This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1897.98 4497.18 295.96 8699.33 2192.62 22100.00 198.99 1399.93 199.98 6
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 697.88 4996.54 598.84 1499.46 1192.55 2399.98 1098.25 3499.93 199.94 14
OPU-MVS99.49 299.64 2098.51 299.77 1099.19 3295.12 699.97 2099.90 199.92 399.99 1
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1993.21 7199.70 1898.13 3694.61 1997.78 4799.46 1189.85 5099.81 6297.97 3899.91 499.88 24
DPE-MVScopyleft98.11 598.00 598.44 1399.50 4395.39 1899.29 6997.72 7494.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 897.99 4397.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
test9_res98.60 1999.87 799.90 20
agg_prior297.84 4299.87 799.91 18
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4194.76 3999.19 7397.75 6695.66 1398.21 3099.29 2291.10 2899.99 597.68 4399.87 799.68 61
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9499.06 994.45 2296.42 7998.70 9288.81 6399.74 7095.35 9099.86 1099.97 7
MSP-MVS97.77 898.18 296.53 9799.54 3690.14 14099.41 5697.70 7995.46 1798.60 2199.19 3295.71 499.49 10498.15 3699.85 1199.95 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
train_agg97.20 2297.08 1997.57 4299.57 3393.17 7299.38 5997.66 8390.18 11598.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
SMA-MVScopyleft97.24 1896.99 2398.00 2799.30 6094.20 5399.16 7897.65 8889.55 13799.22 799.52 990.34 4699.99 598.32 3299.83 1399.82 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 7293.49 6798.52 15697.50 12394.46 2198.99 1098.64 9591.58 2599.08 13998.49 2499.83 1399.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_241102_TWO97.72 7494.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
DVP-MVS98.07 698.00 598.29 1599.66 1595.20 2699.72 1597.47 12893.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 60
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 4999.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
test_0728_SECOND98.77 599.66 1596.37 1199.72 1597.68 8199.98 1099.64 599.82 1599.96 8
SED-MVS98.18 298.10 498.41 1499.63 2195.24 2199.77 1097.72 7494.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
IU-MVS99.63 2195.38 1997.73 7295.54 1599.54 199.69 499.81 1999.99 1
test_prior397.07 2697.09 1897.01 6299.58 2991.77 9599.57 3197.57 10791.43 8798.12 3598.97 6390.43 4099.49 10498.33 3099.81 1999.79 34
test_prior299.57 3191.43 8798.12 3598.97 6390.43 4098.33 3099.81 19
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2697.73 7291.05 9498.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
DPM-MVS97.86 797.25 1799.68 198.25 10299.10 199.76 1397.78 6396.61 498.15 3299.53 793.62 14100.00 191.79 14199.80 2399.94 14
APDe-MVS97.53 1197.47 1097.70 3699.58 2993.63 6299.56 3397.52 11793.59 4398.01 4099.12 4690.80 3599.55 9499.26 1099.79 2599.93 17
CDPH-MVS96.56 4096.18 4597.70 3699.59 2893.92 5799.13 9097.44 13489.02 14997.90 4599.22 2988.90 6299.49 10494.63 10699.79 2599.68 61
agg_prior197.12 2497.03 2197.38 5099.54 3692.66 8499.35 6497.64 8990.38 10997.98 4199.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
region2R96.30 5096.17 4796.70 8899.70 890.31 13699.46 4797.66 8390.55 10497.07 5999.07 5186.85 10199.97 2095.43 8899.74 2899.81 31
SD-MVS97.51 1297.40 1497.81 3299.01 7993.79 6199.33 6797.38 14193.73 4098.83 1599.02 5790.87 3399.88 4498.69 1799.74 2899.77 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 12299.47 4297.81 5890.54 10596.88 6299.05 5487.57 8399.96 2795.65 8199.72 3099.78 38
