MG-MVS | | | 78.42 23 | 76.99 38 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 31 | 88.51 43 | 64.83 73 | 73.52 50 | 88.09 122 | 48.07 62 | 92.19 52 | 62.24 141 | 84.53 51 | 91.53 48 |
|
CHOSEN 1792x2688 | | | 76.24 55 | 74.03 75 | 82.88 1 | 83.09 111 | 62.84 2 | 85.73 112 | 85.39 96 | 69.79 20 | 64.87 131 | 83.49 178 | 41.52 148 | 93.69 26 | 70.55 84 | 81.82 69 | 92.12 32 |
|
PS-MVSNAJ | | | 80.06 13 | 79.52 16 | 81.68 13 | 85.58 56 | 60.97 3 | 91.69 11 | 87.02 66 | 70.62 13 | 80.75 14 | 93.22 14 | 37.77 180 | 92.50 44 | 82.75 8 | 86.25 33 | 91.57 46 |
|
xiu_mvs_v2_base | | | 79.86 15 | 79.31 17 | 81.53 14 | 85.03 72 | 60.73 4 | 91.65 13 | 86.86 69 | 70.30 18 | 80.77 13 | 93.07 18 | 37.63 185 | 92.28 50 | 82.73 9 | 85.71 37 | 91.57 46 |
|
DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 182 | 59.50 5 | 92.24 8 | 90.72 8 | 69.37 23 | 83.22 6 | 94.47 2 | 63.81 3 | 93.18 30 | 74.02 65 | 93.25 2 | 94.80 1 |
|
ETH3 D test6400 | | | 83.28 1 | 83.47 1 | 82.72 3 | 91.48 4 | 59.33 6 | 92.10 9 | 90.95 7 | 65.68 60 | 80.67 15 | 94.42 3 | 59.41 7 | 95.89 9 | 86.74 2 | 89.75 5 | 92.94 16 |
|
PAPM | | | 76.76 49 | 76.07 51 | 78.81 49 | 80.20 180 | 59.11 7 | 86.86 88 | 86.23 82 | 68.60 26 | 70.18 85 | 88.84 109 | 51.57 36 | 87.16 185 | 65.48 118 | 86.68 28 | 90.15 83 |
|
LFMVS | | | 78.52 21 | 77.14 36 | 82.67 4 | 89.58 10 | 58.90 8 | 91.27 20 | 88.05 47 | 63.22 96 | 74.63 38 | 90.83 64 | 41.38 149 | 94.40 19 | 75.42 55 | 79.90 91 | 94.72 2 |
|
API-MVS | | | 74.17 83 | 72.07 100 | 80.49 19 | 90.02 8 | 58.55 9 | 87.30 75 | 84.27 131 | 57.51 205 | 65.77 120 | 87.77 129 | 41.61 146 | 95.97 8 | 51.71 225 | 82.63 61 | 86.94 149 |
|
test_part1 | | | 73.80 89 | 72.13 97 | 78.79 52 | 85.92 47 | 58.26 10 | 90.60 25 | 86.85 70 | 63.98 81 | 63.95 145 | 81.54 208 | 52.08 34 | 92.24 51 | 64.93 127 | 59.32 242 | 85.87 173 |
|
PatchmatchNet |  | | 67.07 206 | 63.63 226 | 77.40 91 | 83.10 109 | 58.03 11 | 72.11 303 | 77.77 249 | 58.85 179 | 59.37 193 | 70.83 307 | 37.84 179 | 84.93 243 | 42.96 273 | 69.83 172 | 89.26 101 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 63.84 233 | 60.01 250 | 75.32 139 | 78.58 207 | 57.92 12 | 61.61 332 | 77.53 253 | 56.71 219 | 57.75 225 | 70.77 308 | 31.97 250 | 79.91 287 | 48.80 241 | 56.36 270 | 88.13 129 |
|
test_0728_SECOND | | | | | 82.20 8 | 89.50 12 | 57.73 13 | 92.34 5 | 88.88 29 | | | | | 96.39 4 | 81.68 13 | 87.13 20 | 92.47 24 |
|
CNVR-MVS | | | 81.76 7 | 81.90 6 | 81.33 15 | 90.04 7 | 57.70 14 | 91.71 10 | 88.87 30 | 70.31 17 | 77.64 23 | 93.87 8 | 52.58 30 | 93.91 24 | 84.17 4 | 87.92 14 | 92.39 26 |
|
CSCG | | | 80.41 12 | 79.72 14 | 82.49 5 | 89.12 21 | 57.67 15 | 89.29 42 | 91.54 3 | 59.19 166 | 71.82 71 | 90.05 86 | 59.72 6 | 96.04 7 | 78.37 32 | 88.40 12 | 93.75 5 |
|
MCST-MVS | | | 83.01 2 | 83.30 3 | 82.15 10 | 92.84 2 | 57.58 16 | 93.77 1 | 91.10 6 | 75.95 2 | 77.10 24 | 93.09 17 | 54.15 23 | 95.57 10 | 85.80 3 | 85.87 36 | 93.31 9 |
|
IU-MVS | | | | | | 89.48 14 | 57.49 17 | | 91.38 5 | 66.22 52 | 88.26 1 | | | | 82.83 7 | 87.60 16 | 92.44 25 |
|
DVP-MVS | | | 81.30 8 | 81.00 10 | 82.20 8 | 89.40 17 | 57.45 18 | 92.34 5 | 89.99 14 | 57.71 200 | 81.91 9 | 93.64 10 | 55.17 17 | 96.44 2 | 81.68 13 | 87.13 20 | 92.72 21 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 89.40 17 | 57.45 18 | 92.32 7 | 88.63 37 | 57.71 200 | 83.14 7 | 93.96 7 | 55.17 17 | | | | |
|
Effi-MVS+ | | | 75.24 70 | 73.61 79 | 80.16 25 | 81.92 139 | 57.42 20 | 85.21 123 | 76.71 270 | 60.68 139 | 73.32 52 | 89.34 99 | 47.30 70 | 91.63 62 | 68.28 97 | 79.72 92 | 91.42 51 |
|
HyFIR lowres test | | | 69.94 148 | 67.58 162 | 77.04 101 | 77.11 233 | 57.29 21 | 81.49 226 | 79.11 225 | 58.27 187 | 58.86 205 | 80.41 217 | 42.33 133 | 86.96 191 | 61.91 144 | 68.68 179 | 86.87 151 |
|
tpm cat1 | | | 66.28 217 | 62.78 228 | 76.77 112 | 81.40 157 | 57.14 22 | 70.03 312 | 77.19 259 | 53.00 257 | 58.76 208 | 70.73 310 | 46.17 81 | 86.73 198 | 43.27 270 | 64.46 205 | 86.44 162 |
|
DWT-MVSNet_test | | | 75.47 69 | 73.87 77 | 80.29 21 | 87.33 37 | 57.05 23 | 82.86 191 | 87.96 50 | 72.59 6 | 67.29 101 | 87.79 127 | 51.61 35 | 91.52 66 | 54.75 205 | 72.63 149 | 92.29 28 |
|
NCCC | | | 79.57 18 | 79.23 18 | 80.59 18 | 89.50 12 | 56.99 24 | 91.38 16 | 88.17 46 | 67.71 39 | 73.81 46 | 92.75 21 | 46.88 74 | 93.28 28 | 78.79 30 | 84.07 54 | 91.50 50 |
|
SD-MVS | | | 76.18 56 | 74.85 66 | 80.18 24 | 85.39 63 | 56.90 25 | 85.75 110 | 82.45 167 | 56.79 218 | 74.48 42 | 91.81 41 | 43.72 118 | 90.75 85 | 74.61 61 | 78.65 98 | 92.91 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SED-MVS | | | 81.92 6 | 81.75 7 | 82.44 7 | 89.48 14 | 56.89 26 | 92.48 3 | 88.94 27 | 57.50 206 | 84.61 3 | 94.09 4 | 58.81 9 | 96.37 5 | 82.28 11 | 87.60 16 | 94.06 3 |
|
test_241102_ONE | | | | | | 89.48 14 | 56.89 26 | | 88.94 27 | 57.53 204 | 84.61 3 | 93.29 13 | 58.81 9 | 96.45 1 | | | |
|
DELS-MVS | | | 82.32 4 | 82.50 4 | 81.79 11 | 86.80 41 | 56.89 26 | 92.77 2 | 86.30 81 | 77.83 1 | 77.88 21 | 92.13 33 | 60.24 4 | 94.78 18 | 78.97 27 | 89.61 6 | 93.69 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CS-MVS | | | 80.02 14 | 80.13 12 | 79.68 31 | 83.44 99 | 56.75 29 | 91.66 12 | 87.84 52 | 70.41 16 | 75.69 31 | 92.06 37 | 51.47 39 | 92.80 35 | 81.17 19 | 87.42 19 | 89.49 96 |
|
CostFormer | | | 73.89 88 | 72.30 93 | 78.66 58 | 82.36 135 | 56.58 30 | 75.56 275 | 85.30 101 | 66.06 57 | 70.50 84 | 76.88 254 | 57.02 12 | 89.06 122 | 68.27 98 | 68.74 178 | 90.33 78 |
|
CR-MVSNet | | | 62.47 247 | 59.04 257 | 72.77 193 | 73.97 270 | 56.57 31 | 60.52 335 | 71.72 310 | 60.04 145 | 57.49 231 | 65.86 325 | 38.94 170 | 80.31 280 | 42.86 274 | 59.93 236 | 81.42 243 |
|
RPMNet | | | 59.29 262 | 54.25 285 | 74.42 155 | 73.97 270 | 56.57 31 | 60.52 335 | 76.98 263 | 35.72 340 | 57.49 231 | 58.87 343 | 37.73 183 | 85.26 235 | 27.01 334 | 59.93 236 | 81.42 243 |
|
VDDNet | | | 74.37 80 | 72.13 97 | 81.09 17 | 79.58 186 | 56.52 33 | 90.02 28 | 86.70 74 | 52.61 260 | 71.23 78 | 87.20 134 | 31.75 254 | 93.96 23 | 74.30 63 | 75.77 121 | 92.79 20 |
|
MSLP-MVS++ | | | 74.21 82 | 72.25 94 | 80.11 27 | 81.45 156 | 56.47 34 | 86.32 97 | 79.65 211 | 58.19 188 | 66.36 111 | 92.29 32 | 36.11 211 | 90.66 87 | 67.39 101 | 82.49 62 | 93.18 13 |
|
MVS_111021_HR | | | 76.39 54 | 75.38 59 | 79.42 35 | 85.33 66 | 56.47 34 | 88.15 56 | 84.97 113 | 65.15 71 | 66.06 115 | 89.88 89 | 43.79 115 | 92.16 53 | 75.03 58 | 80.03 89 | 89.64 93 |
|
test_prior4 | | | | | | | 56.39 36 | 87.15 80 | | | | | | | | | |
|
xxxxxxxxxxxxxcwj | | | 77.31 39 | 76.54 42 | 79.61 32 | 85.35 64 | 56.34 37 | 89.31 40 | 72.84 304 | 61.55 121 | 74.63 38 | 92.38 28 | 47.75 66 | 91.35 70 | 78.18 36 | 86.85 26 | 91.15 58 |
|
save fliter | | | | | | 85.35 64 | 56.34 37 | 89.31 40 | 81.46 180 | 61.55 121 | | | | | | | |
|
TSAR-MVS + MP. | | | 78.31 27 | 78.26 22 | 78.48 62 | 81.33 159 | 56.31 39 | 81.59 221 | 86.41 78 | 69.61 22 | 81.72 11 | 88.16 121 | 55.09 19 | 88.04 164 | 74.12 64 | 86.31 32 | 91.09 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
EPMVS | | | 68.45 174 | 65.44 208 | 77.47 90 | 84.91 73 | 56.17 40 | 71.89 305 | 81.91 174 | 61.72 119 | 60.85 176 | 72.49 294 | 36.21 210 | 87.06 188 | 47.32 251 | 71.62 157 | 89.17 106 |
|
tpm2 | | | 70.82 131 | 68.44 146 | 77.98 78 | 80.78 170 | 56.11 41 | 74.21 285 | 81.28 186 | 60.24 144 | 68.04 96 | 75.27 272 | 52.26 32 | 88.50 146 | 55.82 199 | 68.03 182 | 89.33 99 |
|
test12 | | | | | 79.24 37 | 86.89 40 | 56.08 42 | | 85.16 108 | | 72.27 66 | | 47.15 72 | 91.10 76 | | 85.93 35 | 90.54 74 |
|
OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 43 | 92.48 3 | | | | 94.01 6 | 67.21 2 | 95.10 13 | 89.82 1 | 92.55 3 | 94.06 3 |
|
SMA-MVS |  | | 79.10 19 | 78.76 19 | 80.12 26 | 84.42 79 | 55.87 44 | 87.58 69 | 86.76 72 | 61.48 125 | 80.26 16 | 93.10 15 | 46.53 79 | 92.41 47 | 79.97 23 | 88.77 9 | 92.08 33 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
tpmrst | | | 71.04 127 | 69.77 130 | 74.86 147 | 83.19 108 | 55.86 45 | 75.64 274 | 78.73 232 | 67.88 36 | 64.99 130 | 73.73 280 | 49.96 52 | 79.56 290 | 65.92 113 | 67.85 185 | 89.14 107 |
|
ET-MVSNet_ETH3D | | | 75.23 71 | 74.08 74 | 78.67 57 | 84.52 78 | 55.59 46 | 88.92 46 | 89.21 20 | 68.06 34 | 53.13 269 | 90.22 80 | 49.71 54 | 87.62 176 | 72.12 78 | 70.82 164 | 92.82 19 |
|
MS-PatchMatch | | | 72.34 110 | 71.26 110 | 75.61 133 | 82.38 134 | 55.55 47 | 88.00 57 | 89.95 15 | 65.38 65 | 56.51 245 | 80.74 216 | 32.28 247 | 92.89 32 | 57.95 182 | 88.10 13 | 78.39 281 |
|
IB-MVS | | 68.87 2 | 74.01 85 | 72.03 102 | 79.94 29 | 83.04 114 | 55.50 48 | 90.24 27 | 88.65 35 | 67.14 44 | 61.38 171 | 81.74 205 | 53.21 26 | 94.28 20 | 60.45 160 | 62.41 225 | 90.03 85 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test_part2 | | | | | | 89.33 19 | 55.48 49 | | | | 82.27 8 | | | | | | |
|
TEST9 | | | | | | 85.68 51 | 55.42 50 | 87.59 67 | 84.00 138 | 57.72 199 | 72.99 54 | 90.98 57 | 44.87 102 | 88.58 141 | | | |
|
train_agg | | | 76.91 45 | 76.40 46 | 78.45 64 | 85.68 51 | 55.42 50 | 87.59 67 | 84.00 138 | 57.84 197 | 72.99 54 | 90.98 57 | 44.99 99 | 88.58 141 | 78.19 34 | 85.32 43 | 91.34 56 |
|
cascas | | | 69.01 163 | 66.13 191 | 77.66 85 | 79.36 187 | 55.41 52 | 86.99 82 | 83.75 143 | 56.69 220 | 58.92 203 | 81.35 209 | 24.31 302 | 92.10 56 | 53.23 211 | 70.61 165 | 85.46 181 |
|
3Dnovator | | 64.70 6 | 74.46 79 | 72.48 89 | 80.41 20 | 82.84 123 | 55.40 53 | 83.08 185 | 88.61 39 | 67.61 41 | 59.85 184 | 88.66 111 | 34.57 225 | 93.97 22 | 58.42 174 | 88.70 10 | 91.85 40 |
|
test_8 | | | | | | 85.72 50 | 55.31 54 | 87.60 64 | 83.88 141 | 57.84 197 | 72.84 57 | 90.99 56 | 44.99 99 | 88.34 151 | | | |
