MG-MVS | | | 78.42 21 | 76.99 37 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 43 | 64.83 70 | 73.52 49 | 88.09 119 | 48.07 60 | 92.19 51 | 62.24 137 | 84.53 49 | 91.53 48 |
|
CHOSEN 1792x2688 | | | 76.24 54 | 74.03 73 | 82.88 1 | 83.09 110 | 62.84 2 | 85.73 110 | 85.39 95 | 69.79 19 | 64.87 127 | 83.49 173 | 41.52 143 | 93.69 26 | 70.55 80 | 81.82 67 | 92.12 32 |
|
PS-MVSNAJ | | | 80.06 13 | 79.52 14 | 81.68 13 | 85.58 56 | 60.97 3 | 91.69 11 | 87.02 64 | 70.62 13 | 80.75 14 | 93.22 14 | 37.77 175 | 92.50 42 | 82.75 8 | 86.25 31 | 91.57 46 |
|
xiu_mvs_v2_base | | | 79.86 14 | 79.31 15 | 81.53 14 | 85.03 72 | 60.73 4 | 91.65 12 | 86.86 67 | 70.30 17 | 80.77 13 | 93.07 18 | 37.63 180 | 92.28 49 | 82.73 9 | 85.71 35 | 91.57 46 |
|
DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 178 | 59.50 5 | 92.24 8 | 90.72 8 | 69.37 22 | 83.22 6 | 94.47 2 | 63.81 3 | 93.18 30 | 74.02 61 | 93.25 2 | 94.80 1 |
|
ETH3 D test6400 | | | 83.28 1 | 83.47 1 | 82.72 3 | 91.48 4 | 59.33 6 | 92.10 9 | 90.95 7 | 65.68 57 | 80.67 15 | 94.42 3 | 59.41 7 | 95.89 9 | 86.74 2 | 89.75 5 | 92.94 16 |
|
PAPM | | | 76.76 48 | 76.07 50 | 78.81 48 | 80.20 177 | 59.11 7 | 86.86 86 | 86.23 81 | 68.60 25 | 70.18 81 | 88.84 107 | 51.57 36 | 87.16 181 | 65.48 114 | 86.68 26 | 90.15 84 |
|
LFMVS | | | 78.52 19 | 77.14 35 | 82.67 4 | 89.58 10 | 58.90 8 | 91.27 18 | 88.05 47 | 63.22 92 | 74.63 36 | 90.83 63 | 41.38 144 | 94.40 19 | 75.42 51 | 79.90 89 | 94.72 2 |
|
API-MVS | | | 74.17 81 | 72.07 97 | 80.49 19 | 90.02 8 | 58.55 9 | 87.30 73 | 84.27 129 | 57.51 200 | 65.77 116 | 87.77 126 | 41.61 142 | 95.97 8 | 51.71 221 | 82.63 59 | 86.94 145 |
|
test_part1 | | | 73.80 86 | 72.13 94 | 78.79 51 | 85.92 47 | 58.26 10 | 90.60 23 | 86.85 68 | 63.98 78 | 63.95 141 | 81.54 203 | 52.08 34 | 92.24 50 | 64.93 123 | 59.32 239 | 85.87 168 |
|
PatchmatchNet |  | | 67.07 201 | 63.63 221 | 77.40 90 | 83.10 108 | 58.03 11 | 72.11 297 | 77.77 245 | 58.85 174 | 59.37 188 | 70.83 302 | 37.84 174 | 84.93 238 | 42.96 268 | 69.83 169 | 89.26 99 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 63.84 228 | 60.01 245 | 75.32 135 | 78.58 203 | 57.92 12 | 61.61 326 | 77.53 249 | 56.71 214 | 57.75 220 | 70.77 303 | 31.97 245 | 79.91 282 | 48.80 236 | 56.36 266 | 88.13 126 |
|
test_0728_SECOND | | | | | 82.20 8 | 89.50 12 | 57.73 13 | 92.34 5 | 88.88 29 | | | | | 96.39 4 | 81.68 13 | 87.13 19 | 92.47 24 |
|
CNVR-MVS | | | 81.76 7 | 81.90 6 | 81.33 15 | 90.04 7 | 57.70 14 | 91.71 10 | 88.87 30 | 70.31 16 | 77.64 23 | 93.87 8 | 52.58 30 | 93.91 24 | 84.17 4 | 87.92 14 | 92.39 26 |
|
CSCG | | | 80.41 12 | 79.72 12 | 82.49 5 | 89.12 21 | 57.67 15 | 89.29 40 | 91.54 3 | 59.19 161 | 71.82 67 | 90.05 84 | 59.72 6 | 96.04 7 | 78.37 28 | 88.40 12 | 93.75 5 |
|
MCST-MVS | | | 83.01 2 | 83.30 3 | 82.15 10 | 92.84 2 | 57.58 16 | 93.77 1 | 91.10 6 | 75.95 2 | 77.10 24 | 93.09 17 | 54.15 23 | 95.57 10 | 85.80 3 | 85.87 34 | 93.31 9 |
|
IU-MVS | | | | | | 89.48 14 | 57.49 17 | | 91.38 5 | 66.22 49 | 88.26 1 | | | | 82.83 7 | 87.60 16 | 92.44 25 |
|
DVP-MVS | | | 81.30 8 | 81.00 10 | 82.20 8 | 89.40 17 | 57.45 18 | 92.34 5 | 89.99 14 | 57.71 195 | 81.91 9 | 93.64 10 | 55.17 17 | 96.44 2 | 81.68 13 | 87.13 19 | 92.72 21 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 89.40 17 | 57.45 18 | 92.32 7 | 88.63 37 | 57.71 195 | 83.14 7 | 93.96 7 | 55.17 17 | | | | |
|
Effi-MVS+ | | | 75.24 68 | 73.61 77 | 80.16 25 | 81.92 138 | 57.42 20 | 85.21 121 | 76.71 265 | 60.68 135 | 73.32 51 | 89.34 97 | 47.30 68 | 91.63 61 | 68.28 93 | 79.72 90 | 91.42 51 |
|
HyFIR lowres test | | | 69.94 143 | 67.58 157 | 77.04 99 | 77.11 229 | 57.29 21 | 81.49 222 | 79.11 221 | 58.27 182 | 58.86 200 | 80.41 212 | 42.33 129 | 86.96 187 | 61.91 140 | 68.68 176 | 86.87 147 |
|
tpm cat1 | | | 66.28 212 | 62.78 223 | 76.77 110 | 81.40 156 | 57.14 22 | 70.03 306 | 77.19 255 | 53.00 252 | 58.76 203 | 70.73 305 | 46.17 80 | 86.73 193 | 43.27 265 | 64.46 202 | 86.44 157 |
|
DWT-MVSNet_test | | | 75.47 67 | 73.87 75 | 80.29 21 | 87.33 37 | 57.05 23 | 82.86 187 | 87.96 49 | 72.59 6 | 67.29 97 | 87.79 124 | 51.61 35 | 91.52 64 | 54.75 201 | 72.63 147 | 92.29 28 |
|
NCCC | | | 79.57 16 | 79.23 16 | 80.59 18 | 89.50 12 | 56.99 24 | 91.38 15 | 88.17 46 | 67.71 36 | 73.81 44 | 92.75 21 | 46.88 73 | 93.28 28 | 78.79 26 | 84.07 53 | 91.50 50 |
|
SD-MVS | | | 76.18 55 | 74.85 64 | 80.18 24 | 85.39 63 | 56.90 25 | 85.75 108 | 82.45 164 | 56.79 213 | 74.48 40 | 91.81 39 | 43.72 116 | 90.75 82 | 74.61 57 | 78.65 96 | 92.91 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SED-MVS | | | 81.92 6 | 81.75 7 | 82.44 7 | 89.48 14 | 56.89 26 | 92.48 3 | 88.94 27 | 57.50 201 | 84.61 3 | 94.09 4 | 58.81 9 | 96.37 5 | 82.28 11 | 87.60 16 | 94.06 3 |
|
test_241102_ONE | | | | | | 89.48 14 | 56.89 26 | | 88.94 27 | 57.53 199 | 84.61 3 | 93.29 13 | 58.81 9 | 96.45 1 | | | |
|
DELS-MVS | | | 82.32 4 | 82.50 4 | 81.79 11 | 86.80 41 | 56.89 26 | 92.77 2 | 86.30 79 | 77.83 1 | 77.88 21 | 92.13 32 | 60.24 4 | 94.78 18 | 78.97 25 | 89.61 6 | 93.69 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CostFormer | | | 73.89 85 | 72.30 90 | 78.66 57 | 82.36 134 | 56.58 29 | 75.56 270 | 85.30 100 | 66.06 54 | 70.50 80 | 76.88 249 | 57.02 12 | 89.06 119 | 68.27 94 | 68.74 175 | 90.33 79 |
|
CR-MVSNet | | | 62.47 242 | 59.04 252 | 72.77 188 | 73.97 265 | 56.57 30 | 60.52 329 | 71.72 304 | 60.04 141 | 57.49 226 | 65.86 320 | 38.94 165 | 80.31 275 | 42.86 269 | 59.93 233 | 81.42 238 |
|
RPMNet | | | 59.29 257 | 54.25 280 | 74.42 151 | 73.97 265 | 56.57 30 | 60.52 329 | 76.98 259 | 35.72 334 | 57.49 226 | 58.87 337 | 37.73 178 | 85.26 230 | 27.01 328 | 59.93 233 | 81.42 238 |
|
VDDNet | | | 74.37 78 | 72.13 94 | 81.09 17 | 79.58 182 | 56.52 32 | 90.02 26 | 86.70 72 | 52.61 255 | 71.23 74 | 87.20 131 | 31.75 249 | 93.96 23 | 74.30 59 | 75.77 119 | 92.79 20 |
|
MSLP-MVS++ | | | 74.21 80 | 72.25 91 | 80.11 27 | 81.45 155 | 56.47 33 | 86.32 95 | 79.65 208 | 58.19 183 | 66.36 107 | 92.29 31 | 36.11 206 | 90.66 84 | 67.39 97 | 82.49 60 | 93.18 13 |
|
MVS_111021_HR | | | 76.39 53 | 75.38 57 | 79.42 34 | 85.33 66 | 56.47 33 | 88.15 55 | 84.97 112 | 65.15 68 | 66.06 111 | 89.88 87 | 43.79 113 | 92.16 52 | 75.03 54 | 80.03 87 | 89.64 93 |
|
test_prior4 | | | | | | | 56.39 35 | 87.15 78 | | | | | | | | | |
|
xxxxxxxxxxxxxcwj | | | 77.31 38 | 76.54 41 | 79.61 31 | 85.35 64 | 56.34 36 | 89.31 38 | 72.84 298 | 61.55 117 | 74.63 36 | 92.38 27 | 47.75 64 | 91.35 68 | 78.18 33 | 86.85 24 | 91.15 58 |
|
save fliter | | | | | | 85.35 64 | 56.34 36 | 89.31 38 | 81.46 177 | 61.55 117 | | | | | | | |
|
TSAR-MVS + MP. | | | 78.31 25 | 78.26 20 | 78.48 61 | 81.33 158 | 56.31 38 | 81.59 217 | 86.41 76 | 69.61 21 | 81.72 11 | 88.16 118 | 55.09 19 | 88.04 160 | 74.12 60 | 86.31 30 | 91.09 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
EPMVS | | | 68.45 169 | 65.44 203 | 77.47 89 | 84.91 73 | 56.17 39 | 71.89 299 | 81.91 171 | 61.72 115 | 60.85 171 | 72.49 289 | 36.21 205 | 87.06 184 | 47.32 246 | 71.62 155 | 89.17 104 |
|
tpm2 | | | 70.82 127 | 68.44 142 | 77.98 77 | 80.78 167 | 56.11 40 | 74.21 280 | 81.28 183 | 60.24 140 | 68.04 92 | 75.27 267 | 52.26 32 | 88.50 143 | 55.82 195 | 68.03 179 | 89.33 97 |
|
test12 | | | | | 79.24 36 | 86.89 40 | 56.08 41 | | 85.16 107 | | 72.27 65 | | 47.15 71 | 91.10 73 | | 85.93 33 | 90.54 75 |
|
OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 42 | 92.48 3 | | | | 94.01 6 | 67.21 2 | 95.10 13 | 89.82 1 | 92.55 3 | 94.06 3 |
|
SMA-MVS |  | | 79.10 17 | 78.76 17 | 80.12 26 | 84.42 79 | 55.87 43 | 87.58 67 | 86.76 70 | 61.48 121 | 80.26 16 | 93.10 15 | 46.53 78 | 92.41 45 | 79.97 21 | 88.77 9 | 92.08 33 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
tpmrst | | | 71.04 123 | 69.77 126 | 74.86 143 | 83.19 107 | 55.86 44 | 75.64 269 | 78.73 228 | 67.88 33 | 64.99 126 | 73.73 275 | 49.96 50 | 79.56 285 | 65.92 109 | 67.85 182 | 89.14 105 |
|
ET-MVSNet_ETH3D | | | 75.23 69 | 74.08 72 | 78.67 56 | 84.52 78 | 55.59 45 | 88.92 45 | 89.21 20 | 68.06 31 | 53.13 264 | 90.22 78 | 49.71 52 | 87.62 172 | 72.12 74 | 70.82 162 | 92.82 19 |
|
MS-PatchMatch | | | 72.34 107 | 71.26 107 | 75.61 129 | 82.38 133 | 55.55 46 | 88.00 56 | 89.95 15 | 65.38 62 | 56.51 240 | 80.74 211 | 32.28 242 | 92.89 32 | 57.95 178 | 88.10 13 | 78.39 276 |
|
IB-MVS | | 68.87 2 | 74.01 83 | 72.03 99 | 79.94 29 | 83.04 113 | 55.50 47 | 90.24 25 | 88.65 35 | 67.14 41 | 61.38 167 | 81.74 200 | 53.21 26 | 94.28 20 | 60.45 156 | 62.41 222 | 90.03 86 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test_part2 | | | | | | 89.33 19 | 55.48 48 | | | | 82.27 8 | | | | | | |
|
TEST9 | | | | | | 85.68 51 | 55.42 49 | 87.59 65 | 84.00 136 | 57.72 194 | 72.99 53 | 90.98 56 | 44.87 100 | 88.58 138 | | | |
|
train_agg | | | 76.91 44 | 76.40 45 | 78.45 63 | 85.68 51 | 55.42 49 | 87.59 65 | 84.00 136 | 57.84 192 | 72.99 53 | 90.98 56 | 44.99 97 | 88.58 138 | 78.19 31 | 85.32 41 | 91.34 56 |
|
cascas | | | 69.01 158 | 66.13 186 | 77.66 84 | 79.36 183 | 55.41 51 | 86.99 80 | 83.75 141 | 56.69 215 | 58.92 198 | 81.35 204 | 24.31 297 | 92.10 55 | 53.23 207 | 70.61 163 | 85.46 176 |
|
3Dnovator | | 64.70 6 | 74.46 77 | 72.48 86 | 80.41 20 | 82.84 122 | 55.40 52 | 83.08 181 | 88.61 39 | 67.61 38 | 59.85 179 | 88.66 109 | 34.57 220 | 93.97 22 | 58.42 170 | 88.70 10 | 91.85 40 |
|
test_8 | | | | | | 85.72 50 | 55.31 53 | 87.60 62 | 83.88 139 | 57.84 192 | 72.84 56 | 90.99 55 | 44.99 97 | 88.34 148 | | | |
