This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 797.25 1799.68 198.25 10299.10 199.76 1297.78 6296.61 498.15 3199.53 793.62 14100.00 191.79 13799.80 2399.94 14
OPU-MVS99.49 299.64 2098.51 299.77 999.19 3295.12 699.97 2099.90 199.92 399.99 1
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1797.98 4397.18 295.96 8299.33 2192.62 22100.00 198.99 1399.93 199.98 6
MVS93.92 10892.28 13298.83 495.69 18196.82 596.22 27298.17 3184.89 23884.34 21798.61 9979.32 19699.83 5793.88 11299.43 6499.86 28
test_0728_SECOND98.77 599.66 1596.37 1199.72 1497.68 8099.98 1099.64 599.82 1599.96 8
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 897.99 4297.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2597.73 7191.05 9098.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
DELS-MVS97.12 2496.60 3598.68 898.03 11096.57 899.84 397.84 5296.36 895.20 9998.24 11688.17 7399.83 5796.11 7299.60 5299.64 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet97.00 2796.49 3798.55 998.86 8896.10 1399.83 597.52 11595.90 997.21 5398.90 7682.66 16599.93 3598.71 1698.80 9499.63 69
WTY-MVS95.97 5995.11 7698.54 1097.62 11996.65 699.44 4898.74 1392.25 6895.21 9898.46 11186.56 11199.46 11195.00 9492.69 17099.50 82
HY-MVS88.56 795.29 7794.23 8998.48 1197.72 11596.41 1094.03 30198.74 1392.42 6495.65 9294.76 20486.52 11299.49 10495.29 8892.97 16699.53 78
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9199.06 994.45 2296.42 7798.70 9288.81 6399.74 7095.35 8699.86 1099.97 7
DPE-MVS98.11 598.00 598.44 1399.50 4395.39 1899.29 6697.72 7394.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
SED-MVS98.18 298.10 498.41 1499.63 2195.24 2199.77 997.72 7394.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
DVP-MVS98.07 698.00 598.29 1599.66 1595.20 2699.72 1497.47 12693.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 60
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12797.29 399.03 9697.11 16495.83 1098.97 1199.14 4382.48 16899.60 9198.60 1999.08 8098.00 175
canonicalmvs95.02 8393.96 10098.20 1797.53 12495.92 1498.71 12696.19 21991.78 7695.86 8798.49 10779.53 19499.03 13996.12 7191.42 19399.66 65
3Dnovator+87.72 893.43 12391.84 14398.17 1895.73 18095.08 2998.92 10897.04 17191.42 8581.48 25997.60 13774.60 22099.79 6590.84 14698.97 8599.64 67
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4194.76 3999.19 7097.75 6595.66 1398.21 3099.29 2291.10 2899.99 597.68 4399.87 799.68 61
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 697.88 4896.54 598.84 1499.46 1192.55 2399.98 1098.25 3499.93 199.94 14
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2794.45 4798.85 11497.64 8896.51 795.88 8599.39 1987.35 9399.99 596.61 6099.69 3799.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS97.22 2196.92 2498.12 2299.11 7394.88 3299.44 4897.45 12889.60 12898.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6994.97 3099.47 4097.52 11589.85 12098.79 1699.46 1190.41 4499.69 7598.78 1599.67 3899.70 57
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13696.96 499.01 9997.04 17195.51 1698.86 1399.11 5082.19 17499.36 12098.59 2198.14 10798.00 175
alignmvs95.77 6995.00 7898.06 2597.35 12795.68 1699.71 1697.50 12191.50 8196.16 7898.61 9986.28 11899.00 14096.19 7091.74 18799.51 81
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9594.73 4199.13 8797.38 13988.44 16598.53 2499.39 1989.66 5599.69 7598.43 2799.61 5199.61 72
SMA-MVScopyleft97.24 1896.99 2398.00 2799.30 6094.20 5399.16 7597.65 8789.55 13299.22 799.52 990.34 4699.99 598.32 3299.83 1399.82 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DP-MVS Recon95.85 6495.15 7597.95 2899.87 294.38 5099.60 2797.48 12486.58 21194.42 11099.13 4587.36 9299.98 1093.64 11798.33 10699.48 85
PAPR96.35 4795.82 6097.94 2999.63 2194.19 5499.42 5397.55 10992.43 6193.82 12399.12 4687.30 9499.91 3894.02 10999.06 8199.74 51
131493.44 12291.98 14197.84 3095.24 19394.38 5096.22 27297.92 4690.18 11182.28 24197.71 13277.63 20899.80 6491.94 13698.67 9899.34 94
test1297.83 3199.33 5994.45 4797.55 10997.56 4688.60 6599.50 10399.71 3499.55 77
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8993.55 6498.88 11397.59 10190.66 9697.98 4099.14 4386.59 109100.00 196.47 6499.46 6099.89 23
SD-MVS97.51 1297.40 1497.81 3299.01 7993.79 6199.33 6497.38 13993.73 3898.83 1599.02 5790.87 3399.88 4498.69 1799.74 2899.77 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5393.85 5999.65 2395.45 26795.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7597.74 6791.28 8798.40 2699.29 2289.95 4999.98 1098.20 3599.70 3599.94 14
APDe-MVS97.53 1197.47 1097.70 3699.58 2993.63 6299.56 3297.52 11593.59 4198.01 3999.12 4690.80 3599.55 9499.26 1099.79 2599.93 17
CDPH-MVS96.56 4096.18 4597.70 3699.59 2893.92 5799.13 8797.44 13289.02 14497.90 4399.22 2988.90 6299.49 10494.63 10299.79 2599.68 61
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1993.21 7199.70 1798.13 3694.61 1997.78 4599.46 1189.85 5099.81 6297.97 3899.91 499.88 24
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4293.58 6399.16 7597.44 13290.08 11698.59 2299.07 5189.06 5999.42 11497.92 3999.66 3999.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
sss94.85 8693.94 10297.58 4096.43 15794.09 5698.93 10699.16 889.50 13395.27 9797.85 12381.50 18199.65 8492.79 13194.02 15998.99 118
PAPM96.35 4795.94 5597.58 4094.10 22895.25 2098.93 10698.17 3194.26 2393.94 11998.72 8989.68 5497.88 18196.36 6799.29 7499.62 71
train_agg97.20 2297.08 1997.57 4299.57 3393.17 7299.38 5697.66 8290.18 11198.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
VNet95.08 8294.26 8897.55 4398.07 10993.88 5898.68 13398.73 1590.33 10797.16 5597.43 14479.19 19799.53 9796.91 5691.85 18599.24 103
Regformer-196.97 2896.80 3097.47 4499.46 4793.11 7498.89 11197.94 4492.89 5296.90 5899.02 5789.78 5199.53 9797.06 4999.26 7699.75 48
lupinMVS96.32 4995.94 5597.44 4595.05 20894.87 3399.86 296.50 19893.82 3698.04 3798.77 8385.52 12598.09 16896.98 5498.97 8599.37 91
Regformer-296.94 3196.78 3197.42 4699.46 4792.97 8198.89 11197.93 4592.86 5496.88 5999.02 5789.74 5399.53 9797.03 5099.26 7699.75 48
112195.19 8094.45 8597.42 4698.88 8692.58 8996.22 27297.75 6585.50 22696.86 6299.01 6188.59 6799.90 4087.64 18299.60 5299.79 34
新几何197.40 4898.92 8492.51 9197.77 6485.52 22496.69 7299.06 5388.08 7699.89 4384.88 21099.62 4799.79 34
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 7293.49 6798.52 15397.50 12194.46 2198.99 1098.64 9691.58 2599.08 13898.49 2499.83 1399.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
agg_prior197.12 2497.03 2197.38 5099.54 3692.66 8499.35 6197.64 8890.38 10597.98 4099.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
3Dnovator87.35 1193.17 13391.77 14597.37 5195.41 19093.07 7698.82 11797.85 5191.53 8082.56 23597.58 13971.97 24599.82 6091.01 14399.23 7899.22 106
MP-MVS-pluss95.80 6795.30 7197.29 5298.95 8392.66 8498.59 14897.14 16088.95 14793.12 12999.25 2585.62 12499.94 3396.56 6299.48 5999.28 100
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_yl95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9498.70 1686.76 20894.65 10897.74 13087.78 7999.44 11295.57 8292.61 17199.44 87
DCV-MVSNet95.27 7894.60 8297.28 5398.53 9892.98 7999.05 9498.70 1686.76 20894.65 10897.74 13087.78 7999.44 11295.57 8292.61 17199.44 87
EPNet96.82 3496.68 3497.25 5598.65 9393.10 7599.48 3998.76 1296.54 597.84 4498.22 11787.49 8699.66 8095.35 8697.78 11399.00 117
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS96.65 3896.46 3897.21 5699.34 5391.77 9499.70 1798.05 3886.48 21498.05 3699.20 3189.33 5799.96 2798.38 2899.62 4799.90 20
CANet_DTU94.31 10293.35 11197.20 5797.03 14094.71 4298.62 14295.54 26295.61 1497.21 5398.47 10971.88 24699.84 5588.38 17397.46 12097.04 198
QAPM91.41 16189.49 17797.17 5895.66 18393.42 6898.60 14697.51 11880.92 29481.39 26097.41 14572.89 23899.87 4782.33 24098.68 9798.21 170
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8691.62 9999.58 2996.54 19695.09 1896.84 6598.63 9891.16 2699.77 6799.04 1296.42 13199.81 31
114514_t94.06 10493.05 11897.06 6099.08 7692.26 9298.97 10397.01 17582.58 27492.57 13598.22 11780.68 18799.30 12789.34 16399.02 8399.63 69
jason95.40 7694.86 7997.03 6192.91 25994.23 5299.70 1796.30 20993.56 4296.73 7198.52 10381.46 18397.91 17896.08 7398.47 10398.96 121
jason: jason.