|
SteuartSystems-ACMMP | | | 77.08 42 | 76.33 47 | 79.34 36 | 80.98 164 | 55.31 54 | 89.76 35 | 86.91 68 | 62.94 100 | 71.65 72 | 91.56 49 | 42.33 133 | 92.56 43 | 77.14 43 | 83.69 56 | 90.15 83 |
Skip Steuart: Steuart Systems R&D Blog. |
MVSFormer | | | 73.53 94 | 72.19 96 | 77.57 87 | 83.02 115 | 55.24 56 | 81.63 218 | 81.44 181 | 50.28 274 | 76.67 26 | 90.91 61 | 44.82 104 | 86.11 213 | 60.83 152 | 80.09 86 | 91.36 54 |
|
lupinMVS | | | 78.38 24 | 78.11 26 | 79.19 38 | 83.02 115 | 55.24 56 | 91.57 15 | 84.82 118 | 69.12 24 | 76.67 26 | 92.02 38 | 44.82 104 | 90.23 101 | 80.83 20 | 80.09 86 | 92.08 33 |
|
MVS | | | 76.91 45 | 75.48 56 | 81.23 16 | 84.56 77 | 55.21 58 | 80.23 244 | 91.64 2 | 58.65 182 | 65.37 123 | 91.48 51 | 45.72 91 | 95.05 14 | 72.11 79 | 89.52 8 | 93.44 7 |
|
HPM-MVS++ |  | | 80.50 11 | 80.71 11 | 79.88 30 | 87.34 36 | 55.20 59 | 89.93 31 | 87.55 61 | 66.04 59 | 79.46 19 | 93.00 19 | 53.10 27 | 91.76 60 | 80.40 22 | 89.56 7 | 92.68 22 |
|
MVS_Test | | | 75.85 63 | 74.93 65 | 78.62 59 | 84.08 87 | 55.20 59 | 83.99 160 | 85.17 107 | 68.07 33 | 73.38 51 | 82.76 188 | 50.44 48 | 89.00 128 | 65.90 114 | 80.61 79 | 91.64 42 |
|
MDTV_nov1_ep13 | | | | 61.56 237 | | 81.68 143 | 55.12 61 | 72.41 297 | 78.18 242 | 59.19 166 | 58.85 206 | 69.29 315 | 34.69 224 | 86.16 212 | 36.76 293 | 62.96 221 | |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 30 | 77.63 30 | 79.13 40 | 88.52 23 | 55.12 61 | 89.95 30 | 85.98 87 | 68.31 28 | 71.33 77 | 92.75 21 | 45.52 93 | 90.37 94 | 71.15 82 | 85.14 45 | 91.91 38 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PAPR | | | 75.20 72 | 74.13 73 | 78.41 65 | 88.31 27 | 55.10 63 | 84.31 149 | 85.66 91 | 63.76 86 | 67.55 99 | 90.73 65 | 43.48 123 | 89.40 118 | 66.36 110 | 77.03 109 | 90.73 68 |
|
DPE-MVS |  | | 79.82 16 | 79.66 15 | 80.29 21 | 89.27 20 | 55.08 64 | 88.70 50 | 87.92 51 | 55.55 234 | 81.21 12 | 93.69 9 | 56.51 14 | 94.27 21 | 78.36 33 | 85.70 38 | 91.51 49 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DeepC-MVS | | 67.15 4 | 76.90 47 | 76.27 48 | 78.80 50 | 80.70 172 | 55.02 65 | 86.39 95 | 86.71 73 | 66.96 46 | 67.91 97 | 89.97 88 | 48.03 63 | 91.41 69 | 75.60 51 | 84.14 53 | 89.96 86 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 67.86 185 | 65.48 205 | 75.00 145 | 88.15 29 | 54.99 66 | 86.10 102 | 76.63 272 | 49.30 280 | 57.80 222 | 86.65 144 | 29.39 269 | 88.94 134 | 45.10 263 | 70.21 169 | 81.06 253 |
|
CDPH-MVS | | | 76.05 60 | 75.19 60 | 78.62 59 | 86.51 43 | 54.98 67 | 87.32 73 | 84.59 124 | 58.62 183 | 70.75 81 | 90.85 63 | 43.10 129 | 90.63 89 | 70.50 85 | 84.51 52 | 90.24 79 |
|
agg_prior1 | | | 76.68 51 | 76.24 49 | 78.00 77 | 85.64 54 | 54.92 68 | 87.55 70 | 83.61 147 | 57.99 193 | 72.53 61 | 91.05 54 | 45.36 94 | 88.10 161 | 77.76 40 | 84.68 50 | 90.99 64 |
|
agg_prior | | | | | | 85.64 54 | 54.92 68 | | 83.61 147 | | 72.53 61 | | | 88.10 161 | | | |
|
test_prior3 | | | 77.59 35 | 77.33 35 | 78.39 67 | 86.35 44 | 54.91 70 | 89.04 44 | 85.45 93 | 61.88 116 | 73.55 48 | 91.46 52 | 48.01 64 | 89.70 112 | 74.73 59 | 85.46 40 | 90.55 71 |
|
test_prior | | | | | 78.39 67 | 86.35 44 | 54.91 70 | | 85.45 93 | | | | | 89.70 112 | | | 90.55 71 |
|
Fast-Effi-MVS+ | | | 72.73 103 | 71.15 114 | 77.48 89 | 82.75 126 | 54.76 72 | 86.77 89 | 80.64 193 | 63.05 98 | 65.93 116 | 84.01 169 | 44.42 108 | 89.03 125 | 56.45 196 | 76.36 117 | 88.64 119 |
|
ppachtmachnet_test | | | 58.56 274 | 54.34 283 | 71.24 227 | 71.42 295 | 54.74 73 | 81.84 214 | 72.27 307 | 49.02 282 | 45.86 309 | 68.99 317 | 26.27 288 | 83.30 259 | 30.12 320 | 43.23 330 | 75.69 306 |
|
jason | | | 77.01 43 | 76.45 45 | 78.69 56 | 79.69 185 | 54.74 73 | 90.56 26 | 83.99 140 | 68.26 29 | 74.10 44 | 90.91 61 | 42.14 137 | 89.99 105 | 79.30 26 | 79.12 94 | 91.36 54 |
jason: jason. |
mvs_anonymous | | | 72.29 112 | 70.74 115 | 76.94 107 | 82.85 122 | 54.72 75 | 78.43 262 | 81.54 179 | 63.77 85 | 61.69 170 | 79.32 224 | 51.11 41 | 85.31 232 | 62.15 143 | 75.79 120 | 90.79 67 |
|
PVSNet_Blended_VisFu | | | 73.40 96 | 72.44 90 | 76.30 117 | 81.32 160 | 54.70 76 | 85.81 106 | 78.82 229 | 63.70 87 | 64.53 135 | 85.38 158 | 47.11 73 | 87.38 182 | 67.75 100 | 77.55 104 | 86.81 157 |
|
MAR-MVS | | | 76.76 49 | 75.60 55 | 80.21 23 | 90.87 5 | 54.68 77 | 89.14 43 | 89.11 22 | 62.95 99 | 70.54 83 | 92.33 30 | 41.05 150 | 94.95 15 | 57.90 183 | 86.55 30 | 91.00 63 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ACMMP_NAP | | | 76.43 53 | 75.66 54 | 78.73 54 | 81.92 139 | 54.67 78 | 84.06 157 | 85.35 98 | 61.10 130 | 72.99 54 | 91.50 50 | 40.25 158 | 91.00 78 | 76.84 44 | 86.98 24 | 90.51 75 |
|
casdiffmvs | | | 77.36 38 | 76.85 39 | 78.88 45 | 80.40 179 | 54.66 79 | 87.06 81 | 85.88 88 | 72.11 8 | 71.57 74 | 88.63 115 | 50.89 46 | 90.35 95 | 76.00 47 | 79.11 95 | 91.63 43 |
|
原ACMM1 | | | | | 76.13 124 | 84.89 74 | 54.59 80 | | 85.26 104 | 51.98 264 | 66.70 104 | 87.07 138 | 40.15 161 | 89.70 112 | 51.23 228 | 85.06 47 | 84.10 197 |
|
ETV-MVS | | | 77.17 40 | 76.74 41 | 78.48 62 | 81.80 141 | 54.55 81 | 86.13 101 | 85.33 99 | 68.20 30 | 73.10 53 | 90.52 72 | 45.23 96 | 90.66 87 | 79.37 25 | 80.95 74 | 90.22 80 |
|
APDe-MVS | | | 78.44 22 | 78.20 23 | 79.19 38 | 88.56 22 | 54.55 81 | 89.76 35 | 87.77 56 | 55.91 229 | 78.56 20 | 92.49 26 | 48.20 61 | 92.65 42 | 79.49 24 | 83.04 59 | 90.39 76 |
|
CS-MVS-test | | | 79.65 17 | 79.93 13 | 78.84 48 | 83.45 98 | 54.39 83 | 91.36 17 | 87.98 48 | 67.94 35 | 76.05 30 | 92.52 25 | 51.56 38 | 92.66 40 | 81.37 18 | 87.11 22 | 89.46 98 |
|
tpmvs | | | 62.45 248 | 59.42 253 | 71.53 224 | 83.93 90 | 54.32 84 | 70.03 312 | 77.61 252 | 51.91 265 | 53.48 268 | 68.29 318 | 37.91 178 | 86.66 200 | 33.36 308 | 58.27 251 | 73.62 321 |
|
QAPM | | | 71.88 117 | 69.33 137 | 79.52 33 | 82.20 136 | 54.30 85 | 86.30 98 | 88.77 33 | 56.61 222 | 59.72 186 | 87.48 132 | 33.90 232 | 95.36 11 | 47.48 250 | 81.49 72 | 88.90 112 |
|
canonicalmvs | | | 78.17 28 | 77.86 29 | 79.12 41 | 84.30 81 | 54.22 86 | 87.71 62 | 84.57 125 | 67.70 40 | 77.70 22 | 92.11 36 | 50.90 44 | 89.95 106 | 78.18 36 | 77.54 105 | 93.20 12 |
|
CANet | | | 80.90 9 | 81.17 9 | 80.09 28 | 87.62 34 | 54.21 87 | 91.60 14 | 86.47 77 | 73.13 5 | 79.89 18 | 93.10 15 | 49.88 53 | 92.98 31 | 84.09 5 | 84.75 49 | 93.08 14 |
|
gm-plane-assit | | | | | | 83.24 107 | 54.21 87 | | | 70.91 12 | | 88.23 120 | | 95.25 12 | 66.37 109 | | |
|
baseline | | | 76.86 48 | 76.24 49 | 78.71 55 | 80.47 178 | 54.20 89 | 83.90 162 | 84.88 117 | 71.38 11 | 71.51 75 | 89.15 104 | 50.51 47 | 90.55 91 | 75.71 49 | 78.65 98 | 91.39 52 |
|
dp | | | 64.41 229 | 61.58 236 | 72.90 190 | 82.40 133 | 54.09 90 | 72.53 295 | 76.59 273 | 60.39 142 | 55.68 251 | 70.39 311 | 35.18 221 | 76.90 312 | 39.34 281 | 61.71 229 | 87.73 137 |
|
OpenMVS |  | 61.00 11 | 69.99 146 | 67.55 165 | 77.30 94 | 78.37 213 | 54.07 91 | 84.36 147 | 85.76 90 | 57.22 210 | 56.71 241 | 87.67 130 | 30.79 261 | 92.83 34 | 43.04 271 | 84.06 55 | 85.01 187 |
|
v2v482 | | | 69.55 157 | 67.64 161 | 75.26 142 | 72.32 287 | 53.83 92 | 84.93 137 | 81.94 171 | 65.37 66 | 60.80 177 | 79.25 225 | 41.62 145 | 88.98 131 | 63.03 136 | 59.51 239 | 82.98 224 |
|
ZNCC-MVS | | | 75.82 66 | 75.02 63 | 78.23 71 | 83.88 93 | 53.80 93 | 86.91 87 | 86.05 86 | 59.71 151 | 67.85 98 | 90.55 70 | 42.23 135 | 91.02 77 | 72.66 77 | 85.29 44 | 89.87 89 |
|
MVSTER | | | 73.25 97 | 72.33 91 | 76.01 128 | 85.54 58 | 53.76 94 | 83.52 168 | 87.16 64 | 67.06 45 | 63.88 148 | 81.66 206 | 52.77 28 | 90.44 92 | 64.66 128 | 64.69 203 | 83.84 208 |
|
HFP-MVS | | | 74.37 80 | 73.13 83 | 78.10 75 | 84.30 81 | 53.68 95 | 85.58 115 | 84.36 128 | 56.82 216 | 65.78 118 | 90.56 68 | 40.70 155 | 90.90 81 | 69.18 92 | 80.88 75 | 89.71 90 |
|
#test# | | | 74.86 78 | 73.78 78 | 78.10 75 | 84.30 81 | 53.68 95 | 86.95 84 | 84.36 128 | 59.00 176 | 65.78 118 | 90.56 68 | 40.70 155 | 90.90 81 | 71.48 80 | 80.88 75 | 89.71 90 |
|
testtj | | | 76.96 44 | 76.48 44 | 78.40 66 | 89.89 9 | 53.67 97 | 88.72 49 | 86.15 84 | 54.56 247 | 74.86 36 | 92.31 31 | 44.38 109 | 91.97 58 | 75.19 57 | 82.24 65 | 89.54 95 |
|
V42 | | | 67.66 189 | 65.60 204 | 73.86 169 | 70.69 302 | 53.63 98 | 81.50 224 | 78.61 235 | 63.85 84 | 59.49 192 | 77.49 242 | 37.98 177 | 87.65 175 | 62.33 139 | 58.43 250 | 80.29 263 |
|
zzz-MVS | | | 74.15 84 | 73.11 84 | 77.27 96 | 81.54 151 | 53.57 99 | 84.02 159 | 81.31 183 | 59.41 158 | 68.39 93 | 90.96 59 | 36.07 212 | 89.01 126 | 73.80 67 | 82.45 63 | 89.23 102 |
|
MTAPA | | | 72.73 103 | 71.22 111 | 77.27 96 | 81.54 151 | 53.57 99 | 67.06 320 | 81.31 183 | 59.41 158 | 68.39 93 | 90.96 59 | 36.07 212 | 89.01 126 | 73.80 67 | 82.45 63 | 89.23 102 |
|
RRT_test8_iter05 | | | 72.74 102 | 71.20 112 | 77.36 92 | 87.25 38 | 53.51 101 | 88.68 51 | 89.53 16 | 65.20 70 | 61.32 172 | 81.27 210 | 45.89 87 | 92.48 46 | 65.99 112 | 55.65 283 | 86.10 167 |
|
新几何1 | | | | | 73.30 186 | 83.10 109 | 53.48 102 | | 71.43 315 | 45.55 303 | 66.14 113 | 87.17 136 | 33.88 233 | 80.54 277 | 48.50 244 | 80.33 84 | 85.88 172 |
|
ZD-MVS | | | | | | 89.55 11 | 53.46 103 | | 84.38 127 | 57.02 212 | 73.97 45 | 91.03 55 | 44.57 107 | 91.17 74 | 75.41 56 | 81.78 71 | |
|
v1144 | | | 68.81 167 | 66.82 175 | 74.80 149 | 72.34 286 | 53.46 103 | 84.68 141 | 81.77 177 | 64.25 78 | 60.28 182 | 77.91 236 | 40.23 159 | 88.95 132 | 60.37 161 | 59.52 238 | 81.97 232 |
|
1121 | | | 68.79 169 | 66.77 177 | 74.82 148 | 83.08 112 | 53.46 103 | 80.23 244 | 71.53 314 | 45.47 305 | 66.31 112 | 87.19 135 | 34.02 229 | 85.13 239 | 52.78 218 | 80.36 83 | 85.87 173 |
|
