LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 25 | 91.50 1 | 63.30 117 | 84.80 33 | 87.77 10 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 66 | 68.08 90 | 97.05 1 | 96.93 1 |
|
PEN-MVS | | | 80.46 51 | 82.91 38 | 73.11 132 | 89.83 9 | 39.02 290 | 77.06 112 | 82.61 90 | 80.04 4 | 90.60 5 | 92.85 10 | 74.93 47 | 85.21 55 | 63.15 129 | 95.15 18 | 95.09 2 |
|
PS-CasMVS | | | 80.41 52 | 82.86 40 | 73.07 133 | 89.93 7 | 39.21 287 | 77.15 110 | 81.28 109 | 79.74 5 | 90.87 3 | 92.73 12 | 75.03 45 | 84.93 59 | 63.83 125 | 95.19 16 | 95.07 3 |
|
CP-MVSNet | | | 79.48 60 | 81.65 50 | 72.98 136 | 89.66 13 | 39.06 289 | 76.76 113 | 80.46 126 | 78.91 7 | 90.32 7 | 91.70 25 | 68.49 95 | 84.89 60 | 63.40 128 | 95.12 19 | 95.01 4 |
|
WR-MVS_H | | | 80.22 56 | 82.17 45 | 74.39 111 | 89.46 15 | 42.69 264 | 78.24 97 | 82.24 93 | 78.21 10 | 89.57 9 | 92.10 19 | 68.05 100 | 85.59 45 | 66.04 108 | 95.62 10 | 94.88 5 |
|
DTE-MVSNet | | | 80.35 53 | 82.89 39 | 72.74 144 | 89.84 8 | 37.34 305 | 77.16 109 | 81.81 99 | 80.45 3 | 90.92 2 | 92.95 8 | 74.57 51 | 86.12 28 | 63.65 126 | 94.68 31 | 94.76 6 |
|
TDRefinement | | | 86.32 2 | 86.33 3 | 86.29 1 | 88.64 32 | 81.19 5 | 88.84 2 | 90.72 1 | 78.27 9 | 87.95 15 | 92.53 14 | 79.37 14 | 84.79 63 | 74.51 48 | 96.15 3 | 92.88 7 |
|
test_part1 | | | 84.22 8 | 86.36 2 | 77.83 75 | 85.08 73 | 56.71 165 | 85.13 28 | 89.83 2 | 78.32 8 | 90.44 6 | 95.87 2 | 84.29 3 | 84.09 73 | 71.67 70 | 96.58 2 | 92.68 8 |
|
DU-MVS | | | 74.91 102 | 75.57 97 | 72.93 138 | 83.50 95 | 45.79 240 | 69.47 197 | 80.14 133 | 65.22 83 | 81.74 93 | 87.08 120 | 61.82 151 | 81.07 124 | 56.21 180 | 94.98 21 | 91.93 9 |
|
NR-MVSNet | | | 73.62 116 | 74.05 111 | 72.33 153 | 83.50 95 | 43.71 253 | 65.65 250 | 77.32 175 | 64.32 93 | 75.59 173 | 87.08 120 | 62.45 144 | 81.34 116 | 54.90 191 | 95.63 9 | 91.93 9 |
|
v7n | | | 79.37 62 | 80.41 58 | 76.28 91 | 78.67 157 | 55.81 169 | 79.22 85 | 82.51 92 | 70.72 45 | 87.54 22 | 92.44 15 | 68.00 102 | 81.34 116 | 72.84 58 | 91.72 88 | 91.69 11 |
|
TranMVSNet+NR-MVSNet | | | 76.13 86 | 77.66 80 | 71.56 158 | 84.61 81 | 42.57 266 | 70.98 182 | 78.29 161 | 68.67 57 | 83.04 77 | 89.26 85 | 72.99 63 | 80.75 133 | 55.58 188 | 95.47 11 | 91.35 12 |
|
FC-MVSNet-test | | | 73.32 122 | 74.78 102 | 68.93 195 | 79.21 148 | 36.57 307 | 71.82 170 | 79.54 141 | 57.63 150 | 82.57 85 | 90.38 63 | 59.38 175 | 78.99 157 | 57.91 166 | 94.56 33 | 91.23 13 |
|
v10 | | | 75.69 91 | 76.20 91 | 74.16 115 | 74.44 214 | 48.69 209 | 75.84 125 | 82.93 86 | 59.02 135 | 85.92 40 | 89.17 90 | 58.56 182 | 82.74 97 | 70.73 74 | 89.14 143 | 91.05 14 |
|
UniMVSNet_NR-MVSNet | | | 74.90 103 | 75.65 95 | 72.64 147 | 83.04 101 | 45.79 240 | 69.26 200 | 78.81 149 | 66.66 69 | 81.74 93 | 86.88 126 | 63.26 137 | 81.07 124 | 56.21 180 | 94.98 21 | 91.05 14 |
|
UniMVSNet (Re) | | | 75.00 100 | 75.48 98 | 73.56 124 | 83.14 100 | 47.92 220 | 70.41 189 | 81.04 117 | 63.67 99 | 79.54 118 | 86.37 148 | 62.83 139 | 81.82 110 | 57.10 171 | 95.25 15 | 90.94 16 |
|
anonymousdsp | | | 78.60 68 | 77.80 79 | 81.00 37 | 78.01 163 | 74.34 36 | 80.09 75 | 76.12 184 | 50.51 228 | 89.19 10 | 90.88 39 | 71.45 74 | 77.78 187 | 73.38 55 | 90.60 118 | 90.90 17 |
|
v8 | | | 75.07 99 | 75.64 96 | 73.35 126 | 73.42 226 | 47.46 227 | 75.20 130 | 81.45 105 | 60.05 126 | 85.64 44 | 89.26 85 | 58.08 189 | 81.80 112 | 69.71 82 | 87.97 153 | 90.79 18 |
|
IS-MVSNet | | | 75.10 98 | 75.42 99 | 74.15 116 | 79.23 147 | 48.05 218 | 79.43 80 | 78.04 165 | 70.09 50 | 79.17 123 | 88.02 115 | 53.04 217 | 83.60 80 | 58.05 165 | 93.76 62 | 90.79 18 |
|
FIs | | | 72.56 139 | 73.80 115 | 68.84 198 | 78.74 156 | 37.74 301 | 71.02 181 | 79.83 136 | 56.12 164 | 80.88 106 | 89.45 82 | 58.18 184 | 78.28 177 | 56.63 173 | 93.36 68 | 90.51 20 |
|
test_djsdf | | | 78.88 66 | 78.27 76 | 80.70 41 | 81.42 124 | 71.24 53 | 83.98 37 | 75.72 188 | 52.27 208 | 87.37 27 | 92.25 17 | 68.04 101 | 80.56 134 | 72.28 65 | 91.15 103 | 90.32 21 |
|
WR-MVS | | | 71.20 151 | 72.48 138 | 67.36 215 | 84.98 74 | 35.70 315 | 64.43 264 | 68.66 246 | 65.05 86 | 81.49 96 | 86.43 147 | 57.57 196 | 76.48 203 | 50.36 223 | 93.32 69 | 89.90 22 |
|
OMC-MVS | | | 79.41 61 | 78.79 70 | 81.28 34 | 80.62 132 | 70.71 59 | 80.91 64 | 84.76 49 | 62.54 110 | 81.77 91 | 86.65 139 | 71.46 73 | 83.53 82 | 67.95 95 | 92.44 82 | 89.60 23 |
|
tttt0517 | | | 69.46 170 | 67.79 196 | 74.46 108 | 75.34 193 | 52.72 187 | 75.05 131 | 63.27 270 | 54.69 181 | 78.87 126 | 84.37 175 | 26.63 340 | 81.15 120 | 63.95 122 | 87.93 154 | 89.51 24 |
|
v2v482 | | | 72.55 141 | 72.58 137 | 72.43 150 | 72.92 237 | 46.72 233 | 71.41 174 | 79.13 144 | 55.27 172 | 81.17 100 | 85.25 168 | 55.41 208 | 81.13 121 | 67.25 104 | 85.46 185 | 89.43 25 |
|
Anonymous20231211 | | | 75.54 92 | 77.19 83 | 70.59 167 | 77.67 169 | 45.70 243 | 74.73 139 | 80.19 131 | 68.80 54 | 82.95 79 | 92.91 9 | 66.26 116 | 76.76 201 | 58.41 163 | 92.77 77 | 89.30 26 |
|
OurMVSNet-221017-0 | | | 78.57 69 | 78.53 75 | 78.67 63 | 80.48 133 | 64.16 110 | 80.24 73 | 82.06 95 | 61.89 114 | 88.77 12 | 93.32 5 | 57.15 198 | 82.60 100 | 70.08 78 | 92.80 76 | 89.25 27 |
|
EI-MVSNet-UG-set | | | 72.63 138 | 71.68 150 | 75.47 100 | 74.67 208 | 58.64 157 | 72.02 162 | 71.50 224 | 63.53 101 | 78.58 129 | 71.39 306 | 65.98 118 | 78.53 166 | 67.30 103 | 80.18 251 | 89.23 28 |
|
V42 | | | 71.06 152 | 70.83 161 | 71.72 156 | 67.25 281 | 47.14 231 | 65.94 244 | 80.35 130 | 51.35 220 | 83.40 76 | 83.23 191 | 59.25 176 | 78.80 160 | 65.91 109 | 80.81 245 | 89.23 28 |
|
RPSCF | | | 75.76 89 | 74.37 107 | 79.93 46 | 74.81 203 | 77.53 19 | 77.53 104 | 79.30 142 | 59.44 131 | 78.88 125 | 89.80 77 | 71.26 76 | 73.09 232 | 57.45 167 | 80.89 243 | 89.17 30 |
|
UniMVSNet_ETH3D | | | 76.74 83 | 79.02 68 | 69.92 181 | 89.27 20 | 43.81 252 | 74.47 143 | 71.70 220 | 72.33 35 | 85.50 48 | 93.65 4 | 77.98 23 | 76.88 198 | 54.60 195 | 91.64 91 | 89.08 31 |
|
v1192 | | | 73.40 120 | 73.42 121 | 73.32 128 | 74.65 211 | 48.67 210 | 72.21 160 | 81.73 100 | 52.76 205 | 81.85 90 | 84.56 173 | 57.12 199 | 82.24 107 | 68.58 85 | 87.33 164 | 89.06 32 |
|
3Dnovator+ | | 73.19 2 | 81.08 44 | 80.48 57 | 82.87 9 | 81.41 125 | 72.03 47 | 84.38 36 | 86.23 23 | 77.28 16 | 80.65 107 | 90.18 71 | 59.80 172 | 87.58 4 | 73.06 57 | 91.34 99 | 89.01 33 |
|
EI-MVSNet-Vis-set | | | 72.78 135 | 71.87 146 | 75.54 99 | 74.77 204 | 59.02 152 | 72.24 159 | 71.56 223 | 63.92 96 | 78.59 127 | 71.59 303 | 66.22 117 | 78.60 164 | 67.58 97 | 80.32 249 | 89.00 34 |
|
v1144 | | | 73.29 123 | 73.39 122 | 73.01 134 | 74.12 220 | 48.11 217 | 72.01 163 | 81.08 116 | 53.83 196 | 81.77 91 | 84.68 171 | 58.07 190 | 81.91 109 | 68.10 89 | 86.86 172 | 88.99 35 |
|
nrg030 | | | 74.87 104 | 75.99 93 | 71.52 159 | 74.90 201 | 49.88 204 | 74.10 146 | 82.58 91 | 54.55 185 | 83.50 75 | 89.21 87 | 71.51 72 | 75.74 210 | 61.24 139 | 92.34 84 | 88.94 36 |
|
v1240 | | | 73.06 126 | 73.14 128 | 72.84 141 | 74.74 205 | 47.27 230 | 71.88 169 | 81.11 113 | 51.80 214 | 82.28 88 | 84.21 177 | 56.22 206 | 82.34 104 | 68.82 83 | 87.17 170 | 88.91 37 |
|
LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 10 | 81.94 23 | 84.82 76 | 75.40 29 | 91.60 1 | 87.80 8 | 73.52 24 | 88.90 11 | 93.06 7 | 71.39 75 | 81.53 115 | 81.53 3 | 92.15 86 | 88.91 37 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v1921920 | | | 72.96 132 | 72.98 133 | 72.89 140 | 74.67 208 | 47.58 225 | 71.92 167 | 80.69 120 | 51.70 216 | 81.69 95 | 83.89 181 | 56.58 204 | 82.25 106 | 68.34 87 | 87.36 162 | 88.82 39 |
|
EPP-MVSNet | | | 73.86 112 | 73.38 123 | 75.31 101 | 78.19 160 | 53.35 185 | 80.45 67 | 77.32 175 | 65.11 85 | 76.47 166 | 86.80 128 | 49.47 235 | 83.77 77 | 53.89 203 | 92.72 80 | 88.81 40 |
|
UA-Net | | | 81.56 38 | 82.28 44 | 79.40 54 | 88.91 29 | 69.16 74 | 84.67 34 | 80.01 135 | 75.34 17 | 79.80 116 | 94.91 3 | 69.79 85 | 80.25 142 | 72.63 60 | 94.46 36 | 88.78 41 |
|
v144192 | | | 72.99 130 | 73.06 131 | 72.77 142 | 74.58 212 | 47.48 226 | 71.90 168 | 80.44 127 | 51.57 217 | 81.46 97 | 84.11 179 | 58.04 191 | 82.12 108 | 67.98 93 | 87.47 160 | 88.70 42 |
|
EI-MVSNet | | | 69.61 168 | 69.01 178 | 71.41 161 | 73.94 221 | 49.90 201 | 71.31 177 | 71.32 226 | 58.22 140 | 75.40 177 | 70.44 309 | 58.16 185 | 75.85 206 | 62.51 131 | 79.81 255 | 88.48 43 |
|
IterMVS-LS | | | 73.01 128 | 73.12 130 | 72.66 146 | 73.79 223 | 49.90 201 | 71.63 171 | 78.44 158 | 58.22 140 | 80.51 108 | 86.63 140 | 58.15 186 | 79.62 151 | 62.51 131 | 88.20 148 | 88.48 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HPM-MVS_fast | | | 84.59 6 | 85.10 9 | 83.06 6 | 88.60 33 | 75.83 26 | 86.27 23 | 86.89 16 | 73.69 23 | 86.17 36 | 91.70 25 | 78.23 21 | 85.20 56 | 79.45 13 | 94.91 25 | 88.15 45 |
|
Regformer-4 | | | 74.64 106 | 73.67 117 | 77.55 77 | 74.74 205 | 64.49 108 | 72.91 152 | 75.42 192 | 67.45 61 | 80.24 113 | 72.07 297 | 68.98 90 | 80.19 146 | 70.29 76 | 80.91 241 | 87.98 46 |
|
COLMAP_ROB | | 72.78 3 | 83.75 14 | 84.11 18 | 82.68 14 | 82.97 103 | 74.39 35 | 87.18 9 | 88.18 7 | 78.98 6 | 86.11 39 | 91.47 30 | 79.70 13 | 85.76 39 | 66.91 105 | 95.46 12 | 87.89 47 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PS-MVSNAJss | | | 77.54 78 | 77.35 82 | 78.13 73 | 84.88 75 | 66.37 92 | 78.55 92 | 79.59 140 | 53.48 199 | 86.29 35 | 92.43 16 | 62.39 145 | 80.25 142 | 67.90 96 | 90.61 117 | 87.77 48 |
