This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 43100.00 199.90 7100.00 199.97 999.61 1699.97 1699.75 13100.00 199.84 14
LCM-MVSNet-Re99.28 10399.15 11199.67 8399.33 25399.76 4599.34 9199.97 298.93 16499.91 2099.79 5798.68 11399.93 6696.80 25599.56 23699.30 228
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
UA-Net99.78 1399.76 1499.86 1699.72 10699.71 5999.91 399.95 499.96 299.71 9699.91 1999.15 5299.97 1699.50 30100.00 199.90 4
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2399.66 7799.69 2899.92 599.67 5099.77 7199.75 7899.61 1699.98 699.35 4599.98 2199.72 41
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1199.86 599.92 599.69 4699.78 6699.92 1699.37 2999.88 14798.93 10499.95 4799.60 115
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3099.81 599.95 4299.54 2499.99 1299.80 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Effi-MVS+99.06 16098.97 16599.34 19899.31 25598.98 21198.31 26499.91 898.81 17998.79 27498.94 31099.14 5499.84 21398.79 11398.74 31499.20 247
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 1999.94 1199.95 1199.73 899.90 11999.65 1699.97 2999.69 50
PVSNet_Blended_VisFu99.40 7399.38 6699.44 16999.90 1998.66 23798.94 19999.91 897.97 25399.79 6399.73 8599.05 6899.97 1699.15 7699.99 1299.68 56
PMMVS299.48 5299.45 5599.57 13299.76 8398.99 21098.09 28399.90 1198.95 16099.78 6699.58 18099.57 1999.93 6699.48 3199.95 4799.79 29
testgi99.29 10299.26 9799.37 19399.75 9398.81 22898.84 20999.89 1298.38 22299.75 7899.04 29799.36 3299.86 18099.08 8699.25 28799.45 188
test20.0399.55 4399.54 4399.58 12799.79 6599.37 14999.02 18099.89 1299.60 7299.82 4899.62 15698.81 9299.89 13299.43 3599.86 11399.47 182
RRT_test8_iter0597.35 28897.25 28497.63 31198.81 32193.13 33799.26 11599.89 1299.51 8099.83 4699.68 12279.03 35499.88 14799.53 2699.72 19299.89 8
mvs_tets99.90 299.90 299.90 499.96 499.79 3499.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 699.77 12100.00 199.92 3
CHOSEN 1792x268899.39 7799.30 8599.65 9599.88 2399.25 17598.78 22399.88 1598.66 19399.96 899.79 5797.45 22299.93 6699.34 4699.99 1299.78 30
Patchmatch-RL test98.60 22098.36 23099.33 20099.77 7999.07 20698.27 26799.87 1798.91 16799.74 8699.72 9190.57 32199.79 25898.55 12999.85 11699.11 265
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2099.76 1399.87 1799.73 3699.89 2699.87 3099.63 1499.87 16099.54 2499.92 7299.63 92
jajsoiax99.89 399.89 399.89 799.96 499.78 3799.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 699.75 13100.00 199.90 4
PM-MVS99.36 8499.29 9099.58 12799.83 3699.66 7798.95 19799.86 1998.85 17499.81 5599.73 8598.40 15299.92 8498.36 13799.83 13099.17 253
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1199.75 1499.86 1999.70 4399.91 2099.89 2599.60 1899.87 16099.59 1999.74 18099.71 44
Baseline_NR-MVSNet99.49 5099.37 6999.82 2399.91 1599.84 1698.83 21199.86 1999.68 4899.65 11599.88 2897.67 21199.87 16099.03 8999.86 11399.76 35
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 699.73 1699.85 2399.70 4399.92 1899.93 1399.45 2199.97 1699.36 44100.00 199.85 13
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 3999.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 699.75 13100.00 199.94 2
EU-MVSNet99.39 7799.62 2598.72 27599.88 2396.44 31299.56 6099.85 2399.90 799.90 2299.85 3598.09 17999.83 22499.58 2199.95 4799.90 4
casdiffmvs99.63 3099.61 2999.67 8399.79 6599.59 10099.13 15899.85 2399.79 3199.76 7399.72 9199.33 3499.82 23499.21 6299.94 6099.59 124
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2099.83 699.85 2399.80 2999.93 1499.93 1398.54 13299.93 6699.59 1999.98 2199.76 35
CSCG99.37 8199.29 9099.60 12199.71 10999.46 12199.43 7699.85 2398.79 18299.41 19099.60 17298.92 8099.92 8498.02 16799.92 7299.43 199
IterMVS-SCA-FT99.00 17599.16 10898.51 28299.75 9395.90 32098.07 28699.84 2999.84 2199.89 2699.73 8596.01 26799.99 499.33 48100.00 199.63 92
Gipumacopyleft99.57 3799.59 3299.49 15599.98 399.71 5999.72 1999.84 2999.81 2699.94 1199.78 6498.91 8299.71 28698.41 13499.95 4799.05 280
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
AllTest99.21 12699.07 13599.63 10699.78 7199.64 8499.12 16299.83 3198.63 19699.63 12199.72 9198.68 11399.75 27696.38 27799.83 13099.51 162
TestCases99.63 10699.78 7199.64 8499.83 3198.63 19699.63 12199.72 9198.68 11399.75 27696.38 27799.83 13099.51 162
door-mid99.83 31
IterMVS98.97 17999.16 10898.42 28699.74 9995.64 32398.06 28899.83 3199.83 2499.85 3899.74 8196.10 26699.99 499.27 60100.00 199.63 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test98.91 18898.64 20299.73 6699.85 3299.47 11798.07 28699.83 3198.64 19599.89 2699.60 17292.57 297100.00 199.33 4899.97 2999.72 41
CS-MVS99.09 15799.03 14899.25 21999.45 21499.49 11499.41 7799.82 3699.10 14598.03 31998.48 33499.30 3799.89 13298.30 14499.41 26598.35 319
Fast-Effi-MVS+-dtu99.20 12899.12 11899.43 17299.25 26799.69 7099.05 17599.82 3699.50 8198.97 25399.05 29498.98 7399.98 698.20 15399.24 28998.62 305
v7n99.82 1099.80 1099.88 1199.96 499.84 1699.82 899.82 3699.84 2199.94 1199.91 1999.13 5799.96 3399.83 999.99 1299.83 18
DSMNet-mixed99.48 5299.65 2298.95 24899.71 10997.27 29699.50 6499.82 3699.59 7499.41 19099.85 3599.62 15100.00 199.53 2699.89 9099.59 124
PVSNet_BlendedMVS99.03 16799.01 15399.09 23699.54 17297.99 27398.58 23699.82 3697.62 27199.34 20499.71 9898.52 13999.77 27097.98 17299.97 2999.52 160
PVSNet_Blended98.70 21498.59 20799.02 24499.54 17297.99 27397.58 31999.82 3695.70 31999.34 20498.98 30398.52 13999.77 27097.98 17299.83 13099.30 228
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 5799.59 5599.82 3699.39 10299.82 4899.84 3999.38 2799.91 10099.38 4199.93 6899.80 23
1112_ss99.05 16398.84 18599.67 8399.66 13399.29 16598.52 24799.82 3697.65 27099.43 18099.16 28296.42 25699.91 10099.07 8799.84 12099.80 23
RPSCF99.18 13599.02 15099.64 10299.83 3699.85 1199.44 7499.82 3698.33 23499.50 16899.78 6497.90 19499.65 32196.78 25699.83 13099.44 193
diffmvs99.34 9199.32 7999.39 18699.67 13298.77 23198.57 24099.81 4599.61 6699.48 17099.41 23098.47 14399.86 18098.97 9699.90 8299.53 150
MVSFormer99.41 7099.44 5799.31 20799.57 16098.40 25099.77 1199.80 4699.73 3699.63 12199.30 25798.02 18599.98 699.43 3599.69 20199.55 140
test_djsdf99.84 899.81 999.91 299.94 1099.84 1699.77 1199.80 4699.73 3699.97 699.92 1699.77 799.98 699.43 35100.00 199.90 4
baseline99.63 3099.62 2599.66 9099.80 5599.62 9099.44 7499.80 4699.71 4099.72 9199.69 11199.15 5299.83 22499.32 5099.94 6099.53 150
FMVSNet597.80 27197.25 28499.42 17498.83 31798.97 21399.38 8399.80 4698.87 17299.25 21899.69 11180.60 35199.91 10098.96 9899.90 8299.38 210
Test_1112_low_res98.95 18598.73 19499.63 10699.68 12799.15 19598.09 28399.80 4697.14 29499.46 17499.40 23296.11 26599.89 13299.01 9199.84 12099.84 14
USDC98.96 18298.93 17099.05 24299.54 17297.99 27397.07 33799.80 4698.21 24199.75 7899.77 7198.43 14899.64 32397.90 17799.88 9899.51 162
EIA-MVS99.12 14899.01 15399.45 16799.36 23699.62 9099.34 9199.79 5298.41 21898.84 26898.89 31598.75 10799.84 21398.15 16199.51 25098.89 292
ETV-MVS99.18 13599.18 10699.16 23199.34 24899.28 16799.12 16299.79 5299.48 8398.93 25798.55 33099.40 2299.93 6698.51 13199.52 24998.28 322
