DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 179 | 59.50 5 | 92.24 8 | 90.72 8 | 69.37 22 | 83.22 6 | 94.47 2 | 63.81 3 | 93.18 30 | 74.02 63 | 93.25 2 | 94.80 1 |
|
LFMVS | | | 78.52 19 | 77.14 35 | 82.67 4 | 89.58 10 | 58.90 8 | 91.27 18 | 88.05 47 | 63.22 94 | 74.63 36 | 90.83 63 | 41.38 146 | 94.40 19 | 75.42 53 | 79.90 89 | 94.72 2 |
|
SED-MVS | | | 81.92 6 | 81.75 7 | 82.44 7 | 89.48 14 | 56.89 26 | 92.48 3 | 88.94 27 | 57.50 203 | 84.61 3 | 94.09 4 | 58.81 9 | 96.37 5 | 82.28 11 | 87.60 16 | 94.06 3 |
|
OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 42 | 92.48 3 | | | | 94.01 6 | 67.21 2 | 95.10 13 | 89.82 1 | 92.55 3 | 94.06 3 |
|
CSCG | | | 80.41 12 | 79.72 12 | 82.49 5 | 89.12 21 | 57.67 15 | 89.29 40 | 91.54 3 | 59.19 163 | 71.82 69 | 90.05 84 | 59.72 6 | 96.04 7 | 78.37 30 | 88.40 12 | 93.75 5 |
|
DELS-MVS | | | 82.32 4 | 82.50 4 | 81.79 11 | 86.80 41 | 56.89 26 | 92.77 2 | 86.30 79 | 77.83 1 | 77.88 21 | 92.13 32 | 60.24 4 | 94.78 18 | 78.97 25 | 89.61 6 | 93.69 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS | | | 76.91 44 | 75.48 54 | 81.23 16 | 84.56 77 | 55.21 57 | 80.23 241 | 91.64 2 | 58.65 179 | 65.37 121 | 91.48 49 | 45.72 90 | 95.05 14 | 72.11 77 | 89.52 8 | 93.44 7 |
|
VNet | | | 77.99 30 | 77.92 27 | 78.19 71 | 87.43 35 | 50.12 189 | 90.93 21 | 91.41 4 | 67.48 41 | 75.12 32 | 90.15 82 | 46.77 75 | 91.00 76 | 73.52 68 | 78.46 98 | 93.44 7 |
|
MCST-MVS | | | 83.01 2 | 83.30 3 | 82.15 10 | 92.84 2 | 57.58 16 | 93.77 1 | 91.10 6 | 75.95 2 | 77.10 24 | 93.09 17 | 54.15 23 | 95.57 10 | 85.80 3 | 85.87 34 | 93.31 9 |
|
WTY-MVS | | | 77.47 36 | 77.52 31 | 77.30 93 | 88.33 26 | 46.25 261 | 88.46 52 | 90.32 10 | 71.40 10 | 72.32 64 | 91.72 43 | 53.44 25 | 92.37 46 | 66.28 109 | 75.42 122 | 93.28 10 |
|
DeepPCF-MVS | | 69.37 1 | 80.65 10 | 81.56 8 | 77.94 80 | 85.46 62 | 49.56 199 | 90.99 20 | 86.66 73 | 70.58 14 | 80.07 17 | 95.30 1 | 56.18 15 | 90.97 78 | 82.57 10 | 86.22 32 | 93.28 10 |
|
canonicalmvs | | | 78.17 27 | 77.86 28 | 79.12 40 | 84.30 81 | 54.22 84 | 87.71 60 | 84.57 123 | 67.70 39 | 77.70 22 | 92.11 35 | 50.90 42 | 89.95 104 | 78.18 35 | 77.54 103 | 93.20 12 |
|
MSLP-MVS++ | | | 74.21 80 | 72.25 92 | 80.11 27 | 81.45 155 | 56.47 33 | 86.32 95 | 79.65 209 | 58.19 185 | 66.36 109 | 92.29 31 | 36.11 208 | 90.66 85 | 67.39 99 | 82.49 60 | 93.18 13 |
|
CANet | | | 80.90 9 | 81.17 9 | 80.09 28 | 87.62 34 | 54.21 85 | 91.60 13 | 86.47 75 | 73.13 5 | 79.89 18 | 93.10 15 | 49.88 51 | 92.98 31 | 84.09 5 | 84.75 47 | 93.08 14 |
|
TSAR-MVS + GP. | | | 77.82 31 | 77.59 30 | 78.49 60 | 85.25 68 | 50.27 186 | 90.02 26 | 90.57 9 | 56.58 220 | 74.26 41 | 91.60 46 | 54.26 21 | 92.16 52 | 75.87 47 | 79.91 88 | 93.05 15 |
|
ETH3 D test6400 | | | 83.28 1 | 83.47 1 | 82.72 3 | 91.48 4 | 59.33 6 | 92.10 9 | 90.95 7 | 65.68 59 | 80.67 15 | 94.42 3 | 59.41 7 | 95.89 9 | 86.74 2 | 89.75 5 | 92.94 16 |
|
SD-MVS | | | 76.18 55 | 74.85 64 | 80.18 24 | 85.39 63 | 56.90 25 | 85.75 108 | 82.45 165 | 56.79 215 | 74.48 40 | 91.81 39 | 43.72 116 | 90.75 83 | 74.61 59 | 78.65 96 | 92.91 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
alignmvs | | | 78.08 28 | 77.98 25 | 78.39 66 | 83.53 97 | 53.22 114 | 89.77 32 | 85.45 92 | 66.11 53 | 76.59 28 | 91.99 38 | 54.07 24 | 89.05 122 | 77.34 41 | 77.00 108 | 92.89 18 |
|
ET-MVSNet_ETH3D | | | 75.23 69 | 74.08 72 | 78.67 56 | 84.52 78 | 55.59 45 | 88.92 45 | 89.21 20 | 68.06 33 | 53.13 266 | 90.22 78 | 49.71 52 | 87.62 173 | 72.12 76 | 70.82 162 | 92.82 19 |
|
VDDNet | | | 74.37 78 | 72.13 95 | 81.09 17 | 79.58 183 | 56.52 32 | 90.02 26 | 86.70 72 | 52.61 257 | 71.23 76 | 87.20 132 | 31.75 251 | 93.96 23 | 74.30 61 | 75.77 119 | 92.79 20 |
|
DVP-MVS | | | 81.30 8 | 81.00 10 | 82.20 8 | 89.40 17 | 57.45 18 | 92.34 5 | 89.99 14 | 57.71 197 | 81.91 9 | 93.64 10 | 55.17 17 | 96.44 2 | 81.68 13 | 87.13 19 | 92.72 21 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
HPM-MVS++ |  | | 80.50 11 | 80.71 11 | 79.88 30 | 87.34 36 | 55.20 58 | 89.93 29 | 87.55 59 | 66.04 58 | 79.46 19 | 93.00 19 | 53.10 27 | 91.76 59 | 80.40 20 | 89.56 7 | 92.68 22 |
|
test_241102_TWO | | | | | | | | | 88.76 34 | 57.50 203 | 83.60 5 | 94.09 4 | 56.14 16 | 96.37 5 | 82.28 11 | 87.43 18 | 92.55 23 |
|
test_0728_SECOND | | | | | 82.20 8 | 89.50 12 | 57.73 13 | 92.34 5 | 88.88 29 | | | | | 96.39 4 | 81.68 13 | 87.13 19 | 92.47 24 |
|
IU-MVS | | | | | | 89.48 14 | 57.49 17 | | 91.38 5 | 66.22 51 | 88.26 1 | | | | 82.83 7 | 87.60 16 | 92.44 25 |
|
CNVR-MVS | | | 81.76 7 | 81.90 6 | 81.33 15 | 90.04 7 | 57.70 14 | 91.71 10 | 88.87 30 | 70.31 16 | 77.64 23 | 93.87 8 | 52.58 30 | 93.91 24 | 84.17 4 | 87.92 14 | 92.39 26 |
|
PHI-MVS | | | 77.49 35 | 77.00 36 | 78.95 41 | 85.33 66 | 50.69 169 | 88.57 51 | 88.59 41 | 58.14 186 | 73.60 45 | 93.31 12 | 43.14 125 | 93.79 25 | 73.81 64 | 88.53 11 | 92.37 27 |
|
DWT-MVSNet_test | | | 75.47 67 | 73.87 75 | 80.29 21 | 87.33 37 | 57.05 23 | 82.86 188 | 87.96 49 | 72.59 6 | 67.29 99 | 87.79 125 | 51.61 35 | 91.52 64 | 54.75 203 | 72.63 147 | 92.29 28 |
|
test_0728_THIRD | | | | | | | | | | 58.00 189 | 81.91 9 | 93.64 10 | 56.54 13 | 96.44 2 | 81.64 16 | 86.86 23 | 92.23 29 |
|
MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 49 | 82.99 116 | 52.71 127 | 85.04 131 | 88.63 37 | 66.08 55 | 86.77 2 | 92.75 21 | 72.05 1 | 91.46 66 | 83.35 6 | 93.53 1 | 92.23 29 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
VDD-MVS | | | 76.08 57 | 74.97 62 | 79.44 33 | 84.27 84 | 53.33 111 | 91.13 19 | 85.88 87 | 65.33 66 | 72.37 63 | 89.34 97 | 32.52 241 | 92.76 37 | 77.90 38 | 75.96 116 | 92.22 31 |
|
CHOSEN 1792x2688 | | | 76.24 54 | 74.03 73 | 82.88 1 | 83.09 110 | 62.84 2 | 85.73 110 | 85.39 95 | 69.79 19 | 64.87 129 | 83.49 175 | 41.52 145 | 93.69 26 | 70.55 82 | 81.82 67 | 92.12 32 |
|
SMA-MVS |  | | 79.10 17 | 78.76 17 | 80.12 26 | 84.42 79 | 55.87 43 | 87.58 67 | 86.76 70 | 61.48 123 | 80.26 16 | 93.10 15 | 46.53 78 | 92.41 45 | 79.97 21 | 88.77 9 | 92.08 33 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
lupinMVS | | | 78.38 22 | 78.11 24 | 79.19 37 | 83.02 114 | 55.24 55 | 91.57 14 | 84.82 116 | 69.12 23 | 76.67 26 | 92.02 36 | 44.82 102 | 90.23 99 | 80.83 18 | 80.09 84 | 92.08 33 |
|
GG-mvs-BLEND | | | | | 77.77 81 | 86.68 42 | 50.61 170 | 68.67 314 | 88.45 44 | | 68.73 88 | 87.45 131 | 59.15 8 | 90.67 84 | 54.83 200 | 87.67 15 | 92.03 35 |
|
test_yl | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 30 | 51.94 144 | 91.30 16 | 89.28 18 | 57.91 191 | 71.19 77 | 89.20 100 | 42.03 138 | 92.77 35 | 69.41 87 | 75.07 127 | 92.01 36 |
|
DCV-MVSNet | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 30 | 51.94 144 | 91.30 16 | 89.28 18 | 57.91 191 | 71.19 77 | 89.20 100 | 42.03 138 | 92.77 35 | 69.41 87 | 75.07 127 | 92.01 36 |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 29 | 77.63 29 | 79.13 39 | 88.52 23 | 55.12 60 | 89.95 28 | 85.98 86 | 68.31 27 | 71.33 75 | 92.75 21 | 45.52 92 | 90.37 92 | 71.15 80 | 85.14 43 | 91.91 38 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HY-MVS | | 67.03 5 | 73.90 85 | 73.14 79 | 76.18 120 | 84.70 76 | 47.36 245 | 75.56 272 | 86.36 78 | 66.27 50 | 70.66 80 | 83.91 168 | 51.05 40 | 89.31 117 | 67.10 102 | 72.61 148 | 91.88 39 |
|
3Dnovator | | 64.70 6 | 74.46 77 | 72.48 87 | 80.41 20 | 82.84 122 | 55.40 52 | 83.08 182 | 88.61 39 | 67.61 40 | 59.85 181 | 88.66 109 | 34.57 222 | 93.97 22 | 58.42 172 | 88.70 10 | 91.85 40 |
|
EPNet | | | 78.36 23 | 78.49 19 | 77.97 78 | 85.49 59 | 52.04 142 | 89.36 37 | 84.07 135 | 73.22 4 | 77.03 25 | 91.72 43 | 49.32 55 | 90.17 101 | 73.46 69 | 82.77 58 | 91.69 41 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_Test | | | 75.85 61 | 74.93 63 | 78.62 58 | 84.08 87 | 55.20 58 | 83.99 157 | 85.17 106 | 68.07 32 | 73.38 50 | 82.76 185 | 50.44 46 | 89.00 126 | 65.90 112 | 80.61 77 | 91.64 42 |
|
casdiffmvs | | | 77.36 37 | 76.85 38 | 78.88 44 | 80.40 176 | 54.66 78 | 87.06 79 | 85.88 87 | 72.11 8 | 71.57 72 | 88.63 113 | 50.89 44 | 90.35 93 | 76.00 46 | 79.11 93 | 91.63 43 |
|
Anonymous202405211 | | | 70.11 138 | 67.88 153 | 76.79 110 | 87.20 39 | 47.24 248 | 89.49 35 | 77.38 255 | 54.88 240 | 66.14 111 | 86.84 138 | 20.93 318 | 91.54 63 | 56.45 194 | 71.62 155 | 91.59 44 |
|
gg-mvs-nofinetune | | | 67.43 192 | 64.53 216 | 76.13 121 | 85.95 46 | 47.79 240 | 64.38 321 | 88.28 45 | 39.34 325 | 66.62 104 | 41.27 347 | 58.69 11 | 89.00 126 | 49.64 234 | 86.62 27 | 91.59 44 |
|
xiu_mvs_v2_base | | | 79.86 14 | 79.31 15 | 81.53 14 | 85.03 72 | 60.73 4 | 91.65 12 | 86.86 67 | 70.30 17 | 80.77 13 | 93.07 18 | 37.63 182 | 92.28 49 | 82.73 9 | 85.71 35 | 91.57 46 |
|
PS-MVSNAJ | | | 80.06 13 | 79.52 14 | 81.68 13 | 85.58 56 | 60.97 3 | 91.69 11 | 87.02 64 | 70.62 13 | 80.75 14 | 93.22 14 | 37.77 177 | 92.50 42 | 82.75 8 | 86.25 31 | 91.57 46 |
|
MG-MVS | | | 78.42 21 | 76.99 37 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 43 | 64.83 72 | 73.52 49 | 88.09 120 | 48.07 60 | 92.19 51 | 62.24 139 | 84.53 49 | 91.53 48 |
|
DPE-MVS |  | | 79.82 15 | 79.66 13 | 80.29 21 | 89.27 20 | 55.08 63 | 88.70 49 | 87.92 50 | 55.55 231 | 81.21 12 | 93.69 9 | 56.51 14 | 94.27 21 | 78.36 31 | 85.70 36 | 91.51 49 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
NCCC | | | 79.57 16 | 79.23 16 | 80.59 18 | 89.50 12 | 56.99 24 | 91.38 15 | 88.17 46 | 67.71 38 | 73.81 44 | 92.75 21 | 46.88 73 | 93.28 28 | 78.79 28 | 84.07 53 | 91.50 50 |
|
Effi-MVS+ | | | 75.24 68 | 73.61 77 | 80.16 25 | 81.92 138 | 57.42 20 | 85.21 121 | 76.71 267 | 60.68 137 | 73.32 51 | 89.34 97 | 47.30 68 | 91.63 61 | 68.28 95 | 79.72 90 | 91.42 51 |