|
eth_miper_zixun_eth | | | 69.42 171 | 68.73 184 | 71.50 160 | 67.99 274 | 46.42 236 | 67.58 222 | 78.81 149 | 50.72 226 | 78.13 135 | 80.34 219 | 50.15 233 | 80.34 139 | 60.18 148 | 84.65 200 | 87.74 49 |
|
casdiffmvs | | | 73.06 126 | 73.84 114 | 70.72 165 | 71.32 246 | 46.71 234 | 70.93 183 | 84.26 66 | 55.62 169 | 77.46 144 | 87.10 119 | 67.09 107 | 77.81 185 | 63.95 122 | 86.83 173 | 87.64 50 |
|
LS3D | | | 80.99 46 | 80.85 55 | 81.41 30 | 78.37 158 | 71.37 51 | 87.45 6 | 85.87 29 | 77.48 13 | 81.98 89 | 89.95 75 | 69.14 88 | 85.26 52 | 66.15 106 | 91.24 101 | 87.61 51 |
|
ITE_SJBPF | | | | | 80.35 44 | 76.94 176 | 73.60 41 | | 80.48 125 | 66.87 65 | 83.64 74 | 86.18 152 | 70.25 82 | 79.90 149 | 61.12 142 | 88.95 145 | 87.56 52 |
|
Regformer-3 | | | 72.86 134 | 72.28 142 | 74.62 107 | 74.74 205 | 60.18 141 | 72.91 152 | 71.76 219 | 64.74 89 | 78.42 131 | 72.07 297 | 67.00 108 | 76.28 205 | 67.97 94 | 80.91 241 | 87.39 53 |
|
thisisatest0530 | | | 67.05 204 | 65.16 212 | 72.73 145 | 73.10 234 | 50.55 196 | 71.26 179 | 63.91 266 | 50.22 230 | 74.46 190 | 80.75 213 | 26.81 339 | 80.25 142 | 59.43 156 | 86.50 177 | 87.37 54 |
|
pmmvs6 | | | 71.82 146 | 73.66 118 | 66.31 227 | 75.94 189 | 42.01 268 | 66.99 233 | 72.53 214 | 63.45 103 | 76.43 167 | 92.78 11 | 72.95 64 | 69.69 264 | 51.41 215 | 90.46 119 | 87.22 55 |
|
ACMH+ | | 66.64 10 | 81.20 40 | 82.48 43 | 77.35 82 | 81.16 128 | 62.39 121 | 80.51 66 | 87.80 8 | 73.02 26 | 87.57 21 | 91.08 36 | 80.28 11 | 82.44 101 | 64.82 116 | 96.10 5 | 87.21 56 |
|
cl_fuxian | | | 69.82 166 | 69.89 168 | 69.61 183 | 66.24 289 | 43.48 256 | 68.12 217 | 79.61 139 | 51.43 219 | 77.72 140 | 80.18 223 | 54.61 212 | 78.15 182 | 63.62 127 | 87.50 159 | 87.20 57 |
|
Anonymous20240529 | | | 72.56 139 | 73.79 116 | 68.86 197 | 76.89 179 | 45.21 245 | 68.80 207 | 77.25 177 | 67.16 63 | 76.89 153 | 90.44 54 | 65.95 119 | 74.19 227 | 50.75 219 | 90.00 128 | 87.18 58 |
|
baseline | | | 73.10 124 | 73.96 113 | 70.51 169 | 71.46 245 | 46.39 238 | 72.08 161 | 84.40 61 | 55.95 166 | 76.62 160 | 86.46 146 | 67.20 106 | 78.03 183 | 64.22 120 | 87.27 167 | 87.11 59 |
|
RRT_MVS | | | 73.80 114 | 71.19 158 | 81.60 24 | 71.04 247 | 70.33 63 | 78.78 89 | 74.91 197 | 56.96 155 | 77.83 138 | 85.56 165 | 32.82 311 | 87.39 5 | 71.16 71 | 91.68 90 | 87.07 60 |
|
Effi-MVS+-dtu | | | 75.43 93 | 72.28 142 | 84.91 2 | 77.05 172 | 83.58 1 | 78.47 93 | 77.70 169 | 57.68 146 | 74.89 181 | 78.13 249 | 64.80 129 | 84.26 72 | 56.46 177 | 85.32 190 | 86.88 61 |
|
v148 | | | 69.38 173 | 69.39 171 | 69.36 185 | 69.14 267 | 44.56 248 | 68.83 204 | 72.70 212 | 54.79 179 | 78.59 127 | 84.12 178 | 54.69 210 | 76.74 202 | 59.40 157 | 82.20 226 | 86.79 62 |
|
HPM-MVS | | | 84.12 11 | 84.63 12 | 82.60 15 | 88.21 38 | 74.40 34 | 85.24 27 | 87.21 14 | 70.69 46 | 85.14 52 | 90.42 57 | 78.99 17 | 86.62 14 | 80.83 6 | 94.93 24 | 86.79 62 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
mvs_tets | | | 78.93 65 | 78.67 73 | 79.72 49 | 84.81 77 | 73.93 38 | 80.65 65 | 76.50 182 | 51.98 213 | 87.40 24 | 91.86 22 | 76.09 35 | 78.53 166 | 68.58 85 | 90.20 122 | 86.69 64 |
|
jajsoiax | | | 78.51 70 | 78.16 77 | 79.59 52 | 84.65 80 | 73.83 40 | 80.42 68 | 76.12 184 | 51.33 221 | 87.19 29 | 91.51 29 | 73.79 58 | 78.44 170 | 68.27 88 | 90.13 127 | 86.49 65 |
|
cl-mvsnet2 | | | 67.14 201 | 66.51 207 | 69.03 191 | 63.20 309 | 43.46 257 | 66.88 236 | 76.25 183 | 49.22 240 | 74.48 189 | 77.88 250 | 45.49 253 | 77.40 191 | 60.64 146 | 84.59 202 | 86.24 66 |
|
MP-MVS-pluss | | | 82.54 30 | 83.46 29 | 79.76 47 | 88.88 31 | 68.44 78 | 81.57 61 | 86.33 19 | 63.17 106 | 85.38 50 | 91.26 33 | 76.33 32 | 84.67 65 | 83.30 1 | 94.96 23 | 86.17 67 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
LPG-MVS_test | | | 83.47 19 | 84.33 15 | 80.90 38 | 87.00 42 | 70.41 61 | 82.04 58 | 86.35 17 | 69.77 51 | 87.75 16 | 91.13 34 | 81.83 4 | 86.20 23 | 77.13 34 | 95.96 6 | 86.08 68 |
|
LGP-MVS_train | | | | | 80.90 38 | 87.00 42 | 70.41 61 | | 86.35 17 | 69.77 51 | 87.75 16 | 91.13 34 | 81.83 4 | 86.20 23 | 77.13 34 | 95.96 6 | 86.08 68 |
|
SixPastTwentyTwo | | | 75.77 88 | 76.34 89 | 74.06 117 | 81.69 122 | 54.84 174 | 76.47 114 | 75.49 190 | 64.10 95 | 87.73 18 | 92.24 18 | 50.45 231 | 81.30 118 | 67.41 99 | 91.46 96 | 86.04 70 |
|
Regformer-2 | | | 75.32 94 | 74.47 105 | 77.88 74 | 74.22 216 | 66.65 90 | 72.77 155 | 77.54 171 | 68.47 59 | 80.44 109 | 72.08 295 | 70.60 79 | 80.97 127 | 70.08 78 | 84.02 210 | 86.01 71 |
|
APD-MVS_3200maxsize | | | 83.57 16 | 84.33 15 | 81.31 33 | 82.83 105 | 73.53 43 | 85.50 26 | 87.45 13 | 74.11 20 | 86.45 34 | 90.52 53 | 80.02 12 | 84.48 67 | 77.73 30 | 94.34 47 | 85.93 72 |
|
DeepC-MVS | | 72.44 4 | 81.00 45 | 80.83 56 | 81.50 26 | 86.70 48 | 70.03 65 | 82.06 57 | 87.00 15 | 59.89 128 | 80.91 105 | 90.53 51 | 72.19 65 | 88.56 1 | 73.67 54 | 94.52 34 | 85.92 73 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
cl-mvsnet1 | | | 68.27 189 | 68.26 188 | 68.29 204 | 64.98 300 | 43.67 254 | 65.89 245 | 74.67 198 | 50.04 233 | 76.86 155 | 82.43 196 | 48.74 240 | 75.38 212 | 60.94 143 | 89.81 132 | 85.81 74 |
|
AllTest | | | 77.66 77 | 77.43 81 | 78.35 69 | 79.19 149 | 70.81 56 | 78.60 91 | 88.64 3 | 65.37 80 | 80.09 114 | 88.17 110 | 70.33 80 | 78.43 171 | 55.60 185 | 90.90 112 | 85.81 74 |
|
TestCases | | | | | 78.35 69 | 79.19 149 | 70.81 56 | | 88.64 3 | 65.37 80 | 80.09 114 | 88.17 110 | 70.33 80 | 78.43 171 | 55.60 185 | 90.90 112 | 85.81 74 |
|
ACMP | | 69.50 8 | 82.64 29 | 83.38 30 | 80.40 43 | 86.50 49 | 69.44 69 | 82.30 55 | 86.08 25 | 66.80 67 | 86.70 32 | 89.99 73 | 81.64 7 | 85.95 30 | 74.35 49 | 96.11 4 | 85.81 74 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
cl-mvsnet_ | | | 68.26 190 | 68.26 188 | 68.29 204 | 64.98 300 | 43.67 254 | 65.89 245 | 74.67 198 | 50.04 233 | 76.86 155 | 82.42 197 | 48.74 240 | 75.38 212 | 60.92 144 | 89.81 132 | 85.80 78 |
|
Regformer-1 | | | 74.28 108 | 73.63 119 | 76.21 93 | 74.22 216 | 64.12 111 | 72.77 155 | 75.46 191 | 66.86 66 | 79.27 121 | 72.08 295 | 69.29 87 | 78.74 162 | 68.73 84 | 84.02 210 | 85.77 79 |
|
miper_ehance_all_eth | | | 68.36 186 | 68.16 193 | 68.98 192 | 65.14 299 | 43.34 258 | 67.07 232 | 78.92 148 | 49.11 241 | 76.21 169 | 77.72 251 | 53.48 216 | 77.92 184 | 61.16 141 | 84.59 202 | 85.68 80 |
|
testing_2 | | | 72.01 145 | 72.36 140 | 70.95 163 | 70.79 249 | 48.70 208 | 72.81 154 | 78.09 164 | 48.79 244 | 84.46 64 | 89.15 92 | 57.90 193 | 78.55 165 | 61.55 137 | 87.74 155 | 85.61 81 |
|
SteuartSystems-ACMMP | | | 83.07 24 | 83.64 25 | 81.35 31 | 85.14 71 | 71.00 55 | 85.53 25 | 84.78 48 | 70.91 44 | 85.64 44 | 90.41 58 | 75.55 40 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 82 |
Skip Steuart: Steuart Systems R&D Blog. |
diffmvs | | | 67.42 200 | 67.50 198 | 67.20 217 | 62.26 313 | 45.21 245 | 64.87 258 | 77.04 178 | 48.21 247 | 71.74 219 | 79.70 228 | 58.40 183 | 71.17 254 | 64.99 114 | 80.27 250 | 85.22 83 |
|
Baseline_NR-MVSNet | | | 70.62 157 | 73.19 127 | 62.92 255 | 76.97 175 | 34.44 323 | 68.84 203 | 70.88 235 | 60.25 125 | 79.50 119 | 90.53 51 | 61.82 151 | 69.11 267 | 54.67 194 | 95.27 14 | 85.22 83 |
|
RRT_test8_iter05 | | | 65.80 209 | 65.13 215 | 67.80 212 | 67.02 284 | 40.85 277 | 67.13 231 | 75.33 193 | 49.73 235 | 72.69 210 | 81.32 208 | 24.45 350 | 77.37 192 | 61.69 136 | 86.82 174 | 85.18 85 |
|
TAPA-MVS | | 65.27 12 | 75.16 97 | 74.29 109 | 77.77 76 | 74.86 202 | 68.08 79 | 77.89 101 | 84.04 73 | 55.15 174 | 76.19 170 | 83.39 185 | 66.91 109 | 80.11 147 | 60.04 152 | 90.14 126 | 85.13 86 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ETH3D-3000-0.1 | | | 79.14 63 | 79.80 63 | 77.16 83 | 80.67 131 | 64.57 106 | 80.26 72 | 87.60 12 | 60.74 122 | 82.47 86 | 88.03 114 | 71.73 70 | 81.81 111 | 73.12 56 | 93.61 63 | 85.09 87 |
|
CLD-MVS | | | 72.88 133 | 72.36 140 | 74.43 110 | 77.03 174 | 54.30 178 | 68.77 208 | 83.43 80 | 52.12 210 | 76.79 158 | 74.44 277 | 69.54 86 | 83.91 75 | 55.88 183 | 93.25 70 | 85.09 87 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CDPH-MVS | | | 77.33 80 | 77.06 86 | 78.14 72 | 84.21 88 | 63.98 112 | 76.07 122 | 83.45 79 | 54.20 188 | 77.68 142 | 87.18 118 | 69.98 83 | 85.37 49 | 68.01 92 | 92.72 80 | 85.08 89 |
|
K. test v3 | | | 73.67 115 | 73.61 120 | 73.87 119 | 79.78 138 | 55.62 172 | 74.69 141 | 62.04 279 | 66.16 73 | 84.76 58 | 93.23 6 | 49.47 235 | 80.97 127 | 65.66 110 | 86.67 176 | 85.02 90 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 8 | 83.21 3 | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 20 | 77.51 11 | 87.65 19 | 90.73 45 | 79.20 15 | 85.58 46 | 78.11 25 | 94.46 36 | 84.89 91 |
|
RE-MVS-def | | | | 85.50 5 | | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 20 | 77.51 11 | 87.65 19 | 90.73 45 | 81.38 8 | | 78.11 25 | 94.46 36 | 84.89 91 |
|
HQP_MVS | | | 78.77 67 | 78.78 71 | 78.72 62 | 85.18 69 | 65.18 101 | 82.74 52 | 85.49 32 | 65.45 77 | 78.23 133 | 89.11 93 | 60.83 163 | 86.15 26 | 71.09 72 | 90.94 108 | 84.82 93 |
|
