DPM-MVS | | | 97.86 8 | 97.25 18 | 99.68 1 | 98.25 107 | 99.10 1 | 99.76 12 | 97.78 64 | 96.61 4 | 98.15 34 | 99.53 7 | 93.62 16 | 100.00 1 | 91.79 145 | 99.80 27 | 99.94 18 |
|
MSC_two_6792asdad | | | | | 99.51 2 | 99.61 27 | 98.60 2 | | 97.69 82 | | | | | 99.98 10 | 99.55 9 | 99.83 15 | 99.96 10 |
|
No_MVS | | | | | 99.51 2 | 99.61 27 | 98.60 2 | | 97.69 82 | | | | | 99.98 10 | 99.55 9 | 99.83 15 | 99.96 10 |
|
OPU-MVS | | | | | 99.49 4 | 99.64 20 | 98.51 4 | 99.77 9 | | | | 99.19 34 | 95.12 7 | 99.97 23 | 99.90 1 | 99.92 3 | 99.99 1 |
|
PS-MVSNAJ | | | 96.87 34 | 96.40 40 | 98.29 18 | 97.35 133 | 97.29 5 | 99.03 101 | 97.11 172 | 95.83 10 | 98.97 13 | 99.14 45 | 82.48 178 | 99.60 95 | 98.60 23 | 99.08 84 | 98.00 185 |
|
xiu_mvs_v2_base | | | 96.66 38 | 96.17 48 | 98.11 27 | 97.11 143 | 96.96 6 | 99.01 104 | 97.04 179 | 95.51 16 | 98.86 16 | 99.11 53 | 82.19 184 | 99.36 125 | 98.59 25 | 98.14 113 | 98.00 185 |
|
MVS | | | 93.92 112 | 92.28 136 | 98.83 6 | 95.69 191 | 96.82 7 | 96.22 284 | 98.17 32 | 84.89 250 | 84.34 229 | 98.61 101 | 79.32 206 | 99.83 61 | 93.88 120 | 99.43 68 | 99.86 32 |
|
WTY-MVS | | | 95.97 60 | 95.11 79 | 98.54 12 | 97.62 124 | 96.65 8 | 99.44 52 | 98.74 14 | 92.25 72 | 95.21 106 | 98.46 113 | 86.56 114 | 99.46 115 | 95.00 102 | 92.69 180 | 99.50 86 |
|
MCST-MVS | | | 98.18 2 | 97.95 8 | 98.86 5 | 99.85 3 | 96.60 9 | 99.70 17 | 97.98 45 | 97.18 2 | 95.96 90 | 99.33 23 | 92.62 25 | 100.00 1 | 98.99 17 | 99.93 1 | 99.98 6 |
|
DELS-MVS | | | 97.12 25 | 96.60 36 | 98.68 10 | 98.03 115 | 96.57 10 | 99.84 3 | 97.84 54 | 96.36 8 | 95.20 107 | 98.24 121 | 88.17 76 | 99.83 61 | 96.11 77 | 99.60 56 | 99.64 71 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ETH3 D test6400 | | | 97.67 11 | 97.33 17 | 98.69 9 | 99.69 9 | 96.43 11 | 99.63 25 | 97.73 73 | 91.05 98 | 98.66 22 | 99.53 7 | 90.59 41 | 99.71 77 | 99.32 11 | 99.80 27 | 99.91 22 |
|
HY-MVS | | 88.56 7 | 95.29 78 | 94.23 92 | 98.48 13 | 97.72 120 | 96.41 12 | 94.03 315 | 98.74 14 | 92.42 68 | 95.65 100 | 94.76 215 | 86.52 115 | 99.49 108 | 95.29 96 | 92.97 176 | 99.53 82 |
|
test_0728_SECOND | | | | | 98.77 7 | 99.66 15 | 96.37 13 | 99.72 14 | 97.68 84 | | | | | 99.98 10 | 99.64 6 | 99.82 19 | 99.96 10 |
|
CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 8 | 99.80 4 | 96.19 14 | 99.80 7 | 97.99 44 | 97.05 3 | 99.41 2 | 99.59 2 | 92.89 24 | 100.00 1 | 98.99 17 | 99.90 7 | 99.96 10 |
|
CANet | | | 97.00 28 | 96.49 38 | 98.55 11 | 98.86 93 | 96.10 15 | 99.83 4 | 97.52 122 | 95.90 9 | 97.21 60 | 98.90 79 | 82.66 175 | 99.93 39 | 98.71 20 | 98.80 98 | 99.63 73 |
|
canonicalmvs | | | 95.02 86 | 93.96 104 | 98.20 20 | 97.53 130 | 95.92 16 | 98.71 131 | 96.19 227 | 91.78 81 | 95.86 95 | 98.49 109 | 79.53 204 | 99.03 144 | 96.12 76 | 91.42 203 | 99.66 69 |
|
MG-MVS | | | 97.24 19 | 96.83 30 | 98.47 14 | 99.79 5 | 95.71 17 | 99.07 96 | 99.06 9 | 94.45 23 | 96.42 83 | 98.70 95 | 88.81 66 | 99.74 74 | 95.35 94 | 99.86 12 | 99.97 7 |
|
alignmvs | | | 95.77 70 | 95.00 81 | 98.06 28 | 97.35 133 | 95.68 18 | 99.71 16 | 97.50 128 | 91.50 87 | 96.16 86 | 98.61 101 | 86.28 121 | 99.00 145 | 96.19 75 | 91.74 197 | 99.51 85 |
|
test_part2 | | | | | | 99.54 40 | 95.42 19 | | | | 98.13 35 | | | | | | |
|
DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 15 | 99.50 47 | 95.39 20 | 99.29 71 | 97.72 75 | 94.50 21 | 98.64 23 | 99.54 3 | 93.32 18 | 99.97 23 | 99.58 8 | 99.90 7 | 99.95 15 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 15 | 99.61 27 | 95.38 21 | 99.55 34 | 97.68 84 | 93.01 51 | 99.23 7 | 99.45 16 | 95.12 7 | 99.98 10 | 99.25 14 | 99.92 3 | 99.97 7 |
|
IU-MVS | | | | | | 99.63 21 | 95.38 21 | | 97.73 73 | 95.54 15 | 99.54 1 | | | | 99.69 5 | 99.81 23 | 99.99 1 |
|
PAPM | | | 96.35 48 | 95.94 56 | 97.58 43 | 94.10 244 | 95.25 23 | 98.93 111 | 98.17 32 | 94.26 24 | 93.94 127 | 98.72 92 | 89.68 57 | 97.88 188 | 96.36 72 | 99.29 78 | 99.62 75 |
|
SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 17 | 99.63 21 | 95.24 24 | 99.77 9 | 97.72 75 | 94.17 25 | 99.30 5 | 99.54 3 | 93.32 18 | 99.98 10 | 99.70 3 | 99.81 23 | 99.99 1 |
|
test_241102_ONE | | | | | | 99.63 21 | 95.24 24 | | 97.72 75 | 94.16 27 | 99.30 5 | 99.49 10 | 93.32 18 | 99.98 10 | | | |
|
xiu_mvs_v1_base_debu | | | 94.73 93 | 93.98 101 | 96.99 68 | 95.19 209 | 95.24 24 | 98.62 147 | 96.50 206 | 92.99 53 | 97.52 52 | 98.83 83 | 72.37 254 | 99.15 137 | 97.03 55 | 96.74 135 | 96.58 215 |
|
xiu_mvs_v1_base | | | 94.73 93 | 93.98 101 | 96.99 68 | 95.19 209 | 95.24 24 | 98.62 147 | 96.50 206 | 92.99 53 | 97.52 52 | 98.83 83 | 72.37 254 | 99.15 137 | 97.03 55 | 96.74 135 | 96.58 215 |
|
xiu_mvs_v1_base_debi | | | 94.73 93 | 93.98 101 | 96.99 68 | 95.19 209 | 95.24 24 | 98.62 147 | 96.50 206 | 92.99 53 | 97.52 52 | 98.83 83 | 72.37 254 | 99.15 137 | 97.03 55 | 96.74 135 | 96.58 215 |
|
DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 18 | 99.66 15 | 95.20 29 | 99.72 14 | 97.47 133 | 93.95 30 | 99.07 10 | 99.46 11 | 93.18 21 | 99.97 23 | 99.64 6 | 99.82 19 | 99.69 64 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.66 15 | 95.20 29 | 99.77 9 | 97.70 80 | 93.95 30 | 99.35 4 | 99.54 3 | 93.18 21 | | | | |
|
RRT_MVS | | | 91.95 160 | 91.09 161 | 94.53 169 | 96.71 157 | 95.12 31 | 98.64 144 | 96.23 223 | 89.04 155 | 85.24 222 | 95.06 210 | 87.71 85 | 96.43 261 | 89.10 181 | 82.06 260 | 92.05 256 |
|
3Dnovator+ | | 87.72 8 | 93.43 127 | 91.84 148 | 98.17 21 | 95.73 190 | 95.08 32 | 98.92 113 | 97.04 179 | 91.42 92 | 81.48 272 | 97.60 142 | 74.60 231 | 99.79 69 | 90.84 155 | 98.97 89 | 99.64 71 |
|
ETH3D-3000-0.1 | | | 97.29 17 | 97.01 23 | 98.12 25 | 99.18 74 | 94.97 33 | 99.47 44 | 97.52 122 | 89.85 131 | 98.79 19 | 99.46 11 | 90.41 47 | 99.69 79 | 98.78 19 | 99.67 42 | 99.70 61 |
|
thres600view7 | | | 93.18 136 | 92.00 144 | 96.75 86 | 97.62 124 | 94.92 34 | 99.07 96 | 99.36 2 | 87.96 192 | 90.47 176 | 96.78 179 | 83.29 161 | 98.71 156 | 82.93 247 | 90.47 212 | 96.61 213 |
|
test_one_0601 | | | | | | 99.59 31 | 94.89 35 | | 97.64 93 | 93.14 50 | 98.93 15 | 99.45 16 | 93.45 17 | | | | |
|
SF-MVS | | | 97.22 22 | 96.92 25 | 98.12 25 | 99.11 78 | 94.88 36 | 99.44 52 | 97.45 136 | 89.60 140 | 98.70 20 | 99.42 19 | 90.42 45 | 99.72 75 | 98.47 29 | 99.65 44 | 99.77 48 |
|
MVSFormer | | | 94.71 96 | 94.08 99 | 96.61 95 | 95.05 222 | 94.87 37 | 97.77 224 | 96.17 228 | 86.84 217 | 98.04 41 | 98.52 105 | 85.52 130 | 95.99 286 | 89.83 164 | 98.97 89 | 98.96 129 |
|
lupinMVS | | | 96.32 50 | 95.94 56 | 97.44 48 | 95.05 222 | 94.87 37 | 99.86 2 | 96.50 206 | 93.82 39 | 98.04 41 | 98.77 86 | 85.52 130 | 98.09 175 | 96.98 59 | 98.97 89 | 99.37 94 |
|
thres100view900 | | | 93.34 131 | 92.15 141 | 96.90 77 | 97.62 124 | 94.84 39 | 99.06 98 | 99.36 2 | 87.96 192 | 90.47 176 | 96.78 179 | 83.29 161 | 98.75 152 | 84.11 233 | 90.69 208 | 97.12 204 |
|
tfpn200view9 | | | 93.43 127 | 92.27 137 | 96.90 77 | 97.68 122 | 94.84 39 | 99.18 77 | 99.36 2 | 88.45 174 | 90.79 168 | 96.90 174 | 83.31 159 | 98.75 152 | 84.11 233 | 90.69 208 | 97.12 204 |
|
thres400 | | | 93.39 129 | 92.27 137 | 96.73 88 | 97.68 122 | 94.84 39 | 99.18 77 | 99.36 2 | 88.45 174 | 90.79 168 | 96.90 174 | 83.31 159 | 98.75 152 | 84.11 233 | 90.69 208 | 96.61 213 |
|
GG-mvs-BLEND | | | | | 96.98 71 | 96.53 160 | 94.81 42 | 87.20 346 | 97.74 69 | | 93.91 128 | 96.40 189 | 96.56 2 | 96.94 237 | 95.08 99 | 98.95 92 | 99.20 111 |
|
HPM-MVS++ |  | | 97.72 10 | 97.59 10 | 98.14 22 | 99.53 45 | 94.76 43 | 99.19 75 | 97.75 67 | 95.66 13 | 98.21 33 | 99.29 24 | 91.10 31 | 99.99 5 | 97.68 46 | 99.87 9 | 99.68 65 |
|
thres200 | | | 93.69 119 | 92.59 132 | 96.97 72 | 97.76 119 | 94.74 44 | 99.35 66 | 99.36 2 | 89.23 149 | 91.21 164 | 96.97 171 | 83.42 158 | 98.77 150 | 85.08 218 | 90.96 206 | 97.39 198 |
|
ETH3D cwj APD-0.16 | | | 96.94 32 | 96.58 37 | 98.01 29 | 98.62 100 | 94.73 45 | 99.13 92 | 97.38 147 | 88.44 177 | 98.53 27 | 99.39 21 | 89.66 58 | 99.69 79 | 98.43 31 | 99.61 55 | 99.61 76 |
|
CANet_DTU | | | 94.31 106 | 93.35 115 | 97.20 60 | 97.03 147 | 94.71 46 | 98.62 147 | 95.54 275 | 95.61 14 | 97.21 60 | 98.47 111 | 71.88 259 | 99.84 59 | 88.38 185 | 97.46 126 | 97.04 209 |
|
gg-mvs-nofinetune | | | 90.00 196 | 87.71 217 | 96.89 82 | 96.15 178 | 94.69 47 | 85.15 352 | 97.74 69 | 68.32 354 | 92.97 142 | 60.16 364 | 96.10 3 | 96.84 239 | 93.89 119 | 98.87 93 | 99.14 114 |
|
baseline1 | | | 92.61 146 | 91.28 158 | 96.58 97 | 97.05 146 | 94.63 48 | 97.72 228 | 96.20 225 | 89.82 132 | 88.56 195 | 96.85 177 | 86.85 104 | 97.82 192 | 88.42 184 | 80.10 268 | 97.30 200 |
|
FMVSNet3 | | | 88.81 217 | 87.08 227 | 93.99 189 | 96.52 161 | 94.59 49 | 98.08 207 | 96.20 225 | 85.85 232 | 82.12 257 | 91.60 271 | 74.05 241 | 95.40 309 | 79.04 274 | 80.24 265 | 91.99 258 |
|
NCCC | | | 98.12 5 | 98.11 3 | 98.13 23 | 99.76 6 | 94.46 50 | 99.81 5 | 97.88 50 | 96.54 5 | 98.84 17 | 99.46 11 | 92.55 26 | 99.98 10 | 98.25 38 | 99.93 1 | 99.94 18 |
|
test12 | | | | | 97.83 34 | 99.33 64 | 94.45 51 | | 97.55 115 | | 97.56 51 | | 88.60 68 | 99.50 107 | | 99.71 38 | 99.55 81 |
|
DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 29 | 98.13 23 | 99.61 27 | 94.45 51 | 98.85 119 | 97.64 93 | 96.51 7 | 95.88 93 | 99.39 21 | 87.35 96 | 99.99 5 | 96.61 65 | 99.69 41 | 99.96 10 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CHOSEN 280x420 | | | 96.80 36 | 96.85 28 | 96.66 94 | 97.85 118 | 94.42 53 | 94.76 307 | 98.36 24 | 92.50 63 | 95.62 101 | 97.52 145 | 97.92 1 | 97.38 223 | 98.31 37 | 98.80 98 | 98.20 181 |
|
1314 | | | 93.44 126 | 91.98 145 | 97.84 33 | 95.24 206 | 94.38 54 | 96.22 284 | 97.92 48 | 90.18 122 | 82.28 254 | 97.71 137 | 77.63 218 | 99.80 68 | 91.94 144 | 98.67 103 | 99.34 97 |
|