test_prior397.07 2697.09 1897.01 6299.58 2991.77 9499.57 3097.57 10691.43 8398.12 3498.97 6390.43 4099.49 10498.33 3099.81 1999.79 34
test_prior97.01 6299.58 2991.77 9497.57 10699.49 10499.79 34
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12691.46 10399.75 1397.66 8294.14 2898.13 3299.26 2492.16 2499.66 8097.91 4099.64 4399.90 20
Skip Steuart: Steuart Systems R&D Blog.
xiu_mvs_v1_base_debu94.73 8993.98 9796.99 6595.19 19695.24 2198.62 14296.50 19892.99 4897.52 4798.83 8072.37 24199.15 13297.03 5096.74 12696.58 204
xiu_mvs_v1_base94.73 8993.98 9796.99 6595.19 19695.24 2198.62 14296.50 19892.99 4897.52 4798.83 8072.37 24199.15 13297.03 5096.74 12696.58 204
xiu_mvs_v1_base_debi94.73 8993.98 9796.99 6595.19 19695.24 2198.62 14296.50 19892.99 4897.52 4798.83 8072.37 24199.15 13297.03 5096.74 12696.58 204
GG-mvs-BLEND96.98 6896.53 15494.81 3887.20 32997.74 6793.91 12096.40 17996.56 296.94 22595.08 9198.95 8899.20 107
thres20093.69 11592.59 12896.97 6997.76 11494.74 4099.35 6199.36 289.23 13791.21 15496.97 16383.42 15398.77 14585.08 20790.96 19697.39 187
zzz-MVS96.21 5395.96 5496.96 7099.29 6191.19 10898.69 13197.45 12892.58 5694.39 11199.24 2786.43 11599.99 596.22 6899.40 6899.71 55
MTAPA96.09 5595.80 6396.96 7099.29 6191.19 10897.23 23597.45 12892.58 5694.39 11199.24 2786.43 11599.99 596.22 6899.40 6899.71 55
ZNCC-MVS96.09 5595.81 6296.95 7299.42 4991.19 10899.55 3397.53 11389.72 12395.86 8798.94 7586.59 10999.97 2095.13 9099.56 5599.68 61
Regformer-396.50 4296.36 4196.91 7399.34 5391.72 9798.71 12697.90 4792.48 6096.00 7998.95 7088.60 6599.52 10096.44 6598.83 9199.49 83
GST-MVS95.97 5995.66 6696.90 7499.49 4591.22 10699.45 4797.48 12489.69 12495.89 8498.72 8986.37 11799.95 3094.62 10399.22 7999.52 79
thres100view90093.34 12792.15 13796.90 7497.62 11994.84 3599.06 9399.36 287.96 18090.47 16596.78 17083.29 15698.75 14784.11 22190.69 19897.12 193
tfpn200view993.43 12392.27 13396.90 7497.68 11794.84 3599.18 7299.36 288.45 16290.79 15796.90 16683.31 15498.75 14784.11 22190.69 19897.12 193
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 12099.47 4097.81 5790.54 10196.88 5999.05 5487.57 8399.96 2795.65 7799.72 3099.78 38
#test#96.48 4396.34 4296.90 7499.69 990.96 12099.53 3697.81 5790.94 9496.88 5999.05 5487.57 8399.96 2795.87 7699.72 3099.78 38
gg-mvs-nofinetune90.00 18787.71 20796.89 7996.15 16994.69 4385.15 33597.74 6768.32 33692.97 13360.16 34696.10 396.84 22793.89 11198.87 8999.14 110
Regformer-496.45 4596.33 4396.81 8099.34 5391.44 10498.71 12697.88 4892.43 6195.97 8198.95 7088.42 6999.51 10196.40 6698.83 9199.49 83
XVS96.47 4496.37 4096.77 8199.62 2590.66 12899.43 5197.58 10392.41 6596.86 6298.96 6887.37 8999.87 4795.65 7799.43 6499.78 38
X-MVStestdata90.69 17588.66 19496.77 8199.62 2590.66 12899.43 5197.58 10392.41 6596.86 6229.59 35787.37 8999.87 4795.65 7799.43 6499.78 38
thres600view793.18 13292.00 14096.75 8397.62 11994.92 3199.07 9199.36 287.96 18090.47 16596.78 17083.29 15698.71 15182.93 23590.47 20296.61 202
PVSNet_Blended95.94 6195.66 6696.75 8398.77 9091.61 10099.88 198.04 3993.64 4094.21 11497.76 12883.50 15099.87 4797.41 4597.75 11498.79 139
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 13099.47 4097.80 5990.54 10196.83 6799.03 5686.51 11399.95 3095.65 7799.72 3099.75 48
thres40093.39 12592.27 13396.73 8597.68 11794.84 3599.18 7299.36 288.45 16290.79 15796.90 16683.31 15498.75 14784.11 22190.69 19896.61 202
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9791.00 11999.14 8499.45 193.86 3595.15 10098.73 8788.48 6899.76 6897.23 4899.56 5599.40 90
region2R96.30 5096.17 4796.70 8899.70 890.31 13299.46 4597.66 8290.55 10097.07 5699.07 5186.85 10199.97 2095.43 8499.74 2899.81 31
MVS_Test93.67 11892.67 12696.69 8996.72 14992.66 8497.22 23696.03 22587.69 19195.12 10194.03 21281.55 18098.28 16089.17 16796.46 12999.14 110
ab-mvs91.05 16789.17 18396.69 8995.96 17491.72 9792.62 31297.23 15085.61 22389.74 17593.89 21868.55 26599.42 11491.09 14187.84 21098.92 127
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 11394.42 4994.76 29498.36 2392.50 5995.62 9397.52 14097.92 197.38 21298.31 3398.80 9498.20 171
MVSFormer94.71 9294.08 9596.61 9295.05 20894.87 3397.77 21496.17 22086.84 20598.04 3798.52 10385.52 12595.99 27589.83 15498.97 8598.96 121
API-MVS94.78 8794.18 9296.59 9399.21 6890.06 14398.80 11997.78 6283.59 25793.85 12199.21 3083.79 14799.97 2092.37 13399.00 8499.74 51
baseline192.61 14291.28 15196.58 9497.05 13994.63 4497.72 21796.20 21789.82 12188.56 18496.85 16986.85 10197.82 18588.42 17280.10 25897.30 189
PAPM_NR95.43 7395.05 7796.57 9599.42 4990.14 13698.58 15097.51 11890.65 9892.44 13798.90 7687.77 8199.90 4090.88 14599.32 7199.68 61
MP-MVScopyleft96.00 5795.82 6096.54 9699.47 4690.13 13899.36 6097.41 13690.64 9995.49 9498.95 7085.51 12799.98 1096.00 7599.59 5499.52 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS97.77 898.18 296.53 9799.54 3690.14 13699.41 5497.70 7895.46 1798.60 2199.19 3295.71 499.49 10498.15 3699.85 1199.95 11
OpenMVScopyleft85.28 1490.75 17388.84 18996.48 9893.58 24593.51 6698.80 11997.41 13682.59 27378.62 28797.49 14268.00 27099.82 6084.52 21598.55 10196.11 211
DeepC-MVS91.02 494.56 9893.92 10396.46 9997.16 13390.76 12498.39 17497.11 16493.92 3188.66 18398.33 11278.14 20599.85 5495.02 9398.57 10098.78 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS95.85 6495.65 6896.45 10099.50 4389.77 15198.22 18598.90 1189.19 13896.74 7098.95 7085.91 12399.92 3693.94 11099.46 6099.66 65
thisisatest051594.75 8894.19 9096.43 10196.13 17392.64 8899.47 4097.60 9787.55 19493.17 12897.59 13894.71 998.42 15588.28 17493.20 16398.24 168
LFMVS92.23 14990.84 16096.42 10298.24 10391.08 11698.24 18496.22 21683.39 26094.74 10698.31 11361.12 30398.85 14294.45 10692.82 16799.32 95
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15599.70 1797.61 9590.07 11796.00 7999.16 3987.43 8799.92 3696.03 7499.72 3099.70 57
mPP-MVS95.90 6395.75 6496.38 10499.58 2989.41 15999.26 6797.41 13690.66 9694.82 10498.95 7086.15 12099.98 1095.24 8999.64 4399.74 51
CNLPA93.64 11992.74 12496.36 10598.96 8290.01 14699.19 7095.89 24286.22 21789.40 17898.85 7980.66 18899.84 5588.57 17196.92 12599.24 103
PVSNet_Blended_VisFu94.67 9394.11 9396.34 10697.14 13491.10 11499.32 6597.43 13492.10 7291.53 14896.38 18283.29 15699.68 7893.42 12296.37 13298.25 167
PVSNet87.13 1293.69 11592.83 12396.28 10797.99 11190.22 13599.38 5698.93 1091.42 8593.66 12497.68 13371.29 25399.64 8687.94 17997.20 12398.98 119