plane_prior5 | | | | | | | | | 85.49 32 | | | | | 86.15 26 | 71.09 72 | 90.94 108 | 84.82 93 |
|
xxxxxxxxxxxxxcwj | | | 80.31 54 | 80.94 54 | 78.42 68 | 87.00 42 | 67.23 86 | 79.24 83 | 88.61 5 | 56.65 161 | 84.29 65 | 89.18 88 | 73.73 59 | 83.22 88 | 76.01 36 | 93.77 60 | 84.81 95 |
|
SF-MVS | | | 80.72 48 | 81.80 46 | 77.48 79 | 82.03 116 | 64.40 109 | 83.41 48 | 88.46 6 | 65.28 82 | 84.29 65 | 89.18 88 | 73.73 59 | 83.22 88 | 76.01 36 | 93.77 60 | 84.81 95 |
|
alignmvs | | | 70.54 158 | 71.00 159 | 69.15 189 | 73.50 224 | 48.04 219 | 69.85 194 | 79.62 137 | 53.94 195 | 76.54 163 | 82.00 200 | 59.00 178 | 74.68 222 | 57.32 168 | 87.21 168 | 84.72 97 |
|
IU-MVS | | | | | | 86.12 57 | 60.90 134 | | 80.38 128 | 45.49 264 | 81.31 98 | | | | 75.64 41 | 94.39 41 | 84.65 98 |
|
XVS | | | 83.51 18 | 83.73 23 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 54 | 72.71 27 | 82.87 80 | 90.39 61 | 73.86 56 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 99 |
|
X-MVStestdata | | | 76.81 82 | 74.79 101 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 54 | 72.71 27 | 82.87 80 | 9.95 352 | 73.86 56 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 99 |
|
ACMMP | | | 84.22 8 | 84.84 11 | 82.35 20 | 89.23 23 | 76.66 25 | 87.65 4 | 85.89 28 | 71.03 43 | 85.85 41 | 90.58 49 | 78.77 18 | 85.78 38 | 79.37 16 | 95.17 17 | 84.62 101 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SMA-MVS | | | 82.12 33 | 82.68 42 | 80.43 42 | 88.90 30 | 69.52 67 | 85.12 29 | 84.76 49 | 63.53 101 | 84.23 67 | 91.47 30 | 72.02 67 | 87.16 7 | 79.74 10 | 94.36 45 | 84.61 102 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
VDD-MVS | | | 70.81 155 | 71.44 155 | 68.91 196 | 79.07 154 | 46.51 235 | 67.82 220 | 70.83 236 | 61.23 117 | 74.07 195 | 88.69 101 | 59.86 170 | 75.62 211 | 51.11 217 | 90.28 121 | 84.61 102 |
|
ZNCC-MVS | | | 83.12 23 | 83.68 24 | 81.45 29 | 89.14 25 | 73.28 45 | 86.32 22 | 85.97 27 | 67.39 62 | 84.02 69 | 90.39 61 | 74.73 48 | 86.46 16 | 80.73 7 | 94.43 40 | 84.60 104 |
|
miper_enhance_ethall | | | 65.86 208 | 65.05 220 | 68.28 206 | 61.62 316 | 42.62 265 | 64.74 259 | 77.97 166 | 42.52 285 | 73.42 202 | 72.79 292 | 49.66 234 | 77.68 188 | 58.12 164 | 84.59 202 | 84.54 105 |
|
GBi-Net | | | 68.30 187 | 68.79 180 | 66.81 221 | 73.14 231 | 40.68 278 | 71.96 164 | 73.03 206 | 54.81 176 | 74.72 185 | 90.36 64 | 48.63 242 | 75.20 216 | 47.12 247 | 85.37 186 | 84.54 105 |
|
test1 | | | 68.30 187 | 68.79 180 | 66.81 221 | 73.14 231 | 40.68 278 | 71.96 164 | 73.03 206 | 54.81 176 | 74.72 185 | 90.36 64 | 48.63 242 | 75.20 216 | 47.12 247 | 85.37 186 | 84.54 105 |
|
FMVSNet1 | | | 71.06 152 | 72.48 138 | 66.81 221 | 77.65 170 | 40.68 278 | 71.96 164 | 73.03 206 | 61.14 118 | 79.45 120 | 90.36 64 | 60.44 165 | 75.20 216 | 50.20 224 | 88.05 150 | 84.54 105 |
|
TSAR-MVS + MP. | | | 79.05 64 | 78.81 69 | 79.74 48 | 88.94 28 | 67.52 83 | 86.61 18 | 81.38 107 | 51.71 215 | 77.15 146 | 91.42 32 | 65.49 123 | 87.20 6 | 79.44 14 | 87.17 170 | 84.51 109 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
mvs-test1 | | | 73.81 113 | 70.69 163 | 83.18 5 | 77.05 172 | 81.39 3 | 75.39 128 | 77.70 169 | 57.68 146 | 71.19 230 | 74.72 273 | 64.80 129 | 83.66 79 | 56.46 177 | 81.19 239 | 84.50 110 |
|
PCF-MVS | | 63.80 13 | 72.70 137 | 71.69 149 | 75.72 97 | 78.10 161 | 60.01 143 | 73.04 151 | 81.50 103 | 45.34 266 | 79.66 117 | 84.35 176 | 65.15 126 | 82.65 99 | 48.70 235 | 89.38 140 | 84.50 110 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
canonicalmvs | | | 72.29 142 | 73.38 123 | 69.04 190 | 74.23 215 | 47.37 228 | 73.93 147 | 83.18 81 | 54.36 187 | 76.61 161 | 81.64 207 | 72.03 66 | 75.34 214 | 57.12 170 | 87.28 166 | 84.40 112 |
|
TransMVSNet (Re) | | | 69.62 167 | 71.63 151 | 63.57 246 | 76.51 181 | 35.93 313 | 65.75 249 | 71.29 228 | 61.05 119 | 75.02 179 | 89.90 76 | 65.88 121 | 70.41 262 | 49.79 226 | 89.48 138 | 84.38 113 |
|
OPM-MVS | | | 80.99 46 | 81.63 51 | 79.07 58 | 86.86 46 | 69.39 70 | 79.41 82 | 84.00 74 | 65.64 75 | 85.54 47 | 89.28 84 | 76.32 33 | 83.47 83 | 74.03 51 | 93.57 66 | 84.35 114 |
|
test_0728_THIRD | | | | | | | | | | 74.03 22 | 85.83 42 | 90.41 58 | 75.58 39 | 85.69 41 | 77.43 33 | 94.74 29 | 84.31 115 |
|
MSP-MVS | | | 80.49 50 | 79.67 65 | 82.96 7 | 89.70 12 | 77.46 22 | 87.16 10 | 85.10 42 | 64.94 87 | 81.05 101 | 88.38 105 | 57.10 200 | 87.10 8 | 79.75 8 | 83.87 212 | 84.31 115 |
|
GST-MVS | | | 82.79 28 | 83.27 33 | 81.34 32 | 88.99 27 | 73.29 44 | 85.94 24 | 85.13 40 | 68.58 58 | 84.14 68 | 90.21 70 | 73.37 61 | 86.41 17 | 79.09 19 | 93.98 58 | 84.30 117 |
|
ACMMPR | | | 83.62 15 | 83.93 20 | 82.69 13 | 89.78 11 | 77.51 21 | 87.01 13 | 84.19 69 | 70.23 47 | 84.49 61 | 90.67 48 | 75.15 43 | 86.37 19 | 79.58 11 | 94.26 49 | 84.18 118 |
|
VDDNet | | | 71.60 148 | 73.13 129 | 67.02 220 | 86.29 51 | 41.11 273 | 69.97 191 | 66.50 254 | 68.72 56 | 74.74 184 | 91.70 25 | 59.90 169 | 75.81 208 | 48.58 237 | 91.72 88 | 84.15 119 |
|
abl_6 | | | 84.92 3 | 85.70 4 | 82.57 17 | 86.72 47 | 79.27 8 | 87.56 5 | 86.08 25 | 77.48 13 | 88.12 14 | 91.53 28 | 81.18 9 | 84.31 71 | 78.12 24 | 94.47 35 | 84.15 119 |
|
MVS_Test | | | 69.84 165 | 70.71 162 | 67.24 216 | 67.49 280 | 43.25 260 | 69.87 193 | 81.22 112 | 52.69 206 | 71.57 224 | 86.68 136 | 62.09 149 | 74.51 224 | 66.05 107 | 78.74 264 | 83.96 121 |
|
region2R | | | 83.54 17 | 83.86 22 | 82.58 16 | 89.82 10 | 77.53 19 | 87.06 12 | 84.23 68 | 70.19 49 | 83.86 71 | 90.72 47 | 75.20 42 | 86.27 22 | 79.41 15 | 94.25 50 | 83.95 122 |
|
ETH3 D test6400 | | | 75.73 90 | 76.00 92 | 74.92 105 | 81.75 120 | 56.93 162 | 78.31 95 | 84.60 58 | 52.83 204 | 77.15 146 | 85.14 169 | 68.59 93 | 84.03 74 | 65.44 112 | 90.20 122 | 83.82 123 |
|
PGM-MVS | | | 83.07 24 | 83.25 34 | 82.54 18 | 89.57 14 | 77.21 23 | 82.04 58 | 85.40 35 | 67.96 60 | 84.91 57 | 90.88 39 | 75.59 38 | 86.57 15 | 78.16 23 | 94.71 30 | 83.82 123 |
|
pm-mvs1 | | | 68.40 185 | 69.85 169 | 64.04 243 | 73.10 234 | 39.94 284 | 64.61 262 | 70.50 237 | 55.52 171 | 73.97 196 | 89.33 83 | 63.91 136 | 68.38 271 | 49.68 228 | 88.02 151 | 83.81 125 |
|
HQP4-MVS | | | | | | | | | | | 71.59 220 | | | 85.31 50 | | | 83.74 126 |
|
HQP-MVS | | | 75.24 96 | 75.01 100 | 75.94 94 | 82.37 109 | 58.80 154 | 77.32 106 | 84.12 70 | 59.08 132 | 71.58 221 | 85.96 161 | 58.09 187 | 85.30 51 | 67.38 101 | 89.16 141 | 83.73 127 |
|
PHI-MVS | | | 74.92 101 | 74.36 108 | 76.61 85 | 76.40 182 | 62.32 122 | 80.38 69 | 83.15 82 | 54.16 190 | 73.23 205 | 80.75 213 | 62.19 148 | 83.86 76 | 68.02 91 | 90.92 111 | 83.65 128 |
|
test1172 | | | 84.85 4 | 85.39 6 | 83.21 3 | 88.34 37 | 80.50 6 | 85.12 29 | 85.22 39 | 81.06 2 | 87.20 28 | 90.28 67 | 79.20 15 | 85.58 46 | 78.04 27 | 94.08 54 | 83.55 129 |
|
DeepPCF-MVS | | 71.07 5 | 78.48 72 | 77.14 85 | 82.52 19 | 84.39 87 | 77.04 24 | 76.35 117 | 84.05 72 | 56.66 160 | 80.27 112 | 85.31 167 | 68.56 94 | 87.03 10 | 67.39 100 | 91.26 100 | 83.50 130 |
|
XVG-ACMP-BASELINE | | | 80.54 49 | 81.06 53 | 78.98 59 | 87.01 41 | 72.91 46 | 80.23 74 | 85.56 30 | 66.56 70 | 85.64 44 | 89.57 80 | 69.12 89 | 80.55 136 | 72.51 62 | 93.37 67 | 83.48 131 |
|
APDe-MVS | | | 82.88 27 | 84.14 17 | 79.08 57 | 84.80 78 | 66.72 89 | 86.54 19 | 85.11 41 | 72.00 39 | 86.65 33 | 91.75 24 | 78.20 22 | 87.04 9 | 77.93 28 | 94.32 48 | 83.47 132 |
|
ANet_high | | | 67.08 202 | 69.94 167 | 58.51 285 | 57.55 336 | 27.09 343 | 58.43 304 | 76.80 180 | 63.56 100 | 82.40 87 | 91.93 21 | 59.82 171 | 64.98 293 | 50.10 225 | 88.86 146 | 83.46 133 |
|
Effi-MVS+ | | | 72.10 143 | 72.28 142 | 71.58 157 | 74.21 219 | 50.33 197 | 74.72 140 | 82.73 88 | 62.62 109 | 70.77 233 | 76.83 258 | 69.96 84 | 80.97 127 | 60.20 147 | 78.43 268 | 83.45 134 |
|
test12 | | | | | 76.51 87 | 82.28 112 | 60.94 133 | | 81.64 102 | | 73.60 198 | | 64.88 128 | 85.19 57 | | 90.42 120 | 83.38 135 |
|
VPA-MVSNet | | | 68.71 182 | 70.37 165 | 63.72 245 | 76.13 186 | 38.06 299 | 64.10 266 | 71.48 225 | 56.60 163 | 74.10 194 | 88.31 107 | 64.78 131 | 69.72 263 | 47.69 245 | 90.15 125 | 83.37 136 |
|
ACMMP_NAP | | | 82.33 32 | 83.28 32 | 79.46 53 | 89.28 19 | 69.09 76 | 83.62 43 | 84.98 44 | 64.77 88 | 83.97 70 | 91.02 37 | 75.53 41 | 85.93 34 | 82.00 2 | 94.36 45 | 83.35 137 |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 81 | 76.33 90 | 79.70 50 | 83.90 93 | 67.94 80 | 80.06 77 | 83.75 75 | 56.73 159 | 74.88 182 | 85.32 166 | 65.54 122 | 87.79 2 | 65.61 111 | 91.14 104 | 83.35 137 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_241102_TWO | | | | | | | | | 84.80 47 | 72.61 30 | 84.93 54 | 89.70 78 | 77.73 24 | 85.89 36 | 75.29 42 | 94.22 53 | 83.25 139 |
|
ETH3D cwj APD-0.16 | | | 78.38 74 | 78.72 72 | 77.38 80 | 80.09 136 | 66.16 94 | 79.08 86 | 86.13 24 | 57.55 151 | 80.93 103 | 87.76 117 | 71.98 69 | 82.73 98 | 72.11 68 | 92.83 75 | 83.25 139 |
|
test_0728_SECOND | | | | | 76.57 86 | 86.20 52 | 60.57 138 | 83.77 41 | 85.49 32 | | | | | 85.90 35 | 75.86 39 | 94.39 41 | 83.25 139 |
|
SR-MVS | | | 84.51 7 | 85.27 7 | 82.25 21 | 88.52 34 | 77.71 16 | 86.81 15 | 85.25 38 | 77.42 15 | 86.15 37 | 90.24 68 | 81.69 6 | 85.94 31 | 77.77 29 | 93.58 65 | 83.09 142 |
|