|
SteuartSystems-ACMMP | | | 77.08 41 | 76.33 46 | 79.34 35 | 80.98 161 | 55.31 53 | 89.76 33 | 86.91 66 | 62.94 96 | 71.65 68 | 91.56 47 | 42.33 129 | 92.56 41 | 77.14 40 | 83.69 55 | 90.15 84 |
Skip Steuart: Steuart Systems R&D Blog. |
MVSFormer | | | 73.53 91 | 72.19 93 | 77.57 86 | 83.02 114 | 55.24 55 | 81.63 214 | 81.44 178 | 50.28 269 | 76.67 26 | 90.91 60 | 44.82 102 | 86.11 208 | 60.83 148 | 80.09 84 | 91.36 54 |
|
lupinMVS | | | 78.38 22 | 78.11 24 | 79.19 37 | 83.02 114 | 55.24 55 | 91.57 14 | 84.82 116 | 69.12 23 | 76.67 26 | 92.02 36 | 44.82 102 | 90.23 98 | 80.83 18 | 80.09 84 | 92.08 33 |
|
MVS | | | 76.91 44 | 75.48 54 | 81.23 16 | 84.56 77 | 55.21 57 | 80.23 240 | 91.64 2 | 58.65 177 | 65.37 119 | 91.48 49 | 45.72 90 | 95.05 14 | 72.11 75 | 89.52 8 | 93.44 7 |
|
HPM-MVS++ |  | | 80.50 11 | 80.71 11 | 79.88 30 | 87.34 36 | 55.20 58 | 89.93 29 | 87.55 59 | 66.04 56 | 79.46 19 | 93.00 19 | 53.10 27 | 91.76 59 | 80.40 20 | 89.56 7 | 92.68 22 |
|
MVS_Test | | | 75.85 61 | 74.93 63 | 78.62 58 | 84.08 87 | 55.20 58 | 83.99 156 | 85.17 106 | 68.07 30 | 73.38 50 | 82.76 183 | 50.44 46 | 89.00 125 | 65.90 110 | 80.61 77 | 91.64 42 |
|
MDTV_nov1_ep13 | | | | 61.56 232 | | 81.68 142 | 55.12 60 | 72.41 291 | 78.18 238 | 59.19 161 | 58.85 201 | 69.29 310 | 34.69 219 | 86.16 207 | 36.76 288 | 62.96 218 | |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 29 | 77.63 29 | 79.13 39 | 88.52 23 | 55.12 60 | 89.95 28 | 85.98 86 | 68.31 27 | 71.33 73 | 92.75 21 | 45.52 92 | 90.37 91 | 71.15 78 | 85.14 43 | 91.91 38 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PAPR | | | 75.20 70 | 74.13 71 | 78.41 64 | 88.31 27 | 55.10 62 | 84.31 146 | 85.66 90 | 63.76 83 | 67.55 95 | 90.73 64 | 43.48 121 | 89.40 115 | 66.36 106 | 77.03 107 | 90.73 69 |
|
DPE-MVS | | | 79.82 15 | 79.66 13 | 80.29 21 | 89.27 20 | 55.08 63 | 88.70 49 | 87.92 50 | 55.55 229 | 81.21 12 | 93.69 9 | 56.51 14 | 94.27 21 | 78.36 29 | 85.70 36 | 91.51 49 |
|
DeepC-MVS | | 67.15 4 | 76.90 46 | 76.27 47 | 78.80 49 | 80.70 169 | 55.02 64 | 86.39 93 | 86.71 71 | 66.96 43 | 67.91 93 | 89.97 86 | 48.03 61 | 91.41 67 | 75.60 48 | 84.14 52 | 89.96 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 67.86 180 | 65.48 200 | 75.00 141 | 88.15 29 | 54.99 65 | 86.10 100 | 76.63 267 | 49.30 275 | 57.80 217 | 86.65 141 | 29.39 264 | 88.94 131 | 45.10 258 | 70.21 166 | 81.06 248 |
|
CDPH-MVS | | | 76.05 58 | 75.19 58 | 78.62 58 | 86.51 43 | 54.98 66 | 87.32 71 | 84.59 122 | 58.62 178 | 70.75 77 | 90.85 62 | 43.10 127 | 90.63 86 | 70.50 81 | 84.51 50 | 90.24 80 |
|
agg_prior1 | | | 76.68 50 | 76.24 48 | 78.00 76 | 85.64 54 | 54.92 67 | 87.55 68 | 83.61 145 | 57.99 188 | 72.53 60 | 91.05 53 | 45.36 93 | 88.10 158 | 77.76 37 | 84.68 48 | 90.99 65 |
|
agg_prior | | | | | | 85.64 54 | 54.92 67 | | 83.61 145 | | 72.53 60 | | | 88.10 158 | | | |
|
test_prior3 | | | 77.59 34 | 77.33 34 | 78.39 66 | 86.35 44 | 54.91 69 | 89.04 43 | 85.45 92 | 61.88 112 | 73.55 47 | 91.46 50 | 48.01 62 | 89.70 109 | 74.73 55 | 85.46 38 | 90.55 72 |
|
test_prior | | | | | 78.39 66 | 86.35 44 | 54.91 69 | | 85.45 92 | | | | | 89.70 109 | | | 90.55 72 |
|
Fast-Effi-MVS+ | | | 72.73 100 | 71.15 111 | 77.48 88 | 82.75 125 | 54.76 71 | 86.77 87 | 80.64 190 | 63.05 94 | 65.93 112 | 84.01 164 | 44.42 106 | 89.03 122 | 56.45 192 | 76.36 115 | 88.64 116 |
|
ppachtmachnet_test | | | 58.56 269 | 54.34 278 | 71.24 222 | 71.42 290 | 54.74 72 | 81.84 210 | 72.27 301 | 49.02 277 | 45.86 304 | 68.99 312 | 26.27 283 | 83.30 254 | 30.12 314 | 43.23 324 | 75.69 301 |
|
jason | | | 77.01 42 | 76.45 44 | 78.69 55 | 79.69 181 | 54.74 72 | 90.56 24 | 83.99 138 | 68.26 28 | 74.10 42 | 90.91 60 | 42.14 133 | 89.99 102 | 79.30 24 | 79.12 92 | 91.36 54 |
jason: jason. |
mvs_anonymous | | | 72.29 109 | 70.74 112 | 76.94 105 | 82.85 121 | 54.72 74 | 78.43 257 | 81.54 176 | 63.77 82 | 61.69 166 | 79.32 219 | 51.11 39 | 85.31 227 | 62.15 139 | 75.79 118 | 90.79 68 |
|
PVSNet_Blended_VisFu | | | 73.40 93 | 72.44 87 | 76.30 114 | 81.32 159 | 54.70 75 | 85.81 104 | 78.82 225 | 63.70 84 | 64.53 131 | 85.38 154 | 47.11 72 | 87.38 178 | 67.75 96 | 77.55 102 | 86.81 152 |
|
MAR-MVS | | | 76.76 48 | 75.60 53 | 80.21 23 | 90.87 5 | 54.68 76 | 89.14 41 | 89.11 22 | 62.95 95 | 70.54 79 | 92.33 29 | 41.05 145 | 94.95 15 | 57.90 179 | 86.55 28 | 91.00 64 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ACMMP_NAP | | | 76.43 52 | 75.66 52 | 78.73 53 | 81.92 138 | 54.67 77 | 84.06 153 | 85.35 97 | 61.10 126 | 72.99 53 | 91.50 48 | 40.25 153 | 91.00 75 | 76.84 41 | 86.98 22 | 90.51 76 |
|
casdiffmvs | | | 77.36 37 | 76.85 38 | 78.88 44 | 80.40 176 | 54.66 78 | 87.06 79 | 85.88 87 | 72.11 8 | 71.57 70 | 88.63 112 | 50.89 44 | 90.35 92 | 76.00 44 | 79.11 93 | 91.63 43 |
|
原ACMM1 | | | | | 76.13 120 | 84.89 74 | 54.59 79 | | 85.26 103 | 51.98 259 | 66.70 100 | 87.07 135 | 40.15 156 | 89.70 109 | 51.23 223 | 85.06 45 | 84.10 192 |
|
ETV-MVS | | | 77.17 39 | 76.74 40 | 78.48 61 | 81.80 140 | 54.55 80 | 86.13 99 | 85.33 98 | 68.20 29 | 73.10 52 | 90.52 71 | 45.23 95 | 90.66 84 | 79.37 23 | 80.95 72 | 90.22 81 |
|
APDe-MVS | | | 78.44 20 | 78.20 21 | 79.19 37 | 88.56 22 | 54.55 80 | 89.76 33 | 87.77 54 | 55.91 224 | 78.56 20 | 92.49 25 | 48.20 59 | 92.65 40 | 79.49 22 | 83.04 57 | 90.39 77 |
|
tpmvs | | | 62.45 243 | 59.42 248 | 71.53 219 | 83.93 90 | 54.32 82 | 70.03 306 | 77.61 248 | 51.91 260 | 53.48 263 | 68.29 313 | 37.91 173 | 86.66 195 | 33.36 302 | 58.27 248 | 73.62 316 |
|
QAPM | | | 71.88 114 | 69.33 133 | 79.52 32 | 82.20 135 | 54.30 83 | 86.30 96 | 88.77 33 | 56.61 217 | 59.72 181 | 87.48 129 | 33.90 227 | 95.36 11 | 47.48 245 | 81.49 70 | 88.90 110 |
|
canonicalmvs | | | 78.17 27 | 77.86 28 | 79.12 40 | 84.30 81 | 54.22 84 | 87.71 60 | 84.57 123 | 67.70 37 | 77.70 22 | 92.11 35 | 50.90 42 | 89.95 103 | 78.18 33 | 77.54 103 | 93.20 12 |
|
CANet | | | 80.90 9 | 81.17 9 | 80.09 28 | 87.62 34 | 54.21 85 | 91.60 13 | 86.47 75 | 73.13 5 | 79.89 18 | 93.10 15 | 49.88 51 | 92.98 31 | 84.09 5 | 84.75 47 | 93.08 14 |
|
gm-plane-assit | | | | | | 83.24 106 | 54.21 85 | | | 70.91 12 | | 88.23 117 | | 95.25 12 | 66.37 105 | | |
|
baseline | | | 76.86 47 | 76.24 48 | 78.71 54 | 80.47 175 | 54.20 87 | 83.90 158 | 84.88 115 | 71.38 11 | 71.51 71 | 89.15 102 | 50.51 45 | 90.55 88 | 75.71 46 | 78.65 96 | 91.39 52 |
|
dp | | | 64.41 224 | 61.58 231 | 72.90 185 | 82.40 132 | 54.09 88 | 72.53 289 | 76.59 268 | 60.39 138 | 55.68 246 | 70.39 306 | 35.18 216 | 76.90 307 | 39.34 276 | 61.71 226 | 87.73 134 |
|
OpenMVS |  | 61.00 11 | 69.99 142 | 67.55 160 | 77.30 93 | 78.37 209 | 54.07 89 | 84.36 144 | 85.76 89 | 57.22 205 | 56.71 236 | 87.67 127 | 30.79 256 | 92.83 34 | 43.04 266 | 84.06 54 | 85.01 182 |
|
v2v482 | | | 69.55 152 | 67.64 156 | 75.26 138 | 72.32 282 | 53.83 90 | 84.93 135 | 81.94 168 | 65.37 63 | 60.80 172 | 79.25 220 | 41.62 141 | 88.98 128 | 63.03 132 | 59.51 236 | 82.98 219 |
|
ZNCC-MVS | | | 75.82 64 | 75.02 61 | 78.23 70 | 83.88 93 | 53.80 91 | 86.91 85 | 86.05 85 | 59.71 146 | 67.85 94 | 90.55 69 | 42.23 131 | 91.02 74 | 72.66 73 | 85.29 42 | 89.87 89 |
|
MVSTER | | | 73.25 94 | 72.33 88 | 76.01 124 | 85.54 58 | 53.76 92 | 83.52 164 | 87.16 62 | 67.06 42 | 63.88 144 | 81.66 201 | 52.77 28 | 90.44 89 | 64.66 124 | 64.69 200 | 83.84 203 |
|
HFP-MVS | | | 74.37 78 | 73.13 81 | 78.10 74 | 84.30 81 | 53.68 93 | 85.58 113 | 84.36 126 | 56.82 211 | 65.78 114 | 90.56 67 | 40.70 150 | 90.90 78 | 69.18 88 | 80.88 73 | 89.71 90 |
|
#test# | | | 74.86 76 | 73.78 76 | 78.10 74 | 84.30 81 | 53.68 93 | 86.95 82 | 84.36 126 | 59.00 171 | 65.78 114 | 90.56 67 | 40.70 150 | 90.90 78 | 71.48 76 | 80.88 73 | 89.71 90 |
|
testtj | | | 76.96 43 | 76.48 43 | 78.40 65 | 89.89 9 | 53.67 95 | 88.72 48 | 86.15 83 | 54.56 242 | 74.86 34 | 92.31 30 | 44.38 107 | 91.97 57 | 75.19 53 | 82.24 63 | 89.54 95 |
|
V42 | | | 67.66 184 | 65.60 199 | 73.86 165 | 70.69 297 | 53.63 96 | 81.50 220 | 78.61 231 | 63.85 81 | 59.49 187 | 77.49 237 | 37.98 172 | 87.65 171 | 62.33 135 | 58.43 247 | 80.29 258 |
|
zzz-MVS | | | 74.15 82 | 73.11 82 | 77.27 95 | 81.54 150 | 53.57 97 | 84.02 155 | 81.31 180 | 59.41 153 | 68.39 89 | 90.96 58 | 36.07 207 | 89.01 123 | 73.80 63 | 82.45 61 | 89.23 100 |
|
MTAPA | | | 72.73 100 | 71.22 108 | 77.27 95 | 81.54 150 | 53.57 97 | 67.06 314 | 81.31 180 | 59.41 153 | 68.39 89 | 90.96 58 | 36.07 207 | 89.01 123 | 73.80 63 | 82.45 61 | 89.23 100 |
|
RRT_test8_iter05 | | | 72.74 99 | 71.20 109 | 77.36 91 | 87.25 38 | 53.51 99 | 88.68 50 | 89.53 16 | 65.20 67 | 61.32 168 | 81.27 205 | 45.89 86 | 92.48 44 | 65.99 108 | 55.65 279 | 86.10 162 |
|
新几何1 | | | | | 73.30 181 | 83.10 108 | 53.48 100 | | 71.43 309 | 45.55 298 | 66.14 109 | 87.17 133 | 33.88 228 | 80.54 272 | 48.50 239 | 80.33 82 | 85.88 167 |
|
ZD-MVS | | | | | | 89.55 11 | 53.46 101 | | 84.38 125 | 57.02 207 | 73.97 43 | 91.03 54 | 44.57 105 | 91.17 72 | 75.41 52 | 81.78 69 | |
|
v1144 | | | 68.81 162 | 66.82 170 | 74.80 145 | 72.34 281 | 53.46 101 | 84.68 139 | 81.77 174 | 64.25 75 | 60.28 177 | 77.91 231 | 40.23 154 | 88.95 129 | 60.37 157 | 59.52 235 | 81.97 227 |
|
1121 | | | 68.79 164 | 66.77 172 | 74.82 144 | 83.08 111 | 53.46 101 | 80.23 240 | 71.53 308 | 45.47 300 | 66.31 108 | 87.19 132 | 34.02 224 | 85.13 234 | 52.78 214 | 80.36 81 | 85.87 168 |
|
GST-MVS | | | 74.87 75 | 73.90 74 | 77.77 81 | 83.30 104 | 53.45 104 | 85.75 108 | 85.29 101 | 59.22 160 | 66.50 106 | 89.85 88 | 40.94 146 | 90.76 81 | 70.94 79 | 83.35 56 | 89.10 106 |