1112_ss92.71 13891.55 14996.20 10895.56 18591.12 11298.48 16194.69 29388.29 17186.89 19998.50 10587.02 9898.66 15284.75 21189.77 20598.81 137
原ACMM196.18 10999.03 7890.08 13997.63 9288.98 14597.00 5798.97 6388.14 7599.71 7388.23 17599.62 4798.76 143
Test_1112_low_res92.27 14890.97 15696.18 10995.53 18791.10 11498.47 16394.66 29488.28 17286.83 20193.50 23087.00 9998.65 15384.69 21289.74 20698.80 138
EI-MVSNet-Vis-set95.76 7095.63 7096.17 11199.14 7190.33 13198.49 16097.82 5491.92 7394.75 10598.88 7887.06 9799.48 10995.40 8597.17 12498.70 146
PCF-MVS89.78 591.26 16289.63 17596.16 11295.44 18991.58 10295.29 29096.10 22385.07 23382.75 23197.45 14378.28 20499.78 6680.60 25595.65 14897.12 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
AdaColmapbinary93.82 11293.06 11796.10 11399.88 189.07 16198.33 17797.55 10986.81 20790.39 16798.65 9575.09 21799.98 1093.32 12397.53 11899.26 102
SR-MVS96.13 5496.16 4996.07 11499.42 4989.04 16298.59 14897.33 14490.44 10396.84 6599.12 4686.75 10399.41 11697.47 4499.44 6399.76 47
Effi-MVS+93.87 11193.15 11696.02 11595.79 17790.76 12496.70 25695.78 24686.98 20295.71 9097.17 15579.58 19298.01 17694.57 10496.09 13999.31 96
ETV-MVS96.00 5796.00 5396.00 11696.56 15391.05 11799.63 2596.61 18793.26 4697.39 5198.30 11486.62 10898.13 16598.07 3797.57 11598.82 136
HPM-MVScopyleft95.41 7595.22 7495.99 11799.29 6189.14 16099.17 7497.09 16887.28 19895.40 9598.48 10884.93 13699.38 11895.64 8199.65 4099.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IB-MVS89.43 692.12 15090.83 16295.98 11895.40 19190.78 12399.81 698.06 3791.23 8985.63 20793.66 22490.63 3798.78 14491.22 14071.85 31598.36 163
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 1792x268894.35 10193.82 10595.95 11997.40 12588.74 17098.41 16898.27 2592.18 7091.43 14996.40 17978.88 19899.81 6293.59 11897.81 11099.30 97
ET-MVSNet_ETH3D92.56 14491.45 15095.88 12096.39 15894.13 5599.46 4596.97 17792.18 7066.94 33398.29 11594.65 1194.28 31794.34 10783.82 23799.24 103
EI-MVSNet-UG-set95.43 7395.29 7295.86 12199.07 7789.87 14798.43 16597.80 5991.78 7694.11 11698.77 8386.25 11999.48 10994.95 9696.45 13098.22 169
CS-MVS95.85 6495.86 5895.82 12296.80 14689.78 15099.84 396.60 18892.60 5596.81 6998.70 9285.04 13498.25 16197.90 4198.43 10499.42 89
diffmvs94.59 9794.19 9095.81 12395.54 18690.69 12698.70 13095.68 25491.61 7895.96 8297.81 12580.11 18998.06 17296.52 6395.76 14598.67 147
ACMMPcopyleft94.67 9394.30 8795.79 12499.25 6488.13 17998.41 16898.67 1990.38 10591.43 14998.72 8982.22 17399.95 3093.83 11495.76 14599.29 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
cascas90.93 17089.33 18195.76 12595.69 18193.03 7898.99 10196.59 19080.49 29686.79 20294.45 20765.23 28898.60 15493.52 11992.18 18095.66 214
baseline93.91 10993.30 11295.72 12695.10 20690.07 14097.48 22595.91 23991.03 9193.54 12597.68 13379.58 19298.02 17594.27 10895.14 15099.08 114
HPM-MVS_fast94.89 8494.62 8195.70 12799.11 7388.44 17699.14 8497.11 16485.82 22195.69 9198.47 10983.46 15299.32 12693.16 12599.63 4699.35 92
APD-MVS_3200maxsize95.64 7295.65 6895.62 12899.24 6587.80 18598.42 16697.22 15188.93 14996.64 7598.98 6285.49 12899.36 12096.68 5799.27 7599.70 57
DWT-MVSNet_test94.36 10093.95 10195.62 12896.99 14189.47 15796.62 25897.38 13990.96 9393.07 13197.27 14793.73 1398.09 16885.86 20393.65 16199.29 98
casdiffmvs93.98 10793.43 11095.61 13095.07 20789.86 14898.80 11995.84 24590.98 9292.74 13497.66 13579.71 19198.10 16794.72 10095.37 14998.87 131
EPMVS92.59 14391.59 14895.59 13197.22 13190.03 14491.78 31798.04 3990.42 10491.66 14490.65 28086.49 11497.46 20981.78 24796.31 13499.28 100
TESTMET0.1,193.82 11293.26 11495.49 13295.21 19590.25 13399.15 8197.54 11289.18 13991.79 14194.87 20289.13 5897.63 20086.21 19696.29 13698.60 150
test117295.92 6296.07 5295.46 13399.42 4987.24 20498.51 15697.24 14890.29 10896.56 7699.12 4686.73 10599.36 12097.33 4799.42 6799.78 38
MAR-MVS94.43 9994.09 9495.45 13499.10 7587.47 19398.39 17497.79 6188.37 16894.02 11899.17 3778.64 20399.91 3892.48 13298.85 9098.96 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest053094.00 10693.52 10995.43 13595.76 17990.02 14598.99 10197.60 9786.58 21191.74 14297.36 14694.78 898.34 15686.37 19592.48 17497.94 177
SR-MVS-dyc-post95.75 7195.86 5895.41 13699.22 6687.26 20298.40 17197.21 15289.63 12696.67 7398.97 6386.73 10599.36 12096.62 5899.31 7299.60 73
CSCG94.87 8594.71 8095.36 13799.54 3686.49 21499.34 6398.15 3482.71 27290.15 17099.25 2589.48 5699.86 5294.97 9598.82 9399.72 54
UA-Net93.30 12892.62 12795.34 13896.27 16288.53 17595.88 28296.97 17790.90 9595.37 9697.07 15982.38 17199.10 13783.91 22594.86 15398.38 160
DP-MVS88.75 20986.56 22495.34 13898.92 8487.45 19497.64 22193.52 31470.55 32881.49 25897.25 14874.43 22399.88 4471.14 31294.09 15898.67 147
MVS_111021_LR95.78 6895.94 5595.28 14098.19 10687.69 18698.80 11999.26 793.39 4395.04 10298.69 9484.09 14599.76 6896.96 5599.06 8198.38 160
testdata95.26 14198.20 10487.28 19997.60 9785.21 22998.48 2599.15 4188.15 7498.72 15090.29 15199.45 6299.78 38
UGNet91.91 15490.85 15995.10 14297.06 13888.69 17198.01 20298.24 2792.41 6592.39 13893.61 22560.52 30499.68 7888.14 17697.25 12296.92 200
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
abl_694.63 9594.48 8495.09 14398.61 9686.96 20798.06 20096.97 17789.31 13695.86 8798.56 10179.82 19099.64 8694.53 10598.65 9998.66 149
CPTT-MVS94.60 9694.43 8695.09 14399.66 1586.85 20999.44 4897.47 12683.22 26294.34 11398.96 6882.50 16699.55 9494.81 9799.50 5898.88 129
mvs_anonymous92.50 14591.65 14795.06 14596.60 15289.64 15497.06 24196.44 20286.64 21084.14 21893.93 21682.49 16796.17 26891.47 13896.08 14099.35 92
PatchmatchNetpermissive92.05 15291.04 15595.06 14596.17 16889.04 16291.26 32197.26 14589.56 13190.64 16190.56 28688.35 7197.11 21879.53 25896.07 14199.03 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
BH-RMVSNet91.25 16489.99 17295.03 14796.75 14888.55 17398.65 13794.95 28787.74 18887.74 18997.80 12668.27 26798.14 16480.53 25697.49 11998.41 157
Vis-MVSNetpermissive92.64 14091.85 14295.03 14795.12 20288.23 17798.48 16196.81 18191.61 7892.16 14097.22 15171.58 25198.00 17785.85 20497.81 11098.88 129
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HyFIR lowres test93.68 11793.29 11394.87 14997.57 12388.04 18198.18 18998.47 2187.57 19391.24 15395.05 20085.49 12897.46 20993.22 12492.82 16799.10 112