SED-MVS | | | 81.78 36 | 83.48 28 | 76.67 84 | 86.12 57 | 61.06 130 | 83.62 43 | 84.72 51 | 72.61 30 | 87.38 25 | 89.70 78 | 77.48 25 | 85.89 36 | 75.29 42 | 94.39 41 | 83.08 143 |
|
OPU-MVS | | | | | 78.65 64 | 83.44 98 | 66.85 88 | 83.62 43 | | | | 86.12 156 | 66.82 111 | 86.01 29 | 61.72 135 | 89.79 134 | 83.08 143 |
|
MVSTER | | | 63.29 232 | 61.60 243 | 68.36 202 | 59.77 328 | 46.21 239 | 60.62 292 | 71.32 226 | 41.83 288 | 75.40 177 | 79.12 238 | 30.25 332 | 75.85 206 | 56.30 179 | 79.81 255 | 83.03 145 |
|
CANet | | | 73.00 129 | 71.84 147 | 76.48 88 | 75.82 190 | 61.28 128 | 74.81 135 | 80.37 129 | 63.17 106 | 62.43 286 | 80.50 217 | 61.10 161 | 85.16 58 | 64.00 121 | 84.34 206 | 83.01 146 |
|
Vis-MVSNet | | | 74.85 105 | 74.56 103 | 75.72 97 | 81.63 123 | 64.64 105 | 76.35 117 | 79.06 145 | 62.85 108 | 73.33 203 | 88.41 103 | 62.54 143 | 79.59 153 | 63.94 124 | 82.92 220 | 82.94 147 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
miper_lstm_enhance | | | 61.97 243 | 61.63 242 | 62.98 254 | 60.04 324 | 45.74 242 | 47.53 332 | 70.95 233 | 44.04 273 | 73.06 206 | 78.84 242 | 39.72 287 | 60.33 305 | 55.82 184 | 84.64 201 | 82.88 148 |
|
PAPM_NR | | | 73.91 111 | 74.16 110 | 73.16 131 | 81.90 118 | 53.50 183 | 81.28 62 | 81.40 106 | 66.17 72 | 73.30 204 | 83.31 189 | 59.96 168 | 83.10 92 | 58.45 162 | 81.66 235 | 82.87 149 |
|
Fast-Effi-MVS+ | | | 68.81 180 | 68.30 187 | 70.35 171 | 74.66 210 | 48.61 211 | 66.06 243 | 78.32 159 | 50.62 227 | 71.48 227 | 75.54 265 | 68.75 92 | 79.59 153 | 50.55 222 | 78.73 265 | 82.86 150 |
|
HFP-MVS | | | 83.39 20 | 84.03 19 | 81.48 27 | 89.25 21 | 75.69 27 | 87.01 13 | 84.27 64 | 70.23 47 | 84.47 62 | 90.43 55 | 76.79 28 | 85.94 31 | 79.58 11 | 94.23 51 | 82.82 151 |
|
#test# | | | 82.40 31 | 82.71 41 | 81.48 27 | 89.25 21 | 75.69 27 | 84.47 35 | 84.27 64 | 64.45 91 | 84.47 62 | 90.43 55 | 76.79 28 | 85.94 31 | 76.01 36 | 94.23 51 | 82.82 151 |
|
DELS-MVS | | | 68.83 179 | 68.31 186 | 70.38 170 | 70.55 256 | 48.31 213 | 63.78 271 | 82.13 94 | 54.00 192 | 68.96 249 | 75.17 269 | 58.95 179 | 80.06 148 | 58.55 161 | 82.74 222 | 82.76 153 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MP-MVS | | | 83.19 21 | 83.54 27 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 21 | 83.59 78 | 71.31 41 | 81.26 99 | 90.96 38 | 74.57 51 | 84.69 64 | 78.41 22 | 94.78 26 | 82.74 154 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
lessismore_v0 | | | | | 72.75 143 | 79.60 141 | 56.83 164 | | 57.37 294 | | 83.80 72 | 89.01 96 | 47.45 247 | 78.74 162 | 64.39 119 | 86.49 178 | 82.69 155 |
|
DPE-MVS | | | 82.00 35 | 83.02 37 | 78.95 60 | 85.36 68 | 67.25 85 | 82.91 51 | 84.98 44 | 73.52 24 | 85.43 49 | 90.03 72 | 76.37 31 | 86.97 11 | 74.56 47 | 94.02 57 | 82.62 156 |
|
test_prior3 | | | 76.71 84 | 77.19 83 | 75.27 102 | 82.15 114 | 59.85 144 | 75.57 126 | 84.33 62 | 58.92 136 | 76.53 164 | 86.78 130 | 67.83 103 | 83.39 85 | 69.81 80 | 92.76 78 | 82.58 157 |
|
test_prior | | | | | 75.27 102 | 82.15 114 | 59.85 144 | | 84.33 62 | | | | | 83.39 85 | | | 82.58 157 |
|
F-COLMAP | | | 75.29 95 | 73.99 112 | 79.18 56 | 81.73 121 | 71.90 48 | 81.86 60 | 82.98 84 | 59.86 129 | 72.27 214 | 84.00 180 | 64.56 132 | 83.07 93 | 51.48 214 | 87.19 169 | 82.56 159 |
|
CP-MVS | | | 84.12 11 | 84.55 13 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 3 | 84.43 60 | 71.96 40 | 84.70 59 | 90.56 50 | 77.12 27 | 86.18 25 | 79.24 18 | 95.36 13 | 82.49 160 |
|
testtj | | | 81.19 41 | 81.70 49 | 79.67 51 | 83.95 91 | 69.77 66 | 83.58 46 | 84.63 56 | 72.13 36 | 82.85 82 | 88.36 106 | 75.00 46 | 86.79 12 | 71.99 69 | 92.84 74 | 82.44 161 |
|
XVG-OURS | | | 79.51 59 | 79.82 62 | 78.58 65 | 86.11 60 | 74.96 32 | 76.33 119 | 84.95 46 | 66.89 64 | 82.75 83 | 88.99 97 | 66.82 111 | 78.37 174 | 74.80 44 | 90.76 116 | 82.40 162 |
|
mPP-MVS | | | 84.01 13 | 84.39 14 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 11 | 82.79 87 | 72.41 34 | 85.11 53 | 90.85 41 | 76.65 30 | 84.89 60 | 79.30 17 | 94.63 32 | 82.35 163 |
|
XVG-OURS-SEG-HR | | | 79.62 58 | 79.99 61 | 78.49 66 | 86.46 50 | 74.79 33 | 77.15 110 | 85.39 36 | 66.73 68 | 80.39 111 | 88.85 100 | 74.43 54 | 78.33 176 | 74.73 46 | 85.79 183 | 82.35 163 |
|
FMVSNet2 | | | 67.48 198 | 68.21 191 | 65.29 232 | 73.14 231 | 38.94 291 | 68.81 205 | 71.21 232 | 54.81 176 | 76.73 159 | 86.48 145 | 48.63 242 | 74.60 223 | 47.98 242 | 86.11 181 | 82.35 163 |
|
CNVR-MVS | | | 78.49 71 | 78.59 74 | 78.16 71 | 85.86 64 | 67.40 84 | 78.12 100 | 81.50 103 | 63.92 96 | 77.51 143 | 86.56 143 | 68.43 97 | 84.82 62 | 73.83 52 | 91.61 93 | 82.26 166 |
|
CS-MVS | | | 71.24 150 | 70.57 164 | 73.26 129 | 74.93 198 | 52.00 189 | 73.59 148 | 85.55 31 | 55.58 170 | 68.88 250 | 70.17 314 | 64.37 133 | 85.62 44 | 57.19 169 | 84.83 199 | 82.17 167 |
|
mvs_anonymous | | | 65.08 216 | 65.49 211 | 63.83 244 | 63.79 306 | 37.60 303 | 66.52 240 | 69.82 241 | 43.44 280 | 73.46 201 | 86.08 158 | 58.79 181 | 71.75 251 | 51.90 212 | 75.63 283 | 82.15 168 |
|
thres600view7 | | | 61.82 245 | 61.38 245 | 63.12 252 | 71.81 243 | 34.93 320 | 64.64 260 | 56.99 298 | 54.78 180 | 70.33 238 | 79.74 227 | 32.07 318 | 72.42 242 | 38.61 292 | 83.46 216 | 82.02 169 |
|
thres400 | | | 60.77 253 | 59.97 254 | 63.15 251 | 70.78 250 | 35.35 317 | 63.27 276 | 57.47 292 | 53.00 202 | 68.31 255 | 77.09 256 | 32.45 315 | 72.09 244 | 35.61 311 | 81.73 231 | 82.02 169 |
|
ETV-MVS | | | 72.72 136 | 72.16 145 | 74.38 112 | 76.90 178 | 55.95 167 | 73.34 150 | 84.67 53 | 62.04 113 | 72.19 217 | 70.81 307 | 65.90 120 | 85.24 54 | 58.64 160 | 84.96 197 | 81.95 171 |
|
CNLPA | | | 73.44 118 | 73.03 132 | 74.66 106 | 78.27 159 | 75.29 30 | 75.99 123 | 78.49 157 | 65.39 79 | 75.67 172 | 83.22 193 | 61.23 159 | 66.77 285 | 53.70 205 | 85.33 189 | 81.92 172 |
|
NCCC | | | 78.25 75 | 78.04 78 | 78.89 61 | 85.61 65 | 69.45 68 | 79.80 79 | 80.99 118 | 65.77 74 | 75.55 174 | 86.25 151 | 67.42 105 | 85.42 48 | 70.10 77 | 90.88 114 | 81.81 173 |
|
PAPR | | | 69.20 175 | 68.66 185 | 70.82 164 | 75.15 197 | 47.77 222 | 75.31 129 | 81.11 113 | 49.62 238 | 66.33 265 | 79.27 234 | 61.53 154 | 82.96 94 | 48.12 241 | 81.50 237 | 81.74 174 |
|
Anonymous202405211 | | | 66.02 207 | 66.89 206 | 63.43 249 | 74.22 216 | 38.14 297 | 59.00 301 | 66.13 255 | 63.33 105 | 69.76 243 | 85.95 162 | 51.88 222 | 70.50 259 | 44.23 262 | 87.52 158 | 81.64 175 |
|
FMVSNet3 | | | 65.00 217 | 65.16 212 | 64.52 238 | 69.47 263 | 37.56 304 | 66.63 238 | 70.38 238 | 51.55 218 | 74.72 185 | 83.27 190 | 37.89 298 | 74.44 225 | 47.12 247 | 85.37 186 | 81.57 176 |
|
Vis-MVSNet (Re-imp) | | | 62.74 239 | 63.21 231 | 61.34 267 | 72.19 240 | 31.56 334 | 67.31 229 | 53.87 308 | 53.60 198 | 69.88 241 | 83.37 187 | 40.52 284 | 70.98 255 | 41.40 276 | 86.78 175 | 81.48 177 |
|
test_0402 | | | 78.17 76 | 79.48 66 | 74.24 114 | 83.50 95 | 59.15 151 | 72.52 157 | 74.60 200 | 75.34 17 | 88.69 13 | 91.81 23 | 75.06 44 | 82.37 103 | 65.10 113 | 88.68 147 | 81.20 178 |
|
VPNet | | | 65.58 211 | 67.56 197 | 59.65 279 | 79.72 139 | 30.17 337 | 60.27 295 | 62.14 274 | 54.19 189 | 71.24 228 | 86.63 140 | 58.80 180 | 67.62 276 | 44.17 263 | 90.87 115 | 81.18 179 |
|
APD-MVS | | | 81.13 43 | 81.73 48 | 79.36 55 | 84.47 83 | 70.53 60 | 83.85 39 | 83.70 76 | 69.43 53 | 83.67 73 | 88.96 98 | 75.89 36 | 86.41 17 | 72.62 61 | 92.95 72 | 81.14 180 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CPTT-MVS | | | 81.51 39 | 81.76 47 | 80.76 40 | 89.20 24 | 78.75 12 | 86.48 20 | 82.03 96 | 68.80 54 | 80.92 104 | 88.52 102 | 72.00 68 | 82.39 102 | 74.80 44 | 93.04 71 | 81.14 180 |
|
Fast-Effi-MVS+-dtu | | | 70.00 162 | 68.74 183 | 73.77 120 | 73.47 225 | 64.53 107 | 71.36 175 | 78.14 163 | 55.81 168 | 68.84 253 | 74.71 274 | 65.36 125 | 75.75 209 | 52.00 211 | 79.00 262 | 81.03 182 |
|
MDA-MVSNet-bldmvs | | | 62.34 242 | 61.73 239 | 64.16 239 | 61.64 315 | 49.90 201 | 48.11 330 | 57.24 297 | 53.31 200 | 80.95 102 | 79.39 232 | 49.00 238 | 61.55 303 | 45.92 255 | 80.05 252 | 81.03 182 |
|
D2MVS | | | 62.58 240 | 61.05 247 | 67.20 217 | 63.85 305 | 47.92 220 | 56.29 309 | 69.58 242 | 39.32 298 | 70.07 240 | 78.19 247 | 34.93 304 | 72.68 235 | 53.44 208 | 83.74 214 | 81.00 184 |
|
ACMM | | 69.25 9 | 82.11 34 | 83.31 31 | 78.49 66 | 88.17 39 | 73.96 37 | 83.11 50 | 84.52 59 | 66.40 71 | 87.45 23 | 89.16 91 | 81.02 10 | 80.52 137 | 74.27 50 | 95.73 8 | 80.98 185 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DP-MVS Recon | | | 73.57 117 | 72.69 136 | 76.23 92 | 82.85 104 | 63.39 115 | 74.32 144 | 82.96 85 | 57.75 145 | 70.35 237 | 81.98 201 | 64.34 134 | 84.41 70 | 49.69 227 | 89.95 130 | 80.89 186 |
|
EPNet | | | 69.10 177 | 67.32 200 | 74.46 108 | 68.33 271 | 61.27 129 | 77.56 103 | 63.57 268 | 60.95 120 | 56.62 312 | 82.75 194 | 51.53 226 | 81.24 119 | 54.36 200 | 90.20 122 | 80.88 187 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
zzz-MVS | | | 83.01 26 | 83.63 26 | 81.13 35 | 91.16 2 | 78.16 14 | 82.72 54 | 80.63 121 | 72.08 37 | 84.93 54 | 90.79 42 | 74.65 49 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 188 |
|
MTAPA | | | 83.19 21 | 83.87 21 | 81.13 35 | 91.16 2 | 78.16 14 | 84.87 31 | 80.63 121 | 72.08 37 | 84.93 54 | 90.79 42 | 74.65 49 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 188 |