|
test9_res | | | | | | | | | | | | | | | 78.72 29 | 85.44 40 | 91.39 52 |
|
baseline | | | 76.86 47 | 76.24 48 | 78.71 54 | 80.47 175 | 54.20 87 | 83.90 159 | 84.88 115 | 71.38 11 | 71.51 73 | 89.15 102 | 50.51 45 | 90.55 89 | 75.71 48 | 78.65 96 | 91.39 52 |
|
MVSFormer | | | 73.53 92 | 72.19 94 | 77.57 86 | 83.02 114 | 55.24 55 | 81.63 215 | 81.44 179 | 50.28 271 | 76.67 26 | 90.91 60 | 44.82 102 | 86.11 210 | 60.83 150 | 80.09 84 | 91.36 54 |
|
jason | | | 77.01 42 | 76.45 44 | 78.69 55 | 79.69 182 | 54.74 72 | 90.56 24 | 83.99 138 | 68.26 28 | 74.10 42 | 90.91 60 | 42.14 135 | 89.99 103 | 79.30 24 | 79.12 92 | 91.36 54 |
jason: jason. |
train_agg | | | 76.91 44 | 76.40 45 | 78.45 63 | 85.68 51 | 55.42 49 | 87.59 65 | 84.00 136 | 57.84 194 | 72.99 53 | 90.98 56 | 44.99 97 | 88.58 139 | 78.19 33 | 85.32 41 | 91.34 56 |
|
EIA-MVS | | | 75.92 60 | 75.18 59 | 78.13 73 | 85.14 69 | 51.60 153 | 87.17 77 | 85.32 99 | 64.69 73 | 68.56 89 | 90.53 70 | 45.79 89 | 91.58 62 | 67.21 101 | 82.18 65 | 91.20 57 |
|
xxxxxxxxxxxxxcwj | | | 77.31 38 | 76.54 41 | 79.61 31 | 85.35 64 | 56.34 36 | 89.31 38 | 72.84 301 | 61.55 119 | 74.63 36 | 92.38 27 | 47.75 64 | 91.35 68 | 78.18 35 | 86.85 24 | 91.15 58 |
|
SF-MVS | | | 77.64 33 | 77.42 33 | 78.32 69 | 83.75 95 | 52.47 133 | 86.63 90 | 87.80 51 | 58.78 177 | 74.63 36 | 92.38 27 | 47.75 64 | 91.35 68 | 78.18 35 | 86.85 24 | 91.15 58 |
|
TSAR-MVS + MP. | | | 78.31 25 | 78.26 20 | 78.48 61 | 81.33 158 | 56.31 38 | 81.59 218 | 86.41 76 | 69.61 21 | 81.72 11 | 88.16 119 | 55.09 19 | 88.04 161 | 74.12 62 | 86.31 30 | 91.09 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CS-MVS | | | 78.19 26 | 77.97 26 | 78.82 47 | 83.52 98 | 53.08 119 | 89.10 42 | 86.30 79 | 68.01 34 | 73.57 46 | 91.26 52 | 47.28 69 | 92.35 47 | 78.21 32 | 84.51 50 | 91.05 61 |
|
ETH3D-3000-0.1 | | | 78.73 18 | 78.71 18 | 78.78 52 | 85.58 56 | 52.40 135 | 88.42 53 | 89.03 24 | 60.01 144 | 76.06 29 | 92.80 20 | 48.34 57 | 92.88 33 | 81.66 15 | 86.48 29 | 91.04 62 |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 49 | 85.11 44 | 91.01 63 |
|
MAR-MVS | | | 76.76 48 | 75.60 53 | 80.21 23 | 90.87 5 | 54.68 76 | 89.14 41 | 89.11 22 | 62.95 97 | 70.54 81 | 92.33 29 | 41.05 147 | 94.95 15 | 57.90 181 | 86.55 28 | 91.00 64 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
agg_prior1 | | | 76.68 50 | 76.24 48 | 78.00 76 | 85.64 54 | 54.92 67 | 87.55 68 | 83.61 145 | 57.99 190 | 72.53 60 | 91.05 53 | 45.36 93 | 88.10 159 | 77.76 39 | 84.68 48 | 90.99 65 |
|
ab-mvs | | | 70.65 132 | 69.11 138 | 75.29 137 | 80.87 166 | 46.23 262 | 73.48 286 | 85.24 105 | 59.99 145 | 66.65 103 | 80.94 210 | 43.13 126 | 88.69 135 | 63.58 131 | 68.07 178 | 90.95 66 |
|
PMMVS | | | 72.98 97 | 72.05 99 | 75.78 129 | 83.57 96 | 48.60 219 | 84.08 152 | 82.85 161 | 61.62 118 | 68.24 93 | 90.33 76 | 28.35 269 | 87.78 169 | 72.71 74 | 76.69 110 | 90.95 66 |
|
mvs_anonymous | | | 72.29 110 | 70.74 113 | 76.94 106 | 82.85 121 | 54.72 74 | 78.43 259 | 81.54 177 | 63.77 84 | 61.69 168 | 79.32 221 | 51.11 39 | 85.31 229 | 62.15 141 | 75.79 118 | 90.79 68 |
|
PAPR | | | 75.20 70 | 74.13 71 | 78.41 64 | 88.31 27 | 55.10 62 | 84.31 147 | 85.66 90 | 63.76 85 | 67.55 97 | 90.73 64 | 43.48 121 | 89.40 116 | 66.36 108 | 77.03 107 | 90.73 69 |
|
ETH3D cwj APD-0.16 | | | 78.36 23 | 78.19 22 | 78.86 46 | 84.21 85 | 52.68 128 | 86.70 88 | 89.02 25 | 59.13 169 | 75.37 31 | 92.49 25 | 49.06 56 | 93.20 29 | 80.67 19 | 87.08 21 | 90.71 70 |
|
Patchmatch-RL test | | | 58.72 269 | 54.32 281 | 71.92 214 | 63.91 333 | 44.25 282 | 61.73 328 | 55.19 341 | 57.38 205 | 49.31 287 | 54.24 344 | 37.60 183 | 80.89 270 | 62.19 140 | 47.28 314 | 90.63 71 |
|
Patchmatch-test | | | 53.33 299 | 48.17 306 | 68.81 257 | 73.31 270 | 42.38 300 | 42.98 348 | 58.23 338 | 32.53 342 | 38.79 329 | 70.77 305 | 39.66 163 | 73.51 324 | 25.18 335 | 52.06 300 | 90.55 72 |
|
test_prior3 | | | 77.59 34 | 77.33 34 | 78.39 66 | 86.35 44 | 54.91 69 | 89.04 43 | 85.45 92 | 61.88 114 | 73.55 47 | 91.46 50 | 48.01 62 | 89.70 110 | 74.73 57 | 85.46 38 | 90.55 72 |
|
test_prior | | | | | 78.39 66 | 86.35 44 | 54.91 69 | | 85.45 92 | | | | | 89.70 110 | | | 90.55 72 |
|
test12 | | | | | 79.24 36 | 86.89 40 | 56.08 41 | | 85.16 107 | | 72.27 65 | | 47.15 71 | 91.10 74 | | 85.93 33 | 90.54 75 |
|
ACMMP_NAP | | | 76.43 52 | 75.66 52 | 78.73 53 | 81.92 138 | 54.67 77 | 84.06 154 | 85.35 97 | 61.10 128 | 72.99 53 | 91.50 48 | 40.25 155 | 91.00 76 | 76.84 43 | 86.98 22 | 90.51 76 |
|
APDe-MVS | | | 78.44 20 | 78.20 21 | 79.19 37 | 88.56 22 | 54.55 80 | 89.76 33 | 87.77 54 | 55.91 226 | 78.56 20 | 92.49 25 | 48.20 59 | 92.65 40 | 79.49 22 | 83.04 57 | 90.39 77 |
|
3Dnovator+ | | 62.71 7 | 72.29 110 | 70.50 116 | 77.65 85 | 83.40 102 | 51.29 163 | 87.32 71 | 86.40 77 | 59.01 172 | 58.49 210 | 88.32 115 | 32.40 242 | 91.27 70 | 57.04 189 | 82.15 66 | 90.38 78 |
|
CostFormer | | | 73.89 86 | 72.30 91 | 78.66 57 | 82.36 134 | 56.58 29 | 75.56 272 | 85.30 100 | 66.06 56 | 70.50 82 | 76.88 251 | 57.02 12 | 89.06 120 | 68.27 96 | 68.74 175 | 90.33 79 |
|
CDPH-MVS | | | 76.05 58 | 75.19 58 | 78.62 58 | 86.51 43 | 54.98 66 | 87.32 71 | 84.59 122 | 58.62 180 | 70.75 79 | 90.85 62 | 43.10 127 | 90.63 87 | 70.50 83 | 84.51 50 | 90.24 80 |
|
ETV-MVS | | | 77.17 39 | 76.74 40 | 78.48 61 | 81.80 140 | 54.55 80 | 86.13 99 | 85.33 98 | 68.20 29 | 73.10 52 | 90.52 71 | 45.23 95 | 90.66 85 | 79.37 23 | 80.95 72 | 90.22 81 |
|
CANet_DTU | | | 73.71 90 | 73.14 79 | 75.40 134 | 82.61 130 | 50.05 190 | 84.67 141 | 79.36 217 | 69.72 20 | 75.39 30 | 90.03 85 | 29.41 265 | 85.93 222 | 67.99 97 | 79.11 93 | 90.22 81 |
|
sss | | | 70.49 134 | 70.13 124 | 71.58 220 | 81.59 147 | 39.02 315 | 80.78 234 | 84.71 120 | 59.34 158 | 66.61 105 | 88.09 120 | 37.17 193 | 85.52 225 | 61.82 144 | 71.02 160 | 90.20 83 |
|
SteuartSystems-ACMMP | | | 77.08 41 | 76.33 46 | 79.34 35 | 80.98 161 | 55.31 53 | 89.76 33 | 86.91 66 | 62.94 98 | 71.65 70 | 91.56 47 | 42.33 131 | 92.56 41 | 77.14 42 | 83.69 55 | 90.15 84 |
Skip Steuart: Steuart Systems R&D Blog. |
PAPM | | | 76.76 48 | 76.07 50 | 78.81 48 | 80.20 177 | 59.11 7 | 86.86 86 | 86.23 81 | 68.60 25 | 70.18 83 | 88.84 107 | 51.57 36 | 87.16 182 | 65.48 116 | 86.68 26 | 90.15 84 |
|
IB-MVS | | 68.87 2 | 74.01 83 | 72.03 100 | 79.94 29 | 83.04 113 | 55.50 47 | 90.24 25 | 88.65 35 | 67.14 43 | 61.38 169 | 81.74 202 | 53.21 26 | 94.28 20 | 60.45 158 | 62.41 222 | 90.03 86 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
diffmvs | | | 75.11 72 | 74.65 67 | 76.46 114 | 78.52 206 | 53.35 109 | 83.28 179 | 79.94 201 | 70.51 15 | 71.64 71 | 88.72 108 | 46.02 85 | 86.08 216 | 77.52 40 | 75.75 120 | 89.96 87 |
|
DeepC-MVS | | 67.15 4 | 76.90 46 | 76.27 47 | 78.80 49 | 80.70 169 | 55.02 64 | 86.39 93 | 86.71 71 | 66.96 45 | 67.91 95 | 89.97 86 | 48.03 61 | 91.41 67 | 75.60 50 | 84.14 52 | 89.96 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
hse-mvs3 | | | 73.95 84 | 72.89 83 | 77.15 99 | 80.17 178 | 50.37 179 | 84.68 139 | 83.33 148 | 68.08 30 | 71.97 66 | 88.65 112 | 42.50 129 | 91.15 73 | 78.82 26 | 57.78 260 | 89.91 89 |
|
ZNCC-MVS | | | 75.82 64 | 75.02 61 | 78.23 70 | 83.88 93 | 53.80 91 | 86.91 85 | 86.05 85 | 59.71 148 | 67.85 96 | 90.55 69 | 42.23 133 | 91.02 75 | 72.66 75 | 85.29 42 | 89.87 90 |
|
HFP-MVS | | | 74.37 78 | 73.13 81 | 78.10 74 | 84.30 81 | 53.68 93 | 85.58 113 | 84.36 126 | 56.82 213 | 65.78 116 | 90.56 67 | 40.70 152 | 90.90 79 | 69.18 90 | 80.88 73 | 89.71 91 |
|
#test# | | | 74.86 76 | 73.78 76 | 78.10 74 | 84.30 81 | 53.68 93 | 86.95 82 | 84.36 126 | 59.00 173 | 65.78 116 | 90.56 67 | 40.70 152 | 90.90 79 | 71.48 78 | 80.88 73 | 89.71 91 |
|
1112_ss | | | 70.05 141 | 69.37 133 | 72.10 203 | 80.77 168 | 42.78 294 | 85.12 127 | 76.75 266 | 59.69 149 | 61.19 172 | 92.12 33 | 47.48 67 | 83.84 248 | 53.04 212 | 68.21 177 | 89.66 93 |
|
MVS_111021_HR | | | 76.39 53 | 75.38 57 | 79.42 34 | 85.33 66 | 56.47 33 | 88.15 55 | 84.97 112 | 65.15 70 | 66.06 113 | 89.88 87 | 43.79 113 | 92.16 52 | 75.03 56 | 80.03 87 | 89.64 94 |
|
PVSNet_Blended | | | 76.53 51 | 76.54 41 | 76.50 112 | 85.91 48 | 51.83 149 | 88.89 46 | 84.24 132 | 67.82 36 | 69.09 86 | 89.33 99 | 46.70 76 | 88.13 157 | 75.43 51 | 81.48 71 | 89.55 95 |
|
testtj | | | 76.96 43 | 76.48 43 | 78.40 65 | 89.89 9 | 53.67 95 | 88.72 48 | 86.15 83 | 54.56 244 | 74.86 34 | 92.31 30 | 44.38 107 | 91.97 57 | 75.19 55 | 82.24 63 | 89.54 96 |
|
MP-MVS-pluss | | | 75.54 66 | 75.03 60 | 77.04 100 | 81.37 157 | 52.65 130 | 84.34 146 | 84.46 124 | 61.16 126 | 69.14 85 | 91.76 42 | 39.98 161 | 88.99 128 | 78.19 33 | 84.89 46 | 89.48 97 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
tpm2 | | | 70.82 129 | 68.44 144 | 77.98 77 | 80.78 167 | 56.11 40 | 74.21 282 | 81.28 184 | 60.24 142 | 68.04 94 | 75.27 269 | 52.26 32 | 88.50 144 | 55.82 197 | 68.03 179 | 89.33 98 |
|
Regformer-1 | | | 77.80 32 | 77.44 32 | 78.88 44 | 87.78 32 | 52.44 134 | 87.60 62 | 90.08 12 | 68.86 24 | 72.49 62 | 91.79 40 | 47.69 66 | 94.90 16 | 73.57 67 | 77.05 105 | 89.31 99 |
|
PatchmatchNet |  | | 67.07 203 | 63.63 223 | 77.40 90 | 83.10 108 | 58.03 11 | 72.11 300 | 77.77 247 | 58.85 176 | 59.37 190 | 70.83 304 | 37.84 176 | 84.93 240 | 42.96 270 | 69.83 169 | 89.26 100 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
zzz-MVS | | | 74.15 82 | 73.11 82 | 77.27 95 | 81.54 150 | 53.57 97 | 84.02 156 | 81.31 181 | 59.41 155 | 68.39 91 | 90.96 58 | 36.07 209 | 89.01 124 | 73.80 65 | 82.45 61 | 89.23 101 |
|
