcopyleft97.31 1797.36 30296.84 31398.89 27899.29 27899.45 14198.87 22099.48 22686.54 36999.44 19199.74 8897.34 24099.86 19891.61 35999.28 30197.37 364
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15999.04 32099.39 15798.47 26899.47 23096.70 32898.78 29999.33 27097.62 22999.86 19894.69 34499.38 28799.28 249
MSLP-MVS++99.05 17099.09 13798.91 27199.21 29298.36 27498.82 23099.47 23098.85 19198.90 28499.56 20298.78 10699.09 36898.57 14199.68 21699.26 250
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 29099.75 5597.25 35199.47 23098.72 20799.66 12099.70 11299.29 3999.63 34598.07 17999.81 15599.62 111
PMVScopyleft92.94 2198.82 20898.81 19798.85 27999.84 3597.99 29399.20 14699.47 23099.71 4799.42 19799.82 5498.09 18999.47 36293.88 35499.85 12399.07 296
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ambc99.20 24099.35 25598.53 26099.17 15799.46 23499.67 11699.80 5998.46 15399.70 30997.92 19099.70 20899.38 226
EI-MVSNet-UG-set99.48 5499.50 5199.42 18699.57 17198.65 25699.24 13699.46 23499.68 5799.80 6299.66 13998.99 7799.89 15099.19 7899.90 8799.72 45
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18699.57 17198.66 25399.24 13699.46 23499.67 6199.79 6799.65 14498.97 8099.89 15099.15 8799.89 9599.71 48
EI-MVSNet99.38 8499.44 5999.21 23899.58 16198.09 28999.26 12899.46 23499.62 7399.75 8399.67 13598.54 13999.85 21799.15 8799.92 7799.68 61
MVSTER98.47 25098.22 25399.24 23599.06 31798.35 27599.08 18799.46 23499.27 13099.75 8399.66 13988.61 35099.85 21799.14 9399.92 7799.52 175
h-mvs3398.61 22998.34 24399.44 18099.60 15298.67 25199.27 12699.44 23999.68 5799.32 22399.49 22892.50 317100.00 199.24 7096.51 36799.65 86
CHOSEN 280x42098.41 25598.41 23598.40 30399.34 26595.89 34196.94 35999.44 23998.80 19899.25 23799.52 21693.51 30799.98 798.94 11599.98 2499.32 241
Regformer-399.41 7499.41 6699.40 19699.52 19398.70 24999.17 15799.44 23999.62 7399.75 8399.60 18398.90 9099.85 21798.89 11899.84 12899.65 86
PCF-MVS96.03 1896.73 31595.86 32699.33 21399.44 23199.16 20796.87 36099.44 23986.58 36898.95 27699.40 24994.38 29699.88 16587.93 36799.80 16098.95 308
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ZD-MVS99.43 23499.61 10899.43 24396.38 33199.11 26299.07 31297.86 20899.92 9194.04 35199.49 272
ab-mvs99.33 10199.28 9799.47 17199.57 17199.39 15799.78 1099.43 24398.87 18999.57 15499.82 5498.06 19299.87 17898.69 13699.73 19699.15 275
AdaColmapbinary98.60 23198.35 24299.38 20399.12 30799.22 19898.67 24899.42 24597.84 28398.81 29499.27 28297.32 24199.81 27195.14 33699.53 26599.10 285
miper_enhance_ethall98.03 27897.94 27898.32 30798.27 36396.43 33396.95 35899.41 24696.37 33299.43 19598.96 33294.74 29299.69 31597.71 21299.62 23698.83 320
D2MVS99.22 12999.19 11199.29 22399.69 12498.74 24798.81 23199.41 24698.55 22199.68 11199.69 11898.13 18799.87 17898.82 12399.98 2499.24 253
CANet99.11 16099.05 14999.28 22698.83 34098.56 25998.71 24799.41 24699.25 13499.23 24199.22 29497.66 22699.94 5799.19 7899.97 3399.33 238