|
APD-MVS |  | | 76.15 56 | 75.68 51 | 77.54 87 | 88.52 23 | 53.44 105 | 87.26 76 | 85.03 111 | 53.79 246 | 74.91 33 | 91.68 45 | 43.80 112 | 90.31 94 | 74.36 58 | 81.82 67 | 88.87 111 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DP-MVS Recon | | | 71.99 113 | 70.31 117 | 77.01 101 | 90.65 6 | 53.44 105 | 89.37 36 | 82.97 158 | 56.33 221 | 63.56 149 | 89.47 94 | 34.02 224 | 92.15 54 | 54.05 204 | 72.41 149 | 85.43 177 |
|
v1192 | | | 67.96 179 | 65.74 195 | 74.63 146 | 71.79 284 | 53.43 107 | 84.06 153 | 80.99 186 | 63.19 93 | 59.56 185 | 77.46 238 | 37.50 185 | 88.65 135 | 58.20 173 | 58.93 242 | 81.79 230 |
|
v10 | | | 66.61 208 | 64.20 217 | 73.83 167 | 72.59 278 | 53.37 108 | 81.88 208 | 79.91 202 | 61.11 125 | 54.09 257 | 75.60 265 | 40.06 158 | 88.26 154 | 56.47 190 | 56.10 272 | 79.86 264 |
|
diffmvs | | | 75.11 72 | 74.65 67 | 76.46 113 | 78.52 205 | 53.35 109 | 83.28 178 | 79.94 200 | 70.51 15 | 71.64 69 | 88.72 108 | 46.02 85 | 86.08 214 | 77.52 38 | 75.75 120 | 89.96 87 |
|
PAPM_NR | | | 71.80 115 | 69.98 124 | 77.26 97 | 81.54 150 | 53.34 110 | 78.60 256 | 85.25 104 | 53.46 248 | 60.53 176 | 88.66 109 | 45.69 91 | 89.24 117 | 56.49 189 | 79.62 91 | 89.19 103 |
|
VDD-MVS | | | 76.08 57 | 74.97 62 | 79.44 33 | 84.27 84 | 53.33 111 | 91.13 19 | 85.88 87 | 65.33 64 | 72.37 63 | 89.34 97 | 32.52 239 | 92.76 37 | 77.90 36 | 75.96 116 | 92.22 31 |
|
v8 | | | 67.25 195 | 64.99 210 | 74.04 160 | 72.89 275 | 53.31 112 | 82.37 199 | 80.11 198 | 61.54 119 | 54.29 255 | 76.02 263 | 42.89 128 | 88.41 145 | 58.43 168 | 56.36 266 | 80.39 257 |
|
our_test_3 | | | 59.11 261 | 55.08 277 | 71.18 225 | 71.42 290 | 53.29 113 | 81.96 205 | 74.52 282 | 48.32 279 | 42.08 314 | 69.28 311 | 28.14 269 | 82.15 259 | 34.35 299 | 45.68 319 | 78.11 281 |
|
alignmvs | | | 78.08 28 | 77.98 25 | 78.39 66 | 83.53 97 | 53.22 114 | 89.77 32 | 85.45 92 | 66.11 51 | 76.59 28 | 91.99 38 | 54.07 24 | 89.05 121 | 77.34 39 | 77.00 108 | 92.89 18 |
|
xiu_mvs_v1_base_debu | | | 71.60 117 | 70.29 118 | 75.55 130 | 77.26 224 | 53.15 115 | 85.34 117 | 79.37 212 | 55.83 225 | 72.54 57 | 90.19 79 | 22.38 307 | 86.66 195 | 73.28 68 | 76.39 112 | 86.85 149 |
|
xiu_mvs_v1_base | | | 71.60 117 | 70.29 118 | 75.55 130 | 77.26 224 | 53.15 115 | 85.34 117 | 79.37 212 | 55.83 225 | 72.54 57 | 90.19 79 | 22.38 307 | 86.66 195 | 73.28 68 | 76.39 112 | 86.85 149 |
|
xiu_mvs_v1_base_debi | | | 71.60 117 | 70.29 118 | 75.55 130 | 77.26 224 | 53.15 115 | 85.34 117 | 79.37 212 | 55.83 225 | 72.54 57 | 90.19 79 | 22.38 307 | 86.66 195 | 73.28 68 | 76.39 112 | 86.85 149 |
|
v144192 | | | 67.86 180 | 65.76 194 | 74.16 157 | 71.68 286 | 53.09 118 | 84.14 150 | 80.83 188 | 62.85 97 | 59.21 192 | 77.28 241 | 39.30 163 | 88.00 161 | 58.67 167 | 57.88 258 | 81.40 240 |
|
CS-MVS | | | 78.19 26 | 77.97 26 | 78.82 47 | 83.52 98 | 53.08 119 | 89.10 42 | 86.30 79 | 68.01 32 | 73.57 46 | 91.26 52 | 47.28 69 | 92.35 47 | 78.21 30 | 84.51 50 | 91.05 61 |
|
ADS-MVSNet | | | 56.17 283 | 51.95 292 | 68.84 253 | 80.60 172 | 53.07 120 | 55.03 336 | 70.02 316 | 44.72 304 | 51.00 277 | 61.19 330 | 22.83 303 | 78.88 288 | 28.54 321 | 53.63 290 | 74.57 310 |
|
MP-MVS |  | | 74.99 74 | 74.33 70 | 76.95 104 | 82.89 120 | 53.05 121 | 85.63 112 | 83.50 147 | 57.86 191 | 67.25 98 | 90.24 77 | 43.38 122 | 88.85 133 | 76.03 43 | 82.23 64 | 88.96 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
thisisatest0515 | | | 73.64 90 | 72.20 92 | 77.97 78 | 81.63 144 | 53.01 122 | 86.69 89 | 88.81 32 | 62.53 101 | 64.06 138 | 85.65 150 | 52.15 33 | 92.50 42 | 58.43 168 | 69.84 168 | 88.39 122 |
|
region2R | | | 73.75 88 | 72.55 85 | 77.33 92 | 83.90 92 | 52.98 123 | 85.54 116 | 84.09 134 | 56.83 210 | 65.10 122 | 90.45 72 | 37.34 188 | 90.24 97 | 68.89 90 | 80.83 76 | 88.77 114 |
|
ACMMPR | | | 73.76 87 | 72.61 83 | 77.24 98 | 83.92 91 | 52.96 124 | 85.58 113 | 84.29 128 | 56.82 211 | 65.12 121 | 90.45 72 | 37.24 190 | 90.18 99 | 69.18 88 | 80.84 75 | 88.58 118 |
|
v1921920 | | | 67.45 189 | 65.23 207 | 74.10 159 | 71.51 289 | 52.90 125 | 83.75 162 | 80.44 193 | 62.48 103 | 59.12 194 | 77.13 242 | 36.98 193 | 87.90 162 | 57.53 183 | 58.14 252 | 81.49 235 |
|
PGM-MVS | | | 72.60 102 | 71.20 109 | 76.80 108 | 82.95 117 | 52.82 126 | 83.07 182 | 82.14 165 | 56.51 219 | 63.18 151 | 89.81 89 | 35.68 212 | 89.76 108 | 67.30 98 | 80.19 83 | 87.83 131 |
|
MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 49 | 82.99 116 | 52.71 127 | 85.04 131 | 88.63 37 | 66.08 53 | 86.77 2 | 92.75 21 | 72.05 1 | 91.46 66 | 83.35 6 | 93.53 1 | 92.23 29 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ETH3D cwj APD-0.16 | | | 78.36 23 | 78.19 22 | 78.86 46 | 84.21 85 | 52.68 128 | 86.70 88 | 89.02 25 | 59.13 167 | 75.37 31 | 92.49 25 | 49.06 56 | 93.20 29 | 80.67 19 | 87.08 21 | 90.71 70 |
|
v1240 | | | 66.99 202 | 64.68 212 | 73.93 162 | 71.38 292 | 52.66 129 | 83.39 175 | 79.98 199 | 61.97 110 | 58.44 211 | 77.11 243 | 35.25 215 | 87.81 164 | 56.46 191 | 58.15 250 | 81.33 243 |
|
MP-MVS-pluss | | | 75.54 66 | 75.03 60 | 77.04 99 | 81.37 157 | 52.65 130 | 84.34 145 | 84.46 124 | 61.16 124 | 69.14 83 | 91.76 42 | 39.98 159 | 88.99 127 | 78.19 31 | 84.89 46 | 89.48 96 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
XVS | | | 72.92 97 | 71.62 101 | 76.81 106 | 83.41 99 | 52.48 131 | 84.88 136 | 83.20 153 | 58.03 185 | 63.91 142 | 89.63 92 | 35.50 213 | 89.78 106 | 65.50 112 | 80.50 79 | 88.16 123 |
|
X-MVStestdata | | | 65.85 218 | 62.20 227 | 76.81 106 | 83.41 99 | 52.48 131 | 84.88 136 | 83.20 153 | 58.03 185 | 63.91 142 | 4.82 359 | 35.50 213 | 89.78 106 | 65.50 112 | 80.50 79 | 88.16 123 |
|
SF-MVS | | | 77.64 33 | 77.42 33 | 78.32 69 | 83.75 95 | 52.47 133 | 86.63 90 | 87.80 51 | 58.78 175 | 74.63 36 | 92.38 27 | 47.75 64 | 91.35 68 | 78.18 33 | 86.85 24 | 91.15 58 |
|
Regformer-1 | | | 77.80 32 | 77.44 32 | 78.88 44 | 87.78 32 | 52.44 134 | 87.60 62 | 90.08 12 | 68.86 24 | 72.49 62 | 91.79 40 | 47.69 66 | 94.90 16 | 73.57 65 | 77.05 105 | 89.31 98 |
|
ETH3D-3000-0.1 | | | 78.73 18 | 78.71 18 | 78.78 52 | 85.58 56 | 52.40 135 | 88.42 53 | 89.03 24 | 60.01 142 | 76.06 29 | 92.80 20 | 48.34 57 | 92.88 33 | 81.66 15 | 86.48 29 | 91.04 62 |
|
CLD-MVS | | | 75.60 65 | 75.39 56 | 76.24 116 | 80.69 170 | 52.40 135 | 90.69 22 | 86.20 82 | 74.40 3 | 65.01 125 | 88.93 104 | 42.05 135 | 90.58 87 | 76.57 42 | 73.96 133 | 85.73 170 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
GA-MVS | | | 69.04 156 | 66.70 175 | 76.06 122 | 75.11 250 | 52.36 137 | 83.12 180 | 80.23 196 | 63.32 90 | 60.65 174 | 79.22 221 | 30.98 255 | 88.37 146 | 61.25 144 | 66.41 189 | 87.46 138 |
|
114514_t | | | 69.87 144 | 67.88 151 | 75.85 127 | 88.38 25 | 52.35 138 | 86.94 83 | 83.68 142 | 53.70 247 | 55.68 246 | 85.60 151 | 30.07 261 | 91.20 71 | 55.84 194 | 71.02 160 | 83.99 196 |
|
CP-MVS | | | 72.59 104 | 71.46 104 | 76.00 125 | 82.93 119 | 52.32 139 | 86.93 84 | 82.48 163 | 55.15 233 | 63.65 147 | 90.44 75 | 35.03 217 | 88.53 142 | 68.69 91 | 77.83 101 | 87.15 143 |
|
Fast-Effi-MVS+-dtu | | | 66.53 209 | 64.10 218 | 73.84 166 | 72.41 280 | 52.30 140 | 84.73 138 | 75.66 274 | 59.51 150 | 56.34 241 | 79.11 223 | 28.11 270 | 85.85 221 | 57.74 182 | 63.29 212 | 83.35 208 |
|
mPP-MVS | | | 71.79 116 | 70.38 116 | 76.04 123 | 82.65 129 | 52.06 141 | 84.45 142 | 81.78 173 | 55.59 228 | 62.05 164 | 89.68 91 | 33.48 231 | 88.28 153 | 65.45 117 | 78.24 100 | 87.77 133 |
|
EPNet | | | 78.36 23 | 78.49 19 | 77.97 78 | 85.49 59 | 52.04 142 | 89.36 37 | 84.07 135 | 73.22 4 | 77.03 25 | 91.72 43 | 49.32 55 | 90.17 100 | 73.46 67 | 82.77 58 | 91.69 41 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PCF-MVS | | 61.03 10 | 70.10 137 | 68.40 143 | 75.22 139 | 77.15 228 | 51.99 143 | 79.30 252 | 82.12 166 | 56.47 220 | 61.88 165 | 86.48 144 | 43.98 109 | 87.24 180 | 55.37 196 | 72.79 146 | 86.43 158 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test_yl | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 30 | 51.94 144 | 91.30 16 | 89.28 18 | 57.91 189 | 71.19 75 | 89.20 100 | 42.03 136 | 92.77 35 | 69.41 85 | 75.07 127 | 92.01 36 |
|
DCV-MVSNet | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 30 | 51.94 144 | 91.30 16 | 89.28 18 | 57.91 189 | 71.19 75 | 89.20 100 | 42.03 136 | 92.77 35 | 69.41 85 | 75.07 127 | 92.01 36 |
|
ACMMP |  | | 70.81 128 | 69.29 134 | 75.39 134 | 81.52 154 | 51.92 146 | 83.43 171 | 83.03 156 | 56.67 216 | 58.80 202 | 88.91 105 | 31.92 247 | 88.58 138 | 65.89 111 | 73.39 138 | 85.67 171 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PVSNet | | 62.49 8 | 69.27 154 | 67.81 154 | 73.64 173 | 84.41 80 | 51.85 147 | 84.63 141 | 77.80 244 | 66.42 45 | 59.80 180 | 84.95 158 | 22.14 311 | 80.44 274 | 55.03 197 | 75.11 126 | 88.62 117 |
|
Regformer-2 | | | 77.15 40 | 76.82 39 | 78.14 72 | 87.78 32 | 51.84 148 | 87.60 62 | 89.12 21 | 67.23 40 | 71.93 66 | 91.79 40 | 46.03 84 | 93.53 27 | 72.85 71 | 77.05 105 | 89.05 107 |
|
PVSNet_BlendedMVS | | | 73.42 92 | 73.30 78 | 73.76 169 | 85.91 48 | 51.83 149 | 86.18 98 | 84.24 132 | 65.40 61 | 69.09 84 | 80.86 209 | 46.70 76 | 88.13 156 | 75.43 49 | 65.92 195 | 81.33 243 |
|
PVSNet_Blended | | | 76.53 51 | 76.54 41 | 76.50 111 | 85.91 48 | 51.83 149 | 88.89 46 | 84.24 132 | 67.82 34 | 69.09 84 | 89.33 99 | 46.70 76 | 88.13 156 | 75.43 49 | 81.48 71 | 89.55 94 |
|