DP-MVS Recon | | | 95.85 66 | 95.15 78 | 97.95 31 | 99.87 2 | 94.38 54 | 99.60 28 | 97.48 131 | 86.58 223 | 94.42 118 | 99.13 47 | 87.36 95 | 99.98 10 | 93.64 125 | 98.33 111 | 99.48 89 |
|
jason | | | 95.40 77 | 94.86 82 | 97.03 64 | 92.91 275 | 94.23 56 | 99.70 17 | 96.30 217 | 93.56 45 | 96.73 77 | 98.52 105 | 81.46 193 | 97.91 185 | 96.08 78 | 98.47 109 | 98.96 129 |
jason: jason. |
SMA-MVS |  | | 97.24 19 | 96.99 24 | 98.00 30 | 99.30 65 | 94.20 57 | 99.16 80 | 97.65 92 | 89.55 144 | 99.22 9 | 99.52 9 | 90.34 49 | 99.99 5 | 98.32 36 | 99.83 15 | 99.82 34 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PAPR | | | 96.35 48 | 95.82 60 | 97.94 32 | 99.63 21 | 94.19 58 | 99.42 57 | 97.55 115 | 92.43 65 | 93.82 131 | 99.12 48 | 87.30 97 | 99.91 42 | 94.02 117 | 99.06 85 | 99.74 55 |
|
ET-MVSNet_ETH3D | | | 92.56 148 | 91.45 156 | 95.88 125 | 96.39 166 | 94.13 59 | 99.46 49 | 96.97 185 | 92.18 74 | 66.94 351 | 98.29 120 | 94.65 13 | 94.28 329 | 94.34 115 | 83.82 247 | 99.24 107 |
|
sss | | | 94.85 89 | 93.94 106 | 97.58 43 | 96.43 163 | 94.09 60 | 98.93 111 | 99.16 8 | 89.50 145 | 95.27 105 | 97.85 128 | 81.50 191 | 99.65 88 | 92.79 139 | 94.02 168 | 98.99 126 |
|
CDPH-MVS | | | 96.56 41 | 96.18 46 | 97.70 39 | 99.59 31 | 93.92 61 | 99.13 92 | 97.44 140 | 89.02 156 | 97.90 48 | 99.22 31 | 88.90 65 | 99.49 108 | 94.63 110 | 99.79 29 | 99.68 65 |
|
VNet | | | 95.08 85 | 94.26 91 | 97.55 46 | 98.07 114 | 93.88 62 | 98.68 138 | 98.73 16 | 90.33 118 | 97.16 62 | 97.43 149 | 79.19 207 | 99.53 101 | 96.91 61 | 91.85 195 | 99.24 107 |
|
xxxxxxxxxxxxxcwj | | | 97.51 13 | 97.42 14 | 97.78 37 | 99.34 58 | 93.85 63 | 99.65 23 | 95.45 280 | 95.69 11 | 98.70 20 | 99.42 19 | 90.42 45 | 99.72 75 | 98.47 29 | 99.65 44 | 99.77 48 |
|
save fliter | | | | | | 99.34 58 | 93.85 63 | 99.65 23 | 97.63 98 | 95.69 11 | | | | | | | |
|
SD-MVS | | | 97.51 13 | 97.40 15 | 97.81 35 | 99.01 84 | 93.79 65 | 99.33 69 | 97.38 147 | 93.73 41 | 98.83 18 | 99.02 60 | 90.87 36 | 99.88 48 | 98.69 21 | 99.74 32 | 99.77 48 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APDe-MVS | | | 97.53 12 | 97.47 11 | 97.70 39 | 99.58 33 | 93.63 66 | 99.56 33 | 97.52 122 | 93.59 44 | 98.01 43 | 99.12 48 | 90.80 38 | 99.55 98 | 99.26 13 | 99.79 29 | 99.93 21 |
|
APD-MVS |  | | 96.95 30 | 96.72 33 | 97.63 41 | 99.51 46 | 93.58 67 | 99.16 80 | 97.44 140 | 90.08 127 | 98.59 25 | 99.07 54 | 89.06 62 | 99.42 119 | 97.92 43 | 99.66 43 | 99.88 28 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 96.59 40 | 96.18 46 | 97.81 35 | 98.82 94 | 93.55 68 | 98.88 118 | 97.59 107 | 90.66 107 | 97.98 44 | 99.14 45 | 86.59 112 | 100.00 1 | 96.47 69 | 99.46 64 | 99.89 27 |
|
nrg030 | | | 90.23 189 | 88.87 197 | 94.32 176 | 91.53 293 | 93.54 69 | 98.79 128 | 95.89 252 | 88.12 188 | 84.55 227 | 94.61 217 | 78.80 211 | 96.88 238 | 92.35 142 | 75.21 292 | 92.53 240 |
|
OpenMVS |  | 85.28 14 | 90.75 181 | 88.84 198 | 96.48 102 | 93.58 261 | 93.51 70 | 98.80 124 | 97.41 144 | 82.59 285 | 78.62 301 | 97.49 147 | 68.00 284 | 99.82 64 | 84.52 227 | 98.55 107 | 96.11 223 |
|
TSAR-MVS + MP. | | | 97.44 16 | 97.46 12 | 97.39 52 | 99.12 77 | 93.49 71 | 98.52 158 | 97.50 128 | 94.46 22 | 98.99 12 | 98.64 98 | 91.58 28 | 99.08 143 | 98.49 28 | 99.83 15 | 99.60 77 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
QAPM | | | 91.41 169 | 89.49 186 | 97.17 61 | 95.66 194 | 93.42 72 | 98.60 151 | 97.51 125 | 80.92 308 | 81.39 273 | 97.41 150 | 72.89 251 | 99.87 51 | 82.33 252 | 98.68 102 | 98.21 180 |
|
testtj | | | 97.23 21 | 97.05 21 | 97.75 38 | 99.75 7 | 93.34 73 | 99.16 80 | 97.74 69 | 91.28 95 | 98.40 29 | 99.29 24 | 89.95 52 | 99.98 10 | 98.20 39 | 99.70 39 | 99.94 18 |
|
ZD-MVS | | | | | | 99.67 13 | 93.28 74 | | 97.61 101 | 87.78 197 | 97.41 56 | 99.16 41 | 90.15 50 | 99.56 97 | 98.35 33 | 99.70 39 | |
|
MSLP-MVS++ | | | 97.50 15 | 97.45 13 | 97.63 41 | 99.65 19 | 93.21 75 | 99.70 17 | 98.13 37 | 94.61 19 | 97.78 50 | 99.46 11 | 89.85 53 | 99.81 66 | 97.97 42 | 99.91 6 | 99.88 28 |
|
TEST9 | | | | | | 99.57 37 | 93.17 76 | 99.38 61 | 97.66 87 | 89.57 142 | 98.39 30 | 99.18 37 | 90.88 35 | 99.66 84 | | | |
|
train_agg | | | 97.20 23 | 97.08 20 | 97.57 45 | 99.57 37 | 93.17 76 | 99.38 61 | 97.66 87 | 90.18 122 | 98.39 30 | 99.18 37 | 90.94 33 | 99.66 84 | 98.58 26 | 99.85 13 | 99.88 28 |
|
Regformer-1 | | | 96.97 29 | 96.80 31 | 97.47 47 | 99.46 52 | 93.11 78 | 98.89 116 | 97.94 46 | 92.89 57 | 96.90 65 | 99.02 60 | 89.78 54 | 99.53 101 | 97.06 54 | 99.26 80 | 99.75 52 |
|
EPNet | | | 96.82 35 | 96.68 35 | 97.25 58 | 98.65 98 | 93.10 79 | 99.48 42 | 98.76 13 | 96.54 5 | 97.84 49 | 98.22 122 | 87.49 89 | 99.66 84 | 95.35 94 | 97.78 119 | 99.00 125 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_8 | | | | | | 99.55 39 | 93.07 80 | 99.37 64 | 97.64 93 | 90.18 122 | 98.36 32 | 99.19 34 | 90.94 33 | 99.64 90 | | | |
|
3Dnovator | | 87.35 11 | 93.17 137 | 91.77 150 | 97.37 54 | 95.41 203 | 93.07 80 | 98.82 122 | 97.85 53 | 91.53 85 | 82.56 248 | 97.58 144 | 71.97 258 | 99.82 64 | 91.01 152 | 99.23 82 | 99.22 110 |
|
cascas | | | 90.93 178 | 89.33 190 | 95.76 129 | 95.69 191 | 93.03 82 | 98.99 106 | 96.59 197 | 80.49 310 | 86.79 214 | 94.45 218 | 65.23 304 | 98.60 159 | 93.52 127 | 92.18 190 | 95.66 226 |
|
test_yl | | | 95.27 79 | 94.60 85 | 97.28 56 | 98.53 103 | 92.98 83 | 99.05 99 | 98.70 17 | 86.76 220 | 94.65 116 | 97.74 135 | 87.78 82 | 99.44 116 | 95.57 90 | 92.61 181 | 99.44 91 |
|
DCV-MVSNet | | | 95.27 79 | 94.60 85 | 97.28 56 | 98.53 103 | 92.98 83 | 99.05 99 | 98.70 17 | 86.76 220 | 94.65 116 | 97.74 135 | 87.78 82 | 99.44 116 | 95.57 90 | 92.61 181 | 99.44 91 |
|
Regformer-2 | | | 96.94 32 | 96.78 32 | 97.42 49 | 99.46 52 | 92.97 85 | 98.89 116 | 97.93 47 | 92.86 59 | 96.88 66 | 99.02 60 | 89.74 56 | 99.53 101 | 97.03 55 | 99.26 80 | 99.75 52 |
|
MVSTER | | | 92.71 142 | 92.32 135 | 93.86 192 | 97.29 135 | 92.95 86 | 99.01 104 | 96.59 197 | 90.09 126 | 85.51 220 | 94.00 225 | 94.61 14 | 96.56 251 | 90.77 157 | 83.03 253 | 92.08 254 |
|
旧先验1 | | | | | | 98.97 85 | 92.90 87 | | 97.74 69 | | | 99.15 43 | 91.05 32 | | | 99.33 74 | 99.60 77 |
|
MP-MVS-pluss | | | 95.80 68 | 95.30 72 | 97.29 55 | 98.95 88 | 92.66 88 | 98.59 153 | 97.14 168 | 88.95 159 | 93.12 138 | 99.25 27 | 85.62 129 | 99.94 37 | 96.56 67 | 99.48 63 | 99.28 103 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
agg_prior1 | | | 97.12 25 | 97.03 22 | 97.38 53 | 99.54 40 | 92.66 88 | 99.35 66 | 97.64 93 | 90.38 116 | 97.98 44 | 99.17 39 | 90.84 37 | 99.61 93 | 98.57 27 | 99.78 31 | 99.87 31 |
|
agg_prior | | | | | | 99.54 40 | 92.66 88 | | 97.64 93 | | 97.98 44 | | | 99.61 93 | | | |
|
MVS_Test | | | 93.67 122 | 92.67 130 | 96.69 92 | 96.72 155 | 92.66 88 | 97.22 248 | 96.03 234 | 87.69 203 | 95.12 109 | 94.03 223 | 81.55 190 | 98.28 168 | 89.17 179 | 96.46 138 | 99.14 114 |
|
thisisatest0515 | | | 94.75 92 | 94.19 94 | 96.43 105 | 96.13 183 | 92.64 92 | 99.47 44 | 97.60 103 | 87.55 206 | 93.17 137 | 97.59 143 | 94.71 11 | 98.42 162 | 88.28 186 | 93.20 173 | 98.24 178 |
|
1121 | | | 95.19 82 | 94.45 88 | 97.42 49 | 98.88 91 | 92.58 93 | 96.22 284 | 97.75 67 | 85.50 238 | 96.86 69 | 99.01 64 | 88.59 70 | 99.90 44 | 87.64 194 | 99.60 56 | 99.79 38 |
|
FMVSNet2 | | | 86.90 244 | 84.79 262 | 93.24 203 | 95.11 216 | 92.54 94 | 97.67 231 | 95.86 256 | 82.94 279 | 80.55 278 | 91.17 280 | 62.89 311 | 95.29 311 | 77.23 285 | 79.71 271 | 91.90 260 |
|
新几何1 | | | | | 97.40 51 | 98.92 89 | 92.51 95 | | 97.77 66 | 85.52 236 | 96.69 78 | 99.06 56 | 88.08 79 | 99.89 47 | 84.88 222 | 99.62 51 | 99.79 38 |
|
test_part1 | | | 88.43 223 | 86.68 233 | 93.67 198 | 97.56 129 | 92.40 96 | 98.12 200 | 96.55 202 | 82.26 292 | 80.31 281 | 93.16 248 | 74.59 233 | 96.62 248 | 85.00 221 | 72.61 320 | 91.99 258 |
|
114514_t | | | 94.06 108 | 93.05 122 | 97.06 63 | 99.08 81 | 92.26 97 | 98.97 108 | 97.01 183 | 82.58 286 | 92.57 144 | 98.22 122 | 80.68 197 | 99.30 132 | 89.34 175 | 99.02 87 | 99.63 73 |
|
test2506 | | | 94.80 90 | 94.21 93 | 96.58 97 | 96.41 164 | 92.18 98 | 98.01 211 | 98.96 10 | 90.82 105 | 93.46 134 | 97.28 152 | 85.92 125 | 98.45 161 | 89.82 166 | 97.19 130 | 99.12 117 |
|
test_prior4 | | | | | | | 92.00 99 | 99.41 58 | | | | | | | | | |
|
test_prior3 | | | 97.07 27 | 97.09 19 | 97.01 65 | 99.58 33 | 91.77 100 | 99.57 31 | 97.57 112 | 91.43 90 | 98.12 37 | 98.97 66 | 90.43 43 | 99.49 108 | 98.33 34 | 99.81 23 | 99.79 38 |
|
test_prior | | | | | 97.01 65 | 99.58 33 | 91.77 100 | | 97.57 112 | | | | | 99.49 108 | | | 99.79 38 |
|
PHI-MVS | | | 96.65 39 | 96.46 39 | 97.21 59 | 99.34 58 | 91.77 100 | 99.70 17 | 98.05 40 | 86.48 226 | 98.05 40 | 99.20 33 | 89.33 60 | 99.96 30 | 98.38 32 | 99.62 51 | 99.90 24 |
|
Regformer-3 | | | 96.50 43 | 96.36 42 | 96.91 76 | 99.34 58 | 91.72 103 | 98.71 131 | 97.90 49 | 92.48 64 | 96.00 87 | 98.95 73 | 88.60 68 | 99.52 104 | 96.44 70 | 98.83 95 | 99.49 87 |
|
ab-mvs | | | 91.05 175 | 89.17 192 | 96.69 92 | 95.96 184 | 91.72 103 | 92.62 328 | 97.23 158 | 85.61 235 | 89.74 186 | 93.89 229 | 68.55 278 | 99.42 119 | 91.09 150 | 87.84 220 | 98.92 136 |
|
TSAR-MVS + GP. | | | 96.95 30 | 96.91 26 | 97.07 62 | 98.88 91 | 91.62 105 | 99.58 30 | 96.54 204 | 95.09 18 | 96.84 72 | 98.63 100 | 91.16 29 | 99.77 71 | 99.04 16 | 96.42 140 | 99.81 35 |
|
PVSNet_BlendedMVS | | | 93.36 130 | 93.20 119 | 93.84 193 | 98.77 95 | 91.61 106 | 99.47 44 | 98.04 41 | 91.44 89 | 94.21 122 | 92.63 257 | 83.50 155 | 99.87 51 | 97.41 49 | 83.37 251 | 90.05 317 |
|
PVSNet_Blended | | | 95.94 62 | 95.66 67 | 96.75 86 | 98.77 95 | 91.61 106 | 99.88 1 | 98.04 41 | 93.64 43 | 94.21 122 | 97.76 133 | 83.50 155 | 99.87 51 | 97.41 49 | 97.75 120 | 98.79 148 |
|