TEST999.35 25599.35 17098.11 29899.41 24694.83 35597.92 34498.99 32498.02 19599.85 217
train_agg98.35 26297.95 27499.57 14199.35 25599.35 17098.11 29899.41 24694.90 35197.92 34498.99 32498.02 19599.85 21795.38 33399.44 27899.50 183
CDPH-MVS98.56 23798.20 25599.61 12899.50 20599.46 13698.32 28099.41 24695.22 34799.21 24799.10 31098.34 16899.82 25595.09 33899.66 22799.56 149
CNLPA98.57 23698.34 24399.28 22699.18 29999.10 21698.34 27799.41 24698.48 23098.52 31898.98 32797.05 25399.78 28295.59 32799.50 27098.96 307
test_899.34 26599.31 17698.08 30299.40 25394.90 35197.87 34898.97 33098.02 19599.84 234
PVSNet_095.53 1995.85 33395.31 33597.47 33098.78 34893.48 35895.72 36699.40 25396.18 33597.37 35697.73 36995.73 28399.58 35395.49 32981.40 37399.36 232
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14599.28 28199.22 19898.99 20499.40 25399.08 16299.58 15199.64 14698.90 9099.83 24597.44 23599.75 18199.63 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous2024052999.42 7099.34 7999.65 10499.53 18899.60 11099.63 5299.39 25699.47 10099.76 7799.78 7198.13 18799.86 19898.70 13499.68 21699.49 188
agg_prior198.33 26497.92 28099.57 14199.35 25599.36 16697.99 31299.39 25694.85 35497.76 35398.98 32798.03 19399.85 21795.49 32999.44 27899.51 177
agg_prior99.35 25599.36 16699.39 25697.76 35399.85 217
test_prior398.62 22898.34 24399.46 17499.35 25599.22 19897.95 31799.39 25697.87 27998.05 33999.05 31497.90 20499.69 31595.99 31499.49 27299.48 193
test_prior99.46 17499.35 25599.22 19899.39 25699.69 31599.48 193
jason99.16 14899.11 12899.32 21799.75 9798.44 26798.26 28599.39 25698.70 20899.74 9299.30 27598.54 13999.97 1798.48 14599.82 14799.55 152
jason: jason.
save fliter99.53 18899.25 18998.29 28299.38 26299.07 164
cl2297.56 29697.28 29898.40 30398.37 36196.75 32897.24 35299.37 26397.31 30899.41 20599.22 29487.30 35299.37 36697.70 21599.62 23699.08 291
WR-MVS99.11 16098.93 17899.66 9999.30 27699.42 15098.42 27499.37 26399.04 16999.57 15499.20 29896.89 25799.86 19898.66 13899.87 11299.70 51
HQP3-MVS99.37 26399.67 223
HQP-MVS98.36 25998.02 26999.39 19999.31 27298.94 23197.98 31399.37 26397.45 30098.15 33398.83 34396.67 26099.70 30994.73 34199.67 22399.53 165
TSAR-MVS + MP.99.34 9799.24 10699.63 11699.82 4699.37 16399.26 12899.35 26798.77 20299.57 15499.70 11299.27 4499.88 16597.71 21299.75 18199.65 86
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UGNet99.38 8499.34 7999.49 16598.90 33198.90 23999.70 2899.35 26799.86 1998.57 31599.81 5798.50 14999.93 7199.38 5099.98 2499.66 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet97.47 1598.42 25498.44 23298.35 30599.46 22696.26 33496.70 36299.34 26997.68 28899.00 27399.13 30397.40 23599.72 30397.59 22799.68 21699.08 291
MS-PatchMatch99.00 18298.97 17399.09 25299.11 31298.19 28198.76 24199.33 27098.49 22999.44 19199.58 19198.21 18099.69 31598.20 16699.62 23699.39 224