MTAPA | | | 72.73 101 | 71.22 109 | 77.27 95 | 81.54 150 | 53.57 97 | 67.06 317 | 81.31 181 | 59.41 155 | 68.39 91 | 90.96 58 | 36.07 209 | 89.01 124 | 73.80 65 | 82.45 61 | 89.23 101 |
|
tpm | | | 68.36 172 | 67.48 164 | 70.97 230 | 79.93 180 | 51.34 161 | 76.58 268 | 78.75 229 | 67.73 37 | 63.54 152 | 74.86 271 | 48.33 58 | 72.36 330 | 53.93 207 | 63.71 206 | 89.21 103 |
|
PAPM_NR | | | 71.80 116 | 69.98 126 | 77.26 97 | 81.54 150 | 53.34 110 | 78.60 258 | 85.25 104 | 53.46 250 | 60.53 178 | 88.66 109 | 45.69 91 | 89.24 118 | 56.49 191 | 79.62 91 | 89.19 104 |
|
EPMVS | | | 68.45 171 | 65.44 205 | 77.47 89 | 84.91 73 | 56.17 39 | 71.89 302 | 81.91 172 | 61.72 117 | 60.85 173 | 72.49 291 | 36.21 207 | 87.06 185 | 47.32 248 | 71.62 155 | 89.17 105 |
|
tpmrst | | | 71.04 125 | 69.77 128 | 74.86 144 | 83.19 107 | 55.86 44 | 75.64 271 | 78.73 230 | 67.88 35 | 64.99 128 | 73.73 277 | 49.96 50 | 79.56 287 | 65.92 111 | 67.85 182 | 89.14 106 |
|
GST-MVS | | | 74.87 75 | 73.90 74 | 77.77 81 | 83.30 104 | 53.45 104 | 85.75 108 | 85.29 101 | 59.22 162 | 66.50 108 | 89.85 88 | 40.94 148 | 90.76 82 | 70.94 81 | 83.35 56 | 89.10 107 |
|
Regformer-2 | | | 77.15 40 | 76.82 39 | 78.14 72 | 87.78 32 | 51.84 148 | 87.60 62 | 89.12 21 | 67.23 42 | 71.93 68 | 91.79 40 | 46.03 84 | 93.53 27 | 72.85 73 | 77.05 105 | 89.05 108 |
|
TESTMET0.1,1 | | | 72.86 99 | 72.33 89 | 74.46 150 | 81.98 137 | 50.77 167 | 85.13 124 | 85.47 91 | 66.09 54 | 67.30 98 | 83.69 173 | 37.27 191 | 83.57 253 | 65.06 124 | 78.97 95 | 89.05 108 |
|
MP-MVS |  | | 74.99 74 | 74.33 70 | 76.95 105 | 82.89 120 | 53.05 121 | 85.63 112 | 83.50 147 | 57.86 193 | 67.25 100 | 90.24 77 | 43.38 122 | 88.85 134 | 76.03 45 | 82.23 64 | 88.96 110 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
QAPM | | | 71.88 115 | 69.33 135 | 79.52 32 | 82.20 135 | 54.30 83 | 86.30 96 | 88.77 33 | 56.61 219 | 59.72 183 | 87.48 130 | 33.90 229 | 95.36 11 | 47.48 247 | 81.49 70 | 88.90 111 |
|
APD-MVS |  | | 76.15 56 | 75.68 51 | 77.54 87 | 88.52 23 | 53.44 105 | 87.26 76 | 85.03 111 | 53.79 248 | 74.91 33 | 91.68 45 | 43.80 112 | 90.31 95 | 74.36 60 | 81.82 67 | 88.87 112 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Vis-MVSNet |  | | 70.61 133 | 69.34 134 | 74.42 152 | 80.95 165 | 48.49 224 | 86.03 102 | 77.51 252 | 58.74 178 | 65.55 120 | 87.78 126 | 34.37 223 | 85.95 221 | 52.53 221 | 80.61 77 | 88.80 113 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CDS-MVSNet | | | 70.48 135 | 69.43 131 | 73.64 175 | 77.56 220 | 48.83 216 | 83.51 169 | 77.45 253 | 63.27 93 | 62.33 162 | 85.54 155 | 43.85 110 | 83.29 257 | 57.38 188 | 74.00 132 | 88.79 114 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
region2R | | | 73.75 89 | 72.55 86 | 77.33 92 | 83.90 92 | 52.98 123 | 85.54 116 | 84.09 134 | 56.83 212 | 65.10 124 | 90.45 72 | 37.34 190 | 90.24 98 | 68.89 92 | 80.83 76 | 88.77 115 |
|
旧先验1 | | | | | | 81.57 149 | 47.48 242 | | 71.83 306 | | | 88.66 109 | 36.94 196 | | | 78.34 99 | 88.67 116 |
|
Fast-Effi-MVS+ | | | 72.73 101 | 71.15 112 | 77.48 88 | 82.75 125 | 54.76 71 | 86.77 87 | 80.64 191 | 63.05 96 | 65.93 114 | 84.01 166 | 44.42 106 | 89.03 123 | 56.45 194 | 76.36 115 | 88.64 117 |
|
PVSNet | | 62.49 8 | 69.27 156 | 67.81 156 | 73.64 175 | 84.41 80 | 51.85 147 | 84.63 142 | 77.80 246 | 66.42 47 | 59.80 182 | 84.95 160 | 22.14 313 | 80.44 276 | 55.03 199 | 75.11 126 | 88.62 118 |
|
ACMMPR | | | 73.76 88 | 72.61 84 | 77.24 98 | 83.92 91 | 52.96 124 | 85.58 113 | 84.29 128 | 56.82 213 | 65.12 123 | 90.45 72 | 37.24 192 | 90.18 100 | 69.18 90 | 80.84 75 | 88.58 119 |
|
1314 | | | 71.11 124 | 69.41 132 | 76.22 118 | 79.32 186 | 50.49 174 | 80.23 241 | 85.14 109 | 59.44 154 | 58.93 199 | 88.89 106 | 33.83 231 | 89.60 114 | 61.49 145 | 77.42 104 | 88.57 120 |
|
Anonymous20240529 | | | 69.71 148 | 67.28 167 | 77.00 103 | 83.78 94 | 50.36 180 | 88.87 47 | 85.10 110 | 47.22 287 | 64.03 141 | 83.37 177 | 27.93 274 | 92.10 55 | 57.78 183 | 67.44 183 | 88.53 121 |
|
TAMVS | | | 69.51 155 | 68.16 149 | 73.56 178 | 76.30 238 | 48.71 218 | 82.57 193 | 77.17 258 | 62.10 109 | 61.32 170 | 84.23 164 | 41.90 140 | 83.46 255 | 54.80 202 | 73.09 143 | 88.50 122 |
|
thisisatest0515 | | | 73.64 91 | 72.20 93 | 77.97 78 | 81.63 144 | 53.01 122 | 86.69 89 | 88.81 32 | 62.53 103 | 64.06 140 | 85.65 152 | 52.15 33 | 92.50 42 | 58.43 170 | 69.84 168 | 88.39 123 |
|
XVS | | | 72.92 98 | 71.62 102 | 76.81 107 | 83.41 99 | 52.48 131 | 84.88 136 | 83.20 154 | 58.03 187 | 63.91 144 | 89.63 92 | 35.50 215 | 89.78 107 | 65.50 114 | 80.50 79 | 88.16 124 |
|
X-MVStestdata | | | 65.85 220 | 62.20 229 | 76.81 107 | 83.41 99 | 52.48 131 | 84.88 136 | 83.20 154 | 58.03 187 | 63.91 144 | 4.82 362 | 35.50 215 | 89.78 107 | 65.50 114 | 80.50 79 | 88.16 124 |
|
Test_1112_low_res | | | 67.18 199 | 66.23 185 | 70.02 246 | 78.75 198 | 41.02 308 | 83.43 172 | 73.69 293 | 57.29 206 | 58.45 212 | 82.39 194 | 45.30 94 | 80.88 271 | 50.50 228 | 66.26 193 | 88.16 124 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 127 |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 169 | | | | 88.13 127 |
|
SCA | | | 63.84 230 | 60.01 247 | 75.32 136 | 78.58 204 | 57.92 12 | 61.61 329 | 77.53 251 | 56.71 216 | 57.75 222 | 70.77 305 | 31.97 247 | 79.91 284 | 48.80 238 | 56.36 267 | 88.13 127 |
|
EPNet_dtu | | | 66.25 215 | 66.71 176 | 64.87 291 | 78.66 202 | 34.12 329 | 82.80 189 | 75.51 277 | 61.75 116 | 64.47 137 | 86.90 137 | 37.06 194 | 72.46 329 | 43.65 266 | 69.63 171 | 88.02 130 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HPM-MVS |  | | 72.60 103 | 71.50 104 | 75.89 127 | 82.02 136 | 51.42 159 | 80.70 235 | 83.05 156 | 56.12 225 | 64.03 141 | 89.53 93 | 37.55 184 | 88.37 147 | 70.48 84 | 80.04 86 | 87.88 131 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
PGM-MVS | | | 72.60 103 | 71.20 110 | 76.80 109 | 82.95 117 | 52.82 126 | 83.07 183 | 82.14 166 | 56.51 221 | 63.18 153 | 89.81 89 | 35.68 214 | 89.76 109 | 67.30 100 | 80.19 83 | 87.83 132 |
|
UGNet | | | 68.71 168 | 67.11 170 | 73.50 179 | 80.55 174 | 47.61 241 | 84.08 152 | 78.51 235 | 59.45 153 | 65.68 119 | 82.73 188 | 23.78 301 | 85.08 238 | 52.80 215 | 76.40 111 | 87.80 133 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
mPP-MVS | | | 71.79 117 | 70.38 118 | 76.04 124 | 82.65 129 | 52.06 141 | 84.45 143 | 81.78 174 | 55.59 230 | 62.05 166 | 89.68 91 | 33.48 233 | 88.28 154 | 65.45 119 | 78.24 100 | 87.77 134 |
|
dp | | | 64.41 226 | 61.58 233 | 72.90 187 | 82.40 132 | 54.09 88 | 72.53 292 | 76.59 270 | 60.39 140 | 55.68 248 | 70.39 308 | 35.18 218 | 76.90 309 | 39.34 278 | 61.71 226 | 87.73 135 |
|
TR-MVS | | | 69.71 148 | 67.85 155 | 75.27 138 | 82.94 118 | 48.48 225 | 87.40 70 | 80.86 188 | 57.15 208 | 64.61 132 | 87.08 135 | 32.67 240 | 89.64 113 | 46.38 254 | 71.55 157 | 87.68 136 |
|
MIMVSNet | | | 63.12 236 | 60.29 245 | 71.61 217 | 75.92 245 | 46.65 253 | 65.15 318 | 81.94 169 | 59.14 168 | 54.65 253 | 69.47 311 | 25.74 289 | 80.63 273 | 41.03 275 | 69.56 172 | 87.55 137 |
|
baseline2 | | | 75.15 71 | 74.54 69 | 76.98 104 | 81.67 143 | 51.74 151 | 83.84 160 | 91.94 1 | 69.97 18 | 58.98 197 | 86.02 147 | 59.73 5 | 91.73 60 | 68.37 94 | 70.40 165 | 87.48 138 |
|
GA-MVS | | | 69.04 158 | 66.70 177 | 76.06 123 | 75.11 252 | 52.36 137 | 83.12 181 | 80.23 197 | 63.32 92 | 60.65 176 | 79.22 223 | 30.98 257 | 88.37 147 | 61.25 146 | 66.41 189 | 87.46 139 |
|
æ— å…ˆéªŒ | | | | | | | | 85.19 122 | 78.00 244 | 49.08 278 | | | | 85.13 236 | 52.78 216 | | 87.45 140 |
|
EPP-MVSNet | | | 71.14 122 | 70.07 125 | 74.33 155 | 79.18 189 | 46.52 255 | 83.81 161 | 86.49 74 | 56.32 224 | 57.95 216 | 84.90 161 | 54.23 22 | 89.14 119 | 58.14 176 | 69.65 170 | 87.33 141 |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 287 | 71.13 305 | | 54.95 239 | 59.29 193 | | 36.76 199 | | 46.33 255 | | 87.32 142 |
|
BH-RMVSNet | | | 70.08 140 | 68.01 150 | 76.27 116 | 84.21 85 | 51.22 165 | 87.29 74 | 79.33 220 | 58.96 175 | 63.63 150 | 86.77 139 | 33.29 235 | 90.30 97 | 44.63 262 | 73.96 133 | 87.30 143 |
|
CP-MVS | | | 72.59 105 | 71.46 105 | 76.00 126 | 82.93 119 | 52.32 139 | 86.93 84 | 82.48 164 | 55.15 235 | 63.65 149 | 90.44 75 | 35.03 219 | 88.53 143 | 68.69 93 | 77.83 101 | 87.15 144 |
|
baseline1 | | | 72.51 106 | 72.12 97 | 73.69 173 | 85.05 70 | 44.46 278 | 83.51 169 | 86.13 84 | 71.61 9 | 64.64 131 | 87.97 123 | 55.00 20 | 89.48 115 | 59.07 165 | 56.05 274 | 87.13 145 |
|
API-MVS | | | 74.17 81 | 72.07 98 | 80.49 19 | 90.02 8 | 58.55 9 | 87.30 73 | 84.27 129 | 57.51 202 | 65.77 118 | 87.77 127 | 41.61 144 | 95.97 8 | 51.71 223 | 82.63 59 | 86.94 146 |
|
AUN-MVS | | | 68.20 178 | 66.35 181 | 73.76 170 | 76.37 234 | 47.45 243 | 79.52 251 | 79.52 211 | 60.98 131 | 62.34 161 | 86.02 147 | 36.59 205 | 86.94 189 | 62.32 138 | 53.47 295 | 86.89 147 |
|
LCM-MVSNet-Re | | | 58.82 268 | 56.54 266 | 65.68 283 | 79.31 187 | 29.09 346 | 61.39 331 | 45.79 349 | 60.73 136 | 37.65 331 | 72.47 292 | 31.42 253 | 81.08 269 | 49.66 233 | 70.41 164 | 86.87 148 |
|
HyFIR lowres test | | | 69.94 145 | 67.58 159 | 77.04 100 | 77.11 230 | 57.29 21 | 81.49 223 | 79.11 223 | 58.27 184 | 58.86 202 | 80.41 214 | 42.33 131 | 86.96 188 | 61.91 142 | 68.68 176 | 86.87 148 |
|
xiu_mvs_v1_base_debu | | | 71.60 118 | 70.29 120 | 75.55 131 | 77.26 225 | 53.15 115 | 85.34 117 | 79.37 214 | 55.83 227 | 72.54 57 | 90.19 79 | 22.38 309 | 86.66 197 | 73.28 70 | 76.39 112 | 86.85 150 |
|
xiu_mvs_v1_base | | | 71.60 118 | 70.29 120 | 75.55 131 | 77.26 225 | 53.15 115 | 85.34 117 | 79.37 214 | 55.83 227 | 72.54 57 | 90.19 79 | 22.38 309 | 86.66 197 | 73.28 70 | 76.39 112 | 86.85 150 |