PCF-MVS | | 89.78 5 | 91.26 170 | 89.63 183 | 96.16 116 | 95.44 201 | 91.58 108 | 95.29 303 | 96.10 232 | 85.07 245 | 82.75 244 | 97.45 148 | 78.28 214 | 99.78 70 | 80.60 266 | 95.65 157 | 97.12 204 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
SteuartSystems-ACMMP | | | 97.25 18 | 97.34 16 | 97.01 65 | 97.38 132 | 91.46 109 | 99.75 13 | 97.66 87 | 94.14 29 | 98.13 35 | 99.26 26 | 92.16 27 | 99.66 84 | 97.91 44 | 99.64 47 | 99.90 24 |
Skip Steuart: Steuart Systems R&D Blog. |
Regformer-4 | | | 96.45 46 | 96.33 44 | 96.81 83 | 99.34 58 | 91.44 110 | 98.71 131 | 97.88 50 | 92.43 65 | 95.97 89 | 98.95 73 | 88.42 72 | 99.51 105 | 96.40 71 | 98.83 95 | 99.49 87 |
|
VPNet | | | 88.30 225 | 86.57 234 | 93.49 199 | 91.95 286 | 91.35 111 | 98.18 195 | 97.20 164 | 88.61 167 | 84.52 228 | 94.89 212 | 62.21 314 | 96.76 244 | 89.34 175 | 72.26 325 | 92.36 243 |
|
CS-MVS | | | 95.86 65 | 95.81 62 | 95.98 122 | 95.62 195 | 91.26 112 | 99.80 7 | 96.12 231 | 92.15 76 | 97.93 47 | 98.45 114 | 85.88 128 | 97.55 214 | 97.56 47 | 98.80 98 | 99.14 114 |
|
GST-MVS | | | 95.97 60 | 95.66 67 | 96.90 77 | 99.49 50 | 91.22 113 | 99.45 51 | 97.48 131 | 89.69 136 | 95.89 92 | 98.72 92 | 86.37 120 | 99.95 34 | 94.62 111 | 99.22 83 | 99.52 83 |
|
test222 | | | | | | 98.32 106 | 91.21 114 | 98.08 207 | 97.58 109 | 83.74 265 | 95.87 94 | 99.02 60 | 86.74 107 | | | 99.64 47 | 99.81 35 |
|
ZNCC-MVS | | | 96.09 56 | 95.81 62 | 96.95 75 | 99.42 54 | 91.19 115 | 99.55 34 | 97.53 119 | 89.72 135 | 95.86 95 | 98.94 78 | 86.59 112 | 99.97 23 | 95.13 98 | 99.56 59 | 99.68 65 |
|
zzz-MVS | | | 96.21 54 | 95.96 55 | 96.96 73 | 99.29 66 | 91.19 115 | 98.69 136 | 97.45 136 | 92.58 60 | 94.39 119 | 99.24 29 | 86.43 118 | 99.99 5 | 96.22 73 | 99.40 72 | 99.71 59 |
|
MTAPA | | | 96.09 56 | 95.80 64 | 96.96 73 | 99.29 66 | 91.19 115 | 97.23 247 | 97.45 136 | 92.58 60 | 94.39 119 | 99.24 29 | 86.43 118 | 99.99 5 | 96.22 73 | 99.40 72 | 99.71 59 |
|
MDTV_nov1_ep13_2view | | | | | | | 91.17 118 | 91.38 335 | | 87.45 208 | 93.08 139 | | 86.67 110 | | 87.02 198 | | 98.95 133 |
|
FIs | | | 90.70 182 | 89.87 181 | 93.18 204 | 92.29 280 | 91.12 119 | 98.17 197 | 98.25 27 | 89.11 153 | 83.44 236 | 94.82 214 | 82.26 182 | 96.17 280 | 87.76 192 | 82.76 255 | 92.25 246 |
|
1112_ss | | | 92.71 142 | 91.55 154 | 96.20 112 | 95.56 197 | 91.12 119 | 98.48 166 | 94.69 309 | 88.29 183 | 86.89 211 | 98.50 107 | 87.02 101 | 98.66 157 | 84.75 223 | 89.77 215 | 98.81 146 |
|
PVSNet_Blended_VisFu | | | 94.67 97 | 94.11 97 | 96.34 110 | 97.14 140 | 91.10 121 | 99.32 70 | 97.43 142 | 92.10 77 | 91.53 157 | 96.38 192 | 83.29 161 | 99.68 82 | 93.42 130 | 96.37 141 | 98.25 177 |
|
Test_1112_low_res | | | 92.27 154 | 90.97 164 | 96.18 113 | 95.53 199 | 91.10 121 | 98.47 168 | 94.66 310 | 88.28 184 | 86.83 213 | 93.50 241 | 87.00 102 | 98.65 158 | 84.69 224 | 89.74 216 | 98.80 147 |
|
LFMVS | | | 92.23 155 | 90.84 168 | 96.42 106 | 98.24 108 | 91.08 123 | 98.24 190 | 96.22 224 | 83.39 272 | 94.74 114 | 98.31 117 | 61.12 319 | 98.85 147 | 94.45 114 | 92.82 177 | 99.32 98 |
|
ETV-MVS | | | 96.00 58 | 96.00 54 | 96.00 120 | 96.56 159 | 91.05 124 | 99.63 25 | 96.61 195 | 93.26 49 | 97.39 57 | 98.30 118 | 86.62 111 | 98.13 172 | 98.07 41 | 97.57 121 | 98.82 145 |
|
VPA-MVSNet | | | 89.10 206 | 87.66 218 | 93.45 200 | 92.56 277 | 91.02 125 | 97.97 214 | 98.32 25 | 86.92 216 | 86.03 217 | 92.01 263 | 68.84 277 | 97.10 231 | 90.92 153 | 75.34 291 | 92.23 248 |
|
MVS_111021_HR | | | 96.69 37 | 96.69 34 | 96.72 90 | 98.58 102 | 91.00 126 | 99.14 89 | 99.45 1 | 93.86 36 | 95.15 108 | 98.73 90 | 88.48 71 | 99.76 72 | 97.23 53 | 99.56 59 | 99.40 93 |
|
HFP-MVS | | | 96.42 47 | 96.26 45 | 96.90 77 | 99.69 9 | 90.96 127 | 99.47 44 | 97.81 59 | 90.54 112 | 96.88 66 | 99.05 57 | 87.57 86 | 99.96 30 | 95.65 85 | 99.72 34 | 99.78 42 |
|
#test# | | | 96.48 44 | 96.34 43 | 96.90 77 | 99.69 9 | 90.96 127 | 99.53 39 | 97.81 59 | 90.94 102 | 96.88 66 | 99.05 57 | 87.57 86 | 99.96 30 | 95.87 81 | 99.72 34 | 99.78 42 |
|
UniMVSNet (Re) | | | 89.50 204 | 88.32 210 | 93.03 206 | 92.21 282 | 90.96 127 | 98.90 115 | 98.39 23 | 89.13 152 | 83.22 237 | 92.03 261 | 81.69 189 | 96.34 271 | 86.79 203 | 72.53 321 | 91.81 261 |
|
IB-MVS | | 89.43 6 | 92.12 156 | 90.83 170 | 95.98 122 | 95.40 204 | 90.78 130 | 99.81 5 | 98.06 39 | 91.23 97 | 85.63 219 | 93.66 235 | 90.63 40 | 98.78 149 | 91.22 149 | 71.85 328 | 98.36 173 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Effi-MVS+ | | | 93.87 115 | 93.15 120 | 96.02 119 | 95.79 187 | 90.76 131 | 96.70 269 | 95.78 259 | 86.98 214 | 95.71 98 | 97.17 163 | 79.58 202 | 98.01 183 | 94.57 112 | 96.09 148 | 99.31 99 |
|
DeepC-MVS | | 91.02 4 | 94.56 102 | 93.92 107 | 96.46 103 | 97.16 139 | 90.76 131 | 98.39 179 | 97.11 172 | 93.92 32 | 88.66 194 | 98.33 116 | 78.14 215 | 99.85 58 | 95.02 101 | 98.57 106 | 98.78 150 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
diffmvs | | | 94.59 101 | 94.19 94 | 95.81 127 | 95.54 198 | 90.69 133 | 98.70 135 | 95.68 266 | 91.61 83 | 95.96 90 | 97.81 130 | 80.11 199 | 98.06 179 | 96.52 68 | 95.76 154 | 98.67 156 |
|
NR-MVSNet | | | 87.74 235 | 86.00 243 | 92.96 208 | 91.46 294 | 90.68 134 | 96.65 270 | 97.42 143 | 88.02 191 | 73.42 329 | 93.68 233 | 77.31 219 | 95.83 297 | 84.26 229 | 71.82 329 | 92.36 243 |
|
bset_n11_16_dypcd | | | 89.07 207 | 87.85 214 | 92.76 214 | 86.16 348 | 90.66 135 | 97.30 241 | 95.62 269 | 89.78 134 | 83.94 233 | 93.15 249 | 74.85 228 | 95.89 295 | 91.34 148 | 78.48 274 | 91.74 262 |
|
XVS | | | 96.47 45 | 96.37 41 | 96.77 84 | 99.62 25 | 90.66 135 | 99.43 55 | 97.58 109 | 92.41 69 | 96.86 69 | 98.96 71 | 87.37 92 | 99.87 51 | 95.65 85 | 99.43 68 | 99.78 42 |
|
X-MVStestdata | | | 90.69 183 | 88.66 203 | 96.77 84 | 99.62 25 | 90.66 135 | 99.43 55 | 97.58 109 | 92.41 69 | 96.86 69 | 29.59 375 | 87.37 92 | 99.87 51 | 95.65 85 | 99.43 68 | 99.78 42 |
|
ACMMPR | | | 96.28 52 | 96.14 52 | 96.73 88 | 99.68 12 | 90.47 138 | 99.47 44 | 97.80 61 | 90.54 112 | 96.83 74 | 99.03 59 | 86.51 116 | 99.95 34 | 95.65 85 | 99.72 34 | 99.75 52 |
|
EI-MVSNet-Vis-set | | | 95.76 71 | 95.63 71 | 96.17 115 | 99.14 76 | 90.33 139 | 98.49 165 | 97.82 56 | 91.92 78 | 94.75 113 | 98.88 81 | 87.06 100 | 99.48 113 | 95.40 93 | 97.17 132 | 98.70 155 |
|
region2R | | | 96.30 51 | 96.17 48 | 96.70 91 | 99.70 8 | 90.31 140 | 99.46 49 | 97.66 87 | 90.55 111 | 97.07 63 | 99.07 54 | 86.85 104 | 99.97 23 | 95.43 92 | 99.74 32 | 99.81 35 |
|
TESTMET0.1,1 | | | 93.82 116 | 93.26 118 | 95.49 136 | 95.21 208 | 90.25 141 | 99.15 86 | 97.54 118 | 89.18 151 | 91.79 150 | 94.87 213 | 89.13 61 | 97.63 207 | 86.21 207 | 96.29 145 | 98.60 160 |
|
baseline2 | | | 94.04 109 | 93.80 110 | 94.74 162 | 93.07 273 | 90.25 141 | 98.12 200 | 98.16 34 | 89.86 130 | 86.53 215 | 96.95 172 | 95.56 5 | 98.05 180 | 91.44 147 | 94.53 163 | 95.93 224 |
|
PVSNet | | 87.13 12 | 93.69 119 | 92.83 127 | 96.28 111 | 97.99 116 | 90.22 143 | 99.38 61 | 98.93 11 | 91.42 92 | 93.66 132 | 97.68 138 | 71.29 266 | 99.64 90 | 87.94 191 | 97.20 129 | 98.98 127 |
|
MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 101 | 99.54 40 | 90.14 144 | 99.41 58 | 97.70 80 | 95.46 17 | 98.60 24 | 99.19 34 | 95.71 4 | 99.49 108 | 98.15 40 | 99.85 13 | 99.95 15 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PAPM_NR | | | 95.43 74 | 95.05 80 | 96.57 99 | 99.42 54 | 90.14 144 | 98.58 155 | 97.51 125 | 90.65 109 | 92.44 146 | 98.90 79 | 87.77 84 | 99.90 44 | 90.88 154 | 99.32 75 | 99.68 65 |
|
MP-MVS |  | | 96.00 58 | 95.82 60 | 96.54 100 | 99.47 51 | 90.13 146 | 99.36 65 | 97.41 144 | 90.64 110 | 95.49 102 | 98.95 73 | 85.51 132 | 99.98 10 | 96.00 80 | 99.59 58 | 99.52 83 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
原ACMM1 | | | | | 96.18 113 | 99.03 83 | 90.08 147 | | 97.63 98 | 88.98 157 | 97.00 64 | 98.97 66 | 88.14 78 | 99.71 77 | 88.23 187 | 99.62 51 | 98.76 152 |
|
UniMVSNet_NR-MVSNet | | | 89.60 201 | 88.55 207 | 92.75 215 | 92.17 283 | 90.07 148 | 98.74 130 | 98.15 35 | 88.37 180 | 83.21 238 | 93.98 226 | 82.86 169 | 95.93 290 | 86.95 200 | 72.47 322 | 92.25 246 |
|
DU-MVS | | | 88.83 215 | 87.51 219 | 92.79 212 | 91.46 294 | 90.07 148 | 98.71 131 | 97.62 100 | 88.87 163 | 83.21 238 | 93.68 233 | 74.63 229 | 95.93 290 | 86.95 200 | 72.47 322 | 92.36 243 |
|
baseline | | | 93.91 113 | 93.30 116 | 95.72 130 | 95.10 219 | 90.07 148 | 97.48 236 | 95.91 249 | 91.03 99 | 93.54 133 | 97.68 138 | 79.58 202 | 98.02 182 | 94.27 116 | 95.14 159 | 99.08 121 |
|
API-MVS | | | 94.78 91 | 94.18 96 | 96.59 96 | 99.21 73 | 90.06 151 | 98.80 124 | 97.78 64 | 83.59 269 | 93.85 129 | 99.21 32 | 83.79 152 | 99.97 23 | 92.37 141 | 99.00 88 | 99.74 55 |
|
EPMVS | | | 92.59 147 | 91.59 153 | 95.59 135 | 97.22 137 | 90.03 152 | 91.78 333 | 98.04 41 | 90.42 115 | 91.66 153 | 90.65 293 | 86.49 117 | 97.46 218 | 81.78 258 | 96.31 143 | 99.28 103 |
|
thisisatest0530 | | | 94.00 110 | 93.52 113 | 95.43 139 | 95.76 189 | 90.02 153 | 98.99 106 | 97.60 103 | 86.58 223 | 91.74 151 | 97.36 151 | 94.78 10 | 98.34 164 | 86.37 206 | 92.48 184 | 97.94 187 |
|
CNLPA | | | 93.64 123 | 92.74 128 | 96.36 109 | 98.96 87 | 90.01 154 | 99.19 75 | 95.89 252 | 86.22 229 | 89.40 189 | 98.85 82 | 80.66 198 | 99.84 59 | 88.57 183 | 96.92 134 | 99.24 107 |
|
EI-MVSNet-UG-set | | | 95.43 74 | 95.29 73 | 95.86 126 | 99.07 82 | 89.87 155 | 98.43 170 | 97.80 61 | 91.78 81 | 94.11 124 | 98.77 86 | 86.25 122 | 99.48 113 | 94.95 104 | 96.45 139 | 98.22 179 |
|
FC-MVSNet-test | | | 90.22 190 | 89.40 188 | 92.67 218 | 91.78 290 | 89.86 156 | 97.89 216 | 98.22 29 | 88.81 164 | 82.96 243 | 94.66 216 | 81.90 188 | 95.96 288 | 85.89 213 | 82.52 258 | 92.20 250 |
|
casdiffmvs | | | 93.98 111 | 93.43 114 | 95.61 134 | 95.07 221 | 89.86 156 | 98.80 124 | 95.84 257 | 90.98 100 | 92.74 143 | 97.66 140 | 79.71 201 | 98.10 174 | 94.72 108 | 95.37 158 | 98.87 140 |