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27999.64 14397.16 31998.23 28799.33 27098.93 18199.56 16199.66 13997.39 23799.83 24598.29 15899.88 10399.55 152
YYNet198.95 19298.99 16998.84 28199.64 14397.14 32098.22 28899.32 27298.92 18399.59 14999.66 13997.40 23599.83 24598.27 16099.90 8799.55 152
tpm cat196.78 31396.98 30896.16 35298.85 33890.59 37599.08 18799.32 27292.37 36197.73 35599.46 23991.15 33099.69 31596.07 31098.80 32698.21 350
sss98.90 19798.77 20199.27 22899.48 21698.44 26798.72 24599.32 27297.94 27699.37 21399.35 26696.31 27399.91 11398.85 12099.63 23599.47 198
PMMVS98.49 24898.29 24899.11 25098.96 32898.42 26997.54 33799.32 27297.53 29698.47 32298.15 36597.88 20799.82 25597.46 23499.24 30799.09 288
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12499.80 3699.14 16799.31 27699.16 15199.62 13899.61 17498.35 16699.91 11397.88 19399.72 20299.61 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet_DTU98.91 19598.85 19199.09 25298.79 34698.13 28498.18 28999.31 27699.48 9598.86 28999.51 22096.56 26299.95 4599.05 10099.95 5299.19 267
VNet99.18 14399.06 14599.56 14599.24 28899.36 16699.33 10599.31 27699.67 6199.47 18699.57 19996.48 26599.84 23499.15 8799.30 29999.47 198
MVS_030498.88 20198.71 20499.39 19998.85 33898.91 23899.45 8299.30 27998.56 21997.26 35999.68 12996.18 27799.96 3599.17 8399.94 6599.29 247
testdata99.42 18699.51 19898.93 23599.30 27996.20 33498.87 28899.40 24998.33 17099.89 15096.29 30299.28 30199.44 209
test22299.51 19899.08 21997.83 32699.29 28195.21 34898.68 30799.31 27397.28 24299.38 28799.43 215
TSAR-MVS + GP.99.12 15699.04 15599.38 20399.34 26599.16 20798.15 29299.29 28198.18 26199.63 13099.62 16599.18 5299.68 32698.20 16699.74 18999.30 244
test1199.29 281
PAPM_NR98.36 25998.04 26799.33 21399.48 21698.93 23598.79 23799.28 28497.54 29598.56 31698.57 35497.12 25099.69 31594.09 35098.90 32499.38 226
原ACMM199.37 20699.47 22198.87 24299.27 28596.74 32798.26 32899.32 27197.93 20299.82 25595.96 31799.38 28799.43 215
CNVR-MVS98.99 18598.80 19999.56 14599.25 28699.43 14798.54 26299.27 28598.58 21898.80 29699.43 24498.53 14399.70 30997.22 25399.59 25099.54 160
新几何199.52 15699.50 20599.22 19899.26 28795.66 34398.60 31299.28 28097.67 22299.89 15095.95 31899.32 29799.45 204
旧先验199.49 21099.29 17999.26 28799.39 25397.67 22299.36 29299.46 202
DeepMVS_CXcopyleft97.98 31699.69 12496.95 32399.26 28775.51 37195.74 36998.28 36396.47 26699.62 34691.23 36197.89 35797.38 363
pmmvs499.13 15499.06 14599.36 20999.57 17199.10 21698.01 30899.25 29098.78 20199.58 15199.44 24398.24 17699.76 29298.74 13199.93 7399.22 258
NCCC98.82 20898.57 21999.58 13699.21 29299.31 17698.61 24999.25 29098.65 21198.43 32399.26 28597.86 20899.81 27196.55 28999.27 30499.61 122
PAPR97.56 29697.07 30599.04 25998.80 34598.11 28797.63 33399.25 29094.56 35798.02 34298.25 36497.43 23499.68 32690.90 36398.74 33399.33 238
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5899.43 14799.70 2899.24 29399.48 9599.56 16199.77 7894.89 29099.93 7198.72 13399.89 9599.63 100