#test#96.48 4396.34 4296.90 7499.69 990.96 12299.53 3897.81 5890.94 9896.88 6299.05 5487.57 8399.96 2795.87 7899.72 3099.78 38
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 13499.47 4297.80 6090.54 10596.83 7099.03 5686.51 11399.95 3095.65 8199.72 3099.75 48
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15899.70 1897.61 9690.07 12196.00 8399.16 3987.43 8799.92 3696.03 7699.72 3099.70 57
test1297.83 3199.33 5994.45 4797.55 11097.56 4888.60 6599.50 10399.71 3499.55 77
ZD-MVS99.67 1393.28 7097.61 9687.78 19097.41 5399.16 3990.15 4799.56 9398.35 2999.70 35
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7897.74 6891.28 9198.40 2699.29 2289.95 4999.98 1098.20 3599.70 3599.94 14
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2794.45 4798.85 11797.64 8996.51 795.88 8999.39 1987.35 9399.99 596.61 6299.69 3799.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6994.97 3099.47 4297.52 11789.85 12498.79 1699.46 1190.41 4499.69 7598.78 1599.67 3899.70 57
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4293.58 6399.16 7897.44 13490.08 12098.59 2299.07 5189.06 5999.42 11597.92 4099.66 3999.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5393.85 5999.65 2495.45 27495.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
SF-MVS97.22 2196.92 2498.12 2299.11 7394.88 3299.44 5097.45 13089.60 13398.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
HPM-MVScopyleft95.41 7695.22 7695.99 11799.29 6189.14 16399.17 7797.09 17087.28 20395.40 9998.48 10884.93 13799.38 11995.64 8599.65 4099.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test22298.32 10191.21 10998.08 20397.58 10483.74 25895.87 9099.02 5786.74 10499.64 4399.81 31
mPP-MVS95.90 6495.75 6596.38 10499.58 2989.41 16299.26 7097.41 13890.66 10094.82 10898.95 7086.15 12199.98 1095.24 9399.64 4399.74 51
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12791.46 10499.75 1497.66 8394.14 2898.13 3399.26 2492.16 2499.66 8097.91 4199.64 4399.90 20
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS_fast94.89 8694.62 8395.70 12899.11 7388.44 18299.14 8797.11 16685.82 22695.69 9598.47 10983.46 15399.32 12793.16 12999.63 4699.35 91
9.1496.87 2699.34 5399.50 4097.49 12589.41 14098.59 2299.43 1689.78 5199.69 7598.69 1799.62 47
新几何197.40 4898.92 8492.51 9197.77 6585.52 22996.69 7499.06 5388.08 7699.89 4384.88 21599.62 4799.79 34
原ACMM196.18 10999.03 7890.08 14397.63 9388.98 15097.00 6098.97 6388.14 7599.71 7388.23 18099.62 4798.76 145
PHI-MVS96.65 3896.46 3897.21 5699.34 5391.77 9599.70 1898.05 3986.48 21998.05 3799.20 3189.33 5799.96 2798.38 2899.62 4799.90 20
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9594.73 4199.13 9097.38 14188.44 17098.53 2499.39 1989.66 5599.69 7598.43 2799.61 5199.61 72
112195.19 8294.45 8797.42 4698.88 8692.58 8996.22 27997.75 6685.50 23196.86 6599.01 6188.59 6799.90 4087.64 18799.60 5299.79 34
DELS-MVS97.12 2496.60 3598.68 898.03 11096.57 899.84 497.84 5396.36 895.20 10398.24 11888.17 7399.83 5796.11 7499.60 5299.64 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MP-MVScopyleft96.00 5795.82 6096.54 9699.47 4690.13 14299.36 6397.41 13890.64 10395.49 9898.95 7085.51 12999.98 1096.00 7799.59 5499.52 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS96.09 5595.81 6296.95 7299.42 4991.19 11099.55 3497.53 11489.72 12895.86 9198.94 7586.59 10999.97 2095.13 9499.56 5599.68 61
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9791.00 12199.14 8799.45 193.86 3595.15 10498.73 8788.48 6899.76 6897.23 5099.56 5599.40 89