|
PGM-MVS | | | 95.85 66 | 95.65 69 | 96.45 104 | 99.50 47 | 89.77 158 | 98.22 191 | 98.90 12 | 89.19 150 | 96.74 76 | 98.95 73 | 85.91 127 | 99.92 40 | 93.94 118 | 99.46 64 | 99.66 69 |
|
RRT_test8_iter05 | | | 91.04 176 | 90.40 178 | 92.95 209 | 96.20 176 | 89.75 159 | 98.97 108 | 96.38 212 | 88.52 170 | 82.00 262 | 93.51 240 | 90.69 39 | 96.73 245 | 90.43 159 | 76.91 286 | 92.38 242 |
|
XXY-MVS | | | 87.75 233 | 86.02 242 | 92.95 209 | 90.46 305 | 89.70 160 | 97.71 230 | 95.90 250 | 84.02 260 | 80.95 274 | 94.05 220 | 67.51 288 | 97.10 231 | 85.16 217 | 78.41 275 | 92.04 257 |
|
mvs_anonymous | | | 92.50 149 | 91.65 152 | 95.06 150 | 96.60 158 | 89.64 161 | 97.06 253 | 96.44 210 | 86.64 222 | 84.14 230 | 93.93 227 | 82.49 177 | 96.17 280 | 91.47 146 | 96.08 149 | 99.35 95 |
|
CP-MVS | | | 96.22 53 | 96.15 51 | 96.42 106 | 99.67 13 | 89.62 162 | 99.70 17 | 97.61 101 | 90.07 128 | 96.00 87 | 99.16 41 | 87.43 90 | 99.92 40 | 96.03 79 | 99.72 34 | 99.70 61 |
|
WR-MVS | | | 88.54 222 | 87.22 226 | 92.52 219 | 91.93 288 | 89.50 163 | 98.56 156 | 97.84 54 | 86.99 212 | 81.87 266 | 93.81 230 | 74.25 240 | 95.92 292 | 85.29 216 | 74.43 301 | 92.12 252 |
|
DWT-MVSNet_test | | | 94.36 104 | 93.95 105 | 95.62 132 | 96.99 148 | 89.47 164 | 96.62 271 | 97.38 147 | 90.96 101 | 93.07 140 | 97.27 154 | 93.73 15 | 98.09 175 | 85.86 214 | 93.65 171 | 99.29 101 |
|
CDS-MVSNet | | | 93.47 125 | 93.04 123 | 94.76 160 | 94.75 233 | 89.45 165 | 98.82 122 | 97.03 181 | 87.91 194 | 90.97 166 | 96.48 187 | 89.06 62 | 96.36 265 | 89.50 170 | 92.81 179 | 98.49 164 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
mPP-MVS | | | 95.90 64 | 95.75 65 | 96.38 108 | 99.58 33 | 89.41 166 | 99.26 72 | 97.41 144 | 90.66 107 | 94.82 112 | 98.95 73 | 86.15 123 | 99.98 10 | 95.24 97 | 99.64 47 | 99.74 55 |
|
HPM-MVS |  | | 95.41 76 | 95.22 76 | 95.99 121 | 99.29 66 | 89.14 167 | 99.17 79 | 97.09 176 | 87.28 210 | 95.40 103 | 98.48 110 | 84.93 141 | 99.38 123 | 95.64 89 | 99.65 44 | 99.47 90 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
AdaColmap |  | | 93.82 116 | 93.06 121 | 96.10 117 | 99.88 1 | 89.07 168 | 98.33 183 | 97.55 115 | 86.81 219 | 90.39 178 | 98.65 97 | 75.09 227 | 99.98 10 | 93.32 131 | 97.53 124 | 99.26 105 |
|
SR-MVS | | | 96.13 55 | 96.16 50 | 96.07 118 | 99.42 54 | 89.04 169 | 98.59 153 | 97.33 152 | 90.44 114 | 96.84 72 | 99.12 48 | 86.75 106 | 99.41 121 | 97.47 48 | 99.44 67 | 99.76 51 |
|
PatchmatchNet |  | | 92.05 159 | 91.04 163 | 95.06 150 | 96.17 177 | 89.04 169 | 91.26 337 | 97.26 153 | 89.56 143 | 90.64 172 | 90.56 299 | 88.35 74 | 97.11 229 | 79.53 270 | 96.07 150 | 99.03 124 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
KD-MVS_2432*1600 | | | 82.98 293 | 80.52 301 | 90.38 263 | 94.32 240 | 88.98 171 | 92.87 325 | 95.87 254 | 80.46 311 | 73.79 327 | 87.49 330 | 82.76 173 | 93.29 335 | 70.56 326 | 46.53 365 | 88.87 333 |
|
miper_refine_blended | | | 82.98 293 | 80.52 301 | 90.38 263 | 94.32 240 | 88.98 171 | 92.87 325 | 95.87 254 | 80.46 311 | 73.79 327 | 87.49 330 | 82.76 173 | 93.29 335 | 70.56 326 | 46.53 365 | 88.87 333 |
|
FOURS1 | | | | | | 99.50 47 | 88.94 173 | 99.55 34 | 97.47 133 | 91.32 94 | 98.12 37 | | | | | | |
|
miper_enhance_ethall | | | 90.33 187 | 89.70 182 | 92.22 222 | 97.12 142 | 88.93 174 | 98.35 182 | 95.96 238 | 88.60 168 | 83.14 242 | 92.33 259 | 87.38 91 | 96.18 279 | 86.49 205 | 77.89 278 | 91.55 272 |
|
pmmvs4 | | | 87.58 238 | 86.17 241 | 91.80 233 | 89.58 315 | 88.92 175 | 97.25 245 | 95.28 290 | 82.54 287 | 80.49 279 | 93.17 247 | 75.62 225 | 96.05 285 | 82.75 248 | 78.90 272 | 90.42 308 |
|
SCA | | | 90.64 184 | 89.25 191 | 94.83 159 | 94.95 226 | 88.83 176 | 96.26 281 | 97.21 160 | 90.06 129 | 90.03 182 | 90.62 295 | 66.61 294 | 96.81 241 | 83.16 243 | 94.36 165 | 98.84 141 |
|
GBi-Net | | | 86.67 249 | 84.96 256 | 91.80 233 | 95.11 216 | 88.81 177 | 96.77 263 | 95.25 291 | 82.94 279 | 82.12 257 | 90.25 306 | 62.89 311 | 94.97 316 | 79.04 274 | 80.24 265 | 91.62 266 |
|
test1 | | | 86.67 249 | 84.96 256 | 91.80 233 | 95.11 216 | 88.81 177 | 96.77 263 | 95.25 291 | 82.94 279 | 82.12 257 | 90.25 306 | 62.89 311 | 94.97 316 | 79.04 274 | 80.24 265 | 91.62 266 |
|
FMVSNet1 | | | 83.94 289 | 81.32 297 | 91.80 233 | 91.94 287 | 88.81 177 | 96.77 263 | 95.25 291 | 77.98 322 | 78.25 306 | 90.25 306 | 50.37 350 | 94.97 316 | 73.27 316 | 77.81 282 | 91.62 266 |
|
CHOSEN 1792x2688 | | | 94.35 105 | 93.82 109 | 95.95 124 | 97.40 131 | 88.74 180 | 98.41 173 | 98.27 26 | 92.18 74 | 91.43 158 | 96.40 189 | 78.88 208 | 99.81 66 | 93.59 126 | 97.81 116 | 99.30 100 |
|
UGNet | | | 91.91 161 | 90.85 167 | 95.10 147 | 97.06 145 | 88.69 181 | 98.01 211 | 98.24 28 | 92.41 69 | 92.39 147 | 93.61 236 | 60.52 320 | 99.68 82 | 88.14 188 | 97.25 128 | 96.92 211 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TranMVSNet+NR-MVSNet | | | 87.75 233 | 86.31 238 | 92.07 228 | 90.81 301 | 88.56 182 | 98.33 183 | 97.18 165 | 87.76 198 | 81.87 266 | 93.90 228 | 72.45 253 | 95.43 307 | 83.13 245 | 71.30 332 | 92.23 248 |
|
BH-RMVSNet | | | 91.25 172 | 89.99 180 | 95.03 152 | 96.75 154 | 88.55 183 | 98.65 142 | 94.95 300 | 87.74 200 | 87.74 200 | 97.80 131 | 68.27 281 | 98.14 171 | 80.53 267 | 97.49 125 | 98.41 167 |
|
MDTV_nov1_ep13 | | | | 90.47 177 | | 96.14 180 | 88.55 183 | 91.34 336 | 97.51 125 | 89.58 141 | 92.24 148 | 90.50 303 | 86.99 103 | 97.61 209 | 77.64 284 | 92.34 186 | |
|
UA-Net | | | 93.30 132 | 92.62 131 | 95.34 142 | 96.27 170 | 88.53 185 | 95.88 294 | 96.97 185 | 90.90 103 | 95.37 104 | 97.07 167 | 82.38 181 | 99.10 142 | 83.91 237 | 94.86 162 | 98.38 170 |
|
HPM-MVS_fast | | | 94.89 87 | 94.62 84 | 95.70 131 | 99.11 78 | 88.44 186 | 99.14 89 | 97.11 172 | 85.82 233 | 95.69 99 | 98.47 111 | 83.46 157 | 99.32 131 | 93.16 133 | 99.63 50 | 99.35 95 |
|
Vis-MVSNet |  | | 92.64 144 | 91.85 147 | 95.03 152 | 95.12 215 | 88.23 187 | 98.48 166 | 96.81 189 | 91.61 83 | 92.16 149 | 97.22 159 | 71.58 264 | 98.00 184 | 85.85 215 | 97.81 116 | 98.88 138 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CS-MVS-test | | | 95.20 81 | 95.27 74 | 94.98 154 | 95.67 193 | 88.17 188 | 99.62 27 | 95.84 257 | 91.52 86 | 97.42 55 | 98.30 118 | 85.07 139 | 97.51 215 | 95.81 82 | 98.20 112 | 99.26 105 |
|
DROMVSNet | | | 95.09 84 | 95.17 77 | 94.84 158 | 95.42 202 | 88.17 188 | 99.48 42 | 95.92 244 | 91.47 88 | 97.34 59 | 98.36 115 | 82.77 171 | 97.41 222 | 97.24 52 | 98.58 105 | 98.94 134 |
|
gm-plane-assit | | | | | | 94.69 234 | 88.14 190 | | | 88.22 185 | | 97.20 160 | | 98.29 167 | 90.79 156 | | |
|
ACMMP |  | | 94.67 97 | 94.30 90 | 95.79 128 | 99.25 69 | 88.13 191 | 98.41 173 | 98.67 20 | 90.38 116 | 91.43 158 | 98.72 92 | 82.22 183 | 99.95 34 | 93.83 122 | 95.76 154 | 99.29 101 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
tfpnnormal | | | 83.65 290 | 81.35 296 | 90.56 258 | 91.37 296 | 88.06 192 | 97.29 242 | 97.87 52 | 78.51 321 | 76.20 312 | 90.91 283 | 64.78 305 | 96.47 258 | 61.71 351 | 73.50 312 | 87.13 346 |
|
HyFIR lowres test | | | 93.68 121 | 93.29 117 | 94.87 156 | 97.57 128 | 88.04 193 | 98.18 195 | 98.47 22 | 87.57 205 | 91.24 163 | 95.05 211 | 85.49 133 | 97.46 218 | 93.22 132 | 92.82 177 | 99.10 119 |
|
TR-MVS | | | 90.77 180 | 89.44 187 | 94.76 160 | 96.31 169 | 88.02 194 | 97.92 215 | 95.96 238 | 85.52 236 | 88.22 198 | 97.23 158 | 66.80 293 | 98.09 175 | 84.58 226 | 92.38 185 | 98.17 182 |
|
GA-MVS | | | 90.10 194 | 88.69 202 | 94.33 175 | 92.44 279 | 87.97 195 | 99.08 95 | 96.26 221 | 89.65 137 | 86.92 210 | 93.11 250 | 68.09 282 | 96.96 235 | 82.54 251 | 90.15 213 | 98.05 183 |
|
ECVR-MVS |  | | 92.29 152 | 91.33 157 | 95.15 146 | 96.41 164 | 87.84 196 | 98.10 204 | 94.84 303 | 90.82 105 | 91.42 160 | 97.28 152 | 65.61 301 | 98.49 160 | 90.33 160 | 97.19 130 | 99.12 117 |
|
APD-MVS_3200maxsize | | | 95.64 73 | 95.65 69 | 95.62 132 | 99.24 70 | 87.80 197 | 98.42 171 | 97.22 159 | 88.93 161 | 96.64 81 | 98.98 65 | 85.49 133 | 99.36 125 | 96.68 62 | 99.27 79 | 99.70 61 |
|
MVS_111021_LR | | | 95.78 69 | 95.94 56 | 95.28 144 | 98.19 111 | 87.69 198 | 98.80 124 | 99.26 7 | 93.39 46 | 95.04 110 | 98.69 96 | 84.09 150 | 99.76 72 | 96.96 60 | 99.06 85 | 98.38 170 |
|
VDDNet | | | 90.08 195 | 88.54 208 | 94.69 164 | 94.41 239 | 87.68 199 | 98.21 193 | 96.40 211 | 76.21 331 | 93.33 136 | 97.75 134 | 54.93 338 | 98.77 150 | 94.71 109 | 90.96 206 | 97.61 195 |
|
TAMVS | | | 92.62 145 | 92.09 143 | 94.20 180 | 94.10 244 | 87.68 199 | 98.41 173 | 96.97 185 | 87.53 207 | 89.74 186 | 96.04 198 | 84.77 145 | 96.49 257 | 88.97 182 | 92.31 187 | 98.42 166 |
|
cl22 | | | 89.57 202 | 88.79 200 | 91.91 229 | 97.94 117 | 87.62 201 | 97.98 213 | 96.51 205 | 85.03 246 | 82.37 253 | 91.79 267 | 83.65 153 | 96.50 255 | 85.96 210 | 77.89 278 | 91.61 269 |
|
v2v482 | | | 87.27 241 | 85.76 246 | 91.78 237 | 89.59 314 | 87.58 202 | 98.56 156 | 95.54 275 | 84.53 254 | 82.51 249 | 91.78 268 | 73.11 248 | 96.47 258 | 82.07 254 | 74.14 307 | 91.30 283 |
|
ADS-MVSNet | | | 88.99 208 | 87.30 223 | 94.07 184 | 96.21 173 | 87.56 203 | 87.15 347 | 96.78 191 | 83.01 277 | 89.91 184 | 87.27 333 | 78.87 209 | 97.01 234 | 74.20 309 | 92.27 188 | 97.64 191 |
|
PLC |  | 91.07 3 | 94.23 107 | 94.01 100 | 94.87 156 | 99.17 75 | 87.49 204 | 99.25 73 | 96.55 202 | 88.43 178 | 91.26 162 | 98.21 124 | 85.92 125 | 99.86 56 | 89.77 168 | 97.57 121 | 97.24 202 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MAR-MVS | | | 94.43 103 | 94.09 98 | 95.45 138 | 99.10 80 | 87.47 205 | 98.39 179 | 97.79 63 | 88.37 180 | 94.02 126 | 99.17 39 | 78.64 213 | 99.91 42 | 92.48 140 | 98.85 94 | 98.96 129 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