MSC_two_6792asdad99.74 6399.03 32199.53 12499.23 29499.92 9197.77 20499.69 21199.78 32
No_MVS99.74 6399.03 32199.53 12499.23 29499.92 9197.77 20499.69 21199.78 32
无先验98.01 30899.23 29495.83 33999.85 21795.79 32399.44 209
KD-MVS_2432*160095.89 33095.41 33397.31 33694.96 37593.89 35497.09 35599.22 29797.23 31198.88 28599.04 31779.23 37499.54 35596.24 30596.81 36498.50 338
IU-MVS99.69 12499.77 4499.22 29797.50 29899.69 10997.75 20899.70 20899.77 35
miper_refine_blended95.89 33095.41 33397.31 33694.96 37593.89 35497.09 35599.22 29797.23 31198.88 28599.04 31779.23 37499.54 35596.24 30596.81 36498.50 338
112198.56 23798.24 25199.52 15699.49 21099.24 19499.30 11599.22 29795.77 34098.52 31899.29 27897.39 23799.85 21795.79 32399.34 29499.46 202
MG-MVS98.52 24398.39 23798.94 26599.15 30297.39 31498.18 28999.21 30198.89 18899.23 24199.63 15697.37 23999.74 29894.22 34899.61 24399.69 55
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 19399.71 7198.86 22199.19 30298.47 23198.59 31399.06 31398.08 19199.91 11396.94 26699.60 24699.60 126
lupinMVS98.96 18998.87 18999.24 23599.57 17198.40 27098.12 29699.18 30398.28 25499.63 13099.13 30398.02 19599.97 1798.22 16499.69 21199.35 235
API-MVS98.38 25898.39 23798.35 30598.83 34099.26 18599.14 16799.18 30398.59 21798.66 30898.78 34798.61 12999.57 35494.14 34999.56 25396.21 368
test1299.54 15299.29 27899.33 17399.16 30598.43 32397.54 23099.82 25599.47 27599.48 193
IS-MVSNet99.03 17498.85 19199.55 14899.80 5899.25 18999.73 2099.15 30699.37 11799.61 14499.71 10594.73 29399.81 27197.70 21599.88 10399.58 140
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8799.70 2899.14 30799.65 6799.89 2699.90 2296.20 27699.94 5799.42 4699.92 7799.67 68
MAR-MVS98.24 26997.92 28099.19 24198.78 34899.65 9499.17 15799.14 30795.36 34598.04 34198.81 34697.47 23299.72 30395.47 33199.06 31398.21 350
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS98.59 23498.37 23999.26 23099.43 23498.40 27098.74 24299.13 30998.10 26399.21 24799.24 29294.82 29199.90 13397.86 19798.77 32999.49 188
Patchmatch-test98.10 27597.98 27298.48 30099.27 28396.48 33199.40 8999.07 31098.81 19699.23 24199.57 19990.11 34499.87 17896.69 28199.64 23399.09 288
MCST-MVS99.02 17698.81 19799.65 10499.58 16199.49 12998.58 25399.07 31098.40 23799.04 27199.25 28798.51 14899.80 27697.31 24299.51 26899.65 86
131498.00 28097.90 28398.27 31198.90 33197.45 31299.30 11599.06 31294.98 35097.21 36099.12 30798.43 15599.67 33195.58 32898.56 34097.71 360
GA-MVS97.99 28197.68 29198.93 26899.52 19398.04 29297.19 35399.05 31398.32 25298.81 29498.97 33089.89 34799.41 36598.33 15599.05 31499.34 237
hse-mvs298.52 24398.30 24799.16 24499.29 27898.60 25898.77 23999.02 31499.68 5799.32 22399.04 31792.50 31799.85 21799.24 7097.87 35899.03 300
AUN-MVS97.82 28397.38 29699.14 24799.27 28398.53 26098.72 24599.02 31498.10 26397.18 36199.03 32189.26 34999.85 21797.94 18997.91 35699.03 300