Fast-Effi-MVS+99.02 16998.87 18199.46 16399.38 23199.50 11399.04 17799.79 5297.17 29298.62 28798.74 32399.34 3399.95 4298.32 14299.41 26598.92 290
ACMH98.42 699.59 3599.54 4399.72 7199.86 2999.62 9099.56 6099.79 5298.77 18599.80 5899.85 3599.64 1399.85 19898.70 12199.89 9099.70 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal99.43 6399.38 6699.60 12199.87 2799.75 4799.59 5599.78 5699.71 4099.90 2299.69 11198.85 9099.90 11997.25 23199.78 16399.15 257
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2399.86 1099.72 1999.78 5699.90 799.82 4899.83 4098.45 14799.87 16099.51 2899.97 2999.86 11
COLMAP_ROBcopyleft98.06 1299.45 6199.37 6999.70 7999.83 3699.70 6699.38 8399.78 5699.53 7899.67 10799.78 6499.19 4899.86 18097.32 22399.87 10699.55 140
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
door99.77 59
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 799.69 2899.77 5999.78 3299.93 1499.89 2597.94 19199.92 8499.65 1699.98 2199.62 104
wuyk23d97.58 28099.13 11592.93 33499.69 11999.49 11499.52 6299.77 5997.97 25399.96 899.79 5799.84 399.94 5395.85 29699.82 13979.36 347
ACMH+98.40 899.50 4899.43 6099.71 7599.86 2999.76 4599.32 9699.77 5999.53 7899.77 7199.76 7499.26 4499.78 26297.77 19099.88 9899.60 115
LF4IMVS99.01 17398.92 17499.27 21499.71 10999.28 16798.59 23599.77 5998.32 23599.39 19699.41 23098.62 12299.84 21396.62 26699.84 12098.69 303
xxxxxxxxxxxxxcwj99.11 15298.96 16799.54 14399.53 17599.25 17598.29 26599.76 6499.07 14899.42 18299.61 16598.86 8899.87 16096.45 27499.68 20499.49 173
v899.68 2299.69 1899.65 9599.80 5599.40 14199.66 3899.76 6499.64 5899.93 1499.85 3598.66 11899.84 21399.88 699.99 1299.71 44
abl_699.36 8499.23 10299.75 5499.71 10999.74 5299.33 9399.76 6499.07 14899.65 11599.63 14799.09 6099.92 8497.13 23899.76 16999.58 129
114514_t98.49 23698.11 25099.64 10299.73 10299.58 10399.24 12199.76 6489.94 34399.42 18299.56 19097.76 20599.86 18097.74 19399.82 13999.47 182
EG-PatchMatch MVS99.57 3799.56 4199.62 11599.77 7999.33 15999.26 11599.76 6499.32 11199.80 5899.78 6499.29 3899.87 16099.15 7699.91 8199.66 73
IterMVS-LS99.41 7099.47 5199.25 21999.81 4998.09 26998.85 20899.76 6499.62 6299.83 4699.64 13998.54 13299.97 1699.15 7699.99 1299.68 56
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
new-patchmatchnet99.35 8699.57 3798.71 27799.82 4296.62 31098.55 24299.75 7099.50 8199.88 3299.87 3099.31 3599.88 14799.43 35100.00 199.62 104
FIs99.65 2999.58 3499.84 1999.84 3399.85 1199.66 3899.75 7099.86 1699.74 8699.79 5798.27 16499.85 19899.37 4399.93 6899.83 18
v1099.69 2199.69 1899.66 9099.81 4999.39 14399.66 3899.75 7099.60 7299.92 1899.87 3098.75 10799.86 18099.90 299.99 1299.73 40
WR-MVS_H99.61 3499.53 4799.87 1499.80 5599.83 2099.67 3599.75 7099.58 7599.85 3899.69 11198.18 17599.94 5399.28 5999.95 4799.83 18
TinyColmap98.97 17998.93 17099.07 24099.46 21198.19 26197.75 31199.75 7098.79 18299.54 15899.70 10598.97 7599.62 32596.63 26599.83 13099.41 203
Anonymous2023120699.35 8699.31 8099.47 16099.74 9999.06 20899.28 11199.74 7599.23 12599.72 9199.53 20097.63 21799.88 14799.11 8499.84 12099.48 177
XVG-OURS99.21 12699.06 13799.65 9599.82 4299.62 9097.87 30799.74 7598.36 22499.66 11199.68 12299.71 999.90 11996.84 25399.88 9899.43 199
MSDG99.08 15898.98 16499.37 19399.60 14599.13 19697.54 32099.74 7598.84 17799.53 16299.55 19699.10 5899.79 25897.07 24199.86 11399.18 251
pmmvs599.19 13199.11 12199.42 17499.76 8398.88 22598.55 24299.73 7898.82 17899.72 9199.62 15696.56 25099.82 23499.32 5099.95 4799.56 137
Anonymous2023121199.62 3299.57 3799.76 4599.61 14399.60 9799.81 999.73 7899.82 2599.90 2299.90 2197.97 19099.86 18099.42 3999.96 4099.80 23
PS-CasMVS99.66 2499.58 3499.89 799.80 5599.85 1199.66 3899.73 7899.62 6299.84 4199.71 9898.62 12299.96 3399.30 5499.96 4099.86 11
PEN-MVS99.66 2499.59 3299.89 799.83 3699.87 799.66 3899.73 7899.70 4399.84 4199.73 8598.56 12999.96 3399.29 5799.94 6099.83 18
XVG-OURS-SEG-HR99.16 14098.99 16199.66 9099.84 3399.64 8498.25 26999.73 7898.39 22199.63 12199.43 22899.70 1199.90 11997.34 22298.64 31899.44 193
LPG-MVS_test99.22 12199.05 14199.74 5999.82 4299.63 8899.16 14799.73 7897.56 27399.64 11799.69 11199.37 2999.89 13296.66 26399.87 10699.69 50
LGP-MVS_train99.74 5999.82 4299.63 8899.73 7897.56 27399.64 11799.69 11199.37 2999.89 13296.66 26399.87 10699.69 50
MVS_111021_LR99.13 14699.03 14899.42 17499.58 15099.32 16197.91 30699.73 7898.68 19299.31 21099.48 21599.09 6099.66 31497.70 19799.77 16799.29 231
ITE_SJBPF99.38 19099.63 13999.44 12899.73 7898.56 20299.33 20699.53 20098.88 8799.68 30596.01 28899.65 21899.02 283
PGM-MVS99.20 12899.01 15399.77 3999.75 9399.71 5999.16 14799.72 8797.99 25199.42 18299.60 17298.81 9299.93 6696.91 24799.74 18099.66 73
MDA-MVSNet-bldmvs99.06 16099.05 14199.07 24099.80 5597.83 28098.89 20199.72 8799.29 11399.63 12199.70 10596.47 25499.89 13298.17 15999.82 13999.50 168
XVG-ACMP-BASELINE99.23 11399.10 12899.63 10699.82 4299.58 10398.83 21199.72 8798.36 22499.60 13699.71 9898.92 8099.91 10097.08 24099.84 12099.40 205
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9099.93 499.95 1099.89 2599.71 999.96 3399.51 2899.97 2999.84 14
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5599.87 799.67 3599.71 9099.72 3999.84 4199.78 6498.67 11699.97 1699.30 5499.95 4799.80 23
MVS_111021_HR99.12 14899.02 15099.40 18399.50 19099.11 19897.92 30499.71 9098.76 18899.08 24599.47 22099.17 5099.54 33497.85 18599.76 16999.54 147
DeepC-MVS98.90 499.62 3299.61 2999.67 8399.72 10699.44 12899.24 12199.71 9099.27 11799.93 1499.90 2199.70 1199.93 6698.99 9299.99 1299.64 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03099.70 1999.66 2199.82 2399.76 8399.84 1699.61 5099.70 9499.93 499.78 6699.68 12299.10 5899.78 26299.45 3399.96 4099.83 18
VPNet99.46 5999.37 6999.71 7599.82 4299.59 10099.48 6899.70 9499.81 2699.69 10199.58 18097.66 21599.86 18099.17 7299.44 25999.67 63
HPM-MVS_fast99.43 6399.30 8599.80 2999.83 3699.81 2799.52 6299.70 9498.35 22999.51 16799.50 20899.31 3599.88 14798.18 15799.84 12099.69 50
GBi-Net99.42 6699.31 8099.73 6699.49 19599.77 3999.68 3199.70 9499.44 9499.62 12899.83 4097.21 23499.90 11998.96 9899.90 8299.53 150
test199.42 6699.31 8099.73 6699.49 19599.77 3999.68 3199.70 9499.44 9499.62 12899.83 4097.21 23499.90 11998.96 9899.90 8299.53 150
FMVSNet199.66 2499.63 2499.73 6699.78 7199.77 3999.68 3199.70 9499.67 5099.82 4899.83 4098.98 7399.90 11999.24 6199.97 2999.53 150
APDe-MVS99.48 5299.36 7299.85 1899.55 17199.81 2799.50 6499.69 10098.99 15599.75 7899.71 9898.79 9999.93 6698.46 13399.85 11699.80 23
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12799.75 4799.62 4699.69 10099.85 1999.80 5899.81 4998.81 9299.91 10099.47 3299.88 9899.70 47
OpenMVScopyleft98.12 1098.23 25897.89 26999.26 21699.19 27799.26 17199.65 4399.69 10091.33 34198.14 31499.77 7198.28 16399.96 3395.41 30899.55 24098.58 309
ppachtmachnet_test98.89 19399.12 11898.20 29699.66 13395.24 32797.63 31699.68 10399.08 14699.78 6699.62 15698.65 12099.88 14798.02 16799.96 4099.48 177