baseline2 | | | 75.15 71 | 74.54 69 | 76.98 103 | 81.67 143 | 51.74 151 | 83.84 159 | 91.94 1 | 69.97 18 | 58.98 195 | 86.02 146 | 59.73 5 | 91.73 60 | 68.37 92 | 70.40 165 | 87.48 137 |
|
mvs-test1 | | | 69.04 156 | 67.57 159 | 73.44 178 | 75.17 248 | 51.68 152 | 86.57 92 | 74.48 283 | 62.15 105 | 62.07 163 | 85.79 148 | 30.59 257 | 87.48 175 | 65.40 119 | 65.94 194 | 81.18 247 |
|
EIA-MVS | | | 75.92 60 | 75.18 59 | 78.13 73 | 85.14 69 | 51.60 153 | 87.17 77 | 85.32 99 | 64.69 71 | 68.56 87 | 90.53 70 | 45.79 89 | 91.58 62 | 67.21 99 | 82.18 65 | 91.20 57 |
|
HQP5-MVS | | | | | | | 51.56 154 | | | | | | | | | | |
|
HQP-MVS | | | 72.34 107 | 71.44 105 | 75.03 140 | 79.02 191 | 51.56 154 | 88.00 56 | 83.68 142 | 65.45 58 | 64.48 132 | 85.13 155 | 37.35 186 | 88.62 136 | 66.70 102 | 73.12 141 | 84.91 184 |
|
thisisatest0530 | | | 70.47 134 | 68.56 140 | 76.20 118 | 79.78 180 | 51.52 156 | 83.49 170 | 88.58 42 | 57.62 198 | 58.60 204 | 82.79 182 | 51.03 41 | 91.48 65 | 52.84 212 | 62.36 224 | 85.59 175 |
|
v148 | | | 68.24 175 | 66.35 179 | 73.88 164 | 71.76 285 | 51.47 157 | 84.23 148 | 81.90 172 | 63.69 85 | 58.94 196 | 76.44 254 | 43.72 116 | 87.78 168 | 60.63 150 | 55.86 276 | 82.39 224 |
|
Regformer-3 | | | 76.02 59 | 75.47 55 | 77.70 83 | 85.49 59 | 51.47 157 | 85.12 127 | 90.19 11 | 68.52 26 | 69.36 82 | 90.66 65 | 46.45 79 | 94.81 17 | 70.25 83 | 73.16 139 | 86.81 152 |
|
HPM-MVS |  | | 72.60 102 | 71.50 103 | 75.89 126 | 82.02 136 | 51.42 159 | 80.70 234 | 83.05 155 | 56.12 223 | 64.03 139 | 89.53 93 | 37.55 182 | 88.37 146 | 70.48 82 | 80.04 86 | 87.88 130 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVP-Stereo | | | 70.97 124 | 70.44 115 | 72.59 191 | 76.03 241 | 51.36 160 | 85.02 133 | 86.99 65 | 60.31 139 | 56.53 239 | 78.92 224 | 40.11 157 | 90.00 101 | 60.00 161 | 90.01 4 | 76.41 298 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
OPM-MVS | | | 70.75 129 | 69.58 128 | 74.26 156 | 75.55 247 | 51.34 161 | 86.05 101 | 83.29 151 | 61.94 111 | 62.95 154 | 85.77 149 | 34.15 223 | 88.44 144 | 65.44 118 | 71.07 159 | 82.99 218 |
|
tpm | | | 68.36 170 | 67.48 162 | 70.97 228 | 79.93 179 | 51.34 161 | 76.58 266 | 78.75 227 | 67.73 35 | 63.54 150 | 74.86 269 | 48.33 58 | 72.36 328 | 53.93 205 | 63.71 206 | 89.21 102 |
|
3Dnovator+ | | 62.71 7 | 72.29 109 | 70.50 114 | 77.65 85 | 83.40 102 | 51.29 163 | 87.32 71 | 86.40 77 | 59.01 170 | 58.49 208 | 88.32 114 | 32.40 240 | 91.27 70 | 57.04 187 | 82.15 66 | 90.38 78 |
|
IterMVS | | | 63.77 230 | 61.67 230 | 70.08 241 | 72.68 277 | 51.24 164 | 80.44 236 | 75.51 275 | 60.51 137 | 51.41 274 | 73.70 278 | 32.08 244 | 78.91 287 | 54.30 203 | 54.35 287 | 80.08 261 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
BH-RMVSNet | | | 70.08 138 | 68.01 148 | 76.27 115 | 84.21 85 | 51.22 165 | 87.29 74 | 79.33 218 | 58.96 173 | 63.63 148 | 86.77 138 | 33.29 233 | 90.30 96 | 44.63 260 | 73.96 133 | 87.30 142 |
|
test222 | | | | | | 79.36 183 | 50.97 166 | 77.99 258 | 67.84 320 | 42.54 318 | 62.84 155 | 86.53 142 | 30.26 259 | | | 76.91 109 | 85.23 179 |
|
TESTMET0.1,1 | | | 72.86 98 | 72.33 88 | 74.46 149 | 81.98 137 | 50.77 167 | 85.13 124 | 85.47 91 | 66.09 52 | 67.30 96 | 83.69 171 | 37.27 189 | 83.57 251 | 65.06 122 | 78.97 95 | 89.05 107 |
|
MSDG | | | 59.44 256 | 55.14 276 | 72.32 199 | 74.69 256 | 50.71 168 | 74.39 279 | 73.58 292 | 44.44 307 | 43.40 310 | 77.52 236 | 19.45 320 | 90.87 80 | 31.31 311 | 57.49 261 | 75.38 304 |
|
PHI-MVS | | | 77.49 35 | 77.00 36 | 78.95 41 | 85.33 66 | 50.69 169 | 88.57 51 | 88.59 41 | 58.14 184 | 73.60 45 | 93.31 12 | 43.14 125 | 93.79 25 | 73.81 62 | 88.53 11 | 92.37 27 |
|
GG-mvs-BLEND | | | | | 77.77 81 | 86.68 42 | 50.61 170 | 68.67 311 | 88.45 44 | | 68.73 86 | 87.45 130 | 59.15 8 | 90.67 83 | 54.83 198 | 87.67 15 | 92.03 35 |
|
nrg030 | | | 72.27 111 | 71.56 102 | 74.42 151 | 75.93 242 | 50.60 171 | 86.97 81 | 83.21 152 | 62.75 98 | 67.15 99 | 84.38 161 | 50.07 48 | 86.66 195 | 71.19 77 | 62.37 223 | 85.99 163 |
|
Patchmtry | | | 56.56 280 | 52.95 287 | 67.42 268 | 72.53 279 | 50.59 172 | 59.05 331 | 71.72 304 | 37.86 329 | 46.92 297 | 65.86 320 | 38.94 165 | 80.06 279 | 36.94 286 | 46.72 316 | 71.60 326 |
|
pmmvs4 | | | 63.34 232 | 61.07 237 | 70.16 239 | 70.14 299 | 50.53 173 | 79.97 244 | 71.41 310 | 55.08 234 | 54.12 256 | 78.58 227 | 32.79 237 | 82.09 261 | 50.33 227 | 57.22 262 | 77.86 282 |
|
1314 | | | 71.11 122 | 69.41 130 | 76.22 117 | 79.32 185 | 50.49 174 | 80.23 240 | 85.14 109 | 59.44 152 | 58.93 197 | 88.89 106 | 33.83 229 | 89.60 113 | 61.49 143 | 77.42 104 | 88.57 119 |
|
SR-MVS | | | 70.92 126 | 69.73 127 | 74.50 148 | 83.38 103 | 50.48 175 | 84.27 147 | 79.35 216 | 48.96 278 | 66.57 105 | 90.45 72 | 33.65 230 | 87.11 182 | 66.42 104 | 74.56 130 | 85.91 166 |
|
NP-MVS | | | | | | 78.76 196 | 50.43 176 | | | | | 85.12 156 | | | | | |
|
eth_miper_zixun_eth | | | 66.98 203 | 65.28 206 | 72.06 203 | 75.61 246 | 50.40 177 | 81.00 229 | 76.97 262 | 62.00 108 | 56.99 233 | 76.97 245 | 44.84 101 | 85.58 222 | 58.75 166 | 54.42 286 | 80.21 259 |
|
BH-w/o | | | 70.02 140 | 68.51 141 | 74.56 147 | 82.77 123 | 50.39 178 | 86.60 91 | 78.14 239 | 59.77 145 | 59.65 182 | 85.57 152 | 39.27 164 | 87.30 179 | 49.86 230 | 74.94 129 | 85.99 163 |
|
Anonymous20240529 | | | 69.71 146 | 67.28 165 | 77.00 102 | 83.78 94 | 50.36 179 | 88.87 47 | 85.10 110 | 47.22 285 | 64.03 139 | 83.37 175 | 27.93 272 | 92.10 55 | 57.78 181 | 67.44 183 | 88.53 120 |
|
DP-MVS | | | 59.24 258 | 56.12 269 | 68.63 259 | 88.24 28 | 50.35 180 | 82.51 195 | 64.43 327 | 41.10 321 | 46.70 299 | 78.77 225 | 24.75 296 | 88.57 141 | 22.26 337 | 56.29 270 | 66.96 335 |
|
Regformer-4 | | | 75.06 73 | 74.59 68 | 76.47 112 | 85.49 59 | 50.33 181 | 85.12 127 | 88.61 39 | 66.42 45 | 68.48 88 | 90.66 65 | 44.15 108 | 92.68 38 | 69.24 87 | 73.16 139 | 86.39 159 |
|
CPTT-MVS | | | 67.15 198 | 65.84 192 | 71.07 226 | 80.96 162 | 50.32 182 | 81.94 206 | 74.10 286 | 46.18 296 | 57.91 215 | 87.64 128 | 29.57 262 | 81.31 265 | 64.10 126 | 70.18 167 | 81.56 234 |
|
test_0402 | | | 56.45 281 | 53.03 285 | 66.69 276 | 76.78 231 | 50.31 183 | 81.76 211 | 69.61 317 | 42.79 317 | 43.88 306 | 72.13 295 | 22.82 305 | 86.46 201 | 16.57 347 | 50.94 301 | 63.31 341 |
|
PVSNet_0 | | 57.04 13 | 61.19 249 | 57.24 260 | 73.02 183 | 77.45 221 | 50.31 183 | 79.43 251 | 77.36 254 | 63.96 80 | 47.51 296 | 72.45 291 | 25.03 294 | 83.78 248 | 52.76 217 | 19.22 350 | 84.96 183 |
|
TSAR-MVS + GP. | | | 77.82 31 | 77.59 30 | 78.49 60 | 85.25 68 | 50.27 185 | 90.02 26 | 90.57 9 | 56.58 218 | 74.26 41 | 91.60 46 | 54.26 21 | 92.16 52 | 75.87 45 | 79.91 88 | 93.05 15 |
|
bset_n11_16_dypcd | | | 65.51 220 | 63.21 222 | 72.41 196 | 68.84 306 | 50.15 186 | 81.25 224 | 72.40 300 | 59.17 165 | 59.20 193 | 78.66 226 | 25.69 290 | 85.27 229 | 66.80 101 | 56.88 264 | 81.80 229 |
|
RRT_MVS | | | 65.43 222 | 64.01 219 | 69.68 246 | 81.54 150 | 50.15 186 | 82.31 200 | 76.78 263 | 55.25 232 | 60.64 175 | 82.00 198 | 25.18 292 | 79.00 286 | 60.96 146 | 51.45 300 | 79.89 263 |
|
VNet | | | 77.99 30 | 77.92 27 | 78.19 71 | 87.43 35 | 50.12 188 | 90.93 21 | 91.41 4 | 67.48 39 | 75.12 32 | 90.15 82 | 46.77 75 | 91.00 75 | 73.52 66 | 78.46 98 | 93.44 7 |
|
CANet_DTU | | | 73.71 89 | 73.14 79 | 75.40 133 | 82.61 130 | 50.05 189 | 84.67 140 | 79.36 215 | 69.72 20 | 75.39 30 | 90.03 85 | 29.41 263 | 85.93 220 | 67.99 95 | 79.11 93 | 90.22 81 |
|
BH-untuned | | | 68.28 173 | 66.40 178 | 73.91 163 | 81.62 145 | 50.01 190 | 85.56 115 | 77.39 252 | 57.63 197 | 57.47 228 | 83.69 171 | 36.36 204 | 87.08 183 | 44.81 259 | 73.08 144 | 84.65 186 |
|
cl-mvsnet2 | | | 68.85 159 | 67.69 155 | 72.35 198 | 78.07 212 | 49.98 191 | 82.45 197 | 78.48 234 | 62.50 102 | 58.46 209 | 77.95 230 | 49.99 49 | 85.17 232 | 62.55 134 | 58.72 243 | 81.90 228 |
|
miper_enhance_ethall | | | 69.77 145 | 68.90 138 | 72.38 197 | 78.93 194 | 49.91 192 | 83.29 177 | 78.85 223 | 64.90 69 | 59.37 188 | 79.46 217 | 52.77 28 | 85.16 233 | 63.78 127 | 58.72 243 | 82.08 226 |
|
v7n | | | 62.50 241 | 59.27 250 | 72.20 200 | 67.25 318 | 49.83 193 | 77.87 259 | 80.12 197 | 52.50 256 | 48.80 287 | 73.07 283 | 32.10 243 | 87.90 162 | 46.83 250 | 54.92 282 | 78.86 267 |
|
EI-MVSNet-Vis-set | | | 73.19 95 | 72.60 84 | 74.99 142 | 82.56 131 | 49.80 194 | 82.55 194 | 89.00 26 | 66.17 50 | 65.89 113 | 88.98 103 | 43.83 111 | 92.29 48 | 65.38 121 | 69.01 173 | 82.87 221 |
|
Effi-MVS+-dtu | | | 66.24 214 | 64.96 211 | 70.08 241 | 75.17 248 | 49.64 195 | 82.01 204 | 74.48 283 | 62.15 105 | 57.83 216 | 76.08 262 | 30.59 257 | 83.79 247 | 65.40 119 | 60.93 230 | 76.81 291 |
|
HQP_MVS | | | 70.96 125 | 69.91 125 | 74.12 158 | 77.95 213 | 49.57 196 | 85.76 106 | 82.59 161 | 63.60 87 | 62.15 161 | 83.28 177 | 36.04 209 | 88.30 151 | 65.46 115 | 72.34 150 | 84.49 187 |
|
plane_prior | | | | | | | 49.57 196 | 87.43 69 | | 64.57 72 | | | | | | 72.84 145 | |
|
ADS-MVSNet2 | | | 55.21 289 | 51.44 293 | 66.51 278 | 80.60 172 | 49.56 198 | 55.03 336 | 65.44 324 | 44.72 304 | 51.00 277 | 61.19 330 | 22.83 303 | 75.41 312 | 28.54 321 | 53.63 290 | 74.57 310 |
|
MVS_111021_LR | | | 69.07 155 | 67.91 149 | 72.54 192 | 77.27 223 | 49.56 198 | 79.77 245 | 73.96 289 | 59.33 158 | 60.73 173 | 87.82 123 | 30.19 260 | 81.53 263 | 69.94 84 | 72.19 152 | 86.53 155 |
|
DeepPCF-MVS | | 69.37 1 | 80.65 10 | 81.56 8 | 77.94 80 | 85.46 62 | 49.56 198 | 90.99 20 | 86.66 73 | 70.58 14 | 80.07 17 | 95.30 1 | 56.18 15 | 90.97 77 | 82.57 10 | 86.22 32 | 93.28 10 |