E-PMN97.14 30797.43 29596.27 35098.79 34691.62 36895.54 36799.01 31699.44 10798.88 28599.12 30792.78 31399.68 32694.30 34799.03 31697.50 361
BH-untuned98.22 27198.09 26598.58 29799.38 24897.24 31798.55 25998.98 31797.81 28499.20 25298.76 34897.01 25499.65 34294.83 34098.33 34598.86 316
tpmvs97.39 30097.69 29096.52 34798.41 35991.76 36699.30 11598.94 31897.74 28597.85 34999.55 20992.40 31999.73 30196.25 30498.73 33598.06 355
MVS95.72 33594.63 33998.99 26198.56 35697.98 29899.30 11598.86 31972.71 37297.30 35799.08 31198.34 16899.74 29889.21 36498.33 34599.26 250
ADS-MVSNet97.72 29197.67 29297.86 32099.14 30394.65 35199.22 14398.86 31996.97 31998.25 32999.64 14690.90 33499.84 23496.51 29299.56 25399.08 291
tpmrst97.73 28898.07 26696.73 34498.71 35292.00 36499.10 18098.86 31998.52 22598.92 28199.54 21191.90 32199.82 25598.02 18099.03 31698.37 342
PatchT98.45 25298.32 24698.83 28398.94 32998.29 27699.24 13698.82 32299.84 2799.08 26699.76 8191.37 32699.94 5798.82 12399.00 31898.26 347
FPMVS96.32 32395.50 33198.79 28799.60 15298.17 28398.46 27398.80 32397.16 31596.28 36499.63 15682.19 36899.09 36888.45 36698.89 32599.10 285
DPM-MVS98.28 26597.94 27899.32 21799.36 25399.11 21297.31 34998.78 32496.88 32198.84 29199.11 30997.77 21599.61 35094.03 35299.36 29299.23 256
ADS-MVSNet297.78 28597.66 29398.12 31599.14 30395.36 34599.22 14398.75 32596.97 31998.25 32999.64 14690.90 33499.94 5796.51 29299.56 25399.08 291
HY-MVS98.23 998.21 27297.95 27498.99 26199.03 32198.24 27799.61 5898.72 32696.81 32598.73 30399.51 22094.06 29899.86 19896.91 26898.20 34898.86 316
VDDNet98.97 18698.82 19699.42 18699.71 11398.81 24399.62 5398.68 32799.81 3399.38 21299.80 5994.25 29799.85 21798.79 12599.32 29799.59 135
CostFormer96.71 31696.79 31596.46 34998.90 33190.71 37499.41 8898.68 32794.69 35698.14 33799.34 26986.32 36399.80 27697.60 22698.07 35498.88 314
test_yl98.25 26797.95 27499.13 24899.17 30098.47 26499.00 19998.67 32998.97 17399.22 24599.02 32291.31 32799.69 31597.26 24898.93 32099.24 253
DCV-MVSNet98.25 26797.95 27499.13 24899.17 30098.47 26499.00 19998.67 32998.97 17399.22 24599.02 32291.31 32799.69 31597.26 24898.93 32099.24 253
EMVS96.96 31097.28 29895.99 35398.76 35091.03 37195.26 36898.61 33199.34 12098.92 28198.88 34193.79 30299.66 33592.87 35699.05 31497.30 365
MIMVSNet98.43 25398.20 25599.11 25099.53 18898.38 27399.58 6798.61 33198.96 17699.33 22199.76 8190.92 33399.81 27197.38 23999.76 17899.15 275
MTMP99.09 18498.59 333
BH-w/o97.20 30497.01 30797.76 32399.08 31695.69 34298.03 30798.52 33495.76 34197.96 34398.02 36695.62 28599.47 36292.82 35797.25 36398.12 354
tpm296.35 32296.22 31996.73 34498.88 33791.75 36799.21 14598.51 33593.27 35997.89 34699.21 29684.83 36599.70 30996.04 31198.18 35198.75 324
JIA-IIPM98.06 27797.92 28098.50 29998.59 35597.02 32298.80 23498.51 33599.88 1697.89 34699.87 3291.89 32299.90 13398.16 17397.68 36098.59 329
SCA98.11 27498.36 24097.36 33399.20 29592.99 36098.17 29198.49 33798.24 25699.10 26499.57 19996.01 28099.94 5796.86 27199.62 23699.14 279
