DPM-MVS | | | 97.86 7 | 97.25 17 | 99.68 1 | 98.25 102 | 99.10 1 | 99.76 12 | 97.78 63 | 96.61 4 | 98.15 31 | 99.53 7 | 93.62 14 | 100.00 1 | 91.79 139 | 99.80 23 | 99.94 14 |
|
OPU-MVS | | | | | 99.49 2 | 99.64 20 | 98.51 2 | 99.77 9 | | | | 99.19 32 | 95.12 6 | 99.97 20 | 99.90 1 | 99.92 3 | 99.99 1 |
|
PS-MVSNAJ | | | 96.87 33 | 96.40 39 | 98.29 15 | 97.35 128 | 97.29 3 | 99.03 96 | 97.11 166 | 95.83 10 | 98.97 11 | 99.14 43 | 82.48 172 | 99.60 91 | 98.60 19 | 99.08 80 | 98.00 175 |
|
xiu_mvs_v2_base | | | 96.66 37 | 96.17 47 | 98.11 24 | 97.11 138 | 96.96 4 | 99.01 99 | 97.04 173 | 95.51 16 | 98.86 13 | 99.11 50 | 82.19 178 | 99.36 121 | 98.59 21 | 98.14 107 | 98.00 175 |
|
MVS | | | 93.92 108 | 92.28 132 | 98.83 4 | 95.69 184 | 96.82 5 | 96.22 276 | 98.17 31 | 84.89 241 | 84.34 219 | 98.61 99 | 79.32 200 | 99.83 57 | 93.88 114 | 99.43 64 | 99.86 28 |
|
WTY-MVS | | | 95.97 59 | 95.11 76 | 98.54 10 | 97.62 119 | 96.65 6 | 99.44 48 | 98.74 13 | 92.25 70 | 95.21 100 | 98.46 111 | 86.56 111 | 99.46 111 | 95.00 96 | 92.69 170 | 99.50 82 |
|
MCST-MVS | | | 98.18 2 | 97.95 7 | 98.86 3 | 99.85 3 | 96.60 7 | 99.70 17 | 97.98 44 | 97.18 2 | 95.96 84 | 99.33 21 | 92.62 22 | 100.00 1 | 98.99 13 | 99.93 1 | 99.98 6 |
|
DELS-MVS | | | 97.12 24 | 96.60 35 | 98.68 8 | 98.03 110 | 96.57 8 | 99.84 3 | 97.84 53 | 96.36 8 | 95.20 101 | 98.24 116 | 88.17 73 | 99.83 57 | 96.11 72 | 99.60 52 | 99.64 67 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ETH3 D test6400 | | | 97.67 10 | 97.33 16 | 98.69 7 | 99.69 9 | 96.43 9 | 99.63 25 | 97.73 72 | 91.05 92 | 98.66 19 | 99.53 7 | 90.59 38 | 99.71 73 | 99.32 8 | 99.80 23 | 99.91 18 |
|
HY-MVS | | 88.56 7 | 95.29 77 | 94.23 89 | 98.48 11 | 97.72 115 | 96.41 10 | 94.03 306 | 98.74 13 | 92.42 66 | 95.65 94 | 94.76 206 | 86.52 112 | 99.49 104 | 95.29 90 | 92.97 166 | 99.53 78 |
|
test_0728_SECOND | | | | | 98.77 5 | 99.66 15 | 96.37 11 | 99.72 14 | 97.68 81 | | | | | 99.98 10 | 99.64 5 | 99.82 15 | 99.96 8 |
|
CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 6 | 99.80 4 | 96.19 12 | 99.80 8 | 97.99 43 | 97.05 3 | 99.41 2 | 99.59 2 | 92.89 21 | 100.00 1 | 98.99 13 | 99.90 5 | 99.96 8 |
|
CANet | | | 97.00 27 | 96.49 37 | 98.55 9 | 98.86 88 | 96.10 13 | 99.83 5 | 97.52 117 | 95.90 9 | 97.21 53 | 98.90 76 | 82.66 169 | 99.93 35 | 98.71 16 | 98.80 94 | 99.63 69 |
|
canonicalmvs | | | 95.02 83 | 93.96 100 | 98.20 17 | 97.53 125 | 95.92 14 | 98.71 126 | 96.19 222 | 91.78 78 | 95.86 89 | 98.49 107 | 79.53 198 | 99.03 140 | 96.12 71 | 91.42 193 | 99.66 65 |
|
MG-MVS | | | 97.24 18 | 96.83 29 | 98.47 12 | 99.79 5 | 95.71 15 | 99.07 91 | 99.06 9 | 94.45 22 | 96.42 77 | 98.70 92 | 88.81 63 | 99.74 70 | 95.35 88 | 99.86 10 | 99.97 7 |
|
alignmvs | | | 95.77 69 | 95.00 78 | 98.06 25 | 97.35 128 | 95.68 16 | 99.71 16 | 97.50 123 | 91.50 83 | 96.16 80 | 98.61 99 | 86.28 118 | 99.00 141 | 96.19 70 | 91.74 187 | 99.51 81 |
|
test_part2 | | | | | | 99.54 36 | 95.42 17 | | | | 98.13 32 | | | | | | |
|
DPE-MVS |  | | 98.11 5 | 98.00 5 | 98.44 13 | 99.50 43 | 95.39 18 | 99.29 66 | 97.72 74 | 94.50 20 | 98.64 20 | 99.54 3 | 93.32 15 | 99.97 20 | 99.58 7 | 99.90 5 | 99.95 11 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
IU-MVS | | | | | | 99.63 21 | 95.38 19 | | 97.73 72 | 95.54 15 | 99.54 1 | | | | 99.69 4 | 99.81 19 | 99.99 1 |
|
PAPM | | | 96.35 47 | 95.94 55 | 97.58 40 | 94.10 233 | 95.25 20 | 98.93 106 | 98.17 31 | 94.26 23 | 93.94 121 | 98.72 89 | 89.68 54 | 97.88 182 | 96.36 67 | 99.29 74 | 99.62 71 |
|
SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 14 | 99.63 21 | 95.24 21 | 99.77 9 | 97.72 74 | 94.17 24 | 99.30 4 | 99.54 3 | 93.32 15 | 99.98 10 | 99.70 2 | 99.81 19 | 99.99 1 |
|
test_241102_ONE | | | | | | 99.63 21 | 95.24 21 | | 97.72 74 | 94.16 26 | 99.30 4 | 99.49 10 | 93.32 15 | 99.98 10 | | | |
|
xiu_mvs_v1_base_debu | | | 94.73 89 | 93.98 97 | 96.99 65 | 95.19 199 | 95.24 21 | 98.62 142 | 96.50 201 | 92.99 50 | 97.52 47 | 98.83 80 | 72.37 247 | 99.15 133 | 97.03 50 | 96.74 126 | 96.58 205 |
|
xiu_mvs_v1_base | | | 94.73 89 | 93.98 97 | 96.99 65 | 95.19 199 | 95.24 21 | 98.62 142 | 96.50 201 | 92.99 50 | 97.52 47 | 98.83 80 | 72.37 247 | 99.15 133 | 97.03 50 | 96.74 126 | 96.58 205 |
|
xiu_mvs_v1_base_debi | | | 94.73 89 | 93.98 97 | 96.99 65 | 95.19 199 | 95.24 21 | 98.62 142 | 96.50 201 | 92.99 50 | 97.52 47 | 98.83 80 | 72.37 247 | 99.15 133 | 97.03 50 | 96.74 126 | 96.58 205 |
|
DVP-MVS | | | 98.07 6 | 98.00 5 | 98.29 15 | 99.66 15 | 95.20 26 | 99.72 14 | 97.47 128 | 93.95 29 | 99.07 8 | 99.46 11 | 93.18 18 | 99.97 20 | 99.64 5 | 99.82 15 | 99.69 60 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.66 15 | 95.20 26 | 99.77 9 | 97.70 79 | 93.95 29 | 99.35 3 | 99.54 3 | 93.18 18 | | | | |
|
RRT_MVS | | | 91.95 154 | 91.09 155 | 94.53 161 | 96.71 153 | 95.12 28 | 98.64 139 | 96.23 218 | 89.04 146 | 85.24 212 | 95.06 201 | 87.71 82 | 96.43 251 | 89.10 172 | 82.06 250 | 92.05 246 |
|
3Dnovator+ | | 87.72 8 | 93.43 123 | 91.84 144 | 98.17 18 | 95.73 183 | 95.08 29 | 98.92 108 | 97.04 173 | 91.42 87 | 81.48 262 | 97.60 137 | 74.60 225 | 99.79 65 | 90.84 149 | 98.97 85 | 99.64 67 |
|
ETH3D-3000-0.1 | | | 97.29 16 | 97.01 22 | 98.12 22 | 99.18 69 | 94.97 30 | 99.47 40 | 97.52 117 | 89.85 122 | 98.79 16 | 99.46 11 | 90.41 44 | 99.69 75 | 98.78 15 | 99.67 38 | 99.70 57 |
|
thres600view7 | | | 93.18 132 | 92.00 140 | 96.75 83 | 97.62 119 | 94.92 31 | 99.07 91 | 99.36 2 | 87.96 183 | 90.47 167 | 96.78 170 | 83.29 156 | 98.71 152 | 82.93 238 | 90.47 202 | 96.61 203 |
|
SF-MVS | | | 97.22 21 | 96.92 24 | 98.12 22 | 99.11 73 | 94.88 32 | 99.44 48 | 97.45 130 | 89.60 131 | 98.70 17 | 99.42 17 | 90.42 42 | 99.72 71 | 98.47 25 | 99.65 40 | 99.77 44 |
|
MVSFormer | | | 94.71 92 | 94.08 95 | 96.61 92 | 95.05 211 | 94.87 33 | 97.77 216 | 96.17 223 | 86.84 208 | 98.04 37 | 98.52 103 | 85.52 125 | 95.99 276 | 89.83 157 | 98.97 85 | 98.96 121 |
|
lupinMVS | | | 96.32 49 | 95.94 55 | 97.44 45 | 95.05 211 | 94.87 33 | 99.86 2 | 96.50 201 | 93.82 38 | 98.04 37 | 98.77 83 | 85.52 125 | 98.09 169 | 96.98 54 | 98.97 85 | 99.37 91 |
|
thres100view900 | | | 93.34 127 | 92.15 137 | 96.90 74 | 97.62 119 | 94.84 35 | 99.06 93 | 99.36 2 | 87.96 183 | 90.47 167 | 96.78 170 | 83.29 156 | 98.75 148 | 84.11 224 | 90.69 198 | 97.12 194 |
|
tfpn200view9 | | | 93.43 123 | 92.27 133 | 96.90 74 | 97.68 117 | 94.84 35 | 99.18 72 | 99.36 2 | 88.45 165 | 90.79 159 | 96.90 166 | 83.31 154 | 98.75 148 | 84.11 224 | 90.69 198 | 97.12 194 |
|
thres400 | | | 93.39 125 | 92.27 133 | 96.73 85 | 97.68 117 | 94.84 35 | 99.18 72 | 99.36 2 | 88.45 165 | 90.79 159 | 96.90 166 | 83.31 154 | 98.75 148 | 84.11 224 | 90.69 198 | 96.61 203 |
|
GG-mvs-BLEND | | | | | 96.98 68 | 96.53 156 | 94.81 38 | 87.20 336 | 97.74 68 | | 93.91 122 | 96.40 180 | 96.56 2 | 96.94 227 | 95.08 93 | 98.95 88 | 99.20 107 |
|
HPM-MVS++ |  | | 97.72 9 | 97.59 9 | 98.14 19 | 99.53 41 | 94.76 39 | 99.19 70 | 97.75 66 | 95.66 13 | 98.21 30 | 99.29 22 | 91.10 28 | 99.99 5 | 97.68 43 | 99.87 7 | 99.68 61 |
|
thres200 | | | 93.69 115 | 92.59 128 | 96.97 69 | 97.76 114 | 94.74 40 | 99.35 61 | 99.36 2 | 89.23 140 | 91.21 156 | 96.97 163 | 83.42 153 | 98.77 146 | 85.08 209 | 90.96 196 | 97.39 188 |
|
ETH3D cwj APD-0.16 | | | 96.94 31 | 96.58 36 | 98.01 26 | 98.62 95 | 94.73 41 | 99.13 87 | 97.38 141 | 88.44 168 | 98.53 24 | 99.39 19 | 89.66 55 | 99.69 75 | 98.43 27 | 99.61 51 | 99.61 72 |
|
CANet_DTU | | | 94.31 102 | 93.35 111 | 97.20 57 | 97.03 142 | 94.71 42 | 98.62 142 | 95.54 267 | 95.61 14 | 97.21 53 | 98.47 109 | 71.88 252 | 99.84 55 | 88.38 176 | 97.46 120 | 97.04 199 |
|
gg-mvs-nofinetune | | | 90.00 189 | 87.71 210 | 96.89 79 | 96.15 172 | 94.69 43 | 85.15 342 | 97.74 68 | 68.32 344 | 92.97 135 | 60.16 353 | 96.10 3 | 96.84 229 | 93.89 113 | 98.87 89 | 99.14 110 |
|
baseline1 | | | 92.61 142 | 91.28 153 | 96.58 94 | 97.05 141 | 94.63 44 | 97.72 220 | 96.20 220 | 89.82 123 | 88.56 186 | 96.85 169 | 86.85 101 | 97.82 186 | 88.42 175 | 80.10 258 | 97.30 190 |
|
FMVSNet3 | | | 88.81 210 | 87.08 220 | 93.99 181 | 96.52 157 | 94.59 45 | 98.08 200 | 96.20 220 | 85.85 223 | 82.12 247 | 91.60 262 | 74.05 234 | 95.40 299 | 79.04 264 | 80.24 255 | 91.99 248 |
|
NCCC | | | 98.12 4 | 98.11 3 | 98.13 20 | 99.76 6 | 94.46 46 | 99.81 6 | 97.88 49 | 96.54 5 | 98.84 14 | 99.46 11 | 92.55 23 | 99.98 10 | 98.25 34 | 99.93 1 | 99.94 14 |
|
test12 | | | | | 97.83 31 | 99.33 59 | 94.45 47 | | 97.55 110 | | 97.56 46 | | 88.60 65 | 99.50 103 | | 99.71 34 | 99.55 77 |
|
DeepC-MVS_fast | | 93.52 2 | 97.16 23 | 96.84 28 | 98.13 20 | 99.61 27 | 94.45 47 | 98.85 114 | 97.64 89 | 96.51 7 | 95.88 87 | 99.39 19 | 87.35 93 | 99.99 5 | 96.61 60 | 99.69 37 | 99.96 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CHOSEN 280x420 | | | 96.80 35 | 96.85 27 | 96.66 91 | 97.85 113 | 94.42 49 | 94.76 299 | 98.36 23 | 92.50 61 | 95.62 95 | 97.52 140 | 97.92 1 | 97.38 214 | 98.31 33 | 98.80 94 | 98.20 171 |
|
1314 | | | 93.44 122 | 91.98 141 | 97.84 30 | 95.24 196 | 94.38 50 | 96.22 276 | 97.92 47 | 90.18 113 | 82.28 244 | 97.71 132 | 77.63 212 | 99.80 64 | 91.94 138 | 98.67 98 | 99.34 94 |
|
DP-MVS Recon | | | 95.85 64 | 95.15 75 | 97.95 28 | 99.87 2 | 94.38 50 | 99.60 27 | 97.48 126 | 86.58 214 | 94.42 112 | 99.13 45 | 87.36 92 | 99.98 10 | 93.64 119 | 98.33 106 | 99.48 85 |
|
jason | | | 95.40 76 | 94.86 79 | 97.03 61 | 92.91 264 | 94.23 52 | 99.70 17 | 96.30 212 | 93.56 44 | 96.73 71 | 98.52 103 | 81.46 187 | 97.91 179 | 96.08 73 | 98.47 103 | 98.96 121 |