DeepPCF-MVS93.56 196.55 4197.84 892.68 21198.71 9278.11 32399.70 1897.71 7898.18 197.36 5599.76 190.37 4599.94 3399.27 999.54 5799.99 1
CPTT-MVS94.60 9894.43 8895.09 14599.66 1586.85 21499.44 5097.47 12883.22 26794.34 11798.96 6882.50 17299.55 9494.81 10199.50 5898.88 131
MP-MVS-pluss95.80 6895.30 7297.29 5298.95 8392.66 8498.59 15197.14 16288.95 15293.12 13399.25 2585.62 12699.94 3396.56 6499.48 5999.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8993.55 6498.88 11697.59 10290.66 10097.98 4199.14 4386.59 109100.00 196.47 6699.46 6099.89 23
PGM-MVS95.85 6695.65 6996.45 10099.50 4389.77 15498.22 18998.90 1189.19 14396.74 7298.95 7085.91 12499.92 3693.94 11499.46 6099.66 65
testdata95.26 14298.20 10487.28 20497.60 9885.21 23498.48 2599.15 4188.15 7498.72 15190.29 15699.45 6299.78 38
SR-MVS96.13 5496.16 4996.07 11499.42 4989.04 16598.59 15197.33 14690.44 10796.84 6899.12 4686.75 10399.41 11797.47 4599.44 6399.76 47
XVS96.47 4496.37 4096.77 8199.62 2590.66 13199.43 5397.58 10492.41 6796.86 6598.96 6887.37 8999.87 4795.65 8199.43 6499.78 38
X-MVStestdata90.69 17988.66 19996.77 8199.62 2590.66 13199.43 5397.58 10492.41 6796.86 6529.59 36887.37 8999.87 4795.65 8199.43 6499.78 38
MVS93.92 11092.28 13498.83 495.69 18496.82 596.22 27998.17 3184.89 24384.34 22298.61 9879.32 20299.83 5793.88 11699.43 6499.86 28
test117295.92 6396.07 5295.46 13499.42 4987.24 20998.51 15997.24 15090.29 11296.56 7899.12 4686.73 10599.36 12197.33 4899.42 6799.78 38
zzz-MVS96.21 5395.96 5596.96 7099.29 6191.19 11098.69 13497.45 13092.58 5794.39 11599.24 2786.43 11599.99 596.22 7099.40 6899.71 55
MTAPA96.09 5595.80 6496.96 7099.29 6191.19 11097.23 24297.45 13092.58 5794.39 11599.24 2786.43 11599.99 596.22 7099.40 6899.71 55
旧先验198.97 8092.90 8397.74 6899.15 4191.05 2999.33 7099.60 73
PAPM_NR95.43 7495.05 7996.57 9599.42 4990.14 14098.58 15397.51 12090.65 10292.44 14198.90 7687.77 8199.90 4090.88 15099.32 7199.68 61
SR-MVS-dyc-post95.75 7295.86 5995.41 13799.22 6687.26 20798.40 17497.21 15489.63 13196.67 7598.97 6386.73 10599.36 12196.62 6099.31 7299.60 73
RE-MVS-def95.70 6699.22 6687.26 20798.40 17497.21 15489.63 13196.67 7598.97 6385.24 13596.62 6099.31 7299.60 73
PAPM96.35 4795.94 5697.58 4094.10 23695.25 2098.93 10998.17 3194.26 2393.94 12398.72 8989.68 5497.88 18196.36 6999.29 7499.62 71
APD-MVS_3200maxsize95.64 7395.65 6995.62 12999.24 6587.80 19098.42 16997.22 15388.93 15496.64 7798.98 6285.49 13099.36 12196.68 5999.27 7599.70 57
Regformer-196.97 2896.80 3097.47 4499.46 4793.11 7498.89 11497.94 4592.89 5496.90 6199.02 5789.78 5199.53 9797.06 5199.26 7699.75 48
Regformer-296.94 3196.78 3197.42 4699.46 4792.97 8198.89 11497.93 4692.86 5696.88 6299.02 5789.74 5399.53 9797.03 5299.26 7699.75 48
3Dnovator87.35 1193.17 13591.77 14897.37 5195.41 19593.07 7698.82 12097.85 5291.53 8482.56 24197.58 14171.97 25499.82 6091.01 14899.23 7899.22 106
GST-MVS95.97 6095.66 6796.90 7499.49 4591.22 10899.45 4997.48 12689.69 12995.89 8898.72 8986.37 11899.95 3094.62 10799.22 7999.52 79
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12897.29 399.03 9997.11 16695.83 1098.97 1199.14 4382.48 17499.60 9198.60 1999.08 8098.00 178
MVS_111021_LR95.78 6995.94 5695.28 14198.19 10687.69 19198.80 12299.26 793.39 4595.04 10698.69 9384.09 14699.76 6896.96 5799.06 8198.38 163
PAPR96.35 4795.82 6097.94 2999.63 2194.19 5499.42 5597.55 11092.43 6393.82 12799.12 4687.30 9499.91 3894.02 11399.06 8199.74 51