|
xiu_mvs_v1_base_debi | | | 71.60 118 | 70.29 120 | 75.55 131 | 77.26 225 | 53.15 115 | 85.34 117 | 79.37 214 | 55.83 227 | 72.54 57 | 90.19 79 | 22.38 309 | 86.66 197 | 73.28 70 | 76.39 112 | 86.85 150 |
|
hse-mvs2 | | | 71.44 121 | 70.68 114 | 73.73 172 | 76.34 235 | 47.44 244 | 79.45 252 | 79.47 213 | 68.08 30 | 71.97 66 | 86.01 149 | 42.50 129 | 86.93 190 | 78.82 26 | 53.46 296 | 86.83 153 |
|
Regformer-3 | | | 76.02 59 | 75.47 55 | 77.70 83 | 85.49 59 | 51.47 157 | 85.12 127 | 90.19 11 | 68.52 26 | 69.36 84 | 90.66 65 | 46.45 79 | 94.81 17 | 70.25 85 | 73.16 139 | 86.81 154 |
|
PVSNet_Blended_VisFu | | | 73.40 94 | 72.44 88 | 76.30 115 | 81.32 159 | 54.70 75 | 85.81 104 | 78.82 227 | 63.70 86 | 64.53 133 | 85.38 156 | 47.11 72 | 87.38 179 | 67.75 98 | 77.55 102 | 86.81 154 |
|
VPNet | | | 72.07 113 | 71.42 107 | 74.04 161 | 78.64 203 | 47.17 249 | 89.91 31 | 87.97 48 | 72.56 7 | 64.66 130 | 85.04 159 | 41.83 142 | 88.33 150 | 61.17 147 | 60.97 229 | 86.62 156 |
|
MVS_111021_LR | | | 69.07 157 | 67.91 151 | 72.54 194 | 77.27 224 | 49.56 199 | 79.77 246 | 73.96 291 | 59.33 160 | 60.73 175 | 87.82 124 | 30.19 262 | 81.53 265 | 69.94 86 | 72.19 152 | 86.53 157 |
|
IS-MVSNet | | | 68.80 165 | 67.55 162 | 72.54 194 | 78.50 207 | 43.43 288 | 81.03 229 | 79.35 218 | 59.12 170 | 57.27 233 | 86.71 140 | 46.05 83 | 87.70 171 | 44.32 263 | 75.60 121 | 86.49 158 |
|
tpm cat1 | | | 66.28 214 | 62.78 225 | 76.77 111 | 81.40 156 | 57.14 22 | 70.03 309 | 77.19 257 | 53.00 254 | 58.76 205 | 70.73 307 | 46.17 80 | 86.73 195 | 43.27 267 | 64.46 202 | 86.44 159 |
|
PCF-MVS | | 61.03 10 | 70.10 139 | 68.40 145 | 75.22 140 | 77.15 229 | 51.99 143 | 79.30 254 | 82.12 167 | 56.47 222 | 61.88 167 | 86.48 145 | 43.98 109 | 87.24 181 | 55.37 198 | 72.79 146 | 86.43 160 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Regformer-4 | | | 75.06 73 | 74.59 68 | 76.47 113 | 85.49 59 | 50.33 182 | 85.12 127 | 88.61 39 | 66.42 47 | 68.48 90 | 90.66 65 | 44.15 108 | 92.68 38 | 69.24 89 | 73.16 139 | 86.39 161 |
|
test-LLR | | | 69.65 151 | 69.01 139 | 71.60 218 | 78.67 200 | 48.17 232 | 85.13 124 | 79.72 206 | 59.18 165 | 63.13 154 | 82.58 190 | 36.91 197 | 80.24 278 | 60.56 154 | 75.17 124 | 86.39 161 |
|
test-mter | | | 68.36 172 | 67.29 166 | 71.60 218 | 78.67 200 | 48.17 232 | 85.13 124 | 79.72 206 | 53.38 251 | 63.13 154 | 82.58 190 | 27.23 280 | 80.24 278 | 60.56 154 | 75.17 124 | 86.39 161 |
|
RRT_test8_iter05 | | | 72.74 100 | 71.20 110 | 77.36 91 | 87.25 38 | 53.51 99 | 88.68 50 | 89.53 16 | 65.20 69 | 61.32 170 | 81.27 207 | 45.89 86 | 92.48 44 | 65.99 110 | 55.65 280 | 86.10 164 |
|
nrg030 | | | 72.27 112 | 71.56 103 | 74.42 152 | 75.93 244 | 50.60 171 | 86.97 81 | 83.21 153 | 62.75 100 | 67.15 101 | 84.38 163 | 50.07 48 | 86.66 197 | 71.19 79 | 62.37 223 | 85.99 165 |
|
BH-w/o | | | 70.02 142 | 68.51 143 | 74.56 148 | 82.77 123 | 50.39 178 | 86.60 91 | 78.14 241 | 59.77 147 | 59.65 184 | 85.57 154 | 39.27 166 | 87.30 180 | 49.86 232 | 74.94 129 | 85.99 165 |
|
XXY-MVS | | | 70.18 137 | 69.28 137 | 72.89 189 | 77.64 218 | 42.88 293 | 85.06 130 | 87.50 60 | 62.58 102 | 62.66 160 | 82.34 195 | 43.64 118 | 89.83 106 | 58.42 172 | 63.70 207 | 85.96 167 |
|
SR-MVS | | | 70.92 128 | 69.73 129 | 74.50 149 | 83.38 103 | 50.48 175 | 84.27 148 | 79.35 218 | 48.96 280 | 66.57 107 | 90.45 72 | 33.65 232 | 87.11 183 | 66.42 106 | 74.56 130 | 85.91 168 |
|
æ–°å‡ ä½•1 | | | | | 73.30 183 | 83.10 108 | 53.48 100 | | 71.43 312 | 45.55 300 | 66.14 111 | 87.17 134 | 33.88 230 | 80.54 274 | 48.50 241 | 80.33 82 | 85.88 169 |
|
test_part1 | | | 73.80 87 | 72.13 95 | 78.79 51 | 85.92 47 | 58.26 10 | 90.60 23 | 86.85 68 | 63.98 80 | 63.95 143 | 81.54 205 | 52.08 34 | 92.24 50 | 64.93 125 | 59.32 239 | 85.87 170 |
|
1121 | | | 68.79 166 | 66.77 174 | 74.82 145 | 83.08 111 | 53.46 101 | 80.23 241 | 71.53 311 | 45.47 302 | 66.31 110 | 87.19 133 | 34.02 226 | 85.13 236 | 52.78 216 | 80.36 81 | 85.87 170 |
|
CLD-MVS | | | 75.60 65 | 75.39 56 | 76.24 117 | 80.69 170 | 52.40 135 | 90.69 22 | 86.20 82 | 74.40 3 | 65.01 127 | 88.93 104 | 42.05 137 | 90.58 88 | 76.57 44 | 73.96 133 | 85.73 172 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ACMMP |  | | 70.81 130 | 69.29 136 | 75.39 135 | 81.52 154 | 51.92 146 | 83.43 172 | 83.03 157 | 56.67 218 | 58.80 204 | 88.91 105 | 31.92 249 | 88.58 139 | 65.89 113 | 73.39 138 | 85.67 173 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
OMC-MVS | | | 65.97 219 | 65.06 211 | 68.71 260 | 72.97 275 | 42.58 298 | 78.61 257 | 75.35 280 | 54.72 241 | 59.31 192 | 86.25 146 | 33.30 234 | 77.88 301 | 57.99 177 | 67.05 185 | 85.66 174 |
|
APD-MVS_3200maxsize | | | 69.62 153 | 68.23 148 | 73.80 169 | 81.58 148 | 48.22 231 | 81.91 208 | 79.50 212 | 48.21 282 | 64.24 139 | 89.75 90 | 31.91 250 | 87.55 175 | 63.08 133 | 73.85 135 | 85.64 175 |
|
VPA-MVSNet | | | 71.12 123 | 70.66 115 | 72.49 196 | 78.75 198 | 44.43 280 | 87.64 61 | 90.02 13 | 63.97 81 | 65.02 126 | 81.58 204 | 42.14 135 | 87.42 178 | 63.42 132 | 63.38 211 | 85.63 176 |
|
thisisatest0530 | | | 70.47 136 | 68.56 142 | 76.20 119 | 79.78 181 | 51.52 156 | 83.49 171 | 88.58 42 | 57.62 200 | 58.60 206 | 82.79 184 | 51.03 41 | 91.48 65 | 52.84 214 | 62.36 224 | 85.59 177 |
|
cascas | | | 69.01 160 | 66.13 188 | 77.66 84 | 79.36 184 | 55.41 51 | 86.99 80 | 83.75 141 | 56.69 217 | 58.92 200 | 81.35 206 | 24.31 299 | 92.10 55 | 53.23 209 | 70.61 163 | 85.46 178 |
|
DP-MVS Recon | | | 71.99 114 | 70.31 119 | 77.01 102 | 90.65 6 | 53.44 105 | 89.37 36 | 82.97 159 | 56.33 223 | 63.56 151 | 89.47 94 | 34.02 226 | 92.15 54 | 54.05 206 | 72.41 149 | 85.43 179 |
|
test1172 | | | 69.64 152 | 68.38 146 | 73.41 181 | 82.77 123 | 48.84 215 | 82.79 190 | 78.34 239 | 47.02 290 | 65.27 122 | 90.07 83 | 31.17 255 | 86.09 214 | 64.51 127 | 73.49 137 | 85.31 180 |
|
test222 | | | | | | 79.36 184 | 50.97 166 | 77.99 260 | 67.84 323 | 42.54 320 | 62.84 157 | 86.53 143 | 30.26 261 | | | 76.91 109 | 85.23 181 |
|
TAPA-MVS | | 56.12 14 | 61.82 249 | 60.18 246 | 66.71 277 | 78.48 208 | 37.97 320 | 75.19 277 | 76.41 272 | 46.82 291 | 57.04 234 | 86.52 144 | 27.67 278 | 77.03 307 | 26.50 333 | 67.02 186 | 85.14 182 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
testdata | | | | | 67.08 273 | 77.59 219 | 45.46 270 | | 69.20 321 | 44.47 308 | 71.50 74 | 88.34 114 | 31.21 254 | 70.76 335 | 52.20 222 | 75.88 117 | 85.03 183 |
|
OpenMVS |  | 61.00 11 | 69.99 144 | 67.55 162 | 77.30 93 | 78.37 210 | 54.07 89 | 84.36 145 | 85.76 89 | 57.22 207 | 56.71 238 | 87.67 128 | 30.79 258 | 92.83 34 | 43.04 268 | 84.06 54 | 85.01 184 |
|
PVSNet_0 | | 57.04 13 | 61.19 251 | 57.24 262 | 73.02 185 | 77.45 222 | 50.31 184 | 79.43 253 | 77.36 256 | 63.96 82 | 47.51 298 | 72.45 293 | 25.03 296 | 83.78 250 | 52.76 219 | 19.22 353 | 84.96 185 |
|
HQP4-MVS | | | | | | | | | | | 64.47 137 | | | 88.61 138 | | | 84.91 186 |
|
HQP-MVS | | | 72.34 108 | 71.44 106 | 75.03 141 | 79.02 192 | 51.56 154 | 88.00 56 | 83.68 142 | 65.45 60 | 64.48 134 | 85.13 157 | 37.35 188 | 88.62 137 | 66.70 104 | 73.12 141 | 84.91 186 |
|
BH-untuned | | | 68.28 175 | 66.40 180 | 73.91 164 | 81.62 145 | 50.01 191 | 85.56 115 | 77.39 254 | 57.63 199 | 57.47 230 | 83.69 173 | 36.36 206 | 87.08 184 | 44.81 261 | 73.08 144 | 84.65 188 |
|
HQP_MVS | | | 70.96 127 | 69.91 127 | 74.12 159 | 77.95 214 | 49.57 197 | 85.76 106 | 82.59 162 | 63.60 89 | 62.15 163 | 83.28 179 | 36.04 211 | 88.30 152 | 65.46 117 | 72.34 150 | 84.49 189 |
|
plane_prior5 | | | | | | | | | 82.59 162 | | | | | 88.30 152 | 65.46 117 | 72.34 150 | 84.49 189 |
|
XVG-OURS-SEG-HR | | | 62.02 247 | 59.54 249 | 69.46 250 | 65.30 326 | 45.88 264 | 65.06 319 | 73.57 295 | 46.45 294 | 57.42 231 | 83.35 178 | 26.95 282 | 78.09 295 | 53.77 208 | 64.03 203 | 84.42 191 |
|
Vis-MVSNet (Re-imp) | | | 65.52 221 | 65.63 199 | 65.17 289 | 77.49 221 | 30.54 341 | 75.49 275 | 77.73 248 | 59.34 158 | 52.26 273 | 86.69 141 | 49.38 54 | 80.53 275 | 37.07 286 | 75.28 123 | 84.42 191 |
|
FMVSNet3 | | | 68.84 162 | 67.40 165 | 73.19 184 | 85.05 70 | 48.53 222 | 85.71 111 | 85.36 96 | 60.90 133 | 57.58 225 | 79.15 224 | 42.16 134 | 86.77 193 | 47.25 249 | 63.40 208 | 84.27 193 |
|
原ACMM1 | | | | | 76.13 121 | 84.89 74 | 54.59 79 | | 85.26 103 | 51.98 261 | 66.70 102 | 87.07 136 | 40.15 158 | 89.70 110 | 51.23 225 | 85.06 45 | 84.10 194 |
|
FMVSNet2 | | | 67.57 188 | 65.79 195 | 72.90 187 | 82.71 126 | 47.97 239 | 85.15 123 | 84.93 113 | 58.55 181 | 56.71 238 | 78.26 231 | 36.72 202 | 86.67 196 | 46.15 256 | 62.94 219 | 84.07 195 |
|
FIs | | | 70.00 143 | 70.24 123 | 69.30 251 | 77.93 216 | 38.55 317 | 83.99 157 | 87.72 56 | 66.86 46 | 57.66 223 | 84.17 165 | 52.28 31 | 85.31 229 | 52.72 220 | 68.80 174 | 84.02 196 |
|
XVG-OURS | | | 61.88 248 | 59.34 251 | 69.49 249 | 65.37 325 | 46.27 260 | 64.80 320 | 73.49 296 | 47.04 289 | 57.41 232 | 82.85 183 | 25.15 295 | 78.18 293 | 53.00 213 | 64.98 196 | 84.01 197 |
|
tttt0517 | | | 68.33 174 | 66.29 183 | 74.46 150 | 78.08 212 | 49.06 207 | 80.88 232 | 89.08 23 | 54.40 246 | 54.75 252 | 80.77 212 | 51.31 38 | 90.33 94 | 49.35 236 | 58.01 254 | 83.99 198 |
|
114514_t | | | 69.87 146 | 67.88 153 | 75.85 128 | 88.38 25 | 52.35 138 | 86.94 83 | 83.68 142 | 53.70 249 | 55.68 248 | 85.60 153 | 30.07 263 | 91.20 71 | 55.84 196 | 71.02 160 | 83.99 198 |
|
UA-Net | | | 67.32 196 | 66.23 185 | 70.59 234 | 78.85 196 | 41.23 307 | 73.60 284 | 75.45 279 | 61.54 121 | 66.61 105 | 84.53 162 | 38.73 170 | 86.57 202 | 42.48 273 | 74.24 131 | 83.98 200 |