GST-MVS | | | 74.87 77 | 73.90 76 | 77.77 82 | 83.30 105 | 53.45 106 | 85.75 110 | 85.29 102 | 59.22 165 | 66.50 110 | 89.85 90 | 40.94 151 | 90.76 84 | 70.94 83 | 83.35 57 | 89.10 108 |
|
APD-MVS |  | | 76.15 57 | 75.68 53 | 77.54 88 | 88.52 23 | 53.44 107 | 87.26 78 | 85.03 112 | 53.79 251 | 74.91 35 | 91.68 47 | 43.80 114 | 90.31 97 | 74.36 62 | 81.82 69 | 88.87 113 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DP-MVS Recon | | | 71.99 116 | 70.31 121 | 77.01 103 | 90.65 6 | 53.44 107 | 89.37 38 | 82.97 161 | 56.33 226 | 63.56 153 | 89.47 96 | 34.02 229 | 92.15 55 | 54.05 208 | 72.41 151 | 85.43 182 |
|
v1192 | | | 67.96 184 | 65.74 200 | 74.63 150 | 71.79 289 | 53.43 109 | 84.06 157 | 80.99 189 | 63.19 97 | 59.56 190 | 77.46 243 | 37.50 190 | 88.65 138 | 58.20 177 | 58.93 245 | 81.79 235 |
|
v10 | | | 66.61 213 | 64.20 222 | 73.83 171 | 72.59 283 | 53.37 110 | 81.88 212 | 79.91 205 | 61.11 129 | 54.09 262 | 75.60 270 | 40.06 163 | 88.26 157 | 56.47 194 | 56.10 276 | 79.86 269 |
|
diffmvs | | | 75.11 74 | 74.65 69 | 76.46 115 | 78.52 209 | 53.35 111 | 83.28 182 | 79.94 203 | 70.51 15 | 71.64 73 | 88.72 110 | 46.02 86 | 86.08 219 | 77.52 41 | 75.75 122 | 89.96 86 |
|
PAPM_NR | | | 71.80 118 | 69.98 128 | 77.26 98 | 81.54 151 | 53.34 112 | 78.60 261 | 85.25 105 | 53.46 253 | 60.53 181 | 88.66 111 | 45.69 92 | 89.24 120 | 56.49 193 | 79.62 93 | 89.19 105 |
|
VDD-MVS | | | 76.08 58 | 74.97 64 | 79.44 34 | 84.27 84 | 53.33 113 | 91.13 21 | 85.88 88 | 65.33 67 | 72.37 64 | 89.34 99 | 32.52 244 | 92.76 38 | 77.90 39 | 75.96 118 | 92.22 31 |
|
v8 | | | 67.25 200 | 64.99 215 | 74.04 164 | 72.89 280 | 53.31 114 | 82.37 203 | 80.11 201 | 61.54 123 | 54.29 260 | 76.02 268 | 42.89 130 | 88.41 148 | 58.43 172 | 56.36 270 | 80.39 262 |
|
our_test_3 | | | 59.11 266 | 55.08 282 | 71.18 230 | 71.42 295 | 53.29 115 | 81.96 209 | 74.52 287 | 48.32 284 | 42.08 319 | 69.28 316 | 28.14 274 | 82.15 264 | 34.35 305 | 45.68 325 | 78.11 286 |
|
alignmvs | | | 78.08 29 | 77.98 27 | 78.39 67 | 83.53 97 | 53.22 116 | 89.77 34 | 85.45 93 | 66.11 54 | 76.59 28 | 91.99 40 | 54.07 24 | 89.05 124 | 77.34 42 | 77.00 110 | 92.89 18 |
|
xiu_mvs_v1_base_debu | | | 71.60 120 | 70.29 122 | 75.55 134 | 77.26 228 | 53.15 117 | 85.34 119 | 79.37 216 | 55.83 230 | 72.54 58 | 90.19 81 | 22.38 312 | 86.66 200 | 73.28 72 | 76.39 114 | 86.85 153 |
|
xiu_mvs_v1_base | | | 71.60 120 | 70.29 122 | 75.55 134 | 77.26 228 | 53.15 117 | 85.34 119 | 79.37 216 | 55.83 230 | 72.54 58 | 90.19 81 | 22.38 312 | 86.66 200 | 73.28 72 | 76.39 114 | 86.85 153 |
|
xiu_mvs_v1_base_debi | | | 71.60 120 | 70.29 122 | 75.55 134 | 77.26 228 | 53.15 117 | 85.34 119 | 79.37 216 | 55.83 230 | 72.54 58 | 90.19 81 | 22.38 312 | 86.66 200 | 73.28 72 | 76.39 114 | 86.85 153 |
|
v144192 | | | 67.86 185 | 65.76 199 | 74.16 161 | 71.68 291 | 53.09 120 | 84.14 154 | 80.83 191 | 62.85 101 | 59.21 197 | 77.28 246 | 39.30 168 | 88.00 165 | 58.67 171 | 57.88 261 | 81.40 245 |
|
ADS-MVSNet | | | 56.17 288 | 51.95 297 | 68.84 258 | 80.60 175 | 53.07 121 | 55.03 342 | 70.02 322 | 44.72 309 | 51.00 282 | 61.19 336 | 22.83 308 | 78.88 293 | 28.54 327 | 53.63 294 | 74.57 315 |
|
MP-MVS |  | | 74.99 76 | 74.33 72 | 76.95 106 | 82.89 121 | 53.05 122 | 85.63 114 | 83.50 149 | 57.86 196 | 67.25 102 | 90.24 79 | 43.38 124 | 88.85 136 | 76.03 46 | 82.23 66 | 88.96 111 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
thisisatest0515 | | | 73.64 93 | 72.20 95 | 77.97 79 | 81.63 145 | 53.01 123 | 86.69 91 | 88.81 32 | 62.53 105 | 64.06 142 | 85.65 154 | 52.15 33 | 92.50 44 | 58.43 172 | 69.84 171 | 88.39 125 |
|
region2R | | | 73.75 91 | 72.55 88 | 77.33 93 | 83.90 92 | 52.98 124 | 85.54 118 | 84.09 136 | 56.83 215 | 65.10 126 | 90.45 74 | 37.34 193 | 90.24 100 | 68.89 94 | 80.83 78 | 88.77 117 |
|
ACMMPR | | | 73.76 90 | 72.61 86 | 77.24 99 | 83.92 91 | 52.96 125 | 85.58 115 | 84.29 130 | 56.82 216 | 65.12 125 | 90.45 74 | 37.24 195 | 90.18 102 | 69.18 92 | 80.84 77 | 88.58 121 |
|
v1921920 | | | 67.45 194 | 65.23 212 | 74.10 163 | 71.51 294 | 52.90 126 | 83.75 166 | 80.44 196 | 62.48 107 | 59.12 199 | 77.13 247 | 36.98 198 | 87.90 166 | 57.53 187 | 58.14 255 | 81.49 240 |
|
PGM-MVS | | | 72.60 105 | 71.20 112 | 76.80 110 | 82.95 118 | 52.82 127 | 83.07 186 | 82.14 168 | 56.51 224 | 63.18 155 | 89.81 91 | 35.68 217 | 89.76 111 | 67.30 102 | 80.19 85 | 87.83 134 |
|
MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 50 | 82.99 117 | 52.71 128 | 85.04 133 | 88.63 37 | 66.08 56 | 86.77 2 | 92.75 21 | 72.05 1 | 91.46 68 | 83.35 6 | 93.53 1 | 92.23 29 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ETH3D cwj APD-0.16 | | | 78.36 25 | 78.19 24 | 78.86 47 | 84.21 85 | 52.68 129 | 86.70 90 | 89.02 25 | 59.13 172 | 75.37 33 | 92.49 26 | 49.06 58 | 93.20 29 | 80.67 21 | 87.08 23 | 90.71 69 |
|
v1240 | | | 66.99 207 | 64.68 217 | 73.93 166 | 71.38 297 | 52.66 130 | 83.39 179 | 79.98 202 | 61.97 114 | 58.44 216 | 77.11 248 | 35.25 220 | 87.81 168 | 56.46 195 | 58.15 253 | 81.33 248 |
|
MP-MVS-pluss | | | 75.54 68 | 75.03 62 | 77.04 101 | 81.37 158 | 52.65 131 | 84.34 148 | 84.46 126 | 61.16 128 | 69.14 87 | 91.76 44 | 39.98 164 | 88.99 130 | 78.19 34 | 84.89 48 | 89.48 97 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
XVS | | | 72.92 100 | 71.62 104 | 76.81 108 | 83.41 100 | 52.48 132 | 84.88 138 | 83.20 156 | 58.03 190 | 63.91 146 | 89.63 94 | 35.50 218 | 89.78 109 | 65.50 116 | 80.50 81 | 88.16 126 |
|
X-MVStestdata | | | 65.85 223 | 62.20 232 | 76.81 108 | 83.41 100 | 52.48 132 | 84.88 138 | 83.20 156 | 58.03 190 | 63.91 146 | 4.82 366 | 35.50 218 | 89.78 109 | 65.50 116 | 80.50 81 | 88.16 126 |
|
SF-MVS | | | 77.64 34 | 77.42 34 | 78.32 70 | 83.75 95 | 52.47 134 | 86.63 92 | 87.80 53 | 58.78 180 | 74.63 38 | 92.38 28 | 47.75 66 | 91.35 70 | 78.18 36 | 86.85 26 | 91.15 58 |
|
Regformer-1 | | | 77.80 33 | 77.44 33 | 78.88 45 | 87.78 32 | 52.44 135 | 87.60 64 | 90.08 12 | 68.86 25 | 72.49 63 | 91.79 42 | 47.69 68 | 94.90 16 | 73.57 69 | 77.05 107 | 89.31 100 |
|
ETH3D-3000-0.1 | | | 78.73 20 | 78.71 20 | 78.78 53 | 85.58 56 | 52.40 136 | 88.42 54 | 89.03 24 | 60.01 146 | 76.06 29 | 92.80 20 | 48.34 59 | 92.88 33 | 81.66 15 | 86.48 31 | 91.04 61 |
|
CLD-MVS | | | 75.60 67 | 75.39 58 | 76.24 119 | 80.69 173 | 52.40 136 | 90.69 24 | 86.20 83 | 74.40 3 | 65.01 129 | 88.93 106 | 42.05 139 | 90.58 90 | 76.57 45 | 73.96 135 | 85.73 175 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
GA-MVS | | | 69.04 161 | 66.70 180 | 76.06 126 | 75.11 255 | 52.36 138 | 83.12 184 | 80.23 199 | 63.32 94 | 60.65 179 | 79.22 226 | 30.98 260 | 88.37 149 | 61.25 148 | 66.41 192 | 87.46 141 |
|
114514_t | | | 69.87 149 | 67.88 155 | 75.85 131 | 88.38 25 | 52.35 139 | 86.94 85 | 83.68 144 | 53.70 252 | 55.68 251 | 85.60 155 | 30.07 266 | 91.20 73 | 55.84 198 | 71.02 162 | 83.99 201 |
|
CP-MVS | | | 72.59 107 | 71.46 107 | 76.00 129 | 82.93 120 | 52.32 140 | 86.93 86 | 82.48 166 | 55.15 238 | 63.65 151 | 90.44 77 | 35.03 222 | 88.53 145 | 68.69 95 | 77.83 103 | 87.15 147 |
|
Fast-Effi-MVS+-dtu | | | 66.53 214 | 64.10 223 | 73.84 170 | 72.41 285 | 52.30 141 | 84.73 140 | 75.66 279 | 59.51 155 | 56.34 246 | 79.11 228 | 28.11 275 | 85.85 226 | 57.74 186 | 63.29 215 | 83.35 213 |
|
mPP-MVS | | | 71.79 119 | 70.38 120 | 76.04 127 | 82.65 130 | 52.06 142 | 84.45 145 | 81.78 176 | 55.59 233 | 62.05 168 | 89.68 93 | 33.48 236 | 88.28 156 | 65.45 121 | 78.24 102 | 87.77 136 |
|
EPNet | | | 78.36 25 | 78.49 21 | 77.97 79 | 85.49 59 | 52.04 143 | 89.36 39 | 84.07 137 | 73.22 4 | 77.03 25 | 91.72 45 | 49.32 57 | 90.17 103 | 73.46 71 | 82.77 60 | 91.69 41 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PCF-MVS | | 61.03 10 | 70.10 141 | 68.40 147 | 75.22 143 | 77.15 232 | 51.99 144 | 79.30 257 | 82.12 169 | 56.47 225 | 61.88 169 | 86.48 147 | 43.98 111 | 87.24 184 | 55.37 200 | 72.79 148 | 86.43 163 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test_yl | | | 75.85 63 | 74.83 67 | 78.91 43 | 88.08 30 | 51.94 145 | 91.30 18 | 89.28 18 | 57.91 194 | 71.19 79 | 89.20 102 | 42.03 140 | 92.77 36 | 69.41 89 | 75.07 129 | 92.01 36 |
|
DCV-MVSNet | | | 75.85 63 | 74.83 67 | 78.91 43 | 88.08 30 | 51.94 145 | 91.30 18 | 89.28 18 | 57.91 194 | 71.19 79 | 89.20 102 | 42.03 140 | 92.77 36 | 69.41 89 | 75.07 129 | 92.01 36 |
|
ACMMP |  | | 70.81 132 | 69.29 138 | 75.39 138 | 81.52 155 | 51.92 147 | 83.43 175 | 83.03 159 | 56.67 221 | 58.80 207 | 88.91 107 | 31.92 252 | 88.58 141 | 65.89 115 | 73.39 140 | 85.67 176 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PVSNet | | 62.49 8 | 69.27 159 | 67.81 159 | 73.64 178 | 84.41 80 | 51.85 148 | 84.63 144 | 77.80 248 | 66.42 48 | 59.80 185 | 84.95 162 | 22.14 316 | 80.44 279 | 55.03 201 | 75.11 128 | 88.62 120 |
|
Regformer-2 | | | 77.15 41 | 76.82 40 | 78.14 73 | 87.78 32 | 51.84 149 | 87.60 64 | 89.12 21 | 67.23 43 | 71.93 70 | 91.79 42 | 46.03 85 | 93.53 27 | 72.85 75 | 77.05 107 | 89.05 109 |
|
PVSNet_BlendedMVS | | | 73.42 95 | 73.30 80 | 73.76 173 | 85.91 48 | 51.83 150 | 86.18 100 | 84.24 134 | 65.40 64 | 69.09 88 | 80.86 214 | 46.70 77 | 88.13 159 | 75.43 53 | 65.92 198 | 81.33 248 |
|
PVSNet_Blended | | | 76.53 52 | 76.54 42 | 76.50 113 | 85.91 48 | 51.83 150 | 88.89 47 | 84.24 134 | 67.82 37 | 69.09 88 | 89.33 101 | 46.70 77 | 88.13 159 | 75.43 53 | 81.48 73 | 89.55 94 |
|
baseline2 | | | 75.15 73 | 74.54 71 | 76.98 105 | 81.67 144 | 51.74 152 | 83.84 163 | 91.94 1 | 69.97 19 | 58.98 200 | 86.02 149 | 59.73 5 | 91.73 61 | 68.37 96 | 70.40 168 | 87.48 140 |
|