jason: jason. |
SMA-MVS |  | | 97.24 18 | 96.99 23 | 98.00 27 | 99.30 60 | 94.20 53 | 99.16 75 | 97.65 88 | 89.55 135 | 99.22 7 | 99.52 9 | 90.34 46 | 99.99 5 | 98.32 32 | 99.83 13 | 99.82 30 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PAPR | | | 96.35 47 | 95.82 60 | 97.94 29 | 99.63 21 | 94.19 54 | 99.42 53 | 97.55 110 | 92.43 63 | 93.82 125 | 99.12 46 | 87.30 94 | 99.91 38 | 94.02 111 | 99.06 81 | 99.74 51 |
|
ET-MVSNet_ETH3D | | | 92.56 144 | 91.45 152 | 95.88 120 | 96.39 160 | 94.13 55 | 99.46 45 | 96.97 179 | 92.18 72 | 66.94 341 | 98.29 115 | 94.65 11 | 94.28 319 | 94.34 109 | 83.82 237 | 99.24 103 |
|
sss | | | 94.85 86 | 93.94 102 | 97.58 40 | 96.43 159 | 94.09 56 | 98.93 106 | 99.16 8 | 89.50 136 | 95.27 99 | 97.85 123 | 81.50 185 | 99.65 84 | 92.79 133 | 94.02 159 | 98.99 118 |
|
CDPH-MVS | | | 96.56 40 | 96.18 45 | 97.70 36 | 99.59 28 | 93.92 57 | 99.13 87 | 97.44 134 | 89.02 147 | 97.90 43 | 99.22 29 | 88.90 62 | 99.49 104 | 94.63 104 | 99.79 25 | 99.68 61 |
|
VNet | | | 95.08 82 | 94.26 88 | 97.55 43 | 98.07 109 | 93.88 58 | 98.68 133 | 98.73 15 | 90.33 109 | 97.16 55 | 97.43 144 | 79.19 201 | 99.53 97 | 96.91 56 | 91.85 185 | 99.24 103 |
|
xxxxxxxxxxxxxcwj | | | 97.51 12 | 97.42 13 | 97.78 34 | 99.34 53 | 93.85 59 | 99.65 23 | 95.45 272 | 95.69 11 | 98.70 17 | 99.42 17 | 90.42 42 | 99.72 71 | 98.47 25 | 99.65 40 | 99.77 44 |
|
save fliter | | | | | | 99.34 53 | 93.85 59 | 99.65 23 | 97.63 93 | 95.69 11 | | | | | | | |
|
SD-MVS | | | 97.51 12 | 97.40 14 | 97.81 32 | 99.01 79 | 93.79 61 | 99.33 64 | 97.38 141 | 93.73 40 | 98.83 15 | 99.02 57 | 90.87 33 | 99.88 44 | 98.69 17 | 99.74 28 | 99.77 44 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APDe-MVS | | | 97.53 11 | 97.47 10 | 97.70 36 | 99.58 29 | 93.63 62 | 99.56 32 | 97.52 117 | 93.59 43 | 98.01 39 | 99.12 46 | 90.80 35 | 99.55 94 | 99.26 10 | 99.79 25 | 99.93 17 |
|
APD-MVS |  | | 96.95 29 | 96.72 32 | 97.63 38 | 99.51 42 | 93.58 63 | 99.16 75 | 97.44 134 | 90.08 118 | 98.59 22 | 99.07 51 | 89.06 59 | 99.42 115 | 97.92 39 | 99.66 39 | 99.88 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 96.59 39 | 96.18 45 | 97.81 32 | 98.82 89 | 93.55 64 | 98.88 113 | 97.59 102 | 90.66 98 | 97.98 40 | 99.14 43 | 86.59 109 | 100.00 1 | 96.47 64 | 99.46 60 | 99.89 23 |
|
nrg030 | | | 90.23 182 | 88.87 190 | 94.32 168 | 91.53 282 | 93.54 65 | 98.79 123 | 95.89 245 | 88.12 179 | 84.55 217 | 94.61 208 | 78.80 205 | 96.88 228 | 92.35 136 | 75.21 282 | 92.53 230 |
|
OpenMVS |  | 85.28 14 | 90.75 175 | 88.84 191 | 96.48 98 | 93.58 250 | 93.51 66 | 98.80 119 | 97.41 138 | 82.59 275 | 78.62 291 | 97.49 142 | 68.00 277 | 99.82 60 | 84.52 218 | 98.55 101 | 96.11 213 |
|
TSAR-MVS + MP. | | | 97.44 15 | 97.46 11 | 97.39 49 | 99.12 72 | 93.49 67 | 98.52 153 | 97.50 123 | 94.46 21 | 98.99 10 | 98.64 96 | 91.58 25 | 99.08 139 | 98.49 24 | 99.83 13 | 99.60 73 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
QAPM | | | 91.41 163 | 89.49 179 | 97.17 58 | 95.66 186 | 93.42 68 | 98.60 146 | 97.51 120 | 80.92 298 | 81.39 263 | 97.41 145 | 72.89 244 | 99.87 47 | 82.33 243 | 98.68 97 | 98.21 170 |
|
testtj | | | 97.23 20 | 97.05 20 | 97.75 35 | 99.75 7 | 93.34 69 | 99.16 75 | 97.74 68 | 91.28 89 | 98.40 26 | 99.29 22 | 89.95 49 | 99.98 10 | 98.20 35 | 99.70 35 | 99.94 14 |
|
ZD-MVS | | | | | | 99.67 13 | 93.28 70 | | 97.61 96 | 87.78 188 | 97.41 50 | 99.16 39 | 90.15 47 | 99.56 93 | 98.35 29 | 99.70 35 | |
|
MSLP-MVS++ | | | 97.50 14 | 97.45 12 | 97.63 38 | 99.65 19 | 93.21 71 | 99.70 17 | 98.13 36 | 94.61 19 | 97.78 45 | 99.46 11 | 89.85 50 | 99.81 62 | 97.97 38 | 99.91 4 | 99.88 24 |
|
TEST9 | | | | | | 99.57 33 | 93.17 72 | 99.38 56 | 97.66 83 | 89.57 133 | 98.39 27 | 99.18 35 | 90.88 32 | 99.66 80 | | | |
|
train_agg | | | 97.20 22 | 97.08 19 | 97.57 42 | 99.57 33 | 93.17 72 | 99.38 56 | 97.66 83 | 90.18 113 | 98.39 27 | 99.18 35 | 90.94 30 | 99.66 80 | 98.58 22 | 99.85 11 | 99.88 24 |
|
Regformer-1 | | | 96.97 28 | 96.80 30 | 97.47 44 | 99.46 47 | 93.11 74 | 98.89 111 | 97.94 45 | 92.89 54 | 96.90 58 | 99.02 57 | 89.78 51 | 99.53 97 | 97.06 49 | 99.26 76 | 99.75 48 |
|
EPNet | | | 96.82 34 | 96.68 34 | 97.25 55 | 98.65 93 | 93.10 75 | 99.48 39 | 98.76 12 | 96.54 5 | 97.84 44 | 98.22 117 | 87.49 86 | 99.66 80 | 95.35 88 | 97.78 113 | 99.00 117 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_8 | | | | | | 99.55 35 | 93.07 76 | 99.37 59 | 97.64 89 | 90.18 113 | 98.36 29 | 99.19 32 | 90.94 30 | 99.64 86 | | | |
|
3Dnovator | | 87.35 11 | 93.17 133 | 91.77 146 | 97.37 51 | 95.41 193 | 93.07 76 | 98.82 117 | 97.85 52 | 91.53 82 | 82.56 238 | 97.58 139 | 71.97 251 | 99.82 60 | 91.01 146 | 99.23 78 | 99.22 106 |
|
cascas | | | 90.93 172 | 89.33 183 | 95.76 125 | 95.69 184 | 93.03 78 | 98.99 101 | 96.59 192 | 80.49 300 | 86.79 204 | 94.45 209 | 65.23 295 | 98.60 155 | 93.52 121 | 92.18 180 | 95.66 216 |
|
test_yl | | | 95.27 78 | 94.60 82 | 97.28 53 | 98.53 98 | 92.98 79 | 99.05 94 | 98.70 16 | 86.76 211 | 94.65 110 | 97.74 130 | 87.78 79 | 99.44 112 | 95.57 84 | 92.61 171 | 99.44 87 |
|
DCV-MVSNet | | | 95.27 78 | 94.60 82 | 97.28 53 | 98.53 98 | 92.98 79 | 99.05 94 | 98.70 16 | 86.76 211 | 94.65 110 | 97.74 130 | 87.78 79 | 99.44 112 | 95.57 84 | 92.61 171 | 99.44 87 |
|
Regformer-2 | | | 96.94 31 | 96.78 31 | 97.42 46 | 99.46 47 | 92.97 81 | 98.89 111 | 97.93 46 | 92.86 56 | 96.88 59 | 99.02 57 | 89.74 53 | 99.53 97 | 97.03 50 | 99.26 76 | 99.75 48 |
|
MVSTER | | | 92.71 138 | 92.32 131 | 93.86 184 | 97.29 130 | 92.95 82 | 99.01 99 | 96.59 192 | 90.09 117 | 85.51 210 | 94.00 216 | 94.61 12 | 96.56 241 | 90.77 151 | 83.03 243 | 92.08 244 |
|
旧先验1 | | | | | | 98.97 80 | 92.90 83 | | 97.74 68 | | | 99.15 41 | 91.05 29 | | | 99.33 70 | 99.60 73 |
|
MP-MVS-pluss | | | 95.80 67 | 95.30 71 | 97.29 52 | 98.95 83 | 92.66 84 | 98.59 148 | 97.14 162 | 88.95 150 | 93.12 131 | 99.25 25 | 85.62 124 | 99.94 33 | 96.56 62 | 99.48 59 | 99.28 100 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
agg_prior1 | | | 97.12 24 | 97.03 21 | 97.38 50 | 99.54 36 | 92.66 84 | 99.35 61 | 97.64 89 | 90.38 107 | 97.98 40 | 99.17 37 | 90.84 34 | 99.61 89 | 98.57 23 | 99.78 27 | 99.87 27 |
|
agg_prior | | | | | | 99.54 36 | 92.66 84 | | 97.64 89 | | 97.98 40 | | | 99.61 89 | | | |
|
MVS_Test | | | 93.67 118 | 92.67 126 | 96.69 89 | 96.72 151 | 92.66 84 | 97.22 240 | 96.03 228 | 87.69 194 | 95.12 103 | 94.03 214 | 81.55 184 | 98.28 161 | 89.17 170 | 96.46 129 | 99.14 110 |
|
thisisatest0515 | | | 94.75 88 | 94.19 90 | 96.43 101 | 96.13 176 | 92.64 88 | 99.47 40 | 97.60 98 | 87.55 197 | 93.17 130 | 97.59 138 | 94.71 9 | 98.42 156 | 88.28 177 | 93.20 163 | 98.24 168 |
|
1121 | | | 95.19 80 | 94.45 85 | 97.42 46 | 98.88 86 | 92.58 89 | 96.22 276 | 97.75 66 | 85.50 229 | 96.86 62 | 99.01 61 | 88.59 67 | 99.90 40 | 87.64 185 | 99.60 52 | 99.79 34 |
|
FMVSNet2 | | | 86.90 237 | 84.79 255 | 93.24 194 | 95.11 206 | 92.54 90 | 97.67 223 | 95.86 249 | 82.94 269 | 80.55 268 | 91.17 271 | 62.89 302 | 95.29 301 | 77.23 275 | 79.71 261 | 91.90 250 |
|
新几何1 | | | | | 97.40 48 | 98.92 84 | 92.51 91 | | 97.77 65 | 85.52 227 | 96.69 72 | 99.06 53 | 88.08 76 | 99.89 43 | 84.88 213 | 99.62 47 | 99.79 34 |
|
test_part1 | | | 88.43 216 | 86.68 226 | 93.67 189 | 97.56 124 | 92.40 92 | 98.12 195 | 96.55 197 | 82.26 282 | 80.31 271 | 93.16 239 | 74.59 227 | 96.62 238 | 85.00 212 | 72.61 309 | 91.99 248 |
|
114514_t | | | 94.06 104 | 93.05 118 | 97.06 60 | 99.08 76 | 92.26 93 | 98.97 103 | 97.01 177 | 82.58 276 | 92.57 137 | 98.22 117 | 80.68 191 | 99.30 128 | 89.34 166 | 99.02 83 | 99.63 69 |
|
test_prior4 | | | | | | | 92.00 94 | 99.41 54 | | | | | | | | | |
|
test_prior3 | | | 97.07 26 | 97.09 18 | 97.01 62 | 99.58 29 | 91.77 95 | 99.57 30 | 97.57 107 | 91.43 85 | 98.12 34 | 98.97 63 | 90.43 40 | 99.49 104 | 98.33 30 | 99.81 19 | 99.79 34 |
|
test_prior | | | | | 97.01 62 | 99.58 29 | 91.77 95 | | 97.57 107 | | | | | 99.49 104 | | | 99.79 34 |
|
PHI-MVS | | | 96.65 38 | 96.46 38 | 97.21 56 | 99.34 53 | 91.77 95 | 99.70 17 | 98.05 39 | 86.48 217 | 98.05 36 | 99.20 31 | 89.33 57 | 99.96 27 | 98.38 28 | 99.62 47 | 99.90 20 |
|
Regformer-3 | | | 96.50 42 | 96.36 41 | 96.91 73 | 99.34 53 | 91.72 98 | 98.71 126 | 97.90 48 | 92.48 62 | 96.00 81 | 98.95 70 | 88.60 65 | 99.52 100 | 96.44 65 | 98.83 91 | 99.49 83 |
|
ab-mvs | | | 91.05 169 | 89.17 185 | 96.69 89 | 95.96 177 | 91.72 98 | 92.62 319 | 97.23 152 | 85.61 226 | 89.74 177 | 93.89 220 | 68.55 271 | 99.42 115 | 91.09 144 | 87.84 210 | 98.92 127 |
|
TSAR-MVS + GP. | | | 96.95 29 | 96.91 25 | 97.07 59 | 98.88 86 | 91.62 100 | 99.58 29 | 96.54 199 | 95.09 18 | 96.84 65 | 98.63 98 | 91.16 26 | 99.77 67 | 99.04 12 | 96.42 131 | 99.81 31 |
|
PVSNet_BlendedMVS | | | 93.36 126 | 93.20 115 | 93.84 185 | 98.77 90 | 91.61 101 | 99.47 40 | 98.04 40 | 91.44 84 | 94.21 116 | 92.63 248 | 83.50 150 | 99.87 47 | 97.41 45 | 83.37 241 | 90.05 307 |
|
PVSNet_Blended | | | 95.94 61 | 95.66 66 | 96.75 83 | 98.77 90 | 91.61 101 | 99.88 1 | 98.04 40 | 93.64 42 | 94.21 116 | 97.76 128 | 83.50 150 | 99.87 47 | 97.41 45 | 97.75 114 | 98.79 139 |
|
PCF-MVS | | 89.78 5 | 91.26 164 | 89.63 177 | 96.16 112 | 95.44 192 | 91.58 103 | 95.29 295 | 96.10 226 | 85.07 236 | 82.75 234 | 97.45 143 | 78.28 208 | 99.78 66 | 80.60 257 | 95.65 148 | 97.12 194 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