114514_t94.06 10693.05 12097.06 6099.08 7692.26 9398.97 10697.01 17782.58 27992.57 13998.22 11980.68 19399.30 12889.34 16899.02 8399.63 69
API-MVS94.78 8994.18 9496.59 9399.21 6890.06 14798.80 12297.78 6383.59 26293.85 12599.21 3083.79 14899.97 2092.37 13799.00 8499.74 51
MVSFormer94.71 9494.08 9796.61 9295.05 21494.87 3397.77 21996.17 22286.84 21098.04 3898.52 10385.52 12795.99 27989.83 15998.97 8598.96 123
lupinMVS96.32 4995.94 5697.44 4595.05 21494.87 3399.86 296.50 20093.82 3898.04 3898.77 8385.52 12798.09 16896.98 5698.97 8599.37 90
3Dnovator+87.72 893.43 12591.84 14698.17 1895.73 18295.08 2998.92 11197.04 17391.42 8981.48 26597.60 13974.60 22799.79 6590.84 15198.97 8599.64 67
GG-mvs-BLEND96.98 6896.53 15594.81 3887.20 34097.74 6893.91 12496.40 18396.56 296.94 23095.08 9598.95 8899.20 107
CS-MVS-test95.99 5996.01 5395.93 12195.70 18390.90 12599.86 296.13 22592.45 6298.17 3198.53 10186.43 11597.62 20297.94 3998.88 8999.26 101
gg-mvs-nofinetune90.00 19287.71 21396.89 7996.15 17194.69 4385.15 34697.74 6868.32 34792.97 13760.16 35796.10 396.84 23293.89 11598.87 9099.14 110
MAR-MVS94.43 10194.09 9695.45 13599.10 7587.47 19898.39 17797.79 6288.37 17394.02 12299.17 3778.64 20999.91 3892.48 13698.85 9198.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Regformer-396.50 4296.36 4196.91 7399.34 5391.72 9898.71 12997.90 4892.48 6196.00 8398.95 7088.60 6599.52 10096.44 6798.83 9299.49 83
Regformer-496.45 4596.33 4396.81 8099.34 5391.44 10598.71 12997.88 4992.43 6395.97 8598.95 7088.42 6999.51 10196.40 6898.83 9299.49 83
CSCG94.87 8794.71 8295.36 13899.54 3686.49 21999.34 6698.15 3482.71 27790.15 17499.25 2589.48 5699.86 5294.97 9998.82 9499.72 54
CS-MVS95.86 6595.81 6295.98 11895.62 18791.26 10799.80 896.12 22692.15 7497.93 4498.45 11285.88 12597.55 20897.56 4498.80 9599.14 110
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 11394.42 4994.76 30298.36 2392.50 6095.62 9797.52 14297.92 197.38 21698.31 3398.80 9598.20 174
CANet97.00 2796.49 3798.55 998.86 8896.10 1399.83 597.52 11795.90 997.21 5698.90 7682.66 17199.93 3598.71 1698.80 9599.63 69
MVP-Stereo86.61 24785.83 24188.93 29288.70 31983.85 27296.07 28494.41 30982.15 28775.64 31291.96 25967.65 28396.45 25377.20 28098.72 9886.51 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
QAPM91.41 16589.49 18297.17 5895.66 18693.42 6898.60 14997.51 12080.92 30181.39 26697.41 14772.89 24799.87 4782.33 24598.68 9998.21 173
131493.44 12491.98 14397.84 3095.24 19894.38 5096.22 27997.92 4790.18 11582.28 24797.71 13477.63 21499.80 6491.94 14098.67 10099.34 93
abl_694.63 9794.48 8695.09 14598.61 9686.96 21298.06 20596.97 17989.31 14195.86 9198.56 10079.82 19699.64 8694.53 10998.65 10198.66 152
DROMVSNet95.24 8195.28 7495.12 14395.48 19388.95 16999.55 3495.95 23591.59 8397.46 5298.38 11383.18 16297.42 21597.32 4998.58 10298.97 122
DeepC-MVS91.02 494.56 10093.92 10596.46 9997.16 13490.76 12798.39 17797.11 16693.92 3188.66 18798.33 11478.14 21199.85 5495.02 9798.57 10398.78 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft85.28 1490.75 17788.84 19496.48 9893.58 25393.51 6698.80 12297.41 13882.59 27878.62 29497.49 14468.00 28099.82 6084.52 22098.55 10496.11 216
EIA-MVS95.11 8395.27 7594.64 16096.34 16186.51 21899.59 2996.62 18892.51 5994.08 12198.64 9586.05 12298.24 16295.07 9698.50 10599.18 108
jason95.40 7794.86 8197.03 6192.91 26794.23 5299.70 1896.30 21193.56 4496.73 7398.52 10381.46 18997.91 17896.08 7598.47 10698.96 123
jason: jason.