GeoE | | | 69.96 147 | 67.88 155 | 76.22 120 | 81.11 163 | 51.71 153 | 84.15 153 | 76.74 269 | 59.83 149 | 60.91 175 | 84.38 165 | 41.56 147 | 88.10 161 | 51.67 226 | 70.57 166 | 88.84 114 |
|
mvs-test1 | | | 69.04 161 | 67.57 164 | 73.44 183 | 75.17 253 | 51.68 154 | 86.57 94 | 74.48 288 | 62.15 109 | 62.07 167 | 85.79 152 | 30.59 262 | 87.48 179 | 65.40 123 | 65.94 197 | 81.18 252 |
|
EIA-MVS | | | 75.92 62 | 75.18 61 | 78.13 74 | 85.14 69 | 51.60 155 | 87.17 79 | 85.32 100 | 64.69 74 | 68.56 91 | 90.53 71 | 45.79 90 | 91.58 64 | 67.21 103 | 82.18 67 | 91.20 57 |
|
HQP5-MVS | | | | | | | 51.56 156 | | | | | | | | | | |
|
HQP-MVS | | | 72.34 110 | 71.44 108 | 75.03 144 | 79.02 195 | 51.56 156 | 88.00 57 | 83.68 144 | 65.45 61 | 64.48 136 | 85.13 159 | 37.35 191 | 88.62 139 | 66.70 106 | 73.12 143 | 84.91 189 |
|
thisisatest0530 | | | 70.47 138 | 68.56 144 | 76.20 122 | 79.78 184 | 51.52 158 | 83.49 174 | 88.58 42 | 57.62 203 | 58.60 209 | 82.79 187 | 51.03 43 | 91.48 67 | 52.84 216 | 62.36 227 | 85.59 180 |
|
v148 | | | 68.24 180 | 66.35 184 | 73.88 168 | 71.76 290 | 51.47 159 | 84.23 151 | 81.90 175 | 63.69 88 | 58.94 201 | 76.44 259 | 43.72 118 | 87.78 172 | 60.63 154 | 55.86 280 | 82.39 229 |
|
Regformer-3 | | | 76.02 61 | 75.47 57 | 77.70 84 | 85.49 59 | 51.47 159 | 85.12 129 | 90.19 11 | 68.52 27 | 69.36 86 | 90.66 66 | 46.45 80 | 94.81 17 | 70.25 87 | 73.16 141 | 86.81 157 |
|
HPM-MVS |  | | 72.60 105 | 71.50 106 | 75.89 130 | 82.02 137 | 51.42 161 | 80.70 238 | 83.05 158 | 56.12 228 | 64.03 143 | 89.53 95 | 37.55 187 | 88.37 149 | 70.48 86 | 80.04 88 | 87.88 133 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVP-Stereo | | | 70.97 128 | 70.44 119 | 72.59 196 | 76.03 246 | 51.36 162 | 85.02 135 | 86.99 67 | 60.31 143 | 56.53 244 | 78.92 229 | 40.11 162 | 90.00 104 | 60.00 165 | 90.01 4 | 76.41 303 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
OPM-MVS | | | 70.75 133 | 69.58 132 | 74.26 160 | 75.55 252 | 51.34 163 | 86.05 103 | 83.29 154 | 61.94 115 | 62.95 158 | 85.77 153 | 34.15 228 | 88.44 147 | 65.44 122 | 71.07 161 | 82.99 223 |
|
tpm | | | 68.36 175 | 67.48 167 | 70.97 233 | 79.93 183 | 51.34 163 | 76.58 271 | 78.75 231 | 67.73 38 | 63.54 154 | 74.86 274 | 48.33 60 | 72.36 333 | 53.93 209 | 63.71 209 | 89.21 104 |
|
3Dnovator+ | | 62.71 7 | 72.29 112 | 70.50 118 | 77.65 86 | 83.40 103 | 51.29 165 | 87.32 73 | 86.40 79 | 59.01 175 | 58.49 213 | 88.32 117 | 32.40 245 | 91.27 72 | 57.04 191 | 82.15 68 | 90.38 77 |
|
IterMVS | | | 63.77 235 | 61.67 235 | 70.08 246 | 72.68 282 | 51.24 166 | 80.44 240 | 75.51 280 | 60.51 141 | 51.41 279 | 73.70 283 | 32.08 249 | 78.91 292 | 54.30 207 | 54.35 291 | 80.08 266 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
BH-RMVSNet | | | 70.08 142 | 68.01 152 | 76.27 118 | 84.21 85 | 51.22 167 | 87.29 76 | 79.33 222 | 58.96 178 | 63.63 152 | 86.77 141 | 33.29 238 | 90.30 99 | 44.63 265 | 73.96 135 | 87.30 145 |
|
test222 | | | | | | 79.36 187 | 50.97 168 | 77.99 263 | 67.84 326 | 42.54 323 | 62.84 159 | 86.53 145 | 30.26 264 | | | 76.91 111 | 85.23 184 |
|
TESTMET0.1,1 | | | 72.86 101 | 72.33 91 | 74.46 153 | 81.98 138 | 50.77 169 | 85.13 126 | 85.47 92 | 66.09 55 | 67.30 100 | 83.69 176 | 37.27 194 | 83.57 256 | 65.06 126 | 78.97 97 | 89.05 109 |
|
MSDG | | | 59.44 261 | 55.14 281 | 72.32 204 | 74.69 261 | 50.71 170 | 74.39 284 | 73.58 297 | 44.44 312 | 43.40 315 | 77.52 241 | 19.45 325 | 90.87 83 | 31.31 317 | 57.49 265 | 75.38 309 |
|
PHI-MVS | | | 77.49 36 | 77.00 37 | 78.95 42 | 85.33 66 | 50.69 171 | 88.57 52 | 88.59 41 | 58.14 189 | 73.60 47 | 93.31 12 | 43.14 127 | 93.79 25 | 73.81 66 | 88.53 11 | 92.37 27 |
|
GG-mvs-BLEND | | | | | 77.77 82 | 86.68 42 | 50.61 172 | 68.67 317 | 88.45 44 | | 68.73 90 | 87.45 133 | 59.15 8 | 90.67 86 | 54.83 202 | 87.67 15 | 92.03 35 |
|
nrg030 | | | 72.27 114 | 71.56 105 | 74.42 155 | 75.93 247 | 50.60 173 | 86.97 83 | 83.21 155 | 62.75 102 | 67.15 103 | 84.38 165 | 50.07 50 | 86.66 200 | 71.19 81 | 62.37 226 | 85.99 168 |
|
Patchmtry | | | 56.56 285 | 52.95 292 | 67.42 273 | 72.53 284 | 50.59 174 | 59.05 337 | 71.72 310 | 37.86 334 | 46.92 302 | 65.86 325 | 38.94 170 | 80.06 284 | 36.94 291 | 46.72 322 | 71.60 332 |
|
pmmvs4 | | | 63.34 237 | 61.07 242 | 70.16 244 | 70.14 304 | 50.53 175 | 79.97 248 | 71.41 316 | 55.08 239 | 54.12 261 | 78.58 232 | 32.79 242 | 82.09 266 | 50.33 232 | 57.22 266 | 77.86 287 |
|
1314 | | | 71.11 126 | 69.41 134 | 76.22 120 | 79.32 189 | 50.49 176 | 80.23 244 | 85.14 110 | 59.44 157 | 58.93 202 | 88.89 108 | 33.83 234 | 89.60 116 | 61.49 147 | 77.42 106 | 88.57 122 |
|
SR-MVS | | | 70.92 130 | 69.73 131 | 74.50 152 | 83.38 104 | 50.48 177 | 84.27 150 | 79.35 220 | 48.96 283 | 66.57 109 | 90.45 74 | 33.65 235 | 87.11 186 | 66.42 108 | 74.56 132 | 85.91 171 |
|
NP-MVS | | | | | | 78.76 200 | 50.43 178 | | | | | 85.12 160 | | | | | |
|
eth_miper_zixun_eth | | | 66.98 208 | 65.28 211 | 72.06 208 | 75.61 251 | 50.40 179 | 81.00 233 | 76.97 266 | 62.00 112 | 56.99 238 | 76.97 250 | 44.84 103 | 85.58 227 | 58.75 170 | 54.42 290 | 80.21 264 |
|
BH-w/o | | | 70.02 144 | 68.51 145 | 74.56 151 | 82.77 124 | 50.39 180 | 86.60 93 | 78.14 243 | 59.77 150 | 59.65 187 | 85.57 156 | 39.27 169 | 87.30 183 | 49.86 235 | 74.94 131 | 85.99 168 |
|
hse-mvs3 | | | 73.95 86 | 72.89 85 | 77.15 100 | 80.17 181 | 50.37 181 | 84.68 141 | 83.33 150 | 68.08 31 | 71.97 68 | 88.65 114 | 42.50 131 | 91.15 75 | 78.82 28 | 57.78 263 | 89.91 88 |
|
Anonymous20240529 | | | 69.71 151 | 67.28 170 | 77.00 104 | 83.78 94 | 50.36 182 | 88.87 48 | 85.10 111 | 47.22 290 | 64.03 143 | 83.37 180 | 27.93 277 | 92.10 56 | 57.78 185 | 67.44 186 | 88.53 123 |
|
DP-MVS | | | 59.24 263 | 56.12 274 | 68.63 264 | 88.24 28 | 50.35 183 | 82.51 199 | 64.43 333 | 41.10 326 | 46.70 304 | 78.77 230 | 24.75 301 | 88.57 144 | 22.26 343 | 56.29 274 | 66.96 341 |
|
Regformer-4 | | | 75.06 75 | 74.59 70 | 76.47 114 | 85.49 59 | 50.33 184 | 85.12 129 | 88.61 39 | 66.42 48 | 68.48 92 | 90.66 66 | 44.15 110 | 92.68 39 | 69.24 91 | 73.16 141 | 86.39 164 |
|
CPTT-MVS | | | 67.15 203 | 65.84 197 | 71.07 231 | 80.96 165 | 50.32 185 | 81.94 210 | 74.10 291 | 46.18 301 | 57.91 220 | 87.64 131 | 29.57 267 | 81.31 270 | 64.10 130 | 70.18 170 | 81.56 239 |
|
test_0402 | | | 56.45 286 | 53.03 290 | 66.69 281 | 76.78 235 | 50.31 186 | 81.76 215 | 69.61 323 | 42.79 322 | 43.88 311 | 72.13 300 | 22.82 310 | 86.46 206 | 16.57 354 | 50.94 306 | 63.31 347 |
|
PVSNet_0 | | 57.04 13 | 61.19 254 | 57.24 265 | 73.02 188 | 77.45 225 | 50.31 186 | 79.43 256 | 77.36 258 | 63.96 83 | 47.51 301 | 72.45 296 | 25.03 299 | 83.78 253 | 52.76 221 | 19.22 357 | 84.96 188 |
|
TSAR-MVS + GP. | | | 77.82 32 | 77.59 31 | 78.49 61 | 85.25 68 | 50.27 188 | 90.02 28 | 90.57 9 | 56.58 223 | 74.26 43 | 91.60 48 | 54.26 21 | 92.16 53 | 75.87 48 | 79.91 90 | 93.05 15 |
|
DROMVSNet | | | 76.08 58 | 76.00 52 | 76.34 116 | 81.28 161 | 50.25 189 | 87.85 61 | 84.94 114 | 63.52 93 | 72.04 67 | 90.51 73 | 45.20 97 | 91.62 63 | 75.56 52 | 83.07 58 | 87.16 146 |
|
bset_n11_16_dypcd | | | 65.51 225 | 63.21 227 | 72.41 201 | 68.84 311 | 50.15 190 | 81.25 228 | 72.40 306 | 59.17 170 | 59.20 198 | 78.66 231 | 25.69 295 | 85.27 234 | 66.80 105 | 56.88 268 | 81.80 234 |
|
RRT_MVS | | | 65.43 227 | 64.01 224 | 69.68 251 | 81.54 151 | 50.15 190 | 82.31 204 | 76.78 267 | 55.25 237 | 60.64 180 | 82.00 203 | 25.18 297 | 79.00 291 | 60.96 150 | 51.45 305 | 79.89 268 |
|
VNet | | | 77.99 31 | 77.92 28 | 78.19 72 | 87.43 35 | 50.12 192 | 90.93 23 | 91.41 4 | 67.48 42 | 75.12 34 | 90.15 84 | 46.77 76 | 91.00 78 | 73.52 70 | 78.46 100 | 93.44 7 |
|
CANet_DTU | | | 73.71 92 | 73.14 81 | 75.40 137 | 82.61 131 | 50.05 193 | 84.67 143 | 79.36 219 | 69.72 21 | 75.39 32 | 90.03 87 | 29.41 268 | 85.93 225 | 67.99 99 | 79.11 95 | 90.22 80 |
|
BH-untuned | | | 68.28 178 | 66.40 183 | 73.91 167 | 81.62 146 | 50.01 194 | 85.56 117 | 77.39 256 | 57.63 202 | 57.47 233 | 83.69 176 | 36.36 209 | 87.08 187 | 44.81 264 | 73.08 146 | 84.65 191 |
|
cl-mvsnet2 | | | 68.85 164 | 67.69 160 | 72.35 203 | 78.07 216 | 49.98 195 | 82.45 201 | 78.48 238 | 62.50 106 | 58.46 214 | 77.95 235 | 49.99 51 | 85.17 237 | 62.55 138 | 58.72 246 | 81.90 233 |
|
miper_enhance_ethall | | | 69.77 150 | 68.90 142 | 72.38 202 | 78.93 198 | 49.91 196 | 83.29 181 | 78.85 227 | 64.90 72 | 59.37 193 | 79.46 222 | 52.77 28 | 85.16 238 | 63.78 131 | 58.72 246 | 82.08 231 |
|
v7n | | | 62.50 246 | 59.27 255 | 72.20 205 | 67.25 323 | 49.83 197 | 77.87 264 | 80.12 200 | 52.50 261 | 48.80 292 | 73.07 288 | 32.10 248 | 87.90 166 | 46.83 255 | 54.92 286 | 78.86 272 |
|
EI-MVSNet-Vis-set | | | 73.19 98 | 72.60 87 | 74.99 146 | 82.56 132 | 49.80 198 | 82.55 198 | 89.00 26 | 66.17 53 | 65.89 117 | 88.98 105 | 43.83 113 | 92.29 49 | 65.38 125 | 69.01 176 | 82.87 226 |
|
Effi-MVS+-dtu | | | 66.24 219 | 64.96 216 | 70.08 246 | 75.17 253 | 49.64 199 | 82.01 208 | 74.48 288 | 62.15 109 | 57.83 221 | 76.08 267 | 30.59 262 | 83.79 252 | 65.40 123 | 60.93 233 | 76.81 296 |
|
HQP_MVS | | | 70.96 129 | 69.91 129 | 74.12 162 | 77.95 217 | 49.57 200 | 85.76 108 | 82.59 164 | 63.60 90 | 62.15 165 | 83.28 182 | 36.04 214 | 88.30 154 | 65.46 119 | 72.34 152 | 84.49 192 |
|
plane_prior | | | | | | | 49.57 200 | 87.43 71 | | 64.57 75 | | | | | | 72.84 147 | |
|
ADS-MVSNet2 | | | 55.21 294 | 51.44 298 | 66.51 283 | 80.60 175 | 49.56 202 | 55.03 342 | 65.44 330 | 44.72 309 | 51.00 282 | 61.19 336 | 22.83 308 | 75.41 317 | 28.54 327 | 53.63 294 | 74.57 315 |
|
MVS_111021_LR | | | 69.07 160 | 67.91 153 | 72.54 197 | 77.27 227 | 49.56 202 | 79.77 249 | 73.96 294 | 59.33 163 | 60.73 178 | 87.82 126 | 30.19 265 | 81.53 268 | 69.94 88 | 72.19 154 | 86.53 160 |