SteuartSystems-ACMMP | | | 97.25 17 | 97.34 15 | 97.01 62 | 97.38 127 | 91.46 104 | 99.75 13 | 97.66 83 | 94.14 28 | 98.13 32 | 99.26 24 | 92.16 24 | 99.66 80 | 97.91 40 | 99.64 43 | 99.90 20 |
Skip Steuart: Steuart Systems R&D Blog. |
Regformer-4 | | | 96.45 45 | 96.33 43 | 96.81 80 | 99.34 53 | 91.44 105 | 98.71 126 | 97.88 49 | 92.43 63 | 95.97 83 | 98.95 70 | 88.42 69 | 99.51 101 | 96.40 66 | 98.83 91 | 99.49 83 |
|
VPNet | | | 88.30 218 | 86.57 227 | 93.49 190 | 91.95 275 | 91.35 106 | 98.18 190 | 97.20 158 | 88.61 158 | 84.52 218 | 94.89 203 | 62.21 305 | 96.76 234 | 89.34 166 | 72.26 314 | 92.36 233 |
|
GST-MVS | | | 95.97 59 | 95.66 66 | 96.90 74 | 99.49 45 | 91.22 107 | 99.45 47 | 97.48 126 | 89.69 127 | 95.89 86 | 98.72 89 | 86.37 117 | 99.95 30 | 94.62 105 | 99.22 79 | 99.52 79 |
|
test222 | | | | | | 98.32 101 | 91.21 108 | 98.08 200 | 97.58 104 | 83.74 255 | 95.87 88 | 99.02 57 | 86.74 104 | | | 99.64 43 | 99.81 31 |
|
ZNCC-MVS | | | 96.09 55 | 95.81 62 | 96.95 72 | 99.42 49 | 91.19 109 | 99.55 33 | 97.53 114 | 89.72 126 | 95.86 89 | 98.94 75 | 86.59 109 | 99.97 20 | 95.13 92 | 99.56 55 | 99.68 61 |
|
zzz-MVS | | | 96.21 53 | 95.96 54 | 96.96 70 | 99.29 61 | 91.19 109 | 98.69 131 | 97.45 130 | 92.58 58 | 94.39 113 | 99.24 27 | 86.43 115 | 99.99 5 | 96.22 68 | 99.40 68 | 99.71 55 |
|
MTAPA | | | 96.09 55 | 95.80 63 | 96.96 70 | 99.29 61 | 91.19 109 | 97.23 239 | 97.45 130 | 92.58 58 | 94.39 113 | 99.24 27 | 86.43 115 | 99.99 5 | 96.22 68 | 99.40 68 | 99.71 55 |
|
MDTV_nov1_ep13_2view | | | | | | | 91.17 112 | 91.38 326 | | 87.45 199 | 93.08 132 | | 86.67 107 | | 87.02 189 | | 98.95 125 |
|
FIs | | | 90.70 176 | 89.87 175 | 93.18 195 | 92.29 269 | 91.12 113 | 98.17 192 | 98.25 26 | 89.11 144 | 83.44 226 | 94.82 205 | 82.26 176 | 96.17 270 | 87.76 183 | 82.76 245 | 92.25 236 |
|
1112_ss | | | 92.71 138 | 91.55 150 | 96.20 108 | 95.56 188 | 91.12 113 | 98.48 161 | 94.69 298 | 88.29 174 | 86.89 201 | 98.50 105 | 87.02 98 | 98.66 153 | 84.75 214 | 89.77 205 | 98.81 137 |
|
PVSNet_Blended_VisFu | | | 94.67 93 | 94.11 93 | 96.34 106 | 97.14 135 | 91.10 115 | 99.32 65 | 97.43 136 | 92.10 74 | 91.53 150 | 96.38 183 | 83.29 156 | 99.68 78 | 93.42 124 | 96.37 132 | 98.25 167 |
|
Test_1112_low_res | | | 92.27 149 | 90.97 158 | 96.18 109 | 95.53 190 | 91.10 115 | 98.47 163 | 94.66 299 | 88.28 175 | 86.83 203 | 93.50 232 | 87.00 99 | 98.65 154 | 84.69 215 | 89.74 206 | 98.80 138 |
|
LFMVS | | | 92.23 150 | 90.84 162 | 96.42 102 | 98.24 103 | 91.08 117 | 98.24 185 | 96.22 219 | 83.39 262 | 94.74 108 | 98.31 113 | 61.12 310 | 98.85 143 | 94.45 108 | 92.82 167 | 99.32 95 |
|
ETV-MVS | | | 96.00 57 | 96.00 53 | 96.00 116 | 96.56 155 | 91.05 118 | 99.63 25 | 96.61 189 | 93.26 48 | 97.39 51 | 98.30 114 | 86.62 108 | 98.13 166 | 98.07 37 | 97.57 115 | 98.82 136 |
|
VPA-MVSNet | | | 89.10 199 | 87.66 211 | 93.45 191 | 92.56 266 | 91.02 119 | 97.97 206 | 98.32 24 | 86.92 207 | 86.03 207 | 92.01 254 | 68.84 270 | 97.10 222 | 90.92 147 | 75.34 281 | 92.23 238 |
|
MVS_111021_HR | | | 96.69 36 | 96.69 33 | 96.72 87 | 98.58 97 | 91.00 120 | 99.14 84 | 99.45 1 | 93.86 35 | 95.15 102 | 98.73 87 | 88.48 68 | 99.76 68 | 97.23 48 | 99.56 55 | 99.40 90 |
|
HFP-MVS | | | 96.42 46 | 96.26 44 | 96.90 74 | 99.69 9 | 90.96 121 | 99.47 40 | 97.81 58 | 90.54 103 | 96.88 59 | 99.05 54 | 87.57 83 | 99.96 27 | 95.65 79 | 99.72 30 | 99.78 38 |
|
#test# | | | 96.48 43 | 96.34 42 | 96.90 74 | 99.69 9 | 90.96 121 | 99.53 36 | 97.81 58 | 90.94 96 | 96.88 59 | 99.05 54 | 87.57 83 | 99.96 27 | 95.87 76 | 99.72 30 | 99.78 38 |
|
UniMVSNet (Re) | | | 89.50 197 | 88.32 203 | 93.03 197 | 92.21 271 | 90.96 121 | 98.90 110 | 98.39 22 | 89.13 143 | 83.22 227 | 92.03 252 | 81.69 183 | 96.34 261 | 86.79 194 | 72.53 310 | 91.81 251 |
|
IB-MVS | | 89.43 6 | 92.12 151 | 90.83 164 | 95.98 118 | 95.40 194 | 90.78 124 | 99.81 6 | 98.06 38 | 91.23 91 | 85.63 209 | 93.66 226 | 90.63 37 | 98.78 145 | 91.22 143 | 71.85 317 | 98.36 163 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Effi-MVS+ | | | 93.87 111 | 93.15 116 | 96.02 115 | 95.79 180 | 90.76 125 | 96.70 261 | 95.78 251 | 86.98 205 | 95.71 92 | 97.17 155 | 79.58 196 | 98.01 177 | 94.57 106 | 96.09 139 | 99.31 96 |
|
DeepC-MVS | | 91.02 4 | 94.56 98 | 93.92 103 | 96.46 99 | 97.16 134 | 90.76 125 | 98.39 174 | 97.11 166 | 93.92 31 | 88.66 185 | 98.33 112 | 78.14 209 | 99.85 54 | 95.02 95 | 98.57 100 | 98.78 141 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
diffmvs | | | 94.59 97 | 94.19 90 | 95.81 123 | 95.54 189 | 90.69 127 | 98.70 130 | 95.68 258 | 91.61 80 | 95.96 84 | 97.81 125 | 80.11 193 | 98.06 173 | 96.52 63 | 95.76 145 | 98.67 147 |
|
NR-MVSNet | | | 87.74 228 | 86.00 236 | 92.96 199 | 91.46 283 | 90.68 128 | 96.65 262 | 97.42 137 | 88.02 182 | 73.42 319 | 93.68 224 | 77.31 213 | 95.83 287 | 84.26 220 | 71.82 318 | 92.36 233 |
|
bset_n11_16_dypcd | | | 89.07 200 | 87.85 207 | 92.76 205 | 86.16 335 | 90.66 129 | 97.30 233 | 95.62 261 | 89.78 125 | 83.94 223 | 93.15 240 | 74.85 222 | 95.89 285 | 91.34 142 | 78.48 264 | 91.74 252 |
|
XVS | | | 96.47 44 | 96.37 40 | 96.77 81 | 99.62 25 | 90.66 129 | 99.43 51 | 97.58 104 | 92.41 67 | 96.86 62 | 98.96 68 | 87.37 89 | 99.87 47 | 95.65 79 | 99.43 64 | 99.78 38 |
|
X-MVStestdata | | | 90.69 177 | 88.66 196 | 96.77 81 | 99.62 25 | 90.66 129 | 99.43 51 | 97.58 104 | 92.41 67 | 96.86 62 | 29.59 364 | 87.37 89 | 99.87 47 | 95.65 79 | 99.43 64 | 99.78 38 |
|
ACMMPR | | | 96.28 51 | 96.14 51 | 96.73 85 | 99.68 12 | 90.47 132 | 99.47 40 | 97.80 60 | 90.54 103 | 96.83 67 | 99.03 56 | 86.51 113 | 99.95 30 | 95.65 79 | 99.72 30 | 99.75 48 |
|
EI-MVSNet-Vis-set | | | 95.76 70 | 95.63 70 | 96.17 111 | 99.14 71 | 90.33 133 | 98.49 160 | 97.82 55 | 91.92 75 | 94.75 107 | 98.88 78 | 87.06 97 | 99.48 109 | 95.40 87 | 97.17 124 | 98.70 146 |
|
region2R | | | 96.30 50 | 96.17 47 | 96.70 88 | 99.70 8 | 90.31 134 | 99.46 45 | 97.66 83 | 90.55 102 | 97.07 56 | 99.07 51 | 86.85 101 | 99.97 20 | 95.43 86 | 99.74 28 | 99.81 31 |
|
TESTMET0.1,1 | | | 93.82 112 | 93.26 114 | 95.49 132 | 95.21 198 | 90.25 135 | 99.15 81 | 97.54 113 | 89.18 142 | 91.79 143 | 94.87 204 | 89.13 58 | 97.63 201 | 86.21 198 | 96.29 136 | 98.60 150 |
|
baseline2 | | | 94.04 105 | 93.80 106 | 94.74 154 | 93.07 262 | 90.25 135 | 98.12 195 | 98.16 33 | 89.86 121 | 86.53 205 | 96.95 164 | 95.56 5 | 98.05 174 | 91.44 141 | 94.53 154 | 95.93 214 |
|
PVSNet | | 87.13 12 | 93.69 115 | 92.83 123 | 96.28 107 | 97.99 111 | 90.22 137 | 99.38 56 | 98.93 10 | 91.42 87 | 93.66 126 | 97.68 133 | 71.29 259 | 99.64 86 | 87.94 182 | 97.20 123 | 98.98 119 |
|
MSP-MVS | | | 97.77 8 | 98.18 2 | 96.53 97 | 99.54 36 | 90.14 138 | 99.41 54 | 97.70 79 | 95.46 17 | 98.60 21 | 99.19 32 | 95.71 4 | 99.49 104 | 98.15 36 | 99.85 11 | 99.95 11 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PAPM_NR | | | 95.43 73 | 95.05 77 | 96.57 95 | 99.42 49 | 90.14 138 | 98.58 150 | 97.51 120 | 90.65 100 | 92.44 139 | 98.90 76 | 87.77 81 | 99.90 40 | 90.88 148 | 99.32 71 | 99.68 61 |
|
MP-MVS |  | | 96.00 57 | 95.82 60 | 96.54 96 | 99.47 46 | 90.13 140 | 99.36 60 | 97.41 138 | 90.64 101 | 95.49 96 | 98.95 70 | 85.51 127 | 99.98 10 | 96.00 75 | 99.59 54 | 99.52 79 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
原ACMM1 | | | | | 96.18 109 | 99.03 78 | 90.08 141 | | 97.63 93 | 88.98 148 | 97.00 57 | 98.97 63 | 88.14 75 | 99.71 73 | 88.23 178 | 99.62 47 | 98.76 143 |
|
UniMVSNet_NR-MVSNet | | | 89.60 194 | 88.55 200 | 92.75 206 | 92.17 272 | 90.07 142 | 98.74 125 | 98.15 34 | 88.37 171 | 83.21 228 | 93.98 217 | 82.86 164 | 95.93 280 | 86.95 191 | 72.47 311 | 92.25 236 |
|
DU-MVS | | | 88.83 208 | 87.51 212 | 92.79 203 | 91.46 283 | 90.07 142 | 98.71 126 | 97.62 95 | 88.87 154 | 83.21 228 | 93.68 224 | 74.63 223 | 95.93 280 | 86.95 191 | 72.47 311 | 92.36 233 |
|
baseline | | | 93.91 109 | 93.30 112 | 95.72 126 | 95.10 209 | 90.07 142 | 97.48 228 | 95.91 242 | 91.03 93 | 93.54 127 | 97.68 133 | 79.58 196 | 98.02 176 | 94.27 110 | 95.14 150 | 99.08 114 |
|
API-MVS | | | 94.78 87 | 94.18 92 | 96.59 93 | 99.21 68 | 90.06 145 | 98.80 119 | 97.78 63 | 83.59 259 | 93.85 123 | 99.21 30 | 83.79 147 | 99.97 20 | 92.37 135 | 99.00 84 | 99.74 51 |
|
EPMVS | | | 92.59 143 | 91.59 149 | 95.59 131 | 97.22 132 | 90.03 146 | 91.78 324 | 98.04 40 | 90.42 106 | 91.66 146 | 90.65 284 | 86.49 114 | 97.46 210 | 81.78 249 | 96.31 134 | 99.28 100 |
|
thisisatest0530 | | | 94.00 106 | 93.52 109 | 95.43 135 | 95.76 182 | 90.02 147 | 98.99 101 | 97.60 98 | 86.58 214 | 91.74 144 | 97.36 146 | 94.78 8 | 98.34 157 | 86.37 197 | 92.48 174 | 97.94 177 |
|
CNLPA | | | 93.64 119 | 92.74 124 | 96.36 105 | 98.96 82 | 90.01 148 | 99.19 70 | 95.89 245 | 86.22 220 | 89.40 180 | 98.85 79 | 80.66 192 | 99.84 55 | 88.57 174 | 96.92 125 | 99.24 103 |
|
EI-MVSNet-UG-set | | | 95.43 73 | 95.29 72 | 95.86 121 | 99.07 77 | 89.87 149 | 98.43 165 | 97.80 60 | 91.78 78 | 94.11 118 | 98.77 83 | 86.25 119 | 99.48 109 | 94.95 98 | 96.45 130 | 98.22 169 |
|
FC-MVSNet-test | | | 90.22 183 | 89.40 181 | 92.67 209 | 91.78 279 | 89.86 150 | 97.89 208 | 98.22 28 | 88.81 155 | 82.96 233 | 94.66 207 | 81.90 182 | 95.96 278 | 85.89 204 | 82.52 248 | 92.20 240 |
|
casdiffmvs | | | 93.98 107 | 93.43 110 | 95.61 130 | 95.07 210 | 89.86 150 | 98.80 119 | 95.84 250 | 90.98 94 | 92.74 136 | 97.66 135 | 79.71 195 | 98.10 168 | 94.72 102 | 95.37 149 | 98.87 131 |
|