tpmrst | | | 92.78 141 | 92.16 140 | 94.65 165 | 96.27 170 | 87.45 206 | 91.83 332 | 97.10 175 | 89.10 154 | 94.68 115 | 90.69 290 | 88.22 75 | 97.73 203 | 89.78 167 | 91.80 196 | 98.77 151 |
|
DP-MVS | | | 88.75 219 | 86.56 235 | 95.34 142 | 98.92 89 | 87.45 206 | 97.64 232 | 93.52 332 | 70.55 346 | 81.49 271 | 97.25 156 | 74.43 235 | 99.88 48 | 71.14 324 | 94.09 167 | 98.67 156 |
|
Fast-Effi-MVS+ | | | 91.72 163 | 90.79 171 | 94.49 170 | 95.89 185 | 87.40 208 | 99.54 38 | 95.70 264 | 85.01 248 | 89.28 191 | 95.68 202 | 77.75 217 | 97.57 213 | 83.22 242 | 95.06 160 | 98.51 163 |
|
test1111 | | | 92.12 156 | 91.19 160 | 94.94 155 | 96.15 178 | 87.36 209 | 98.12 200 | 94.84 303 | 90.85 104 | 90.97 166 | 97.26 155 | 65.60 302 | 98.37 163 | 89.74 169 | 97.14 133 | 99.07 123 |
|
MIMVSNet | | | 84.48 281 | 81.83 291 | 92.42 220 | 91.73 291 | 87.36 209 | 85.52 350 | 94.42 316 | 81.40 301 | 81.91 264 | 87.58 328 | 51.92 346 | 92.81 340 | 73.84 312 | 88.15 219 | 97.08 208 |
|
IS-MVSNet | | | 93.00 139 | 92.51 133 | 94.49 170 | 96.14 180 | 87.36 209 | 98.31 186 | 95.70 264 | 88.58 169 | 90.17 180 | 97.50 146 | 83.02 167 | 97.22 226 | 87.06 197 | 96.07 150 | 98.90 137 |
|
testdata | | | | | 95.26 145 | 98.20 109 | 87.28 212 | | 97.60 103 | 85.21 241 | 98.48 28 | 99.15 43 | 88.15 77 | 98.72 155 | 90.29 161 | 99.45 66 | 99.78 42 |
|
test-LLR | | | 93.11 138 | 92.68 129 | 94.40 173 | 94.94 227 | 87.27 213 | 99.15 86 | 97.25 154 | 90.21 120 | 91.57 154 | 94.04 221 | 84.89 142 | 97.58 210 | 85.94 211 | 96.13 146 | 98.36 173 |
|
test-mter | | | 93.27 134 | 92.89 126 | 94.40 173 | 94.94 227 | 87.27 213 | 99.15 86 | 97.25 154 | 88.95 159 | 91.57 154 | 94.04 221 | 88.03 80 | 97.58 210 | 85.94 211 | 96.13 146 | 98.36 173 |
|
SR-MVS-dyc-post | | | 95.75 72 | 95.86 59 | 95.41 140 | 99.22 71 | 87.26 215 | 98.40 176 | 97.21 160 | 89.63 138 | 96.67 79 | 98.97 66 | 86.73 108 | 99.36 125 | 96.62 63 | 99.31 76 | 99.60 77 |
|
RE-MVS-def | | | | 95.70 66 | | 99.22 71 | 87.26 215 | 98.40 176 | 97.21 160 | 89.63 138 | 96.67 79 | 98.97 66 | 85.24 138 | | 96.62 63 | 99.31 76 | 99.60 77 |
|
test1172 | | | 95.92 63 | 96.07 53 | 95.46 137 | 99.42 54 | 87.24 217 | 98.51 161 | 97.24 156 | 90.29 119 | 96.56 82 | 99.12 48 | 86.73 108 | 99.36 125 | 97.33 51 | 99.42 71 | 99.78 42 |
|
v1144 | | | 86.83 246 | 85.31 253 | 91.40 239 | 89.75 312 | 87.21 218 | 98.31 186 | 95.45 280 | 83.22 274 | 82.70 246 | 90.78 286 | 73.36 244 | 96.36 265 | 79.49 271 | 74.69 298 | 90.63 305 |
|
OMC-MVS | | | 93.90 114 | 93.62 112 | 94.73 163 | 98.63 99 | 87.00 219 | 98.04 210 | 96.56 201 | 92.19 73 | 92.46 145 | 98.73 90 | 79.49 205 | 99.14 140 | 92.16 143 | 94.34 166 | 98.03 184 |
|
abl_6 | | | 94.63 99 | 94.48 87 | 95.09 148 | 98.61 101 | 86.96 220 | 98.06 209 | 96.97 185 | 89.31 148 | 95.86 95 | 98.56 103 | 79.82 200 | 99.64 90 | 94.53 113 | 98.65 104 | 98.66 159 |
|
miper_ehance_all_eth | | | 88.94 210 | 88.12 213 | 91.40 239 | 95.32 205 | 86.93 221 | 97.85 220 | 95.55 274 | 84.19 258 | 81.97 263 | 91.50 273 | 84.16 149 | 95.91 293 | 84.69 224 | 77.89 278 | 91.36 280 |
|
v8 | | | 86.11 258 | 84.45 267 | 91.10 244 | 89.99 308 | 86.85 222 | 97.24 246 | 95.36 288 | 81.99 295 | 79.89 288 | 89.86 314 | 74.53 234 | 96.39 263 | 78.83 278 | 72.32 324 | 90.05 317 |
|
CPTT-MVS | | | 94.60 100 | 94.43 89 | 95.09 148 | 99.66 15 | 86.85 222 | 99.44 52 | 97.47 133 | 83.22 274 | 94.34 121 | 98.96 71 | 82.50 176 | 99.55 98 | 94.81 105 | 99.50 62 | 98.88 138 |
|
v10 | | | 85.73 267 | 84.01 273 | 90.87 252 | 90.03 307 | 86.73 224 | 97.20 249 | 95.22 298 | 81.25 303 | 79.85 289 | 89.75 315 | 73.30 247 | 96.28 277 | 76.87 289 | 72.64 319 | 89.61 324 |
|
Vis-MVSNet (Re-imp) | | | 93.26 135 | 93.00 125 | 94.06 185 | 96.14 180 | 86.71 225 | 98.68 138 | 96.70 192 | 88.30 182 | 89.71 188 | 97.64 141 | 85.43 136 | 96.39 263 | 88.06 190 | 96.32 142 | 99.08 121 |
|
EIA-MVS | | | 95.11 83 | 95.27 74 | 94.64 166 | 96.34 168 | 86.51 226 | 99.59 29 | 96.62 194 | 92.51 62 | 94.08 125 | 98.64 98 | 86.05 124 | 98.24 169 | 95.07 100 | 98.50 108 | 99.18 112 |
|
CSCG | | | 94.87 88 | 94.71 83 | 95.36 141 | 99.54 40 | 86.49 227 | 99.34 68 | 98.15 35 | 82.71 284 | 90.15 181 | 99.25 27 | 89.48 59 | 99.86 56 | 94.97 103 | 98.82 97 | 99.72 58 |
|
tttt0517 | | | 93.30 132 | 93.01 124 | 94.17 181 | 95.57 196 | 86.47 228 | 98.51 161 | 97.60 103 | 85.99 231 | 90.55 173 | 97.19 161 | 94.80 9 | 98.31 165 | 85.06 219 | 91.86 194 | 97.74 189 |
|
dp | | | 90.16 193 | 88.83 199 | 94.14 182 | 96.38 167 | 86.42 229 | 91.57 334 | 97.06 178 | 84.76 252 | 88.81 193 | 90.19 311 | 84.29 148 | 97.43 221 | 75.05 302 | 91.35 205 | 98.56 161 |
|
v1192 | | | 86.32 256 | 84.71 263 | 91.17 243 | 89.53 317 | 86.40 230 | 98.13 198 | 95.44 282 | 82.52 288 | 82.42 251 | 90.62 295 | 71.58 264 | 96.33 272 | 77.23 285 | 74.88 295 | 90.79 297 |
|
HQP5-MVS | | | | | | | 86.39 231 | | | | | | | | | | |
|
HQP-MVS | | | 91.50 166 | 91.23 159 | 92.29 221 | 93.95 248 | 86.39 231 | 99.16 80 | 96.37 213 | 93.92 32 | 87.57 201 | 96.67 183 | 73.34 245 | 97.77 196 | 93.82 123 | 86.29 226 | 92.72 236 |
|
PatchMatch-RL | | | 91.47 167 | 90.54 175 | 94.26 178 | 98.20 109 | 86.36 233 | 96.94 257 | 97.14 168 | 87.75 199 | 88.98 192 | 95.75 201 | 71.80 261 | 99.40 122 | 80.92 263 | 97.39 127 | 97.02 210 |
|
LS3D | | | 90.19 191 | 88.72 201 | 94.59 168 | 98.97 85 | 86.33 234 | 96.90 259 | 96.60 196 | 74.96 335 | 84.06 232 | 98.74 89 | 75.78 224 | 99.83 61 | 74.93 303 | 97.57 121 | 97.62 194 |
|
CR-MVSNet | | | 88.83 215 | 87.38 222 | 93.16 205 | 93.47 263 | 86.24 235 | 84.97 354 | 94.20 321 | 88.92 162 | 90.76 170 | 86.88 337 | 84.43 146 | 94.82 321 | 70.64 325 | 92.17 191 | 98.41 167 |
|
RPMNet | | | 85.07 273 | 81.88 290 | 94.64 166 | 93.47 263 | 86.24 235 | 84.97 354 | 97.21 160 | 64.85 360 | 90.76 170 | 78.80 358 | 80.95 196 | 99.27 133 | 53.76 361 | 92.17 191 | 98.41 167 |
|
NP-MVS | | | | | | 93.94 251 | 86.22 237 | | | | | 96.67 183 | | | | | |
|
BH-w/o | | | 92.32 151 | 91.79 149 | 93.91 191 | 96.85 150 | 86.18 238 | 99.11 94 | 95.74 262 | 88.13 187 | 84.81 224 | 97.00 170 | 77.26 220 | 97.91 185 | 89.16 180 | 98.03 114 | 97.64 191 |
|
c3_l | | | 88.19 228 | 87.23 225 | 91.06 245 | 94.97 225 | 86.17 239 | 97.72 228 | 95.38 286 | 83.43 271 | 81.68 270 | 91.37 275 | 82.81 170 | 95.72 300 | 84.04 236 | 73.70 309 | 91.29 284 |
|
MSDG | | | 88.29 226 | 86.37 237 | 94.04 187 | 96.90 149 | 86.15 240 | 96.52 273 | 94.36 318 | 77.89 326 | 79.22 296 | 96.95 172 | 69.72 272 | 99.59 96 | 73.20 317 | 92.58 183 | 96.37 221 |
|
CLD-MVS | | | 91.06 174 | 90.71 172 | 92.10 227 | 94.05 247 | 86.10 241 | 99.55 34 | 96.29 220 | 94.16 27 | 84.70 225 | 97.17 163 | 69.62 273 | 97.82 192 | 94.74 107 | 86.08 231 | 92.39 241 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
V42 | | | 87.00 243 | 85.68 248 | 90.98 248 | 89.91 309 | 86.08 242 | 98.32 185 | 95.61 271 | 83.67 268 | 82.72 245 | 90.67 291 | 74.00 242 | 96.53 253 | 81.94 257 | 74.28 304 | 90.32 310 |
|
HQP_MVS | | | 91.26 170 | 90.95 165 | 92.16 225 | 93.84 255 | 86.07 243 | 99.02 102 | 96.30 217 | 93.38 47 | 86.99 208 | 96.52 185 | 72.92 249 | 97.75 201 | 93.46 128 | 86.17 229 | 92.67 238 |
|
plane_prior | | | | | | | 86.07 243 | 99.14 89 | | 93.81 40 | | | | | | 86.26 228 | |
|
plane_prior6 | | | | | | 93.92 252 | 86.02 245 | | | | | | 72.92 249 | | | | |
|
plane_prior3 | | | | | | | 85.91 246 | | | 93.65 42 | 86.99 208 | | | | | | |
|
CostFormer | | | 92.89 140 | 92.48 134 | 94.12 183 | 94.99 224 | 85.89 247 | 92.89 324 | 97.00 184 | 86.98 214 | 95.00 111 | 90.78 286 | 90.05 51 | 97.51 215 | 92.92 137 | 91.73 198 | 98.96 129 |
|
EI-MVSNet | | | 89.87 198 | 89.38 189 | 91.36 241 | 94.32 240 | 85.87 248 | 97.61 233 | 96.59 197 | 85.10 243 | 85.51 220 | 97.10 165 | 81.30 195 | 96.56 251 | 83.85 239 | 83.03 253 | 91.64 264 |
|
IterMVS-LS | | | 88.34 224 | 87.44 220 | 91.04 246 | 94.10 244 | 85.85 249 | 98.10 204 | 95.48 278 | 85.12 242 | 82.03 261 | 91.21 279 | 81.35 194 | 95.63 303 | 83.86 238 | 75.73 290 | 91.63 265 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VDD-MVS | | | 91.24 173 | 90.18 179 | 94.45 172 | 97.08 144 | 85.84 250 | 98.40 176 | 96.10 232 | 86.99 212 | 93.36 135 | 98.16 125 | 54.27 340 | 99.20 134 | 96.59 66 | 90.63 211 | 98.31 176 |
|
plane_prior7 | | | | | | 93.84 255 | 85.73 251 | | | | | | | | | | |
|
EPP-MVSNet | | | 93.75 118 | 93.67 111 | 94.01 188 | 95.86 186 | 85.70 252 | 98.67 140 | 97.66 87 | 84.46 255 | 91.36 161 | 97.18 162 | 91.16 29 | 97.79 194 | 92.93 136 | 93.75 169 | 98.53 162 |
|
v144192 | | | 86.40 254 | 84.89 259 | 90.91 249 | 89.48 318 | 85.59 253 | 98.21 193 | 95.43 283 | 82.45 289 | 82.62 247 | 90.58 298 | 72.79 252 | 96.36 265 | 78.45 280 | 74.04 308 | 90.79 297 |
|
OPM-MVS | | | 89.76 199 | 89.15 193 | 91.57 238 | 90.53 304 | 85.58 254 | 98.11 203 | 95.93 243 | 92.88 58 | 86.05 216 | 96.47 188 | 67.06 292 | 97.87 189 | 89.29 178 | 86.08 231 | 91.26 285 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
tpm2 | | | 91.77 162 | 91.09 161 | 93.82 194 | 94.83 231 | 85.56 255 | 92.51 329 | 97.16 167 | 84.00 261 | 93.83 130 | 90.66 292 | 87.54 88 | 97.17 227 | 87.73 193 | 91.55 201 | 98.72 153 |
|
GeoE | | | 90.60 185 | 89.56 184 | 93.72 197 | 95.10 219 | 85.43 256 | 99.41 58 | 94.94 301 | 83.96 263 | 87.21 207 | 96.83 178 | 74.37 236 | 97.05 233 | 80.50 268 | 93.73 170 | 98.67 156 |
|
cl____ | | | 87.82 230 | 86.79 232 | 90.89 251 | 94.88 229 | 85.43 256 | 97.81 221 | 95.24 294 | 82.91 283 | 80.71 277 | 91.22 278 | 81.97 187 | 95.84 296 | 81.34 260 | 75.06 293 | 91.40 279 |
|
DIV-MVS_self_test | | | 87.82 230 | 86.81 231 | 90.87 252 | 94.87 230 | 85.39 258 | 97.81 221 | 95.22 298 | 82.92 282 | 80.76 276 | 91.31 277 | 81.99 185 | 95.81 298 | 81.36 259 | 75.04 294 | 91.42 278 |
|