|
DeepPCF-MVS | | 69.37 1 | 80.65 10 | 81.56 8 | 77.94 81 | 85.46 62 | 49.56 202 | 90.99 22 | 86.66 75 | 70.58 14 | 80.07 17 | 95.30 1 | 56.18 15 | 90.97 80 | 82.57 10 | 86.22 34 | 93.28 10 |
|
miper_ehance_all_eth | | | 68.70 173 | 67.58 162 | 72.08 207 | 76.91 234 | 49.48 205 | 82.47 200 | 78.45 239 | 62.68 103 | 58.28 218 | 77.88 237 | 50.90 44 | 85.01 242 | 61.91 144 | 58.72 246 | 81.75 236 |
|
plane_prior6 | | | | | | 78.42 212 | 49.39 206 | | | | | | 36.04 214 | | | | |
|
cl_fuxian | | | 67.97 183 | 66.66 181 | 71.91 218 | 76.20 243 | 49.31 207 | 82.13 207 | 78.00 246 | 61.99 113 | 57.64 227 | 76.94 251 | 49.41 55 | 84.93 243 | 60.62 155 | 57.01 267 | 81.49 240 |
|
EI-MVSNet-UG-set | | | 72.37 109 | 71.73 103 | 74.29 159 | 81.60 147 | 49.29 208 | 81.85 213 | 88.64 36 | 65.29 69 | 65.05 127 | 88.29 118 | 43.18 125 | 91.83 59 | 63.74 132 | 67.97 183 | 81.75 236 |
|
ACMP | | 61.11 9 | 66.24 219 | 64.33 220 | 72.00 211 | 74.89 260 | 49.12 209 | 83.18 183 | 79.83 206 | 55.41 236 | 52.29 274 | 82.68 192 | 25.83 291 | 86.10 215 | 60.89 151 | 63.94 208 | 80.78 256 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
tttt0517 | | | 68.33 177 | 66.29 186 | 74.46 153 | 78.08 215 | 49.06 210 | 80.88 235 | 89.08 23 | 54.40 249 | 54.75 255 | 80.77 215 | 51.31 40 | 90.33 96 | 49.35 239 | 58.01 257 | 83.99 201 |
|
MDA-MVSNet_test_wron | | | 53.82 300 | 49.95 304 | 65.43 289 | 70.13 305 | 49.05 211 | 72.30 298 | 71.65 313 | 44.23 315 | 31.85 349 | 63.13 332 | 23.68 306 | 74.01 322 | 33.25 310 | 39.35 338 | 73.23 325 |
|
EG-PatchMatch MVS | | | 62.40 249 | 59.59 251 | 70.81 235 | 73.29 274 | 49.05 211 | 85.81 106 | 84.78 120 | 51.85 267 | 44.19 310 | 73.48 286 | 15.52 342 | 89.85 107 | 40.16 279 | 67.24 187 | 73.54 322 |
|
YYNet1 | | | 53.82 300 | 49.96 303 | 65.41 290 | 70.09 306 | 48.95 213 | 72.30 298 | 71.66 312 | 44.25 314 | 31.89 348 | 63.07 333 | 23.73 305 | 73.95 323 | 33.26 309 | 39.40 337 | 73.34 323 |
|
plane_prior3 | | | | | | | 48.95 213 | | | 64.01 80 | 62.15 165 | | | | | | |
|
D2MVS | | | 63.49 236 | 61.39 239 | 69.77 250 | 69.29 309 | 48.93 215 | 78.89 259 | 77.71 251 | 60.64 140 | 49.70 288 | 72.10 302 | 27.08 284 | 83.48 257 | 54.48 206 | 62.65 223 | 76.90 295 |
|
EI-MVSNet | | | 69.70 153 | 68.70 143 | 72.68 194 | 75.00 258 | 48.90 216 | 79.54 252 | 87.16 64 | 61.05 131 | 63.88 148 | 83.74 174 | 45.87 88 | 90.44 92 | 57.42 189 | 64.68 204 | 78.70 274 |
|
IterMVS-LS | | | 66.63 212 | 65.36 210 | 70.42 240 | 75.10 256 | 48.90 216 | 81.45 227 | 76.69 271 | 61.05 131 | 55.71 250 | 77.10 249 | 45.86 89 | 83.65 255 | 57.44 188 | 57.88 261 | 78.70 274 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test1172 | | | 69.64 155 | 68.38 148 | 73.41 184 | 82.77 124 | 48.84 218 | 82.79 193 | 78.34 241 | 47.02 293 | 65.27 124 | 90.07 85 | 31.17 258 | 86.09 217 | 64.51 129 | 73.49 139 | 85.31 183 |
|
CDS-MVSNet | | | 70.48 137 | 69.43 133 | 73.64 178 | 77.56 223 | 48.83 219 | 83.51 172 | 77.45 255 | 63.27 95 | 62.33 164 | 85.54 157 | 43.85 112 | 83.29 260 | 57.38 190 | 74.00 134 | 88.79 116 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Anonymous20231211 | | | 66.08 221 | 63.67 225 | 73.31 185 | 83.07 113 | 48.75 220 | 86.01 105 | 84.67 123 | 45.27 306 | 56.54 243 | 76.67 257 | 28.06 276 | 88.95 132 | 52.78 218 | 59.95 235 | 82.23 230 |
|
TAMVS | | | 69.51 158 | 68.16 151 | 73.56 181 | 76.30 241 | 48.71 221 | 82.57 196 | 77.17 260 | 62.10 111 | 61.32 172 | 84.23 167 | 41.90 142 | 83.46 258 | 54.80 204 | 73.09 145 | 88.50 124 |
|
LPG-MVS_test | | | 66.44 216 | 64.58 218 | 72.02 209 | 74.42 264 | 48.60 222 | 83.07 186 | 80.64 193 | 54.69 245 | 53.75 265 | 83.83 172 | 25.73 293 | 86.98 189 | 60.33 162 | 64.71 201 | 80.48 260 |
|
LGP-MVS_train | | | | | 72.02 209 | 74.42 264 | 48.60 222 | | 80.64 193 | 54.69 245 | 53.75 265 | 83.83 172 | 25.73 293 | 86.98 189 | 60.33 162 | 64.71 201 | 80.48 260 |
|
PMMVS | | | 72.98 99 | 72.05 101 | 75.78 132 | 83.57 96 | 48.60 222 | 84.08 155 | 82.85 163 | 61.62 120 | 68.24 95 | 90.33 78 | 28.35 272 | 87.78 172 | 72.71 76 | 76.69 112 | 90.95 65 |
|
FMVSNet3 | | | 68.84 165 | 67.40 168 | 73.19 187 | 85.05 70 | 48.53 225 | 85.71 113 | 85.36 97 | 60.90 135 | 57.58 228 | 79.15 227 | 42.16 136 | 86.77 196 | 47.25 252 | 63.40 211 | 84.27 196 |
|
ACMM | | 58.35 12 | 64.35 230 | 62.01 234 | 71.38 225 | 74.21 267 | 48.51 226 | 82.25 205 | 79.66 210 | 47.61 287 | 54.54 257 | 80.11 218 | 25.26 296 | 86.00 220 | 51.26 227 | 63.16 218 | 79.64 270 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Vis-MVSNet |  | | 70.61 135 | 69.34 136 | 74.42 155 | 80.95 168 | 48.49 227 | 86.03 104 | 77.51 254 | 58.74 181 | 65.55 122 | 87.78 128 | 34.37 226 | 85.95 224 | 52.53 223 | 80.61 79 | 88.80 115 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
abl_6 | | | 68.03 182 | 66.15 190 | 73.66 177 | 78.54 208 | 48.48 228 | 79.77 249 | 78.04 244 | 47.39 289 | 63.70 150 | 88.25 119 | 28.21 273 | 89.06 122 | 60.17 164 | 71.25 160 | 83.45 212 |
|
TR-MVS | | | 69.71 151 | 67.85 158 | 75.27 141 | 82.94 119 | 48.48 228 | 87.40 72 | 80.86 190 | 57.15 211 | 64.61 134 | 87.08 137 | 32.67 243 | 89.64 115 | 46.38 257 | 71.55 159 | 87.68 138 |
|
plane_prior7 | | | | | | 77.95 217 | 48.46 230 | | | | | | | | | | |
|
ACMH | | 53.70 16 | 59.78 259 | 55.94 276 | 71.28 226 | 76.59 236 | 48.35 231 | 80.15 247 | 76.11 276 | 49.74 278 | 41.91 321 | 73.45 287 | 16.50 339 | 90.31 97 | 31.42 316 | 57.63 264 | 75.17 311 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HPM-MVS_fast | | | 67.86 185 | 66.28 187 | 72.61 195 | 80.67 174 | 48.34 232 | 81.18 230 | 75.95 278 | 50.81 273 | 59.55 191 | 88.05 124 | 27.86 278 | 85.98 221 | 58.83 169 | 73.58 138 | 83.51 211 |
|
PS-MVSNAJss | | | 68.78 170 | 67.17 172 | 73.62 180 | 73.01 277 | 48.33 233 | 84.95 136 | 84.81 119 | 59.30 164 | 58.91 204 | 79.84 220 | 37.77 180 | 88.86 135 | 62.83 137 | 63.12 220 | 83.67 210 |
|
APD-MVS_3200maxsize | | | 69.62 156 | 68.23 150 | 73.80 172 | 81.58 149 | 48.22 234 | 81.91 211 | 79.50 214 | 48.21 285 | 64.24 141 | 89.75 92 | 31.91 253 | 87.55 178 | 63.08 135 | 73.85 137 | 85.64 178 |
|
test-LLR | | | 69.65 154 | 69.01 141 | 71.60 221 | 78.67 203 | 48.17 235 | 85.13 126 | 79.72 208 | 59.18 168 | 63.13 156 | 82.58 193 | 36.91 200 | 80.24 281 | 60.56 156 | 75.17 126 | 86.39 164 |
|
test-mter | | | 68.36 175 | 67.29 169 | 71.60 221 | 78.67 203 | 48.17 235 | 85.13 126 | 79.72 208 | 53.38 254 | 63.13 156 | 82.58 193 | 27.23 283 | 80.24 281 | 60.56 156 | 75.17 126 | 86.39 164 |
|
SR-MVS-dyc-post | | | 68.27 179 | 66.87 174 | 72.48 200 | 80.96 165 | 48.14 237 | 81.54 222 | 76.98 263 | 46.42 298 | 62.75 160 | 89.42 97 | 31.17 258 | 86.09 217 | 60.52 158 | 72.06 155 | 83.19 219 |
|
RE-MVS-def | | | | 66.66 181 | | 80.96 165 | 48.14 237 | 81.54 222 | 76.98 263 | 46.42 298 | 62.75 160 | 89.42 97 | 29.28 270 | | 60.52 158 | 72.06 155 | 83.19 219 |
|
CHOSEN 280x420 | | | 57.53 280 | 56.38 273 | 60.97 315 | 74.01 268 | 48.10 239 | 46.30 348 | 54.31 346 | 48.18 286 | 50.88 285 | 77.43 244 | 38.37 176 | 59.16 349 | 54.83 202 | 63.14 219 | 75.66 307 |
|
cl-mvsnet____ | | | 67.43 195 | 65.93 195 | 71.95 215 | 76.33 239 | 48.02 240 | 82.58 195 | 79.12 224 | 61.30 127 | 56.72 240 | 76.92 252 | 46.12 82 | 86.44 207 | 57.98 180 | 56.31 272 | 81.38 247 |
|
cl-mvsnet1 | | | 67.43 195 | 65.93 195 | 71.94 216 | 76.33 239 | 48.01 241 | 82.57 196 | 79.11 225 | 61.31 126 | 56.73 239 | 76.92 252 | 46.09 83 | 86.43 208 | 57.98 180 | 56.31 272 | 81.39 246 |
|
FMVSNet2 | | | 67.57 191 | 65.79 198 | 72.90 190 | 82.71 127 | 47.97 242 | 85.15 125 | 84.93 115 | 58.55 184 | 56.71 241 | 78.26 234 | 36.72 205 | 86.67 199 | 46.15 259 | 62.94 222 | 84.07 198 |
|
gg-mvs-nofinetune | | | 67.43 195 | 64.53 219 | 76.13 124 | 85.95 46 | 47.79 243 | 64.38 324 | 88.28 45 | 39.34 328 | 66.62 106 | 41.27 350 | 58.69 11 | 89.00 128 | 49.64 237 | 86.62 29 | 91.59 44 |
|
UGNet | | | 68.71 171 | 67.11 173 | 73.50 182 | 80.55 177 | 47.61 244 | 84.08 155 | 78.51 237 | 59.45 156 | 65.68 121 | 82.73 191 | 23.78 304 | 85.08 241 | 52.80 217 | 76.40 113 | 87.80 135 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
旧先验1 | | | | | | 81.57 150 | 47.48 245 | | 71.83 309 | | | 88.66 111 | 36.94 199 | | | 78.34 101 | 88.67 118 |
|
AUN-MVS | | | 68.20 181 | 66.35 184 | 73.76 173 | 76.37 237 | 47.45 246 | 79.52 254 | 79.52 213 | 60.98 133 | 62.34 163 | 86.02 149 | 36.59 208 | 86.94 192 | 62.32 140 | 53.47 298 | 86.89 150 |
|
hse-mvs2 | | | 71.44 123 | 70.68 116 | 73.73 175 | 76.34 238 | 47.44 247 | 79.45 255 | 79.47 215 | 68.08 31 | 71.97 68 | 86.01 151 | 42.50 131 | 86.93 193 | 78.82 28 | 53.46 299 | 86.83 156 |
|
HY-MVS | | 67.03 5 | 73.90 87 | 73.14 81 | 76.18 123 | 84.70 76 | 47.36 248 | 75.56 275 | 86.36 80 | 66.27 51 | 70.66 82 | 83.91 171 | 51.05 42 | 89.31 119 | 67.10 104 | 72.61 150 | 91.88 39 |
|
MDA-MVSNet-bldmvs | | | 51.56 308 | 47.75 313 | 63.00 302 | 71.60 293 | 47.32 249 | 69.70 315 | 72.12 308 | 43.81 317 | 27.65 353 | 63.38 331 | 21.97 317 | 75.96 314 | 27.30 333 | 32.19 348 | 65.70 344 |
|
CNLPA | | | 60.59 257 | 58.44 260 | 67.05 277 | 79.21 191 | 47.26 250 | 79.75 251 | 64.34 334 | 42.46 324 | 51.90 278 | 83.94 170 | 27.79 280 | 75.41 317 | 37.12 287 | 59.49 240 | 78.47 278 |
|
Anonymous202405211 | | | 70.11 140 | 67.88 155 | 76.79 111 | 87.20 39 | 47.24 251 | 89.49 37 | 77.38 257 | 54.88 243 | 66.14 113 | 86.84 140 | 20.93 321 | 91.54 65 | 56.45 196 | 71.62 157 | 91.59 44 |
|
VPNet | | | 72.07 115 | 71.42 109 | 74.04 164 | 78.64 206 | 47.17 252 | 89.91 33 | 87.97 49 | 72.56 7 | 64.66 132 | 85.04 161 | 41.83 144 | 88.33 152 | 61.17 149 | 60.97 232 | 86.62 159 |