CS-MVS | | | 95.85 64 | 95.86 58 | 95.82 122 | 96.80 148 | 89.78 152 | 99.84 3 | 96.60 190 | 92.60 57 | 96.81 69 | 98.70 92 | 85.04 134 | 98.25 162 | 97.90 41 | 98.43 104 | 99.42 89 |
|
PGM-MVS | | | 95.85 64 | 95.65 68 | 96.45 100 | 99.50 43 | 89.77 153 | 98.22 186 | 98.90 11 | 89.19 141 | 96.74 70 | 98.95 70 | 85.91 123 | 99.92 36 | 93.94 112 | 99.46 60 | 99.66 65 |
|
RRT_test8_iter05 | | | 91.04 170 | 90.40 172 | 92.95 200 | 96.20 170 | 89.75 154 | 98.97 103 | 96.38 207 | 88.52 161 | 82.00 252 | 93.51 231 | 90.69 36 | 96.73 235 | 90.43 153 | 76.91 276 | 92.38 232 |
|
XXY-MVS | | | 87.75 226 | 86.02 235 | 92.95 200 | 90.46 294 | 89.70 155 | 97.71 222 | 95.90 243 | 84.02 251 | 80.95 264 | 94.05 211 | 67.51 281 | 97.10 222 | 85.16 208 | 78.41 265 | 92.04 247 |
|
mvs_anonymous | | | 92.50 145 | 91.65 148 | 95.06 145 | 96.60 154 | 89.64 156 | 97.06 245 | 96.44 205 | 86.64 213 | 84.14 220 | 93.93 218 | 82.49 171 | 96.17 270 | 91.47 140 | 96.08 140 | 99.35 92 |
|
CP-MVS | | | 96.22 52 | 96.15 50 | 96.42 102 | 99.67 13 | 89.62 157 | 99.70 17 | 97.61 96 | 90.07 119 | 96.00 81 | 99.16 39 | 87.43 87 | 99.92 36 | 96.03 74 | 99.72 30 | 99.70 57 |
|
WR-MVS | | | 88.54 215 | 87.22 219 | 92.52 210 | 91.93 277 | 89.50 158 | 98.56 151 | 97.84 53 | 86.99 203 | 81.87 256 | 93.81 221 | 74.25 233 | 95.92 282 | 85.29 207 | 74.43 291 | 92.12 242 |
|
DWT-MVSNet_test | | | 94.36 100 | 93.95 101 | 95.62 128 | 96.99 143 | 89.47 159 | 96.62 263 | 97.38 141 | 90.96 95 | 93.07 133 | 97.27 147 | 93.73 13 | 98.09 169 | 85.86 205 | 93.65 161 | 99.29 98 |
|
CDS-MVSNet | | | 93.47 121 | 93.04 119 | 94.76 152 | 94.75 222 | 89.45 160 | 98.82 117 | 97.03 175 | 87.91 185 | 90.97 158 | 96.48 178 | 89.06 59 | 96.36 255 | 89.50 161 | 92.81 169 | 98.49 154 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
mPP-MVS | | | 95.90 63 | 95.75 64 | 96.38 104 | 99.58 29 | 89.41 161 | 99.26 67 | 97.41 138 | 90.66 98 | 94.82 106 | 98.95 70 | 86.15 120 | 99.98 10 | 95.24 91 | 99.64 43 | 99.74 51 |
|
HPM-MVS |  | | 95.41 75 | 95.22 74 | 95.99 117 | 99.29 61 | 89.14 162 | 99.17 74 | 97.09 170 | 87.28 201 | 95.40 97 | 98.48 108 | 84.93 136 | 99.38 119 | 95.64 83 | 99.65 40 | 99.47 86 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
AdaColmap |  | | 93.82 112 | 93.06 117 | 96.10 113 | 99.88 1 | 89.07 163 | 98.33 178 | 97.55 110 | 86.81 210 | 90.39 169 | 98.65 95 | 75.09 221 | 99.98 10 | 93.32 125 | 97.53 118 | 99.26 102 |
|
SR-MVS | | | 96.13 54 | 96.16 49 | 96.07 114 | 99.42 49 | 89.04 164 | 98.59 148 | 97.33 146 | 90.44 105 | 96.84 65 | 99.12 46 | 86.75 103 | 99.41 117 | 97.47 44 | 99.44 63 | 99.76 47 |
|
PatchmatchNet |  | | 92.05 153 | 91.04 157 | 95.06 145 | 96.17 171 | 89.04 164 | 91.26 328 | 97.26 147 | 89.56 134 | 90.64 163 | 90.56 290 | 88.35 71 | 97.11 220 | 79.53 260 | 96.07 141 | 99.03 116 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
KD-MVS_2432*1600 | | | 82.98 286 | 80.52 294 | 90.38 254 | 94.32 229 | 88.98 166 | 92.87 316 | 95.87 247 | 80.46 301 | 73.79 317 | 87.49 321 | 82.76 167 | 93.29 325 | 70.56 316 | 46.53 353 | 88.87 322 |
|
miper_refine_blended | | | 82.98 286 | 80.52 294 | 90.38 254 | 94.32 229 | 88.98 166 | 92.87 316 | 95.87 247 | 80.46 301 | 73.79 317 | 87.49 321 | 82.76 167 | 93.29 325 | 70.56 316 | 46.53 353 | 88.87 322 |
|
miper_enhance_ethall | | | 90.33 180 | 89.70 176 | 92.22 213 | 97.12 137 | 88.93 168 | 98.35 177 | 95.96 232 | 88.60 159 | 83.14 232 | 92.33 250 | 87.38 88 | 96.18 269 | 86.49 196 | 77.89 268 | 91.55 262 |
|
pmmvs4 | | | 87.58 231 | 86.17 234 | 91.80 224 | 89.58 304 | 88.92 169 | 97.25 237 | 95.28 282 | 82.54 277 | 80.49 269 | 93.17 238 | 75.62 219 | 96.05 275 | 82.75 239 | 78.90 262 | 90.42 298 |
|
SCA | | | 90.64 178 | 89.25 184 | 94.83 151 | 94.95 215 | 88.83 170 | 96.26 273 | 97.21 154 | 90.06 120 | 90.03 173 | 90.62 286 | 66.61 287 | 96.81 231 | 83.16 234 | 94.36 156 | 98.84 132 |
|
GBi-Net | | | 86.67 242 | 84.96 249 | 91.80 224 | 95.11 206 | 88.81 171 | 96.77 255 | 95.25 283 | 82.94 269 | 82.12 247 | 90.25 297 | 62.89 302 | 94.97 306 | 79.04 264 | 80.24 255 | 91.62 256 |
|
test1 | | | 86.67 242 | 84.96 249 | 91.80 224 | 95.11 206 | 88.81 171 | 96.77 255 | 95.25 283 | 82.94 269 | 82.12 247 | 90.25 297 | 62.89 302 | 94.97 306 | 79.04 264 | 80.24 255 | 91.62 256 |
|
FMVSNet1 | | | 83.94 282 | 81.32 290 | 91.80 224 | 91.94 276 | 88.81 171 | 96.77 255 | 95.25 283 | 77.98 312 | 78.25 296 | 90.25 297 | 50.37 341 | 94.97 306 | 73.27 306 | 77.81 272 | 91.62 256 |
|
CHOSEN 1792x2688 | | | 94.35 101 | 93.82 105 | 95.95 119 | 97.40 126 | 88.74 174 | 98.41 168 | 98.27 25 | 92.18 72 | 91.43 151 | 96.40 180 | 78.88 202 | 99.81 62 | 93.59 120 | 97.81 110 | 99.30 97 |
|
UGNet | | | 91.91 155 | 90.85 161 | 95.10 142 | 97.06 140 | 88.69 175 | 98.01 204 | 98.24 27 | 92.41 67 | 92.39 140 | 93.61 227 | 60.52 311 | 99.68 78 | 88.14 179 | 97.25 122 | 96.92 201 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TranMVSNet+NR-MVSNet | | | 87.75 226 | 86.31 231 | 92.07 219 | 90.81 290 | 88.56 176 | 98.33 178 | 97.18 159 | 87.76 189 | 81.87 256 | 93.90 219 | 72.45 246 | 95.43 297 | 83.13 236 | 71.30 321 | 92.23 238 |
|
BH-RMVSNet | | | 91.25 166 | 89.99 174 | 95.03 147 | 96.75 150 | 88.55 177 | 98.65 137 | 94.95 292 | 87.74 191 | 87.74 191 | 97.80 126 | 68.27 274 | 98.14 165 | 80.53 258 | 97.49 119 | 98.41 157 |
|
MDTV_nov1_ep13 | | | | 90.47 171 | | 96.14 173 | 88.55 177 | 91.34 327 | 97.51 120 | 89.58 132 | 92.24 141 | 90.50 294 | 86.99 100 | 97.61 203 | 77.64 274 | 92.34 176 | |
|
UA-Net | | | 93.30 128 | 92.62 127 | 95.34 138 | 96.27 164 | 88.53 179 | 95.88 286 | 96.97 179 | 90.90 97 | 95.37 98 | 97.07 159 | 82.38 175 | 99.10 138 | 83.91 228 | 94.86 153 | 98.38 160 |
|
HPM-MVS_fast | | | 94.89 84 | 94.62 81 | 95.70 127 | 99.11 73 | 88.44 180 | 99.14 84 | 97.11 166 | 85.82 224 | 95.69 93 | 98.47 109 | 83.46 152 | 99.32 127 | 93.16 127 | 99.63 46 | 99.35 92 |
|
Vis-MVSNet |  | | 92.64 140 | 91.85 143 | 95.03 147 | 95.12 205 | 88.23 181 | 98.48 161 | 96.81 183 | 91.61 80 | 92.16 142 | 97.22 151 | 71.58 257 | 98.00 178 | 85.85 206 | 97.81 110 | 98.88 129 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
gm-plane-assit | | | | | | 94.69 223 | 88.14 182 | | | 88.22 176 | | 97.20 152 | | 98.29 160 | 90.79 150 | | |
|
ACMMP |  | | 94.67 93 | 94.30 87 | 95.79 124 | 99.25 64 | 88.13 183 | 98.41 168 | 98.67 19 | 90.38 107 | 91.43 151 | 98.72 89 | 82.22 177 | 99.95 30 | 93.83 116 | 95.76 145 | 99.29 98 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
tfpnnormal | | | 83.65 283 | 81.35 289 | 90.56 249 | 91.37 285 | 88.06 184 | 97.29 234 | 97.87 51 | 78.51 311 | 76.20 302 | 90.91 274 | 64.78 296 | 96.47 248 | 61.71 340 | 73.50 302 | 87.13 335 |
|
HyFIR lowres test | | | 93.68 117 | 93.29 113 | 94.87 149 | 97.57 123 | 88.04 185 | 98.18 190 | 98.47 21 | 87.57 196 | 91.24 155 | 95.05 202 | 85.49 128 | 97.46 210 | 93.22 126 | 92.82 167 | 99.10 112 |
|
TR-MVS | | | 90.77 174 | 89.44 180 | 94.76 152 | 96.31 163 | 88.02 186 | 97.92 207 | 95.96 232 | 85.52 227 | 88.22 189 | 97.23 150 | 66.80 286 | 98.09 169 | 84.58 217 | 92.38 175 | 98.17 172 |
|
GA-MVS | | | 90.10 187 | 88.69 195 | 94.33 167 | 92.44 268 | 87.97 187 | 99.08 90 | 96.26 216 | 89.65 128 | 86.92 200 | 93.11 241 | 68.09 275 | 96.96 225 | 82.54 242 | 90.15 203 | 98.05 173 |
|
APD-MVS_3200maxsize | | | 95.64 72 | 95.65 68 | 95.62 128 | 99.24 65 | 87.80 188 | 98.42 166 | 97.22 153 | 88.93 152 | 96.64 75 | 98.98 62 | 85.49 128 | 99.36 121 | 96.68 57 | 99.27 75 | 99.70 57 |
|
MVS_111021_LR | | | 95.78 68 | 95.94 55 | 95.28 140 | 98.19 106 | 87.69 189 | 98.80 119 | 99.26 7 | 93.39 45 | 95.04 104 | 98.69 94 | 84.09 145 | 99.76 68 | 96.96 55 | 99.06 81 | 98.38 160 |
|
VDDNet | | | 90.08 188 | 88.54 201 | 94.69 156 | 94.41 228 | 87.68 190 | 98.21 188 | 96.40 206 | 76.21 321 | 93.33 129 | 97.75 129 | 54.93 329 | 98.77 146 | 94.71 103 | 90.96 196 | 97.61 185 |
|
TAMVS | | | 92.62 141 | 92.09 139 | 94.20 172 | 94.10 233 | 87.68 190 | 98.41 168 | 96.97 179 | 87.53 198 | 89.74 177 | 96.04 189 | 84.77 140 | 96.49 247 | 88.97 173 | 92.31 177 | 98.42 156 |
|
cl-mvsnet2 | | | 89.57 195 | 88.79 193 | 91.91 220 | 97.94 112 | 87.62 192 | 97.98 205 | 96.51 200 | 85.03 237 | 82.37 243 | 91.79 258 | 83.65 148 | 96.50 245 | 85.96 201 | 77.89 268 | 91.61 259 |
|
v2v482 | | | 87.27 234 | 85.76 239 | 91.78 228 | 89.59 303 | 87.58 193 | 98.56 151 | 95.54 267 | 84.53 245 | 82.51 239 | 91.78 259 | 73.11 241 | 96.47 248 | 82.07 245 | 74.14 297 | 91.30 273 |
|
ADS-MVSNet | | | 88.99 201 | 87.30 216 | 94.07 176 | 96.21 167 | 87.56 194 | 87.15 337 | 96.78 185 | 83.01 267 | 89.91 175 | 87.27 324 | 78.87 203 | 97.01 224 | 74.20 299 | 92.27 178 | 97.64 181 |
|
PLC |  | 91.07 3 | 94.23 103 | 94.01 96 | 94.87 149 | 99.17 70 | 87.49 195 | 99.25 68 | 96.55 197 | 88.43 169 | 91.26 154 | 98.21 119 | 85.92 122 | 99.86 52 | 89.77 160 | 97.57 115 | 97.24 192 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MAR-MVS | | | 94.43 99 | 94.09 94 | 95.45 134 | 99.10 75 | 87.47 196 | 98.39 174 | 97.79 62 | 88.37 171 | 94.02 120 | 99.17 37 | 78.64 207 | 99.91 38 | 92.48 134 | 98.85 90 | 98.96 121 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
tpmrst | | | 92.78 137 | 92.16 136 | 94.65 157 | 96.27 164 | 87.45 197 | 91.83 323 | 97.10 169 | 89.10 145 | 94.68 109 | 90.69 281 | 88.22 72 | 97.73 197 | 89.78 159 | 91.80 186 | 98.77 142 |
|
DP-MVS | | | 88.75 212 | 86.56 228 | 95.34 138 | 98.92 84 | 87.45 197 | 97.64 224 | 93.52 321 | 70.55 336 | 81.49 261 | 97.25 148 | 74.43 229 | 99.88 44 | 71.14 314 | 94.09 158 | 98.67 147 |