PAPM95.61 33694.71 33898.31 30999.12 30796.63 32996.66 36398.46 33890.77 36596.25 36598.68 35193.01 31199.69 31581.60 37397.86 35998.62 327
alignmvs98.28 26597.96 27399.25 23399.12 30798.93 23599.03 19498.42 33999.64 6998.72 30497.85 36890.86 33699.62 34698.88 11999.13 31099.19 267
baseline197.73 28897.33 29798.96 26399.30 27697.73 30499.40 8998.42 33999.33 12399.46 18999.21 29691.18 32999.82 25598.35 15391.26 37299.32 241
PatchmatchNetpermissive97.65 29297.80 28597.18 33898.82 34392.49 36299.17 15798.39 34198.12 26298.79 29799.58 19190.71 33899.89 15097.23 25299.41 28499.16 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dp96.86 31197.07 30596.24 35198.68 35490.30 37699.19 15198.38 34297.35 30698.23 33199.59 18987.23 35399.82 25596.27 30398.73 33598.59 329
VDD-MVS99.20 13699.11 12899.44 18099.43 23498.98 22599.50 7598.32 34399.80 3699.56 16199.69 11896.99 25599.85 21798.99 10499.73 19699.50 183
BH-RMVSNet98.41 25598.14 26399.21 23899.21 29298.47 26498.60 25198.26 34498.35 24698.93 27899.31 27397.20 24899.66 33594.32 34699.10 31299.51 177
EPNet_dtu97.62 29397.79 28797.11 34096.67 37492.31 36398.51 26598.04 34599.24 13695.77 36899.47 23693.78 30399.66 33598.98 10699.62 23699.37 229
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 28998.70 35390.83 37299.15 16598.02 34698.51 22698.82 29399.61 17490.98 33299.66 33596.89 27098.92 322
EPNet98.13 27397.77 28899.18 24394.57 37797.99 29399.24 13697.96 34799.74 4297.29 35899.62 16593.13 31099.97 1798.59 14099.83 13899.58 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm97.15 30596.95 30997.75 32498.91 33094.24 35399.32 10897.96 34797.71 28798.29 32699.32 27186.72 36199.92 9198.10 17896.24 36999.09 288
TR-MVS97.44 29997.15 30498.32 30798.53 35797.46 31198.47 26897.91 34996.85 32398.21 33298.51 35896.42 26899.51 36092.16 35897.29 36297.98 357
tmp_tt95.75 33495.42 33296.76 34289.90 37994.42 35298.86 22197.87 35078.01 37099.30 23299.69 11897.70 21795.89 37499.29 6698.14 35299.95 1
DWT-MVSNet_test96.03 32995.80 32896.71 34698.50 35891.93 36599.25 13597.87 35095.99 33796.81 36397.61 37181.02 37099.66 33597.20 25597.98 35598.54 333
Anonymous20240521198.75 21598.46 22999.63 11699.34 26599.66 8999.47 8197.65 35299.28 12999.56 16199.50 22393.15 30999.84 23498.62 13999.58 25199.40 221
thres100view90096.39 32196.03 32397.47 33099.63 14595.93 33999.18 15297.57 35398.75 20698.70 30697.31 37587.04 35599.67 33187.62 36898.51 34296.81 366
thres600view796.60 31896.16 32097.93 31899.63 14596.09 33899.18 15297.57 35398.77 20298.72 30497.32 37487.04 35599.72 30388.57 36598.62 33897.98 357
thres20096.09 32795.68 33097.33 33599.48 21696.22 33598.53 26397.57 35398.06 26798.37 32596.73 37986.84 35999.61 35086.99 37198.57 33996.16 369
tfpn200view996.30 32495.89 32497.53 32899.58 16196.11 33699.00 19997.54 35698.43 23298.52 31896.98 37786.85 35799.67 33187.62 36898.51 34296.81 366