|
JIA-IIPM | | | 52.33 306 | 47.77 312 | 66.03 285 | 71.20 298 | 46.92 253 | 40.00 355 | 76.48 274 | 37.10 335 | 46.73 303 | 37.02 352 | 32.96 239 | 77.88 304 | 35.97 294 | 52.45 302 | 73.29 324 |
|
miper_lstm_enhance | | | 63.91 232 | 62.30 231 | 68.75 262 | 75.06 257 | 46.78 254 | 69.02 316 | 81.14 187 | 59.68 153 | 52.76 271 | 72.39 297 | 40.71 154 | 77.99 302 | 56.81 192 | 53.09 300 | 81.48 242 |
|
thres200 | | | 68.71 171 | 67.27 171 | 73.02 188 | 84.73 75 | 46.76 255 | 85.03 134 | 87.73 57 | 62.34 108 | 59.87 183 | 83.45 179 | 43.15 126 | 88.32 153 | 31.25 318 | 67.91 184 | 83.98 203 |
|
MIMVSNet | | | 63.12 239 | 60.29 248 | 71.61 220 | 75.92 248 | 46.65 256 | 65.15 321 | 81.94 171 | 59.14 171 | 54.65 256 | 69.47 314 | 25.74 292 | 80.63 276 | 41.03 278 | 69.56 175 | 87.55 139 |
|
MVS-HIRNet | | | 49.01 312 | 44.71 316 | 61.92 308 | 76.06 244 | 46.61 257 | 63.23 327 | 54.90 345 | 24.77 351 | 33.56 344 | 36.60 354 | 21.28 320 | 75.88 315 | 29.49 321 | 62.54 224 | 63.26 348 |
|
EPP-MVSNet | | | 71.14 124 | 70.07 127 | 74.33 158 | 79.18 192 | 46.52 258 | 83.81 164 | 86.49 76 | 56.32 227 | 57.95 219 | 84.90 163 | 54.23 22 | 89.14 121 | 58.14 178 | 69.65 173 | 87.33 143 |
|
pmmvs-eth3d | | | 55.97 290 | 52.78 294 | 65.54 288 | 61.02 344 | 46.44 259 | 75.36 279 | 67.72 327 | 49.61 279 | 43.65 313 | 67.58 321 | 21.63 318 | 77.04 309 | 44.11 267 | 44.33 327 | 73.15 326 |
|
GBi-Net | | | 67.09 204 | 65.47 206 | 71.96 212 | 82.71 127 | 46.36 260 | 83.52 168 | 83.31 151 | 58.55 184 | 57.58 228 | 76.23 263 | 36.72 205 | 86.20 209 | 47.25 252 | 63.40 211 | 83.32 214 |
|
test1 | | | 67.09 204 | 65.47 206 | 71.96 212 | 82.71 127 | 46.36 260 | 83.52 168 | 83.31 151 | 58.55 184 | 57.58 228 | 76.23 263 | 36.72 205 | 86.20 209 | 47.25 252 | 63.40 211 | 83.32 214 |
|
FMVSNet1 | | | 64.57 228 | 62.11 233 | 71.96 212 | 77.32 226 | 46.36 260 | 83.52 168 | 83.31 151 | 52.43 262 | 54.42 258 | 76.23 263 | 27.80 279 | 86.20 209 | 42.59 275 | 61.34 231 | 83.32 214 |
|
XVG-OURS | | | 61.88 251 | 59.34 254 | 69.49 252 | 65.37 328 | 46.27 263 | 64.80 323 | 73.49 299 | 47.04 292 | 57.41 235 | 82.85 186 | 25.15 298 | 78.18 296 | 53.00 215 | 64.98 199 | 84.01 200 |
|
WTY-MVS | | | 77.47 37 | 77.52 32 | 77.30 94 | 88.33 26 | 46.25 264 | 88.46 53 | 90.32 10 | 71.40 10 | 72.32 65 | 91.72 45 | 53.44 25 | 92.37 48 | 66.28 111 | 75.42 124 | 93.28 10 |
|
ab-mvs | | | 70.65 134 | 69.11 140 | 75.29 140 | 80.87 169 | 46.23 265 | 73.48 289 | 85.24 106 | 59.99 147 | 66.65 105 | 80.94 213 | 43.13 128 | 88.69 137 | 63.58 133 | 68.07 181 | 90.95 65 |
|
PatchT | | | 56.60 284 | 52.97 291 | 67.48 272 | 72.94 279 | 46.16 266 | 57.30 340 | 73.78 295 | 38.77 330 | 54.37 259 | 57.26 346 | 37.52 188 | 78.06 299 | 32.02 313 | 52.79 301 | 78.23 285 |
|
XVG-OURS-SEG-HR | | | 62.02 250 | 59.54 252 | 69.46 253 | 65.30 329 | 45.88 267 | 65.06 322 | 73.57 298 | 46.45 297 | 57.42 234 | 83.35 181 | 26.95 285 | 78.09 298 | 53.77 210 | 64.03 206 | 84.42 194 |
|
KD-MVS_2432*1600 | | | 59.04 268 | 56.44 271 | 66.86 278 | 79.07 193 | 45.87 268 | 72.13 301 | 80.42 197 | 55.03 240 | 48.15 294 | 71.01 305 | 36.73 203 | 78.05 300 | 35.21 299 | 30.18 351 | 76.67 297 |
|
miper_refine_blended | | | 59.04 268 | 56.44 271 | 66.86 278 | 79.07 193 | 45.87 268 | 72.13 301 | 80.42 197 | 55.03 240 | 48.15 294 | 71.01 305 | 36.73 203 | 78.05 300 | 35.21 299 | 30.18 351 | 76.67 297 |
|
ACMH+ | | 54.58 15 | 58.55 275 | 55.24 278 | 68.50 267 | 74.68 262 | 45.80 270 | 80.27 242 | 70.21 321 | 47.15 291 | 42.77 318 | 75.48 271 | 16.73 338 | 85.98 221 | 35.10 303 | 54.78 288 | 73.72 320 |
|
PLC |  | 52.38 18 | 60.89 255 | 58.97 258 | 66.68 282 | 81.77 142 | 45.70 271 | 78.96 258 | 74.04 293 | 43.66 318 | 47.63 298 | 83.19 184 | 23.52 307 | 77.78 307 | 37.47 284 | 60.46 234 | 76.55 302 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
LS3D | | | 56.40 287 | 53.82 287 | 64.12 296 | 81.12 162 | 45.69 272 | 73.42 290 | 66.14 329 | 35.30 344 | 43.24 317 | 79.88 219 | 22.18 315 | 79.62 289 | 19.10 351 | 64.00 207 | 67.05 340 |
|
testdata | | | | | 67.08 276 | 77.59 222 | 45.46 273 | | 69.20 324 | 44.47 311 | 71.50 76 | 88.34 116 | 31.21 257 | 70.76 338 | 52.20 224 | 75.88 119 | 85.03 186 |
|
PatchMatch-RL | | | 56.66 283 | 53.75 288 | 65.37 291 | 77.91 220 | 45.28 274 | 69.78 314 | 60.38 339 | 41.35 325 | 47.57 299 | 73.73 280 | 16.83 336 | 76.91 311 | 36.99 290 | 59.21 243 | 73.92 319 |
|
anonymousdsp | | | 60.46 258 | 57.65 262 | 68.88 257 | 63.63 337 | 45.09 275 | 72.93 293 | 78.63 234 | 46.52 296 | 51.12 281 | 72.80 292 | 21.46 319 | 83.07 261 | 57.79 184 | 53.97 292 | 78.47 278 |
|
tfpn200view9 | | | 67.57 191 | 66.13 191 | 71.89 219 | 84.05 88 | 45.07 276 | 83.40 177 | 87.71 59 | 60.79 136 | 57.79 223 | 82.76 188 | 43.53 121 | 87.80 169 | 28.80 324 | 66.36 193 | 82.78 227 |
|
IterMVS-SCA-FT | | | 59.12 265 | 58.81 259 | 60.08 317 | 70.68 303 | 45.07 276 | 80.42 241 | 74.25 290 | 43.54 319 | 50.02 287 | 73.73 280 | 31.97 250 | 56.74 350 | 51.06 230 | 53.60 296 | 78.42 280 |
|
thres400 | | | 67.40 198 | 66.13 191 | 71.19 229 | 84.05 88 | 45.07 276 | 83.40 177 | 87.71 59 | 60.79 136 | 57.79 223 | 82.76 188 | 43.53 121 | 87.80 169 | 28.80 324 | 66.36 193 | 80.71 258 |
|
WR-MVS | | | 67.58 190 | 66.76 178 | 70.04 248 | 75.92 248 | 45.06 279 | 86.23 99 | 85.28 103 | 64.31 77 | 58.50 212 | 81.00 211 | 44.80 106 | 82.00 267 | 49.21 240 | 55.57 284 | 83.06 222 |
|
test_djsdf | | | 63.84 233 | 61.56 237 | 70.70 236 | 68.78 312 | 44.69 280 | 81.63 218 | 81.44 181 | 50.28 274 | 52.27 275 | 76.26 262 | 26.72 286 | 86.11 213 | 60.83 152 | 55.84 281 | 81.29 251 |
|
baseline1 | | | 72.51 108 | 72.12 99 | 73.69 176 | 85.05 70 | 44.46 281 | 83.51 172 | 86.13 85 | 71.61 9 | 64.64 133 | 87.97 125 | 55.00 20 | 89.48 117 | 59.07 167 | 56.05 277 | 87.13 148 |
|
jajsoiax | | | 63.21 238 | 60.84 243 | 70.32 242 | 68.33 317 | 44.45 282 | 81.23 229 | 81.05 188 | 53.37 255 | 50.96 284 | 77.81 239 | 17.49 334 | 85.49 230 | 59.31 166 | 58.05 256 | 81.02 254 |
|
VPA-MVSNet | | | 71.12 125 | 70.66 117 | 72.49 199 | 78.75 201 | 44.43 283 | 87.64 63 | 90.02 13 | 63.97 82 | 65.02 128 | 81.58 207 | 42.14 137 | 87.42 181 | 63.42 134 | 63.38 214 | 85.63 179 |
|
OpenMVS_ROB |  | 53.19 17 | 59.20 264 | 56.00 275 | 68.83 259 | 71.13 299 | 44.30 284 | 83.64 167 | 75.02 285 | 46.42 298 | 46.48 306 | 73.03 289 | 18.69 329 | 88.14 158 | 27.74 331 | 61.80 228 | 74.05 318 |
|
Patchmatch-RL test | | | 58.72 272 | 54.32 284 | 71.92 217 | 63.91 336 | 44.25 285 | 61.73 331 | 55.19 344 | 57.38 208 | 49.31 290 | 54.24 347 | 37.60 186 | 80.89 273 | 62.19 142 | 47.28 317 | 90.63 70 |
|
mvs_tets | | | 62.96 241 | 60.55 245 | 70.19 243 | 68.22 320 | 44.24 286 | 80.90 234 | 80.74 192 | 52.99 258 | 50.82 286 | 77.56 240 | 16.74 337 | 85.44 231 | 59.04 168 | 57.94 258 | 80.89 255 |
|
NR-MVSNet | | | 67.25 200 | 65.99 194 | 71.04 232 | 73.27 275 | 43.91 287 | 85.32 122 | 84.75 121 | 66.05 58 | 53.65 267 | 82.11 201 | 45.05 98 | 85.97 223 | 47.55 249 | 56.18 275 | 83.24 217 |
|
CMPMVS |  | 40.41 21 | 55.34 292 | 52.64 295 | 63.46 300 | 60.88 345 | 43.84 288 | 61.58 333 | 71.06 317 | 30.43 347 | 36.33 336 | 74.63 276 | 24.14 303 | 75.44 316 | 48.05 247 | 66.62 190 | 71.12 335 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
thres600view7 | | | 66.46 215 | 65.12 213 | 70.47 238 | 83.41 100 | 43.80 289 | 82.15 206 | 87.78 54 | 59.37 160 | 56.02 248 | 82.21 199 | 43.73 116 | 86.90 194 | 26.51 335 | 64.94 200 | 80.71 258 |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 290 | 71.13 308 | | 54.95 242 | 59.29 196 | | 36.76 202 | | 46.33 258 | | 87.32 144 |
|
IS-MVSNet | | | 68.80 168 | 67.55 165 | 72.54 197 | 78.50 210 | 43.43 291 | 81.03 232 | 79.35 220 | 59.12 173 | 57.27 236 | 86.71 142 | 46.05 84 | 87.70 174 | 44.32 266 | 75.60 123 | 86.49 161 |
|
TranMVSNet+NR-MVSNet | | | 66.94 209 | 65.61 203 | 70.93 234 | 73.45 272 | 43.38 292 | 83.02 188 | 84.25 132 | 65.31 68 | 58.33 217 | 81.90 204 | 39.92 165 | 85.52 228 | 49.43 238 | 54.89 287 | 83.89 207 |
|
thres100view900 | | | 66.87 210 | 65.42 209 | 71.24 227 | 83.29 106 | 43.15 293 | 81.67 217 | 87.78 54 | 59.04 174 | 55.92 249 | 82.18 200 | 43.73 116 | 87.80 169 | 28.80 324 | 66.36 193 | 82.78 227 |
|
CL-MVSNet_2432*1600 | | | 62.98 240 | 61.14 241 | 68.50 267 | 65.86 326 | 42.96 294 | 84.37 146 | 82.98 160 | 60.98 133 | 53.95 263 | 72.70 293 | 40.43 157 | 83.71 254 | 41.10 277 | 47.93 313 | 78.83 273 |
|
UniMVSNet (Re) | | | 67.71 188 | 66.80 176 | 70.45 239 | 74.44 263 | 42.93 295 | 82.42 202 | 84.90 116 | 63.69 88 | 59.63 188 | 80.99 212 | 47.18 71 | 85.23 236 | 51.17 229 | 56.75 269 | 83.19 219 |
|
XXY-MVS | | | 70.18 139 | 69.28 139 | 72.89 192 | 77.64 221 | 42.88 296 | 85.06 132 | 87.50 62 | 62.58 104 | 62.66 162 | 82.34 198 | 43.64 120 | 89.83 108 | 58.42 174 | 63.70 210 | 85.96 170 |
|
1112_ss | | | 70.05 143 | 69.37 135 | 72.10 206 | 80.77 171 | 42.78 297 | 85.12 129 | 76.75 268 | 59.69 152 | 61.19 174 | 92.12 34 | 47.48 69 | 83.84 251 | 53.04 214 | 68.21 180 | 89.66 92 |
|
F-COLMAP | | | 55.96 291 | 53.65 289 | 62.87 303 | 72.76 281 | 42.77 298 | 74.70 283 | 70.37 320 | 40.03 327 | 41.11 325 | 79.36 223 | 17.77 333 | 73.70 326 | 32.80 312 | 53.96 293 | 72.15 328 |
|
UniMVSNet_NR-MVSNet | | | 68.82 166 | 68.29 149 | 70.40 241 | 75.71 250 | 42.59 299 | 84.23 151 | 86.78 71 | 66.31 50 | 58.51 210 | 82.45 195 | 51.57 36 | 84.64 247 | 53.11 212 | 55.96 278 | 83.96 205 |
|
DU-MVS | | | 66.84 211 | 65.74 200 | 70.16 244 | 73.27 275 | 42.59 299 | 81.50 224 | 82.92 162 | 63.53 92 | 58.51 210 | 82.11 201 | 40.75 152 | 84.64 247 | 53.11 212 | 55.96 278 | 83.24 217 |