|
Fast-Effi-MVS+ | | | 91.72 157 | 90.79 165 | 94.49 162 | 95.89 178 | 87.40 199 | 99.54 35 | 95.70 256 | 85.01 239 | 89.28 182 | 95.68 193 | 77.75 211 | 97.57 207 | 83.22 233 | 95.06 151 | 98.51 153 |
|
MIMVSNet | | | 84.48 274 | 81.83 284 | 92.42 211 | 91.73 280 | 87.36 200 | 85.52 340 | 94.42 305 | 81.40 291 | 81.91 254 | 87.58 319 | 51.92 337 | 92.81 330 | 73.84 302 | 88.15 209 | 97.08 198 |
|
IS-MVSNet | | | 93.00 135 | 92.51 129 | 94.49 162 | 96.14 173 | 87.36 200 | 98.31 181 | 95.70 256 | 88.58 160 | 90.17 171 | 97.50 141 | 83.02 162 | 97.22 217 | 87.06 188 | 96.07 141 | 98.90 128 |
|
testdata | | | | | 95.26 141 | 98.20 104 | 87.28 202 | | 97.60 98 | 85.21 232 | 98.48 25 | 99.15 41 | 88.15 74 | 98.72 151 | 90.29 154 | 99.45 62 | 99.78 38 |
|
test-LLR | | | 93.11 134 | 92.68 125 | 94.40 165 | 94.94 216 | 87.27 203 | 99.15 81 | 97.25 148 | 90.21 111 | 91.57 147 | 94.04 212 | 84.89 137 | 97.58 204 | 85.94 202 | 96.13 137 | 98.36 163 |
|
test-mter | | | 93.27 130 | 92.89 122 | 94.40 165 | 94.94 216 | 87.27 203 | 99.15 81 | 97.25 148 | 88.95 150 | 91.57 147 | 94.04 212 | 88.03 77 | 97.58 204 | 85.94 202 | 96.13 137 | 98.36 163 |
|
SR-MVS-dyc-post | | | 95.75 71 | 95.86 58 | 95.41 136 | 99.22 66 | 87.26 205 | 98.40 171 | 97.21 154 | 89.63 129 | 96.67 73 | 98.97 63 | 86.73 105 | 99.36 121 | 96.62 58 | 99.31 72 | 99.60 73 |
|
RE-MVS-def | | | | 95.70 65 | | 99.22 66 | 87.26 205 | 98.40 171 | 97.21 154 | 89.63 129 | 96.67 73 | 98.97 63 | 85.24 133 | | 96.62 58 | 99.31 72 | 99.60 73 |
|
test1172 | | | 95.92 62 | 96.07 52 | 95.46 133 | 99.42 49 | 87.24 207 | 98.51 156 | 97.24 150 | 90.29 110 | 96.56 76 | 99.12 46 | 86.73 105 | 99.36 121 | 97.33 47 | 99.42 67 | 99.78 38 |
|
v1144 | | | 86.83 239 | 85.31 246 | 91.40 230 | 89.75 301 | 87.21 208 | 98.31 181 | 95.45 272 | 83.22 264 | 82.70 236 | 90.78 277 | 73.36 237 | 96.36 255 | 79.49 261 | 74.69 288 | 90.63 295 |
|
OMC-MVS | | | 93.90 110 | 93.62 108 | 94.73 155 | 98.63 94 | 87.00 209 | 98.04 203 | 96.56 196 | 92.19 71 | 92.46 138 | 98.73 87 | 79.49 199 | 99.14 136 | 92.16 137 | 94.34 157 | 98.03 174 |
|
abl_6 | | | 94.63 95 | 94.48 84 | 95.09 143 | 98.61 96 | 86.96 210 | 98.06 202 | 96.97 179 | 89.31 139 | 95.86 89 | 98.56 101 | 79.82 194 | 99.64 86 | 94.53 107 | 98.65 99 | 98.66 149 |
|
miper_ehance_all_eth | | | 88.94 203 | 88.12 206 | 91.40 230 | 95.32 195 | 86.93 211 | 97.85 212 | 95.55 266 | 84.19 249 | 81.97 253 | 91.50 264 | 84.16 144 | 95.91 283 | 84.69 215 | 77.89 268 | 91.36 270 |
|
v8 | | | 86.11 251 | 84.45 260 | 91.10 235 | 89.99 297 | 86.85 212 | 97.24 238 | 95.36 280 | 81.99 285 | 79.89 278 | 89.86 305 | 74.53 228 | 96.39 253 | 78.83 268 | 72.32 313 | 90.05 307 |
|
CPTT-MVS | | | 94.60 96 | 94.43 86 | 95.09 143 | 99.66 15 | 86.85 212 | 99.44 48 | 97.47 128 | 83.22 264 | 94.34 115 | 98.96 68 | 82.50 170 | 99.55 94 | 94.81 99 | 99.50 58 | 98.88 129 |
|
v10 | | | 85.73 260 | 84.01 266 | 90.87 243 | 90.03 296 | 86.73 214 | 97.20 241 | 95.22 290 | 81.25 293 | 79.85 279 | 89.75 306 | 73.30 240 | 96.28 267 | 76.87 279 | 72.64 308 | 89.61 314 |
|
Vis-MVSNet (Re-imp) | | | 93.26 131 | 93.00 121 | 94.06 177 | 96.14 173 | 86.71 215 | 98.68 133 | 96.70 186 | 88.30 173 | 89.71 179 | 97.64 136 | 85.43 131 | 96.39 253 | 88.06 181 | 96.32 133 | 99.08 114 |
|
EIA-MVS | | | 95.11 81 | 95.27 73 | 94.64 158 | 96.34 162 | 86.51 216 | 99.59 28 | 96.62 188 | 92.51 60 | 94.08 119 | 98.64 96 | 86.05 121 | 98.24 163 | 95.07 94 | 98.50 102 | 99.18 108 |
|
CSCG | | | 94.87 85 | 94.71 80 | 95.36 137 | 99.54 36 | 86.49 217 | 99.34 63 | 98.15 34 | 82.71 274 | 90.15 172 | 99.25 25 | 89.48 56 | 99.86 52 | 94.97 97 | 98.82 93 | 99.72 54 |
|
tttt0517 | | | 93.30 128 | 93.01 120 | 94.17 173 | 95.57 187 | 86.47 218 | 98.51 156 | 97.60 98 | 85.99 222 | 90.55 164 | 97.19 153 | 94.80 7 | 98.31 158 | 85.06 210 | 91.86 184 | 97.74 179 |
|
dp | | | 90.16 186 | 88.83 192 | 94.14 174 | 96.38 161 | 86.42 219 | 91.57 325 | 97.06 172 | 84.76 243 | 88.81 184 | 90.19 302 | 84.29 143 | 97.43 213 | 75.05 292 | 91.35 195 | 98.56 151 |
|
v1192 | | | 86.32 249 | 84.71 256 | 91.17 234 | 89.53 306 | 86.40 220 | 98.13 193 | 95.44 274 | 82.52 278 | 82.42 241 | 90.62 286 | 71.58 257 | 96.33 262 | 77.23 275 | 74.88 285 | 90.79 287 |
|
HQP5-MVS | | | | | | | 86.39 221 | | | | | | | | | | |
|
HQP-MVS | | | 91.50 160 | 91.23 154 | 92.29 212 | 93.95 237 | 86.39 221 | 99.16 75 | 96.37 208 | 93.92 31 | 87.57 192 | 96.67 174 | 73.34 238 | 97.77 190 | 93.82 117 | 86.29 216 | 92.72 226 |
|
PatchMatch-RL | | | 91.47 161 | 90.54 169 | 94.26 170 | 98.20 104 | 86.36 223 | 96.94 249 | 97.14 162 | 87.75 190 | 88.98 183 | 95.75 192 | 71.80 254 | 99.40 118 | 80.92 254 | 97.39 121 | 97.02 200 |
|
LS3D | | | 90.19 184 | 88.72 194 | 94.59 160 | 98.97 80 | 86.33 224 | 96.90 251 | 96.60 190 | 74.96 325 | 84.06 222 | 98.74 86 | 75.78 218 | 99.83 57 | 74.93 293 | 97.57 115 | 97.62 184 |
|
CR-MVSNet | | | 88.83 208 | 87.38 215 | 93.16 196 | 93.47 252 | 86.24 225 | 84.97 344 | 94.20 310 | 88.92 153 | 90.76 161 | 86.88 328 | 84.43 141 | 94.82 311 | 70.64 315 | 92.17 181 | 98.41 157 |
|
RPMNet | | | 85.07 266 | 81.88 283 | 94.64 158 | 93.47 252 | 86.24 225 | 84.97 344 | 97.21 154 | 64.85 350 | 90.76 161 | 78.80 347 | 80.95 190 | 99.27 129 | 53.76 350 | 92.17 181 | 98.41 157 |
|
NP-MVS | | | | | | 93.94 240 | 86.22 227 | | | | | 96.67 174 | | | | | |
|
BH-w/o | | | 92.32 147 | 91.79 145 | 93.91 183 | 96.85 145 | 86.18 228 | 99.11 89 | 95.74 254 | 88.13 178 | 84.81 214 | 97.00 162 | 77.26 214 | 97.91 179 | 89.16 171 | 98.03 108 | 97.64 181 |
|
cl_fuxian | | | 88.19 221 | 87.23 218 | 91.06 236 | 94.97 214 | 86.17 229 | 97.72 220 | 95.38 278 | 83.43 261 | 81.68 260 | 91.37 266 | 82.81 165 | 95.72 290 | 84.04 227 | 73.70 299 | 91.29 274 |
|
MSDG | | | 88.29 219 | 86.37 230 | 94.04 179 | 96.90 144 | 86.15 230 | 96.52 265 | 94.36 307 | 77.89 316 | 79.22 286 | 96.95 164 | 69.72 265 | 99.59 92 | 73.20 307 | 92.58 173 | 96.37 211 |
|
CLD-MVS | | | 91.06 168 | 90.71 166 | 92.10 218 | 94.05 236 | 86.10 231 | 99.55 33 | 96.29 215 | 94.16 26 | 84.70 215 | 97.17 155 | 69.62 266 | 97.82 186 | 94.74 101 | 86.08 221 | 92.39 231 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
V42 | | | 87.00 236 | 85.68 241 | 90.98 239 | 89.91 298 | 86.08 232 | 98.32 180 | 95.61 263 | 83.67 258 | 82.72 235 | 90.67 282 | 74.00 235 | 96.53 243 | 81.94 248 | 74.28 294 | 90.32 300 |
|
HQP_MVS | | | 91.26 164 | 90.95 159 | 92.16 216 | 93.84 244 | 86.07 233 | 99.02 97 | 96.30 212 | 93.38 46 | 86.99 198 | 96.52 176 | 72.92 242 | 97.75 195 | 93.46 122 | 86.17 219 | 92.67 228 |
|
plane_prior | | | | | | | 86.07 233 | 99.14 84 | | 93.81 39 | | | | | | 86.26 218 | |
|
plane_prior6 | | | | | | 93.92 241 | 86.02 235 | | | | | | 72.92 242 | | | | |
|
plane_prior3 | | | | | | | 85.91 236 | | | 93.65 41 | 86.99 198 | | | | | | |
|
CostFormer | | | 92.89 136 | 92.48 130 | 94.12 175 | 94.99 213 | 85.89 237 | 92.89 315 | 97.00 178 | 86.98 205 | 95.00 105 | 90.78 277 | 90.05 48 | 97.51 208 | 92.92 131 | 91.73 188 | 98.96 121 |
|
EI-MVSNet | | | 89.87 191 | 89.38 182 | 91.36 232 | 94.32 229 | 85.87 238 | 97.61 225 | 96.59 192 | 85.10 234 | 85.51 210 | 97.10 157 | 81.30 189 | 96.56 241 | 83.85 230 | 83.03 243 | 91.64 254 |
|
IterMVS-LS | | | 88.34 217 | 87.44 213 | 91.04 237 | 94.10 233 | 85.85 239 | 98.10 198 | 95.48 270 | 85.12 233 | 82.03 251 | 91.21 270 | 81.35 188 | 95.63 293 | 83.86 229 | 75.73 280 | 91.63 255 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VDD-MVS | | | 91.24 167 | 90.18 173 | 94.45 164 | 97.08 139 | 85.84 240 | 98.40 171 | 96.10 226 | 86.99 203 | 93.36 128 | 98.16 120 | 54.27 331 | 99.20 130 | 96.59 61 | 90.63 201 | 98.31 166 |
|
plane_prior7 | | | | | | 93.84 244 | 85.73 241 | | | | | | | | | | |
|
EPP-MVSNet | | | 93.75 114 | 93.67 107 | 94.01 180 | 95.86 179 | 85.70 242 | 98.67 135 | 97.66 83 | 84.46 246 | 91.36 153 | 97.18 154 | 91.16 26 | 97.79 188 | 92.93 130 | 93.75 160 | 98.53 152 |
|
v144192 | | | 86.40 247 | 84.89 252 | 90.91 240 | 89.48 307 | 85.59 243 | 98.21 188 | 95.43 275 | 82.45 279 | 82.62 237 | 90.58 289 | 72.79 245 | 96.36 255 | 78.45 270 | 74.04 298 | 90.79 287 |
|
OPM-MVS | | | 89.76 192 | 89.15 186 | 91.57 229 | 90.53 293 | 85.58 244 | 98.11 197 | 95.93 237 | 92.88 55 | 86.05 206 | 96.47 179 | 67.06 285 | 97.87 183 | 89.29 169 | 86.08 221 | 91.26 275 |
|
tpm2 | | | 91.77 156 | 91.09 155 | 93.82 186 | 94.83 220 | 85.56 245 | 92.51 320 | 97.16 161 | 84.00 252 | 93.83 124 | 90.66 283 | 87.54 85 | 97.17 218 | 87.73 184 | 91.55 191 | 98.72 144 |
|
cl-mvsnet_ | | | 87.82 223 | 86.79 225 | 90.89 242 | 94.88 218 | 85.43 246 | 97.81 213 | 95.24 286 | 82.91 273 | 80.71 267 | 91.22 269 | 81.97 181 | 95.84 286 | 81.34 251 | 75.06 283 | 91.40 269 |
|
cl-mvsnet1 | | | 87.82 223 | 86.81 224 | 90.87 243 | 94.87 219 | 85.39 247 | 97.81 213 | 95.22 290 | 82.92 272 | 80.76 266 | 91.31 268 | 81.99 179 | 95.81 288 | 81.36 250 | 75.04 284 | 91.42 268 |
|
tpm cat1 | | | 88.89 204 | 87.27 217 | 93.76 187 | 95.79 180 | 85.32 248 | 90.76 332 | 97.09 170 | 76.14 322 | 85.72 208 | 88.59 315 | 82.92 163 | 98.04 175 | 76.96 278 | 91.43 192 | 97.90 178 |
|
v1921920 | | | 86.02 252 | 84.44 261 | 90.77 245 | 89.32 309 | 85.20 249 | 98.10 198 | 95.35 281 | 82.19 283 | 82.25 245 | 90.71 279 | 70.73 260 | 96.30 266 | 76.85 280 | 74.49 290 | 90.80 286 |
|