tpm cat1 | | | 88.89 211 | 87.27 224 | 93.76 195 | 95.79 187 | 85.32 259 | 90.76 341 | 97.09 176 | 76.14 332 | 85.72 218 | 88.59 324 | 82.92 168 | 98.04 181 | 76.96 288 | 91.43 202 | 97.90 188 |
|
v1921920 | | | 86.02 259 | 84.44 268 | 90.77 254 | 89.32 320 | 85.20 260 | 98.10 204 | 95.35 289 | 82.19 293 | 82.25 255 | 90.71 288 | 70.73 267 | 96.30 276 | 76.85 290 | 74.49 300 | 90.80 296 |
|
pm-mvs1 | | | 84.68 277 | 82.78 283 | 90.40 262 | 89.58 315 | 85.18 261 | 97.31 240 | 94.73 307 | 81.93 297 | 76.05 314 | 92.01 263 | 65.48 303 | 96.11 283 | 78.75 279 | 69.14 335 | 89.91 320 |
|
TAPA-MVS | | 87.50 9 | 90.35 186 | 89.05 194 | 94.25 179 | 98.48 105 | 85.17 262 | 98.42 171 | 96.58 200 | 82.44 290 | 87.24 206 | 98.53 104 | 82.77 171 | 98.84 148 | 59.09 356 | 97.88 115 | 98.72 153 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
v1240 | | | 85.77 266 | 84.11 271 | 90.73 255 | 89.26 321 | 85.15 263 | 97.88 218 | 95.23 297 | 81.89 298 | 82.16 256 | 90.55 300 | 69.60 274 | 96.31 273 | 75.59 300 | 74.87 296 | 90.72 302 |
|
ppachtmachnet_test | | | 83.63 291 | 81.57 294 | 89.80 277 | 89.01 322 | 85.09 264 | 97.13 251 | 94.50 313 | 78.84 318 | 76.14 313 | 91.00 282 | 69.78 271 | 94.61 326 | 63.40 346 | 74.36 302 | 89.71 323 |
|
h-mvs33 | | | 92.47 150 | 91.95 146 | 94.05 186 | 97.13 141 | 85.01 265 | 98.36 181 | 98.08 38 | 93.85 37 | 96.27 84 | 96.73 181 | 83.19 164 | 99.43 118 | 95.81 82 | 68.09 338 | 97.70 190 |
|
Anonymous20240529 | | | 87.66 236 | 85.58 249 | 93.92 190 | 97.59 127 | 85.01 265 | 98.13 198 | 97.13 170 | 66.69 358 | 88.47 196 | 96.01 199 | 55.09 337 | 99.51 105 | 87.00 199 | 84.12 243 | 97.23 203 |
|
EPNet_dtu | | | 92.28 153 | 92.15 141 | 92.70 216 | 97.29 135 | 84.84 267 | 98.64 144 | 97.82 56 | 92.91 56 | 93.02 141 | 97.02 169 | 85.48 135 | 95.70 301 | 72.25 321 | 94.89 161 | 97.55 196 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
BH-untuned | | | 91.46 168 | 90.84 168 | 93.33 202 | 96.51 162 | 84.83 268 | 98.84 121 | 95.50 277 | 86.44 228 | 83.50 235 | 96.70 182 | 75.49 226 | 97.77 196 | 86.78 204 | 97.81 116 | 97.40 197 |
|
tpmvs | | | 89.16 205 | 87.76 215 | 93.35 201 | 97.19 138 | 84.75 269 | 90.58 343 | 97.36 150 | 81.99 295 | 84.56 226 | 89.31 321 | 83.98 151 | 98.17 170 | 74.85 305 | 90.00 214 | 97.12 204 |
|
PVSNet_0 | | 83.28 16 | 87.31 240 | 85.16 254 | 93.74 196 | 94.78 232 | 84.59 270 | 98.91 114 | 98.69 19 | 89.81 133 | 78.59 303 | 93.23 245 | 61.95 315 | 99.34 130 | 94.75 106 | 55.72 360 | 97.30 200 |
|
Anonymous20231211 | | | 84.72 276 | 82.65 287 | 90.91 249 | 97.71 121 | 84.55 271 | 97.28 243 | 96.67 193 | 66.88 357 | 79.18 297 | 90.87 285 | 58.47 324 | 96.60 249 | 82.61 250 | 74.20 305 | 91.59 271 |
|
test0.0.03 1 | | | 88.96 209 | 88.61 204 | 90.03 273 | 91.09 298 | 84.43 272 | 98.97 108 | 97.02 182 | 90.21 120 | 80.29 282 | 96.31 193 | 84.89 142 | 91.93 352 | 72.98 318 | 85.70 234 | 93.73 231 |
|
PS-MVSNAJss | | | 89.54 203 | 89.05 194 | 91.00 247 | 88.77 325 | 84.36 273 | 97.39 237 | 95.97 236 | 88.47 171 | 81.88 265 | 93.80 231 | 82.48 178 | 96.50 255 | 89.34 175 | 83.34 252 | 92.15 251 |
|
pmmvs5 | | | 85.87 261 | 84.40 270 | 90.30 266 | 88.53 329 | 84.23 274 | 98.60 151 | 93.71 328 | 81.53 300 | 80.29 282 | 92.02 262 | 64.51 306 | 95.52 305 | 82.04 256 | 78.34 276 | 91.15 287 |
|
Anonymous202405211 | | | 88.84 213 | 87.03 228 | 94.27 177 | 98.14 113 | 84.18 275 | 98.44 169 | 95.58 273 | 76.79 330 | 89.34 190 | 96.88 176 | 53.42 343 | 99.54 100 | 87.53 196 | 87.12 224 | 99.09 120 |
|
v148 | | | 86.38 255 | 85.06 255 | 90.37 265 | 89.47 319 | 84.10 276 | 98.52 158 | 95.48 278 | 83.80 264 | 80.93 275 | 90.22 309 | 74.60 231 | 96.31 273 | 80.92 263 | 71.55 330 | 90.69 303 |
|
TransMVSNet (Re) | | | 81.97 298 | 79.61 306 | 89.08 294 | 89.70 313 | 84.01 277 | 97.26 244 | 91.85 350 | 78.84 318 | 73.07 334 | 91.62 270 | 67.17 291 | 95.21 313 | 67.50 335 | 59.46 355 | 88.02 337 |
|
FMVSNet5 | | | 82.29 296 | 80.54 300 | 87.52 309 | 93.79 258 | 84.01 277 | 93.73 317 | 92.47 341 | 76.92 329 | 74.27 324 | 86.15 342 | 63.69 310 | 89.24 358 | 69.07 330 | 74.79 297 | 89.29 328 |
|
our_test_3 | | | 84.47 282 | 82.80 281 | 89.50 286 | 89.01 322 | 83.90 279 | 97.03 254 | 94.56 312 | 81.33 302 | 75.36 321 | 90.52 301 | 71.69 262 | 94.54 327 | 68.81 331 | 76.84 287 | 90.07 315 |
|
MVP-Stereo | | | 86.61 251 | 85.83 245 | 88.93 298 | 88.70 327 | 83.85 280 | 96.07 289 | 94.41 317 | 82.15 294 | 75.64 319 | 91.96 265 | 67.65 287 | 96.45 260 | 77.20 287 | 98.72 101 | 86.51 349 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IterMVS | | | 85.81 264 | 84.67 264 | 89.22 291 | 93.51 262 | 83.67 281 | 96.32 278 | 94.80 305 | 85.09 244 | 78.69 299 | 90.17 312 | 66.57 296 | 93.17 337 | 79.48 272 | 77.42 284 | 90.81 295 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
USDC | | | 84.74 275 | 82.93 279 | 90.16 268 | 91.73 291 | 83.54 282 | 95.00 305 | 93.30 334 | 88.77 165 | 73.19 330 | 93.30 243 | 53.62 342 | 97.65 206 | 75.88 298 | 81.54 263 | 89.30 327 |
|
D2MVS | | | 87.96 229 | 87.39 221 | 89.70 280 | 91.84 289 | 83.40 283 | 98.31 186 | 98.49 21 | 88.04 190 | 78.23 307 | 90.26 305 | 73.57 243 | 96.79 243 | 84.21 230 | 83.53 249 | 88.90 332 |
|
Baseline_NR-MVSNet | | | 85.83 263 | 84.82 261 | 88.87 299 | 88.73 326 | 83.34 284 | 98.63 146 | 91.66 351 | 80.41 313 | 82.44 250 | 91.35 276 | 74.63 229 | 95.42 308 | 84.13 232 | 71.39 331 | 87.84 338 |
|
WR-MVS_H | | | 86.53 253 | 85.49 251 | 89.66 283 | 91.04 299 | 83.31 285 | 97.53 235 | 98.20 31 | 84.95 249 | 79.64 290 | 90.90 284 | 78.01 216 | 95.33 310 | 76.29 295 | 72.81 317 | 90.35 309 |
|
LTVRE_ROB | | 81.71 19 | 84.59 279 | 82.72 285 | 90.18 267 | 92.89 276 | 83.18 286 | 93.15 322 | 94.74 306 | 78.99 317 | 75.14 322 | 92.69 255 | 65.64 300 | 97.63 207 | 69.46 329 | 81.82 262 | 89.74 321 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PatchT | | | 85.44 270 | 83.19 277 | 92.22 222 | 93.13 272 | 83.00 287 | 83.80 360 | 96.37 213 | 70.62 345 | 90.55 173 | 79.63 357 | 84.81 144 | 94.87 319 | 58.18 358 | 91.59 200 | 98.79 148 |
|
anonymousdsp | | | 86.69 248 | 85.75 247 | 89.53 285 | 86.46 345 | 82.94 288 | 96.39 275 | 95.71 263 | 83.97 262 | 79.63 291 | 90.70 289 | 68.85 276 | 95.94 289 | 86.01 208 | 84.02 244 | 89.72 322 |
|
ACMH | | 83.09 17 | 84.60 278 | 82.61 288 | 90.57 257 | 93.18 271 | 82.94 288 | 96.27 279 | 94.92 302 | 81.01 306 | 72.61 337 | 93.61 236 | 56.54 329 | 97.79 194 | 74.31 308 | 81.07 264 | 90.99 291 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS-SCA-FT | | | 85.73 267 | 84.64 265 | 89.00 296 | 93.46 265 | 82.90 290 | 96.27 279 | 94.70 308 | 85.02 247 | 78.62 301 | 90.35 304 | 66.61 294 | 93.33 334 | 79.38 273 | 77.36 285 | 90.76 299 |
|
F-COLMAP | | | 92.07 158 | 91.75 151 | 93.02 207 | 98.16 112 | 82.89 291 | 98.79 128 | 95.97 236 | 86.54 225 | 87.92 199 | 97.80 131 | 78.69 212 | 99.65 88 | 85.97 209 | 95.93 152 | 96.53 218 |
|
Patchmatch-test | | | 86.25 257 | 84.06 272 | 92.82 211 | 94.42 238 | 82.88 292 | 82.88 361 | 94.23 320 | 71.58 343 | 79.39 294 | 90.62 295 | 89.00 64 | 96.42 262 | 63.03 348 | 91.37 204 | 99.16 113 |
|
Patchmtry | | | 83.61 292 | 81.64 292 | 89.50 286 | 93.36 267 | 82.84 293 | 84.10 357 | 94.20 321 | 69.47 351 | 79.57 292 | 86.88 337 | 84.43 146 | 94.78 322 | 68.48 333 | 74.30 303 | 90.88 294 |
|
CP-MVSNet | | | 86.54 252 | 85.45 252 | 89.79 278 | 91.02 300 | 82.78 294 | 97.38 239 | 97.56 114 | 85.37 239 | 79.53 293 | 93.03 251 | 71.86 260 | 95.25 312 | 79.92 269 | 73.43 315 | 91.34 281 |
|
AUN-MVS | | | 90.17 192 | 89.50 185 | 92.19 224 | 96.21 173 | 82.67 295 | 97.76 226 | 97.53 119 | 88.05 189 | 91.67 152 | 96.15 194 | 83.10 166 | 97.47 217 | 88.11 189 | 66.91 342 | 96.43 219 |
|
eth_miper_zixun_eth | | | 87.76 232 | 87.00 229 | 90.06 270 | 94.67 235 | 82.65 296 | 97.02 256 | 95.37 287 | 84.19 258 | 81.86 268 | 91.58 272 | 81.47 192 | 95.90 294 | 83.24 241 | 73.61 310 | 91.61 269 |
|
hse-mvs2 | | | 91.67 164 | 91.51 155 | 92.15 226 | 96.22 172 | 82.61 297 | 97.74 227 | 97.53 119 | 93.85 37 | 96.27 84 | 96.15 194 | 83.19 164 | 97.44 220 | 95.81 82 | 66.86 343 | 96.40 220 |
|
MS-PatchMatch | | | 86.75 247 | 85.92 244 | 89.22 291 | 91.97 285 | 82.47 298 | 96.91 258 | 96.14 230 | 83.74 265 | 77.73 308 | 93.53 239 | 58.19 325 | 97.37 225 | 76.75 291 | 98.35 110 | 87.84 338 |
|
test_djsdf | | | 88.26 227 | 87.73 216 | 89.84 276 | 88.05 334 | 82.21 299 | 97.77 224 | 96.17 228 | 86.84 217 | 82.41 252 | 91.95 266 | 72.07 257 | 95.99 286 | 89.83 164 | 84.50 240 | 91.32 282 |
|
PS-CasMVS | | | 85.81 264 | 84.58 266 | 89.49 288 | 90.77 302 | 82.11 300 | 97.20 249 | 97.36 150 | 84.83 251 | 79.12 298 | 92.84 254 | 67.42 289 | 95.16 314 | 78.39 281 | 73.25 316 | 91.21 286 |
|
v7n | | | 84.42 283 | 82.75 284 | 89.43 289 | 88.15 332 | 81.86 301 | 96.75 266 | 95.67 267 | 80.53 309 | 78.38 305 | 89.43 319 | 69.89 270 | 96.35 270 | 73.83 313 | 72.13 326 | 90.07 315 |
|
jajsoiax | | | 87.35 239 | 86.51 236 | 89.87 274 | 87.75 339 | 81.74 302 | 97.03 254 | 95.98 235 | 88.47 171 | 80.15 284 | 93.80 231 | 61.47 316 | 96.36 265 | 89.44 173 | 84.47 241 | 91.50 273 |
|
MVS-HIRNet | | | 79.01 311 | 75.13 321 | 90.66 256 | 93.82 257 | 81.69 303 | 85.16 351 | 93.75 327 | 54.54 362 | 74.17 325 | 59.15 366 | 57.46 327 | 96.58 250 | 63.74 345 | 94.38 164 | 93.72 232 |
|
tpm | | | 89.67 200 | 88.95 196 | 91.82 232 | 92.54 278 | 81.43 304 | 92.95 323 | 95.92 244 | 87.81 196 | 90.50 175 | 89.44 318 | 84.99 140 | 95.65 302 | 83.67 240 | 82.71 256 | 98.38 170 |
|
PMMVS | | | 93.62 124 | 93.90 108 | 92.79 212 | 96.79 153 | 81.40 305 | 98.85 119 | 96.81 189 | 91.25 96 | 96.82 75 | 98.15 126 | 77.02 221 | 98.13 172 | 93.15 134 | 96.30 144 | 98.83 144 |
|