MS-PatchMatch86.75 24385.92 24089.22 28591.97 27782.47 29096.91 25396.14 22483.74 25877.73 30193.53 23358.19 31997.37 21876.75 28498.35 10787.84 331
DP-MVS Recon95.85 6695.15 7797.95 2899.87 294.38 5099.60 2897.48 12686.58 21694.42 11499.13 4587.36 9299.98 1093.64 12198.33 10899.48 85
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13896.96 499.01 10297.04 17395.51 1698.86 1399.11 5082.19 18099.36 12198.59 2198.14 10998.00 178
BH-w/o92.32 14991.79 14793.91 18596.85 14586.18 23099.11 9295.74 25688.13 18084.81 21797.00 16477.26 21697.91 17889.16 17398.03 11097.64 184
TAPA-MVS87.50 990.35 18289.05 19094.25 17398.48 10085.17 25498.42 16996.58 19482.44 28387.24 19998.53 10182.77 16898.84 14459.09 34997.88 11198.72 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 1792x268894.35 10393.82 10795.95 12097.40 12688.74 17698.41 17198.27 2592.18 7291.43 15396.40 18378.88 20499.81 6293.59 12297.81 11299.30 96
BH-untuned91.46 16490.84 16493.33 19696.51 15784.83 26098.84 11995.50 27186.44 22183.50 22896.70 17675.49 22297.77 18986.78 19797.81 11297.40 190
Vis-MVSNetpermissive92.64 14291.85 14595.03 14995.12 20788.23 18398.48 16496.81 18391.61 8192.16 14497.22 15371.58 26098.00 17785.85 20897.81 11298.88 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPNet96.82 3496.68 3497.25 5598.65 9393.10 7599.48 4198.76 1296.54 597.84 4698.22 11987.49 8699.66 8095.35 9097.78 11599.00 118
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended95.94 6295.66 6796.75 8398.77 9091.61 10199.88 198.04 4093.64 4294.21 11897.76 13083.50 15199.87 4797.41 4697.75 11698.79 141
ETV-MVS96.00 5796.00 5496.00 11696.56 15491.05 11999.63 2696.61 18993.26 4897.39 5498.30 11686.62 10898.13 16598.07 3797.57 11798.82 138
PLCcopyleft91.07 394.23 10594.01 9894.87 15199.17 7087.49 19799.25 7196.55 19688.43 17191.26 15698.21 12185.92 12399.86 5289.77 16297.57 11797.24 195
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D90.19 18788.72 19794.59 16298.97 8086.33 22696.90 25496.60 19074.96 32884.06 22598.74 8675.78 22099.83 5774.93 29697.57 11797.62 187
AdaColmapbinary93.82 11493.06 11996.10 11399.88 189.07 16498.33 18197.55 11086.81 21290.39 17198.65 9475.09 22399.98 1093.32 12797.53 12099.26 101
BH-RMVSNet91.25 16889.99 17695.03 14996.75 14988.55 17998.65 14094.95 29487.74 19387.74 19397.80 12868.27 27798.14 16480.53 26097.49 12198.41 160
CANet_DTU94.31 10493.35 11397.20 5797.03 14294.71 4298.62 14595.54 26995.61 1497.21 5698.47 10971.88 25599.84 5588.38 17897.46 12297.04 202
PatchMatch-RL91.47 16390.54 17194.26 17298.20 10486.36 22596.94 25297.14 16287.75 19288.98 18595.75 19571.80 25799.40 11880.92 25697.39 12397.02 203
UGNet91.91 15790.85 16395.10 14497.06 14088.69 17798.01 20798.24 2792.41 6792.39 14293.61 23060.52 31499.68 7888.14 18197.25 12496.92 204
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet87.13 1293.69 11792.83 12596.28 10797.99 11190.22 13999.38 5998.93 1091.42 8993.66 12897.68 13571.29 26299.64 8687.94 18497.20 12598.98 120
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11199.14 7190.33 13598.49 16397.82 5591.92 7694.75 10998.88 7887.06 9799.48 10995.40 8997.17 12698.70 148
CNLPA93.64 12192.74 12696.36 10598.96 8290.01 15099.19 7395.89 24786.22 22289.40 18298.85 7980.66 19499.84 5588.57 17696.92 12799.24 103
xiu_mvs_v1_base_debu94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
xiu_mvs_v1_base94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
xiu_mvs_v1_base_debi94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
MVS_Test93.67 12092.67 12896.69 8996.72 15092.66 8497.22 24396.03 22987.69 19695.12 10594.03 21781.55 18698.28 16189.17 17296.46 13199.14 110