PLCcopyleft91.07 394.23 10394.01 9694.87 14999.17 7087.49 19299.25 6896.55 19588.43 16691.26 15298.21 11985.92 12299.86 5289.77 15797.57 11597.24 191
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SCA90.64 17689.25 18294.83 15194.95 21288.83 16696.26 26997.21 15290.06 11890.03 17190.62 28266.61 28096.81 22983.16 23194.36 15698.84 132
TR-MVS90.77 17289.44 17894.76 15296.31 16188.02 18297.92 20595.96 22985.52 22488.22 18797.23 15066.80 27998.09 16884.58 21492.38 17598.17 172
CDS-MVSNet93.47 12193.04 11994.76 15294.75 21989.45 15898.82 11797.03 17387.91 18290.97 15696.48 17789.06 5996.36 25389.50 15892.81 16998.49 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline294.04 10593.80 10694.74 15493.07 25790.25 13398.12 19498.16 3389.86 11986.53 20396.95 16495.56 598.05 17391.44 13994.53 15495.93 212
OMC-MVS93.90 11093.62 10894.73 15598.63 9487.00 20698.04 20196.56 19492.19 6992.46 13698.73 8779.49 19599.14 13592.16 13594.34 15798.03 174
VDDNet90.08 18688.54 19994.69 15694.41 22587.68 18798.21 18796.40 20376.21 31493.33 12797.75 12954.93 32198.77 14594.71 10190.96 19697.61 184
tpmrst92.78 13792.16 13694.65 15796.27 16287.45 19491.83 31697.10 16789.10 14294.68 10790.69 27788.22 7297.73 19689.78 15691.80 18698.77 142
EIA-MVS95.11 8195.27 7394.64 15896.34 16086.51 21399.59 2896.62 18692.51 5894.08 11798.64 9686.05 12198.24 16295.07 9298.50 10299.18 108
RPMNet85.07 26281.88 27994.64 15893.47 24786.24 22284.97 33797.21 15264.85 34290.76 15978.80 34080.95 18699.27 12853.76 34392.17 18198.41 157
LS3D90.19 18288.72 19294.59 16098.97 8086.33 22196.90 24796.60 18874.96 31884.06 22098.74 8675.78 21499.83 5774.93 29197.57 11597.62 183
RRT_MVS91.95 15391.09 15394.53 16196.71 15195.12 2898.64 13996.23 21589.04 14385.24 21095.06 19987.71 8296.43 24889.10 16982.06 25092.05 244
Fast-Effi-MVS+91.72 15690.79 16394.49 16295.89 17587.40 19699.54 3595.70 25285.01 23689.28 18095.68 19177.75 20797.57 20683.22 23095.06 15198.51 153
IS-MVSNet93.00 13592.51 12994.49 16296.14 17087.36 19798.31 18095.70 25288.58 15790.17 16997.50 14183.02 16097.22 21587.06 18696.07 14198.90 128
VDD-MVS91.24 16590.18 17194.45 16497.08 13785.84 23798.40 17196.10 22386.99 20093.36 12698.16 12054.27 32399.20 12996.59 6190.63 20198.31 166
test-LLR93.11 13492.68 12594.40 16594.94 21387.27 20099.15 8197.25 14690.21 10991.57 14594.04 21084.89 13797.58 20385.94 20096.13 13798.36 163
test-mter93.27 13092.89 12294.40 16594.94 21387.27 20099.15 8197.25 14688.95 14791.57 14594.04 21088.03 7797.58 20385.94 20096.13 13798.36 163
GA-MVS90.10 18588.69 19394.33 16792.44 26387.97 18399.08 9096.26 21389.65 12586.92 19893.11 23768.09 26896.96 22382.54 23990.15 20398.05 173
nrg03090.23 18088.87 18894.32 16891.53 27793.54 6598.79 12395.89 24288.12 17684.55 21594.61 20678.80 20196.88 22692.35 13475.21 28292.53 228
Anonymous20240521188.84 20387.03 21894.27 16998.14 10884.18 26098.44 16495.58 26076.79 31389.34 17996.88 16853.42 32799.54 9687.53 18487.12 21499.09 113
PatchMatch-RL91.47 15990.54 16794.26 17098.20 10486.36 22096.94 24597.14 16087.75 18788.98 18195.75 19071.80 24899.40 11780.92 25297.39 12197.02 199
TAPA-MVS87.50 990.35 17789.05 18594.25 17198.48 10085.17 24898.42 16696.58 19382.44 27887.24 19598.53 10282.77 16498.84 14359.09 33897.88 10998.72 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TAMVS92.62 14192.09 13994.20 17294.10 22887.68 18798.41 16896.97 17787.53 19589.74 17596.04 18784.77 14096.49 24488.97 17092.31 17798.42 156
tttt051793.30 12893.01 12094.17 17395.57 18486.47 21598.51 15697.60 9785.99 21990.55 16297.19 15394.80 798.31 15785.06 20891.86 18497.74 179
dp90.16 18488.83 19094.14 17496.38 15986.42 21691.57 31897.06 17084.76 24088.81 18290.19 29884.29 14397.43 21175.05 29091.35 19598.56 151
CostFormer92.89 13692.48 13094.12 17594.99 21085.89 23492.89 31197.00 17686.98 20295.00 10390.78 27390.05 4897.51 20792.92 12991.73 18898.96 121
ADS-MVSNet88.99 19887.30 21394.07 17696.21 16487.56 19187.15 33096.78 18383.01 26589.91 17387.27 31978.87 19997.01 22274.20 29792.27 17897.64 180
Vis-MVSNet (Re-imp)93.26 13193.00 12194.06 17796.14 17086.71 21298.68 13396.70 18488.30 17089.71 17797.64 13685.43 13196.39 25188.06 17896.32 13399.08 114
MSDG88.29 21586.37 22694.04 17896.90 14286.15 22796.52 26194.36 30277.89 31079.22 28296.95 16469.72 25999.59 9273.20 30592.58 17396.37 209
EPP-MVSNet93.75 11493.67 10794.01 17995.86 17685.70 23998.67 13597.66 8284.46 24391.36 15197.18 15491.16 2697.79 18792.93 12893.75 16098.53 152
FMVSNet388.81 20787.08 21793.99 18096.52 15594.59 4598.08 19896.20 21785.85 22082.12 24491.60 25874.05 22895.40 29779.04 26280.24 25591.99 246
Anonymous2024052987.66 22585.58 23893.92 18197.59 12285.01 25198.13 19297.13 16266.69 34088.47 18596.01 18855.09 32099.51 10187.00 18884.12 23397.23 192
BH-w/o92.32 14691.79 14493.91 18296.85 14386.18 22599.11 8995.74 24988.13 17584.81 21297.00 16277.26 21097.91 17889.16 16898.03 10897.64 180
MVSTER92.71 13892.32 13193.86 18397.29 12992.95 8299.01 9996.59 19090.09 11585.51 20894.00 21494.61 1296.56 23890.77 14883.03 24392.08 242
PVSNet_BlendedMVS93.36 12693.20 11593.84 18498.77 9091.61 10099.47 4098.04 3991.44 8294.21 11492.63 24483.50 15099.87 4797.41 4583.37 24190.05 305
tpm291.77 15591.09 15393.82 18594.83 21785.56 24292.51 31397.16 15984.00 25093.83 12290.66 27987.54 8597.17 21687.73 18191.55 19198.72 144
tpm cat188.89 20187.27 21493.76 18695.79 17785.32 24590.76 32597.09 16876.14 31585.72 20688.59 31282.92 16198.04 17476.96 27691.43 19297.90 178
PVSNet_083.28 1687.31 22985.16 24393.74 18794.78 21884.59 25598.91 10998.69 1889.81 12278.59 28993.23 23461.95 29999.34 12594.75 9855.72 34397.30 189
VPNet88.30 21486.57 22393.49 18891.95 27091.35 10598.18 18997.20 15688.61 15584.52 21694.89 20162.21 29896.76 23289.34 16372.26 31292.36 231
VPA-MVSNet89.10 19787.66 20893.45 18992.56 26191.02 11897.97 20498.32 2486.92 20486.03 20592.01 25068.84 26497.10 22090.92 14475.34 28192.23 236
tpmvs89.16 19687.76 20593.35 19097.19 13284.75 25490.58 32797.36 14281.99 28284.56 21489.31 30983.98 14698.17 16374.85 29390.00 20497.12 193
BH-untuned91.46 16090.84 16093.33 19196.51 15684.83 25398.84 11695.50 26486.44 21683.50 22296.70 17275.49 21697.77 18986.78 19397.81 11097.40 186
FMVSNet286.90 23384.79 25193.24 19295.11 20392.54 9097.67 22095.86 24482.94 26780.55 26591.17 26762.89 29595.29 29977.23 27379.71 26291.90 247