|
HyFIR lowres test | | | 63.01 235 | 60.47 251 | 70.61 166 | 83.04 101 | 54.10 179 | 59.93 297 | 72.24 218 | 33.67 328 | 69.00 247 | 75.63 264 | 38.69 292 | 76.93 196 | 36.60 306 | 75.45 286 | 80.81 190 |
|
EIA-MVS | | | 68.59 184 | 67.16 202 | 72.90 139 | 75.18 196 | 55.64 171 | 69.39 198 | 81.29 108 | 52.44 207 | 64.53 273 | 70.69 308 | 60.33 166 | 82.30 105 | 54.27 201 | 76.31 279 | 80.75 191 |
|
MCST-MVS | | | 73.42 119 | 73.34 125 | 73.63 123 | 81.28 126 | 59.17 150 | 74.80 137 | 83.13 83 | 45.50 262 | 72.84 208 | 83.78 183 | 65.15 126 | 80.99 126 | 64.54 117 | 89.09 144 | 80.73 192 |
|
tfpnnormal | | | 66.48 206 | 67.93 194 | 62.16 260 | 73.40 227 | 36.65 306 | 63.45 273 | 64.99 262 | 55.97 165 | 72.82 209 | 87.80 116 | 57.06 201 | 69.10 268 | 48.31 240 | 87.54 157 | 80.72 193 |
|
SD-MVS | | | 80.28 55 | 81.55 52 | 76.47 89 | 83.57 94 | 67.83 82 | 83.39 49 | 85.35 37 | 64.42 92 | 86.14 38 | 87.07 122 | 74.02 55 | 80.97 127 | 77.70 31 | 92.32 85 | 80.62 194 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CANet_DTU | | | 64.04 228 | 63.83 224 | 64.66 236 | 68.39 268 | 42.97 262 | 73.45 149 | 74.50 201 | 52.05 212 | 54.78 319 | 75.44 268 | 43.99 262 | 70.42 261 | 53.49 207 | 78.41 269 | 80.59 195 |
|
GA-MVS | | | 62.91 236 | 61.66 240 | 66.66 225 | 67.09 283 | 44.49 249 | 61.18 290 | 69.36 244 | 51.33 221 | 69.33 245 | 74.47 276 | 36.83 299 | 74.94 219 | 50.60 221 | 74.72 291 | 80.57 196 |
|
114514_t | | | 73.40 120 | 73.33 126 | 73.64 122 | 84.15 90 | 57.11 161 | 78.20 98 | 80.02 134 | 43.76 276 | 72.55 211 | 86.07 159 | 64.00 135 | 83.35 87 | 60.14 150 | 91.03 107 | 80.45 197 |
|
IterMVS-SCA-FT | | | 67.68 196 | 66.07 210 | 72.49 149 | 73.34 228 | 58.20 159 | 63.80 270 | 65.55 259 | 48.10 248 | 76.91 152 | 82.64 195 | 45.20 254 | 78.84 159 | 61.20 140 | 77.89 274 | 80.44 198 |
|
ambc | | | | | 70.10 177 | 77.74 167 | 50.21 199 | 74.28 145 | 77.93 168 | | 79.26 122 | 88.29 108 | 54.11 214 | 79.77 150 | 64.43 118 | 91.10 105 | 80.30 199 |
|
thisisatest0515 | | | 60.48 255 | 57.86 269 | 68.34 203 | 67.25 281 | 46.42 236 | 60.58 293 | 62.14 274 | 40.82 293 | 63.58 281 | 69.12 319 | 26.28 342 | 78.34 175 | 48.83 233 | 82.13 227 | 80.26 200 |
|
LFMVS | | | 67.06 203 | 67.89 195 | 64.56 237 | 78.02 162 | 38.25 296 | 70.81 186 | 59.60 285 | 65.18 84 | 71.06 231 | 86.56 143 | 43.85 263 | 75.22 215 | 46.35 253 | 89.63 135 | 80.21 201 |
|
UGNet | | | 70.20 160 | 69.05 176 | 73.65 121 | 76.24 184 | 63.64 113 | 75.87 124 | 72.53 214 | 61.48 116 | 60.93 296 | 86.14 155 | 52.37 221 | 77.12 194 | 50.67 220 | 85.21 191 | 80.17 202 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
MIMVSNet1 | | | 66.57 205 | 69.23 174 | 58.59 284 | 81.26 127 | 37.73 302 | 64.06 267 | 57.62 291 | 57.02 154 | 78.40 132 | 90.75 44 | 62.65 140 | 58.10 312 | 41.77 275 | 89.58 137 | 79.95 203 |
|
test_yl | | | 65.11 214 | 65.09 217 | 65.18 233 | 70.59 253 | 40.86 275 | 63.22 278 | 72.79 209 | 57.91 143 | 68.88 250 | 79.07 240 | 42.85 270 | 74.89 220 | 45.50 257 | 84.97 194 | 79.81 204 |
|
DCV-MVSNet | | | 65.11 214 | 65.09 217 | 65.18 233 | 70.59 253 | 40.86 275 | 63.22 278 | 72.79 209 | 57.91 143 | 68.88 250 | 79.07 240 | 42.85 270 | 74.89 220 | 45.50 257 | 84.97 194 | 79.81 204 |
|
cascas | | | 64.59 219 | 62.77 235 | 70.05 178 | 75.27 194 | 50.02 200 | 61.79 285 | 71.61 221 | 42.46 286 | 63.68 280 | 68.89 323 | 49.33 237 | 80.35 138 | 47.82 244 | 84.05 209 | 79.78 206 |
|
ET-MVSNet_ETH3D | | | 63.32 231 | 60.69 250 | 71.20 162 | 70.15 259 | 55.66 170 | 65.02 257 | 64.32 265 | 43.28 284 | 68.99 248 | 72.05 301 | 25.46 346 | 78.19 181 | 54.16 202 | 82.80 221 | 79.74 207 |
|
CSCG | | | 74.12 110 | 74.39 106 | 73.33 127 | 79.35 144 | 61.66 127 | 77.45 105 | 81.98 97 | 62.47 112 | 79.06 124 | 80.19 222 | 61.83 150 | 78.79 161 | 59.83 154 | 87.35 163 | 79.54 208 |
|
ACMH | | 63.62 14 | 77.50 79 | 80.11 60 | 69.68 182 | 79.61 140 | 56.28 166 | 78.81 88 | 83.62 77 | 63.41 104 | 87.14 31 | 90.23 69 | 76.11 34 | 73.32 230 | 67.58 97 | 94.44 39 | 79.44 209 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MG-MVS | | | 70.47 159 | 71.34 156 | 67.85 209 | 79.26 146 | 40.42 282 | 74.67 142 | 75.15 196 | 58.41 139 | 68.74 254 | 88.14 113 | 56.08 207 | 83.69 78 | 59.90 153 | 81.71 234 | 79.43 210 |
|
DVP-MVS | | | 81.15 42 | 83.12 36 | 75.24 104 | 86.16 55 | 60.78 135 | 83.77 41 | 80.58 124 | 72.48 32 | 85.83 42 | 90.41 58 | 78.57 19 | 85.69 41 | 75.86 39 | 94.39 41 | 79.24 211 |
|
VNet | | | 64.01 229 | 65.15 214 | 60.57 273 | 73.28 229 | 35.61 316 | 57.60 307 | 67.08 251 | 54.61 183 | 66.76 264 | 83.37 187 | 56.28 205 | 66.87 281 | 42.19 271 | 85.20 192 | 79.23 212 |
|
TSAR-MVS + GP. | | | 73.08 125 | 71.60 152 | 77.54 78 | 78.99 155 | 70.73 58 | 74.96 132 | 69.38 243 | 60.73 123 | 74.39 191 | 78.44 245 | 57.72 195 | 82.78 96 | 60.16 149 | 89.60 136 | 79.11 213 |
|
HPM-MVS++ | | | 79.89 57 | 79.80 63 | 80.18 45 | 89.02 26 | 78.44 13 | 83.49 47 | 80.18 132 | 64.71 90 | 78.11 136 | 88.39 104 | 65.46 124 | 83.14 90 | 77.64 32 | 91.20 102 | 78.94 214 |
|
DP-MVS | | | 78.44 73 | 79.29 67 | 75.90 95 | 81.86 119 | 65.33 99 | 79.05 87 | 84.63 56 | 74.83 19 | 80.41 110 | 86.27 149 | 71.68 71 | 83.45 84 | 62.45 133 | 92.40 83 | 78.92 215 |
|
PLC | | 62.01 16 | 71.79 147 | 70.28 166 | 76.33 90 | 80.31 135 | 68.63 77 | 78.18 99 | 81.24 110 | 54.57 184 | 67.09 263 | 80.63 215 | 59.44 173 | 81.74 114 | 46.91 250 | 84.17 207 | 78.63 216 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PVSNet_Blended_VisFu | | | 70.04 161 | 68.88 179 | 73.53 125 | 82.71 106 | 63.62 114 | 74.81 135 | 81.95 98 | 48.53 246 | 67.16 262 | 79.18 237 | 51.42 227 | 78.38 173 | 54.39 199 | 79.72 258 | 78.60 217 |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 75 | 90.93 110 | 78.55 218 |
|
ppachtmachnet_test | | | 60.26 257 | 59.61 257 | 62.20 259 | 67.70 278 | 44.33 250 | 58.18 305 | 60.96 282 | 40.75 294 | 65.80 268 | 72.57 293 | 41.23 277 | 63.92 295 | 46.87 251 | 82.42 225 | 78.33 219 |
|
BH-RMVSNet | | | 68.69 183 | 68.20 192 | 70.14 176 | 76.40 182 | 53.90 182 | 64.62 261 | 73.48 205 | 58.01 142 | 73.91 197 | 81.78 203 | 59.09 177 | 78.22 178 | 48.59 236 | 77.96 273 | 78.31 220 |
|
PVSNet_BlendedMVS | | | 65.38 212 | 64.30 221 | 68.61 200 | 69.81 260 | 49.36 205 | 65.60 252 | 78.96 146 | 45.50 262 | 59.98 299 | 78.61 243 | 51.82 223 | 78.20 179 | 44.30 260 | 84.11 208 | 78.27 221 |
|
ab-mvs | | | 64.11 227 | 65.13 215 | 61.05 269 | 71.99 242 | 38.03 300 | 67.59 221 | 68.79 245 | 49.08 242 | 65.32 270 | 86.26 150 | 58.02 192 | 66.85 283 | 39.33 286 | 79.79 257 | 78.27 221 |
|
MVSFormer | | | 69.93 164 | 69.03 177 | 72.63 148 | 74.93 198 | 59.19 148 | 83.98 37 | 75.72 188 | 52.27 208 | 63.53 282 | 76.74 259 | 43.19 267 | 80.56 134 | 72.28 65 | 78.67 266 | 78.14 223 |
|
jason | | | 64.47 222 | 62.84 234 | 69.34 187 | 76.91 177 | 59.20 147 | 67.15 230 | 65.67 256 | 35.29 318 | 65.16 271 | 76.74 259 | 44.67 258 | 70.68 256 | 54.74 193 | 79.28 261 | 78.14 223 |
jason: jason. |
new-patchmatchnet | | | 52.89 291 | 55.76 284 | 44.26 324 | 59.94 326 | 6.31 357 | 37.36 347 | 50.76 321 | 41.10 290 | 64.28 274 | 79.82 226 | 44.77 257 | 48.43 323 | 36.24 308 | 87.61 156 | 78.03 225 |
|
CDS-MVSNet | | | 64.33 225 | 62.66 236 | 69.35 186 | 80.44 134 | 58.28 158 | 65.26 254 | 65.66 257 | 44.36 272 | 67.30 261 | 75.54 265 | 43.27 266 | 71.77 249 | 37.68 298 | 84.44 205 | 78.01 226 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 65.31 213 | 63.75 225 | 69.97 180 | 82.23 113 | 59.76 146 | 66.78 237 | 63.37 269 | 45.20 267 | 69.79 242 | 79.37 233 | 47.42 248 | 72.17 243 | 34.48 315 | 85.15 193 | 77.99 227 |
|
LCM-MVSNet-Re | | | 69.10 177 | 71.57 153 | 61.70 262 | 70.37 257 | 34.30 324 | 61.45 286 | 79.62 137 | 56.81 157 | 89.59 8 | 88.16 112 | 68.44 96 | 72.94 233 | 42.30 270 | 87.33 164 | 77.85 228 |
|
Patchmtry | | | 60.91 250 | 63.01 233 | 54.62 294 | 66.10 291 | 26.27 346 | 67.47 224 | 56.40 301 | 54.05 191 | 72.04 218 | 86.66 137 | 33.19 309 | 60.17 306 | 43.69 264 | 87.45 161 | 77.42 229 |
|
test9_res | | | | | | | | | | | | | | | 72.12 67 | 91.37 98 | 77.40 230 |
|
train_agg | | | 76.38 85 | 76.55 87 | 75.86 96 | 85.47 66 | 69.32 72 | 76.42 115 | 78.69 152 | 54.00 192 | 76.97 148 | 86.74 133 | 66.60 113 | 81.10 122 | 72.50 63 | 91.56 94 | 77.15 231 |
|
lupinMVS | | | 63.36 230 | 61.49 244 | 68.97 193 | 74.93 198 | 59.19 148 | 65.80 248 | 64.52 264 | 34.68 323 | 63.53 282 | 74.25 280 | 43.19 267 | 70.62 257 | 53.88 204 | 78.67 266 | 77.10 232 |
|
thres100view900 | | | 61.17 249 | 61.09 246 | 61.39 266 | 72.14 241 | 35.01 319 | 65.42 253 | 56.99 298 | 55.23 173 | 70.71 234 | 79.90 225 | 32.07 318 | 72.09 244 | 35.61 311 | 81.73 231 | 77.08 233 |
|
tfpn200view9 | | | 60.35 256 | 59.97 254 | 61.51 264 | 70.78 250 | 35.35 317 | 63.27 276 | 57.47 292 | 53.00 202 | 68.31 255 | 77.09 256 | 32.45 315 | 72.09 244 | 35.61 311 | 81.73 231 | 77.08 233 |
|
agg_prior1 | | | 75.89 87 | 76.41 88 | 74.31 113 | 84.44 85 | 66.02 95 | 76.12 121 | 78.62 155 | 54.40 186 | 76.95 150 | 86.85 127 | 66.44 115 | 80.34 139 | 72.45 64 | 91.42 97 | 76.57 235 |
|