|
thres200 | | | 68.71 168 | 67.27 168 | 73.02 185 | 84.73 75 | 46.76 252 | 85.03 132 | 87.73 55 | 62.34 106 | 59.87 180 | 83.45 176 | 43.15 124 | 88.32 151 | 31.25 315 | 67.91 181 | 83.98 200 |
|
UniMVSNet_NR-MVSNet | | | 68.82 163 | 68.29 147 | 70.40 238 | 75.71 247 | 42.59 296 | 84.23 149 | 86.78 69 | 66.31 49 | 58.51 207 | 82.45 192 | 51.57 36 | 84.64 244 | 53.11 210 | 55.96 275 | 83.96 202 |
|
CVMVSNet | | | 60.85 253 | 60.44 244 | 62.07 302 | 75.00 255 | 32.73 336 | 79.54 249 | 73.49 296 | 36.98 333 | 56.28 244 | 83.74 171 | 29.28 267 | 69.53 338 | 46.48 253 | 63.23 213 | 83.94 203 |
|
TranMVSNet+NR-MVSNet | | | 66.94 206 | 65.61 200 | 70.93 231 | 73.45 269 | 43.38 289 | 83.02 185 | 84.25 130 | 65.31 67 | 58.33 214 | 81.90 201 | 39.92 162 | 85.52 225 | 49.43 235 | 54.89 284 | 83.89 204 |
|
MVSTER | | | 73.25 95 | 72.33 89 | 76.01 125 | 85.54 58 | 53.76 92 | 83.52 165 | 87.16 62 | 67.06 44 | 63.88 146 | 81.66 203 | 52.77 28 | 90.44 90 | 64.66 126 | 64.69 200 | 83.84 205 |
|
UniMVSNet_ETH3D | | | 62.51 242 | 60.49 243 | 68.57 263 | 68.30 315 | 40.88 310 | 73.89 283 | 79.93 202 | 51.81 265 | 54.77 251 | 79.61 218 | 24.80 297 | 81.10 268 | 49.93 231 | 61.35 227 | 83.73 206 |
|
PS-MVSNAJss | | | 68.78 167 | 67.17 169 | 73.62 177 | 73.01 274 | 48.33 230 | 84.95 134 | 84.81 117 | 59.30 161 | 58.91 201 | 79.84 217 | 37.77 177 | 88.86 133 | 62.83 135 | 63.12 217 | 83.67 207 |
|
HPM-MVS_fast | | | 67.86 182 | 66.28 184 | 72.61 192 | 80.67 171 | 48.34 229 | 81.18 227 | 75.95 275 | 50.81 270 | 59.55 188 | 88.05 122 | 27.86 275 | 85.98 218 | 58.83 167 | 73.58 136 | 83.51 208 |
|
abl_6 | | | 68.03 179 | 66.15 187 | 73.66 174 | 78.54 205 | 48.48 225 | 79.77 246 | 78.04 242 | 47.39 286 | 63.70 148 | 88.25 117 | 28.21 270 | 89.06 120 | 60.17 162 | 71.25 158 | 83.45 209 |
|
Fast-Effi-MVS+-dtu | | | 66.53 211 | 64.10 220 | 73.84 167 | 72.41 282 | 52.30 140 | 84.73 138 | 75.66 276 | 59.51 152 | 56.34 243 | 79.11 225 | 28.11 272 | 85.85 223 | 57.74 184 | 63.29 212 | 83.35 210 |
|
GBi-Net | | | 67.09 201 | 65.47 203 | 71.96 209 | 82.71 126 | 46.36 257 | 83.52 165 | 83.31 149 | 58.55 181 | 57.58 225 | 76.23 260 | 36.72 202 | 86.20 206 | 47.25 249 | 63.40 208 | 83.32 211 |
|
test1 | | | 67.09 201 | 65.47 203 | 71.96 209 | 82.71 126 | 46.36 257 | 83.52 165 | 83.31 149 | 58.55 181 | 57.58 225 | 76.23 260 | 36.72 202 | 86.20 206 | 47.25 249 | 63.40 208 | 83.32 211 |
|
FMVSNet1 | | | 64.57 225 | 62.11 230 | 71.96 209 | 77.32 223 | 46.36 257 | 83.52 165 | 83.31 149 | 52.43 259 | 54.42 255 | 76.23 260 | 27.80 276 | 86.20 206 | 42.59 272 | 61.34 228 | 83.32 211 |
|
DU-MVS | | | 66.84 208 | 65.74 197 | 70.16 241 | 73.27 272 | 42.59 296 | 81.50 221 | 82.92 160 | 63.53 91 | 58.51 207 | 82.11 198 | 40.75 149 | 84.64 244 | 53.11 210 | 55.96 275 | 83.24 214 |
|
NR-MVSNet | | | 67.25 197 | 65.99 191 | 71.04 229 | 73.27 272 | 43.91 284 | 85.32 120 | 84.75 119 | 66.05 57 | 53.65 264 | 82.11 198 | 45.05 96 | 85.97 220 | 47.55 246 | 56.18 272 | 83.24 214 |
|
SR-MVS-dyc-post | | | 68.27 176 | 66.87 171 | 72.48 197 | 80.96 162 | 48.14 234 | 81.54 219 | 76.98 261 | 46.42 295 | 62.75 158 | 89.42 95 | 31.17 255 | 86.09 214 | 60.52 156 | 72.06 153 | 83.19 216 |
|
RE-MVS-def | | | | 66.66 178 | | 80.96 162 | 48.14 234 | 81.54 219 | 76.98 261 | 46.42 295 | 62.75 158 | 89.42 95 | 29.28 267 | | 60.52 156 | 72.06 153 | 83.19 216 |
|
UniMVSNet (Re) | | | 67.71 185 | 66.80 173 | 70.45 236 | 74.44 260 | 42.93 292 | 82.42 199 | 84.90 114 | 63.69 87 | 59.63 185 | 80.99 209 | 47.18 70 | 85.23 233 | 51.17 226 | 56.75 266 | 83.19 216 |
|
WR-MVS | | | 67.58 187 | 66.76 175 | 70.04 245 | 75.92 245 | 45.06 276 | 86.23 97 | 85.28 102 | 64.31 76 | 58.50 209 | 81.00 208 | 44.80 104 | 82.00 264 | 49.21 237 | 55.57 281 | 83.06 219 |
|
OPM-MVS | | | 70.75 131 | 69.58 130 | 74.26 157 | 75.55 249 | 51.34 161 | 86.05 101 | 83.29 152 | 61.94 113 | 62.95 156 | 85.77 151 | 34.15 225 | 88.44 145 | 65.44 120 | 71.07 159 | 82.99 220 |
|
FC-MVSNet-test | | | 67.49 190 | 67.91 151 | 66.21 281 | 76.06 241 | 33.06 334 | 80.82 233 | 87.18 61 | 64.44 75 | 54.81 250 | 82.87 182 | 50.40 47 | 82.60 259 | 48.05 244 | 66.55 188 | 82.98 221 |
|
v2v482 | | | 69.55 154 | 67.64 158 | 75.26 139 | 72.32 284 | 53.83 90 | 84.93 135 | 81.94 169 | 65.37 65 | 60.80 174 | 79.25 222 | 41.62 143 | 88.98 129 | 63.03 134 | 59.51 236 | 82.98 221 |
|
EI-MVSNet-Vis-set | | | 73.19 96 | 72.60 85 | 74.99 143 | 82.56 131 | 49.80 195 | 82.55 195 | 89.00 26 | 66.17 52 | 65.89 115 | 88.98 103 | 43.83 111 | 92.29 48 | 65.38 123 | 69.01 173 | 82.87 223 |
|
thres100view900 | | | 66.87 207 | 65.42 206 | 71.24 224 | 83.29 105 | 43.15 290 | 81.67 214 | 87.78 52 | 59.04 171 | 55.92 246 | 82.18 197 | 43.73 114 | 87.80 166 | 28.80 321 | 66.36 190 | 82.78 224 |
|
tfpn200view9 | | | 67.57 188 | 66.13 188 | 71.89 216 | 84.05 88 | 45.07 273 | 83.40 174 | 87.71 57 | 60.79 134 | 57.79 220 | 82.76 185 | 43.53 119 | 87.80 166 | 28.80 321 | 66.36 190 | 82.78 224 |
|
v148 | | | 68.24 177 | 66.35 181 | 73.88 165 | 71.76 287 | 51.47 157 | 84.23 149 | 81.90 173 | 63.69 87 | 58.94 198 | 76.44 256 | 43.72 116 | 87.78 169 | 60.63 152 | 55.86 277 | 82.39 226 |
|
Anonymous20231211 | | | 66.08 218 | 63.67 222 | 73.31 182 | 83.07 112 | 48.75 217 | 86.01 103 | 84.67 121 | 45.27 303 | 56.54 240 | 76.67 254 | 28.06 273 | 88.95 130 | 52.78 216 | 59.95 232 | 82.23 227 |
|
miper_enhance_ethall | | | 69.77 147 | 68.90 140 | 72.38 199 | 78.93 195 | 49.91 193 | 83.29 178 | 78.85 225 | 64.90 71 | 59.37 190 | 79.46 219 | 52.77 28 | 85.16 235 | 63.78 129 | 58.72 243 | 82.08 228 |
|
v1144 | | | 68.81 164 | 66.82 172 | 74.80 146 | 72.34 283 | 53.46 101 | 84.68 139 | 81.77 175 | 64.25 77 | 60.28 179 | 77.91 233 | 40.23 156 | 88.95 130 | 60.37 159 | 59.52 235 | 81.97 229 |
|
cl-mvsnet2 | | | 68.85 161 | 67.69 157 | 72.35 200 | 78.07 213 | 49.98 192 | 82.45 198 | 78.48 236 | 62.50 104 | 58.46 211 | 77.95 232 | 49.99 49 | 85.17 234 | 62.55 136 | 58.72 243 | 81.90 230 |
|
bset_n11_16_dypcd | | | 65.51 222 | 63.21 224 | 72.41 198 | 68.84 308 | 50.15 187 | 81.25 225 | 72.40 303 | 59.17 167 | 59.20 195 | 78.66 228 | 25.69 292 | 85.27 231 | 66.80 103 | 56.88 265 | 81.80 231 |
|
v1192 | | | 67.96 181 | 65.74 197 | 74.63 147 | 71.79 286 | 53.43 107 | 84.06 154 | 80.99 187 | 63.19 95 | 59.56 187 | 77.46 240 | 37.50 187 | 88.65 136 | 58.20 175 | 58.93 242 | 81.79 232 |
|
miper_ehance_all_eth | | | 68.70 170 | 67.58 159 | 72.08 204 | 76.91 231 | 49.48 202 | 82.47 197 | 78.45 237 | 62.68 101 | 58.28 215 | 77.88 234 | 50.90 42 | 85.01 239 | 61.91 142 | 58.72 243 | 81.75 233 |
|
EI-MVSNet-UG-set | | | 72.37 107 | 71.73 101 | 74.29 156 | 81.60 146 | 49.29 205 | 81.85 210 | 88.64 36 | 65.29 68 | 65.05 125 | 88.29 116 | 43.18 123 | 91.83 58 | 63.74 130 | 67.97 180 | 81.75 233 |
|
test0.0.03 1 | | | 62.54 241 | 62.44 227 | 62.86 301 | 72.28 285 | 29.51 343 | 82.93 186 | 78.78 228 | 59.18 165 | 53.07 267 | 82.41 193 | 36.91 197 | 77.39 305 | 37.45 282 | 58.96 241 | 81.66 235 |
|
CPTT-MVS | | | 67.15 200 | 65.84 194 | 71.07 228 | 80.96 162 | 50.32 183 | 81.94 207 | 74.10 288 | 46.18 298 | 57.91 217 | 87.64 129 | 29.57 264 | 81.31 267 | 64.10 128 | 70.18 167 | 81.56 236 |
|
cl_fuxian | | | 67.97 180 | 66.66 178 | 71.91 215 | 76.20 240 | 49.31 204 | 82.13 204 | 78.00 244 | 61.99 111 | 57.64 224 | 76.94 248 | 49.41 53 | 84.93 240 | 60.62 153 | 57.01 264 | 81.49 237 |
|
v1921920 | | | 67.45 191 | 65.23 209 | 74.10 160 | 71.51 291 | 52.90 125 | 83.75 163 | 80.44 194 | 62.48 105 | 59.12 196 | 77.13 244 | 36.98 195 | 87.90 163 | 57.53 185 | 58.14 252 | 81.49 237 |
|
miper_lstm_enhance | | | 63.91 229 | 62.30 228 | 68.75 259 | 75.06 254 | 46.78 251 | 69.02 313 | 81.14 185 | 59.68 150 | 52.76 268 | 72.39 294 | 40.71 151 | 77.99 299 | 56.81 190 | 53.09 297 | 81.48 239 |
|
CR-MVSNet | | | 62.47 244 | 59.04 254 | 72.77 190 | 73.97 267 | 56.57 30 | 60.52 332 | 71.72 307 | 60.04 143 | 57.49 228 | 65.86 322 | 38.94 167 | 80.31 277 | 42.86 271 | 59.93 233 | 81.42 240 |
|
RPMNet | | | 59.29 259 | 54.25 282 | 74.42 152 | 73.97 267 | 56.57 30 | 60.52 332 | 76.98 261 | 35.72 337 | 57.49 228 | 58.87 340 | 37.73 180 | 85.26 232 | 27.01 331 | 59.93 233 | 81.42 240 |
|
v144192 | | | 67.86 182 | 65.76 196 | 74.16 158 | 71.68 288 | 53.09 118 | 84.14 151 | 80.83 189 | 62.85 99 | 59.21 194 | 77.28 243 | 39.30 165 | 88.00 162 | 58.67 169 | 57.88 258 | 81.40 242 |
|
cl-mvsnet1 | | | 67.43 192 | 65.93 192 | 71.94 213 | 76.33 236 | 48.01 238 | 82.57 193 | 79.11 223 | 61.31 124 | 56.73 236 | 76.92 249 | 46.09 82 | 86.43 205 | 57.98 178 | 56.31 269 | 81.39 243 |
|
cl-mvsnet_ | | | 67.43 192 | 65.93 192 | 71.95 212 | 76.33 236 | 48.02 237 | 82.58 192 | 79.12 222 | 61.30 125 | 56.72 237 | 76.92 249 | 46.12 81 | 86.44 204 | 57.98 178 | 56.31 269 | 81.38 244 |
|
v1240 | | | 66.99 204 | 64.68 214 | 73.93 163 | 71.38 294 | 52.66 129 | 83.39 176 | 79.98 200 | 61.97 112 | 58.44 213 | 77.11 245 | 35.25 217 | 87.81 165 | 56.46 193 | 58.15 250 | 81.33 245 |
|
PVSNet_BlendedMVS | | | 73.42 93 | 73.30 78 | 73.76 170 | 85.91 48 | 51.83 149 | 86.18 98 | 84.24 132 | 65.40 63 | 69.09 86 | 80.86 211 | 46.70 76 | 88.13 157 | 75.43 51 | 65.92 195 | 81.33 245 |
|
UnsupCasMVSNet_eth | | | 57.56 276 | 55.15 277 | 64.79 292 | 64.57 331 | 33.12 333 | 73.17 289 | 83.87 140 | 58.98 174 | 41.75 319 | 70.03 309 | 22.54 308 | 79.92 282 | 46.12 257 | 35.31 338 | 81.32 247 |
|
test_djsdf | | | 63.84 230 | 61.56 234 | 70.70 233 | 68.78 309 | 44.69 277 | 81.63 215 | 81.44 179 | 50.28 271 | 52.27 272 | 76.26 259 | 26.72 283 | 86.11 210 | 60.83 150 | 55.84 278 | 81.29 248 |