pm-mvs1 | | | 84.68 270 | 82.78 276 | 90.40 253 | 89.58 304 | 85.18 250 | 97.31 232 | 94.73 296 | 81.93 287 | 76.05 304 | 92.01 254 | 65.48 294 | 96.11 273 | 78.75 269 | 69.14 324 | 89.91 310 |
|
TAPA-MVS | | 87.50 9 | 90.35 179 | 89.05 187 | 94.25 171 | 98.48 100 | 85.17 251 | 98.42 166 | 96.58 195 | 82.44 280 | 87.24 197 | 98.53 102 | 82.77 166 | 98.84 144 | 59.09 345 | 97.88 109 | 98.72 144 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
v1240 | | | 85.77 259 | 84.11 264 | 90.73 246 | 89.26 310 | 85.15 252 | 97.88 210 | 95.23 289 | 81.89 288 | 82.16 246 | 90.55 291 | 69.60 267 | 96.31 263 | 75.59 290 | 74.87 286 | 90.72 292 |
|
ppachtmachnet_test | | | 83.63 284 | 81.57 287 | 89.80 268 | 89.01 311 | 85.09 253 | 97.13 243 | 94.50 302 | 78.84 308 | 76.14 303 | 91.00 273 | 69.78 264 | 94.61 316 | 63.40 335 | 74.36 292 | 89.71 313 |
|
hse-mvs3 | | | 92.47 146 | 91.95 142 | 94.05 178 | 97.13 136 | 85.01 254 | 98.36 176 | 98.08 37 | 93.85 36 | 96.27 78 | 96.73 172 | 83.19 159 | 99.43 114 | 95.81 77 | 68.09 327 | 97.70 180 |
|
Anonymous20240529 | | | 87.66 229 | 85.58 242 | 93.92 182 | 97.59 122 | 85.01 254 | 98.13 193 | 97.13 164 | 66.69 348 | 88.47 187 | 96.01 190 | 55.09 328 | 99.51 101 | 87.00 190 | 84.12 233 | 97.23 193 |
|
EPNet_dtu | | | 92.28 148 | 92.15 137 | 92.70 207 | 97.29 130 | 84.84 256 | 98.64 139 | 97.82 55 | 92.91 53 | 93.02 134 | 97.02 161 | 85.48 130 | 95.70 291 | 72.25 311 | 94.89 152 | 97.55 186 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
BH-untuned | | | 91.46 162 | 90.84 162 | 93.33 193 | 96.51 158 | 84.83 257 | 98.84 116 | 95.50 269 | 86.44 219 | 83.50 225 | 96.70 173 | 75.49 220 | 97.77 190 | 86.78 195 | 97.81 110 | 97.40 187 |
|
tpmvs | | | 89.16 198 | 87.76 208 | 93.35 192 | 97.19 133 | 84.75 258 | 90.58 334 | 97.36 144 | 81.99 285 | 84.56 216 | 89.31 312 | 83.98 146 | 98.17 164 | 74.85 295 | 90.00 204 | 97.12 194 |
|
PVSNet_0 | | 83.28 16 | 87.31 233 | 85.16 247 | 93.74 188 | 94.78 221 | 84.59 259 | 98.91 109 | 98.69 18 | 89.81 124 | 78.59 293 | 93.23 236 | 61.95 306 | 99.34 126 | 94.75 100 | 55.72 348 | 97.30 190 |
|
Anonymous20231211 | | | 84.72 269 | 82.65 280 | 90.91 240 | 97.71 116 | 84.55 260 | 97.28 235 | 96.67 187 | 66.88 347 | 79.18 287 | 90.87 276 | 58.47 315 | 96.60 239 | 82.61 241 | 74.20 295 | 91.59 261 |
|
test0.0.03 1 | | | 88.96 202 | 88.61 197 | 90.03 264 | 91.09 287 | 84.43 261 | 98.97 103 | 97.02 176 | 90.21 111 | 80.29 272 | 96.31 184 | 84.89 137 | 91.93 342 | 72.98 308 | 85.70 224 | 93.73 221 |
|
PS-MVSNAJss | | | 89.54 196 | 89.05 187 | 91.00 238 | 88.77 314 | 84.36 262 | 97.39 229 | 95.97 230 | 88.47 162 | 81.88 255 | 93.80 222 | 82.48 172 | 96.50 245 | 89.34 166 | 83.34 242 | 92.15 241 |
|
pmmvs5 | | | 85.87 254 | 84.40 263 | 90.30 257 | 88.53 318 | 84.23 263 | 98.60 146 | 93.71 317 | 81.53 290 | 80.29 272 | 92.02 253 | 64.51 297 | 95.52 295 | 82.04 247 | 78.34 266 | 91.15 277 |
|
Anonymous202405211 | | | 88.84 206 | 87.03 221 | 94.27 169 | 98.14 108 | 84.18 264 | 98.44 164 | 95.58 265 | 76.79 320 | 89.34 181 | 96.88 168 | 53.42 334 | 99.54 96 | 87.53 187 | 87.12 214 | 99.09 113 |
|
v148 | | | 86.38 248 | 85.06 248 | 90.37 256 | 89.47 308 | 84.10 265 | 98.52 153 | 95.48 270 | 83.80 254 | 80.93 265 | 90.22 300 | 74.60 225 | 96.31 263 | 80.92 254 | 71.55 319 | 90.69 293 |
|
TransMVSNet (Re) | | | 81.97 291 | 79.61 299 | 89.08 285 | 89.70 302 | 84.01 266 | 97.26 236 | 91.85 339 | 78.84 308 | 73.07 324 | 91.62 261 | 67.17 284 | 95.21 303 | 67.50 324 | 59.46 343 | 88.02 326 |
|
FMVSNet5 | | | 82.29 289 | 80.54 293 | 87.52 300 | 93.79 247 | 84.01 266 | 93.73 308 | 92.47 330 | 76.92 319 | 74.27 314 | 86.15 333 | 63.69 301 | 89.24 348 | 69.07 319 | 74.79 287 | 89.29 317 |
|
our_test_3 | | | 84.47 275 | 82.80 274 | 89.50 277 | 89.01 311 | 83.90 268 | 97.03 246 | 94.56 301 | 81.33 292 | 75.36 311 | 90.52 292 | 71.69 255 | 94.54 317 | 68.81 320 | 76.84 277 | 90.07 305 |
|
MVP-Stereo | | | 86.61 244 | 85.83 238 | 88.93 289 | 88.70 316 | 83.85 269 | 96.07 281 | 94.41 306 | 82.15 284 | 75.64 309 | 91.96 256 | 67.65 280 | 96.45 250 | 77.20 277 | 98.72 96 | 86.51 338 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IterMVS | | | 85.81 257 | 84.67 257 | 89.22 282 | 93.51 251 | 83.67 270 | 96.32 270 | 94.80 294 | 85.09 235 | 78.69 289 | 90.17 303 | 66.57 289 | 93.17 327 | 79.48 262 | 77.42 274 | 90.81 285 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
USDC | | | 84.74 268 | 82.93 272 | 90.16 259 | 91.73 280 | 83.54 271 | 95.00 297 | 93.30 323 | 88.77 156 | 73.19 320 | 93.30 234 | 53.62 333 | 97.65 200 | 75.88 288 | 81.54 253 | 89.30 316 |
|
D2MVS | | | 87.96 222 | 87.39 214 | 89.70 271 | 91.84 278 | 83.40 272 | 98.31 181 | 98.49 20 | 88.04 181 | 78.23 297 | 90.26 296 | 73.57 236 | 96.79 233 | 84.21 221 | 83.53 239 | 88.90 321 |
|
Baseline_NR-MVSNet | | | 85.83 256 | 84.82 254 | 88.87 290 | 88.73 315 | 83.34 273 | 98.63 141 | 91.66 340 | 80.41 303 | 82.44 240 | 91.35 267 | 74.63 223 | 95.42 298 | 84.13 223 | 71.39 320 | 87.84 327 |
|
WR-MVS_H | | | 86.53 246 | 85.49 244 | 89.66 274 | 91.04 288 | 83.31 274 | 97.53 227 | 98.20 30 | 84.95 240 | 79.64 280 | 90.90 275 | 78.01 210 | 95.33 300 | 76.29 285 | 72.81 306 | 90.35 299 |
|
LTVRE_ROB | | 81.71 19 | 84.59 272 | 82.72 278 | 90.18 258 | 92.89 265 | 83.18 275 | 93.15 313 | 94.74 295 | 78.99 307 | 75.14 312 | 92.69 246 | 65.64 293 | 97.63 201 | 69.46 318 | 81.82 252 | 89.74 311 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PatchT | | | 85.44 263 | 83.19 270 | 92.22 213 | 93.13 261 | 83.00 276 | 83.80 350 | 96.37 208 | 70.62 335 | 90.55 164 | 79.63 346 | 84.81 139 | 94.87 309 | 58.18 347 | 91.59 190 | 98.79 139 |
|
anonymousdsp | | | 86.69 241 | 85.75 240 | 89.53 276 | 86.46 334 | 82.94 277 | 96.39 267 | 95.71 255 | 83.97 253 | 79.63 281 | 90.70 280 | 68.85 269 | 95.94 279 | 86.01 199 | 84.02 234 | 89.72 312 |
|
ACMH | | 83.09 17 | 84.60 271 | 82.61 281 | 90.57 248 | 93.18 260 | 82.94 277 | 96.27 271 | 94.92 293 | 81.01 296 | 72.61 327 | 93.61 227 | 56.54 320 | 97.79 188 | 74.31 298 | 81.07 254 | 90.99 281 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS-SCA-FT | | | 85.73 260 | 84.64 258 | 89.00 287 | 93.46 254 | 82.90 279 | 96.27 271 | 94.70 297 | 85.02 238 | 78.62 291 | 90.35 295 | 66.61 287 | 93.33 324 | 79.38 263 | 77.36 275 | 90.76 289 |
|
F-COLMAP | | | 92.07 152 | 91.75 147 | 93.02 198 | 98.16 107 | 82.89 280 | 98.79 123 | 95.97 230 | 86.54 216 | 87.92 190 | 97.80 126 | 78.69 206 | 99.65 84 | 85.97 200 | 95.93 143 | 96.53 208 |
|
Patchmatch-test | | | 86.25 250 | 84.06 265 | 92.82 202 | 94.42 227 | 82.88 281 | 82.88 351 | 94.23 309 | 71.58 333 | 79.39 284 | 90.62 286 | 89.00 61 | 96.42 252 | 63.03 337 | 91.37 194 | 99.16 109 |
|
Patchmtry | | | 83.61 285 | 81.64 285 | 89.50 277 | 93.36 256 | 82.84 282 | 84.10 347 | 94.20 310 | 69.47 341 | 79.57 282 | 86.88 328 | 84.43 141 | 94.78 312 | 68.48 322 | 74.30 293 | 90.88 284 |
|
CP-MVSNet | | | 86.54 245 | 85.45 245 | 89.79 269 | 91.02 289 | 82.78 283 | 97.38 231 | 97.56 109 | 85.37 230 | 79.53 283 | 93.03 242 | 71.86 253 | 95.25 302 | 79.92 259 | 73.43 304 | 91.34 271 |
|
AUN-MVS | | | 90.17 185 | 89.50 178 | 92.19 215 | 96.21 167 | 82.67 284 | 97.76 218 | 97.53 114 | 88.05 180 | 91.67 145 | 96.15 185 | 83.10 161 | 97.47 209 | 88.11 180 | 66.91 331 | 96.43 209 |
|
eth_miper_zixun_eth | | | 87.76 225 | 87.00 222 | 90.06 261 | 94.67 224 | 82.65 285 | 97.02 248 | 95.37 279 | 84.19 249 | 81.86 258 | 91.58 263 | 81.47 186 | 95.90 284 | 83.24 232 | 73.61 300 | 91.61 259 |
|
hse-mvs2 | | | 91.67 158 | 91.51 151 | 92.15 217 | 96.22 166 | 82.61 286 | 97.74 219 | 97.53 114 | 93.85 36 | 96.27 78 | 96.15 185 | 83.19 159 | 97.44 212 | 95.81 77 | 66.86 332 | 96.40 210 |
|
MS-PatchMatch | | | 86.75 240 | 85.92 237 | 89.22 282 | 91.97 274 | 82.47 287 | 96.91 250 | 96.14 225 | 83.74 255 | 77.73 298 | 93.53 230 | 58.19 316 | 97.37 216 | 76.75 281 | 98.35 105 | 87.84 327 |
|
test_djsdf | | | 88.26 220 | 87.73 209 | 89.84 267 | 88.05 323 | 82.21 288 | 97.77 216 | 96.17 223 | 86.84 208 | 82.41 242 | 91.95 257 | 72.07 250 | 95.99 276 | 89.83 157 | 84.50 230 | 91.32 272 |
|
PS-CasMVS | | | 85.81 257 | 84.58 259 | 89.49 279 | 90.77 291 | 82.11 289 | 97.20 241 | 97.36 144 | 84.83 242 | 79.12 288 | 92.84 245 | 67.42 282 | 95.16 304 | 78.39 271 | 73.25 305 | 91.21 276 |
|
v7n | | | 84.42 276 | 82.75 277 | 89.43 280 | 88.15 321 | 81.86 290 | 96.75 258 | 95.67 259 | 80.53 299 | 78.38 295 | 89.43 310 | 69.89 263 | 96.35 260 | 73.83 303 | 72.13 315 | 90.07 305 |
|
jajsoiax | | | 87.35 232 | 86.51 229 | 89.87 265 | 87.75 328 | 81.74 291 | 97.03 246 | 95.98 229 | 88.47 162 | 80.15 274 | 93.80 222 | 61.47 307 | 96.36 255 | 89.44 164 | 84.47 231 | 91.50 263 |
|
MVS-HIRNet | | | 79.01 304 | 75.13 314 | 90.66 247 | 93.82 246 | 81.69 292 | 85.16 341 | 93.75 316 | 54.54 352 | 74.17 315 | 59.15 355 | 57.46 318 | 96.58 240 | 63.74 334 | 94.38 155 | 93.72 222 |
|
tpm | | | 89.67 193 | 88.95 189 | 91.82 223 | 92.54 267 | 81.43 293 | 92.95 314 | 95.92 238 | 87.81 187 | 90.50 166 | 89.44 309 | 84.99 135 | 95.65 292 | 83.67 231 | 82.71 246 | 98.38 160 |
|
PMMVS | | | 93.62 120 | 93.90 104 | 92.79 203 | 96.79 149 | 81.40 294 | 98.85 114 | 96.81 183 | 91.25 90 | 96.82 68 | 98.15 121 | 77.02 215 | 98.13 166 | 93.15 128 | 96.30 135 | 98.83 135 |
|
mvs_tets | | | 87.09 235 | 86.22 232 | 89.71 270 | 87.87 324 | 81.39 295 | 96.73 260 | 95.90 243 | 88.19 177 | 79.99 276 | 93.61 227 | 59.96 313 | 96.31 263 | 89.40 165 | 84.34 232 | 91.43 267 |