MVS_111021_HR | | | 72.98 131 | 72.97 134 | 72.99 135 | 80.82 129 | 65.47 98 | 68.81 205 | 72.77 211 | 57.67 148 | 75.76 171 | 82.38 198 | 71.01 77 | 77.17 193 | 61.38 138 | 86.15 179 | 76.32 236 |
|
xiu_mvs_v1_base_debu | | | 67.87 192 | 67.07 203 | 70.26 172 | 79.13 151 | 61.90 124 | 67.34 226 | 71.25 229 | 47.98 249 | 67.70 258 | 74.19 282 | 61.31 156 | 72.62 237 | 56.51 174 | 78.26 270 | 76.27 237 |
|
xiu_mvs_v1_base | | | 67.87 192 | 67.07 203 | 70.26 172 | 79.13 151 | 61.90 124 | 67.34 226 | 71.25 229 | 47.98 249 | 67.70 258 | 74.19 282 | 61.31 156 | 72.62 237 | 56.51 174 | 78.26 270 | 76.27 237 |
|
xiu_mvs_v1_base_debi | | | 67.87 192 | 67.07 203 | 70.26 172 | 79.13 151 | 61.90 124 | 67.34 226 | 71.25 229 | 47.98 249 | 67.70 258 | 74.19 282 | 61.31 156 | 72.62 237 | 56.51 174 | 78.26 270 | 76.27 237 |
|
baseline2 | | | 55.57 280 | 52.74 294 | 64.05 242 | 65.26 295 | 44.11 251 | 62.38 281 | 54.43 307 | 39.03 301 | 51.21 330 | 67.35 331 | 33.66 307 | 72.45 241 | 37.14 303 | 64.22 330 | 75.60 240 |
|
OpenMVS | | 62.51 15 | 68.76 181 | 68.75 182 | 68.78 199 | 70.56 255 | 53.91 181 | 78.29 96 | 77.35 174 | 48.85 243 | 70.22 239 | 83.52 184 | 52.65 220 | 76.93 196 | 55.31 189 | 81.99 228 | 75.49 241 |
|
3Dnovator | | 65.95 11 | 71.50 149 | 71.22 157 | 72.34 152 | 73.16 230 | 63.09 118 | 78.37 94 | 78.32 159 | 57.67 148 | 72.22 216 | 84.61 172 | 54.77 209 | 78.47 168 | 60.82 145 | 81.07 240 | 75.45 242 |
|
1112_ss | | | 59.48 261 | 58.99 261 | 60.96 271 | 77.84 165 | 42.39 267 | 61.42 287 | 68.45 247 | 37.96 307 | 59.93 302 | 67.46 329 | 45.11 256 | 65.07 292 | 40.89 280 | 71.81 303 | 75.41 243 |
|
IterMVS | | | 63.12 234 | 62.48 237 | 65.02 235 | 66.34 288 | 52.86 186 | 63.81 269 | 62.25 273 | 46.57 259 | 71.51 226 | 80.40 218 | 44.60 259 | 66.82 284 | 51.38 216 | 75.47 285 | 75.38 244 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Test_1112_low_res | | | 58.78 266 | 58.69 263 | 59.04 282 | 79.41 143 | 38.13 298 | 57.62 306 | 66.98 252 | 34.74 321 | 59.62 303 | 77.56 253 | 42.92 269 | 63.65 297 | 38.66 291 | 70.73 309 | 75.35 245 |
|
QAPM | | | 69.18 176 | 69.26 173 | 68.94 194 | 71.61 244 | 52.58 188 | 80.37 70 | 78.79 151 | 49.63 237 | 73.51 199 | 85.14 169 | 53.66 215 | 79.12 155 | 55.11 190 | 75.54 284 | 75.11 246 |
|
MVS_0304 | | | 62.51 241 | 62.27 238 | 63.25 250 | 69.39 264 | 48.47 212 | 64.05 268 | 62.48 272 | 59.69 130 | 54.10 324 | 81.04 212 | 45.71 250 | 66.31 288 | 41.38 277 | 82.58 224 | 74.96 247 |
|
DPM-MVS | | | 69.98 163 | 69.22 175 | 72.26 154 | 82.69 107 | 58.82 153 | 70.53 187 | 81.23 111 | 47.79 253 | 64.16 275 | 80.21 220 | 51.32 228 | 83.12 91 | 60.14 150 | 84.95 198 | 74.83 248 |
|
pmmvs-eth3d | | | 64.41 224 | 63.27 230 | 67.82 211 | 75.81 191 | 60.18 141 | 69.49 196 | 62.05 278 | 38.81 303 | 74.13 193 | 82.23 199 | 43.76 264 | 68.65 269 | 42.53 269 | 80.63 248 | 74.63 249 |
|
MSDG | | | 67.47 199 | 67.48 199 | 67.46 214 | 70.70 252 | 54.69 176 | 66.90 235 | 78.17 162 | 60.88 121 | 70.41 236 | 74.76 271 | 61.22 160 | 73.18 231 | 47.38 246 | 76.87 276 | 74.49 250 |
|
MAR-MVS | | | 67.72 195 | 66.16 209 | 72.40 151 | 74.45 213 | 64.99 104 | 74.87 133 | 77.50 173 | 48.67 245 | 65.78 269 | 68.58 326 | 57.01 202 | 77.79 186 | 46.68 252 | 81.92 229 | 74.42 251 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
baseline1 | | | 57.82 271 | 58.36 267 | 56.19 291 | 69.17 266 | 30.76 336 | 62.94 280 | 55.21 304 | 46.04 261 | 63.83 278 | 78.47 244 | 41.20 278 | 63.68 296 | 39.44 285 | 68.99 318 | 74.13 252 |
|
EU-MVSNet | | | 60.82 251 | 60.80 249 | 60.86 272 | 68.37 269 | 41.16 272 | 72.27 158 | 68.27 248 | 26.96 346 | 69.08 246 | 75.71 263 | 32.09 317 | 67.44 277 | 55.59 187 | 78.90 263 | 73.97 253 |
|
HY-MVS | | 49.31 19 | 57.96 270 | 57.59 271 | 59.10 281 | 66.85 285 | 36.17 310 | 65.13 256 | 65.39 260 | 39.24 300 | 54.69 321 | 78.14 248 | 44.28 261 | 67.18 280 | 33.75 319 | 70.79 308 | 73.95 254 |
|
TR-MVS | | | 64.59 219 | 63.54 228 | 67.73 213 | 75.75 192 | 50.83 195 | 63.39 274 | 70.29 239 | 49.33 239 | 71.55 225 | 74.55 275 | 50.94 229 | 78.46 169 | 40.43 282 | 75.69 282 | 73.89 255 |
|
IB-MVS | | 49.67 18 | 59.69 260 | 56.96 275 | 67.90 208 | 68.19 272 | 50.30 198 | 61.42 287 | 65.18 261 | 47.57 255 | 55.83 316 | 67.15 333 | 23.77 351 | 79.60 152 | 43.56 266 | 79.97 253 | 73.79 256 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
AdaColmap | | | 74.22 109 | 74.56 103 | 73.20 130 | 81.95 117 | 60.97 132 | 79.43 80 | 80.90 119 | 65.57 76 | 72.54 212 | 81.76 205 | 70.98 78 | 85.26 52 | 47.88 243 | 90.00 128 | 73.37 257 |
|
PAPM | | | 61.79 246 | 60.37 252 | 66.05 228 | 76.09 187 | 41.87 269 | 69.30 199 | 76.79 181 | 40.64 295 | 53.80 325 | 79.62 230 | 44.38 260 | 82.92 95 | 29.64 333 | 73.11 298 | 73.36 258 |
|
MVS_111021_LR | | | 72.10 143 | 71.82 148 | 72.95 137 | 79.53 142 | 73.90 39 | 70.45 188 | 66.64 253 | 56.87 156 | 76.81 157 | 81.76 205 | 68.78 91 | 71.76 250 | 61.81 134 | 83.74 214 | 73.18 259 |
|
原ACMM1 | | | | | 73.90 118 | 85.90 61 | 65.15 103 | | 81.67 101 | 50.97 224 | 74.25 192 | 86.16 154 | 61.60 153 | 83.54 81 | 56.75 172 | 91.08 106 | 73.00 260 |
|
CHOSEN 1792x2688 | | | 58.09 269 | 56.30 280 | 63.45 248 | 79.95 137 | 50.93 194 | 54.07 317 | 65.59 258 | 28.56 343 | 61.53 289 | 74.33 278 | 41.09 280 | 66.52 287 | 33.91 318 | 67.69 324 | 72.92 261 |
|
TinyColmap | | | 67.98 191 | 69.28 172 | 64.08 241 | 67.98 275 | 46.82 232 | 70.04 190 | 75.26 194 | 53.05 201 | 77.36 145 | 86.79 129 | 59.39 174 | 72.59 240 | 45.64 256 | 88.01 152 | 72.83 262 |
|
FMVSNet5 | | | 55.08 282 | 55.54 285 | 53.71 295 | 65.80 292 | 33.50 328 | 56.22 310 | 52.50 316 | 43.72 278 | 61.06 293 | 83.38 186 | 25.46 346 | 54.87 315 | 30.11 330 | 81.64 236 | 72.75 263 |
|
EG-PatchMatch MVS | | | 70.70 156 | 70.88 160 | 70.16 175 | 82.64 108 | 58.80 154 | 71.48 172 | 73.64 204 | 54.98 175 | 76.55 162 | 81.77 204 | 61.10 161 | 78.94 158 | 54.87 192 | 80.84 244 | 72.74 264 |
|
PVSNet_Blended | | | 62.90 237 | 61.64 241 | 66.69 224 | 69.81 260 | 49.36 205 | 61.23 289 | 78.96 146 | 42.04 287 | 59.98 299 | 68.86 324 | 51.82 223 | 78.20 179 | 44.30 260 | 77.77 275 | 72.52 265 |
|
CostFormer | | | 57.35 273 | 56.14 281 | 60.97 270 | 63.76 307 | 38.43 293 | 67.50 223 | 60.22 283 | 37.14 311 | 59.12 304 | 76.34 261 | 32.78 312 | 71.99 247 | 39.12 288 | 69.27 317 | 72.47 266 |
|
PS-MVSNAJ | | | 64.27 226 | 63.73 226 | 65.90 230 | 77.82 166 | 51.42 192 | 63.33 275 | 72.33 216 | 45.09 269 | 61.60 288 | 68.04 327 | 62.39 145 | 73.95 228 | 49.07 231 | 73.87 295 | 72.34 267 |
|
xiu_mvs_v2_base | | | 64.43 223 | 63.96 223 | 65.85 231 | 77.72 168 | 51.32 193 | 63.63 272 | 72.31 217 | 45.06 270 | 61.70 287 | 69.66 316 | 62.56 141 | 73.93 229 | 49.06 232 | 73.91 294 | 72.31 268 |
|
PMVS | | 70.70 6 | 81.70 37 | 83.15 35 | 77.36 81 | 90.35 6 | 82.82 2 | 82.15 56 | 79.22 143 | 74.08 21 | 87.16 30 | 91.97 20 | 84.80 2 | 76.97 195 | 64.98 115 | 93.61 63 | 72.28 269 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
1314 | | | 59.83 259 | 58.86 262 | 62.74 256 | 65.71 293 | 44.78 247 | 68.59 209 | 72.63 213 | 33.54 330 | 61.05 294 | 67.29 332 | 43.62 265 | 71.26 253 | 49.49 229 | 67.84 323 | 72.19 270 |
|
æ— å…ˆéªŒ | | | | | | | | 74.82 134 | 70.94 234 | 47.75 254 | | | | 76.85 199 | 54.47 196 | | 72.09 271 |
|
LF4IMVS | | | 67.50 197 | 67.31 201 | 68.08 207 | 58.86 331 | 61.93 123 | 71.43 173 | 75.90 187 | 44.67 271 | 72.42 213 | 80.20 221 | 57.16 197 | 70.44 260 | 58.99 159 | 86.12 180 | 71.88 272 |
|
pmmvs4 | | | 60.78 252 | 59.04 260 | 66.00 229 | 73.06 236 | 57.67 160 | 64.53 263 | 60.22 283 | 36.91 312 | 65.96 266 | 77.27 255 | 39.66 288 | 68.54 270 | 38.87 289 | 74.89 290 | 71.80 273 |
|
MSLP-MVS++ | | | 74.48 107 | 75.78 94 | 70.59 167 | 84.66 79 | 62.40 120 | 78.65 90 | 84.24 67 | 60.55 124 | 77.71 141 | 81.98 201 | 63.12 138 | 77.64 189 | 62.95 130 | 88.14 149 | 71.73 274 |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 353 | 53.74 318 | | 31.57 338 | 44.89 344 | | 29.90 336 | | 32.93 321 | | 71.48 275 |
|
tpm2 | | | 56.12 275 | 54.64 288 | 60.55 274 | 66.24 289 | 36.01 311 | 68.14 216 | 56.77 300 | 33.60 329 | 58.25 307 | 75.52 267 | 30.25 332 | 74.33 226 | 33.27 320 | 69.76 316 | 71.32 276 |
|
CMPMVS | | 48.73 20 | 61.54 248 | 60.89 248 | 63.52 247 | 61.08 319 | 51.55 191 | 68.07 218 | 68.00 249 | 33.88 325 | 65.87 267 | 81.25 210 | 37.91 297 | 67.71 274 | 49.32 230 | 82.60 223 | 71.31 277 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
API-MVS | | | 70.97 154 | 71.51 154 | 69.37 184 | 75.20 195 | 55.94 168 | 80.99 63 | 76.84 179 | 62.48 111 | 71.24 228 | 77.51 254 | 61.51 155 | 80.96 131 | 52.04 210 | 85.76 184 | 71.22 278 |
|
OpenMVS_ROB | | 54.93 17 | 63.23 233 | 63.28 229 | 63.07 253 | 69.81 260 | 45.34 244 | 68.52 212 | 67.14 250 | 43.74 277 | 70.61 235 | 79.22 235 | 47.90 246 | 72.66 236 | 48.75 234 | 73.84 296 | 71.21 279 |
|
thres200 | | | 57.55 272 | 57.02 274 | 59.17 280 | 67.89 277 | 34.93 320 | 58.91 303 | 57.25 296 | 50.24 229 | 64.01 276 | 71.46 305 | 32.49 314 | 71.39 252 | 31.31 325 | 79.57 259 | 71.19 280 |
|
test20.03 | | | 55.74 278 | 57.51 272 | 50.42 302 | 59.89 327 | 32.09 332 | 50.63 324 | 49.01 325 | 50.11 231 | 65.07 272 | 83.23 191 | 45.61 252 | 48.11 324 | 30.22 329 | 83.82 213 | 71.07 281 |