EI-MVSNet-UG-set95.43 7495.29 7395.86 12399.07 7789.87 15198.43 16897.80 6091.78 7994.11 12098.77 8386.25 12099.48 10994.95 10096.45 13298.22 172
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8691.62 10099.58 3096.54 19895.09 1896.84 6898.63 9791.16 2699.77 6799.04 1296.42 13399.81 31
PVSNet_Blended_VisFu94.67 9594.11 9596.34 10697.14 13591.10 11699.32 6897.43 13692.10 7591.53 15296.38 18683.29 15799.68 7893.42 12696.37 13498.25 170
Vis-MVSNet (Re-imp)93.26 13393.00 12394.06 17996.14 17286.71 21798.68 13696.70 18688.30 17589.71 18197.64 13885.43 13396.39 25688.06 18396.32 13599.08 115
EPMVS92.59 14591.59 15195.59 13297.22 13290.03 14891.78 32898.04 4090.42 10891.66 14890.65 28786.49 11497.46 21181.78 25196.31 13699.28 99
PMMVS93.62 12293.90 10692.79 20696.79 14881.40 29798.85 11796.81 18391.25 9296.82 7198.15 12377.02 21798.13 16593.15 13096.30 13798.83 137
TESTMET0.1,193.82 11493.26 11695.49 13395.21 20090.25 13799.15 8497.54 11389.18 14491.79 14594.87 20789.13 5897.63 20086.21 20096.29 13898.60 153
test-LLR93.11 13692.68 12794.40 16794.94 21987.27 20599.15 8497.25 14890.21 11391.57 14994.04 21584.89 13897.58 20485.94 20496.13 13998.36 166
test-mter93.27 13292.89 12494.40 16794.94 21987.27 20599.15 8497.25 14888.95 15291.57 14994.04 21588.03 7797.58 20485.94 20496.13 13998.36 166
Effi-MVS+93.87 11393.15 11896.02 11595.79 17990.76 12796.70 26495.78 25386.98 20795.71 9497.17 15779.58 19898.01 17694.57 10896.09 14199.31 95
mvs_anonymous92.50 14791.65 15095.06 14796.60 15389.64 15797.06 24896.44 20486.64 21584.14 22393.93 22182.49 17396.17 27391.47 14296.08 14299.35 91
IS-MVSNet93.00 13792.51 13194.49 16496.14 17287.36 20298.31 18495.70 25888.58 16290.17 17397.50 14383.02 16497.22 21987.06 19096.07 14398.90 130
PatchmatchNetpermissive92.05 15591.04 15995.06 14796.17 17089.04 16591.26 33297.26 14789.56 13690.64 16590.56 29388.35 7197.11 22279.53 26396.07 14399.03 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
F-COLMAP92.07 15491.75 14993.02 20198.16 10782.89 28398.79 12695.97 23186.54 21887.92 19297.80 12878.69 20899.65 8485.97 20295.93 14596.53 211
mvs-test191.57 16192.20 13789.70 27495.15 20574.34 33399.51 3995.40 27891.92 7691.02 15997.25 15074.27 23498.08 17189.45 16495.83 14696.67 205
diffmvs94.59 9994.19 9295.81 12495.54 19090.69 12998.70 13395.68 26091.61 8195.96 8697.81 12780.11 19598.06 17296.52 6595.76 14798.67 149
ACMMPcopyleft94.67 9594.30 8995.79 12599.25 6488.13 18598.41 17198.67 1990.38 10991.43 15398.72 8982.22 17999.95 3093.83 11895.76 14799.29 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LCM-MVSNet-Re88.59 21788.61 20088.51 29695.53 19172.68 34196.85 25688.43 35788.45 16773.14 32490.63 28875.82 21994.38 32192.95 13195.71 14998.48 158
PCF-MVS89.78 591.26 16689.63 17996.16 11295.44 19491.58 10395.29 29896.10 22785.07 23882.75 23797.45 14578.28 21099.78 6680.60 25995.65 15097.12 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvs93.98 10993.43 11295.61 13195.07 21389.86 15298.80 12295.84 25290.98 9692.74 13897.66 13779.71 19798.10 16794.72 10495.37 15198.87 133
baseline93.91 11193.30 11495.72 12795.10 21190.07 14497.48 23195.91 24491.03 9593.54 12997.68 13579.58 19898.02 17594.27 11295.14 15299.08 115
Fast-Effi-MVS+91.72 15990.79 16794.49 16495.89 17787.40 20199.54 3795.70 25885.01 24189.28 18495.68 19677.75 21397.57 20783.22 23595.06 15398.51 156