|
miper_ehance_all_eth | | | 68.70 168 | 67.58 157 | 72.08 202 | 76.91 230 | 49.48 201 | 82.47 196 | 78.45 235 | 62.68 99 | 58.28 213 | 77.88 232 | 50.90 42 | 85.01 237 | 61.91 140 | 58.72 243 | 81.75 231 |
|
plane_prior6 | | | | | | 78.42 208 | 49.39 202 | | | | | | 36.04 209 | | | | |
|
cl_fuxian | | | 67.97 178 | 66.66 176 | 71.91 213 | 76.20 238 | 49.31 203 | 82.13 203 | 78.00 242 | 61.99 109 | 57.64 222 | 76.94 246 | 49.41 53 | 84.93 238 | 60.62 151 | 57.01 263 | 81.49 235 |
|
EI-MVSNet-UG-set | | | 72.37 106 | 71.73 100 | 74.29 155 | 81.60 146 | 49.29 204 | 81.85 209 | 88.64 36 | 65.29 66 | 65.05 123 | 88.29 115 | 43.18 123 | 91.83 58 | 63.74 128 | 67.97 180 | 81.75 231 |
|
ACMP | | 61.11 9 | 66.24 214 | 64.33 215 | 72.00 206 | 74.89 255 | 49.12 205 | 83.18 179 | 79.83 203 | 55.41 231 | 52.29 269 | 82.68 187 | 25.83 286 | 86.10 210 | 60.89 147 | 63.94 205 | 80.78 251 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
tttt0517 | | | 68.33 172 | 66.29 181 | 74.46 149 | 78.08 211 | 49.06 206 | 80.88 231 | 89.08 23 | 54.40 244 | 54.75 250 | 80.77 210 | 51.31 38 | 90.33 93 | 49.35 234 | 58.01 254 | 83.99 196 |
|
MDA-MVSNet_test_wron | | | 53.82 295 | 49.95 299 | 65.43 284 | 70.13 300 | 49.05 207 | 72.30 292 | 71.65 307 | 44.23 310 | 31.85 343 | 63.13 326 | 23.68 301 | 74.01 317 | 33.25 304 | 39.35 332 | 73.23 320 |
|
EG-PatchMatch MVS | | | 62.40 244 | 59.59 246 | 70.81 230 | 73.29 269 | 49.05 207 | 85.81 104 | 84.78 118 | 51.85 262 | 44.19 305 | 73.48 281 | 15.52 337 | 89.85 104 | 40.16 274 | 67.24 184 | 73.54 317 |
|
YYNet1 | | | 53.82 295 | 49.96 298 | 65.41 285 | 70.09 301 | 48.95 209 | 72.30 292 | 71.66 306 | 44.25 309 | 31.89 342 | 63.07 327 | 23.73 300 | 73.95 318 | 33.26 303 | 39.40 331 | 73.34 318 |
|
plane_prior3 | | | | | | | 48.95 209 | | | 64.01 77 | 62.15 161 | | | | | | |
|
D2MVS | | | 63.49 231 | 61.39 234 | 69.77 245 | 69.29 304 | 48.93 211 | 78.89 254 | 77.71 247 | 60.64 136 | 49.70 283 | 72.10 297 | 27.08 279 | 83.48 252 | 54.48 202 | 62.65 220 | 76.90 290 |
|
EI-MVSNet | | | 69.70 148 | 68.70 139 | 72.68 189 | 75.00 253 | 48.90 212 | 79.54 248 | 87.16 62 | 61.05 127 | 63.88 144 | 83.74 169 | 45.87 87 | 90.44 89 | 57.42 185 | 64.68 201 | 78.70 269 |
|
IterMVS-LS | | | 66.63 207 | 65.36 205 | 70.42 235 | 75.10 251 | 48.90 212 | 81.45 223 | 76.69 266 | 61.05 127 | 55.71 245 | 77.10 244 | 45.86 88 | 83.65 250 | 57.44 184 | 57.88 258 | 78.70 269 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test1172 | | | 69.64 150 | 68.38 144 | 73.41 179 | 82.77 123 | 48.84 214 | 82.79 189 | 78.34 237 | 47.02 288 | 65.27 120 | 90.07 83 | 31.17 253 | 86.09 212 | 64.51 125 | 73.49 137 | 85.31 178 |
|
CDS-MVSNet | | | 70.48 133 | 69.43 129 | 73.64 173 | 77.56 219 | 48.83 215 | 83.51 168 | 77.45 251 | 63.27 91 | 62.33 160 | 85.54 153 | 43.85 110 | 83.29 255 | 57.38 186 | 74.00 132 | 88.79 113 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Anonymous20231211 | | | 66.08 216 | 63.67 220 | 73.31 180 | 83.07 112 | 48.75 216 | 86.01 103 | 84.67 121 | 45.27 301 | 56.54 238 | 76.67 252 | 28.06 271 | 88.95 129 | 52.78 214 | 59.95 232 | 82.23 225 |
|
TAMVS | | | 69.51 153 | 68.16 147 | 73.56 176 | 76.30 236 | 48.71 217 | 82.57 192 | 77.17 256 | 62.10 107 | 61.32 168 | 84.23 162 | 41.90 138 | 83.46 253 | 54.80 200 | 73.09 143 | 88.50 121 |
|
LPG-MVS_test | | | 66.44 211 | 64.58 213 | 72.02 204 | 74.42 259 | 48.60 218 | 83.07 182 | 80.64 190 | 54.69 240 | 53.75 260 | 83.83 167 | 25.73 288 | 86.98 185 | 60.33 158 | 64.71 198 | 80.48 255 |
|
LGP-MVS_train | | | | | 72.02 204 | 74.42 259 | 48.60 218 | | 80.64 190 | 54.69 240 | 53.75 260 | 83.83 167 | 25.73 288 | 86.98 185 | 60.33 158 | 64.71 198 | 80.48 255 |
|
PMMVS | | | 72.98 96 | 72.05 98 | 75.78 128 | 83.57 96 | 48.60 218 | 84.08 151 | 82.85 160 | 61.62 116 | 68.24 91 | 90.33 76 | 28.35 267 | 87.78 168 | 72.71 72 | 76.69 110 | 90.95 66 |
|
FMVSNet3 | | | 68.84 160 | 67.40 163 | 73.19 182 | 85.05 70 | 48.53 221 | 85.71 111 | 85.36 96 | 60.90 131 | 57.58 223 | 79.15 222 | 42.16 132 | 86.77 191 | 47.25 247 | 63.40 208 | 84.27 191 |
|
ACMM | | 58.35 12 | 64.35 225 | 62.01 229 | 71.38 220 | 74.21 262 | 48.51 222 | 82.25 201 | 79.66 207 | 47.61 282 | 54.54 252 | 80.11 213 | 25.26 291 | 86.00 215 | 51.26 222 | 63.16 215 | 79.64 265 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Vis-MVSNet |  | | 70.61 131 | 69.34 132 | 74.42 151 | 80.95 165 | 48.49 223 | 86.03 102 | 77.51 250 | 58.74 176 | 65.55 118 | 87.78 125 | 34.37 221 | 85.95 219 | 52.53 219 | 80.61 77 | 88.80 112 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
abl_6 | | | 68.03 177 | 66.15 185 | 73.66 172 | 78.54 204 | 48.48 224 | 79.77 245 | 78.04 240 | 47.39 284 | 63.70 146 | 88.25 116 | 28.21 268 | 89.06 119 | 60.17 160 | 71.25 158 | 83.45 207 |
|
TR-MVS | | | 69.71 146 | 67.85 153 | 75.27 137 | 82.94 118 | 48.48 224 | 87.40 70 | 80.86 187 | 57.15 206 | 64.61 130 | 87.08 134 | 32.67 238 | 89.64 112 | 46.38 252 | 71.55 157 | 87.68 135 |
|
plane_prior7 | | | | | | 77.95 213 | 48.46 226 | | | | | | | | | | |
|
ACMH | | 53.70 16 | 59.78 254 | 55.94 271 | 71.28 221 | 76.59 232 | 48.35 227 | 80.15 243 | 76.11 271 | 49.74 273 | 41.91 316 | 73.45 282 | 16.50 334 | 90.31 94 | 31.42 310 | 57.63 260 | 75.17 306 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HPM-MVS_fast | | | 67.86 180 | 66.28 182 | 72.61 190 | 80.67 171 | 48.34 228 | 81.18 226 | 75.95 273 | 50.81 268 | 59.55 186 | 88.05 121 | 27.86 273 | 85.98 216 | 58.83 165 | 73.58 136 | 83.51 206 |
|
PS-MVSNAJss | | | 68.78 165 | 67.17 167 | 73.62 175 | 73.01 272 | 48.33 229 | 84.95 134 | 84.81 117 | 59.30 159 | 58.91 199 | 79.84 215 | 37.77 175 | 88.86 132 | 62.83 133 | 63.12 217 | 83.67 205 |
|
APD-MVS_3200maxsize | | | 69.62 151 | 68.23 146 | 73.80 168 | 81.58 148 | 48.22 230 | 81.91 207 | 79.50 211 | 48.21 280 | 64.24 137 | 89.75 90 | 31.91 248 | 87.55 174 | 63.08 131 | 73.85 135 | 85.64 173 |
|
test-LLR | | | 69.65 149 | 69.01 137 | 71.60 216 | 78.67 199 | 48.17 231 | 85.13 124 | 79.72 205 | 59.18 163 | 63.13 152 | 82.58 188 | 36.91 195 | 80.24 276 | 60.56 152 | 75.17 124 | 86.39 159 |
|
test-mter | | | 68.36 170 | 67.29 164 | 71.60 216 | 78.67 199 | 48.17 231 | 85.13 124 | 79.72 205 | 53.38 249 | 63.13 152 | 82.58 188 | 27.23 278 | 80.24 276 | 60.56 152 | 75.17 124 | 86.39 159 |
|
SR-MVS-dyc-post | | | 68.27 174 | 66.87 169 | 72.48 195 | 80.96 162 | 48.14 233 | 81.54 218 | 76.98 259 | 46.42 293 | 62.75 156 | 89.42 95 | 31.17 253 | 86.09 212 | 60.52 154 | 72.06 153 | 83.19 214 |
|
RE-MVS-def | | | | 66.66 176 | | 80.96 162 | 48.14 233 | 81.54 218 | 76.98 259 | 46.42 293 | 62.75 156 | 89.42 95 | 29.28 265 | | 60.52 154 | 72.06 153 | 83.19 214 |
|
CHOSEN 280x420 | | | 57.53 275 | 56.38 268 | 60.97 309 | 74.01 263 | 48.10 235 | 46.30 342 | 54.31 340 | 48.18 281 | 50.88 280 | 77.43 239 | 38.37 171 | 59.16 343 | 54.83 198 | 63.14 216 | 75.66 302 |
|
cl-mvsnet_ | | | 67.43 190 | 65.93 190 | 71.95 210 | 76.33 234 | 48.02 236 | 82.58 191 | 79.12 220 | 61.30 123 | 56.72 235 | 76.92 247 | 46.12 81 | 86.44 202 | 57.98 176 | 56.31 268 | 81.38 242 |
|
cl-mvsnet1 | | | 67.43 190 | 65.93 190 | 71.94 211 | 76.33 234 | 48.01 237 | 82.57 192 | 79.11 221 | 61.31 122 | 56.73 234 | 76.92 247 | 46.09 82 | 86.43 203 | 57.98 176 | 56.31 268 | 81.39 241 |
|
FMVSNet2 | | | 67.57 186 | 65.79 193 | 72.90 185 | 82.71 126 | 47.97 238 | 85.15 123 | 84.93 113 | 58.55 179 | 56.71 236 | 78.26 229 | 36.72 200 | 86.67 194 | 46.15 254 | 62.94 219 | 84.07 193 |
|
gg-mvs-nofinetune | | | 67.43 190 | 64.53 214 | 76.13 120 | 85.95 46 | 47.79 239 | 64.38 318 | 88.28 45 | 39.34 323 | 66.62 102 | 41.27 344 | 58.69 11 | 89.00 125 | 49.64 232 | 86.62 27 | 91.59 44 |
|
UGNet | | | 68.71 166 | 67.11 168 | 73.50 177 | 80.55 174 | 47.61 240 | 84.08 151 | 78.51 233 | 59.45 151 | 65.68 117 | 82.73 186 | 23.78 299 | 85.08 236 | 52.80 213 | 76.40 111 | 87.80 132 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
旧先验1 | | | | | | 81.57 149 | 47.48 241 | | 71.83 303 | | | 88.66 109 | 36.94 194 | | | 78.34 99 | 88.67 115 |
|
AUN-MVS | | | 68.20 176 | 66.35 179 | 73.76 169 | 76.37 233 | 47.45 242 | 79.52 250 | 79.52 210 | 60.98 129 | 62.34 159 | 86.02 146 | 36.59 203 | 86.94 188 | 62.32 136 | 53.47 294 | 86.89 146 |
|
HY-MVS | | 67.03 5 | 73.90 84 | 73.14 79 | 76.18 119 | 84.70 76 | 47.36 243 | 75.56 270 | 86.36 78 | 66.27 48 | 70.66 78 | 83.91 166 | 51.05 40 | 89.31 116 | 67.10 100 | 72.61 148 | 91.88 39 |
|
MDA-MVSNet-bldmvs | | | 51.56 302 | 47.75 307 | 63.00 297 | 71.60 288 | 47.32 244 | 69.70 309 | 72.12 302 | 43.81 312 | 27.65 347 | 63.38 325 | 21.97 312 | 75.96 309 | 27.30 327 | 32.19 342 | 65.70 338 |
|
CNLPA | | | 60.59 252 | 58.44 255 | 67.05 272 | 79.21 187 | 47.26 245 | 79.75 247 | 64.34 328 | 42.46 319 | 51.90 273 | 83.94 165 | 27.79 275 | 75.41 312 | 37.12 282 | 59.49 237 | 78.47 273 |
|
Anonymous202405211 | | | 70.11 136 | 67.88 151 | 76.79 109 | 87.20 39 | 47.24 246 | 89.49 35 | 77.38 253 | 54.88 238 | 66.14 109 | 86.84 137 | 20.93 316 | 91.54 63 | 56.45 192 | 71.62 155 | 91.59 44 |
|
VPNet | | | 72.07 112 | 71.42 106 | 74.04 160 | 78.64 202 | 47.17 247 | 89.91 31 | 87.97 48 | 72.56 7 | 64.66 128 | 85.04 157 | 41.83 140 | 88.33 149 | 61.17 145 | 60.97 229 | 86.62 154 |
|
JIA-IIPM | | | 52.33 301 | 47.77 306 | 66.03 280 | 71.20 293 | 46.92 248 | 40.00 349 | 76.48 269 | 37.10 330 | 46.73 298 | 37.02 346 | 32.96 234 | 77.88 299 | 35.97 289 | 52.45 297 | 73.29 319 |
|