|
our_test_3 | | | 56.46 274 | 56.51 278 | 56.30 290 | 67.70 278 | 39.66 286 | 55.36 314 | 52.34 317 | 40.57 296 | 63.85 277 | 69.91 315 | 40.04 286 | 58.22 311 | 43.49 267 | 75.29 289 | 71.03 282 |
|
BH-untuned | | | 69.39 172 | 69.46 170 | 69.18 188 | 77.96 164 | 56.88 163 | 68.47 214 | 77.53 172 | 56.77 158 | 77.79 139 | 79.63 229 | 60.30 167 | 80.20 145 | 46.04 254 | 80.65 246 | 70.47 283 |
|
EPNet_dtu | | | 58.93 265 | 58.52 264 | 60.16 277 | 67.91 276 | 47.70 224 | 69.97 191 | 58.02 289 | 49.73 235 | 47.28 340 | 73.02 291 | 38.14 294 | 62.34 300 | 36.57 307 | 85.99 182 | 70.43 284 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
USDC | | | 62.80 238 | 63.10 232 | 61.89 261 | 65.19 296 | 43.30 259 | 67.42 225 | 74.20 202 | 35.80 317 | 72.25 215 | 84.48 174 | 45.67 251 | 71.95 248 | 37.95 297 | 84.97 194 | 70.42 285 |
|
DWT-MVSNet_test | | | 53.04 290 | 51.12 301 | 58.77 283 | 61.23 317 | 38.67 292 | 62.16 283 | 57.74 290 | 38.24 304 | 51.76 329 | 59.07 343 | 21.36 353 | 67.40 278 | 44.80 259 | 63.76 331 | 70.25 286 |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 287 |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 321 | | | | 70.05 287 |
|
SCA | | | 58.57 268 | 58.04 268 | 60.17 276 | 70.17 258 | 41.07 274 | 65.19 255 | 53.38 312 | 43.34 283 | 61.00 295 | 73.48 286 | 45.20 254 | 69.38 265 | 40.34 283 | 70.31 311 | 70.05 287 |
|
tpmvs | | | 55.84 276 | 55.45 286 | 57.01 289 | 60.33 323 | 33.20 329 | 65.89 245 | 59.29 287 | 47.52 256 | 56.04 314 | 73.60 285 | 31.05 327 | 68.06 273 | 40.64 281 | 64.64 328 | 69.77 290 |
|
旧先验1 | | | | | | 84.55 82 | 60.36 140 | | 63.69 267 | | | 87.05 123 | 54.65 211 | | | 83.34 217 | 69.66 291 |
|
CR-MVSNet | | | 58.96 264 | 58.49 265 | 60.36 275 | 66.37 286 | 48.24 215 | 70.93 183 | 56.40 301 | 32.87 331 | 61.35 290 | 86.66 137 | 33.19 309 | 63.22 298 | 48.50 238 | 70.17 312 | 69.62 292 |
|
RPMNet | | | 65.77 210 | 65.08 219 | 67.84 210 | 66.37 286 | 48.24 215 | 70.93 183 | 86.27 20 | 54.66 182 | 61.35 290 | 86.77 132 | 33.29 308 | 85.67 43 | 55.93 182 | 70.17 312 | 69.62 292 |
|
tpm cat1 | | | 54.02 287 | 52.63 295 | 58.19 286 | 64.85 302 | 39.86 285 | 66.26 242 | 57.28 295 | 32.16 333 | 56.90 310 | 70.39 311 | 32.75 313 | 65.30 291 | 34.29 316 | 58.79 339 | 69.41 294 |
|
PatchmatchNet | | | 54.60 283 | 54.27 289 | 55.59 292 | 65.17 298 | 39.08 288 | 66.92 234 | 51.80 318 | 39.89 297 | 58.39 305 | 73.12 290 | 31.69 320 | 58.33 310 | 43.01 268 | 58.38 342 | 69.38 295 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
YYNet1 | | | 52.58 292 | 53.50 291 | 49.85 303 | 54.15 350 | 36.45 309 | 40.53 341 | 46.55 332 | 38.09 306 | 75.52 175 | 73.31 289 | 41.08 281 | 43.88 337 | 41.10 278 | 71.14 307 | 69.21 296 |
|
CVMVSNet | | | 59.21 263 | 58.44 266 | 61.51 264 | 73.94 221 | 47.76 223 | 71.31 177 | 64.56 263 | 26.91 347 | 60.34 298 | 70.44 309 | 36.24 301 | 67.65 275 | 53.57 206 | 68.66 320 | 69.12 297 |
|
MDA-MVSNet_test_wron | | | 52.57 293 | 53.49 292 | 49.81 304 | 54.24 349 | 36.47 308 | 40.48 342 | 46.58 331 | 38.13 305 | 75.47 176 | 73.32 288 | 41.05 282 | 43.85 338 | 40.98 279 | 71.20 306 | 69.10 298 |
|
MVP-Stereo | | | 61.56 247 | 59.22 258 | 68.58 201 | 79.28 145 | 60.44 139 | 69.20 201 | 71.57 222 | 43.58 279 | 56.42 313 | 78.37 246 | 39.57 289 | 76.46 204 | 34.86 314 | 60.16 336 | 68.86 299 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
1121 | | | 69.23 174 | 68.26 188 | 72.12 155 | 88.36 36 | 71.40 50 | 68.59 209 | 62.06 277 | 43.80 275 | 74.75 183 | 86.18 152 | 52.92 218 | 76.85 199 | 54.47 196 | 83.27 218 | 68.12 300 |
|
æ–°å‡ ä½•1 | | | | | 69.99 179 | 88.37 35 | 71.34 52 | | 62.08 276 | 43.85 274 | 74.99 180 | 86.11 157 | 52.85 219 | 70.57 258 | 50.99 218 | 83.23 219 | 68.05 301 |
|
UnsupCasMVSNet_eth | | | 52.26 295 | 53.29 293 | 49.16 308 | 55.08 346 | 33.67 327 | 50.03 325 | 58.79 288 | 37.67 308 | 63.43 284 | 74.75 272 | 41.82 275 | 45.83 327 | 38.59 293 | 59.42 338 | 67.98 302 |
|
Patchmatch-test | | | 47.93 305 | 49.96 306 | 41.84 328 | 57.42 337 | 24.26 349 | 48.75 327 | 41.49 344 | 39.30 299 | 56.79 311 | 73.48 286 | 30.48 331 | 33.87 349 | 29.29 335 | 72.61 299 | 67.39 303 |
|
Patchmatch-RL test | | | 59.95 258 | 59.12 259 | 62.44 258 | 72.46 239 | 54.61 177 | 59.63 298 | 47.51 330 | 41.05 292 | 74.58 188 | 74.30 279 | 31.06 326 | 65.31 290 | 51.61 213 | 79.85 254 | 67.39 303 |
|
testgi | | | 54.00 288 | 56.86 276 | 45.45 319 | 58.20 334 | 25.81 347 | 49.05 326 | 49.50 324 | 45.43 265 | 67.84 257 | 81.17 211 | 51.81 225 | 43.20 340 | 29.30 334 | 79.41 260 | 67.34 305 |
|
test222 | | | | | | 87.30 40 | 69.15 75 | 67.85 219 | 59.59 286 | 41.06 291 | 73.05 207 | 85.72 164 | 48.03 245 | | | 80.65 246 | 66.92 306 |
|
pmmvs5 | | | 52.49 294 | 52.58 296 | 52.21 300 | 54.99 347 | 32.38 331 | 55.45 313 | 53.84 309 | 32.15 334 | 55.49 318 | 74.81 270 | 38.08 295 | 57.37 313 | 34.02 317 | 74.40 292 | 66.88 307 |
|
Anonymous20231206 | | | 54.13 285 | 55.82 283 | 49.04 310 | 70.89 248 | 35.96 312 | 51.73 322 | 50.87 320 | 34.86 319 | 62.49 285 | 79.22 235 | 42.52 273 | 44.29 336 | 27.95 338 | 81.88 230 | 66.88 307 |
|
tpm | | | 50.60 298 | 52.42 297 | 45.14 321 | 65.18 297 | 26.29 345 | 60.30 294 | 43.50 335 | 37.41 309 | 57.01 309 | 79.09 239 | 30.20 334 | 42.32 341 | 32.77 322 | 66.36 325 | 66.81 309 |
|
testdata | | | | | 64.13 240 | 85.87 63 | 63.34 116 | | 61.80 280 | 47.83 252 | 76.42 168 | 86.60 142 | 48.83 239 | 62.31 301 | 54.46 198 | 81.26 238 | 66.74 310 |
|
MIMVSNet | | | 54.39 284 | 56.12 282 | 49.20 307 | 72.57 238 | 30.91 335 | 59.98 296 | 48.43 328 | 41.66 289 | 55.94 315 | 83.86 182 | 41.19 279 | 50.42 320 | 26.05 340 | 75.38 287 | 66.27 311 |
|
tpmrst | | | 50.15 300 | 51.38 299 | 46.45 316 | 56.05 341 | 24.77 348 | 64.40 265 | 49.98 322 | 36.14 314 | 53.32 326 | 69.59 317 | 35.16 303 | 48.69 322 | 39.24 287 | 58.51 341 | 65.89 312 |
|
EPMVS | | | 45.74 309 | 46.53 312 | 43.39 326 | 54.14 351 | 22.33 351 | 55.02 315 | 35.00 352 | 34.69 322 | 51.09 331 | 70.20 313 | 25.92 344 | 42.04 343 | 37.19 302 | 55.50 346 | 65.78 313 |
|
PVSNet | | 43.83 21 | 51.56 297 | 51.17 300 | 52.73 297 | 68.34 270 | 38.27 295 | 48.22 329 | 53.56 311 | 36.41 313 | 54.29 322 | 64.94 336 | 34.60 305 | 54.20 318 | 30.34 328 | 69.87 314 | 65.71 314 |
|
BH-w/o | | | 64.81 218 | 64.29 222 | 66.36 226 | 76.08 188 | 54.71 175 | 65.61 251 | 75.23 195 | 50.10 232 | 71.05 232 | 71.86 302 | 54.33 213 | 79.02 156 | 38.20 295 | 76.14 280 | 65.36 315 |
|
XXY-MVS | | | 55.19 281 | 57.40 273 | 48.56 311 | 64.45 303 | 34.84 322 | 51.54 323 | 53.59 310 | 38.99 302 | 63.79 279 | 79.43 231 | 56.59 203 | 45.57 328 | 36.92 305 | 71.29 305 | 65.25 316 |
|
ADS-MVSNet2 | | | 48.76 303 | 47.25 311 | 53.29 296 | 55.90 343 | 40.54 281 | 47.34 333 | 54.99 306 | 31.41 339 | 50.48 333 | 72.06 299 | 31.23 323 | 54.26 317 | 25.93 341 | 55.93 344 | 65.07 317 |
|
ADS-MVSNet | | | 44.62 314 | 45.58 313 | 41.73 329 | 55.90 343 | 20.83 352 | 47.34 333 | 39.94 348 | 31.41 339 | 50.48 333 | 72.06 299 | 31.23 323 | 39.31 346 | 25.93 341 | 55.93 344 | 65.07 317 |
|
test0.0.03 1 | | | 47.72 306 | 48.31 308 | 45.93 317 | 55.53 345 | 29.39 338 | 46.40 336 | 41.21 346 | 43.41 281 | 55.81 317 | 67.65 328 | 29.22 337 | 43.77 339 | 25.73 343 | 69.87 314 | 64.62 319 |
|
JIA-IIPM | | | 54.03 286 | 51.62 298 | 61.25 268 | 59.14 330 | 55.21 173 | 59.10 300 | 47.72 329 | 50.85 225 | 50.31 336 | 85.81 163 | 20.10 356 | 63.97 294 | 36.16 309 | 55.41 347 | 64.55 320 |
|
PatchT | | | 53.35 289 | 56.47 279 | 43.99 325 | 64.19 304 | 17.46 354 | 59.15 299 | 43.10 336 | 52.11 211 | 54.74 320 | 86.95 124 | 29.97 335 | 49.98 321 | 43.62 265 | 74.40 292 | 64.53 321 |
|
gg-mvs-nofinetune | | | 55.75 277 | 56.75 277 | 52.72 298 | 62.87 310 | 28.04 342 | 68.92 202 | 41.36 345 | 71.09 42 | 50.80 332 | 92.63 13 | 20.74 354 | 66.86 282 | 29.97 331 | 72.41 300 | 63.25 322 |
|
MVS | | | 60.62 254 | 59.97 254 | 62.58 257 | 68.13 273 | 47.28 229 | 68.59 209 | 73.96 203 | 32.19 332 | 59.94 301 | 68.86 324 | 50.48 230 | 77.64 189 | 41.85 274 | 75.74 281 | 62.83 323 |
|
N_pmnet | | | 52.06 296 | 51.11 302 | 54.92 293 | 59.64 329 | 71.03 54 | 37.42 346 | 61.62 281 | 33.68 327 | 57.12 308 | 72.10 294 | 37.94 296 | 31.03 350 | 29.13 337 | 71.35 304 | 62.70 324 |
|
Gipuma | | | 69.55 169 | 72.83 135 | 59.70 278 | 63.63 308 | 53.97 180 | 80.08 76 | 75.93 186 | 64.24 94 | 73.49 200 | 88.93 99 | 57.89 194 | 62.46 299 | 59.75 155 | 91.55 95 | 62.67 325 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
WTY-MVS | | | 49.39 302 | 50.31 305 | 46.62 315 | 61.22 318 | 32.00 333 | 46.61 335 | 49.77 323 | 33.87 326 | 54.12 323 | 69.55 318 | 41.96 274 | 45.40 330 | 31.28 326 | 64.42 329 | 62.47 326 |
|
test-LLR | | | 50.43 299 | 50.69 304 | 49.64 305 | 60.76 320 | 41.87 269 | 53.18 319 | 45.48 333 | 43.41 281 | 49.41 337 | 60.47 341 | 29.22 337 | 44.73 334 | 42.09 272 | 72.14 301 | 62.33 327 |
|
test-mter | | | 48.56 304 | 48.20 309 | 49.64 305 | 60.76 320 | 41.87 269 | 53.18 319 | 45.48 333 | 31.91 337 | 49.41 337 | 60.47 341 | 18.34 357 | 44.73 334 | 42.09 272 | 72.14 301 | 62.33 327 |
|