UnsupCasMVSNet_bld98.55 22898.27 23799.40 18399.56 17099.37 14997.97 29999.68 10397.49 27999.08 24599.35 24895.41 27499.82 23497.70 19798.19 33099.01 284
test_040299.22 12199.14 11299.45 16799.79 6599.43 13399.28 11199.68 10399.54 7699.40 19599.56 19099.07 6599.82 23496.01 28899.96 4099.11 265
LS3D99.24 11299.11 12199.61 11998.38 33799.79 3499.57 5899.68 10399.61 6699.15 23799.71 9898.70 11199.91 10097.54 21199.68 20499.13 264
HPM-MVScopyleft99.25 10999.07 13599.78 3799.81 4999.75 4799.61 5099.67 10797.72 26799.35 20199.25 26899.23 4599.92 8497.21 23499.82 13999.67 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CR-MVSNet98.35 25098.20 24298.83 26799.05 29898.12 26599.30 10399.67 10797.39 28499.16 23599.79 5791.87 30499.91 10098.78 11698.77 31098.44 316
Patchmtry98.78 20498.54 21499.49 15598.89 31199.19 19199.32 9699.67 10799.65 5699.72 9199.79 5791.87 30499.95 4298.00 17199.97 2999.33 222
UnsupCasMVSNet_eth98.83 19998.57 21199.59 12399.68 12799.45 12698.99 18999.67 10799.48 8399.55 15699.36 24394.92 27599.86 18098.95 10296.57 34299.45 188
miper_lstm_enhance98.65 21798.60 20598.82 27099.20 27597.33 29597.78 31099.66 11199.01 15499.59 13999.50 20894.62 28099.85 19898.12 16299.90 8299.26 234
Effi-MVS+-dtu99.07 15998.92 17499.52 14698.89 31199.78 3799.15 14999.66 11199.34 10798.92 26099.24 27397.69 20899.98 698.11 16399.28 28398.81 299
xiu_mvs_v1_base_debu99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
mvs-test198.83 19998.70 19999.22 22498.89 31199.65 8298.88 20299.66 11199.34 10798.29 30398.94 31097.69 20899.96 3398.11 16398.54 32298.04 332
xiu_mvs_v1_base99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
pmmvs-eth3d99.48 5299.47 5199.51 14999.77 7999.41 14098.81 21699.66 11199.42 10199.75 7899.66 13299.20 4799.76 27298.98 9499.99 1299.36 216
xiu_mvs_v1_base_debi99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
canonicalmvs99.02 16999.00 15699.09 23699.10 29398.70 23499.61 5099.66 11199.63 6198.64 28697.65 34599.04 6999.54 33498.79 11398.92 30399.04 281
RRT_MVS98.75 20898.54 21499.41 18198.14 34698.61 24098.98 19399.66 11199.31 11299.84 4199.75 7891.98 30199.98 699.20 6599.95 4799.62 104
pmmvs398.08 26497.80 27098.91 25599.41 22497.69 28697.87 30799.66 11195.87 31599.50 16899.51 20590.35 32399.97 1698.55 12999.47 25699.08 273
ACMP97.51 1499.05 16398.84 18599.67 8399.78 7199.55 10998.88 20299.66 11197.11 29699.47 17199.60 17299.07 6599.89 13296.18 28399.85 11699.58 129
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SF-MVS99.10 15698.93 17099.62 11599.58 15099.51 11299.13 15899.65 12297.97 25399.42 18299.61 16598.86 8899.87 16096.45 27499.68 20499.49 173
v124099.56 4099.58 3499.51 14999.80 5599.00 20999.00 18499.65 12299.15 13899.90 2299.75 7899.09 6099.88 14799.90 299.96 4099.67 63
ACMMPcopyleft99.25 10999.08 13199.74 5999.79 6599.68 7399.50 6499.65 12298.07 24799.52 16499.69 11198.57 12899.92 8497.18 23699.79 15799.63 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS99.11 15298.95 16999.59 12399.13 28599.59 10099.17 14199.65 12297.88 25999.25 21899.46 22398.97 7599.80 25597.26 22899.82 13999.37 213
F-COLMAP98.74 21098.45 22099.62 11599.57 16099.47 11798.84 20999.65 12296.31 31098.93 25799.19 28197.68 21099.87 16096.52 26999.37 27399.53 150
ACMM98.09 1199.46 5999.38 6699.72 7199.80 5599.69 7099.13 15899.65 12298.99 15599.64 11799.72 9199.39 2399.86 18098.23 15099.81 14799.60 115
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CVMVSNet98.61 21998.88 18097.80 30699.58 15093.60 33599.26 11599.64 12899.66 5499.72 9199.67 12893.26 29199.93 6699.30 5499.81 14799.87 9
OMC-MVS98.90 19098.72 19599.44 16999.39 22899.42 13698.58 23699.64 12897.31 28899.44 17699.62 15698.59 12699.69 29496.17 28499.79 15799.22 242
MP-MVS-pluss99.14 14498.92 17499.80 2999.83 3699.83 2098.61 23299.63 13096.84 30299.44 17699.58 18098.81 9299.91 10097.70 19799.82 13999.67 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15099.64 8499.30 10399.63 13099.61 6699.71 9699.56 19098.76 10599.96 3399.14 8299.92 7299.68 56
DP-MVS Recon98.50 23398.23 23999.31 20799.49 19599.46 12198.56 24199.63 13094.86 33098.85 26799.37 23897.81 20199.59 33196.08 28599.44 25998.88 293
cdsmvs_eth3d_5k24.88 32333.17 3240.00 3370.00 3560.00 3570.00 34899.62 1330.00 3520.00 35399.13 28499.82 40.00 3540.00 3510.00 3510.00 350
v14419299.55 4399.54 4399.58 12799.78 7199.20 19099.11 16499.62 13399.18 13199.89 2699.72 9198.66 11899.87 16099.88 699.97 2999.66 73
CP-MVS99.23 11399.05 14199.75 5499.66 13399.66 7799.38 8399.62 13398.38 22299.06 24999.27 26498.79 9999.94 5397.51 21499.82 13999.66 73
TAPA-MVS97.92 1398.03 26697.55 27999.46 16399.47 20699.44 12898.50 24999.62 13386.79 34499.07 24899.26 26698.26 16599.62 32597.28 22799.73 18799.31 227
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_0728_SECOND99.83 2199.70 11699.79 3499.14 15199.61 13799.92 8497.88 17999.72 19299.77 31
v192192099.56 4099.57 3799.55 13999.75 9399.11 19899.05 17599.61 13799.15 13899.88 3299.71 9899.08 6399.87 16099.90 299.97 2999.66 73
v114499.54 4599.53 4799.59 12399.79 6599.28 16799.10 16599.61 13799.20 12999.84 4199.73 8598.67 11699.84 21399.86 899.98 2199.64 87
XVS99.27 10799.11 12199.75 5499.71 10999.71 5999.37 8799.61 13799.29 11398.76 27899.47 22098.47 14399.88 14797.62 20599.73 18799.67 63
X-MVStestdata96.09 31294.87 31999.75 5499.71 10999.71 5999.37 8799.61 13799.29 11398.76 27861.30 35598.47 14399.88 14797.62 20599.73 18799.67 63
SD-MVS99.01 17399.30 8598.15 29799.50 19099.40 14198.94 19999.61 13799.22 12899.75 7899.82 4699.54 2095.51 35197.48 21599.87 10699.54 147
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize99.31 9999.16 10899.74 5999.53 17599.75 4799.27 11499.61 13799.19 13099.57 14499.64 13998.76 10599.90 11997.29 22599.62 22399.56 137
UniMVSNet_NR-MVSNet99.37 8199.25 9999.72 7199.47 20699.56 10698.97 19599.61 13799.43 9999.67 10799.28 26297.85 19999.95 4299.17 7299.81 14799.65 81
CP-MVSNet99.54 4599.43 6099.87 1499.76 8399.82 2499.57 5899.61 13799.54 7699.80 5899.64 13997.79 20399.95 4299.21 6299.94 6099.84 14
DP-MVS99.48 5299.39 6499.74 5999.57 16099.62 9099.29 11099.61 13799.87 1499.74 8699.76 7498.69 11299.87 16098.20 15399.80 15299.75 38
9.1498.64 20299.45 21498.81 21699.60 14797.52 27799.28 21599.56 19098.53 13699.83 22495.36 31099.64 220
ETH3D-3000-0.198.77 20598.50 21799.59 12399.47 20699.53 11198.77 22499.60 14797.33 28799.23 22299.50 20897.91 19399.83 22495.02 31599.67 21199.41 203
SR-MVS99.19 13199.00 15699.74 5999.51 18499.72 5799.18 13699.60 14798.85 17499.47 17199.58 18098.38 15399.92 8496.92 24699.54 24599.57 135
DPE-MVS99.14 14498.92 17499.82 2399.57 16099.77 3998.74 22699.60 14798.55 20499.76 7399.69 11198.23 16999.92 8496.39 27699.75 17299.76 35
v119299.57 3799.57 3799.57 13299.77 7999.22 18499.04 17799.60 14799.18 13199.87 3699.72 9199.08 6399.85 19899.89 599.98 2199.66 73
UniMVSNet (Re)99.37 8199.26 9799.68 8199.51 18499.58 10398.98 19399.60 14799.43 9999.70 9899.36 24397.70 20699.88 14799.20 6599.87 10699.59 124
SteuartSystems-ACMMP99.30 10099.14 11299.76 4599.87 2799.66 7799.18 13699.60 14798.55 20499.57 14499.67 12899.03 7099.94 5397.01 24299.80 15299.69 50
Skip Steuart: Steuart Systems R&D Blog.