FIs90.70 17489.87 17393.18 19392.29 26491.12 11298.17 19198.25 2689.11 14183.44 22394.82 20382.26 17296.17 26887.76 18082.76 24592.25 234
CR-MVSNet88.83 20587.38 21293.16 19493.47 24786.24 22284.97 33794.20 30588.92 15090.76 15986.88 32384.43 14194.82 30970.64 31392.17 18198.41 157
UniMVSNet (Re)89.50 19588.32 20193.03 19592.21 26690.96 12098.90 11098.39 2289.13 14083.22 22492.03 24881.69 17996.34 25986.79 19272.53 30891.81 248
F-COLMAP92.07 15191.75 14693.02 19698.16 10782.89 27798.79 12395.97 22786.54 21387.92 18897.80 12678.69 20299.65 8485.97 19895.93 14396.53 207
NR-MVSNet87.74 22486.00 23292.96 19791.46 27890.68 12796.65 25797.42 13588.02 17973.42 31393.68 22277.31 20995.83 28584.26 21771.82 31692.36 231
RRT_test8_iter0591.04 16890.40 17092.95 19896.20 16789.75 15298.97 10396.38 20488.52 15882.00 24993.51 22990.69 3696.73 23390.43 15076.91 27692.38 230
XXY-MVS87.75 22286.02 23192.95 19890.46 29089.70 15397.71 21995.90 24084.02 24980.95 26194.05 20967.51 27497.10 22085.16 20678.41 26592.04 245
Patchmatch-test86.25 24684.06 26192.82 20094.42 22482.88 27882.88 34494.23 30471.58 32579.39 28090.62 28289.00 6196.42 24963.03 33091.37 19499.16 109
DU-MVS88.83 20587.51 20992.79 20191.46 27890.07 14098.71 12697.62 9488.87 15183.21 22593.68 22274.63 21895.93 27986.95 18972.47 30992.36 231
PMMVS93.62 12093.90 10492.79 20196.79 14781.40 29098.85 11496.81 18191.25 8896.82 6898.15 12177.02 21198.13 16593.15 12696.30 13598.83 135
UniMVSNet_NR-MVSNet89.60 19288.55 19892.75 20392.17 26790.07 14098.74 12598.15 3488.37 16883.21 22593.98 21582.86 16295.93 27986.95 18972.47 30992.25 234
EPNet_dtu92.28 14792.15 13792.70 20497.29 12984.84 25298.64 13997.82 5492.91 5193.02 13297.02 16185.48 13095.70 28972.25 30994.89 15297.55 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS93.56 196.55 4197.84 892.68 20598.71 9278.11 31699.70 1797.71 7798.18 197.36 5299.76 190.37 4599.94 3399.27 999.54 5799.99 1
FC-MVSNet-test90.22 18189.40 17992.67 20691.78 27489.86 14897.89 20698.22 2888.81 15282.96 23094.66 20581.90 17895.96 27785.89 20282.52 24892.20 238
WR-MVS88.54 21287.22 21692.52 20791.93 27289.50 15698.56 15197.84 5286.99 20081.87 25393.81 21974.25 22795.92 28185.29 20574.43 29092.12 240
MIMVSNet84.48 27081.83 28092.42 20891.73 27587.36 19785.52 33394.42 30081.40 28881.91 25187.58 31651.92 33092.81 32673.84 30088.15 20997.08 197
HQP-MVS91.50 15891.23 15292.29 20993.95 23286.39 21899.16 7596.37 20593.92 3187.57 19096.67 17373.34 23297.77 18993.82 11586.29 21692.72 224
miper_enhance_ethall90.33 17889.70 17492.22 21097.12 13588.93 16498.35 17695.96 22988.60 15683.14 22992.33 24687.38 8896.18 26786.49 19477.89 26891.55 259
PatchT85.44 25983.19 26692.22 21093.13 25683.00 27383.80 34396.37 20570.62 32790.55 16279.63 33984.81 13994.87 30758.18 34091.59 19098.79 139
AUN-MVS90.17 18389.50 17692.19 21296.21 16482.67 28197.76 21697.53 11388.05 17791.67 14396.15 18483.10 15997.47 20888.11 17766.91 32996.43 208
HQP_MVS91.26 16290.95 15792.16 21393.84 23986.07 23099.02 9796.30 20993.38 4486.99 19696.52 17572.92 23697.75 19493.46 12086.17 21992.67 226
CLD-MVS91.06 16690.71 16492.10 21494.05 23186.10 22899.55 3396.29 21294.16 2684.70 21397.17 15569.62 26097.82 18594.74 9986.08 22192.39 229
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet87.75 22286.31 22792.07 21590.81 28688.56 17298.33 17797.18 15787.76 18681.87 25393.90 21772.45 24095.43 29583.13 23371.30 31992.23 236
testing_280.92 29177.24 30091.98 21678.88 34587.83 18493.96 30295.72 25084.27 24656.20 34280.42 33638.64 34896.40 25087.20 18579.85 26091.72 249
cl-mvsnet289.57 19388.79 19191.91 21797.94 11287.62 18997.98 20396.51 19785.03 23482.37 24091.79 25483.65 14896.50 24285.96 19977.89 26891.61 256
XVG-OURS90.83 17190.49 16891.86 21895.23 19481.25 29495.79 28795.92 23588.96 14690.02 17298.03 12271.60 25099.35 12491.06 14287.78 21194.98 215
XVG-OURS-SEG-HR90.95 16990.66 16691.83 21995.18 19981.14 29795.92 27995.92 23588.40 16790.33 16897.85 12370.66 25699.38 11892.83 13088.83 20794.98 215
tpm89.67 19188.95 18791.82 22092.54 26281.43 28992.95 31095.92 23587.81 18490.50 16489.44 30684.99 13595.65 29083.67 22882.71 24698.38 160
pmmvs487.58 22786.17 23091.80 22189.58 30088.92 16597.25 23395.28 27782.54 27580.49 26693.17 23675.62 21596.05 27482.75 23678.90 26390.42 296
GBi-Net86.67 23884.96 24591.80 22195.11 20388.81 16796.77 25095.25 27882.94 26782.12 24490.25 29362.89 29594.97 30479.04 26280.24 25591.62 253
test186.67 23884.96 24591.80 22195.11 20388.81 16796.77 25095.25 27882.94 26782.12 24490.25 29362.89 29594.97 30479.04 26280.24 25591.62 253
FMVSNet183.94 27881.32 28691.80 22191.94 27188.81 16796.77 25095.25 27877.98 30678.25 29290.25 29350.37 33494.97 30473.27 30477.81 27291.62 253
v2v48287.27 23085.76 23591.78 22589.59 29987.58 19098.56 15195.54 26284.53 24282.51 23691.78 25573.11 23596.47 24582.07 24374.14 29691.30 270
OPM-MVS89.76 19089.15 18491.57 22690.53 28985.58 24198.11 19595.93 23492.88 5386.05 20496.47 17867.06 27897.87 18289.29 16686.08 22191.26 273
miper_ehance_all_eth88.94 20088.12 20491.40 22795.32 19286.93 20897.85 21095.55 26184.19 24781.97 25091.50 26084.16 14495.91 28284.69 21277.89 26891.36 267
v114486.83 23585.31 24291.40 22789.75 29787.21 20598.31 18095.45 26783.22 26282.70 23390.78 27373.36 23196.36 25379.49 25974.69 28890.63 293
EI-MVSNet89.87 18989.38 18091.36 22994.32 22685.87 23597.61 22296.59 19085.10 23185.51 20897.10 15781.30 18596.56 23883.85 22783.03 24391.64 251
UniMVSNet_ETH3D85.65 25883.79 26491.21 23090.41 29180.75 30195.36 28995.78 24678.76 30481.83 25694.33 20849.86 33596.66 23484.30 21683.52 24096.22 210
v119286.32 24584.71 25291.17 23189.53 30286.40 21798.13 19295.44 26982.52 27682.42 23890.62 28271.58 25196.33 26077.23 27374.88 28590.79 285
v886.11 24784.45 25691.10 23289.99 29386.85 20997.24 23495.36 27581.99 28279.89 27489.86 30274.53 22296.39 25178.83 26672.32 31190.05 305
cl_fuxian88.19 21787.23 21591.06 23394.97 21186.17 22697.72 21795.38 27383.43 25981.68 25791.37 26282.81 16395.72 28884.04 22473.70 29891.29 271
IterMVS-LS88.34 21387.44 21091.04 23494.10 22885.85 23698.10 19695.48 26585.12 23082.03 24891.21 26681.35 18495.63 29183.86 22675.73 28091.63 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJss89.54 19489.05 18591.00 23588.77 31084.36 25897.39 22695.97 22788.47 15981.88 25293.80 22082.48 16896.50 24289.34 16383.34 24292.15 239