EPNet_dtu92.28 15092.15 13992.70 21097.29 13084.84 25998.64 14297.82 5592.91 5393.02 13697.02 16385.48 13295.70 29472.25 31494.89 15497.55 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net93.30 13092.62 12995.34 13996.27 16388.53 18195.88 28996.97 17990.90 9995.37 10097.07 16182.38 17799.10 13883.91 23094.86 15598.38 163
baseline294.04 10793.80 10894.74 15693.07 26590.25 13798.12 19898.16 3389.86 12386.53 20896.95 16695.56 598.05 17391.44 14394.53 15695.93 217
MVS-HIRNet79.01 30775.13 31790.66 25093.82 24981.69 29585.16 34593.75 31954.54 35574.17 31859.15 35957.46 32196.58 24363.74 33894.38 15793.72 225
SCA90.64 18089.25 18794.83 15394.95 21888.83 17296.26 27697.21 15490.06 12290.03 17590.62 28966.61 29096.81 23483.16 23694.36 15898.84 134
OMC-MVS93.90 11293.62 11094.73 15798.63 9487.00 21198.04 20696.56 19592.19 7192.46 14098.73 8779.49 20199.14 13692.16 13994.34 15998.03 177
DP-MVS88.75 21586.56 23195.34 13998.92 8487.45 19997.64 22793.52 32470.55 33981.49 26497.25 15074.43 23199.88 4471.14 31794.09 16098.67 149
sss94.85 8893.94 10497.58 4096.43 15894.09 5698.93 10999.16 889.50 13895.27 10197.85 12581.50 18799.65 8492.79 13594.02 16198.99 119
EPP-MVSNet93.75 11693.67 10994.01 18295.86 17885.70 24498.67 13897.66 8384.46 24891.36 15597.18 15691.16 2697.79 18792.93 13293.75 16298.53 155
GeoE90.60 18189.56 18093.72 19195.10 21185.43 24899.41 5694.94 29583.96 25687.21 20096.83 17274.37 23297.05 22680.50 26193.73 16398.67 149
DWT-MVSNet_test94.36 10293.95 10395.62 12996.99 14389.47 16096.62 26697.38 14190.96 9793.07 13597.27 14993.73 1398.09 16885.86 20793.65 16499.29 97
CVMVSNet90.30 18490.91 16288.46 29794.32 23273.58 33797.61 22897.59 10290.16 11888.43 19097.10 15976.83 21892.86 33182.64 24293.54 16598.93 128
thisisatest051594.75 9094.19 9296.43 10196.13 17592.64 8899.47 4297.60 9887.55 19993.17 13297.59 14094.71 998.42 15688.28 17993.20 16698.24 171
JIA-IIPM85.97 25684.85 25689.33 28493.23 26273.68 33685.05 34797.13 16469.62 34391.56 15168.03 35588.03 7796.96 22877.89 27693.12 16797.34 192
Effi-MVS+-dtu89.97 19390.68 16987.81 30195.15 20571.98 34397.87 21495.40 27891.92 7687.57 19491.44 26874.27 23496.84 23289.45 16493.10 16894.60 222
HY-MVS88.56 795.29 7894.23 9198.48 1197.72 11596.41 1094.03 31098.74 1392.42 6695.65 9694.76 20986.52 11299.49 10495.29 9292.97 16999.53 78
LFMVS92.23 15290.84 16496.42 10298.24 10391.08 11898.24 18896.22 21883.39 26594.74 11098.31 11561.12 31398.85 14394.45 11092.82 17099.32 94
HyFIR lowres test93.68 11993.29 11594.87 15197.57 12388.04 18798.18 19398.47 2187.57 19891.24 15795.05 20585.49 13097.46 21193.22 12892.82 17099.10 113
CDS-MVSNet93.47 12393.04 12194.76 15494.75 22589.45 16198.82 12097.03 17587.91 18790.97 16096.48 18189.06 5996.36 25889.50 16392.81 17298.49 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS95.97 6095.11 7898.54 1097.62 11996.65 699.44 5098.74 1392.25 7095.21 10298.46 11186.56 11199.46 11195.00 9892.69 17399.50 82
test_yl95.27 7994.60 8497.28 5398.53 9892.98 7999.05 9798.70 1686.76 21394.65 11297.74 13287.78 7999.44 11295.57 8692.61 17499.44 87
DCV-MVSNet95.27 7994.60 8497.28 5398.53 9892.98 7999.05 9798.70 1686.76 21394.65 11297.74 13287.78 7999.44 11295.57 8692.61 17499.44 87
MSDG88.29 22286.37 23394.04 18196.90 14486.15 23296.52 26894.36 31077.89 31979.22 28996.95 16669.72 26899.59 9273.20 31092.58 17696.37 214
thisisatest053094.00 10893.52 11195.43 13695.76 18190.02 14998.99 10497.60 9886.58 21691.74 14697.36 14894.78 898.34 15786.37 19992.48 17797.94 180
TR-MVS90.77 17689.44 18394.76 15496.31 16288.02 18897.92 21095.96 23385.52 22988.22 19197.23 15266.80 28998.09 16884.58 21992.38 17898.17 175
MDTV_nov1_ep1390.47 17396.14 17288.55 17991.34 33197.51 12089.58 13492.24 14390.50 29786.99 10097.61 20377.64 27792.34 179