miper_lstm_enhance | | | 63.91 227 | 62.30 226 | 68.75 257 | 75.06 252 | 46.78 249 | 69.02 310 | 81.14 184 | 59.68 148 | 52.76 266 | 72.39 292 | 40.71 149 | 77.99 297 | 56.81 188 | 53.09 295 | 81.48 237 |
|
thres200 | | | 68.71 166 | 67.27 166 | 73.02 183 | 84.73 75 | 46.76 250 | 85.03 132 | 87.73 55 | 62.34 104 | 59.87 178 | 83.45 174 | 43.15 124 | 88.32 150 | 31.25 312 | 67.91 181 | 83.98 198 |
|
MIMVSNet | | | 63.12 234 | 60.29 243 | 71.61 215 | 75.92 243 | 46.65 251 | 65.15 315 | 81.94 168 | 59.14 166 | 54.65 251 | 69.47 309 | 25.74 287 | 80.63 271 | 41.03 273 | 69.56 172 | 87.55 136 |
|
MVS-HIRNet | | | 49.01 306 | 44.71 310 | 61.92 303 | 76.06 239 | 46.61 252 | 63.23 321 | 54.90 339 | 24.77 345 | 33.56 338 | 36.60 347 | 21.28 315 | 75.88 310 | 29.49 315 | 62.54 221 | 63.26 342 |
|
EPP-MVSNet | | | 71.14 120 | 70.07 123 | 74.33 154 | 79.18 188 | 46.52 253 | 83.81 160 | 86.49 74 | 56.32 222 | 57.95 214 | 84.90 159 | 54.23 22 | 89.14 118 | 58.14 174 | 69.65 170 | 87.33 140 |
|
pmmvs-eth3d | | | 55.97 285 | 52.78 289 | 65.54 283 | 61.02 339 | 46.44 254 | 75.36 274 | 67.72 321 | 49.61 274 | 43.65 308 | 67.58 316 | 21.63 313 | 77.04 304 | 44.11 262 | 44.33 321 | 73.15 321 |
|
GBi-Net | | | 67.09 199 | 65.47 201 | 71.96 207 | 82.71 126 | 46.36 255 | 83.52 164 | 83.31 148 | 58.55 179 | 57.58 223 | 76.23 258 | 36.72 200 | 86.20 204 | 47.25 247 | 63.40 208 | 83.32 209 |
|
test1 | | | 67.09 199 | 65.47 201 | 71.96 207 | 82.71 126 | 46.36 255 | 83.52 164 | 83.31 148 | 58.55 179 | 57.58 223 | 76.23 258 | 36.72 200 | 86.20 204 | 47.25 247 | 63.40 208 | 83.32 209 |
|
FMVSNet1 | | | 64.57 223 | 62.11 228 | 71.96 207 | 77.32 222 | 46.36 255 | 83.52 164 | 83.31 148 | 52.43 257 | 54.42 253 | 76.23 258 | 27.80 274 | 86.20 204 | 42.59 270 | 61.34 228 | 83.32 209 |
|
XVG-OURS | | | 61.88 246 | 59.34 249 | 69.49 247 | 65.37 323 | 46.27 258 | 64.80 317 | 73.49 294 | 47.04 287 | 57.41 230 | 82.85 181 | 25.15 293 | 78.18 291 | 53.00 211 | 64.98 196 | 84.01 195 |
|
WTY-MVS | | | 77.47 36 | 77.52 31 | 77.30 93 | 88.33 26 | 46.25 259 | 88.46 52 | 90.32 10 | 71.40 10 | 72.32 64 | 91.72 43 | 53.44 25 | 92.37 46 | 66.28 107 | 75.42 122 | 93.28 10 |
|
ab-mvs | | | 70.65 130 | 69.11 136 | 75.29 136 | 80.87 166 | 46.23 260 | 73.48 283 | 85.24 105 | 59.99 143 | 66.65 101 | 80.94 208 | 43.13 126 | 88.69 134 | 63.58 129 | 68.07 178 | 90.95 66 |
|
PatchT | | | 56.60 279 | 52.97 286 | 67.48 267 | 72.94 274 | 46.16 261 | 57.30 334 | 73.78 290 | 38.77 325 | 54.37 254 | 57.26 340 | 37.52 183 | 78.06 294 | 32.02 307 | 52.79 296 | 78.23 280 |
|
XVG-OURS-SEG-HR | | | 62.02 245 | 59.54 247 | 69.46 248 | 65.30 324 | 45.88 262 | 65.06 316 | 73.57 293 | 46.45 292 | 57.42 229 | 83.35 176 | 26.95 280 | 78.09 293 | 53.77 206 | 64.03 203 | 84.42 189 |
|
KD-MVS_2432*1600 | | | 59.04 263 | 56.44 266 | 66.86 273 | 79.07 189 | 45.87 263 | 72.13 295 | 80.42 194 | 55.03 235 | 48.15 289 | 71.01 300 | 36.73 198 | 78.05 295 | 35.21 293 | 30.18 345 | 76.67 292 |
|
miper_refine_blended | | | 59.04 263 | 56.44 266 | 66.86 273 | 79.07 189 | 45.87 263 | 72.13 295 | 80.42 194 | 55.03 235 | 48.15 289 | 71.01 300 | 36.73 198 | 78.05 295 | 35.21 293 | 30.18 345 | 76.67 292 |
|
ACMH+ | | 54.58 15 | 58.55 270 | 55.24 273 | 68.50 262 | 74.68 257 | 45.80 265 | 80.27 238 | 70.21 315 | 47.15 286 | 42.77 313 | 75.48 266 | 16.73 333 | 85.98 216 | 35.10 297 | 54.78 284 | 73.72 315 |
|
PLC |  | 52.38 18 | 60.89 250 | 58.97 253 | 66.68 277 | 81.77 141 | 45.70 266 | 78.96 253 | 74.04 288 | 43.66 313 | 47.63 293 | 83.19 179 | 23.52 302 | 77.78 302 | 37.47 279 | 60.46 231 | 76.55 297 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
LS3D | | | 56.40 282 | 53.82 282 | 64.12 291 | 81.12 160 | 45.69 267 | 73.42 284 | 66.14 323 | 35.30 338 | 43.24 312 | 79.88 214 | 22.18 310 | 79.62 284 | 19.10 345 | 64.00 204 | 67.05 334 |
|
testdata | | | | | 67.08 271 | 77.59 218 | 45.46 268 | | 69.20 318 | 44.47 306 | 71.50 72 | 88.34 113 | 31.21 252 | 70.76 332 | 52.20 220 | 75.88 117 | 85.03 181 |
|
PatchMatch-RL | | | 56.66 278 | 53.75 283 | 65.37 286 | 77.91 216 | 45.28 269 | 69.78 308 | 60.38 333 | 41.35 320 | 47.57 294 | 73.73 275 | 16.83 331 | 76.91 306 | 36.99 285 | 59.21 240 | 73.92 314 |
|
anonymousdsp | | | 60.46 253 | 57.65 257 | 68.88 252 | 63.63 332 | 45.09 270 | 72.93 287 | 78.63 230 | 46.52 291 | 51.12 276 | 72.80 287 | 21.46 314 | 83.07 256 | 57.79 180 | 53.97 288 | 78.47 273 |
|
tfpn200view9 | | | 67.57 186 | 66.13 186 | 71.89 214 | 84.05 88 | 45.07 271 | 83.40 173 | 87.71 57 | 60.79 132 | 57.79 218 | 82.76 183 | 43.53 119 | 87.80 165 | 28.80 318 | 66.36 190 | 82.78 222 |
|
IterMVS-SCA-FT | | | 59.12 260 | 58.81 254 | 60.08 311 | 70.68 298 | 45.07 271 | 80.42 237 | 74.25 285 | 43.54 314 | 50.02 282 | 73.73 275 | 31.97 245 | 56.74 344 | 51.06 225 | 53.60 292 | 78.42 275 |
|
thres400 | | | 67.40 193 | 66.13 186 | 71.19 224 | 84.05 88 | 45.07 271 | 83.40 173 | 87.71 57 | 60.79 132 | 57.79 218 | 82.76 183 | 43.53 119 | 87.80 165 | 28.80 318 | 66.36 190 | 80.71 253 |
|
WR-MVS | | | 67.58 185 | 66.76 173 | 70.04 243 | 75.92 243 | 45.06 274 | 86.23 97 | 85.28 102 | 64.31 74 | 58.50 207 | 81.00 206 | 44.80 104 | 82.00 262 | 49.21 235 | 55.57 280 | 83.06 217 |
|
test_djsdf | | | 63.84 228 | 61.56 232 | 70.70 231 | 68.78 307 | 44.69 275 | 81.63 214 | 81.44 178 | 50.28 269 | 52.27 270 | 76.26 257 | 26.72 281 | 86.11 208 | 60.83 148 | 55.84 277 | 81.29 246 |
|
baseline1 | | | 72.51 105 | 72.12 96 | 73.69 171 | 85.05 70 | 44.46 276 | 83.51 168 | 86.13 84 | 71.61 9 | 64.64 129 | 87.97 122 | 55.00 20 | 89.48 114 | 59.07 163 | 56.05 273 | 87.13 144 |
|
jajsoiax | | | 63.21 233 | 60.84 238 | 70.32 237 | 68.33 312 | 44.45 277 | 81.23 225 | 81.05 185 | 53.37 250 | 50.96 279 | 77.81 234 | 17.49 329 | 85.49 225 | 59.31 162 | 58.05 253 | 81.02 249 |
|
VPA-MVSNet | | | 71.12 121 | 70.66 113 | 72.49 194 | 78.75 197 | 44.43 278 | 87.64 61 | 90.02 13 | 63.97 79 | 65.02 124 | 81.58 202 | 42.14 133 | 87.42 177 | 63.42 130 | 63.38 211 | 85.63 174 |
|
OpenMVS_ROB |  | 53.19 17 | 59.20 259 | 56.00 270 | 68.83 254 | 71.13 294 | 44.30 279 | 83.64 163 | 75.02 280 | 46.42 293 | 46.48 301 | 73.03 284 | 18.69 324 | 88.14 155 | 27.74 325 | 61.80 225 | 74.05 313 |
|
Patchmatch-RL test | | | 58.72 267 | 54.32 279 | 71.92 212 | 63.91 331 | 44.25 280 | 61.73 325 | 55.19 338 | 57.38 203 | 49.31 285 | 54.24 341 | 37.60 181 | 80.89 268 | 62.19 138 | 47.28 311 | 90.63 71 |
|
mvs_tets | | | 62.96 236 | 60.55 240 | 70.19 238 | 68.22 315 | 44.24 281 | 80.90 230 | 80.74 189 | 52.99 253 | 50.82 281 | 77.56 235 | 16.74 332 | 85.44 226 | 59.04 164 | 57.94 255 | 80.89 250 |
|
NR-MVSNet | | | 67.25 195 | 65.99 189 | 71.04 227 | 73.27 270 | 43.91 282 | 85.32 120 | 84.75 119 | 66.05 55 | 53.65 262 | 82.11 196 | 45.05 96 | 85.97 218 | 47.55 244 | 56.18 271 | 83.24 212 |
|
CMPMVS |  | 40.41 21 | 55.34 287 | 52.64 290 | 63.46 295 | 60.88 340 | 43.84 283 | 61.58 327 | 71.06 311 | 30.43 341 | 36.33 330 | 74.63 271 | 24.14 298 | 75.44 311 | 48.05 242 | 66.62 187 | 71.12 329 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
thres600view7 | | | 66.46 210 | 65.12 208 | 70.47 233 | 83.41 99 | 43.80 284 | 82.15 202 | 87.78 52 | 59.37 155 | 56.02 243 | 82.21 194 | 43.73 114 | 86.90 189 | 26.51 329 | 64.94 197 | 80.71 253 |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 285 | 71.13 302 | | 54.95 237 | 59.29 191 | | 36.76 197 | | 46.33 253 | | 87.32 141 |
|
IS-MVSNet | | | 68.80 163 | 67.55 160 | 72.54 192 | 78.50 206 | 43.43 286 | 81.03 228 | 79.35 216 | 59.12 168 | 57.27 231 | 86.71 139 | 46.05 83 | 87.70 170 | 44.32 261 | 75.60 121 | 86.49 156 |
|
TranMVSNet+NR-MVSNet | | | 66.94 204 | 65.61 198 | 70.93 229 | 73.45 267 | 43.38 287 | 83.02 184 | 84.25 130 | 65.31 65 | 58.33 212 | 81.90 199 | 39.92 160 | 85.52 223 | 49.43 233 | 54.89 283 | 83.89 202 |
|
thres100view900 | | | 66.87 205 | 65.42 204 | 71.24 222 | 83.29 105 | 43.15 288 | 81.67 213 | 87.78 52 | 59.04 169 | 55.92 244 | 82.18 195 | 43.73 114 | 87.80 165 | 28.80 318 | 66.36 190 | 82.78 222 |
|
CL-MVSNet_2432*1600 | | | 62.98 235 | 61.14 236 | 68.50 262 | 65.86 321 | 42.96 289 | 84.37 143 | 82.98 157 | 60.98 129 | 53.95 258 | 72.70 288 | 40.43 152 | 83.71 249 | 41.10 272 | 47.93 307 | 78.83 268 |
|
UniMVSNet (Re) | | | 67.71 183 | 66.80 171 | 70.45 234 | 74.44 258 | 42.93 290 | 82.42 198 | 84.90 114 | 63.69 85 | 59.63 183 | 80.99 207 | 47.18 70 | 85.23 231 | 51.17 224 | 56.75 265 | 83.19 214 |
|
XXY-MVS | | | 70.18 135 | 69.28 135 | 72.89 187 | 77.64 217 | 42.88 291 | 85.06 130 | 87.50 60 | 62.58 100 | 62.66 158 | 82.34 193 | 43.64 118 | 89.83 105 | 58.42 170 | 63.70 207 | 85.96 165 |
|
1112_ss | | | 70.05 139 | 69.37 131 | 72.10 201 | 80.77 168 | 42.78 292 | 85.12 127 | 76.75 264 | 59.69 147 | 61.19 170 | 92.12 33 | 47.48 67 | 83.84 246 | 53.04 210 | 68.21 177 | 89.66 92 |
|
F-COLMAP | | | 55.96 286 | 53.65 284 | 62.87 298 | 72.76 276 | 42.77 293 | 74.70 278 | 70.37 314 | 40.03 322 | 41.11 320 | 79.36 218 | 17.77 328 | 73.70 321 | 32.80 306 | 53.96 289 | 72.15 323 |
|
UniMVSNet_NR-MVSNet | | | 68.82 161 | 68.29 145 | 70.40 236 | 75.71 245 | 42.59 294 | 84.23 148 | 86.78 69 | 66.31 47 | 58.51 205 | 82.45 190 | 51.57 36 | 84.64 242 | 53.11 208 | 55.96 274 | 83.96 200 |
|
DU-MVS | | | 66.84 206 | 65.74 195 | 70.16 239 | 73.27 270 | 42.59 294 | 81.50 220 | 82.92 159 | 63.53 89 | 58.51 205 | 82.11 196 | 40.75 147 | 84.64 242 | 53.11 208 | 55.96 274 | 83.24 212 |
|