mvs_tets | | | 87.09 242 | 86.22 239 | 89.71 279 | 87.87 335 | 81.39 306 | 96.73 268 | 95.90 250 | 88.19 186 | 79.99 286 | 93.61 236 | 59.96 322 | 96.31 273 | 89.40 174 | 84.34 242 | 91.43 277 |
|
ACMM | | 86.95 13 | 88.77 218 | 88.22 212 | 90.43 261 | 93.61 260 | 81.34 307 | 98.50 163 | 95.92 244 | 87.88 195 | 83.85 234 | 95.20 209 | 67.20 290 | 97.89 187 | 86.90 202 | 84.90 237 | 92.06 255 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PEN-MVS | | | 85.21 272 | 83.93 274 | 89.07 295 | 89.89 311 | 81.31 308 | 97.09 252 | 97.24 156 | 84.45 256 | 78.66 300 | 92.68 256 | 68.44 280 | 94.87 319 | 75.98 297 | 70.92 333 | 91.04 290 |
|
XVG-OURS | | | 90.83 179 | 90.49 176 | 91.86 230 | 95.23 207 | 81.25 309 | 95.79 299 | 95.92 244 | 88.96 158 | 90.02 183 | 98.03 127 | 71.60 263 | 99.35 129 | 91.06 151 | 87.78 221 | 94.98 227 |
|
miper_lstm_enhance | | | 86.90 244 | 86.20 240 | 89.00 296 | 94.53 237 | 81.19 310 | 96.74 267 | 95.24 294 | 82.33 291 | 80.15 284 | 90.51 302 | 81.99 185 | 94.68 325 | 80.71 265 | 73.58 311 | 91.12 288 |
|
pmmvs-eth3d | | | 78.71 314 | 76.16 318 | 86.38 316 | 80.25 363 | 81.19 310 | 94.17 313 | 92.13 346 | 77.97 323 | 66.90 352 | 82.31 350 | 55.76 331 | 92.56 344 | 73.63 315 | 62.31 351 | 85.38 353 |
|
XVG-OURS-SEG-HR | | | 90.95 177 | 90.66 174 | 91.83 231 | 95.18 212 | 81.14 312 | 95.92 291 | 95.92 244 | 88.40 179 | 90.33 179 | 97.85 128 | 70.66 269 | 99.38 123 | 92.83 138 | 88.83 217 | 94.98 227 |
|
ACMP | | 87.39 10 | 88.71 220 | 88.24 211 | 90.12 269 | 93.91 253 | 81.06 313 | 98.50 163 | 95.67 267 | 89.43 146 | 80.37 280 | 95.55 203 | 65.67 299 | 97.83 191 | 90.55 158 | 84.51 239 | 91.47 274 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LPG-MVS_test | | | 88.86 212 | 88.47 209 | 90.06 270 | 93.35 268 | 80.95 314 | 98.22 191 | 95.94 241 | 87.73 201 | 83.17 240 | 96.11 196 | 66.28 297 | 97.77 196 | 90.19 162 | 85.19 235 | 91.46 275 |
|
LGP-MVS_train | | | | | 90.06 270 | 93.35 268 | 80.95 314 | | 95.94 241 | 87.73 201 | 83.17 240 | 96.11 196 | 66.28 297 | 97.77 196 | 90.19 162 | 85.19 235 | 91.46 275 |
|
UniMVSNet_ETH3D | | | 85.65 269 | 83.79 275 | 91.21 242 | 90.41 306 | 80.75 316 | 95.36 302 | 95.78 259 | 78.76 320 | 81.83 269 | 94.33 219 | 49.86 351 | 96.66 246 | 84.30 228 | 83.52 250 | 96.22 222 |
|
MVS_0304 | | | 84.13 287 | 82.66 286 | 88.52 301 | 93.07 273 | 80.15 317 | 95.81 298 | 98.21 30 | 79.27 315 | 86.85 212 | 86.40 340 | 41.33 362 | 94.69 324 | 76.36 294 | 86.69 225 | 90.73 301 |
|
MDA-MVSNet_test_wron | | | 79.65 309 | 77.05 313 | 87.45 310 | 87.79 338 | 80.13 318 | 96.25 282 | 94.44 314 | 73.87 339 | 51.80 362 | 87.47 332 | 68.04 283 | 92.12 350 | 66.02 340 | 67.79 340 | 90.09 313 |
|
YYNet1 | | | 79.64 310 | 77.04 314 | 87.43 311 | 87.80 337 | 79.98 319 | 96.23 283 | 94.44 314 | 73.83 340 | 51.83 361 | 87.53 329 | 67.96 285 | 92.07 351 | 66.00 341 | 67.75 341 | 90.23 312 |
|
DTE-MVSNet | | | 84.14 286 | 82.80 281 | 88.14 304 | 88.95 324 | 79.87 320 | 96.81 262 | 96.24 222 | 83.50 270 | 77.60 309 | 92.52 258 | 67.89 286 | 94.24 330 | 72.64 320 | 69.05 336 | 90.32 310 |
|
ACMH+ | | 83.78 15 | 84.21 284 | 82.56 289 | 89.15 293 | 93.73 259 | 79.16 321 | 96.43 274 | 94.28 319 | 81.09 305 | 74.00 326 | 94.03 223 | 54.58 339 | 97.67 204 | 76.10 296 | 78.81 273 | 90.63 305 |
|
ADS-MVSNet2 | | | 87.62 237 | 86.88 230 | 89.86 275 | 96.21 173 | 79.14 322 | 87.15 347 | 92.99 335 | 83.01 277 | 89.91 184 | 87.27 333 | 78.87 209 | 92.80 341 | 74.20 309 | 92.27 188 | 97.64 191 |
|
COLMAP_ROB |  | 82.69 18 | 84.54 280 | 82.82 280 | 89.70 280 | 96.72 155 | 78.85 323 | 95.89 292 | 92.83 338 | 71.55 344 | 77.54 310 | 95.89 200 | 59.40 323 | 99.14 140 | 67.26 336 | 88.26 218 | 91.11 289 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AllTest | | | 84.97 274 | 83.12 278 | 90.52 259 | 96.82 151 | 78.84 324 | 95.89 292 | 92.17 344 | 77.96 324 | 75.94 315 | 95.50 204 | 55.48 333 | 99.18 135 | 71.15 322 | 87.14 222 | 93.55 233 |
|
TestCases | | | | | 90.52 259 | 96.82 151 | 78.84 324 | | 92.17 344 | 77.96 324 | 75.94 315 | 95.50 204 | 55.48 333 | 99.18 135 | 71.15 322 | 87.14 222 | 93.55 233 |
|
TinyColmap | | | 80.42 305 | 77.94 309 | 87.85 306 | 92.09 284 | 78.58 326 | 93.74 316 | 89.94 360 | 74.99 334 | 69.77 341 | 91.78 268 | 46.09 356 | 97.58 210 | 65.17 344 | 77.89 278 | 87.38 341 |
|
MDA-MVSNet-bldmvs | | | 77.82 319 | 74.75 323 | 87.03 313 | 88.33 330 | 78.52 327 | 96.34 277 | 92.85 337 | 75.57 333 | 48.87 364 | 87.89 326 | 57.32 328 | 92.49 346 | 60.79 352 | 64.80 347 | 90.08 314 |
|
test_0402 | | | 78.81 313 | 76.33 317 | 86.26 317 | 91.18 297 | 78.44 328 | 95.88 294 | 91.34 355 | 68.55 352 | 70.51 340 | 89.91 313 | 52.65 345 | 94.99 315 | 47.14 364 | 79.78 270 | 85.34 355 |
|
Fast-Effi-MVS+-dtu | | | 88.84 213 | 88.59 206 | 89.58 284 | 93.44 266 | 78.18 329 | 98.65 142 | 94.62 311 | 88.46 173 | 84.12 231 | 95.37 208 | 68.91 275 | 96.52 254 | 82.06 255 | 91.70 199 | 94.06 230 |
|
pmmvs6 | | | 79.90 307 | 77.31 312 | 87.67 308 | 84.17 353 | 78.13 330 | 95.86 296 | 93.68 329 | 67.94 355 | 72.67 336 | 89.62 317 | 50.98 349 | 95.75 299 | 74.80 306 | 66.04 344 | 89.14 330 |
|
DeepPCF-MVS | | 93.56 1 | 96.55 42 | 97.84 9 | 92.68 217 | 98.71 97 | 78.11 331 | 99.70 17 | 97.71 79 | 98.18 1 | 97.36 58 | 99.76 1 | 90.37 48 | 99.94 37 | 99.27 12 | 99.54 61 | 99.99 1 |
|
OpenMVS_ROB |  | 73.86 20 | 77.99 318 | 75.06 322 | 86.77 315 | 83.81 355 | 77.94 332 | 96.38 276 | 91.53 354 | 67.54 356 | 68.38 344 | 87.13 336 | 43.94 358 | 96.08 284 | 55.03 360 | 81.83 261 | 86.29 350 |
|
EG-PatchMatch MVS | | | 79.92 306 | 77.59 310 | 86.90 314 | 87.06 343 | 77.90 333 | 96.20 287 | 94.06 323 | 74.61 336 | 66.53 353 | 88.76 323 | 40.40 364 | 96.20 278 | 67.02 337 | 83.66 248 | 86.61 347 |
|
XVG-ACMP-BASELINE | | | 85.86 262 | 84.95 258 | 88.57 300 | 89.90 310 | 77.12 334 | 94.30 311 | 95.60 272 | 87.40 209 | 82.12 257 | 92.99 253 | 53.42 343 | 97.66 205 | 85.02 220 | 83.83 245 | 90.92 293 |
|
ITE_SJBPF | | | | | 87.93 305 | 92.26 281 | 76.44 335 | | 93.47 333 | 87.67 204 | 79.95 287 | 95.49 206 | 56.50 330 | 97.38 223 | 75.24 301 | 82.33 259 | 89.98 319 |
|
UnsupCasMVSNet_bld | | | 73.85 325 | 70.14 328 | 84.99 324 | 79.44 364 | 75.73 336 | 88.53 345 | 95.24 294 | 70.12 349 | 61.94 358 | 74.81 359 | 41.41 361 | 93.62 332 | 68.65 332 | 51.13 364 | 85.62 352 |
|
MIMVSNet1 | | | 75.92 322 | 73.30 325 | 83.81 331 | 81.29 361 | 75.57 337 | 92.26 330 | 92.05 347 | 73.09 342 | 67.48 350 | 86.18 341 | 40.87 363 | 87.64 362 | 55.78 359 | 70.68 334 | 88.21 336 |
|
CL-MVSNet_self_test | | | 79.89 308 | 78.34 308 | 84.54 328 | 81.56 360 | 75.01 338 | 96.88 260 | 95.62 269 | 81.10 304 | 75.86 317 | 85.81 343 | 68.49 279 | 90.26 356 | 63.21 347 | 56.51 358 | 88.35 335 |
|
UnsupCasMVSNet_eth | | | 78.90 312 | 76.67 316 | 85.58 322 | 82.81 358 | 74.94 339 | 91.98 331 | 96.31 216 | 84.64 253 | 65.84 355 | 87.71 327 | 51.33 347 | 92.23 348 | 72.89 319 | 56.50 359 | 89.56 325 |
|
testgi | | | 82.29 296 | 81.00 299 | 86.17 318 | 87.24 341 | 74.84 340 | 97.39 237 | 91.62 352 | 88.63 166 | 75.85 318 | 95.42 207 | 46.07 357 | 91.55 353 | 66.87 339 | 79.94 269 | 92.12 252 |
|
mvs-test1 | | | 91.57 165 | 92.20 139 | 89.70 280 | 95.15 213 | 74.34 341 | 99.51 40 | 95.40 284 | 91.92 78 | 91.02 165 | 97.25 156 | 74.27 238 | 98.08 178 | 89.45 171 | 95.83 153 | 96.67 212 |
|
pmmvs3 | | | 72.86 326 | 69.76 330 | 82.17 335 | 73.86 367 | 74.19 342 | 94.20 312 | 89.01 364 | 64.23 361 | 67.72 347 | 80.91 354 | 41.48 360 | 88.65 360 | 62.40 349 | 54.02 362 | 83.68 358 |
|
TDRefinement | | | 78.01 317 | 75.31 320 | 86.10 319 | 70.06 369 | 73.84 343 | 93.59 320 | 91.58 353 | 74.51 337 | 73.08 333 | 91.04 281 | 49.63 353 | 97.12 228 | 74.88 304 | 59.47 354 | 87.33 343 |
|
JIA-IIPM | | | 85.97 260 | 84.85 260 | 89.33 290 | 93.23 270 | 73.68 344 | 85.05 353 | 97.13 170 | 69.62 350 | 91.56 156 | 68.03 362 | 88.03 80 | 96.96 235 | 77.89 283 | 93.12 174 | 97.34 199 |
|
CVMVSNet | | | 90.30 188 | 90.91 166 | 88.46 303 | 94.32 240 | 73.58 345 | 97.61 233 | 97.59 107 | 90.16 125 | 88.43 197 | 97.10 165 | 76.83 222 | 92.86 338 | 82.64 249 | 93.54 172 | 98.93 135 |
|
Anonymous20231206 | | | 80.76 303 | 79.42 307 | 84.79 326 | 84.78 351 | 72.98 346 | 96.53 272 | 92.97 336 | 79.56 314 | 74.33 323 | 88.83 322 | 61.27 318 | 92.15 349 | 60.59 353 | 75.92 289 | 89.24 329 |
|
Anonymous20240521 | | | 78.63 315 | 76.90 315 | 83.82 330 | 82.82 357 | 72.86 347 | 95.72 300 | 93.57 331 | 73.55 341 | 72.17 338 | 84.79 345 | 49.69 352 | 92.51 345 | 65.29 343 | 74.50 299 | 86.09 351 |
|
new_pmnet | | | 76.02 321 | 73.71 324 | 82.95 333 | 83.88 354 | 72.85 348 | 91.26 337 | 92.26 343 | 70.44 347 | 62.60 357 | 81.37 352 | 47.64 355 | 92.32 347 | 61.85 350 | 72.10 327 | 83.68 358 |
|
LCM-MVSNet-Re | | | 88.59 221 | 88.61 204 | 88.51 302 | 95.53 199 | 72.68 349 | 96.85 261 | 88.43 365 | 88.45 174 | 73.14 331 | 90.63 294 | 75.82 223 | 94.38 328 | 92.95 135 | 95.71 156 | 98.48 165 |
|
new-patchmatchnet | | | 74.80 324 | 72.40 327 | 81.99 337 | 78.36 366 | 72.20 350 | 94.44 309 | 92.36 342 | 77.06 327 | 63.47 356 | 79.98 356 | 51.04 348 | 88.85 359 | 60.53 354 | 54.35 361 | 84.92 356 |
|
Effi-MVS+-dtu | | | 89.97 197 | 90.68 173 | 87.81 307 | 95.15 213 | 71.98 351 | 97.87 219 | 95.40 284 | 91.92 78 | 87.57 201 | 91.44 274 | 74.27 238 | 96.84 239 | 89.45 171 | 93.10 175 | 94.60 229 |
|
EGC-MVSNET | | | 60.70 330 | 55.37 334 | 76.72 342 | 86.35 346 | 71.08 352 | 89.96 344 | 84.44 371 | 0.38 376 | 1.50 377 | 84.09 347 | 37.30 365 | 88.10 361 | 40.85 366 | 73.44 314 | 70.97 364 |
|
test20.03 | | | 78.51 316 | 77.48 311 | 81.62 338 | 83.07 356 | 71.03 353 | 96.11 288 | 92.83 338 | 81.66 299 | 69.31 342 | 89.68 316 | 57.53 326 | 87.29 363 | 58.65 357 | 68.47 337 | 86.53 348 |
|