|
mvs-test1 | | | 69.04 158 | 67.57 161 | 73.44 180 | 75.17 250 | 51.68 152 | 86.57 92 | 74.48 285 | 62.15 107 | 62.07 165 | 85.79 150 | 30.59 259 | 87.48 176 | 65.40 121 | 65.94 194 | 81.18 249 |
|
AdaColmap |  | | 67.86 182 | 65.48 202 | 75.00 142 | 88.15 29 | 54.99 65 | 86.10 100 | 76.63 269 | 49.30 277 | 57.80 219 | 86.65 142 | 29.39 266 | 88.94 132 | 45.10 260 | 70.21 166 | 81.06 250 |
|
jajsoiax | | | 63.21 235 | 60.84 240 | 70.32 239 | 68.33 314 | 44.45 279 | 81.23 226 | 81.05 186 | 53.37 252 | 50.96 281 | 77.81 236 | 17.49 331 | 85.49 227 | 59.31 164 | 58.05 253 | 81.02 251 |
|
mvs_tets | | | 62.96 238 | 60.55 242 | 70.19 240 | 68.22 317 | 44.24 283 | 80.90 231 | 80.74 190 | 52.99 255 | 50.82 283 | 77.56 237 | 16.74 334 | 85.44 228 | 59.04 166 | 57.94 255 | 80.89 252 |
|
ACMP | | 61.11 9 | 66.24 216 | 64.33 217 | 72.00 208 | 74.89 257 | 49.12 206 | 83.18 180 | 79.83 204 | 55.41 233 | 52.29 271 | 82.68 189 | 25.83 288 | 86.10 212 | 60.89 149 | 63.94 205 | 80.78 253 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
pm-mvs1 | | | 64.12 228 | 62.56 226 | 68.78 258 | 71.68 288 | 38.87 316 | 82.89 187 | 81.57 176 | 55.54 232 | 53.89 261 | 77.82 235 | 37.73 180 | 86.74 194 | 48.46 242 | 53.49 294 | 80.72 254 |
|
thres600view7 | | | 66.46 212 | 65.12 210 | 70.47 235 | 83.41 99 | 43.80 286 | 82.15 203 | 87.78 52 | 59.37 157 | 56.02 245 | 82.21 196 | 43.73 114 | 86.90 191 | 26.51 332 | 64.94 197 | 80.71 255 |
|
thres400 | | | 67.40 195 | 66.13 188 | 71.19 226 | 84.05 88 | 45.07 273 | 83.40 174 | 87.71 57 | 60.79 134 | 57.79 220 | 82.76 185 | 43.53 119 | 87.80 166 | 28.80 321 | 66.36 190 | 80.71 255 |
|
LPG-MVS_test | | | 66.44 213 | 64.58 215 | 72.02 206 | 74.42 261 | 48.60 219 | 83.07 183 | 80.64 191 | 54.69 242 | 53.75 262 | 83.83 169 | 25.73 290 | 86.98 186 | 60.33 160 | 64.71 198 | 80.48 257 |
|
LGP-MVS_train | | | | | 72.02 206 | 74.42 261 | 48.60 219 | | 80.64 191 | 54.69 242 | 53.75 262 | 83.83 169 | 25.73 290 | 86.98 186 | 60.33 160 | 64.71 198 | 80.48 257 |
|
v8 | | | 67.25 197 | 64.99 212 | 74.04 161 | 72.89 277 | 53.31 112 | 82.37 200 | 80.11 199 | 61.54 121 | 54.29 257 | 76.02 265 | 42.89 128 | 88.41 146 | 58.43 170 | 56.36 267 | 80.39 259 |
|
V42 | | | 67.66 186 | 65.60 201 | 73.86 166 | 70.69 299 | 53.63 96 | 81.50 221 | 78.61 233 | 63.85 83 | 59.49 189 | 77.49 239 | 37.98 174 | 87.65 172 | 62.33 137 | 58.43 247 | 80.29 260 |
|
eth_miper_zixun_eth | | | 66.98 205 | 65.28 208 | 72.06 205 | 75.61 248 | 50.40 177 | 81.00 230 | 76.97 264 | 62.00 110 | 56.99 235 | 76.97 247 | 44.84 101 | 85.58 224 | 58.75 168 | 54.42 287 | 80.21 261 |
|
Anonymous20231206 | | | 59.08 264 | 57.59 260 | 63.55 296 | 68.77 310 | 32.14 339 | 80.26 240 | 79.78 205 | 50.00 274 | 49.39 286 | 72.39 294 | 26.64 284 | 78.36 292 | 33.12 308 | 57.94 255 | 80.14 262 |
|
IterMVS | | | 63.77 232 | 61.67 232 | 70.08 243 | 72.68 279 | 51.24 164 | 80.44 237 | 75.51 277 | 60.51 139 | 51.41 276 | 73.70 280 | 32.08 246 | 78.91 289 | 54.30 205 | 54.35 288 | 80.08 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
pmmvs5 | | | 62.80 240 | 61.18 237 | 67.66 268 | 69.53 305 | 42.37 301 | 82.65 191 | 75.19 281 | 54.30 247 | 52.03 274 | 78.51 230 | 31.64 252 | 80.67 272 | 48.60 240 | 58.15 250 | 79.95 264 |
|
RRT_MVS | | | 65.43 224 | 64.01 221 | 69.68 248 | 81.54 150 | 50.15 187 | 82.31 201 | 76.78 265 | 55.25 234 | 60.64 177 | 82.00 200 | 25.18 294 | 79.00 288 | 60.96 148 | 51.45 302 | 79.89 265 |
|
v10 | | | 66.61 210 | 64.20 219 | 73.83 168 | 72.59 280 | 53.37 108 | 81.88 209 | 79.91 203 | 61.11 127 | 54.09 259 | 75.60 267 | 40.06 160 | 88.26 155 | 56.47 192 | 56.10 273 | 79.86 266 |
|
ACMM | | 58.35 12 | 64.35 227 | 62.01 231 | 71.38 222 | 74.21 264 | 48.51 223 | 82.25 202 | 79.66 208 | 47.61 284 | 54.54 254 | 80.11 215 | 25.26 293 | 86.00 217 | 51.26 224 | 63.16 215 | 79.64 267 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
K. test v3 | | | 54.04 295 | 49.42 303 | 67.92 267 | 68.55 311 | 42.57 299 | 75.51 274 | 63.07 333 | 52.07 260 | 39.21 326 | 64.59 326 | 19.34 323 | 82.21 260 | 37.11 285 | 25.31 350 | 78.97 268 |
|
v7n | | | 62.50 243 | 59.27 252 | 72.20 202 | 67.25 320 | 49.83 194 | 77.87 261 | 80.12 198 | 52.50 258 | 48.80 289 | 73.07 285 | 32.10 245 | 87.90 163 | 46.83 252 | 54.92 283 | 78.86 269 |
|
CL-MVSNet_2432*1600 | | | 62.98 237 | 61.14 238 | 68.50 264 | 65.86 323 | 42.96 291 | 84.37 144 | 82.98 158 | 60.98 131 | 53.95 260 | 72.70 290 | 40.43 154 | 83.71 251 | 41.10 274 | 47.93 310 | 78.83 270 |
|
EI-MVSNet | | | 69.70 150 | 68.70 141 | 72.68 191 | 75.00 255 | 48.90 213 | 79.54 249 | 87.16 62 | 61.05 129 | 63.88 146 | 83.74 171 | 45.87 87 | 90.44 90 | 57.42 187 | 64.68 201 | 78.70 271 |
|
IterMVS-LS | | | 66.63 209 | 65.36 207 | 70.42 237 | 75.10 253 | 48.90 213 | 81.45 224 | 76.69 268 | 61.05 129 | 55.71 247 | 77.10 246 | 45.86 88 | 83.65 252 | 57.44 186 | 57.88 258 | 78.70 271 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet5 | | | 58.61 270 | 56.45 267 | 65.10 290 | 77.20 228 | 39.74 312 | 74.77 278 | 77.12 259 | 50.27 273 | 43.28 313 | 67.71 317 | 26.15 287 | 76.90 309 | 36.78 289 | 54.78 285 | 78.65 273 |
|
lessismore_v0 | | | | | 67.98 266 | 64.76 330 | 41.25 306 | | 45.75 350 | | 36.03 335 | 65.63 324 | 19.29 324 | 84.11 246 | 35.67 292 | 21.24 352 | 78.59 274 |
|
anonymousdsp | | | 60.46 255 | 57.65 259 | 68.88 254 | 63.63 334 | 45.09 272 | 72.93 290 | 78.63 232 | 46.52 293 | 51.12 278 | 72.80 289 | 21.46 316 | 83.07 258 | 57.79 182 | 53.97 289 | 78.47 275 |
|
CNLPA | | | 60.59 254 | 58.44 257 | 67.05 274 | 79.21 188 | 47.26 247 | 79.75 248 | 64.34 331 | 42.46 321 | 51.90 275 | 83.94 167 | 27.79 277 | 75.41 314 | 37.12 284 | 59.49 237 | 78.47 275 |
|
IterMVS-SCA-FT | | | 59.12 262 | 58.81 256 | 60.08 314 | 70.68 300 | 45.07 273 | 80.42 238 | 74.25 287 | 43.54 316 | 50.02 284 | 73.73 277 | 31.97 247 | 56.74 347 | 51.06 227 | 53.60 293 | 78.42 277 |
|
MS-PatchMatch | | | 72.34 108 | 71.26 108 | 75.61 130 | 82.38 133 | 55.55 46 | 88.00 56 | 89.95 15 | 65.38 64 | 56.51 242 | 80.74 213 | 32.28 244 | 92.89 32 | 57.95 180 | 88.10 13 | 78.39 278 |
|
pmmvs6 | | | 59.64 257 | 57.15 263 | 67.09 272 | 66.01 321 | 36.86 324 | 80.50 236 | 78.64 231 | 45.05 305 | 49.05 288 | 73.94 276 | 27.28 279 | 86.10 212 | 43.96 265 | 49.94 305 | 78.31 279 |
|
testgi | | | 54.25 294 | 52.57 293 | 59.29 316 | 62.76 337 | 21.65 355 | 72.21 297 | 70.47 316 | 53.25 253 | 41.94 317 | 77.33 242 | 14.28 341 | 77.95 300 | 29.18 320 | 51.72 301 | 78.28 280 |
|
Baseline_NR-MVSNet | | | 65.49 223 | 64.27 218 | 69.13 252 | 74.37 263 | 41.65 303 | 83.39 176 | 78.85 225 | 59.56 151 | 59.62 186 | 76.88 251 | 40.75 149 | 87.44 177 | 49.99 230 | 55.05 282 | 78.28 280 |
|
PatchT | | | 56.60 281 | 52.97 288 | 67.48 269 | 72.94 276 | 46.16 263 | 57.30 337 | 73.78 292 | 38.77 327 | 54.37 256 | 57.26 343 | 37.52 185 | 78.06 296 | 32.02 310 | 52.79 298 | 78.23 282 |
|
our_test_3 | | | 59.11 263 | 55.08 279 | 71.18 227 | 71.42 292 | 53.29 113 | 81.96 206 | 74.52 284 | 48.32 281 | 42.08 316 | 69.28 313 | 28.14 271 | 82.15 261 | 34.35 302 | 45.68 322 | 78.11 283 |
|
pmmvs4 | | | 63.34 234 | 61.07 239 | 70.16 241 | 70.14 301 | 50.53 173 | 79.97 245 | 71.41 313 | 55.08 236 | 54.12 258 | 78.58 229 | 32.79 239 | 82.09 263 | 50.33 229 | 57.22 263 | 77.86 284 |
|
TransMVSNet (Re) | | | 62.82 239 | 60.76 241 | 69.02 253 | 73.98 266 | 41.61 304 | 86.36 94 | 79.30 221 | 56.90 210 | 52.53 269 | 76.44 256 | 41.85 141 | 87.60 174 | 38.83 279 | 40.61 332 | 77.86 284 |
|
PEN-MVS | | | 58.35 274 | 57.15 263 | 61.94 304 | 67.55 319 | 34.39 328 | 77.01 264 | 78.35 238 | 51.87 263 | 47.72 294 | 76.73 253 | 33.91 228 | 73.75 322 | 34.03 303 | 47.17 315 | 77.68 286 |
|
XVG-ACMP-BASELINE | | | 56.03 286 | 52.85 290 | 65.58 284 | 61.91 339 | 40.95 309 | 63.36 322 | 72.43 302 | 45.20 304 | 46.02 304 | 74.09 274 | 9.20 350 | 78.12 294 | 45.13 259 | 58.27 248 | 77.66 287 |
|
CP-MVSNet | | | 58.54 273 | 57.57 261 | 61.46 308 | 68.50 312 | 33.96 330 | 76.90 266 | 78.60 234 | 51.67 266 | 47.83 293 | 76.60 255 | 34.99 220 | 72.79 327 | 35.45 293 | 47.58 311 | 77.64 288 |
|
PS-CasMVS | | | 58.12 275 | 57.03 265 | 61.37 309 | 68.24 316 | 33.80 332 | 76.73 267 | 78.01 243 | 51.20 268 | 47.54 297 | 76.20 263 | 32.85 237 | 72.76 328 | 35.17 298 | 47.37 313 | 77.55 289 |
|
tfpnnormal | | | 61.47 250 | 59.09 253 | 68.62 262 | 76.29 239 | 41.69 302 | 81.14 228 | 85.16 107 | 54.48 245 | 51.32 277 | 73.63 281 | 32.32 243 | 86.89 192 | 21.78 342 | 55.71 279 | 77.29 290 |
|
DTE-MVSNet | | | 57.03 278 | 55.73 274 | 60.95 313 | 65.94 322 | 32.57 337 | 75.71 270 | 77.09 260 | 51.16 269 | 46.65 302 | 76.34 258 | 32.84 238 | 73.22 326 | 30.94 316 | 44.87 323 | 77.06 291 |
|
D2MVS | | | 63.49 233 | 61.39 236 | 69.77 247 | 69.29 306 | 48.93 212 | 78.89 256 | 77.71 249 | 60.64 138 | 49.70 285 | 72.10 299 | 27.08 281 | 83.48 254 | 54.48 204 | 62.65 220 | 76.90 292 |
|
Effi-MVS+-dtu | | | 66.24 216 | 64.96 213 | 70.08 243 | 75.17 250 | 49.64 196 | 82.01 205 | 74.48 285 | 62.15 107 | 57.83 218 | 76.08 264 | 30.59 259 | 83.79 249 | 65.40 121 | 60.93 230 | 76.81 293 |
|
KD-MVS_2432*1600 | | | 59.04 265 | 56.44 268 | 66.86 275 | 79.07 190 | 45.87 265 | 72.13 298 | 80.42 195 | 55.03 237 | 48.15 291 | 71.01 302 | 36.73 200 | 78.05 297 | 35.21 296 | 30.18 348 | 76.67 294 |
|
miper_refine_blended | | | 59.04 265 | 56.44 268 | 66.86 275 | 79.07 190 | 45.87 265 | 72.13 298 | 80.42 195 | 55.03 237 | 48.15 291 | 71.01 302 | 36.73 200 | 78.05 297 | 35.21 296 | 30.18 348 | 76.67 294 |
|