OMC-MVS | | | 65.97 217 | 65.06 209 | 68.71 258 | 72.97 273 | 42.58 296 | 78.61 255 | 75.35 278 | 54.72 239 | 59.31 190 | 86.25 145 | 33.30 232 | 77.88 299 | 57.99 175 | 67.05 185 | 85.66 172 |
|
K. test v3 | | | 54.04 293 | 49.42 301 | 67.92 265 | 68.55 309 | 42.57 297 | 75.51 272 | 63.07 330 | 52.07 258 | 39.21 324 | 64.59 324 | 19.34 321 | 82.21 258 | 37.11 283 | 25.31 347 | 78.97 266 |
|
Patchmatch-test | | | 53.33 297 | 48.17 303 | 68.81 255 | 73.31 268 | 42.38 298 | 42.98 345 | 58.23 335 | 32.53 339 | 38.79 327 | 70.77 303 | 39.66 161 | 73.51 322 | 25.18 332 | 52.06 298 | 90.55 72 |
|
pmmvs5 | | | 62.80 238 | 61.18 235 | 67.66 266 | 69.53 303 | 42.37 299 | 82.65 190 | 75.19 279 | 54.30 245 | 52.03 272 | 78.51 228 | 31.64 250 | 80.67 270 | 48.60 238 | 58.15 250 | 79.95 262 |
|
tfpnnormal | | | 61.47 248 | 59.09 251 | 68.62 260 | 76.29 237 | 41.69 300 | 81.14 227 | 85.16 107 | 54.48 243 | 51.32 275 | 73.63 279 | 32.32 241 | 86.89 190 | 21.78 339 | 55.71 278 | 77.29 288 |
|
Baseline_NR-MVSNet | | | 65.49 221 | 64.27 216 | 69.13 250 | 74.37 261 | 41.65 301 | 83.39 175 | 78.85 223 | 59.56 149 | 59.62 184 | 76.88 249 | 40.75 147 | 87.44 176 | 49.99 228 | 55.05 281 | 78.28 278 |
|
TransMVSNet (Re) | | | 62.82 237 | 60.76 239 | 69.02 251 | 73.98 264 | 41.61 302 | 86.36 94 | 79.30 219 | 56.90 208 | 52.53 267 | 76.44 254 | 41.85 139 | 87.60 173 | 38.83 277 | 40.61 329 | 77.86 282 |
|
SixPastTwentyTwo | | | 54.37 290 | 50.10 297 | 67.21 269 | 70.70 296 | 41.46 303 | 74.73 277 | 64.69 326 | 47.56 283 | 39.12 325 | 69.49 308 | 18.49 326 | 84.69 241 | 31.87 308 | 34.20 340 | 75.48 303 |
|
lessismore_v0 | | | | | 67.98 264 | 64.76 328 | 41.25 304 | | 45.75 347 | | 36.03 332 | 65.63 322 | 19.29 322 | 84.11 244 | 35.67 290 | 21.24 349 | 78.59 272 |
|
UA-Net | | | 67.32 194 | 66.23 183 | 70.59 232 | 78.85 195 | 41.23 305 | 73.60 282 | 75.45 277 | 61.54 119 | 66.61 103 | 84.53 160 | 38.73 168 | 86.57 200 | 42.48 271 | 74.24 131 | 83.98 198 |
|
Test_1112_low_res | | | 67.18 197 | 66.23 183 | 70.02 244 | 78.75 197 | 41.02 306 | 83.43 171 | 73.69 291 | 57.29 204 | 58.45 210 | 82.39 192 | 45.30 94 | 80.88 269 | 50.50 226 | 66.26 193 | 88.16 123 |
|
XVG-ACMP-BASELINE | | | 56.03 284 | 52.85 288 | 65.58 282 | 61.91 337 | 40.95 307 | 63.36 319 | 72.43 299 | 45.20 302 | 46.02 302 | 74.09 272 | 9.20 347 | 78.12 292 | 45.13 257 | 58.27 248 | 77.66 285 |
|
UniMVSNet_ETH3D | | | 62.51 240 | 60.49 241 | 68.57 261 | 68.30 313 | 40.88 308 | 73.89 281 | 79.93 201 | 51.81 263 | 54.77 249 | 79.61 216 | 24.80 295 | 81.10 266 | 49.93 229 | 61.35 227 | 83.73 204 |
|
COLMAP_ROB |  | 43.60 20 | 50.90 303 | 48.05 304 | 59.47 312 | 67.81 316 | 40.57 309 | 71.25 301 | 62.72 332 | 36.49 333 | 36.19 331 | 73.51 280 | 13.48 340 | 73.92 319 | 20.71 341 | 50.26 302 | 63.92 340 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
FMVSNet5 | | | 58.61 268 | 56.45 265 | 65.10 288 | 77.20 227 | 39.74 310 | 74.77 276 | 77.12 257 | 50.27 271 | 43.28 311 | 67.71 315 | 26.15 285 | 76.90 307 | 36.78 287 | 54.78 284 | 78.65 271 |
|
pmmvs3 | | | 45.53 312 | 41.55 315 | 57.44 318 | 48.97 350 | 39.68 311 | 70.06 305 | 57.66 336 | 28.32 343 | 34.06 336 | 57.29 339 | 8.50 348 | 66.85 337 | 34.86 298 | 34.26 339 | 65.80 337 |
|
sss | | | 70.49 132 | 70.13 122 | 71.58 218 | 81.59 147 | 39.02 312 | 80.78 233 | 84.71 120 | 59.34 156 | 66.61 103 | 88.09 119 | 37.17 191 | 85.52 223 | 61.82 142 | 71.02 160 | 90.20 83 |
|
pm-mvs1 | | | 64.12 226 | 62.56 224 | 68.78 256 | 71.68 286 | 38.87 313 | 82.89 186 | 81.57 175 | 55.54 230 | 53.89 259 | 77.82 233 | 37.73 178 | 86.74 192 | 48.46 240 | 53.49 293 | 80.72 252 |
|
FIs | | | 70.00 141 | 70.24 121 | 69.30 249 | 77.93 215 | 38.55 314 | 83.99 156 | 87.72 56 | 66.86 44 | 57.66 221 | 84.17 163 | 52.28 31 | 85.31 227 | 52.72 218 | 68.80 174 | 84.02 194 |
|
OurMVSNet-221017-0 | | | 52.39 300 | 48.73 302 | 63.35 296 | 65.21 325 | 38.42 315 | 68.54 312 | 64.95 325 | 38.19 326 | 39.57 323 | 71.43 299 | 13.23 341 | 79.92 280 | 37.16 281 | 40.32 330 | 71.72 325 |
|
TinyColmap | | | 48.15 308 | 44.49 312 | 59.13 314 | 65.73 322 | 38.04 316 | 63.34 320 | 62.86 331 | 38.78 324 | 29.48 345 | 67.23 318 | 6.46 352 | 73.30 323 | 24.59 333 | 41.90 327 | 66.04 336 |
|
TAPA-MVS | | 56.12 14 | 61.82 247 | 60.18 244 | 66.71 275 | 78.48 207 | 37.97 317 | 75.19 275 | 76.41 270 | 46.82 289 | 57.04 232 | 86.52 143 | 27.67 276 | 77.03 305 | 26.50 330 | 67.02 186 | 85.14 180 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
USDC | | | 54.36 291 | 51.23 294 | 63.76 293 | 64.29 330 | 37.71 318 | 62.84 324 | 73.48 296 | 56.85 209 | 35.47 333 | 71.94 298 | 9.23 346 | 78.43 289 | 38.43 278 | 48.57 304 | 75.13 307 |
|
AllTest | | | 47.32 309 | 44.66 311 | 55.32 321 | 65.08 326 | 37.50 319 | 62.96 323 | 54.25 341 | 35.45 336 | 33.42 339 | 72.82 285 | 9.98 344 | 59.33 341 | 24.13 334 | 43.84 322 | 69.13 330 |
|
TestCases | | | | | 55.32 321 | 65.08 326 | 37.50 319 | | 54.25 341 | 35.45 336 | 33.42 339 | 72.82 285 | 9.98 344 | 59.33 341 | 24.13 334 | 43.84 322 | 69.13 330 |
|
pmmvs6 | | | 59.64 255 | 57.15 261 | 67.09 270 | 66.01 319 | 36.86 321 | 80.50 235 | 78.64 229 | 45.05 303 | 49.05 286 | 73.94 274 | 27.28 277 | 86.10 210 | 43.96 263 | 49.94 303 | 78.31 277 |
|
MVS_0304 | | | 56.72 277 | 55.17 274 | 61.37 307 | 70.71 295 | 36.80 322 | 75.74 267 | 68.75 319 | 44.11 311 | 52.53 267 | 68.20 314 | 15.05 338 | 74.53 315 | 42.98 267 | 58.44 246 | 72.79 322 |
|
LTVRE_ROB | | 45.45 19 | 52.73 298 | 49.74 300 | 61.69 304 | 69.78 302 | 34.99 323 | 44.52 343 | 67.60 322 | 43.11 316 | 43.79 307 | 74.03 273 | 18.54 325 | 81.45 264 | 28.39 323 | 57.94 255 | 68.62 332 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UnsupCasMVSNet_bld | | | 53.86 294 | 50.53 296 | 63.84 292 | 63.52 333 | 34.75 324 | 71.38 300 | 81.92 170 | 46.53 290 | 38.95 326 | 57.93 338 | 20.55 317 | 80.20 278 | 39.91 275 | 34.09 341 | 76.57 296 |
|
PEN-MVS | | | 58.35 272 | 57.15 261 | 61.94 302 | 67.55 317 | 34.39 325 | 77.01 262 | 78.35 236 | 51.87 261 | 47.72 292 | 76.73 251 | 33.91 226 | 73.75 320 | 34.03 300 | 47.17 312 | 77.68 284 |
|
EPNet_dtu | | | 66.25 213 | 66.71 174 | 64.87 289 | 78.66 201 | 34.12 326 | 82.80 188 | 75.51 275 | 61.75 114 | 64.47 135 | 86.90 136 | 37.06 192 | 72.46 327 | 43.65 264 | 69.63 171 | 88.02 129 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVSNet | | | 58.54 271 | 57.57 259 | 61.46 306 | 68.50 310 | 33.96 327 | 76.90 264 | 78.60 232 | 51.67 264 | 47.83 291 | 76.60 253 | 34.99 218 | 72.79 325 | 35.45 291 | 47.58 308 | 77.64 286 |
|
WR-MVS_H | | | 58.91 265 | 58.04 256 | 61.54 305 | 69.07 305 | 33.83 328 | 76.91 263 | 81.99 167 | 51.40 265 | 48.17 288 | 74.67 270 | 40.23 154 | 74.15 316 | 31.78 309 | 48.10 305 | 76.64 295 |
|
PS-CasMVS | | | 58.12 273 | 57.03 263 | 61.37 307 | 68.24 314 | 33.80 329 | 76.73 265 | 78.01 241 | 51.20 266 | 47.54 295 | 76.20 261 | 32.85 235 | 72.76 326 | 35.17 295 | 47.37 310 | 77.55 287 |
|
UnsupCasMVSNet_eth | | | 57.56 274 | 55.15 275 | 64.79 290 | 64.57 329 | 33.12 330 | 73.17 286 | 83.87 140 | 58.98 172 | 41.75 317 | 70.03 307 | 22.54 306 | 79.92 280 | 46.12 255 | 35.31 335 | 81.32 245 |
|
FC-MVSNet-test | | | 67.49 188 | 67.91 149 | 66.21 279 | 76.06 239 | 33.06 331 | 80.82 232 | 87.18 61 | 64.44 73 | 54.81 248 | 82.87 180 | 50.40 47 | 82.60 257 | 48.05 242 | 66.55 188 | 82.98 219 |
|
TDRefinement | | | 40.91 314 | 38.37 317 | 48.55 327 | 50.45 348 | 33.03 332 | 58.98 332 | 50.97 344 | 28.50 342 | 29.89 344 | 67.39 317 | 6.21 354 | 54.51 345 | 17.67 346 | 35.25 336 | 58.11 343 |
|
CVMVSNet | | | 60.85 251 | 60.44 242 | 62.07 300 | 75.00 253 | 32.73 333 | 79.54 248 | 73.49 294 | 36.98 331 | 56.28 242 | 83.74 169 | 29.28 265 | 69.53 335 | 46.48 251 | 63.23 213 | 83.94 201 |
|
DTE-MVSNet | | | 57.03 276 | 55.73 272 | 60.95 310 | 65.94 320 | 32.57 334 | 75.71 268 | 77.09 258 | 51.16 267 | 46.65 300 | 76.34 256 | 32.84 236 | 73.22 324 | 30.94 313 | 44.87 320 | 77.06 289 |
|
PM-MVS | | | 46.92 310 | 43.76 314 | 56.41 320 | 52.18 347 | 32.26 335 | 63.21 322 | 38.18 351 | 37.99 328 | 40.78 321 | 66.20 319 | 5.09 355 | 65.42 338 | 48.19 241 | 41.99 326 | 71.54 327 |
|
Anonymous20231206 | | | 59.08 262 | 57.59 258 | 63.55 294 | 68.77 308 | 32.14 336 | 80.26 239 | 79.78 204 | 50.00 272 | 49.39 284 | 72.39 292 | 26.64 282 | 78.36 290 | 33.12 305 | 57.94 255 | 80.14 260 |
|
ITE_SJBPF | | | | | 51.84 324 | 58.03 342 | 31.94 337 | | 53.57 343 | 36.67 332 | 41.32 319 | 75.23 268 | 11.17 343 | 51.57 348 | 25.81 331 | 48.04 306 | 72.02 324 |
|
Vis-MVSNet (Re-imp) | | | 65.52 219 | 65.63 197 | 65.17 287 | 77.49 220 | 30.54 338 | 75.49 273 | 77.73 246 | 59.34 156 | 52.26 271 | 86.69 140 | 49.38 54 | 80.53 273 | 37.07 284 | 75.28 123 | 84.42 189 |
|
RPSCF | | | 45.77 311 | 44.13 313 | 50.68 325 | 57.67 344 | 29.66 339 | 54.92 338 | 45.25 348 | 26.69 344 | 45.92 303 | 75.92 264 | 17.43 330 | 45.70 352 | 27.44 326 | 45.95 318 | 76.67 292 |
|
test0.0.03 1 | | | 62.54 239 | 62.44 225 | 62.86 299 | 72.28 283 | 29.51 340 | 82.93 185 | 78.78 226 | 59.18 163 | 53.07 265 | 82.41 191 | 36.91 195 | 77.39 303 | 37.45 280 | 58.96 241 | 81.66 233 |
|
ambc | | | | | 62.06 301 | 53.98 346 | 29.38 341 | 35.08 351 | 79.65 208 | | 41.37 318 | 59.96 333 | 6.27 353 | 82.15 259 | 35.34 292 | 38.22 333 | 74.65 309 |
|