UnsupCasMVSNet_bld | | | 50.01 301 | 51.03 303 | 46.95 312 | 58.61 332 | 32.64 330 | 48.31 328 | 53.27 313 | 34.27 324 | 60.47 297 | 71.53 304 | 41.40 276 | 47.07 325 | 30.68 327 | 60.78 335 | 61.13 329 |
|
sss | | | 47.59 307 | 48.32 307 | 45.40 320 | 56.73 340 | 33.96 325 | 45.17 338 | 48.51 327 | 32.11 336 | 52.37 328 | 65.79 334 | 40.39 285 | 41.91 344 | 31.85 323 | 61.97 333 | 60.35 330 |
|
PM-MVS | | | 64.49 221 | 63.61 227 | 67.14 219 | 76.68 180 | 75.15 31 | 68.49 213 | 42.85 337 | 51.17 223 | 77.85 137 | 80.51 216 | 45.76 249 | 66.31 288 | 52.83 209 | 76.35 278 | 59.96 331 |
|
GG-mvs-BLEND | | | | | 52.24 299 | 60.64 322 | 29.21 340 | 69.73 195 | 42.41 338 | | 45.47 342 | 52.33 347 | 20.43 355 | 68.16 272 | 25.52 344 | 65.42 327 | 59.36 332 |
|
TESTMET0.1,1 | | | 45.17 311 | 44.93 316 | 45.89 318 | 56.02 342 | 38.31 294 | 53.18 319 | 41.94 343 | 27.85 344 | 44.86 345 | 56.47 344 | 17.93 358 | 41.50 345 | 38.08 296 | 68.06 321 | 57.85 333 |
|
MS-PatchMatch | | | 55.59 279 | 54.89 287 | 57.68 287 | 69.18 265 | 49.05 207 | 61.00 291 | 62.93 271 | 35.98 315 | 58.36 306 | 68.93 322 | 36.71 300 | 66.59 286 | 37.62 300 | 63.30 332 | 57.39 334 |
|
dp | | | 44.09 316 | 44.88 317 | 41.72 330 | 58.53 333 | 23.18 350 | 54.70 316 | 42.38 340 | 34.80 320 | 44.25 347 | 65.61 335 | 24.48 349 | 44.80 333 | 29.77 332 | 49.42 349 | 57.18 335 |
|
MVE | | 27.91 23 | 36.69 322 | 35.64 325 | 39.84 332 | 43.37 355 | 35.85 314 | 19.49 350 | 24.61 356 | 24.68 349 | 39.05 351 | 62.63 339 | 38.67 293 | 27.10 353 | 21.04 349 | 47.25 350 | 56.56 336 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
pmmvs3 | | | 46.71 308 | 45.09 315 | 51.55 301 | 56.76 339 | 48.25 214 | 55.78 312 | 39.53 349 | 24.13 350 | 50.35 335 | 63.40 337 | 15.90 360 | 51.08 319 | 29.29 335 | 70.69 310 | 55.33 337 |
|
PatchMatch-RL | | | 58.68 267 | 57.72 270 | 61.57 263 | 76.21 185 | 73.59 42 | 61.83 284 | 49.00 326 | 47.30 257 | 61.08 292 | 68.97 321 | 50.16 232 | 59.01 309 | 36.06 310 | 68.84 319 | 52.10 338 |
|
wuyk23d | | | 61.97 243 | 66.25 208 | 49.12 309 | 58.19 335 | 60.77 137 | 66.32 241 | 52.97 314 | 55.93 167 | 90.62 4 | 86.91 125 | 73.07 62 | 35.98 348 | 20.63 350 | 91.63 92 | 50.62 339 |
|
PMMVS2 | | | 37.74 320 | 40.87 321 | 28.36 335 | 42.41 356 | 5.35 358 | 24.61 349 | 27.75 354 | 32.15 334 | 47.85 339 | 70.27 312 | 35.85 302 | 29.51 351 | 19.08 351 | 67.85 322 | 50.22 340 |
|
DSMNet-mixed | | | 43.18 317 | 44.66 318 | 38.75 333 | 54.75 348 | 28.88 341 | 57.06 308 | 27.42 355 | 13.47 352 | 47.27 341 | 77.67 252 | 38.83 291 | 39.29 347 | 25.32 345 | 60.12 337 | 48.08 341 |
|
new_pmnet | | | 37.55 321 | 39.80 324 | 30.79 334 | 56.83 338 | 16.46 355 | 39.35 343 | 30.65 353 | 25.59 348 | 45.26 343 | 61.60 340 | 24.54 348 | 28.02 352 | 21.60 348 | 52.80 348 | 47.90 342 |
|
CHOSEN 280x420 | | | 41.62 318 | 39.89 323 | 46.80 314 | 61.81 314 | 51.59 190 | 33.56 348 | 35.74 351 | 27.48 345 | 37.64 353 | 53.53 345 | 23.24 352 | 42.09 342 | 27.39 339 | 58.64 340 | 46.72 343 |
|
EMVS | | | 44.61 315 | 44.45 319 | 45.10 322 | 48.91 354 | 43.00 261 | 37.92 345 | 41.10 347 | 46.75 258 | 38.00 352 | 48.43 350 | 26.42 341 | 46.27 326 | 37.11 304 | 75.38 287 | 46.03 344 |
|
E-PMN | | | 45.17 311 | 45.36 314 | 44.60 323 | 50.07 352 | 42.75 263 | 38.66 344 | 42.29 341 | 46.39 260 | 39.55 350 | 51.15 348 | 26.00 343 | 45.37 331 | 37.68 298 | 76.41 277 | 45.69 345 |
|
PMMVS | | | 44.69 313 | 43.95 320 | 46.92 313 | 50.05 353 | 53.47 184 | 48.08 331 | 42.40 339 | 22.36 351 | 44.01 348 | 53.05 346 | 42.60 272 | 45.49 329 | 31.69 324 | 61.36 334 | 41.79 346 |
|
PVSNet_0 | | 36.71 22 | 41.12 319 | 40.78 322 | 42.14 327 | 59.97 325 | 40.13 283 | 40.97 340 | 42.24 342 | 30.81 341 | 44.86 345 | 49.41 349 | 40.70 283 | 45.12 332 | 23.15 347 | 34.96 351 | 41.16 347 |
|
FPMVS | | | 59.43 262 | 60.07 253 | 57.51 288 | 77.62 171 | 71.52 49 | 62.33 282 | 50.92 319 | 57.40 152 | 69.40 244 | 80.00 224 | 39.14 290 | 61.92 302 | 37.47 301 | 66.36 325 | 39.09 348 |
|
MVS-HIRNet | | | 45.53 310 | 47.29 310 | 40.24 331 | 62.29 312 | 26.82 344 | 56.02 311 | 37.41 350 | 29.74 342 | 43.69 349 | 81.27 209 | 33.96 306 | 55.48 314 | 24.46 346 | 56.79 343 | 38.43 349 |
|
DeepMVS_CX | | | | | 11.83 336 | 15.51 357 | 13.86 356 | | 11.25 359 | 5.76 353 | 20.85 355 | 26.46 351 | 17.06 359 | 9.22 354 | 9.69 353 | 13.82 353 | 12.42 350 |
|
tmp_tt | | | 11.98 324 | 14.73 327 | 3.72 337 | 2.28 358 | 4.62 359 | 19.44 351 | 14.50 358 | 0.47 354 | 21.55 354 | 9.58 353 | 25.78 345 | 4.57 355 | 11.61 352 | 27.37 352 | 1.96 351 |
|
testmvs | | | 4.06 328 | 5.28 331 | 0.41 338 | 0.64 360 | 0.16 361 | 42.54 339 | 0.31 361 | 0.26 356 | 0.50 357 | 1.40 357 | 0.77 361 | 0.17 356 | 0.56 354 | 0.55 355 | 0.90 352 |
|
test123 | | | 4.43 327 | 5.78 330 | 0.39 339 | 0.97 359 | 0.28 360 | 46.33 337 | 0.45 360 | 0.31 355 | 0.62 356 | 1.50 356 | 0.61 362 | 0.11 357 | 0.56 354 | 0.63 354 | 0.77 353 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
cdsmvs_eth3d_5k | | | 17.71 323 | 23.62 326 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 70.17 240 | 0.00 357 | 0.00 358 | 74.25 280 | 68.16 99 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
pcd_1.5k_mvsjas | | | 5.20 326 | 6.93 329 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 62.39 145 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
ab-mvs-re | | | 5.62 325 | 7.50 328 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 67.46 329 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
ZD-MVS | | | | | | 83.91 92 | 69.36 71 | | 81.09 115 | 58.91 138 | 82.73 84 | 89.11 93 | 75.77 37 | 86.63 13 | 72.73 59 | 92.93 73 | |
|
test_241102_ONE | | | | | | 86.12 57 | 61.06 130 | | 84.72 51 | 72.64 29 | 87.38 25 | 89.47 81 | 77.48 25 | 85.74 40 | | | |
|
9.14 | | | | 80.22 59 | | 80.68 130 | | 80.35 71 | 87.69 11 | 59.90 127 | 83.00 78 | 88.20 109 | 74.57 51 | 81.75 113 | 73.75 53 | 93.78 59 | |
|
save fliter | | | | | | 87.00 42 | 67.23 86 | 79.24 83 | 77.94 167 | 56.65 161 | | | | | | | |
|
test0726 | | | | | | 86.16 55 | 60.78 135 | 83.81 40 | 85.10 42 | 72.48 32 | 85.27 51 | 89.96 74 | 78.57 19 | | | | |
|
test_part2 | | | | | | 85.90 61 | 66.44 91 | | | | 84.61 60 | | | | | | |
|
sam_mvs | | | | | | | | | | | | | 31.21 325 | | | | |
|
MTGPA | | | | | | | | | 80.63 121 | | | | | | | | |
|
test_post1 | | | | | | | | 66.63 238 | | | | 2.08 354 | 30.66 330 | 59.33 308 | 40.34 283 | | |
|
test_post | | | | | | | | | | | | 1.99 355 | 30.91 328 | 54.76 316 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 320 | 31.32 322 | 69.38 265 | | | |
|
MTMP | | | | | | | | 84.83 32 | 19.26 357 | | | | | | | | |
|
gm-plane-assit | | | | | | 62.51 311 | 33.91 326 | | | 37.25 310 | | 62.71 338 | | 72.74 234 | 38.70 290 | | |
|
TEST9 | | | | | | 85.47 66 | 69.32 72 | 76.42 115 | 78.69 152 | 53.73 197 | 76.97 148 | 86.74 133 | 66.84 110 | 81.10 122 | | | |
|
test_8 | | | | | | 85.09 72 | 67.89 81 | 76.26 120 | 78.66 154 | 54.00 192 | 76.89 153 | 86.72 135 | 66.60 113 | 80.89 132 | | | |
|
agg_prior | | | | | | 84.44 85 | 66.02 95 | | 78.62 155 | | 76.95 150 | | | 80.34 139 | | | |
|
test_prior4 | | | | | | | 70.14 64 | 77.57 102 | | | | | | | | | |
|
test_prior2 | | | | | | | | 75.57 126 | | 58.92 136 | 76.53 164 | 86.78 130 | 67.83 103 | | 69.81 80 | 92.76 78 | |
|
旧先验2 | | | | | | | | 71.17 180 | | 45.11 268 | 78.54 130 | | | 61.28 304 | 59.19 158 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 71.33 176 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 74.78 138 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 67.30 279 | 48.34 239 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 98 | | | | |
|
testdata1 | | | | | | | | 68.34 215 | | 57.24 153 | | | | | | | |
|
plane_prior7 | | | | | | 85.18 69 | 66.21 93 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 89 | 65.31 100 | | | | | | 60.83 163 | | | | |
|
plane_prior4 | | | | | | | | | | | | 89.11 93 | | | | | |
|
plane_prior3 | | | | | | | 65.67 97 | | | 63.82 98 | 78.23 133 | | | | | | |
|
plane_prior2 | | | | | | | | 82.74 52 | | 65.45 77 | | | | | | | |
|
plane_prior1 | | | | | | 84.46 84 | | | | | | | | | | | |
|
plane_prior | | | | | | | 65.18 101 | 80.06 77 | | 61.88 115 | | | | | | 89.91 131 | |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 305 | | | | | | | | |
|
test11 | | | | | | | | | 82.71 89 | | | | | | | | |
|
door | | | | | | | | | 52.91 315 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 154 | | | | | | | | | | |
|
HQP-NCC | | | | | | 82.37 109 | | 77.32 106 | | 59.08 132 | 71.58 221 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 109 | | 77.32 106 | | 59.08 132 | 71.58 221 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 101 | | |
|
HQP3-MVS | | | | | | | | | 84.12 70 | | | | | | | 89.16 141 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 187 | | | | |
|
NP-MVS | | | | | | 83.34 99 | 63.07 119 | | | | | 85.97 160 | | | | | |
|
MDTV_nov1_ep13 | | | | 54.05 290 | | 65.54 294 | 29.30 339 | 59.00 301 | 55.22 303 | 35.96 316 | 52.44 327 | 75.98 262 | 30.77 329 | 59.62 307 | 38.21 294 | 73.33 297 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 139 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 87 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 141 | | | | |
|