SixPastTwentyTwo | | | 82.63 295 | 81.58 293 | 85.79 320 | 88.12 333 | 71.01 354 | 95.17 304 | 92.54 340 | 84.33 257 | 72.93 335 | 92.08 260 | 60.41 321 | 95.61 304 | 74.47 307 | 74.15 306 | 90.75 300 |
|
OurMVSNet-221017-0 | | | 84.13 287 | 83.59 276 | 85.77 321 | 87.81 336 | 70.24 355 | 94.89 306 | 93.65 330 | 86.08 230 | 76.53 311 | 93.28 244 | 61.41 317 | 96.14 282 | 80.95 262 | 77.69 283 | 90.93 292 |
|
K. test v3 | | | 81.04 302 | 79.77 305 | 84.83 325 | 87.41 340 | 70.23 356 | 95.60 301 | 93.93 325 | 83.70 267 | 67.51 349 | 89.35 320 | 55.76 331 | 93.58 333 | 76.67 292 | 68.03 339 | 90.67 304 |
|
Patchmatch-RL test | | | 81.90 300 | 80.13 303 | 87.23 312 | 80.71 362 | 70.12 357 | 84.07 358 | 88.19 366 | 83.16 276 | 70.57 339 | 82.18 351 | 87.18 98 | 92.59 343 | 82.28 253 | 62.78 348 | 98.98 127 |
|
lessismore_v0 | | | | | 85.08 323 | 85.59 349 | 69.28 358 | | 90.56 358 | | 67.68 348 | 90.21 310 | 54.21 341 | 95.46 306 | 73.88 311 | 62.64 349 | 90.50 307 |
|
KD-MVS_self_test | | | 77.47 320 | 75.88 319 | 82.24 334 | 81.59 359 | 68.93 359 | 92.83 327 | 94.02 324 | 77.03 328 | 73.14 331 | 83.39 348 | 55.44 335 | 90.42 355 | 67.95 334 | 57.53 357 | 87.38 341 |
|
LF4IMVS | | | 81.94 299 | 81.17 298 | 84.25 329 | 87.23 342 | 68.87 360 | 93.35 321 | 91.93 349 | 83.35 273 | 75.40 320 | 93.00 252 | 49.25 354 | 96.65 247 | 78.88 277 | 78.11 277 | 87.22 345 |
|
EU-MVSNet | | | 84.19 285 | 84.42 269 | 83.52 332 | 88.64 328 | 67.37 361 | 96.04 290 | 95.76 261 | 85.29 240 | 78.44 304 | 93.18 246 | 70.67 268 | 91.48 354 | 75.79 299 | 75.98 288 | 91.70 263 |
|
PM-MVS | | | 74.88 323 | 72.85 326 | 80.98 340 | 78.98 365 | 64.75 362 | 90.81 340 | 85.77 368 | 80.95 307 | 68.23 346 | 82.81 349 | 29.08 368 | 92.84 339 | 76.54 293 | 62.46 350 | 85.36 354 |
|
RPSCF | | | 85.33 271 | 85.55 250 | 84.67 327 | 94.63 236 | 62.28 363 | 93.73 317 | 93.76 326 | 74.38 338 | 85.23 223 | 97.06 168 | 64.09 307 | 98.31 165 | 80.98 261 | 86.08 231 | 93.41 235 |
|
DSMNet-mixed | | | 81.60 301 | 81.43 295 | 82.10 336 | 84.36 352 | 60.79 364 | 93.63 319 | 86.74 367 | 79.00 316 | 79.32 295 | 87.15 335 | 63.87 309 | 89.78 357 | 66.89 338 | 91.92 193 | 95.73 225 |
|
CMPMVS |  | 58.40 21 | 80.48 304 | 80.11 304 | 81.59 339 | 85.10 350 | 59.56 365 | 94.14 314 | 95.95 240 | 68.54 353 | 60.71 359 | 93.31 242 | 55.35 336 | 97.87 189 | 83.06 246 | 84.85 238 | 87.33 343 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Gipuma |  | | 54.77 333 | 52.22 337 | 62.40 350 | 86.50 344 | 59.37 366 | 50.20 368 | 90.35 359 | 36.52 366 | 41.20 367 | 49.49 368 | 18.33 372 | 81.29 365 | 32.10 368 | 65.34 345 | 46.54 368 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ambc | | | | | 79.60 341 | 72.76 368 | 56.61 367 | 76.20 363 | 92.01 348 | | 68.25 345 | 80.23 355 | 23.34 369 | 94.73 323 | 73.78 314 | 60.81 352 | 87.48 340 |
|
test_method | | | 70.10 328 | 68.66 331 | 74.41 344 | 86.30 347 | 55.84 368 | 94.47 308 | 89.82 361 | 35.18 367 | 66.15 354 | 84.75 346 | 30.54 367 | 77.96 368 | 70.40 328 | 60.33 353 | 89.44 326 |
|
PMMVS2 | | | 58.97 332 | 55.07 335 | 70.69 347 | 62.72 370 | 55.37 369 | 85.97 349 | 80.52 372 | 49.48 363 | 45.94 365 | 68.31 361 | 15.73 374 | 80.78 366 | 49.79 363 | 37.12 367 | 75.91 361 |
|
ANet_high | | | 50.71 335 | 46.17 338 | 64.33 349 | 44.27 377 | 52.30 370 | 76.13 364 | 78.73 373 | 64.95 359 | 27.37 370 | 55.23 367 | 14.61 375 | 67.74 370 | 36.01 367 | 18.23 370 | 72.95 363 |
|
DeepMVS_CX |  | | | | 76.08 343 | 90.74 303 | 51.65 371 | | 90.84 357 | 86.47 227 | 57.89 360 | 87.98 325 | 35.88 366 | 92.60 342 | 65.77 342 | 65.06 346 | 83.97 357 |
|
LCM-MVSNet | | | 60.07 331 | 56.37 333 | 71.18 345 | 54.81 375 | 48.67 372 | 82.17 362 | 89.48 363 | 37.95 365 | 49.13 363 | 69.12 360 | 13.75 376 | 81.76 364 | 59.28 355 | 51.63 363 | 83.10 360 |
|
MVE |  | 44.00 22 | 41.70 337 | 37.64 342 | 53.90 353 | 49.46 376 | 43.37 373 | 65.09 367 | 66.66 376 | 26.19 371 | 25.77 372 | 48.53 369 | 3.58 379 | 63.35 372 | 26.15 370 | 27.28 368 | 54.97 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
FPMVS | | | 61.57 329 | 60.32 332 | 65.34 348 | 60.14 373 | 42.44 374 | 91.02 339 | 89.72 362 | 44.15 364 | 42.63 366 | 80.93 353 | 19.02 370 | 80.59 367 | 42.50 365 | 72.76 318 | 73.00 362 |
|
tmp_tt | | | 53.66 334 | 52.86 336 | 56.05 351 | 32.75 379 | 41.97 375 | 73.42 365 | 76.12 375 | 21.91 372 | 39.68 368 | 96.39 191 | 42.59 359 | 65.10 371 | 78.00 282 | 14.92 372 | 61.08 365 |
|
E-PMN | | | 41.02 338 | 40.93 340 | 41.29 354 | 61.97 371 | 33.83 376 | 84.00 359 | 65.17 377 | 27.17 369 | 27.56 369 | 46.72 370 | 17.63 373 | 60.41 373 | 19.32 371 | 18.82 369 | 29.61 369 |
|
PMVS |  | 41.42 23 | 45.67 336 | 42.50 339 | 55.17 352 | 34.28 378 | 32.37 377 | 66.24 366 | 78.71 374 | 30.72 368 | 22.04 373 | 59.59 365 | 4.59 377 | 77.85 369 | 27.49 369 | 58.84 356 | 55.29 366 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
EMVS | | | 39.96 339 | 39.88 341 | 40.18 355 | 59.57 374 | 32.12 378 | 84.79 356 | 64.57 378 | 26.27 370 | 26.14 371 | 44.18 373 | 18.73 371 | 59.29 374 | 17.03 372 | 17.67 371 | 29.12 370 |
|
N_pmnet | | | 70.19 327 | 69.87 329 | 71.12 346 | 88.24 331 | 30.63 379 | 95.85 297 | 28.70 379 | 70.18 348 | 68.73 343 | 86.55 339 | 64.04 308 | 93.81 331 | 53.12 362 | 73.46 313 | 88.94 331 |
|
wuyk23d | | | 16.71 342 | 16.73 346 | 16.65 356 | 60.15 372 | 25.22 380 | 41.24 369 | 5.17 380 | 6.56 373 | 5.48 376 | 3.61 376 | 3.64 378 | 22.72 375 | 15.20 373 | 9.52 373 | 1.99 373 |
|
test123 | | | 16.58 343 | 19.47 345 | 7.91 357 | 3.59 381 | 5.37 381 | 94.32 310 | 1.39 382 | 2.49 375 | 13.98 375 | 44.60 372 | 2.91 380 | 2.65 376 | 11.35 375 | 0.57 375 | 15.70 371 |
|
testmvs | | | 18.81 341 | 23.05 344 | 6.10 358 | 4.48 380 | 2.29 382 | 97.78 223 | 3.00 381 | 3.27 374 | 18.60 374 | 62.71 363 | 1.53 381 | 2.49 377 | 14.26 374 | 1.80 374 | 13.50 372 |
|
test_blank | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet_test | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
cdsmvs_eth3d_5k | | | 22.52 340 | 30.03 343 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 97.17 166 | 0.00 377 | 0.00 378 | 98.77 86 | 74.35 237 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
pcd_1.5k_mvsjas | | | 6.87 345 | 9.16 348 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 82.48 178 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet-low-res | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uncertanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
Regformer | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
ab-mvs-re | | | 8.21 344 | 10.94 347 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 98.50 107 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
PC_three_1452 | | | | | | | | | | 94.60 20 | 99.41 2 | 99.12 48 | 95.50 6 | 99.96 30 | 99.84 2 | 99.92 3 | 99.97 7 |
|
eth-test2 | | | | | | 0.00 382 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 382 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 97.72 75 | 94.17 25 | 99.23 7 | 99.54 3 | 93.14 23 | 99.98 10 | 99.70 3 | 99.82 19 | 99.99 1 |
|
9.14 | | | | 96.87 27 | | 99.34 58 | | 99.50 41 | 97.49 130 | 89.41 147 | 98.59 25 | 99.43 18 | 89.78 54 | 99.69 79 | 98.69 21 | 99.62 51 | |
|
test_0728_THIRD | | | | | | | | | | 93.01 51 | 99.07 10 | 99.46 11 | 94.66 12 | 99.97 23 | 99.25 14 | 99.82 19 | 99.95 15 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.84 141 |
|
sam_mvs1 | | | | | | | | | | | | | 88.39 73 | | | | 98.84 141 |
|
sam_mvs | | | | | | | | | | | | | 87.08 99 | | | | |
|
MTGPA |  | | | | | | | | 97.45 136 | | | | | | | | |
|
test_post1 | | | | | | | | 90.74 342 | | | | 41.37 374 | 85.38 137 | 96.36 265 | 83.16 243 | | |
|
test_post | | | | | | | | | | | | 46.00 371 | 87.37 92 | 97.11 229 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 84.86 344 | 88.73 67 | 96.81 241 | | | |
|
MTMP | | | | | | | | 99.21 74 | 91.09 356 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 98.60 23 | 99.87 9 | 99.90 24 |
|
agg_prior2 | | | | | | | | | | | | | | | 97.84 45 | 99.87 9 | 99.91 22 |
|
test_prior2 | | | | | | | | 99.57 31 | | 91.43 90 | 98.12 37 | 98.97 66 | 90.43 43 | | 98.33 34 | 99.81 23 | |
|
旧先验2 | | | | | | | | 98.67 140 | | 85.75 234 | 98.96 14 | | | 98.97 146 | 93.84 121 | | |
|
新几何2 | | | | | | | | 98.26 189 | | | | | | | | | |
|
无先验 | | | | | | | | 98.52 158 | 97.82 56 | 87.20 211 | | | | 99.90 44 | 87.64 194 | | 99.85 33 |
|
原ACMM2 | | | | | | | | 98.69 136 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.88 48 | 84.16 231 | | |
|
segment_acmp | | | | | | | | | | | | | 90.56 42 | | | | |
|
testdata1 | | | | | | | | 97.89 216 | | 92.43 65 | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.30 217 | | | | | 97.75 201 | 93.46 128 | 86.17 229 | 92.67 238 |
|
plane_prior4 | | | | | | | | | | | | 96.52 185 | | | | | |
|
plane_prior2 | | | | | | | | 99.02 102 | | 93.38 47 | | | | | | | |
|
plane_prior1 | | | | | | 93.90 254 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 383 | | | | | | | | |
|
nn | | | | | | | | | 0.00 383 | | | | | | | | |
|
door-mid | | | | | | | | | 84.90 370 | | | | | | | | |
|
test11 | | | | | | | | | 97.68 84 | | | | | | | | |
|
door | | | | | | | | | 85.30 369 | | | | | | | | |
|
HQP-NCC | | | | | | 93.95 248 | | 99.16 80 | | 93.92 32 | 87.57 201 | | | | | | |
|
ACMP_Plane | | | | | | 93.95 248 | | 99.16 80 | | 93.92 32 | 87.57 201 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 93.82 123 | | |
|
HQP4-MVS | | | | | | | | | | | 87.57 201 | | | 97.77 196 | | | 92.72 236 |
|
HQP3-MVS | | | | | | | | | 96.37 213 | | | | | | | 86.29 226 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.34 245 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 257 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 83.83 245 | |
|
Test By Simon | | | | | | | | | | | | | 83.62 154 | | | | |
|