|
OMC-MVS | | | 65.97 222 | 65.06 214 | 68.71 263 | 72.97 278 | 42.58 301 | 78.61 260 | 75.35 283 | 54.72 244 | 59.31 195 | 86.25 148 | 33.30 237 | 77.88 304 | 57.99 179 | 67.05 188 | 85.66 177 |
|
K. test v3 | | | 54.04 298 | 49.42 306 | 67.92 270 | 68.55 314 | 42.57 302 | 75.51 277 | 63.07 336 | 52.07 263 | 39.21 329 | 64.59 329 | 19.34 326 | 82.21 263 | 37.11 288 | 25.31 353 | 78.97 271 |
|
Patchmatch-test | | | 53.33 302 | 48.17 309 | 68.81 260 | 73.31 273 | 42.38 303 | 42.98 351 | 58.23 341 | 32.53 345 | 38.79 332 | 70.77 308 | 39.66 166 | 73.51 327 | 25.18 338 | 52.06 303 | 90.55 71 |
|
pmmvs5 | | | 62.80 243 | 61.18 240 | 67.66 271 | 69.53 308 | 42.37 304 | 82.65 194 | 75.19 284 | 54.30 250 | 52.03 277 | 78.51 233 | 31.64 255 | 80.67 275 | 48.60 243 | 58.15 253 | 79.95 267 |
|
tfpnnormal | | | 61.47 253 | 59.09 256 | 68.62 265 | 76.29 242 | 41.69 305 | 81.14 231 | 85.16 108 | 54.48 248 | 51.32 280 | 73.63 284 | 32.32 246 | 86.89 195 | 21.78 345 | 55.71 282 | 77.29 293 |
|
Baseline_NR-MVSNet | | | 65.49 226 | 64.27 221 | 69.13 255 | 74.37 266 | 41.65 306 | 83.39 179 | 78.85 227 | 59.56 154 | 59.62 189 | 76.88 254 | 40.75 152 | 87.44 180 | 49.99 233 | 55.05 285 | 78.28 283 |
|
TransMVSNet (Re) | | | 62.82 242 | 60.76 244 | 69.02 256 | 73.98 269 | 41.61 307 | 86.36 96 | 79.30 223 | 56.90 213 | 52.53 272 | 76.44 259 | 41.85 143 | 87.60 177 | 38.83 282 | 40.61 335 | 77.86 287 |
|
SixPastTwentyTwo | | | 54.37 295 | 50.10 302 | 67.21 274 | 70.70 301 | 41.46 308 | 74.73 282 | 64.69 332 | 47.56 288 | 39.12 330 | 69.49 313 | 18.49 331 | 84.69 246 | 31.87 314 | 34.20 346 | 75.48 308 |
|
lessismore_v0 | | | | | 67.98 269 | 64.76 333 | 41.25 309 | | 45.75 353 | | 36.03 338 | 65.63 327 | 19.29 327 | 84.11 249 | 35.67 295 | 21.24 356 | 78.59 277 |
|
UA-Net | | | 67.32 199 | 66.23 188 | 70.59 237 | 78.85 199 | 41.23 310 | 73.60 287 | 75.45 282 | 61.54 123 | 66.61 107 | 84.53 164 | 38.73 173 | 86.57 205 | 42.48 276 | 74.24 133 | 83.98 203 |
|
Test_1112_low_res | | | 67.18 202 | 66.23 188 | 70.02 249 | 78.75 201 | 41.02 311 | 83.43 175 | 73.69 296 | 57.29 209 | 58.45 215 | 82.39 197 | 45.30 95 | 80.88 274 | 50.50 231 | 66.26 196 | 88.16 126 |
|
XVG-ACMP-BASELINE | | | 56.03 289 | 52.85 293 | 65.58 287 | 61.91 342 | 40.95 312 | 63.36 325 | 72.43 305 | 45.20 307 | 46.02 307 | 74.09 277 | 9.20 353 | 78.12 297 | 45.13 262 | 58.27 251 | 77.66 290 |
|
UniMVSNet_ETH3D | | | 62.51 245 | 60.49 246 | 68.57 266 | 68.30 318 | 40.88 313 | 73.89 286 | 79.93 204 | 51.81 268 | 54.77 254 | 79.61 221 | 24.80 300 | 81.10 271 | 49.93 234 | 61.35 230 | 83.73 209 |
|
COLMAP_ROB |  | 43.60 20 | 50.90 309 | 48.05 310 | 59.47 318 | 67.81 321 | 40.57 314 | 71.25 307 | 62.72 338 | 36.49 339 | 36.19 337 | 73.51 285 | 13.48 345 | 73.92 324 | 20.71 347 | 50.26 307 | 63.92 346 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
FMVSNet5 | | | 58.61 273 | 56.45 270 | 65.10 293 | 77.20 231 | 39.74 315 | 74.77 281 | 77.12 261 | 50.27 276 | 43.28 316 | 67.71 320 | 26.15 290 | 76.90 312 | 36.78 292 | 54.78 288 | 78.65 276 |
|
pmmvs3 | | | 45.53 318 | 41.55 321 | 57.44 324 | 48.97 356 | 39.68 316 | 70.06 311 | 57.66 342 | 28.32 349 | 34.06 342 | 57.29 345 | 8.50 354 | 66.85 343 | 34.86 304 | 34.26 345 | 65.80 343 |
|
Anonymous20240521 | | | 51.65 307 | 48.42 308 | 61.34 314 | 56.43 350 | 39.65 317 | 73.57 288 | 73.47 302 | 36.64 338 | 36.59 335 | 63.98 330 | 10.75 349 | 72.25 334 | 35.35 297 | 49.01 309 | 72.11 329 |
|
sss | | | 70.49 136 | 70.13 126 | 71.58 223 | 81.59 148 | 39.02 318 | 80.78 237 | 84.71 122 | 59.34 161 | 66.61 107 | 88.09 122 | 37.17 196 | 85.52 228 | 61.82 146 | 71.02 162 | 90.20 82 |
|
pm-mvs1 | | | 64.12 231 | 62.56 229 | 68.78 261 | 71.68 291 | 38.87 319 | 82.89 190 | 81.57 178 | 55.54 235 | 53.89 264 | 77.82 238 | 37.73 183 | 86.74 197 | 48.46 245 | 53.49 297 | 80.72 257 |
|
FIs | | | 70.00 145 | 70.24 125 | 69.30 254 | 77.93 219 | 38.55 320 | 83.99 160 | 87.72 58 | 66.86 47 | 57.66 226 | 84.17 168 | 52.28 31 | 85.31 232 | 52.72 222 | 68.80 177 | 84.02 199 |
|
OurMVSNet-221017-0 | | | 52.39 305 | 48.73 307 | 63.35 301 | 65.21 330 | 38.42 321 | 68.54 318 | 64.95 331 | 38.19 331 | 39.57 328 | 71.43 304 | 13.23 346 | 79.92 285 | 37.16 286 | 40.32 336 | 71.72 331 |
|
TinyColmap | | | 48.15 314 | 44.49 318 | 59.13 320 | 65.73 327 | 38.04 322 | 63.34 326 | 62.86 337 | 38.78 329 | 29.48 351 | 67.23 323 | 6.46 358 | 73.30 328 | 24.59 339 | 41.90 333 | 66.04 342 |
|
TAPA-MVS | | 56.12 14 | 61.82 252 | 60.18 249 | 66.71 280 | 78.48 211 | 37.97 323 | 75.19 280 | 76.41 275 | 46.82 294 | 57.04 237 | 86.52 146 | 27.67 281 | 77.03 310 | 26.50 336 | 67.02 189 | 85.14 185 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
USDC | | | 54.36 296 | 51.23 299 | 63.76 298 | 64.29 335 | 37.71 324 | 62.84 330 | 73.48 301 | 56.85 214 | 35.47 339 | 71.94 303 | 9.23 352 | 78.43 294 | 38.43 283 | 48.57 310 | 75.13 312 |
|
AllTest | | | 47.32 315 | 44.66 317 | 55.32 327 | 65.08 331 | 37.50 325 | 62.96 329 | 54.25 347 | 35.45 342 | 33.42 345 | 72.82 290 | 9.98 350 | 59.33 347 | 24.13 340 | 43.84 328 | 69.13 336 |
|
TestCases | | | | | 55.32 327 | 65.08 331 | 37.50 325 | | 54.25 347 | 35.45 342 | 33.42 345 | 72.82 290 | 9.98 350 | 59.33 347 | 24.13 340 | 43.84 328 | 69.13 336 |
|
pmmvs6 | | | 59.64 260 | 57.15 266 | 67.09 275 | 66.01 324 | 36.86 327 | 80.50 239 | 78.64 233 | 45.05 308 | 49.05 291 | 73.94 279 | 27.28 282 | 86.10 215 | 43.96 268 | 49.94 308 | 78.31 282 |
|
MVS_0304 | | | 56.72 282 | 55.17 279 | 61.37 312 | 70.71 300 | 36.80 328 | 75.74 272 | 68.75 325 | 44.11 316 | 52.53 272 | 68.20 319 | 15.05 343 | 74.53 320 | 42.98 272 | 58.44 249 | 72.79 327 |
|
LTVRE_ROB | | 45.45 19 | 52.73 303 | 49.74 305 | 61.69 309 | 69.78 307 | 34.99 329 | 44.52 349 | 67.60 328 | 43.11 321 | 43.79 312 | 74.03 278 | 18.54 330 | 81.45 269 | 28.39 329 | 57.94 258 | 68.62 338 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UnsupCasMVSNet_bld | | | 53.86 299 | 50.53 301 | 63.84 297 | 63.52 338 | 34.75 330 | 71.38 306 | 81.92 173 | 46.53 295 | 38.95 331 | 57.93 344 | 20.55 322 | 80.20 283 | 39.91 280 | 34.09 347 | 76.57 301 |
|
PEN-MVS | | | 58.35 277 | 57.15 266 | 61.94 307 | 67.55 322 | 34.39 331 | 77.01 267 | 78.35 240 | 51.87 266 | 47.72 297 | 76.73 256 | 33.91 231 | 73.75 325 | 34.03 306 | 47.17 318 | 77.68 289 |
|
EPNet_dtu | | | 66.25 218 | 66.71 179 | 64.87 294 | 78.66 205 | 34.12 332 | 82.80 192 | 75.51 280 | 61.75 118 | 64.47 139 | 86.90 139 | 37.06 197 | 72.46 332 | 43.65 269 | 69.63 174 | 88.02 132 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVSNet | | | 58.54 276 | 57.57 264 | 61.46 311 | 68.50 315 | 33.96 333 | 76.90 269 | 78.60 236 | 51.67 269 | 47.83 296 | 76.60 258 | 34.99 223 | 72.79 330 | 35.45 296 | 47.58 314 | 77.64 291 |
|
WR-MVS_H | | | 58.91 270 | 58.04 261 | 61.54 310 | 69.07 310 | 33.83 334 | 76.91 268 | 81.99 170 | 51.40 270 | 48.17 293 | 74.67 275 | 40.23 159 | 74.15 321 | 31.78 315 | 48.10 311 | 76.64 300 |
|
PS-CasMVS | | | 58.12 278 | 57.03 268 | 61.37 312 | 68.24 319 | 33.80 335 | 76.73 270 | 78.01 245 | 51.20 271 | 47.54 300 | 76.20 266 | 32.85 240 | 72.76 331 | 35.17 301 | 47.37 316 | 77.55 292 |
|
UnsupCasMVSNet_eth | | | 57.56 279 | 55.15 280 | 64.79 295 | 64.57 334 | 33.12 336 | 73.17 292 | 83.87 142 | 58.98 177 | 41.75 322 | 70.03 312 | 22.54 311 | 79.92 285 | 46.12 260 | 35.31 341 | 81.32 250 |
|
FC-MVSNet-test | | | 67.49 193 | 67.91 153 | 66.21 284 | 76.06 244 | 33.06 337 | 80.82 236 | 87.18 63 | 64.44 76 | 54.81 253 | 82.87 185 | 50.40 49 | 82.60 262 | 48.05 247 | 66.55 191 | 82.98 224 |
|
TDRefinement | | | 40.91 320 | 38.37 323 | 48.55 333 | 50.45 354 | 33.03 338 | 58.98 338 | 50.97 350 | 28.50 348 | 29.89 350 | 67.39 322 | 6.21 360 | 54.51 351 | 17.67 353 | 35.25 342 | 58.11 349 |
|
CVMVSNet | | | 60.85 256 | 60.44 247 | 62.07 305 | 75.00 258 | 32.73 339 | 79.54 252 | 73.49 299 | 36.98 336 | 56.28 247 | 83.74 174 | 29.28 270 | 69.53 341 | 46.48 256 | 63.23 216 | 83.94 206 |
|
DTE-MVSNet | | | 57.03 281 | 55.73 277 | 60.95 316 | 65.94 325 | 32.57 340 | 75.71 273 | 77.09 262 | 51.16 272 | 46.65 305 | 76.34 261 | 32.84 241 | 73.22 329 | 30.94 319 | 44.87 326 | 77.06 294 |
|
PM-MVS | | | 46.92 316 | 43.76 320 | 56.41 326 | 52.18 353 | 32.26 341 | 63.21 328 | 38.18 357 | 37.99 333 | 40.78 326 | 66.20 324 | 5.09 361 | 65.42 344 | 48.19 246 | 41.99 332 | 71.54 333 |
|
Anonymous20231206 | | | 59.08 267 | 57.59 263 | 63.55 299 | 68.77 313 | 32.14 342 | 80.26 243 | 79.78 207 | 50.00 277 | 49.39 289 | 72.39 297 | 26.64 287 | 78.36 295 | 33.12 311 | 57.94 258 | 80.14 265 |
|
ITE_SJBPF | | | | | 51.84 330 | 58.03 347 | 31.94 343 | | 53.57 349 | 36.67 337 | 41.32 324 | 75.23 273 | 11.17 348 | 51.57 354 | 25.81 337 | 48.04 312 | 72.02 330 |
|
Vis-MVSNet (Re-imp) | | | 65.52 224 | 65.63 202 | 65.17 292 | 77.49 224 | 30.54 344 | 75.49 278 | 77.73 250 | 59.34 161 | 52.26 276 | 86.69 143 | 49.38 56 | 80.53 278 | 37.07 289 | 75.28 125 | 84.42 194 |
|
RPSCF | | | 45.77 317 | 44.13 319 | 50.68 331 | 57.67 349 | 29.66 345 | 54.92 344 | 45.25 354 | 26.69 350 | 45.92 308 | 75.92 269 | 17.43 335 | 45.70 358 | 27.44 332 | 45.95 324 | 76.67 297 |
|
test0.0.03 1 | | | 62.54 244 | 62.44 230 | 62.86 304 | 72.28 288 | 29.51 346 | 82.93 189 | 78.78 230 | 59.18 168 | 53.07 270 | 82.41 196 | 36.91 200 | 77.39 308 | 37.45 285 | 58.96 244 | 81.66 238 |
|
ambc | | | | | 62.06 306 | 53.98 352 | 29.38 347 | 35.08 357 | 79.65 211 | | 41.37 323 | 59.96 339 | 6.27 359 | 82.15 264 | 35.34 298 | 38.22 339 | 74.65 314 |
|