cl-mvsnet_98.54 22998.41 22598.92 25399.03 30197.80 28297.46 32699.59 15498.90 16899.60 13699.46 22393.85 28699.78 26297.97 17499.89 9099.17 253
cl-mvsnet198.54 22998.42 22498.92 25399.03 30197.80 28297.46 32699.59 15498.90 16899.60 13699.46 22393.87 28599.78 26297.97 17499.89 9099.18 251
HFP-MVS99.25 10999.08 13199.76 4599.73 10299.70 6699.31 10099.59 15498.36 22499.36 19999.37 23898.80 9699.91 10097.43 21899.75 17299.68 56
v14899.40 7399.41 6299.39 18699.76 8398.94 21699.09 16999.59 15499.17 13499.81 5599.61 16598.41 15099.69 29499.32 5099.94 6099.53 150
region2R99.23 11399.05 14199.77 3999.76 8399.70 6699.31 10099.59 15498.41 21899.32 20899.36 24398.73 11099.93 6697.29 22599.74 18099.67 63
#test#99.12 14898.90 17899.76 4599.73 10299.70 6699.10 16599.59 15497.60 27299.36 19999.37 23898.80 9699.91 10096.84 25399.75 17299.68 56
V4299.56 4099.54 4399.63 10699.79 6599.46 12199.39 8199.59 15499.24 12399.86 3799.70 10598.55 13099.82 23499.79 1199.95 4799.60 115
ACMMPR99.23 11399.06 13799.76 4599.74 9999.69 7099.31 10099.59 15498.36 22499.35 20199.38 23798.61 12499.93 6697.43 21899.75 17299.67 63
CMPMVSbinary77.52 2398.50 23398.19 24599.41 18198.33 33999.56 10699.01 18299.59 15495.44 32199.57 14499.80 5195.64 27199.46 34196.47 27399.92 7299.21 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
our_test_398.85 19899.09 12998.13 29899.66 13394.90 33097.72 31299.58 16399.07 14899.64 11799.62 15698.19 17399.93 6698.41 13499.95 4799.55 140
v2v48299.50 4899.47 5199.58 12799.78 7199.25 17599.14 15199.58 16399.25 12199.81 5599.62 15698.24 16699.84 21399.83 999.97 2999.64 87
test072699.69 11999.80 3299.24 12199.57 16599.16 13699.73 9099.65 13798.35 156
DVP-MVS99.04 16698.79 19299.81 2699.78 7199.73 5399.35 9099.57 16598.54 20799.54 15898.99 30096.81 24799.93 6696.97 24499.53 24799.77 31
APD-MVScopyleft98.87 19698.59 20799.71 7599.50 19099.62 9099.01 18299.57 16596.80 30499.54 15899.63 14798.29 16299.91 10095.24 31199.71 19699.61 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FMVSNet299.35 8699.28 9299.55 13999.49 19599.35 15699.45 7199.57 16599.44 9499.70 9899.74 8197.21 23499.87 16099.03 8999.94 6099.44 193
TAMVS99.49 5099.45 5599.63 10699.48 20199.42 13699.45 7199.57 16599.66 5499.78 6699.83 4097.85 19999.86 18099.44 3499.96 4099.61 111
ZNCC-MVS99.22 12199.04 14699.77 3999.76 8399.73 5399.28 11199.56 17098.19 24399.14 23999.29 26098.84 9199.92 8497.53 21399.80 15299.64 87
cl_fuxian98.72 21398.71 19698.72 27599.12 28797.22 29897.68 31599.56 17098.90 16899.54 15899.48 21596.37 25999.73 28097.88 17999.88 9899.21 244
cascas96.99 29396.82 29897.48 31397.57 35095.64 32396.43 34499.56 17091.75 33997.13 33997.61 34695.58 27398.63 34896.68 26199.11 29398.18 329
Vis-MVSNet (Re-imp)98.77 20598.58 21099.34 19899.78 7198.88 22599.61 5099.56 17099.11 14499.24 22199.56 19093.00 29599.78 26297.43 21899.89 9099.35 219
3Dnovator99.15 299.43 6399.36 7299.65 9599.39 22899.42 13699.70 2299.56 17099.23 12599.35 20199.80 5199.17 5099.95 4298.21 15299.84 12099.59 124
GST-MVS99.16 14098.96 16799.75 5499.73 10299.73 5399.20 13199.55 17598.22 24099.32 20899.35 24898.65 12099.91 10096.86 25099.74 18099.62 104
MVP-Stereo99.16 14099.08 13199.43 17299.48 20199.07 20699.08 17299.55 17598.63 19699.31 21099.68 12298.19 17399.78 26298.18 15799.58 23499.45 188
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous99.28 10399.39 6498.94 24999.19 27797.81 28199.02 18099.55 17599.78 3299.85 3899.80 5198.24 16699.86 18099.57 2299.50 25299.15 257
CPTT-MVS98.74 21098.44 22199.64 10299.61 14399.38 14699.18 13699.55 17596.49 30799.27 21699.37 23897.11 24099.92 8495.74 30199.67 21199.62 104
CLD-MVS98.76 20798.57 21199.33 20099.57 16098.97 21397.53 32299.55 17596.41 30899.27 21699.13 28499.07 6599.78 26296.73 25999.89 9099.23 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SED-MVS99.40 7399.28 9299.77 3999.69 11999.82 2499.20 13199.54 18099.13 14099.82 4899.63 14798.91 8299.92 8497.85 18599.70 19899.58 129
test_241102_TWO99.54 18099.13 14099.76 7399.63 14798.32 16199.92 8497.85 18599.69 20199.75 38
test_241102_ONE99.69 11999.82 2499.54 18099.12 14399.82 4899.49 21398.91 8299.52 336
eth_miper_zixun_eth98.68 21598.71 19698.60 27999.10 29396.84 30797.52 32499.54 18098.94 16199.58 14199.48 21596.25 26299.76 27298.01 17099.93 6899.21 244
HQP_MVS98.90 19098.68 20199.55 13999.58 15099.24 18098.80 21999.54 18098.94 16199.14 23999.25 26897.24 23299.82 23495.84 29799.78 16399.60 115
plane_prior599.54 18099.82 23495.84 29799.78 16399.60 115
mPP-MVS99.19 13199.00 15699.76 4599.76 8399.68 7399.38 8399.54 18098.34 23399.01 25199.50 20898.53 13699.93 6697.18 23699.78 16399.66 73
CDS-MVSNet99.22 12199.13 11599.50 15299.35 23899.11 19898.96 19699.54 18099.46 9299.61 13499.70 10596.31 26099.83 22499.34 4699.88 9899.55 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PatchMatch-RL98.68 21598.47 21899.30 20999.44 21799.28 16798.14 27799.54 18097.12 29599.11 24399.25 26897.80 20299.70 28896.51 27099.30 28198.93 289
test_part10.00 3370.00 3570.00 34899.53 1890.00 3580.00 3540.00 3510.00 3510.00 350
ACMMP_NAP99.28 10399.11 12199.79 3499.75 9399.81 2798.95 19799.53 18998.27 23899.53 16299.73 8598.75 10799.87 16097.70 19799.83 13099.68 56
zzz-MVS99.30 10099.14 11299.80 2999.81 4999.81 2798.73 22899.53 18999.27 11799.42 18299.63 14798.21 17099.95 4297.83 18899.79 15799.65 81
MTGPAbinary99.53 189
MTAPA99.35 8699.20 10499.80 2999.81 4999.81 2799.33 9399.53 18999.27 11799.42 18299.63 14798.21 17099.95 4297.83 18899.79 15799.65 81
Regformer-499.45 6199.44 5799.50 15299.52 18098.94 21699.17 14199.53 18999.64 5899.76 7399.60 17298.96 7899.90 11998.91 10599.84 12099.67 63
Regformer-299.34 9199.27 9599.53 14599.41 22499.10 20298.99 18999.53 18999.47 8899.66 11199.52 20298.80 9699.89 13298.31 14399.74 18099.60 115
DU-MVS99.33 9599.21 10399.71 7599.43 21999.56 10698.83 21199.53 18999.38 10399.67 10799.36 24397.67 21199.95 4299.17 7299.81 14799.63 92
DELS-MVS99.34 9199.30 8599.48 15899.51 18499.36 15298.12 27999.53 18999.36 10699.41 19099.61 16599.22 4699.87 16099.21 6299.68 20499.20 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
miper_ehance_all_eth98.59 22298.59 20798.59 28098.98 30497.07 30197.49 32599.52 19898.50 21099.52 16499.37 23896.41 25899.71 28697.86 18399.62 22399.00 285
SMA-MVS99.19 13199.00 15699.73 6699.46 21199.73 5399.13 15899.52 19897.40 28399.57 14499.64 13998.93 7999.83 22497.61 20799.79 15799.63 92
QAPM98.40 24597.99 25599.65 9599.39 22899.47 11799.67 3599.52 19891.70 34098.78 27699.80 5198.55 13099.95 4294.71 31999.75 17299.53 150