thres40096.40 32095.89 32497.92 31999.58 16196.11 33699.00 19997.54 35698.43 23298.52 31896.98 37786.85 35799.67 33187.62 36898.51 34297.98 357
test0.0.03 197.37 30196.91 31298.74 29097.72 37097.57 30897.60 33597.36 35898.00 26899.21 24798.02 36690.04 34599.79 27998.37 15095.89 37098.86 316
LFMVS98.46 25198.19 25899.26 23099.24 28898.52 26299.62 5396.94 35999.87 1799.31 22799.58 19191.04 33199.81 27198.68 13799.42 28399.45 204
bset_n11_16_dypcd98.69 22398.45 23099.42 18699.69 12498.52 26296.06 36596.80 36099.71 4799.73 9699.54 21195.14 28899.96 3599.39 4999.95 5299.79 30
test-LLR97.15 30596.95 30997.74 32598.18 36695.02 34897.38 34596.10 36198.00 26897.81 35098.58 35290.04 34599.91 11397.69 22198.78 32798.31 343
test-mter96.23 32695.73 32997.74 32598.18 36695.02 34897.38 34596.10 36197.90 27797.81 35098.58 35279.12 37699.91 11397.69 22198.78 32798.31 343
IB-MVS95.41 2095.30 33794.46 34197.84 32198.76 35095.33 34697.33 34896.07 36396.02 33695.37 37197.41 37376.17 37999.96 3597.54 22995.44 37198.22 349
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D96.78 31396.07 32298.91 27199.26 28597.92 29997.70 33196.05 36497.96 27592.37 37398.43 36087.06 35499.90 13398.27 16097.56 36198.91 312
TESTMET0.1,196.24 32595.84 32797.41 33298.24 36493.84 35697.38 34595.84 36598.43 23297.81 35098.56 35579.77 37399.89 15097.77 20498.77 32998.52 334
MVEpermissive92.54 2296.66 31796.11 32198.31 30999.68 13397.55 30997.94 31995.60 36699.37 11790.68 37498.70 35096.56 26298.61 37286.94 37299.55 25798.77 323
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13699.74 1794.97 36799.78 3999.88 3299.88 2993.66 30599.97 1799.61 1999.95 5299.64 95
N_pmnet98.73 21998.53 22599.35 21099.72 11098.67 25198.34 27794.65 36898.35 24699.79 6799.68 12998.03 19399.93 7198.28 15999.92 7799.44 209
tttt051797.62 29397.20 30298.90 27799.76 8697.40 31399.48 7994.36 36999.06 16899.70 10699.49 22884.55 36699.94 5798.73 13299.65 23199.36 232
thisisatest051596.98 30996.42 31698.66 29499.42 23997.47 31097.27 35094.30 37097.24 31099.15 25698.86 34285.01 36499.87 17897.10 26099.39 28698.63 326
thisisatest053097.45 29896.95 30998.94 26599.68 13397.73 30499.09 18494.19 37198.61 21699.56 16199.30 27584.30 36799.93 7198.27 16099.54 26399.16 273
baseline296.83 31296.28 31898.46 30199.09 31596.91 32598.83 22693.87 37297.23 31196.23 36798.36 36188.12 35199.90 13396.68 28298.14 35298.57 332
MVS-HIRNet97.86 28298.22 25396.76 34299.28 28191.53 36998.38 27692.60 37399.13 15799.31 22799.96 1197.18 24999.68 32698.34 15499.83 13899.07 296
test111197.74 28798.16 26196.49 34899.60 15289.86 37799.71 2791.21 37499.89 1199.88 3299.87 3293.73 30499.90 13399.56 2699.99 1299.70 51
lessismore_v099.64 11199.86 3199.38 16090.66 37599.89 2699.83 4794.56 29599.97 1799.56 2699.92 7799.57 146
ECVR-MVScopyleft97.73 28898.04 26796.78 34199.59 15690.81 37399.72 2390.43 37699.89 1199.86 4099.86 3893.60 30699.89 15099.46 3899.99 1299.65 86
EPMVS96.53 31996.32 31797.17 33998.18 36692.97 36199.39 9189.95 37798.21 25898.61 31199.59 18986.69 36299.72 30396.99 26499.23 30998.81 321