Gipuma |  | | 27.47 321 | 24.26 324 | 37.12 334 | 60.55 341 | 29.17 342 | 11.68 355 | 60.00 334 | 14.18 352 | 10.52 355 | 15.12 356 | 2.20 360 | 63.01 339 | 8.39 352 | 35.65 334 | 19.18 351 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LCM-MVSNet-Re | | | 58.82 266 | 56.54 264 | 65.68 281 | 79.31 186 | 29.09 343 | 61.39 328 | 45.79 346 | 60.73 134 | 37.65 329 | 72.47 290 | 31.42 251 | 81.08 267 | 49.66 231 | 70.41 164 | 86.87 147 |
|
FPMVS | | | 35.40 316 | 33.67 319 | 40.57 331 | 46.34 352 | 28.74 344 | 41.05 347 | 57.05 337 | 20.37 348 | 22.27 349 | 53.38 342 | 6.87 350 | 44.94 353 | 8.62 351 | 47.11 313 | 48.01 347 |
|
EU-MVSNet | | | 52.63 299 | 50.72 295 | 58.37 316 | 62.69 336 | 28.13 345 | 72.60 288 | 75.97 272 | 30.94 340 | 40.76 322 | 72.11 296 | 20.16 318 | 70.80 331 | 35.11 296 | 46.11 317 | 76.19 300 |
|
MIMVSNet1 | | | 50.35 304 | 47.81 305 | 57.96 317 | 61.53 338 | 27.80 346 | 67.40 313 | 74.06 287 | 43.25 315 | 33.31 341 | 65.38 323 | 16.03 335 | 71.34 329 | 21.80 338 | 47.55 309 | 74.75 308 |
|
test20.03 | | | 55.22 288 | 54.07 281 | 58.68 315 | 63.14 334 | 25.00 347 | 77.69 260 | 74.78 281 | 52.64 254 | 43.43 309 | 72.39 292 | 26.21 284 | 74.76 314 | 29.31 316 | 47.05 314 | 76.28 299 |
|
PMVS |  | 19.57 22 | 25.07 323 | 22.43 327 | 32.99 336 | 23.12 361 | 22.98 348 | 40.98 348 | 35.19 355 | 15.99 351 | 11.95 354 | 35.87 349 | 1.47 363 | 49.29 349 | 5.41 356 | 31.90 343 | 26.70 350 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DIV-MVS_2432*1600 | | | 49.24 305 | 46.85 308 | 56.44 319 | 54.32 345 | 22.87 349 | 57.39 333 | 73.36 297 | 44.36 308 | 37.98 328 | 59.30 336 | 18.97 323 | 71.17 330 | 33.48 301 | 42.44 325 | 75.26 305 |
|
ANet_high | | | 34.39 317 | 29.59 322 | 48.78 326 | 30.34 358 | 22.28 350 | 55.53 335 | 63.79 329 | 38.11 327 | 15.47 351 | 36.56 348 | 6.94 349 | 59.98 340 | 13.93 349 | 5.64 358 | 64.08 339 |
|
LF4IMVS | | | 33.04 319 | 32.55 320 | 34.52 335 | 40.96 353 | 22.03 351 | 44.45 344 | 35.62 354 | 20.42 347 | 28.12 346 | 62.35 328 | 5.03 356 | 31.88 357 | 21.61 340 | 34.42 337 | 49.63 346 |
|
testgi | | | 54.25 292 | 52.57 291 | 59.29 313 | 62.76 335 | 21.65 352 | 72.21 294 | 70.47 313 | 53.25 251 | 41.94 315 | 77.33 240 | 14.28 339 | 77.95 298 | 29.18 317 | 51.72 299 | 78.28 278 |
|
new_pmnet | | | 33.56 318 | 31.89 321 | 38.59 332 | 49.01 349 | 20.42 353 | 51.01 339 | 37.92 352 | 20.58 346 | 23.45 348 | 46.79 343 | 6.66 351 | 49.28 350 | 20.00 344 | 31.57 344 | 46.09 348 |
|
MVE |  | 16.60 23 | 17.34 327 | 13.39 330 | 29.16 337 | 28.43 359 | 19.72 354 | 13.73 354 | 23.63 359 | 7.23 357 | 7.96 356 | 21.41 352 | 0.80 364 | 36.08 356 | 6.97 353 | 10.39 352 | 31.69 349 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
LCM-MVSNet | | | 28.07 320 | 23.85 325 | 40.71 330 | 27.46 360 | 18.93 355 | 30.82 352 | 46.19 345 | 12.76 353 | 16.40 350 | 34.70 350 | 1.90 361 | 48.69 351 | 20.25 342 | 24.22 348 | 54.51 344 |
|
new-patchmatchnet | | | 48.21 307 | 46.55 309 | 53.18 323 | 57.73 343 | 18.19 356 | 70.24 304 | 71.02 312 | 45.70 297 | 33.70 337 | 60.23 332 | 18.00 327 | 69.86 334 | 27.97 324 | 34.35 338 | 71.49 328 |
|
wuyk23d | | | 9.11 329 | 8.77 333 | 10.15 341 | 40.18 354 | 16.76 357 | 20.28 353 | 1.01 363 | 2.58 358 | 2.66 360 | 0.98 360 | 0.23 365 | 12.49 359 | 4.08 358 | 6.90 356 | 1.19 356 |
|
DSMNet-mixed | | | 38.35 315 | 35.36 318 | 47.33 328 | 48.11 351 | 14.91 358 | 37.87 350 | 36.60 353 | 19.18 349 | 34.37 335 | 59.56 335 | 15.53 336 | 53.01 347 | 20.14 343 | 46.89 315 | 74.07 312 |
|
E-PMN | | | 19.16 324 | 18.40 328 | 21.44 338 | 36.19 356 | 13.63 359 | 47.59 340 | 30.89 356 | 10.73 354 | 5.91 358 | 16.59 354 | 3.66 358 | 39.77 354 | 5.95 355 | 8.14 353 | 10.92 353 |
|
EMVS | | | 18.42 325 | 17.66 329 | 20.71 339 | 34.13 357 | 12.64 360 | 46.94 341 | 29.94 357 | 10.46 356 | 5.58 359 | 14.93 357 | 4.23 357 | 38.83 355 | 5.24 357 | 7.51 355 | 10.67 354 |
|
DeepMVS_CX |  | | | | 13.10 340 | 21.34 362 | 8.99 361 | | 10.02 362 | 10.59 355 | 7.53 357 | 30.55 351 | 1.82 362 | 14.55 358 | 6.83 354 | 7.52 354 | 15.75 352 |
|
PMMVS2 | | | 26.71 322 | 22.98 326 | 37.87 333 | 36.89 355 | 8.51 362 | 42.51 346 | 29.32 358 | 19.09 350 | 13.01 352 | 37.54 345 | 2.23 359 | 53.11 346 | 14.54 348 | 11.71 351 | 51.99 345 |
|
tmp_tt | | | 9.44 328 | 10.68 331 | 5.73 342 | 2.49 363 | 4.21 363 | 10.48 356 | 18.04 360 | 0.34 359 | 12.59 353 | 20.49 353 | 11.39 342 | 7.03 360 | 13.84 350 | 6.46 357 | 5.95 355 |
|
N_pmnet | | | 41.25 313 | 39.77 316 | 45.66 329 | 68.50 310 | 0.82 364 | 72.51 290 | 0.38 364 | 35.61 335 | 35.26 334 | 61.51 329 | 20.07 319 | 67.74 336 | 23.51 336 | 40.63 328 | 68.42 333 |
|
test123 | | | 6.01 332 | 8.01 335 | 0.01 343 | 0.00 365 | 0.01 365 | 71.93 298 | 0.00 365 | 0.00 360 | 0.02 361 | 0.11 362 | 0.00 366 | 0.00 361 | 0.02 359 | 0.00 359 | 0.02 357 |
|
uanet_test | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 365 | 0.00 366 | 0.00 357 | 0.00 365 | 0.00 360 | 0.00 363 | 0.00 363 | 0.00 366 | 0.00 361 | 0.00 361 | 0.00 359 | 0.00 359 |
|
cdsmvs_eth3d_5k | | | 18.33 326 | 24.44 323 | 0.00 345 | 0.00 365 | 0.00 366 | 0.00 357 | 89.40 17 | 0.00 360 | 0.00 363 | 92.02 36 | 38.55 169 | 0.00 361 | 0.00 361 | 0.00 359 | 0.00 359 |
|
pcd_1.5k_mvsjas | | | 3.15 333 | 4.20 336 | 0.00 345 | 0.00 365 | 0.00 366 | 0.00 357 | 0.00 365 | 0.00 360 | 0.00 363 | 0.00 363 | 37.77 175 | 0.00 361 | 0.00 361 | 0.00 359 | 0.00 359 |
|
sosnet-low-res | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 365 | 0.00 366 | 0.00 357 | 0.00 365 | 0.00 360 | 0.00 363 | 0.00 363 | 0.00 366 | 0.00 361 | 0.00 361 | 0.00 359 | 0.00 359 |
|
sosnet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 365 | 0.00 366 | 0.00 357 | 0.00 365 | 0.00 360 | 0.00 363 | 0.00 363 | 0.00 366 | 0.00 361 | 0.00 361 | 0.00 359 | 0.00 359 |
|
uncertanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 365 | 0.00 366 | 0.00 357 | 0.00 365 | 0.00 360 | 0.00 363 | 0.00 363 | 0.00 366 | 0.00 361 | 0.00 361 | 0.00 359 | 0.00 359 |
|
Regformer | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 365 | 0.00 366 | 0.00 357 | 0.00 365 | 0.00 360 | 0.00 363 | 0.00 363 | 0.00 366 | 0.00 361 | 0.00 361 | 0.00 359 | 0.00 359 |
|
testmvs | | | 6.14 331 | 8.18 334 | 0.01 343 | 0.01 364 | 0.00 366 | 73.40 285 | 0.00 365 | 0.00 360 | 0.02 361 | 0.15 361 | 0.00 366 | 0.00 361 | 0.02 359 | 0.00 359 | 0.02 357 |
|
ab-mvs-re | | | 7.68 330 | 10.24 332 | 0.00 345 | 0.00 365 | 0.00 366 | 0.00 357 | 0.00 365 | 0.00 360 | 0.00 363 | 92.12 33 | 0.00 366 | 0.00 361 | 0.00 361 | 0.00 359 | 0.00 359 |
|
uanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 365 | 0.00 366 | 0.00 357 | 0.00 365 | 0.00 360 | 0.00 363 | 0.00 363 | 0.00 366 | 0.00 361 | 0.00 361 | 0.00 359 | 0.00 359 |
|
test_241102_TWO | | | | | | | | | 88.76 34 | 57.50 201 | 83.60 5 | 94.09 4 | 56.14 16 | 96.37 5 | 82.28 11 | 87.43 18 | 92.55 23 |
|
9.14 | | | | 78.19 22 | | 85.67 53 | | 88.32 54 | 88.84 31 | 59.89 144 | 74.58 39 | 92.62 24 | 46.80 74 | 92.66 39 | 81.40 17 | 85.62 37 | |
|
test_0728_THIRD | | | | | | | | | | 58.00 187 | 81.91 9 | 93.64 10 | 56.54 13 | 96.44 2 | 81.64 16 | 86.86 23 | 92.23 29 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 126 |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 167 | | | | 88.13 126 |
|
sam_mvs | | | | | | | | | | | | | 35.99 211 | | | | |
|
MTGPA |  | | | | | | | | 81.31 180 | | | | | | | | |
|
test_post1 | | | | | | | | 70.84 303 | | | | 14.72 358 | 34.33 222 | 83.86 245 | 48.80 236 | | |
|
test_post | | | | | | | | | | | | 16.22 355 | 37.52 183 | 84.72 240 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 334 | 38.41 170 | 79.91 282 | | | |
|
MTMP | | | | | | | | 87.27 75 | 15.34 361 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 78.72 27 | 85.44 40 | 91.39 52 |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 47 | 85.11 44 | 91.01 63 |
|
test_prior2 | | | | | | | | 89.04 43 | | 61.88 112 | 73.55 47 | 91.46 50 | 48.01 62 | | 74.73 55 | 85.46 38 | |
|
旧先验2 | | | | | | | | 81.73 212 | | 45.53 299 | 74.66 35 | | | 70.48 333 | 58.31 172 | | |
|
新几何2 | | | | | | | | 81.61 216 | | | | | | | | | |
|
无先验 | | | | | | | | 85.19 122 | 78.00 242 | 49.08 276 | | | | 85.13 234 | 52.78 214 | | 87.45 139 |
|
原ACMM2 | | | | | | | | 83.77 161 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 77.81 301 | 45.64 256 | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 99 | | | | |
|
testdata1 | | | | | | | | 77.55 261 | | 64.14 76 | | | | | | | |
|
plane_prior5 | | | | | | | | | 82.59 161 | | | | | 88.30 151 | 65.46 115 | 72.34 150 | 84.49 187 |
|
plane_prior4 | | | | | | | | | | | | 83.28 177 | | | | | |
|
plane_prior2 | | | | | | | | 85.76 106 | | 63.60 87 | | | | | | | |
|
plane_prior1 | | | | | | 78.31 210 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 365 | | | | | | | | |
|
nn | | | | | | | | | 0.00 365 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 350 | | | | | | | | |
|
test11 | | | | | | | | | 84.25 130 | | | | | | | | |
|
door | | | | | | | | | 43.27 349 | | | | | | | | |
|
HQP-NCC | | | | | | 79.02 191 | | 88.00 56 | | 65.45 58 | 64.48 132 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 191 | | 88.00 56 | | 65.45 58 | 64.48 132 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 102 | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 135 | | | 88.61 137 | | | 84.91 184 |
|
HQP3-MVS | | | | | | | | | 83.68 142 | | | | | | | 73.12 141 | |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 186 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 214 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 238 | |
|
Test By Simon | | | | | | | | | | | | | 39.38 162 | | | | |
|