xiu_mvs_v2_base99.02 16999.11 12198.77 27299.37 23498.09 26998.13 27899.51 20199.47 8899.42 18298.54 33199.38 2799.97 1698.83 10999.33 27898.24 324
PS-MVSNAJ99.00 17599.08 13198.76 27399.37 23498.10 26898.00 29399.51 20199.47 8899.41 19098.50 33399.28 4099.97 1698.83 10999.34 27698.20 328
PLCcopyleft97.35 1698.36 24797.99 25599.48 15899.32 25499.24 18098.50 24999.51 20195.19 32698.58 29198.96 30896.95 24599.83 22495.63 30299.25 28799.37 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testtj98.56 22598.17 24799.72 7199.45 21499.60 9798.88 20299.50 20496.88 29999.18 23499.48 21597.08 24199.92 8493.69 33099.38 26999.63 92
MP-MVScopyleft99.06 16098.83 18799.76 4599.76 8399.71 5999.32 9699.50 20498.35 22998.97 25399.48 21598.37 15499.92 8495.95 29499.75 17299.63 92
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NR-MVSNet99.40 7399.31 8099.68 8199.43 21999.55 10999.73 1699.50 20499.46 9299.88 3299.36 24397.54 21999.87 16098.97 9699.87 10699.63 92
new_pmnet98.88 19498.89 17998.84 26599.70 11697.62 28798.15 27599.50 20497.98 25299.62 12899.54 19898.15 17699.94 5397.55 21099.84 12098.95 287
3Dnovator+98.92 399.35 8699.24 10099.67 8399.35 23899.47 11799.62 4699.50 20499.44 9499.12 24299.78 6498.77 10499.94 5397.87 18299.72 19299.62 104
ETH3 D test640097.76 27397.19 28799.50 15299.38 23199.26 17198.34 26099.49 20992.99 33798.54 29499.20 27995.92 26999.82 23491.14 33799.66 21599.40 205
MVS_Test99.28 10399.31 8099.19 22899.35 23898.79 23099.36 8999.49 20999.17 13499.21 22899.67 12898.78 10199.66 31499.09 8599.66 21599.10 267
OPM-MVS99.26 10899.13 11599.63 10699.70 11699.61 9698.58 23699.48 21198.50 21099.52 16499.63 14799.14 5499.76 27297.89 17899.77 16799.51 162
Regformer-199.32 9799.27 9599.47 16099.41 22498.95 21598.99 18999.48 21199.48 8399.66 11199.52 20298.78 10199.87 16098.36 13799.74 18099.60 115
FMVSNet398.80 20398.63 20499.32 20499.13 28598.72 23399.10 16599.48 21199.23 12599.62 12899.64 13992.57 29799.86 18098.96 9899.90 8299.39 208
OpenMVS_ROBcopyleft97.31 1797.36 28796.84 29798.89 26299.29 26199.45 12698.87 20599.48 21186.54 34699.44 17699.74 8197.34 22999.86 18091.61 33499.28 28397.37 340
ETH3D cwj APD-0.1698.50 23398.16 24899.51 14999.04 30099.39 14398.47 25199.47 21596.70 30698.78 27699.33 25297.62 21899.86 18094.69 32099.38 26999.28 233
MSLP-MVS++99.05 16399.09 12998.91 25599.21 27298.36 25498.82 21599.47 21598.85 17498.90 26399.56 19098.78 10199.09 34598.57 12899.68 20499.26 234
DeepPCF-MVS98.42 699.18 13599.02 15099.67 8399.22 27199.75 4797.25 33499.47 21598.72 19099.66 11199.70 10599.29 3899.63 32498.07 16699.81 14799.62 104
PMVScopyleft92.94 2198.82 20198.81 18998.85 26399.84 3397.99 27399.20 13199.47 21599.71 4099.42 18299.82 4698.09 17999.47 33993.88 32999.85 11699.07 278
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ambc99.20 22799.35 23898.53 24299.17 14199.46 21999.67 10799.80 5198.46 14699.70 28897.92 17699.70 19899.38 210
EI-MVSNet-UG-set99.48 5299.50 4999.42 17499.57 16098.65 23999.24 12199.46 21999.68 4899.80 5899.66 13298.99 7299.89 13299.19 6799.90 8299.72 41
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17499.57 16098.66 23799.24 12199.46 21999.67 5099.79 6399.65 13798.97 7599.89 13299.15 7699.89 9099.71 44
EI-MVSNet99.38 7999.44 5799.21 22599.58 15098.09 26999.26 11599.46 21999.62 6299.75 7899.67 12898.54 13299.85 19899.15 7699.92 7299.68 56
MVSTER98.47 23898.22 24099.24 22299.06 29798.35 25599.08 17299.46 21999.27 11799.75 7899.66 13288.61 33099.85 19899.14 8299.92 7299.52 160
CHOSEN 280x42098.41 24398.41 22598.40 28799.34 24895.89 32196.94 33999.44 22498.80 18199.25 21899.52 20293.51 29099.98 698.94 10399.98 2199.32 225
Regformer-399.41 7099.41 6299.40 18399.52 18098.70 23499.17 14199.44 22499.62 6299.75 7899.60 17298.90 8599.85 19898.89 10699.84 12099.65 81
PCF-MVS96.03 1896.73 30095.86 31099.33 20099.44 21799.16 19396.87 34099.44 22486.58 34598.95 25599.40 23294.38 28299.88 14787.93 34299.80 15298.95 287
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testing_299.58 3699.56 4199.62 11599.81 4999.44 12899.14 15199.43 22799.69 4699.82 4899.79 5799.14 5499.79 25899.31 5399.95 4799.63 92
ab-mvs99.33 9599.28 9299.47 16099.57 16099.39 14399.78 1099.43 22798.87 17299.57 14499.82 4698.06 18299.87 16098.69 12399.73 18799.15 257
AdaColmapbinary98.60 22098.35 23299.38 19099.12 28799.22 18498.67 23199.42 22997.84 26498.81 27199.27 26497.32 23099.81 25095.14 31299.53 24799.10 267
miper_enhance_ethall98.03 26697.94 26398.32 29198.27 34096.43 31396.95 33899.41 23096.37 30999.43 18098.96 30894.74 27899.69 29497.71 19599.62 22398.83 298
D2MVS99.22 12199.19 10599.29 21099.69 11998.74 23298.81 21699.41 23098.55 20499.68 10399.69 11198.13 17799.87 16098.82 11199.98 2199.24 237
CANet99.11 15299.05 14199.28 21298.83 31798.56 24198.71 23099.41 23099.25 12199.23 22299.22 27597.66 21599.94 5399.19 6799.97 2999.33 222
TEST999.35 23899.35 15698.11 28199.41 23094.83 33297.92 32298.99 30098.02 18599.85 198
train_agg98.35 25097.95 25999.57 13299.35 23899.35 15698.11 28199.41 23094.90 32897.92 32298.99 30098.02 18599.85 19895.38 30999.44 25999.50 168
CDPH-MVS98.56 22598.20 24299.61 11999.50 19099.46 12198.32 26399.41 23095.22 32499.21 22899.10 29198.34 15899.82 23495.09 31499.66 21599.56 137
CNLPA98.57 22498.34 23399.28 21299.18 27999.10 20298.34 26099.41 23098.48 21398.52 29598.98 30397.05 24299.78 26295.59 30399.50 25298.96 286
test_899.34 24899.31 16298.08 28599.40 23794.90 32897.87 32698.97 30698.02 18599.84 213
PVSNet_095.53 1995.85 31695.31 31797.47 31498.78 32593.48 33695.72 34599.40 23796.18 31297.37 33497.73 34495.73 27099.58 33295.49 30581.40 34899.36 216
DeepC-MVS_fast98.47 599.23 11399.12 11899.56 13699.28 26399.22 18498.99 18999.40 23799.08 14699.58 14199.64 13998.90 8599.83 22497.44 21799.75 17299.63 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous2024052999.42 6699.34 7499.65 9599.53 17599.60 9799.63 4599.39 24099.47 8899.76 7399.78 6498.13 17799.86 18098.70 12199.68 20499.49 173
agg_prior198.33 25297.92 26599.57 13299.35 23899.36 15297.99 29599.39 24094.85 33197.76 33198.98 30398.03 18399.85 19895.49 30599.44 25999.51 162
agg_prior99.35 23899.36 15299.39 24097.76 33199.85 198
test_prior398.62 21898.34 23399.46 16399.35 23899.22 18497.95 30099.39 24097.87 26098.05 31699.05 29497.90 19499.69 29495.99 29099.49 25499.48 177
test_prior99.46 16399.35 23899.22 18499.39 24099.69 29499.48 177
jason99.16 14099.11 12199.32 20499.75 9398.44 24798.26 26899.39 24098.70 19199.74 8699.30 25798.54 13299.97 1698.48 13299.82 13999.55 140
jason: jason.