gg-mvs-nofinetune95.87 33295.17 33697.97 31798.19 36596.95 32399.69 3489.23 37899.89 1196.24 36699.94 1381.19 36999.51 36093.99 35398.20 34897.44 362
GG-mvs-BLEND97.36 33397.59 37196.87 32699.70 2888.49 37994.64 37297.26 37680.66 37199.12 36791.50 36096.50 36896.08 370
test250694.73 33894.59 34095.15 35499.59 15685.90 37999.75 1574.01 38099.89 1199.71 10399.86 3879.00 37899.90 13399.52 3299.99 1299.65 86
testmvs28.94 34233.33 34415.79 35826.03 3809.81 38296.77 36115.67 38111.55 37623.87 37750.74 38319.03 3818.53 37723.21 37533.07 37429.03 373
test12329.31 34133.05 34618.08 35725.93 38112.24 38197.53 33910.93 38211.78 37524.21 37650.08 38421.04 3808.60 37623.51 37432.43 37533.39 372
test_blank8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas16.61 34422.14 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 199.28 410.00 3780.00 3760.00 3760.00 374
sosnet-low-res8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
sosnet8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
Regformer8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
n20.00 383
nn0.00 383
ab-mvs-re8.26 35211.02 3550.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.16 3010.00 3820.00 3780.00 3760.00 3760.00 374
uanet8.33 34511.11 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 378100.00 10.00 3820.00 3780.00 3760.00 3760.00 374
PC_three_145297.56 29299.68 11199.41 24699.09 6397.09 37396.66 28499.60 24699.62 111
eth-test20.00 382
eth-test0.00 382
OPU-MVS99.29 22399.12 30799.44 14399.20 14699.40 24999.00 7598.84 37096.54 29099.60 24699.58 140
test_0728_THIRD99.18 14599.62 13899.61 17498.58 13399.91 11397.72 21099.80 16099.77 35
GSMVS99.14 279
test_part299.62 14999.67 8799.55 166
sam_mvs190.81 33799.14 279
sam_mvs90.52 341
test_post199.14 16751.63 38289.54 34899.82 25596.86 271
test_post52.41 38190.25 34399.86 198
patchmatchnet-post99.62 16590.58 33999.94 57
gm-plane-assit97.59 37189.02 37893.47 35898.30 36299.84 23496.38 299
test9_res95.10 33799.44 27899.50 183
agg_prior294.58 34599.46 27799.50 183
test_prior499.19 20598.00 310
test_prior297.95 31797.87 27998.05 33999.05 31497.90 20495.99 31499.49 272
旧先验297.94 31995.33 34698.94 27799.88 16596.75 278
新几何298.04 306
原ACMM297.92 321
testdata299.89 15095.99 314
segment_acmp98.37 164
testdata197.72 32997.86 282
plane_prior799.58 16199.38 160
plane_prior699.47 22199.26 18597.24 243
plane_prior499.25 287
plane_prior399.31 17698.36 24199.14 258
plane_prior298.80 23498.94 178
plane_prior199.51 198
plane_prior99.24 19498.42 27497.87 27999.71 206
HQP5-MVS98.94 231
HQP-NCC99.31 27297.98 31397.45 30098.15 333
ACMP_Plane99.31 27297.98 31397.45 30098.15 333
BP-MVS94.73 341
HQP4-MVS98.15 33399.70 30999.53 165
HQP2-MVS96.67 260
NP-MVS99.40 24399.13 21098.83 343
MDTV_nov1_ep13_2view91.44 37099.14 16797.37 30599.21 24791.78 32596.75 27899.03 300
ACMMP++_ref99.94 65
ACMMP++99.79 165
Test By Simon98.41 158