V4287.00 23285.68 23790.98 23689.91 29486.08 22998.32 17995.61 25783.67 25682.72 23290.67 27874.00 22996.53 24081.94 24674.28 29390.32 298
Anonymous2023121184.72 26582.65 27690.91 23797.71 11684.55 25697.28 23196.67 18566.88 33979.18 28390.87 27258.47 30896.60 23682.61 23874.20 29491.59 258
v14419286.40 24384.89 24890.91 23789.48 30385.59 24098.21 18795.43 27082.45 27782.62 23490.58 28572.79 23996.36 25378.45 26874.04 29790.79 285
cl-mvsnet_87.82 21986.79 22290.89 23994.88 21585.43 24397.81 21195.24 28182.91 27180.71 26491.22 26581.97 17795.84 28481.34 24975.06 28391.40 266
cl-mvsnet187.82 21986.81 22190.87 24094.87 21685.39 24497.81 21195.22 28582.92 27080.76 26391.31 26481.99 17595.81 28681.36 24875.04 28491.42 265
v1085.73 25684.01 26290.87 24090.03 29286.73 21197.20 23795.22 28581.25 29079.85 27589.75 30373.30 23496.28 26576.87 27772.64 30789.61 312
v192192086.02 24884.44 25790.77 24289.32 30585.20 24698.10 19695.35 27682.19 28082.25 24290.71 27570.73 25496.30 26476.85 27874.49 28990.80 284
v124085.77 25584.11 26090.73 24389.26 30685.15 24997.88 20895.23 28481.89 28582.16 24390.55 28769.60 26196.31 26175.59 28874.87 28690.72 290
MVS-HIRNet79.01 29975.13 30790.66 24493.82 24181.69 28885.16 33493.75 31054.54 34574.17 31159.15 34857.46 31196.58 23763.74 32894.38 15593.72 220
ACMH83.09 1784.60 26782.61 27790.57 24593.18 25582.94 27496.27 26794.92 28881.01 29272.61 32093.61 22556.54 31397.79 18774.31 29681.07 25490.99 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal83.65 27981.35 28590.56 24691.37 28088.06 18097.29 23097.87 5078.51 30576.20 29890.91 27064.78 28996.47 24561.71 33373.50 30187.13 329
AllTest84.97 26383.12 26790.52 24796.82 14478.84 30995.89 28092.17 32677.96 30875.94 30195.50 19355.48 31799.18 13071.15 31087.14 21293.55 221
TestCases90.52 24796.82 14478.84 30992.17 32677.96 30875.94 30195.50 19355.48 31799.18 13071.15 31087.14 21293.55 221
ACMM86.95 1388.77 20888.22 20390.43 24993.61 24481.34 29298.50 15895.92 23587.88 18383.85 22195.20 19867.20 27697.89 18086.90 19184.90 22792.06 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs184.68 26682.78 27290.40 25089.58 30085.18 24797.31 22994.73 29181.93 28476.05 30092.01 25065.48 28796.11 27278.75 26769.14 32389.91 308
v14886.38 24485.06 24490.37 25189.47 30484.10 26198.52 15395.48 26583.80 25280.93 26290.22 29674.60 22096.31 26180.92 25271.55 31790.69 291
pmmvs585.87 25084.40 25990.30 25288.53 31484.23 25998.60 14693.71 31181.53 28780.29 26892.02 24964.51 29095.52 29382.04 24578.34 26691.15 275
test_part182.56 28380.00 29290.23 25391.26 28183.25 27196.62 25895.60 25864.00 34475.63 30589.93 30053.97 32596.16 27082.26 24270.73 32191.29 271
LTVRE_ROB81.71 1984.59 26882.72 27490.18 25492.89 26083.18 27293.15 30994.74 29078.99 30175.14 30892.69 24265.64 28697.63 20069.46 31481.82 25289.74 309
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 26482.93 26890.16 25591.73 27583.54 26795.00 29293.30 31688.77 15373.19 31493.30 23253.62 32697.65 19975.88 28681.54 25389.30 314
ACMP87.39 1088.71 21088.24 20290.12 25693.91 23781.06 29898.50 15895.67 25589.43 13480.37 26795.55 19265.67 28597.83 18490.55 14984.51 22991.47 261
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth87.76 22187.00 21990.06 25794.67 22182.65 28297.02 24495.37 27484.19 24781.86 25591.58 25981.47 18295.90 28383.24 22973.61 29991.61 256
LPG-MVS_test88.86 20288.47 20090.06 25793.35 25280.95 29998.22 18595.94 23287.73 18983.17 22796.11 18566.28 28397.77 18990.19 15285.19 22591.46 262
LGP-MVS_train90.06 25793.35 25280.95 29995.94 23287.73 18983.17 22796.11 18566.28 28397.77 18990.19 15285.19 22591.46 262
test0.0.03 188.96 19988.61 19590.03 26091.09 28384.43 25798.97 10397.02 17490.21 10980.29 26896.31 18384.89 13791.93 33772.98 30685.70 22493.73 219
jajsoiax87.35 22886.51 22589.87 26187.75 32481.74 28797.03 24295.98 22688.47 15980.15 27093.80 22061.47 30096.36 25389.44 16184.47 23191.50 260
ADS-MVSNet287.62 22686.88 22089.86 26296.21 16479.14 30787.15 33092.99 31783.01 26589.91 17387.27 31978.87 19992.80 32774.20 29792.27 17897.64 180
test_djsdf88.26 21687.73 20689.84 26388.05 31982.21 28497.77 21496.17 22086.84 20582.41 23991.95 25372.07 24495.99 27589.83 15484.50 23091.32 269
ppachtmachnet_test83.63 28081.57 28389.80 26489.01 30785.09 25097.13 23994.50 29778.84 30276.14 29991.00 26969.78 25894.61 31463.40 32974.36 29189.71 311
CP-MVSNet86.54 24185.45 24189.79 26591.02 28582.78 28097.38 22897.56 10885.37 22779.53 27993.03 23871.86 24795.25 30079.92 25773.43 30391.34 268
mvs_tets87.09 23186.22 22889.71 26687.87 32081.39 29196.73 25595.90 24088.19 17479.99 27293.61 22559.96 30696.31 26189.40 16284.34 23291.43 264
D2MVS87.96 21887.39 21189.70 26791.84 27383.40 26898.31 18098.49 2088.04 17878.23 29390.26 29273.57 23096.79 23184.21 21883.53 23988.90 319
mvs-test191.57 15792.20 13589.70 26795.15 20074.34 32599.51 3795.40 27191.92 7391.02 15597.25 14874.27 22598.08 17189.45 15995.83 14496.67 201
COLMAP_ROBcopyleft82.69 1884.54 26982.82 26989.70 26796.72 14978.85 30895.89 28092.83 32071.55 32677.54 29695.89 18959.40 30799.14 13567.26 32088.26 20891.11 277
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H86.53 24285.49 24089.66 27091.04 28483.31 27097.53 22498.20 3084.95 23779.64 27690.90 27178.01 20695.33 29876.29 28372.81 30590.35 297
Fast-Effi-MVS+-dtu88.84 20388.59 19789.58 27193.44 25078.18 31498.65 13794.62 29588.46 16184.12 21995.37 19768.91 26296.52 24182.06 24491.70 18994.06 218
anonymousdsp86.69 23785.75 23689.53 27286.46 33082.94 27496.39 26395.71 25183.97 25179.63 27790.70 27668.85 26395.94 27886.01 19784.02 23489.72 310
our_test_384.47 27182.80 27089.50 27389.01 30783.90 26497.03 24294.56 29681.33 28975.36 30790.52 28871.69 24994.54 31568.81 31676.84 27790.07 303
Patchmtry83.61 28181.64 28189.50 27393.36 25182.84 27984.10 34094.20 30569.47 33379.57 27886.88 32384.43 14194.78 31068.48 31874.30 29290.88 282
PS-CasMVS85.81 25384.58 25589.49 27590.77 28782.11 28597.20 23797.36 14284.83 23979.12 28492.84 24167.42 27595.16 30278.39 26973.25 30491.21 274
v7n84.42 27282.75 27389.43 27688.15 31781.86 28696.75 25395.67 25580.53 29578.38 29189.43 30769.89 25796.35 25873.83 30172.13 31390.07 303
JIA-IIPM85.97 24984.85 24989.33 27793.23 25473.68 32885.05 33697.13 16269.62 33291.56 14768.03 34488.03 7796.96 22377.89 27193.12 16497.34 188
MS-PatchMatch86.75 23685.92 23389.22 27891.97 26982.47 28396.91 24696.14 22283.74 25377.73 29493.53 22858.19 30997.37 21476.75 27998.35 10587.84 322