save fliter99.53 17599.25 17598.29 26599.38 24699.07 148
cl-mvsnet297.56 28197.28 28298.40 28798.37 33896.75 30897.24 33599.37 24797.31 28899.41 19099.22 27587.30 33299.37 34397.70 19799.62 22399.08 273
WR-MVS99.11 15298.93 17099.66 9099.30 25999.42 13698.42 25799.37 24799.04 15399.57 14499.20 27996.89 24699.86 18098.66 12599.87 10699.70 47
HQP3-MVS99.37 24799.67 211
HQP-MVS98.36 24798.02 25499.39 18699.31 25598.94 21697.98 29699.37 24797.45 28098.15 31098.83 31896.67 24899.70 28894.73 31799.67 21199.53 150
TSAR-MVS + MP.99.34 9199.24 10099.63 10699.82 4299.37 14999.26 11599.35 25198.77 18599.57 14499.70 10599.27 4399.88 14797.71 19599.75 17299.65 81
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UGNet99.38 7999.34 7499.49 15598.90 30898.90 22499.70 2299.35 25199.86 1698.57 29299.81 4998.50 14299.93 6699.38 4199.98 2199.66 73
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet97.47 1598.42 24298.44 22198.35 28999.46 21196.26 31496.70 34299.34 25397.68 26999.00 25299.13 28497.40 22499.72 28297.59 20999.68 20499.08 273
MS-PatchMatch99.00 17598.97 16599.09 23699.11 29298.19 26198.76 22599.33 25498.49 21299.44 17699.58 18098.21 17099.69 29498.20 15399.62 22399.39 208
MDA-MVSNet_test_wron98.95 18598.99 16198.85 26399.64 13797.16 29998.23 27099.33 25498.93 16499.56 15199.66 13297.39 22699.83 22498.29 14599.88 9899.55 140
YYNet198.95 18598.99 16198.84 26599.64 13797.14 30098.22 27199.32 25698.92 16699.59 13999.66 13297.40 22499.83 22498.27 14799.90 8299.55 140
tpm cat196.78 29896.98 29296.16 33298.85 31590.59 35299.08 17299.32 25692.37 33897.73 33399.46 22391.15 31199.69 29496.07 28698.80 30798.21 326
sss98.90 19098.77 19399.27 21499.48 20198.44 24798.72 22999.32 25697.94 25799.37 19899.35 24896.31 26099.91 10098.85 10899.63 22299.47 182
PMMVS98.49 23698.29 23699.11 23498.96 30598.42 24997.54 32099.32 25697.53 27698.47 29998.15 34097.88 19799.82 23497.46 21699.24 28999.09 270
MSP-MVS99.32 9799.17 10799.77 3999.69 11999.80 3299.14 15199.31 26099.16 13699.62 12899.61 16598.35 15699.91 10097.88 17999.72 19299.61 111
CANet_DTU98.91 18898.85 18399.09 23698.79 32398.13 26498.18 27299.31 26099.48 8398.86 26699.51 20596.56 25099.95 4299.05 8899.95 4799.19 249
VNet99.18 13599.06 13799.56 13699.24 26999.36 15299.33 9399.31 26099.67 5099.47 17199.57 18796.48 25399.84 21399.15 7699.30 28199.47 182
MVS_030498.88 19498.71 19699.39 18698.85 31598.91 22399.45 7199.30 26398.56 20297.26 33799.68 12296.18 26499.96 3399.17 7299.94 6099.29 231
testdata99.42 17499.51 18498.93 22099.30 26396.20 31198.87 26599.40 23298.33 16099.89 13296.29 28099.28 28399.44 193
test22299.51 18499.08 20597.83 30999.29 26595.21 32598.68 28499.31 25597.28 23199.38 26999.43 199
TSAR-MVS + GP.99.12 14899.04 14699.38 19099.34 24899.16 19398.15 27599.29 26598.18 24499.63 12199.62 15699.18 4999.68 30598.20 15399.74 18099.30 228
test1199.29 265
PAPM_NR98.36 24798.04 25399.33 20099.48 20198.93 22098.79 22299.28 26897.54 27598.56 29398.57 32897.12 23999.69 29494.09 32698.90 30599.38 210
原ACMM199.37 19399.47 20698.87 22799.27 26996.74 30598.26 30599.32 25397.93 19299.82 23495.96 29399.38 26999.43 199
CNVR-MVS98.99 17898.80 19199.56 13699.25 26799.43 13398.54 24599.27 26998.58 20198.80 27399.43 22898.53 13699.70 28897.22 23399.59 23399.54 147
新几何199.52 14699.50 19099.22 18499.26 27195.66 32098.60 28999.28 26297.67 21199.89 13295.95 29499.32 27999.45 188
旧先验199.49 19599.29 16599.26 27199.39 23697.67 21199.36 27499.46 186
DeepMVS_CXcopyleft97.98 30099.69 11996.95 30399.26 27175.51 34895.74 34698.28 33896.47 25499.62 32591.23 33697.89 33697.38 339
pmmvs499.13 14699.06 13799.36 19699.57 16099.10 20298.01 29199.25 27498.78 18499.58 14199.44 22798.24 16699.76 27298.74 11899.93 6899.22 242
NCCC98.82 20198.57 21199.58 12799.21 27299.31 16298.61 23299.25 27498.65 19498.43 30099.26 26697.86 19899.81 25096.55 26799.27 28699.61 111
PAPR97.56 28197.07 28999.04 24398.80 32298.11 26797.63 31699.25 27494.56 33498.02 32098.25 33997.43 22399.68 30590.90 33898.74 31499.33 222
EPP-MVSNet99.17 13999.00 15699.66 9099.80 5599.43 13399.70 2299.24 27799.48 8399.56 15199.77 7194.89 27699.93 6698.72 12099.89 9099.63 92
无先验98.01 29199.23 27895.83 31699.85 19895.79 29999.44 193
IU-MVS99.69 11999.77 3999.22 27997.50 27899.69 10197.75 19299.70 19899.77 31
112198.56 22598.24 23899.52 14699.49 19599.24 18099.30 10399.22 27995.77 31798.52 29599.29 26097.39 22699.85 19895.79 29999.34 27699.46 186
MG-MVS98.52 23298.39 22798.94 24999.15 28297.39 29498.18 27299.21 28198.89 17199.23 22299.63 14797.37 22899.74 27894.22 32499.61 23099.69 50
HPM-MVS++copyleft98.96 18298.70 19999.74 5999.52 18099.71 5998.86 20699.19 28298.47 21498.59 29099.06 29398.08 18199.91 10096.94 24599.60 23199.60 115
lupinMVS98.96 18298.87 18199.24 22299.57 16098.40 25098.12 27999.18 28398.28 23799.63 12199.13 28498.02 18599.97 1698.22 15199.69 20199.35 219
API-MVS98.38 24698.39 22798.35 28998.83 31799.26 17199.14 15199.18 28398.59 20098.66 28598.78 32198.61 12499.57 33394.14 32599.56 23696.21 344
test1299.54 14399.29 26199.33 15999.16 28598.43 30097.54 21999.82 23499.47 25699.48 177
IS-MVSNet99.03 16798.85 18399.55 13999.80 5599.25 17599.73 1699.15 28699.37 10499.61 13499.71 9894.73 27999.81 25097.70 19799.88 9899.58 129
SixPastTwentyTwo99.42 6699.30 8599.76 4599.92 1499.67 7599.70 2299.14 28799.65 5699.89 2699.90 2196.20 26399.94 5399.42 3999.92 7299.67 63
MAR-MVS98.24 25797.92 26599.19 22898.78 32599.65 8299.17 14199.14 28795.36 32298.04 31898.81 32097.47 22199.72 28295.47 30799.06 29598.21 326
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS98.59 22298.37 22999.26 21699.43 21998.40 25098.74 22699.13 28998.10 24699.21 22899.24 27394.82 27799.90 11997.86 18398.77 31099.49 173
Patchmatch-test98.10 26397.98 25798.48 28499.27 26596.48 31199.40 7999.07 29098.81 17999.23 22299.57 18790.11 32599.87 16096.69 26099.64 22099.09 270