|
ACMM | | 86.95 13 | 88.77 211 | 88.22 205 | 90.43 252 | 93.61 249 | 81.34 296 | 98.50 158 | 95.92 238 | 87.88 186 | 83.85 224 | 95.20 200 | 67.20 283 | 97.89 181 | 86.90 193 | 84.90 227 | 92.06 245 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PEN-MVS | | | 85.21 265 | 83.93 267 | 89.07 286 | 89.89 300 | 81.31 297 | 97.09 244 | 97.24 150 | 84.45 247 | 78.66 290 | 92.68 247 | 68.44 273 | 94.87 309 | 75.98 287 | 70.92 322 | 91.04 280 |
|
XVG-OURS | | | 90.83 173 | 90.49 170 | 91.86 221 | 95.23 197 | 81.25 298 | 95.79 291 | 95.92 238 | 88.96 149 | 90.02 174 | 98.03 122 | 71.60 256 | 99.35 125 | 91.06 145 | 87.78 211 | 94.98 217 |
|
miper_lstm_enhance | | | 86.90 237 | 86.20 233 | 89.00 287 | 94.53 226 | 81.19 299 | 96.74 259 | 95.24 286 | 82.33 281 | 80.15 274 | 90.51 293 | 81.99 179 | 94.68 315 | 80.71 256 | 73.58 301 | 91.12 278 |
|
pmmvs-eth3d | | | 78.71 307 | 76.16 311 | 86.38 307 | 80.25 350 | 81.19 299 | 94.17 304 | 92.13 335 | 77.97 313 | 66.90 342 | 82.31 339 | 55.76 322 | 92.56 334 | 73.63 305 | 62.31 340 | 85.38 342 |
|
XVG-OURS-SEG-HR | | | 90.95 171 | 90.66 168 | 91.83 222 | 95.18 202 | 81.14 301 | 95.92 283 | 95.92 238 | 88.40 170 | 90.33 170 | 97.85 123 | 70.66 262 | 99.38 119 | 92.83 132 | 88.83 207 | 94.98 217 |
|
ACMP | | 87.39 10 | 88.71 213 | 88.24 204 | 90.12 260 | 93.91 242 | 81.06 302 | 98.50 158 | 95.67 259 | 89.43 137 | 80.37 270 | 95.55 194 | 65.67 292 | 97.83 185 | 90.55 152 | 84.51 229 | 91.47 264 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LPG-MVS_test | | | 88.86 205 | 88.47 202 | 90.06 261 | 93.35 257 | 80.95 303 | 98.22 186 | 95.94 235 | 87.73 192 | 83.17 230 | 96.11 187 | 66.28 290 | 97.77 190 | 90.19 155 | 85.19 225 | 91.46 265 |
|
LGP-MVS_train | | | | | 90.06 261 | 93.35 257 | 80.95 303 | | 95.94 235 | 87.73 192 | 83.17 230 | 96.11 187 | 66.28 290 | 97.77 190 | 90.19 155 | 85.19 225 | 91.46 265 |
|
UniMVSNet_ETH3D | | | 85.65 262 | 83.79 268 | 91.21 233 | 90.41 295 | 80.75 305 | 95.36 294 | 95.78 251 | 78.76 310 | 81.83 259 | 94.33 210 | 49.86 342 | 96.66 236 | 84.30 219 | 83.52 240 | 96.22 212 |
|
MVS_0304 | | | 84.13 280 | 82.66 279 | 88.52 292 | 93.07 262 | 80.15 306 | 95.81 290 | 98.21 29 | 79.27 305 | 86.85 202 | 86.40 331 | 41.33 353 | 94.69 314 | 76.36 284 | 86.69 215 | 90.73 291 |
|
MDA-MVSNet_test_wron | | | 79.65 302 | 77.05 306 | 87.45 301 | 87.79 327 | 80.13 307 | 96.25 274 | 94.44 303 | 73.87 329 | 51.80 351 | 87.47 323 | 68.04 276 | 92.12 340 | 66.02 329 | 67.79 329 | 90.09 303 |
|
YYNet1 | | | 79.64 303 | 77.04 307 | 87.43 302 | 87.80 326 | 79.98 308 | 96.23 275 | 94.44 303 | 73.83 330 | 51.83 350 | 87.53 320 | 67.96 278 | 92.07 341 | 66.00 330 | 67.75 330 | 90.23 302 |
|
DTE-MVSNet | | | 84.14 279 | 82.80 274 | 88.14 295 | 88.95 313 | 79.87 309 | 96.81 254 | 96.24 217 | 83.50 260 | 77.60 299 | 92.52 249 | 67.89 279 | 94.24 320 | 72.64 310 | 69.05 325 | 90.32 300 |
|
ACMH+ | | 83.78 15 | 84.21 277 | 82.56 282 | 89.15 284 | 93.73 248 | 79.16 310 | 96.43 266 | 94.28 308 | 81.09 295 | 74.00 316 | 94.03 214 | 54.58 330 | 97.67 198 | 76.10 286 | 78.81 263 | 90.63 295 |
|
ADS-MVSNet2 | | | 87.62 230 | 86.88 223 | 89.86 266 | 96.21 167 | 79.14 311 | 87.15 337 | 92.99 324 | 83.01 267 | 89.91 175 | 87.27 324 | 78.87 203 | 92.80 331 | 74.20 299 | 92.27 178 | 97.64 181 |
|
COLMAP_ROB |  | 82.69 18 | 84.54 273 | 82.82 273 | 89.70 271 | 96.72 151 | 78.85 312 | 95.89 284 | 92.83 327 | 71.55 334 | 77.54 300 | 95.89 191 | 59.40 314 | 99.14 136 | 67.26 325 | 88.26 208 | 91.11 279 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AllTest | | | 84.97 267 | 83.12 271 | 90.52 250 | 96.82 146 | 78.84 313 | 95.89 284 | 92.17 333 | 77.96 314 | 75.94 305 | 95.50 195 | 55.48 324 | 99.18 131 | 71.15 312 | 87.14 212 | 93.55 223 |
|
TestCases | | | | | 90.52 250 | 96.82 146 | 78.84 313 | | 92.17 333 | 77.96 314 | 75.94 305 | 95.50 195 | 55.48 324 | 99.18 131 | 71.15 312 | 87.14 212 | 93.55 223 |
|
TinyColmap | | | 80.42 298 | 77.94 302 | 87.85 297 | 92.09 273 | 78.58 315 | 93.74 307 | 89.94 349 | 74.99 324 | 69.77 331 | 91.78 259 | 46.09 347 | 97.58 204 | 65.17 333 | 77.89 268 | 87.38 330 |
|
MDA-MVSNet-bldmvs | | | 77.82 312 | 74.75 316 | 87.03 304 | 88.33 319 | 78.52 316 | 96.34 269 | 92.85 326 | 75.57 323 | 48.87 353 | 87.89 317 | 57.32 319 | 92.49 336 | 60.79 341 | 64.80 336 | 90.08 304 |
|
test_0402 | | | 78.81 306 | 76.33 310 | 86.26 308 | 91.18 286 | 78.44 317 | 95.88 286 | 91.34 344 | 68.55 342 | 70.51 330 | 89.91 304 | 52.65 336 | 94.99 305 | 47.14 353 | 79.78 260 | 85.34 344 |
|
Fast-Effi-MVS+-dtu | | | 88.84 206 | 88.59 199 | 89.58 275 | 93.44 255 | 78.18 318 | 98.65 137 | 94.62 300 | 88.46 164 | 84.12 221 | 95.37 199 | 68.91 268 | 96.52 244 | 82.06 246 | 91.70 189 | 94.06 220 |
|
pmmvs6 | | | 79.90 300 | 77.31 305 | 87.67 299 | 84.17 340 | 78.13 319 | 95.86 288 | 93.68 318 | 67.94 345 | 72.67 326 | 89.62 308 | 50.98 340 | 95.75 289 | 74.80 296 | 66.04 333 | 89.14 319 |
|
DeepPCF-MVS | | 93.56 1 | 96.55 41 | 97.84 8 | 92.68 208 | 98.71 92 | 78.11 320 | 99.70 17 | 97.71 78 | 98.18 1 | 97.36 52 | 99.76 1 | 90.37 45 | 99.94 33 | 99.27 9 | 99.54 57 | 99.99 1 |
|
OpenMVS_ROB |  | 73.86 20 | 77.99 311 | 75.06 315 | 86.77 306 | 83.81 342 | 77.94 321 | 96.38 268 | 91.53 343 | 67.54 346 | 68.38 334 | 87.13 327 | 43.94 349 | 96.08 274 | 55.03 349 | 81.83 251 | 86.29 339 |
|
EG-PatchMatch MVS | | | 79.92 299 | 77.59 303 | 86.90 305 | 87.06 332 | 77.90 322 | 96.20 279 | 94.06 312 | 74.61 326 | 66.53 343 | 88.76 314 | 40.40 355 | 96.20 268 | 67.02 326 | 83.66 238 | 86.61 336 |
|
XVG-ACMP-BASELINE | | | 85.86 255 | 84.95 251 | 88.57 291 | 89.90 299 | 77.12 323 | 94.30 302 | 95.60 264 | 87.40 200 | 82.12 247 | 92.99 244 | 53.42 334 | 97.66 199 | 85.02 211 | 83.83 235 | 90.92 283 |
|
ITE_SJBPF | | | | | 87.93 296 | 92.26 270 | 76.44 324 | | 93.47 322 | 87.67 195 | 79.95 277 | 95.49 197 | 56.50 321 | 97.38 214 | 75.24 291 | 82.33 249 | 89.98 309 |
|
UnsupCasMVSNet_bld | | | 73.85 318 | 70.14 321 | 84.99 315 | 79.44 351 | 75.73 325 | 88.53 335 | 95.24 286 | 70.12 339 | 61.94 347 | 74.81 348 | 41.41 352 | 93.62 322 | 68.65 321 | 51.13 352 | 85.62 341 |
|
MIMVSNet1 | | | 75.92 315 | 73.30 318 | 83.81 322 | 81.29 348 | 75.57 326 | 92.26 321 | 92.05 336 | 73.09 332 | 67.48 340 | 86.18 332 | 40.87 354 | 87.64 351 | 55.78 348 | 70.68 323 | 88.21 325 |
|
CL-MVSNet_2432*1600 | | | 79.89 301 | 78.34 301 | 84.54 319 | 81.56 347 | 75.01 327 | 96.88 252 | 95.62 261 | 81.10 294 | 75.86 307 | 85.81 334 | 68.49 272 | 90.26 346 | 63.21 336 | 56.51 346 | 88.35 324 |
|
UnsupCasMVSNet_eth | | | 78.90 305 | 76.67 309 | 85.58 313 | 82.81 345 | 74.94 328 | 91.98 322 | 96.31 211 | 84.64 244 | 65.84 344 | 87.71 318 | 51.33 338 | 92.23 338 | 72.89 309 | 56.50 347 | 89.56 315 |
|
testgi | | | 82.29 289 | 81.00 292 | 86.17 309 | 87.24 330 | 74.84 329 | 97.39 229 | 91.62 341 | 88.63 157 | 75.85 308 | 95.42 198 | 46.07 348 | 91.55 343 | 66.87 328 | 79.94 259 | 92.12 242 |
|
mvs-test1 | | | 91.57 159 | 92.20 135 | 89.70 271 | 95.15 203 | 74.34 330 | 99.51 37 | 95.40 276 | 91.92 75 | 91.02 157 | 97.25 148 | 74.27 231 | 98.08 172 | 89.45 162 | 95.83 144 | 96.67 202 |
|
pmmvs3 | | | 72.86 319 | 69.76 323 | 82.17 326 | 73.86 354 | 74.19 331 | 94.20 303 | 89.01 352 | 64.23 351 | 67.72 337 | 80.91 343 | 41.48 351 | 88.65 350 | 62.40 338 | 54.02 350 | 83.68 347 |
|
TDRefinement | | | 78.01 310 | 75.31 313 | 86.10 310 | 70.06 356 | 73.84 332 | 93.59 311 | 91.58 342 | 74.51 327 | 73.08 323 | 91.04 272 | 49.63 344 | 97.12 219 | 74.88 294 | 59.47 342 | 87.33 332 |
|
JIA-IIPM | | | 85.97 253 | 84.85 253 | 89.33 281 | 93.23 259 | 73.68 333 | 85.05 343 | 97.13 164 | 69.62 340 | 91.56 149 | 68.03 351 | 88.03 77 | 96.96 225 | 77.89 273 | 93.12 164 | 97.34 189 |
|
CVMVSNet | | | 90.30 181 | 90.91 160 | 88.46 294 | 94.32 229 | 73.58 334 | 97.61 225 | 97.59 102 | 90.16 116 | 88.43 188 | 97.10 157 | 76.83 216 | 92.86 328 | 82.64 240 | 93.54 162 | 98.93 126 |
|
Anonymous20231206 | | | 80.76 296 | 79.42 300 | 84.79 317 | 84.78 338 | 72.98 335 | 96.53 264 | 92.97 325 | 79.56 304 | 74.33 313 | 88.83 313 | 61.27 309 | 92.15 339 | 60.59 342 | 75.92 279 | 89.24 318 |
|
Anonymous20240521 | | | 78.63 308 | 76.90 308 | 83.82 321 | 82.82 344 | 72.86 336 | 95.72 292 | 93.57 320 | 73.55 331 | 72.17 328 | 84.79 336 | 49.69 343 | 92.51 335 | 65.29 332 | 74.50 289 | 86.09 340 |
|
new_pmnet | | | 76.02 314 | 73.71 317 | 82.95 324 | 83.88 341 | 72.85 337 | 91.26 328 | 92.26 332 | 70.44 337 | 62.60 346 | 81.37 341 | 47.64 346 | 92.32 337 | 61.85 339 | 72.10 316 | 83.68 347 |
|
LCM-MVSNet-Re | | | 88.59 214 | 88.61 197 | 88.51 293 | 95.53 190 | 72.68 338 | 96.85 253 | 88.43 353 | 88.45 165 | 73.14 321 | 90.63 285 | 75.82 217 | 94.38 318 | 92.95 129 | 95.71 147 | 98.48 155 |
|
new-patchmatchnet | | | 74.80 317 | 72.40 320 | 81.99 328 | 78.36 353 | 72.20 339 | 94.44 300 | 92.36 331 | 77.06 317 | 63.47 345 | 79.98 345 | 51.04 339 | 88.85 349 | 60.53 343 | 54.35 349 | 84.92 345 |
|
Effi-MVS+-dtu | | | 89.97 190 | 90.68 167 | 87.81 298 | 95.15 203 | 71.98 340 | 97.87 211 | 95.40 276 | 91.92 75 | 87.57 192 | 91.44 265 | 74.27 231 | 96.84 229 | 89.45 162 | 93.10 165 | 94.60 219 |
|
test20.03 | | | 78.51 309 | 77.48 304 | 81.62 329 | 83.07 343 | 71.03 341 | 96.11 280 | 92.83 327 | 81.66 289 | 69.31 332 | 89.68 307 | 57.53 317 | 87.29 352 | 58.65 346 | 68.47 326 | 86.53 337 |
|