RPSCF | | | 45.77 314 | 44.13 316 | 50.68 328 | 57.67 346 | 29.66 342 | 54.92 341 | 45.25 351 | 26.69 347 | 45.92 305 | 75.92 266 | 17.43 332 | 45.70 355 | 27.44 329 | 45.95 321 | 76.67 294 |
|
WR-MVS_H | | | 58.91 267 | 58.04 258 | 61.54 307 | 69.07 307 | 33.83 331 | 76.91 265 | 81.99 168 | 51.40 267 | 48.17 290 | 74.67 272 | 40.23 156 | 74.15 318 | 31.78 312 | 48.10 308 | 76.64 297 |
|
UnsupCasMVSNet_bld | | | 53.86 296 | 50.53 298 | 63.84 294 | 63.52 335 | 34.75 327 | 71.38 303 | 81.92 171 | 46.53 292 | 38.95 328 | 57.93 341 | 20.55 319 | 80.20 280 | 39.91 277 | 34.09 344 | 76.57 298 |
|
PLC |  | 52.38 18 | 60.89 252 | 58.97 255 | 66.68 279 | 81.77 141 | 45.70 268 | 78.96 255 | 74.04 290 | 43.66 315 | 47.63 295 | 83.19 181 | 23.52 304 | 77.78 304 | 37.47 281 | 60.46 231 | 76.55 299 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVP-Stereo | | | 70.97 126 | 70.44 117 | 72.59 193 | 76.03 243 | 51.36 160 | 85.02 133 | 86.99 65 | 60.31 141 | 56.53 241 | 78.92 226 | 40.11 159 | 90.00 102 | 60.00 163 | 90.01 4 | 76.41 300 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
test20.03 | | | 55.22 290 | 54.07 283 | 58.68 318 | 63.14 336 | 25.00 350 | 77.69 262 | 74.78 283 | 52.64 256 | 43.43 311 | 72.39 294 | 26.21 286 | 74.76 316 | 29.31 319 | 47.05 317 | 76.28 301 |
|
EU-MVSNet | | | 52.63 301 | 50.72 297 | 58.37 319 | 62.69 338 | 28.13 348 | 72.60 291 | 75.97 274 | 30.94 343 | 40.76 324 | 72.11 298 | 20.16 320 | 70.80 334 | 35.11 299 | 46.11 320 | 76.19 302 |
|
ppachtmachnet_test | | | 58.56 271 | 54.34 280 | 71.24 224 | 71.42 292 | 54.74 72 | 81.84 211 | 72.27 304 | 49.02 279 | 45.86 306 | 68.99 314 | 26.27 285 | 83.30 256 | 30.12 317 | 43.23 327 | 75.69 303 |
|
CHOSEN 280x420 | | | 57.53 277 | 56.38 270 | 60.97 312 | 74.01 265 | 48.10 236 | 46.30 345 | 54.31 343 | 48.18 283 | 50.88 282 | 77.43 241 | 38.37 173 | 59.16 346 | 54.83 200 | 63.14 216 | 75.66 304 |
|
SixPastTwentyTwo | | | 54.37 292 | 50.10 299 | 67.21 271 | 70.70 298 | 41.46 305 | 74.73 279 | 64.69 329 | 47.56 285 | 39.12 327 | 69.49 310 | 18.49 328 | 84.69 243 | 31.87 311 | 34.20 343 | 75.48 305 |
|
MSDG | | | 59.44 258 | 55.14 278 | 72.32 201 | 74.69 258 | 50.71 168 | 74.39 281 | 73.58 294 | 44.44 309 | 43.40 312 | 77.52 238 | 19.45 322 | 90.87 81 | 31.31 314 | 57.49 262 | 75.38 306 |
|
DIV-MVS_2432*1600 | | | 49.24 308 | 46.85 311 | 56.44 322 | 54.32 348 | 22.87 352 | 57.39 336 | 73.36 300 | 44.36 310 | 37.98 330 | 59.30 339 | 18.97 325 | 71.17 333 | 33.48 304 | 42.44 328 | 75.26 307 |
|
ACMH | | 53.70 16 | 59.78 256 | 55.94 273 | 71.28 223 | 76.59 233 | 48.35 228 | 80.15 244 | 76.11 273 | 49.74 275 | 41.91 318 | 73.45 284 | 16.50 336 | 90.31 95 | 31.42 313 | 57.63 261 | 75.17 308 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
USDC | | | 54.36 293 | 51.23 296 | 63.76 295 | 64.29 332 | 37.71 321 | 62.84 327 | 73.48 298 | 56.85 211 | 35.47 336 | 71.94 300 | 9.23 349 | 78.43 291 | 38.43 280 | 48.57 307 | 75.13 309 |
|
MIMVSNet1 | | | 50.35 307 | 47.81 308 | 57.96 320 | 61.53 340 | 27.80 349 | 67.40 316 | 74.06 289 | 43.25 317 | 33.31 344 | 65.38 325 | 16.03 337 | 71.34 332 | 21.80 341 | 47.55 312 | 74.75 310 |
|
ambc | | | | | 62.06 303 | 53.98 349 | 29.38 344 | 35.08 354 | 79.65 209 | | 41.37 320 | 59.96 336 | 6.27 356 | 82.15 261 | 35.34 295 | 38.22 336 | 74.65 311 |
|
ADS-MVSNet2 | | | 55.21 291 | 51.44 295 | 66.51 280 | 80.60 172 | 49.56 199 | 55.03 339 | 65.44 327 | 44.72 306 | 51.00 279 | 61.19 333 | 22.83 305 | 75.41 314 | 28.54 324 | 53.63 291 | 74.57 312 |
|
ADS-MVSNet | | | 56.17 285 | 51.95 294 | 68.84 255 | 80.60 172 | 53.07 120 | 55.03 339 | 70.02 319 | 44.72 306 | 51.00 279 | 61.19 333 | 22.83 305 | 78.88 290 | 28.54 324 | 53.63 291 | 74.57 312 |
|
DSMNet-mixed | | | 38.35 318 | 35.36 321 | 47.33 331 | 48.11 354 | 14.91 361 | 37.87 353 | 36.60 356 | 19.18 352 | 34.37 338 | 59.56 338 | 15.53 338 | 53.01 350 | 20.14 346 | 46.89 318 | 74.07 314 |
|
OpenMVS_ROB |  | 53.19 17 | 59.20 261 | 56.00 272 | 68.83 256 | 71.13 296 | 44.30 281 | 83.64 164 | 75.02 282 | 46.42 295 | 46.48 303 | 73.03 286 | 18.69 326 | 88.14 156 | 27.74 328 | 61.80 225 | 74.05 315 |
|
PatchMatch-RL | | | 56.66 280 | 53.75 285 | 65.37 288 | 77.91 217 | 45.28 271 | 69.78 311 | 60.38 336 | 41.35 322 | 47.57 296 | 73.73 277 | 16.83 333 | 76.91 308 | 36.99 287 | 59.21 240 | 73.92 316 |
|
ACMH+ | | 54.58 15 | 58.55 272 | 55.24 275 | 68.50 264 | 74.68 259 | 45.80 267 | 80.27 239 | 70.21 318 | 47.15 288 | 42.77 315 | 75.48 268 | 16.73 335 | 85.98 218 | 35.10 300 | 54.78 285 | 73.72 317 |
|
tpmvs | | | 62.45 245 | 59.42 250 | 71.53 221 | 83.93 90 | 54.32 82 | 70.03 309 | 77.61 250 | 51.91 262 | 53.48 265 | 68.29 315 | 37.91 175 | 86.66 197 | 33.36 305 | 58.27 248 | 73.62 318 |
|
EG-PatchMatch MVS | | | 62.40 246 | 59.59 248 | 70.81 232 | 73.29 271 | 49.05 208 | 85.81 104 | 84.78 118 | 51.85 264 | 44.19 307 | 73.48 283 | 15.52 339 | 89.85 105 | 40.16 276 | 67.24 184 | 73.54 319 |
|
YYNet1 | | | 53.82 297 | 49.96 300 | 65.41 287 | 70.09 303 | 48.95 210 | 72.30 295 | 71.66 309 | 44.25 311 | 31.89 345 | 63.07 330 | 23.73 302 | 73.95 320 | 33.26 306 | 39.40 334 | 73.34 320 |
|
JIA-IIPM | | | 52.33 303 | 47.77 309 | 66.03 282 | 71.20 295 | 46.92 250 | 40.00 352 | 76.48 271 | 37.10 332 | 46.73 300 | 37.02 349 | 32.96 236 | 77.88 301 | 35.97 291 | 52.45 299 | 73.29 321 |
|
MDA-MVSNet_test_wron | | | 53.82 297 | 49.95 301 | 65.43 286 | 70.13 302 | 49.05 208 | 72.30 295 | 71.65 310 | 44.23 312 | 31.85 346 | 63.13 329 | 23.68 303 | 74.01 319 | 33.25 307 | 39.35 335 | 73.23 322 |
|
pmmvs-eth3d | | | 55.97 287 | 52.78 291 | 65.54 285 | 61.02 341 | 46.44 256 | 75.36 276 | 67.72 324 | 49.61 276 | 43.65 310 | 67.58 318 | 21.63 315 | 77.04 306 | 44.11 264 | 44.33 324 | 73.15 323 |
|
MVS_0304 | | | 56.72 279 | 55.17 276 | 61.37 309 | 70.71 297 | 36.80 325 | 75.74 269 | 68.75 322 | 44.11 313 | 52.53 269 | 68.20 316 | 15.05 340 | 74.53 317 | 42.98 269 | 58.44 246 | 72.79 324 |
|
F-COLMAP | | | 55.96 288 | 53.65 286 | 62.87 300 | 72.76 278 | 42.77 295 | 74.70 280 | 70.37 317 | 40.03 324 | 41.11 322 | 79.36 220 | 17.77 330 | 73.70 323 | 32.80 309 | 53.96 290 | 72.15 325 |
|
Anonymous20240521 | | | 51.65 304 | 48.42 305 | 61.34 311 | 56.43 347 | 39.65 314 | 73.57 285 | 73.47 299 | 36.64 335 | 36.59 332 | 63.98 327 | 10.75 346 | 72.25 331 | 35.35 294 | 49.01 306 | 72.11 326 |
|
ITE_SJBPF | | | | | 51.84 327 | 58.03 344 | 31.94 340 | | 53.57 346 | 36.67 334 | 41.32 321 | 75.23 270 | 11.17 345 | 51.57 351 | 25.81 334 | 48.04 309 | 72.02 327 |
|
OurMVSNet-221017-0 | | | 52.39 302 | 48.73 304 | 63.35 298 | 65.21 327 | 38.42 318 | 68.54 315 | 64.95 328 | 38.19 328 | 39.57 325 | 71.43 301 | 13.23 343 | 79.92 282 | 37.16 283 | 40.32 333 | 71.72 328 |
|
Patchmtry | | | 56.56 282 | 52.95 289 | 67.42 270 | 72.53 281 | 50.59 172 | 59.05 334 | 71.72 307 | 37.86 331 | 46.92 299 | 65.86 322 | 38.94 167 | 80.06 281 | 36.94 288 | 46.72 319 | 71.60 329 |
|
PM-MVS | | | 46.92 313 | 43.76 317 | 56.41 323 | 52.18 350 | 32.26 338 | 63.21 325 | 38.18 354 | 37.99 330 | 40.78 323 | 66.20 321 | 5.09 358 | 65.42 341 | 48.19 243 | 41.99 329 | 71.54 330 |
|
new-patchmatchnet | | | 48.21 310 | 46.55 312 | 53.18 326 | 57.73 345 | 18.19 359 | 70.24 307 | 71.02 315 | 45.70 299 | 33.70 340 | 60.23 335 | 18.00 329 | 69.86 337 | 27.97 327 | 34.35 341 | 71.49 331 |
|
CMPMVS |  | 40.41 21 | 55.34 289 | 52.64 292 | 63.46 297 | 60.88 342 | 43.84 285 | 61.58 330 | 71.06 314 | 30.43 344 | 36.33 333 | 74.63 273 | 24.14 300 | 75.44 313 | 48.05 244 | 66.62 187 | 71.12 332 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
AllTest | | | 47.32 312 | 44.66 314 | 55.32 324 | 65.08 328 | 37.50 322 | 62.96 326 | 54.25 344 | 35.45 339 | 33.42 342 | 72.82 287 | 9.98 347 | 59.33 344 | 24.13 337 | 43.84 325 | 69.13 333 |
|
TestCases | | | | | 55.32 324 | 65.08 328 | 37.50 322 | | 54.25 344 | 35.45 339 | 33.42 342 | 72.82 287 | 9.98 347 | 59.33 344 | 24.13 337 | 43.84 325 | 69.13 333 |
|
LTVRE_ROB | | 45.45 19 | 52.73 300 | 49.74 302 | 61.69 306 | 69.78 304 | 34.99 326 | 44.52 346 | 67.60 325 | 43.11 318 | 43.79 309 | 74.03 275 | 18.54 327 | 81.45 266 | 28.39 326 | 57.94 255 | 68.62 335 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
N_pmnet | | | 41.25 316 | 39.77 319 | 45.66 332 | 68.50 312 | 0.82 367 | 72.51 293 | 0.38 367 | 35.61 338 | 35.26 337 | 61.51 332 | 20.07 321 | 67.74 339 | 23.51 339 | 40.63 331 | 68.42 336 |
|
LS3D | | | 56.40 284 | 53.82 284 | 64.12 293 | 81.12 160 | 45.69 269 | 73.42 287 | 66.14 326 | 35.30 341 | 43.24 314 | 79.88 216 | 22.18 312 | 79.62 286 | 19.10 348 | 64.00 204 | 67.05 337 |
|
DP-MVS | | | 59.24 260 | 56.12 271 | 68.63 261 | 88.24 28 | 50.35 181 | 82.51 196 | 64.43 330 | 41.10 323 | 46.70 301 | 78.77 227 | 24.75 298 | 88.57 142 | 22.26 340 | 56.29 271 | 66.96 338 |
|
TinyColmap | | | 48.15 311 | 44.49 315 | 59.13 317 | 65.73 324 | 38.04 319 | 63.34 323 | 62.86 334 | 38.78 326 | 29.48 348 | 67.23 320 | 6.46 355 | 73.30 325 | 24.59 336 | 41.90 330 | 66.04 339 |
|
pmmvs3 | | | 45.53 315 | 41.55 318 | 57.44 321 | 48.97 353 | 39.68 313 | 70.06 308 | 57.66 339 | 28.32 346 | 34.06 339 | 57.29 342 | 8.50 351 | 66.85 340 | 34.86 301 | 34.26 342 | 65.80 340 |
|
MDA-MVSNet-bldmvs | | | 51.56 305 | 47.75 310 | 63.00 299 | 71.60 290 | 47.32 246 | 69.70 312 | 72.12 305 | 43.81 314 | 27.65 350 | 63.38 328 | 21.97 314 | 75.96 311 | 27.30 330 | 32.19 345 | 65.70 341 |
|
ANet_high | | | 34.39 320 | 29.59 325 | 48.78 329 | 30.34 361 | 22.28 353 | 55.53 338 | 63.79 332 | 38.11 329 | 15.47 354 | 36.56 351 | 6.94 352 | 59.98 343 | 13.93 352 | 5.64 361 | 64.08 342 |
|