MCST-MVS99.02 16998.81 18999.65 9599.58 15099.49 11498.58 23699.07 29098.40 22099.04 25099.25 26898.51 14199.80 25597.31 22499.51 25099.65 81
131498.00 26897.90 26898.27 29598.90 30897.45 29299.30 10399.06 29294.98 32797.21 33899.12 28898.43 14899.67 31095.58 30498.56 32197.71 336
GA-MVS97.99 26997.68 27698.93 25299.52 18098.04 27297.19 33699.05 29398.32 23598.81 27198.97 30689.89 32899.41 34298.33 14199.05 29699.34 221
E-PMN97.14 29297.43 28096.27 33098.79 32391.62 34695.54 34699.01 29499.44 9498.88 26499.12 28892.78 29699.68 30594.30 32399.03 29897.50 337
BH-untuned98.22 25998.09 25198.58 28199.38 23197.24 29798.55 24298.98 29597.81 26599.20 23398.76 32297.01 24399.65 32194.83 31698.33 32698.86 295
tpmvs97.39 28597.69 27596.52 32898.41 33691.76 34499.30 10398.94 29697.74 26697.85 32799.55 19692.40 30099.73 28096.25 28298.73 31698.06 331
MVS95.72 31894.63 32198.99 24598.56 33397.98 27899.30 10398.86 29772.71 34997.30 33599.08 29298.34 15899.74 27889.21 33998.33 32699.26 234
ADS-MVSNet97.72 27697.67 27797.86 30499.14 28394.65 33199.22 12898.86 29796.97 29798.25 30699.64 13990.90 31599.84 21396.51 27099.56 23699.08 273
tpmrst97.73 27498.07 25296.73 32598.71 32992.00 34299.10 16598.86 29798.52 20898.92 26099.54 19891.90 30299.82 23498.02 16799.03 29898.37 318
PatchT98.45 24098.32 23598.83 26798.94 30698.29 25699.24 12198.82 30099.84 2199.08 24599.76 7491.37 30799.94 5398.82 11199.00 30098.26 323
FPMVS96.32 30895.50 31598.79 27199.60 14598.17 26398.46 25698.80 30197.16 29396.28 34199.63 14782.19 34799.09 34588.45 34198.89 30699.10 267
DPM-MVS98.28 25397.94 26399.32 20499.36 23699.11 19897.31 33298.78 30296.88 29998.84 26899.11 29097.77 20499.61 32994.03 32799.36 27499.23 240
RPMNet98.53 23198.44 22198.83 26799.05 29898.12 26599.30 10398.78 30299.86 1699.16 23599.74 8192.53 29999.91 10098.75 11798.77 31098.44 316
ADS-MVSNet297.78 27297.66 27898.12 29999.14 28395.36 32599.22 12898.75 30496.97 29798.25 30699.64 13990.90 31599.94 5396.51 27099.56 23699.08 273
HY-MVS98.23 998.21 26097.95 25998.99 24599.03 30198.24 25799.61 5098.72 30596.81 30398.73 28099.51 20594.06 28499.86 18096.91 24798.20 32898.86 295
VDDNet98.97 17998.82 18899.42 17499.71 10998.81 22899.62 4698.68 30699.81 2699.38 19799.80 5194.25 28399.85 19898.79 11399.32 27999.59 124
CostFormer96.71 30196.79 29996.46 32998.90 30890.71 35199.41 7798.68 30694.69 33398.14 31499.34 25186.32 34299.80 25597.60 20898.07 33498.88 293
test_yl98.25 25597.95 25999.13 23299.17 28098.47 24499.00 18498.67 30898.97 15799.22 22699.02 29891.31 30899.69 29497.26 22898.93 30199.24 237
DCV-MVSNet98.25 25597.95 25999.13 23299.17 28098.47 24499.00 18498.67 30898.97 15799.22 22699.02 29891.31 30899.69 29497.26 22898.93 30199.24 237
EMVS96.96 29597.28 28295.99 33398.76 32791.03 34995.26 34798.61 31099.34 10798.92 26098.88 31693.79 28799.66 31492.87 33199.05 29697.30 341
MIMVSNet98.43 24198.20 24299.11 23499.53 17598.38 25399.58 5798.61 31098.96 15999.33 20699.76 7490.92 31499.81 25097.38 22199.76 16999.15 257
MTMP99.09 16998.59 312
BH-w/o97.20 28997.01 29197.76 30799.08 29695.69 32298.03 29098.52 31395.76 31897.96 32198.02 34195.62 27299.47 33992.82 33297.25 34198.12 330
tpm296.35 30796.22 30396.73 32598.88 31491.75 34599.21 13098.51 31493.27 33697.89 32499.21 27784.83 34499.70 28896.04 28798.18 33198.75 302
JIA-IIPM98.06 26597.92 26598.50 28398.59 33297.02 30298.80 21998.51 31499.88 1397.89 32499.87 3091.89 30399.90 11998.16 16097.68 33898.59 307
SCA98.11 26298.36 23097.36 31799.20 27592.99 33898.17 27498.49 31698.24 23999.10 24499.57 18796.01 26799.94 5396.86 25099.62 22399.14 261
PAPM95.61 31994.71 32098.31 29399.12 28796.63 30996.66 34398.46 31790.77 34296.25 34298.68 32593.01 29499.69 29481.60 34897.86 33798.62 305
alignmvs98.28 25397.96 25899.25 21999.12 28798.93 22099.03 17998.42 31899.64 5898.72 28197.85 34390.86 31799.62 32598.88 10799.13 29299.19 249
baseline197.73 27497.33 28198.96 24799.30 25997.73 28499.40 7998.42 31899.33 11099.46 17499.21 27791.18 31099.82 23498.35 13991.26 34799.32 225
PatchmatchNetpermissive97.65 27797.80 27097.18 32098.82 32092.49 34099.17 14198.39 32098.12 24598.79 27499.58 18090.71 31999.89 13297.23 23299.41 26599.16 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dp96.86 29697.07 28996.24 33198.68 33190.30 35399.19 13598.38 32197.35 28698.23 30899.59 17887.23 33399.82 23496.27 28198.73 31698.59 307
VDD-MVS99.20 12899.11 12199.44 16999.43 21998.98 21199.50 6498.32 32299.80 2999.56 15199.69 11196.99 24499.85 19898.99 9299.73 18799.50 168
BH-RMVSNet98.41 24398.14 24999.21 22599.21 27298.47 24498.60 23498.26 32398.35 22998.93 25799.31 25597.20 23799.66 31494.32 32299.10 29499.51 162
EPNet_dtu97.62 27897.79 27297.11 32296.67 35192.31 34198.51 24898.04 32499.24 12395.77 34599.47 22093.78 28899.66 31498.98 9499.62 22399.37 213
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 27498.70 33090.83 35099.15 14998.02 32598.51 20998.82 27099.61 16590.98 31399.66 31496.89 24998.92 303
EPNet98.13 26197.77 27399.18 23094.57 35297.99 27399.24 12197.96 32699.74 3597.29 33699.62 15693.13 29399.97 1698.59 12799.83 13099.58 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm97.15 29096.95 29397.75 30898.91 30794.24 33399.32 9697.96 32697.71 26898.29 30399.32 25386.72 34099.92 8498.10 16596.24 34499.09 270
TR-MVS97.44 28497.15 28898.32 29198.53 33497.46 29198.47 25197.91 32896.85 30198.21 30998.51 33296.42 25699.51 33792.16 33397.29 34097.98 333
tmp_tt95.75 31795.42 31696.76 32389.90 35394.42 33298.86 20697.87 32978.01 34799.30 21499.69 11197.70 20695.89 35099.29 5798.14 33299.95 1
DWT-MVSNet_test96.03 31495.80 31296.71 32798.50 33591.93 34399.25 12097.87 32995.99 31496.81 34097.61 34681.02 34999.66 31497.20 23597.98 33598.54 311
Anonymous20240521198.75 20898.46 21999.63 10699.34 24899.66 7799.47 7097.65 33199.28 11699.56 15199.50 20893.15 29299.84 21398.62 12699.58 23499.40 205