SixPastTwentyTwo | | | 82.63 288 | 81.58 286 | 85.79 311 | 88.12 322 | 71.01 342 | 95.17 296 | 92.54 329 | 84.33 248 | 72.93 325 | 92.08 251 | 60.41 312 | 95.61 294 | 74.47 297 | 74.15 296 | 90.75 290 |
|
OurMVSNet-221017-0 | | | 84.13 280 | 83.59 269 | 85.77 312 | 87.81 325 | 70.24 343 | 94.89 298 | 93.65 319 | 86.08 221 | 76.53 301 | 93.28 235 | 61.41 308 | 96.14 272 | 80.95 253 | 77.69 273 | 90.93 282 |
|
K. test v3 | | | 81.04 295 | 79.77 298 | 84.83 316 | 87.41 329 | 70.23 344 | 95.60 293 | 93.93 314 | 83.70 257 | 67.51 339 | 89.35 311 | 55.76 322 | 93.58 323 | 76.67 282 | 68.03 328 | 90.67 294 |
|
Patchmatch-RL test | | | 81.90 293 | 80.13 296 | 87.23 303 | 80.71 349 | 70.12 345 | 84.07 348 | 88.19 354 | 83.16 266 | 70.57 329 | 82.18 340 | 87.18 95 | 92.59 333 | 82.28 244 | 62.78 337 | 98.98 119 |
|
lessismore_v0 | | | | | 85.08 314 | 85.59 336 | 69.28 346 | | 90.56 347 | | 67.68 338 | 90.21 301 | 54.21 332 | 95.46 296 | 73.88 301 | 62.64 338 | 90.50 297 |
|
DIV-MVS_2432*1600 | | | 77.47 313 | 75.88 312 | 82.24 325 | 81.59 346 | 68.93 347 | 92.83 318 | 94.02 313 | 77.03 318 | 73.14 321 | 83.39 337 | 55.44 326 | 90.42 345 | 67.95 323 | 57.53 345 | 87.38 330 |
|
LF4IMVS | | | 81.94 292 | 81.17 291 | 84.25 320 | 87.23 331 | 68.87 348 | 93.35 312 | 91.93 338 | 83.35 263 | 75.40 310 | 93.00 243 | 49.25 345 | 96.65 237 | 78.88 267 | 78.11 267 | 87.22 334 |
|
EU-MVSNet | | | 84.19 278 | 84.42 262 | 83.52 323 | 88.64 317 | 67.37 349 | 96.04 282 | 95.76 253 | 85.29 231 | 78.44 294 | 93.18 237 | 70.67 261 | 91.48 344 | 75.79 289 | 75.98 278 | 91.70 253 |
|
PM-MVS | | | 74.88 316 | 72.85 319 | 80.98 331 | 78.98 352 | 64.75 350 | 90.81 331 | 85.77 356 | 80.95 297 | 68.23 336 | 82.81 338 | 29.08 357 | 92.84 329 | 76.54 283 | 62.46 339 | 85.36 343 |
|
RPSCF | | | 85.33 264 | 85.55 243 | 84.67 318 | 94.63 225 | 62.28 351 | 93.73 308 | 93.76 315 | 74.38 328 | 85.23 213 | 97.06 160 | 64.09 298 | 98.31 158 | 80.98 252 | 86.08 221 | 93.41 225 |
|
DSMNet-mixed | | | 81.60 294 | 81.43 288 | 82.10 327 | 84.36 339 | 60.79 352 | 93.63 310 | 86.74 355 | 79.00 306 | 79.32 285 | 87.15 326 | 63.87 300 | 89.78 347 | 66.89 327 | 91.92 183 | 95.73 215 |
|
CMPMVS |  | 58.40 21 | 80.48 297 | 80.11 297 | 81.59 330 | 85.10 337 | 59.56 353 | 94.14 305 | 95.95 234 | 68.54 343 | 60.71 348 | 93.31 233 | 55.35 327 | 97.87 183 | 83.06 237 | 84.85 228 | 87.33 332 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Gipuma |  | | 54.77 324 | 52.22 328 | 62.40 339 | 86.50 333 | 59.37 354 | 50.20 358 | 90.35 348 | 36.52 356 | 41.20 356 | 49.49 357 | 18.33 361 | 81.29 354 | 32.10 356 | 65.34 334 | 46.54 356 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ambc | | | | | 79.60 332 | 72.76 355 | 56.61 355 | 76.20 353 | 92.01 337 | | 68.25 335 | 80.23 344 | 23.34 358 | 94.73 313 | 73.78 304 | 60.81 341 | 87.48 329 |
|
PMMVS2 | | | 58.97 323 | 55.07 326 | 70.69 336 | 62.72 357 | 55.37 356 | 85.97 339 | 80.52 359 | 49.48 353 | 45.94 354 | 68.31 350 | 15.73 363 | 80.78 355 | 49.79 352 | 37.12 355 | 75.91 350 |
|
ANet_high | | | 50.71 326 | 46.17 329 | 64.33 338 | 44.27 364 | 52.30 357 | 76.13 354 | 78.73 360 | 64.95 349 | 27.37 359 | 55.23 356 | 14.61 364 | 67.74 358 | 36.01 355 | 18.23 358 | 72.95 352 |
|
DeepMVS_CX |  | | | | 76.08 333 | 90.74 292 | 51.65 358 | | 90.84 346 | 86.47 218 | 57.89 349 | 87.98 316 | 35.88 356 | 92.60 332 | 65.77 331 | 65.06 335 | 83.97 346 |
|
LCM-MVSNet | | | 60.07 322 | 56.37 325 | 71.18 334 | 54.81 362 | 48.67 359 | 82.17 352 | 89.48 351 | 37.95 355 | 49.13 352 | 69.12 349 | 13.75 365 | 81.76 353 | 59.28 344 | 51.63 351 | 83.10 349 |
|
MVE |  | 44.00 22 | 41.70 328 | 37.64 333 | 53.90 342 | 49.46 363 | 43.37 360 | 65.09 357 | 66.66 363 | 26.19 360 | 25.77 361 | 48.53 358 | 3.58 368 | 63.35 360 | 26.15 358 | 27.28 356 | 54.97 355 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
FPMVS | | | 61.57 321 | 60.32 324 | 65.34 337 | 60.14 360 | 42.44 361 | 91.02 330 | 89.72 350 | 44.15 354 | 42.63 355 | 80.93 342 | 19.02 359 | 80.59 356 | 42.50 354 | 72.76 307 | 73.00 351 |
|
tmp_tt | | | 53.66 325 | 52.86 327 | 56.05 340 | 32.75 366 | 41.97 362 | 73.42 355 | 76.12 362 | 21.91 361 | 39.68 357 | 96.39 182 | 42.59 350 | 65.10 359 | 78.00 272 | 14.92 360 | 61.08 353 |
|
E-PMN | | | 41.02 329 | 40.93 331 | 41.29 343 | 61.97 358 | 33.83 363 | 84.00 349 | 65.17 364 | 27.17 358 | 27.56 358 | 46.72 359 | 17.63 362 | 60.41 361 | 19.32 359 | 18.82 357 | 29.61 357 |
|
PMVS |  | 41.42 23 | 45.67 327 | 42.50 330 | 55.17 341 | 34.28 365 | 32.37 364 | 66.24 356 | 78.71 361 | 30.72 357 | 22.04 362 | 59.59 354 | 4.59 366 | 77.85 357 | 27.49 357 | 58.84 344 | 55.29 354 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EMVS | | | 39.96 330 | 39.88 332 | 40.18 344 | 59.57 361 | 32.12 365 | 84.79 346 | 64.57 365 | 26.27 359 | 26.14 360 | 44.18 362 | 18.73 360 | 59.29 362 | 17.03 360 | 17.67 359 | 29.12 358 |
|
N_pmnet | | | 70.19 320 | 69.87 322 | 71.12 335 | 88.24 320 | 30.63 366 | 95.85 289 | 28.70 366 | 70.18 338 | 68.73 333 | 86.55 330 | 64.04 299 | 93.81 321 | 53.12 351 | 73.46 303 | 88.94 320 |
|
wuyk23d | | | 16.71 333 | 16.73 337 | 16.65 345 | 60.15 359 | 25.22 367 | 41.24 359 | 5.17 367 | 6.56 362 | 5.48 365 | 3.61 365 | 3.64 367 | 22.72 363 | 15.20 361 | 9.52 361 | 1.99 361 |
|
test123 | | | 16.58 334 | 19.47 336 | 7.91 346 | 3.59 368 | 5.37 368 | 94.32 301 | 1.39 369 | 2.49 364 | 13.98 364 | 44.60 361 | 2.91 369 | 2.65 364 | 11.35 363 | 0.57 363 | 15.70 359 |
|
testmvs | | | 18.81 332 | 23.05 335 | 6.10 347 | 4.48 367 | 2.29 369 | 97.78 215 | 3.00 368 | 3.27 363 | 18.60 363 | 62.71 352 | 1.53 370 | 2.49 365 | 14.26 362 | 1.80 362 | 13.50 360 |
|
uanet_test | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
cdsmvs_eth3d_5k | | | 22.52 331 | 30.03 334 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 97.17 160 | 0.00 365 | 0.00 366 | 98.77 83 | 74.35 230 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
pcd_1.5k_mvsjas | | | 6.87 336 | 9.16 339 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 82.48 172 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
sosnet-low-res | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
sosnet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
uncertanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
Regformer | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
ab-mvs-re | | | 8.21 335 | 10.94 338 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 98.50 105 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
uanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
test_241102_TWO | | | | | | | | | 97.72 74 | 94.17 24 | 99.23 6 | 99.54 3 | 93.14 20 | 99.98 10 | 99.70 2 | 99.82 15 | 99.99 1 |
|
9.14 | | | | 96.87 26 | | 99.34 53 | | 99.50 38 | 97.49 125 | 89.41 138 | 98.59 22 | 99.43 16 | 89.78 51 | 99.69 75 | 98.69 17 | 99.62 47 | |
|
test_0728_THIRD | | | | | | | | | | 93.01 49 | 99.07 8 | 99.46 11 | 94.66 10 | 99.97 20 | 99.25 11 | 99.82 15 | 99.95 11 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.84 132 |
|
sam_mvs1 | | | | | | | | | | | | | 88.39 70 | | | | 98.84 132 |
|
sam_mvs | | | | | | | | | | | | | 87.08 96 | | | | |
|
MTGPA |  | | | | | | | | 97.45 130 | | | | | | | | |
|
test_post1 | | | | | | | | 90.74 333 | | | | 41.37 363 | 85.38 132 | 96.36 255 | 83.16 234 | | |
|
test_post | | | | | | | | | | | | 46.00 360 | 87.37 89 | 97.11 220 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 84.86 335 | 88.73 64 | 96.81 231 | | | |
|
MTMP | | | | | | | | 99.21 69 | 91.09 345 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 98.60 19 | 99.87 7 | 99.90 20 |
|
agg_prior2 | | | | | | | | | | | | | | | 97.84 42 | 99.87 7 | 99.91 18 |
|
test_prior2 | | | | | | | | 99.57 30 | | 91.43 85 | 98.12 34 | 98.97 63 | 90.43 40 | | 98.33 30 | 99.81 19 | |
|
旧先验2 | | | | | | | | 98.67 135 | | 85.75 225 | 98.96 12 | | | 98.97 142 | 93.84 115 | | |
|
新几何2 | | | | | | | | 98.26 184 | | | | | | | | | |
|
无先验 | | | | | | | | 98.52 153 | 97.82 55 | 87.20 202 | | | | 99.90 40 | 87.64 185 | | 99.85 29 |
|
原ACMM2 | | | | | | | | 98.69 131 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.88 44 | 84.16 222 | | |
|
segment_acmp | | | | | | | | | | | | | 90.56 39 | | | | |
|
testdata1 | | | | | | | | 97.89 208 | | 92.43 63 | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.30 212 | | | | | 97.75 195 | 93.46 122 | 86.17 219 | 92.67 228 |
|
plane_prior4 | | | | | | | | | | | | 96.52 176 | | | | | |
|
plane_prior2 | | | | | | | | 99.02 97 | | 93.38 46 | | | | | | | |
|
plane_prior1 | | | | | | 93.90 243 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 370 | | | | | | | | |
|
nn | | | | | | | | | 0.00 370 | | | | | | | | |
|
door-mid | | | | | | | | | 84.90 358 | | | | | | | | |
|
test11 | | | | | | | | | 97.68 81 | | | | | | | | |
|
door | | | | | | | | | 85.30 357 | | | | | | | | |
|
HQP-NCC | | | | | | 93.95 237 | | 99.16 75 | | 93.92 31 | 87.57 192 | | | | | | |
|
ACMP_Plane | | | | | | 93.95 237 | | 99.16 75 | | 93.92 31 | 87.57 192 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 93.82 117 | | |
|
HQP4-MVS | | | | | | | | | | | 87.57 192 | | | 97.77 190 | | | 92.72 226 |
|
HQP3-MVS | | | | | | | | | 96.37 208 | | | | | | | 86.29 216 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.34 238 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 247 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 83.83 235 | |
|
Test By Simon | | | | | | | | | | | | | 83.62 149 | | | | |
|