IterMVS85.81 25384.67 25389.22 27893.51 24683.67 26696.32 26694.80 28985.09 23278.69 28590.17 29966.57 28293.17 32379.48 26077.42 27490.81 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH+83.78 1584.21 27382.56 27889.15 28093.73 24379.16 30696.43 26294.28 30381.09 29174.00 31294.03 21254.58 32297.67 19776.10 28478.81 26490.63 293
TransMVSNet (Re)81.97 28679.61 29489.08 28189.70 29884.01 26297.26 23291.85 33278.84 30273.07 31791.62 25767.17 27795.21 30167.50 31959.46 34088.02 321
PEN-MVS85.21 26183.93 26389.07 28289.89 29681.31 29397.09 24097.24 14884.45 24478.66 28692.68 24368.44 26694.87 30775.98 28570.92 32091.04 278
miper_lstm_enhance86.90 23386.20 22989.00 28394.53 22381.19 29596.74 25495.24 28182.33 27980.15 27090.51 28981.99 17594.68 31380.71 25473.58 30091.12 276
IterMVS-SCA-FT85.73 25684.64 25489.00 28393.46 24982.90 27696.27 26794.70 29285.02 23578.62 28790.35 29166.61 28093.33 32279.38 26177.36 27590.76 287
MVP-Stereo86.61 24085.83 23488.93 28588.70 31283.85 26596.07 27794.41 30182.15 28175.64 30491.96 25267.65 27396.45 24777.20 27598.72 9686.51 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Baseline_NR-MVSNet85.83 25284.82 25088.87 28688.73 31183.34 26998.63 14191.66 33380.41 29782.44 23791.35 26374.63 21895.42 29684.13 22071.39 31887.84 322
XVG-ACMP-BASELINE85.86 25184.95 24788.57 28789.90 29577.12 31994.30 29795.60 25887.40 19782.12 24492.99 24053.42 32797.66 19885.02 20983.83 23590.92 281
MVS_030484.13 27682.66 27588.52 28893.07 25780.15 30295.81 28698.21 2979.27 29986.85 20086.40 32641.33 34594.69 31276.36 28286.69 21590.73 289
LCM-MVSNet-Re88.59 21188.61 19588.51 28995.53 18772.68 33296.85 24888.43 34688.45 16273.14 31590.63 28175.82 21394.38 31692.95 12795.71 14798.48 155
CVMVSNet90.30 17990.91 15888.46 29094.32 22673.58 32997.61 22297.59 10190.16 11488.43 18697.10 15776.83 21292.86 32482.64 23793.54 16298.93 126
DTE-MVSNet84.14 27582.80 27088.14 29188.95 30979.87 30596.81 24996.24 21483.50 25877.60 29592.52 24567.89 27294.24 31872.64 30869.05 32490.32 298
ITE_SJBPF87.93 29292.26 26576.44 32093.47 31587.67 19279.95 27395.49 19556.50 31497.38 21275.24 28982.33 24989.98 307
TinyColmap80.42 29477.94 29687.85 29392.09 26878.58 31193.74 30389.94 34274.99 31769.77 32391.78 25546.09 33997.58 20365.17 32777.89 26887.38 325
Effi-MVS+-dtu89.97 18890.68 16587.81 29495.15 20071.98 33497.87 20995.40 27191.92 7387.57 19091.44 26174.27 22596.84 22789.45 15993.10 16594.60 217
pmmvs679.90 29677.31 29987.67 29584.17 33578.13 31595.86 28493.68 31267.94 33772.67 31989.62 30550.98 33395.75 28774.80 29466.04 33089.14 317
FMVSNet582.29 28480.54 28987.52 29693.79 24284.01 26293.73 30492.47 32376.92 31274.27 31086.15 32863.69 29489.24 34169.07 31574.79 28789.29 315
MDA-MVSNet_test_wron79.65 29777.05 30187.45 29787.79 32380.13 30396.25 27094.44 29873.87 32251.80 34487.47 31868.04 26992.12 33566.02 32467.79 32790.09 301
YYNet179.64 29877.04 30287.43 29887.80 32279.98 30496.23 27194.44 29873.83 32351.83 34387.53 31767.96 27192.07 33666.00 32567.75 32890.23 300
Patchmatch-RL test81.90 28880.13 29087.23 29980.71 34170.12 33984.07 34188.19 34783.16 26470.57 32182.18 33287.18 9592.59 32982.28 24162.78 33498.98 119
MDA-MVSNet-bldmvs77.82 30674.75 30987.03 30088.33 31578.52 31296.34 26592.85 31975.57 31648.87 34687.89 31457.32 31292.49 33160.79 33464.80 33390.08 302
EG-PatchMatch MVS79.92 29577.59 29786.90 30187.06 32877.90 31896.20 27594.06 30774.61 31966.53 33588.76 31140.40 34796.20 26667.02 32183.66 23886.61 330
OpenMVS_ROBcopyleft73.86 2077.99 30575.06 30886.77 30283.81 33777.94 31796.38 26491.53 33667.54 33868.38 32687.13 32243.94 34196.08 27355.03 34281.83 25186.29 333
pmmvs-eth3d78.71 30276.16 30586.38 30380.25 34281.19 29594.17 29992.13 32877.97 30766.90 33482.31 33155.76 31592.56 33073.63 30362.31 33785.38 335
test_040278.81 30176.33 30486.26 30491.18 28278.44 31395.88 28291.34 33768.55 33470.51 32289.91 30152.65 32994.99 30347.14 34679.78 26185.34 337
testgi82.29 28481.00 28886.17 30587.24 32674.84 32497.39 22691.62 33488.63 15475.85 30395.42 19646.07 34091.55 33866.87 32379.94 25992.12 240
TDRefinement78.01 30475.31 30686.10 30670.06 34973.84 32793.59 30791.58 33574.51 32073.08 31691.04 26849.63 33697.12 21774.88 29259.47 33987.33 326
SixPastTwentyTwo82.63 28281.58 28285.79 30788.12 31871.01 33695.17 29192.54 32284.33 24572.93 31892.08 24760.41 30595.61 29274.47 29574.15 29590.75 288
OurMVSNet-221017-084.13 27683.59 26585.77 30887.81 32170.24 33794.89 29393.65 31386.08 21876.53 29793.28 23361.41 30196.14 27180.95 25177.69 27390.93 280
UnsupCasMVSNet_eth78.90 30076.67 30385.58 30982.81 33974.94 32391.98 31596.31 20884.64 24165.84 33687.71 31551.33 33192.23 33372.89 30756.50 34289.56 313
lessismore_v085.08 31085.59 33169.28 34090.56 34067.68 33090.21 29754.21 32495.46 29473.88 29962.64 33590.50 295
UnsupCasMVSNet_bld73.85 31170.14 31484.99 31179.44 34375.73 32188.53 32895.24 28170.12 33161.94 33974.81 34141.41 34493.62 32068.65 31751.13 34785.62 334
K. test v381.04 29079.77 29384.83 31287.41 32570.23 33895.60 28893.93 30883.70 25567.51 33189.35 30855.76 31593.58 32176.67 28068.03 32690.67 292
Anonymous2023120680.76 29279.42 29584.79 31384.78 33372.98 33096.53 26092.97 31879.56 29874.33 30988.83 31061.27 30292.15 33460.59 33575.92 27989.24 316
RPSCF85.33 26085.55 23984.67 31494.63 22262.28 34493.73 30493.76 30974.38 32185.23 21197.06 16064.09 29198.31 15780.98 25086.08 22193.41 223
LF4IMVS81.94 28781.17 28784.25 31587.23 32768.87 34193.35 30891.93 33183.35 26175.40 30693.00 23949.25 33796.65 23578.88 26578.11 26787.22 328
MIMVSNet175.92 30873.30 31183.81 31681.29 34075.57 32292.26 31492.05 32973.09 32467.48 33286.18 32740.87 34687.64 34455.78 34170.68 32288.21 320
EU-MVSNet84.19 27484.42 25883.52 31788.64 31367.37 34296.04 27895.76 24885.29 22878.44 29093.18 23570.67 25591.48 33975.79 28775.98 27891.70 250
new_pmnet76.02 30773.71 31082.95 31883.88 33672.85 33191.26 32192.26 32570.44 32962.60 33881.37 33347.64 33892.32 33261.85 33272.10 31483.68 340
pmmvs372.86 31269.76 31682.17 31973.86 34774.19 32694.20 29889.01 34564.23 34367.72 32980.91 33541.48 34388.65 34362.40 33154.02 34583.68 340
DSMNet-mixed81.60 28981.43 28482.10 32084.36 33460.79 34593.63 30686.74 34879.00 30079.32 28187.15 32163.87 29389.78 34066.89 32291.92 18395.73 213