Gipuma |  | | 27.47 327 | 24.26 330 | 37.12 340 | 60.55 346 | 29.17 348 | 11.68 362 | 60.00 340 | 14.18 358 | 10.52 362 | 15.12 363 | 2.20 367 | 63.01 345 | 8.39 359 | 35.65 340 | 19.18 358 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LCM-MVSNet-Re | | | 58.82 271 | 56.54 269 | 65.68 286 | 79.31 190 | 29.09 349 | 61.39 334 | 45.79 352 | 60.73 138 | 37.65 334 | 72.47 295 | 31.42 256 | 81.08 272 | 49.66 236 | 70.41 167 | 86.87 151 |
|
FPMVS | | | 35.40 322 | 33.67 325 | 40.57 337 | 46.34 358 | 28.74 350 | 41.05 353 | 57.05 343 | 20.37 354 | 22.27 355 | 53.38 348 | 6.87 356 | 44.94 359 | 8.62 358 | 47.11 319 | 48.01 354 |
|
EU-MVSNet | | | 52.63 304 | 50.72 300 | 58.37 322 | 62.69 341 | 28.13 351 | 72.60 294 | 75.97 277 | 30.94 346 | 40.76 327 | 72.11 301 | 20.16 323 | 70.80 337 | 35.11 302 | 46.11 323 | 76.19 305 |
|
MIMVSNet1 | | | 50.35 310 | 47.81 311 | 57.96 323 | 61.53 343 | 27.80 352 | 67.40 319 | 74.06 292 | 43.25 320 | 33.31 347 | 65.38 328 | 16.03 340 | 71.34 335 | 21.80 344 | 47.55 315 | 74.75 313 |
|
test20.03 | | | 55.22 293 | 54.07 286 | 58.68 321 | 63.14 339 | 25.00 353 | 77.69 265 | 74.78 286 | 52.64 259 | 43.43 314 | 72.39 297 | 26.21 289 | 74.76 319 | 29.31 322 | 47.05 320 | 76.28 304 |
|
PMVS |  | 19.57 22 | 25.07 329 | 22.43 333 | 32.99 343 | 23.12 368 | 22.98 354 | 40.98 354 | 35.19 361 | 15.99 357 | 11.95 361 | 35.87 356 | 1.47 370 | 49.29 355 | 5.41 363 | 31.90 349 | 26.70 357 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DIV-MVS_2432*1600 | | | 49.24 311 | 46.85 314 | 56.44 325 | 54.32 351 | 22.87 355 | 57.39 339 | 73.36 303 | 44.36 313 | 37.98 333 | 59.30 342 | 18.97 328 | 71.17 336 | 33.48 307 | 42.44 331 | 75.26 310 |
|
ANet_high | | | 34.39 323 | 29.59 328 | 48.78 332 | 30.34 364 | 22.28 356 | 55.53 341 | 63.79 335 | 38.11 332 | 15.47 357 | 36.56 355 | 6.94 355 | 59.98 346 | 13.93 356 | 5.64 365 | 64.08 345 |
|
LF4IMVS | | | 33.04 325 | 32.55 326 | 34.52 341 | 40.96 359 | 22.03 357 | 44.45 350 | 35.62 360 | 20.42 353 | 28.12 352 | 62.35 334 | 5.03 362 | 31.88 364 | 21.61 346 | 34.42 343 | 49.63 353 |
|
testgi | | | 54.25 297 | 52.57 296 | 59.29 319 | 62.76 340 | 21.65 358 | 72.21 300 | 70.47 319 | 53.25 256 | 41.94 320 | 77.33 245 | 14.28 344 | 77.95 303 | 29.18 323 | 51.72 304 | 78.28 283 |
|
new_pmnet | | | 33.56 324 | 31.89 327 | 38.59 338 | 49.01 355 | 20.42 359 | 51.01 345 | 37.92 358 | 20.58 352 | 23.45 354 | 46.79 349 | 6.66 357 | 49.28 356 | 20.00 350 | 31.57 350 | 46.09 355 |
|
MVE |  | 16.60 23 | 17.34 334 | 13.39 337 | 29.16 344 | 28.43 365 | 19.72 360 | 13.73 361 | 23.63 366 | 7.23 363 | 7.96 363 | 21.41 359 | 0.80 371 | 36.08 362 | 6.97 360 | 10.39 359 | 31.69 356 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
LCM-MVSNet | | | 28.07 326 | 23.85 331 | 40.71 336 | 27.46 367 | 18.93 361 | 30.82 358 | 46.19 351 | 12.76 359 | 16.40 356 | 34.70 357 | 1.90 368 | 48.69 357 | 20.25 348 | 24.22 354 | 54.51 351 |
|
new-patchmatchnet | | | 48.21 313 | 46.55 315 | 53.18 329 | 57.73 348 | 18.19 362 | 70.24 310 | 71.02 318 | 45.70 302 | 33.70 343 | 60.23 338 | 18.00 332 | 69.86 340 | 27.97 330 | 34.35 344 | 71.49 334 |
|
wuyk23d | | | 9.11 336 | 8.77 340 | 10.15 348 | 40.18 360 | 16.76 363 | 20.28 360 | 1.01 370 | 2.58 365 | 2.66 367 | 0.98 367 | 0.23 372 | 12.49 366 | 4.08 365 | 6.90 363 | 1.19 363 |
|
DSMNet-mixed | | | 38.35 321 | 35.36 324 | 47.33 334 | 48.11 357 | 14.91 364 | 37.87 356 | 36.60 359 | 19.18 355 | 34.37 341 | 59.56 341 | 15.53 341 | 53.01 353 | 20.14 349 | 46.89 321 | 74.07 317 |
|
E-PMN | | | 19.16 331 | 18.40 335 | 21.44 345 | 36.19 362 | 13.63 365 | 47.59 346 | 30.89 363 | 10.73 360 | 5.91 365 | 16.59 361 | 3.66 364 | 39.77 360 | 5.95 362 | 8.14 360 | 10.92 360 |
|
EMVS | | | 18.42 332 | 17.66 336 | 20.71 346 | 34.13 363 | 12.64 366 | 46.94 347 | 29.94 364 | 10.46 362 | 5.58 366 | 14.93 364 | 4.23 363 | 38.83 361 | 5.24 364 | 7.51 362 | 10.67 361 |
|
DeepMVS_CX |  | | | | 13.10 347 | 21.34 369 | 8.99 367 | | 10.02 369 | 10.59 361 | 7.53 364 | 30.55 358 | 1.82 369 | 14.55 365 | 6.83 361 | 7.52 361 | 15.75 359 |
|
PMMVS2 | | | 26.71 328 | 22.98 332 | 37.87 339 | 36.89 361 | 8.51 368 | 42.51 352 | 29.32 365 | 19.09 356 | 13.01 359 | 37.54 351 | 2.23 366 | 53.11 352 | 14.54 355 | 11.71 358 | 51.99 352 |
|
test_method | | | 24.09 330 | 21.07 334 | 33.16 342 | 27.67 366 | 8.35 369 | 26.63 359 | 35.11 362 | 3.40 364 | 14.35 358 | 36.98 353 | 3.46 365 | 35.31 363 | 19.08 352 | 22.95 355 | 55.81 350 |
|
tmp_tt | | | 9.44 335 | 10.68 338 | 5.73 349 | 2.49 370 | 4.21 370 | 10.48 363 | 18.04 367 | 0.34 366 | 12.59 360 | 20.49 360 | 11.39 347 | 7.03 367 | 13.84 357 | 6.46 364 | 5.95 362 |
|
N_pmnet | | | 41.25 319 | 39.77 322 | 45.66 335 | 68.50 315 | 0.82 371 | 72.51 296 | 0.38 371 | 35.61 341 | 35.26 340 | 61.51 335 | 20.07 324 | 67.74 342 | 23.51 342 | 40.63 334 | 68.42 339 |
|
test123 | | | 6.01 339 | 8.01 342 | 0.01 350 | 0.00 372 | 0.01 372 | 71.93 304 | 0.00 372 | 0.00 367 | 0.02 368 | 0.11 369 | 0.00 373 | 0.00 368 | 0.02 366 | 0.00 366 | 0.02 364 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 372 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 367 | 0.00 370 | 0.00 370 | 0.00 373 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
cdsmvs_eth3d_5k | | | 18.33 333 | 24.44 329 | 0.00 352 | 0.00 372 | 0.00 373 | 0.00 364 | 89.40 17 | 0.00 367 | 0.00 370 | 92.02 38 | 38.55 174 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
pcd_1.5k_mvsjas | | | 3.15 340 | 4.20 343 | 0.00 352 | 0.00 372 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 367 | 0.00 370 | 0.00 370 | 37.77 180 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 372 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 367 | 0.00 370 | 0.00 370 | 0.00 373 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 372 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 367 | 0.00 370 | 0.00 370 | 0.00 373 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 372 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 367 | 0.00 370 | 0.00 370 | 0.00 373 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 372 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 367 | 0.00 370 | 0.00 370 | 0.00 373 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
testmvs | | | 6.14 338 | 8.18 341 | 0.01 350 | 0.01 371 | 0.00 373 | 73.40 291 | 0.00 372 | 0.00 367 | 0.02 368 | 0.15 368 | 0.00 373 | 0.00 368 | 0.02 366 | 0.00 366 | 0.02 364 |
|
ab-mvs-re | | | 7.68 337 | 10.24 339 | 0.00 352 | 0.00 372 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 367 | 0.00 370 | 92.12 34 | 0.00 373 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 372 | 0.00 373 | 0.00 364 | 0.00 372 | 0.00 367 | 0.00 370 | 0.00 370 | 0.00 373 | 0.00 368 | 0.00 368 | 0.00 366 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 372 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 372 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 88.76 34 | 57.50 206 | 83.60 5 | 94.09 4 | 56.14 16 | 96.37 5 | 82.28 11 | 87.43 18 | 92.55 23 |
|
9.14 | | | | 78.19 24 | | 85.67 53 | | 88.32 55 | 88.84 31 | 59.89 148 | 74.58 41 | 92.62 24 | 46.80 75 | 92.66 40 | 81.40 17 | 85.62 39 | |
|
test_0728_THIRD | | | | | | | | | | 58.00 192 | 81.91 9 | 93.64 10 | 56.54 13 | 96.44 2 | 81.64 16 | 86.86 25 | 92.23 29 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 129 |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 172 | | | | 88.13 129 |
|
sam_mvs | | | | | | | | | | | | | 35.99 216 | | | | |
|
MTGPA |  | | | | | | | | 81.31 183 | | | | | | | | |
|
test_post1 | | | | | | | | 70.84 309 | | | | 14.72 365 | 34.33 227 | 83.86 250 | 48.80 241 | | |
|
test_post | | | | | | | | | | | | 16.22 362 | 37.52 188 | 84.72 245 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 340 | 38.41 175 | 79.91 287 | | | |
|
MTMP | | | | | | | | 87.27 77 | 15.34 368 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 78.72 31 | 85.44 42 | 91.39 52 |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 50 | 85.11 46 | 91.01 62 |
|
test_prior2 | | | | | | | | 89.04 44 | | 61.88 116 | 73.55 48 | 91.46 52 | 48.01 64 | | 74.73 59 | 85.46 40 | |
|
旧先验2 | | | | | | | | 81.73 216 | | 45.53 304 | 74.66 37 | | | 70.48 339 | 58.31 176 | | |
|
新几何2 | | | | | | | | 81.61 220 | | | | | | | | | |
|
无先验 | | | | | | | | 85.19 124 | 78.00 246 | 49.08 281 | | | | 85.13 239 | 52.78 218 | | 87.45 142 |
|
原ACMM2 | | | | | | | | 83.77 165 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 77.81 306 | 45.64 261 | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 101 | | | | |
|
testdata1 | | | | | | | | 77.55 266 | | 64.14 79 | | | | | | | |
|
plane_prior5 | | | | | | | | | 82.59 164 | | | | | 88.30 154 | 65.46 119 | 72.34 152 | 84.49 192 |
|
plane_prior4 | | | | | | | | | | | | 83.28 182 | | | | | |
|
plane_prior2 | | | | | | | | 85.76 108 | | 63.60 90 | | | | | | | |
|
plane_prior1 | | | | | | 78.31 214 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 356 | | | | | | | | |
|
test11 | | | | | | | | | 84.25 132 | | | | | | | | |
|
door | | | | | | | | | 43.27 355 | | | | | | | | |
|
HQP-NCC | | | | | | 79.02 195 | | 88.00 57 | | 65.45 61 | 64.48 136 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 195 | | 88.00 57 | | 65.45 61 | 64.48 136 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 106 | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 139 | | | 88.61 140 | | | 84.91 189 |
|
HQP3-MVS | | | | | | | | | 83.68 144 | | | | | | | 73.12 143 | |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 191 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 217 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 241 | |
|
Test By Simon | | | | | | | | | | | | | 39.38 167 | | | | |
|