thres100view90096.39 30696.03 30797.47 31499.63 13995.93 31999.18 13697.57 33298.75 18998.70 28397.31 35087.04 33599.67 31087.62 34398.51 32396.81 342
thres600view796.60 30396.16 30497.93 30299.63 13996.09 31899.18 13697.57 33298.77 18598.72 28197.32 34987.04 33599.72 28288.57 34098.62 31997.98 333
thres20096.09 31295.68 31497.33 31999.48 20196.22 31598.53 24697.57 33298.06 24898.37 30296.73 35486.84 33999.61 32986.99 34698.57 32096.16 345
tfpn200view996.30 30995.89 30897.53 31299.58 15096.11 31699.00 18497.54 33598.43 21598.52 29596.98 35286.85 33799.67 31087.62 34398.51 32396.81 342
thres40096.40 30595.89 30897.92 30399.58 15096.11 31699.00 18497.54 33598.43 21598.52 29596.98 35286.85 33799.67 31087.62 34398.51 32397.98 333
test0.0.03 197.37 28696.91 29698.74 27497.72 34797.57 28897.60 31897.36 33798.00 24999.21 22898.02 34190.04 32699.79 25898.37 13695.89 34598.86 295
LFMVS98.46 23998.19 24599.26 21699.24 26998.52 24399.62 4696.94 33899.87 1499.31 21099.58 18091.04 31299.81 25098.68 12499.42 26499.45 188
test-LLR97.15 29096.95 29397.74 30998.18 34395.02 32897.38 32896.10 33998.00 24997.81 32898.58 32690.04 32699.91 10097.69 20398.78 30898.31 320
test-mter96.23 31195.73 31397.74 30998.18 34395.02 32897.38 32896.10 33997.90 25897.81 32898.58 32679.12 35399.91 10097.69 20398.78 30898.31 320
IB-MVS95.41 2095.30 32094.46 32297.84 30598.76 32795.33 32697.33 33196.07 34196.02 31395.37 34797.41 34876.17 35599.96 3397.54 21195.44 34698.22 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D96.78 29896.07 30698.91 25599.26 26697.92 27997.70 31496.05 34297.96 25692.37 34998.43 33587.06 33499.90 11998.27 14797.56 33998.91 291
TESTMET0.1,196.24 31095.84 31197.41 31698.24 34193.84 33497.38 32895.84 34398.43 21597.81 32898.56 32979.77 35299.89 13297.77 19098.77 31098.52 312
MVEpermissive92.54 2296.66 30296.11 30598.31 29399.68 12797.55 28997.94 30295.60 34499.37 10490.68 35098.70 32496.56 25098.61 34986.94 34799.55 24098.77 301
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
K. test v398.87 19698.60 20599.69 8099.93 1399.46 12199.74 1594.97 34599.78 3299.88 3299.88 2893.66 28999.97 1699.61 1899.95 4799.64 87
N_pmnet98.73 21298.53 21699.35 19799.72 10698.67 23698.34 26094.65 34698.35 22999.79 6399.68 12298.03 18399.93 6698.28 14699.92 7299.44 193
tttt051797.62 27897.20 28698.90 26199.76 8397.40 29399.48 6894.36 34799.06 15299.70 9899.49 21384.55 34599.94 5398.73 11999.65 21899.36 216
thisisatest051596.98 29496.42 30098.66 27899.42 22397.47 29097.27 33394.30 34897.24 29099.15 23798.86 31785.01 34399.87 16097.10 23999.39 26898.63 304
thisisatest053097.45 28396.95 29398.94 24999.68 12797.73 28499.09 16994.19 34998.61 19999.56 15199.30 25784.30 34699.93 6698.27 14799.54 24599.16 255
baseline296.83 29796.28 30298.46 28599.09 29596.91 30598.83 21193.87 35097.23 29196.23 34498.36 33688.12 33199.90 11996.68 26198.14 33298.57 310
MVS-HIRNet97.86 27098.22 24096.76 32399.28 26391.53 34798.38 25992.60 35199.13 14099.31 21099.96 1097.18 23899.68 30598.34 14099.83 13099.07 278
lessismore_v099.64 10299.86 2999.38 14690.66 35299.89 2699.83 4094.56 28199.97 1699.56 2399.92 7299.57 135
EPMVS96.53 30496.32 30197.17 32198.18 34392.97 33999.39 8189.95 35398.21 24198.61 28899.59 17886.69 34199.72 28296.99 24399.23 29198.81 299
gg-mvs-nofinetune95.87 31595.17 31897.97 30198.19 34296.95 30399.69 2889.23 35499.89 1196.24 34399.94 1281.19 34899.51 33793.99 32898.20 32897.44 338
GG-mvs-BLEND97.36 31797.59 34896.87 30699.70 2288.49 35594.64 34897.26 35180.66 35099.12 34491.50 33596.50 34396.08 346
testmvs28.94 32233.33 32315.79 33626.03 3549.81 35696.77 34115.67 35611.55 35123.87 35250.74 35819.03 3578.53 35323.21 35033.07 34929.03 349
test12329.31 32133.05 32518.08 33525.93 35512.24 35597.53 32210.93 35711.78 35024.21 35150.08 35921.04 3568.60 35223.51 34932.43 35033.39 348
uanet_test8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas16.61 32422.14 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 199.28 400.00 3540.00 3510.00 3510.00 350
sosnet-low-res8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
sosnet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
Regformer8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
n20.00 358
nn0.00 358
ab-mvs-re8.26 33111.02 3330.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.16 2820.00 3580.00 3540.00 3510.00 3510.00 350
uanet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS99.29 21099.12 28799.44 12899.20 13199.40 23299.00 7198.84 34796.54 26899.60 23199.58 129
test_0728_THIRD99.18 13199.62 12899.61 16598.58 12799.91 10097.72 19499.80 15299.77 31
GSMVS99.14 261
test_part299.62 14299.67 7599.55 156
sam_mvs190.81 31899.14 261
sam_mvs90.52 322
test_post199.14 15151.63 35789.54 32999.82 23496.86 250
test_post52.41 35690.25 32499.86 180
patchmatchnet-post99.62 15690.58 32099.94 53
gm-plane-assit97.59 34889.02 35493.47 33598.30 33799.84 21396.38 277
test9_res95.10 31399.44 25999.50 168
agg_prior294.58 32199.46 25899.50 168
test_prior499.19 19198.00 293
test_prior297.95 30097.87 26098.05 31699.05 29497.90 19495.99 29099.49 254
旧先验297.94 30295.33 32398.94 25699.88 14796.75 257
新几何298.04 289
原ACMM297.92 304
testdata299.89 13295.99 290
segment_acmp98.37 154
testdata197.72 31297.86 263
plane_prior799.58 15099.38 146
plane_prior699.47 20699.26 17197.24 232
plane_prior499.25 268
plane_prior399.31 16298.36 22499.14 239
plane_prior298.80 21998.94 161
plane_prior199.51 184
plane_prior99.24 18098.42 25797.87 26099.71 196
HQP5-MVS98.94 216
HQP-NCC99.31 25597.98 29697.45 28098.15 310
ACMP_Plane99.31 25597.98 29697.45 28098.15 310
BP-MVS94.73 317
HQP4-MVS98.15 31099.70 28899.53 150
HQP2-MVS96.67 248
NP-MVS99.40 22799.13 19698.83 318
MDTV_nov1_ep13_2view91.44 34899.14 15197.37 28599.21 22891.78 30696.75 25799.03 282
ACMMP++_ref99.94 60
ACMMP++99.79 157
Test By Simon98.41 150