new-patchmatchnet74.80 31072.40 31381.99 32178.36 34672.20 33394.44 29592.36 32477.06 31163.47 33779.98 33851.04 33288.85 34260.53 33654.35 34484.92 338
test20.0378.51 30377.48 29881.62 32283.07 33871.03 33596.11 27692.83 32081.66 28669.31 32489.68 30457.53 31087.29 34558.65 33968.47 32586.53 331
CMPMVSbinary58.40 2180.48 29380.11 29181.59 32385.10 33259.56 34694.14 30095.95 23168.54 33560.71 34093.31 23155.35 31997.87 18283.06 23484.85 22887.33 326
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS74.88 30972.85 31280.98 32478.98 34464.75 34390.81 32485.77 34980.95 29368.23 32882.81 33029.08 35092.84 32576.54 28162.46 33685.36 336
ambc79.60 32572.76 34856.61 34876.20 34692.01 33068.25 32780.23 33723.34 35194.73 31173.78 30260.81 33887.48 324
DeepMVS_CXcopyleft76.08 32690.74 28851.65 35190.84 33986.47 21557.89 34187.98 31335.88 34992.60 32865.77 32665.06 33283.97 339
LCM-MVSNet60.07 31556.37 31871.18 32754.81 35548.67 35282.17 34589.48 34437.95 34849.13 34569.12 34213.75 35881.76 34659.28 33751.63 34683.10 342
N_pmnet70.19 31369.87 31571.12 32888.24 31630.63 35995.85 28528.70 35970.18 33068.73 32586.55 32564.04 29293.81 31953.12 34473.46 30288.94 318
PMMVS258.97 31655.07 31970.69 32962.72 35055.37 34985.97 33280.52 35249.48 34645.94 34768.31 34315.73 35680.78 34849.79 34537.12 34875.91 343
FPMVS61.57 31460.32 31765.34 33060.14 35342.44 35491.02 32389.72 34344.15 34742.63 34880.93 33419.02 35280.59 34942.50 34772.76 30673.00 344
ANet_high50.71 31946.17 32264.33 33144.27 35752.30 35076.13 34778.73 35364.95 34127.37 35255.23 34914.61 35767.74 35136.01 34818.23 35172.95 345
Gipumacopyleft54.77 31752.22 32162.40 33286.50 32959.37 34750.20 35190.35 34136.52 34941.20 34949.49 35018.33 35481.29 34732.10 34965.34 33146.54 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 31852.86 32056.05 33332.75 35941.97 35573.42 34876.12 35521.91 35439.68 35096.39 18142.59 34265.10 35278.00 27014.92 35361.08 346
PMVScopyleft41.42 2345.67 32042.50 32355.17 33434.28 35832.37 35766.24 34978.71 35430.72 35022.04 35559.59 3474.59 35977.85 35027.49 35058.84 34155.29 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 32137.64 32653.90 33549.46 35643.37 35365.09 35066.66 35626.19 35325.77 35448.53 3513.58 36163.35 35326.15 35127.28 34954.97 348
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 32240.93 32441.29 33661.97 35133.83 35684.00 34265.17 35727.17 35127.56 35146.72 35217.63 35560.41 35419.32 35218.82 35029.61 350
EMVS39.96 32339.88 32540.18 33759.57 35432.12 35884.79 33964.57 35826.27 35226.14 35344.18 35518.73 35359.29 35517.03 35317.67 35229.12 351
wuyk23d16.71 32616.73 33016.65 33860.15 35225.22 36041.24 3525.17 3606.56 3555.48 3583.61 3583.64 36022.72 35615.20 3549.52 3541.99 354
test12316.58 32719.47 3297.91 3393.59 3615.37 36194.32 2961.39 3622.49 35713.98 35744.60 3542.91 3622.65 35711.35 3560.57 35615.70 352
testmvs18.81 32523.05 3286.10 3404.48 3602.29 36297.78 2133.00 3613.27 35618.60 35662.71 3451.53 3632.49 35814.26 3551.80 35513.50 353
uanet_test0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
cdsmvs_eth3d_5k22.52 32430.03 3270.00 3410.00 3620.00 3630.00 35397.17 1580.00 3580.00 35998.77 8374.35 2240.00 3590.00 3570.00 3570.00 355
pcd_1.5k_mvsjas6.87 3299.16 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 35982.48 1680.00 3590.00 3570.00 3570.00 355
sosnet-low-res0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
sosnet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
uncertanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
Regformer0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
ab-mvs-re8.21 32810.94 3310.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 35998.50 1050.00 3640.00 3590.00 3570.00 3570.00 355
uanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
ZD-MVS99.67 1393.28 7097.61 9587.78 18597.41 5099.16 3990.15 4799.56 9398.35 2999.70 35
RE-MVS-def95.70 6599.22 6687.26 20298.40 17197.21 15289.63 12696.67 7398.97 6385.24 13396.62 5899.31 7299.60 73
IU-MVS99.63 2195.38 1997.73 7195.54 1599.54 199.69 499.81 1999.99 1
test_241102_TWO97.72 7394.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
test_241102_ONE99.63 2195.24 2197.72 7394.16 2699.30 499.49 1093.32 1599.98 10
9.1496.87 2699.34 5399.50 3897.49 12389.41 13598.59 2299.43 1689.78 5199.69 7598.69 1799.62 47
save fliter99.34 5393.85 5999.65 2397.63 9295.69 11
test_0728_THIRD93.01 4799.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
test072699.66 1595.20 2699.77 997.70 7893.95 2999.35 399.54 393.18 18
GSMVS98.84 132
test_part299.54 3695.42 1798.13 32
sam_mvs188.39 7098.84 132
sam_mvs87.08 96
MTGPAbinary97.45 128
test_post190.74 32641.37 35685.38 13296.36 25383.16 231
test_post46.00 35387.37 8997.11 218
patchmatchnet-post84.86 32988.73 6496.81 229
MTMP99.21 6991.09 338
gm-plane-assit94.69 22088.14 17888.22 17397.20 15298.29 15990.79 147
test9_res98.60 1999.87 799.90 20
TEST999.57 3393.17 7299.38 5697.66 8289.57 13098.39 2799.18 3590.88 3299.66 80
test_899.55 3593.07 7699.37 5997.64 8890.18 11198.36 2999.19 3290.94 3099.64 86
agg_prior297.84 4299.87 799.91 18
agg_prior99.54 3692.66 8497.64 8897.98 4099.61 89
test_prior492.00 9399.41 54
test_prior299.57 3091.43 8398.12 3498.97 6390.43 4098.33 3099.81 19
旧先验298.67 13585.75 22298.96 1298.97 14193.84 113
新几何298.26 183
旧先验198.97 8092.90 8397.74 6799.15 4191.05 2999.33 7099.60 73
无先验98.52 15397.82 5487.20 19999.90 4087.64 18299.85 29
原ACMM298.69 131
test22298.32 10191.21 10798.08 19897.58 10383.74 25395.87 8699.02 5786.74 10499.64 4399.81 31
testdata299.88 4484.16 219
segment_acmp90.56 39
testdata197.89 20692.43 61
plane_prior793.84 23985.73 238
plane_prior693.92 23686.02 23272.92 236
plane_prior596.30 20997.75 19493.46 12086.17 21992.67 226
plane_prior496.52 175
plane_prior385.91 23393.65 3986.99 196
plane_prior299.02 9793.38 44
plane_prior193.90 238
plane_prior86.07 23099.14 8493.81 3786.26 218
n20.00 363
nn0.00 363
door-mid84.90 351
test1197.68 80
door85.30 350
HQP5-MVS86.39 218
HQP-NCC93.95 23299.16 7593.92 3187.57 190
ACMP_Plane93.95 23299.16 7593.92 3187.57 190
BP-MVS93.82 115
HQP4-MVS87.57 19097.77 18992.72 224
HQP3-MVS96.37 20586.29 216
HQP2-MVS73.34 232
NP-MVS93.94 23586.22 22496.67 173
MDTV_nov1_ep13_2view91.17 11191.38 31987.45 19693.08 13086.67 10787.02 18798.95 125
MDTV_nov1_ep1390.47 16996.14 17088.55 17391.34 32097.51 11889.58 12992.24 13990.50 29086.99 10097.61 20277.64 27292.34 176
ACMMP++_ref82.64 247
ACMMP++83.83 235
Test By Simon83.62 149