COLMAP_ROB |  | 43.60 20 | 50.90 306 | 48.05 307 | 59.47 315 | 67.81 318 | 40.57 311 | 71.25 304 | 62.72 335 | 36.49 336 | 36.19 334 | 73.51 282 | 13.48 342 | 73.92 321 | 20.71 344 | 50.26 304 | 63.92 343 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test_0402 | | | 56.45 283 | 53.03 287 | 66.69 278 | 76.78 232 | 50.31 184 | 81.76 212 | 69.61 320 | 42.79 319 | 43.88 308 | 72.13 297 | 22.82 307 | 86.46 203 | 16.57 350 | 50.94 303 | 63.31 344 |
|
MVS-HIRNet | | | 49.01 309 | 44.71 313 | 61.92 305 | 76.06 241 | 46.61 254 | 63.23 324 | 54.90 342 | 24.77 348 | 33.56 341 | 36.60 350 | 21.28 317 | 75.88 312 | 29.49 318 | 62.54 221 | 63.26 345 |
|
TDRefinement | | | 40.91 317 | 38.37 320 | 48.55 330 | 50.45 351 | 33.03 335 | 58.98 335 | 50.97 347 | 28.50 345 | 29.89 347 | 67.39 319 | 6.21 357 | 54.51 348 | 17.67 349 | 35.25 339 | 58.11 346 |
|
LCM-MVSNet | | | 28.07 323 | 23.85 328 | 40.71 333 | 27.46 363 | 18.93 358 | 30.82 355 | 46.19 348 | 12.76 356 | 16.40 353 | 34.70 353 | 1.90 364 | 48.69 354 | 20.25 345 | 24.22 351 | 54.51 347 |
|
PMMVS2 | | | 26.71 325 | 22.98 329 | 37.87 336 | 36.89 358 | 8.51 365 | 42.51 349 | 29.32 361 | 19.09 353 | 13.01 355 | 37.54 348 | 2.23 362 | 53.11 349 | 14.54 351 | 11.71 354 | 51.99 348 |
|
LF4IMVS | | | 33.04 322 | 32.55 323 | 34.52 338 | 40.96 356 | 22.03 354 | 44.45 347 | 35.62 357 | 20.42 350 | 28.12 349 | 62.35 331 | 5.03 359 | 31.88 360 | 21.61 343 | 34.42 340 | 49.63 349 |
|
FPMVS | | | 35.40 319 | 33.67 322 | 40.57 334 | 46.34 355 | 28.74 347 | 41.05 350 | 57.05 340 | 20.37 351 | 22.27 352 | 53.38 345 | 6.87 353 | 44.94 356 | 8.62 354 | 47.11 316 | 48.01 350 |
|
new_pmnet | | | 33.56 321 | 31.89 324 | 38.59 335 | 49.01 352 | 20.42 356 | 51.01 342 | 37.92 355 | 20.58 349 | 23.45 351 | 46.79 346 | 6.66 354 | 49.28 353 | 20.00 347 | 31.57 347 | 46.09 351 |
|
MVE |  | 16.60 23 | 17.34 330 | 13.39 333 | 29.16 340 | 28.43 362 | 19.72 357 | 13.73 357 | 23.63 362 | 7.23 360 | 7.96 359 | 21.41 355 | 0.80 367 | 36.08 359 | 6.97 356 | 10.39 355 | 31.69 352 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 19.57 22 | 25.07 326 | 22.43 330 | 32.99 339 | 23.12 364 | 22.98 351 | 40.98 351 | 35.19 358 | 15.99 354 | 11.95 357 | 35.87 352 | 1.47 366 | 49.29 352 | 5.41 359 | 31.90 346 | 26.70 353 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 27.47 324 | 24.26 327 | 37.12 337 | 60.55 343 | 29.17 345 | 11.68 358 | 60.00 337 | 14.18 355 | 10.52 358 | 15.12 359 | 2.20 363 | 63.01 342 | 8.39 355 | 35.65 337 | 19.18 354 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DeepMVS_CX |  | | | | 13.10 343 | 21.34 365 | 8.99 364 | | 10.02 365 | 10.59 358 | 7.53 360 | 30.55 354 | 1.82 365 | 14.55 361 | 6.83 357 | 7.52 357 | 15.75 355 |
|
E-PMN | | | 19.16 327 | 18.40 331 | 21.44 341 | 36.19 359 | 13.63 362 | 47.59 343 | 30.89 359 | 10.73 357 | 5.91 361 | 16.59 357 | 3.66 361 | 39.77 357 | 5.95 358 | 8.14 356 | 10.92 356 |
|
EMVS | | | 18.42 328 | 17.66 332 | 20.71 342 | 34.13 360 | 12.64 363 | 46.94 344 | 29.94 360 | 10.46 359 | 5.58 362 | 14.93 360 | 4.23 360 | 38.83 358 | 5.24 360 | 7.51 358 | 10.67 357 |
|
tmp_tt | | | 9.44 331 | 10.68 334 | 5.73 345 | 2.49 366 | 4.21 366 | 10.48 359 | 18.04 363 | 0.34 362 | 12.59 356 | 20.49 356 | 11.39 344 | 7.03 363 | 13.84 353 | 6.46 360 | 5.95 358 |
|
wuyk23d | | | 9.11 332 | 8.77 336 | 10.15 344 | 40.18 357 | 16.76 360 | 20.28 356 | 1.01 366 | 2.58 361 | 2.66 363 | 0.98 363 | 0.23 368 | 12.49 362 | 4.08 361 | 6.90 359 | 1.19 359 |
|
testmvs | | | 6.14 334 | 8.18 337 | 0.01 346 | 0.01 367 | 0.00 369 | 73.40 288 | 0.00 368 | 0.00 363 | 0.02 364 | 0.15 364 | 0.00 369 | 0.00 364 | 0.02 362 | 0.00 362 | 0.02 360 |
|
test123 | | | 6.01 335 | 8.01 338 | 0.01 346 | 0.00 368 | 0.01 368 | 71.93 301 | 0.00 368 | 0.00 363 | 0.02 364 | 0.11 365 | 0.00 369 | 0.00 364 | 0.02 362 | 0.00 362 | 0.02 360 |
|
uanet_test | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 368 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 363 | 0.00 366 | 0.00 366 | 0.00 369 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
cdsmvs_eth3d_5k | | | 18.33 329 | 24.44 326 | 0.00 348 | 0.00 368 | 0.00 369 | 0.00 360 | 89.40 17 | 0.00 363 | 0.00 366 | 92.02 36 | 38.55 171 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
pcd_1.5k_mvsjas | | | 3.15 336 | 4.20 339 | 0.00 348 | 0.00 368 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 363 | 0.00 366 | 0.00 366 | 37.77 177 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
sosnet-low-res | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 368 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 363 | 0.00 366 | 0.00 366 | 0.00 369 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
sosnet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 368 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 363 | 0.00 366 | 0.00 366 | 0.00 369 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
uncertanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 368 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 363 | 0.00 366 | 0.00 366 | 0.00 369 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
Regformer | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 368 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 363 | 0.00 366 | 0.00 366 | 0.00 369 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
ab-mvs-re | | | 7.68 333 | 10.24 335 | 0.00 348 | 0.00 368 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 363 | 0.00 366 | 92.12 33 | 0.00 369 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
uanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 368 | 0.00 369 | 0.00 360 | 0.00 368 | 0.00 363 | 0.00 366 | 0.00 366 | 0.00 369 | 0.00 364 | 0.00 364 | 0.00 362 | 0.00 362 |
|
ZD-MVS | | | | | | 89.55 11 | 53.46 101 | | 84.38 125 | 57.02 209 | 73.97 43 | 91.03 54 | 44.57 105 | 91.17 72 | 75.41 54 | 81.78 69 | |
|
test_241102_ONE | | | | | | 89.48 14 | 56.89 26 | | 88.94 27 | 57.53 201 | 84.61 3 | 93.29 13 | 58.81 9 | 96.45 1 | | | |
|
9.14 | | | | 78.19 22 | | 85.67 53 | | 88.32 54 | 88.84 31 | 59.89 146 | 74.58 39 | 92.62 24 | 46.80 74 | 92.66 39 | 81.40 17 | 85.62 37 | |
|
save fliter | | | | | | 85.35 64 | 56.34 36 | 89.31 38 | 81.46 178 | 61.55 119 | | | | | | | |
|
test0726 | | | | | | 89.40 17 | 57.45 18 | 92.32 7 | 88.63 37 | 57.71 197 | 83.14 7 | 93.96 7 | 55.17 17 | | | | |
|
test_part2 | | | | | | 89.33 19 | 55.48 48 | | | | 82.27 8 | | | | | | |
|
sam_mvs | | | | | | | | | | | | | 35.99 213 | | | | |
|
MTGPA |  | | | | | | | | 81.31 181 | | | | | | | | |
|
test_post1 | | | | | | | | 70.84 306 | | | | 14.72 361 | 34.33 224 | 83.86 247 | 48.80 238 | | |
|
test_post | | | | | | | | | | | | 16.22 358 | 37.52 185 | 84.72 242 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 337 | 38.41 172 | 79.91 284 | | | |
|
MTMP | | | | | | | | 87.27 75 | 15.34 364 | | | | | | | | |
|
gm-plane-assit | | | | | | 83.24 106 | 54.21 85 | | | 70.91 12 | | 88.23 118 | | 95.25 12 | 66.37 107 | | |
|
TEST9 | | | | | | 85.68 51 | 55.42 49 | 87.59 65 | 84.00 136 | 57.72 196 | 72.99 53 | 90.98 56 | 44.87 100 | 88.58 139 | | | |
|
test_8 | | | | | | 85.72 50 | 55.31 53 | 87.60 62 | 83.88 139 | 57.84 194 | 72.84 56 | 90.99 55 | 44.99 97 | 88.34 149 | | | |
|
agg_prior | | | | | | 85.64 54 | 54.92 67 | | 83.61 145 | | 72.53 60 | | | 88.10 159 | | | |
|
test_prior4 | | | | | | | 56.39 35 | 87.15 78 | | | | | | | | | |
|
test_prior2 | | | | | | | | 89.04 43 | | 61.88 114 | 73.55 47 | 91.46 50 | 48.01 62 | | 74.73 57 | 85.46 38 | |
|
旧先验2 | | | | | | | | 81.73 213 | | 45.53 301 | 74.66 35 | | | 70.48 336 | 58.31 174 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 81.61 217 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 83.77 162 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 77.81 303 | 45.64 258 | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 99 | | | | |
|
testdata1 | | | | | | | | 77.55 263 | | 64.14 78 | | | | | | | |
|
plane_prior7 | | | | | | 77.95 214 | 48.46 227 | | | | | | | | | | |
|
plane_prior6 | | | | | | 78.42 209 | 49.39 203 | | | | | | 36.04 211 | | | | |
|
plane_prior4 | | | | | | | | | | | | 83.28 179 | | | | | |
|
plane_prior3 | | | | | | | 48.95 210 | | | 64.01 79 | 62.15 163 | | | | | | |
|
plane_prior2 | | | | | | | | 85.76 106 | | 63.60 89 | | | | | | | |
|
plane_prior1 | | | | | | 78.31 211 | | | | | | | | | | | |
|
plane_prior | | | | | | | 49.57 197 | 87.43 69 | | 64.57 74 | | | | | | 72.84 145 | |
|
n2 | | | | | | | | | 0.00 368 | | | | | | | | |
|
nn | | | | | | | | | 0.00 368 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 353 | | | | | | | | |
|
test11 | | | | | | | | | 84.25 130 | | | | | | | | |
|
door | | | | | | | | | 43.27 352 | | | | | | | | |
|
HQP5-MVS | | | | | | | 51.56 154 | | | | | | | | | | |
|
HQP-NCC | | | | | | 79.02 192 | | 88.00 56 | | 65.45 60 | 64.48 134 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 192 | | 88.00 56 | | 65.45 60 | 64.48 134 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 104 | | |
|
HQP3-MVS | | | | | | | | | 83.68 142 | | | | | | | 73.12 141 | |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 188 | | | | |
|
NP-MVS | | | | | | 78.76 197 | 50.43 176 | | | | | 85.12 158 | | | | | |
|
MDTV_nov1_ep13 | | | | 61.56 234 | | 81.68 142 | 55.12 60 | 72.41 294 | 78.18 240 | 59.19 163 | 58.85 203 | 69.29 312 | 34.69 221 | 86.16 209 | 36.76 290 | 62.96 218 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 214 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 238 | |
|
Test By Simon | | | | | | | | | | | | | 39.38 164 | | | | |
|