TAMVS92.62 14392.09 14194.20 17494.10 23687.68 19298.41 17196.97 17987.53 20089.74 17996.04 19284.77 14196.49 25088.97 17592.31 18098.42 159
ADS-MVSNet287.62 23386.88 22689.86 26996.21 16679.14 31487.15 34192.99 32783.01 27089.91 17787.27 32778.87 20592.80 33474.20 30292.27 18197.64 184
ADS-MVSNet88.99 20487.30 21994.07 17896.21 16687.56 19687.15 34196.78 18583.01 27089.91 17787.27 32778.87 20597.01 22774.20 30292.27 18197.64 184
cascas90.93 17489.33 18695.76 12695.69 18493.03 7898.99 10496.59 19180.49 30386.79 20794.45 21265.23 29898.60 15593.52 12392.18 18395.66 219
CR-MVSNet88.83 21187.38 21893.16 19993.47 25586.24 22784.97 34894.20 31388.92 15590.76 16386.88 33184.43 14294.82 31470.64 31892.17 18498.41 160
RPMNet85.07 26981.88 28694.64 16093.47 25586.24 22784.97 34897.21 15464.85 35390.76 16378.80 35180.95 19299.27 12953.76 35492.17 18498.41 160
DSMNet-mixed81.60 29781.43 29182.10 33084.36 34360.79 35593.63 31486.74 35979.00 30979.32 28887.15 32963.87 30389.78 35066.89 33191.92 18695.73 218
tttt051793.30 13093.01 12294.17 17595.57 18886.47 22098.51 15997.60 9885.99 22490.55 16697.19 15594.80 798.31 15885.06 21291.86 18797.74 182
VNet95.08 8494.26 9097.55 4398.07 10993.88 5898.68 13698.73 1590.33 11197.16 5897.43 14679.19 20399.53 9796.91 5891.85 18899.24 103
tpmrst92.78 13992.16 13894.65 15996.27 16387.45 19991.83 32797.10 16989.10 14794.68 11190.69 28488.22 7297.73 19689.78 16191.80 18998.77 144
alignmvs95.77 7095.00 8098.06 2597.35 12895.68 1699.71 1797.50 12391.50 8596.16 8298.61 9886.28 11999.00 14196.19 7291.74 19099.51 81
CostFormer92.89 13892.48 13294.12 17794.99 21685.89 23992.89 31997.00 17886.98 20795.00 10790.78 28090.05 4897.51 20992.92 13391.73 19198.96 123
Fast-Effi-MVS+-dtu88.84 20988.59 20289.58 27893.44 25878.18 32198.65 14094.62 30388.46 16684.12 22495.37 20268.91 27196.52 24782.06 24891.70 19294.06 223
PatchT85.44 26683.19 27392.22 21693.13 26483.00 27983.80 35496.37 20770.62 33890.55 16679.63 35084.81 14094.87 31258.18 35191.59 19398.79 141
tpm291.77 15891.09 15793.82 18894.83 22385.56 24792.51 32497.16 16184.00 25493.83 12690.66 28687.54 8597.17 22087.73 18691.55 19498.72 146
tpm cat188.89 20787.27 22093.76 18995.79 17985.32 25190.76 33697.09 17076.14 32585.72 21188.59 31882.92 16598.04 17476.96 28191.43 19597.90 181
canonicalmvs95.02 8593.96 10298.20 1797.53 12595.92 1498.71 12996.19 22191.78 7995.86 9198.49 10779.53 20099.03 14096.12 7391.42 19699.66 65
Patchmatch-test86.25 25384.06 26892.82 20594.42 23082.88 28482.88 35594.23 31271.58 33679.39 28790.62 28989.00 6196.42 25563.03 34191.37 19799.16 109
dp90.16 18988.83 19594.14 17696.38 16086.42 22191.57 32997.06 17284.76 24588.81 18690.19 30584.29 14497.43 21475.05 29591.35 19898.56 154
VDDNet90.08 19188.54 20494.69 15894.41 23187.68 19298.21 19196.40 20576.21 32493.33 13197.75 13154.93 33298.77 14694.71 10590.96 19997.61 188
thres20093.69 11792.59 13096.97 6997.76 11494.74 4099.35 6499.36 289.23 14291.21 15896.97 16583.42 15498.77 14685.08 21190.96 19997.39 191
thres100view90093.34 12992.15 13996.90 7497.62 11994.84 3599.06 9699.36 287.96 18590.47 16996.78 17383.29 15798.75 14884.11 22690.69 20197.12 197
tfpn200view993.43 12592.27 13596.90 7497.68 11794.84 3599.18 7599.36 288.45 16790.79 16196.90 16883.31 15598.75 14884.11 22690.69 20197.12 197
thres40093.39 12792.27 13596.73 8597.68 11794.84 3599.18 7599.36 288.45 16790.79 16196.90 16883.31 15598.75 14884.11 22690.69 20196.61 206
VDD-MVS91.24 16990.18 17594.45 16697.08 13985.84 24298.40 17496.10 22786.99 20593.36 13098.16 12254.27 33499.20 13096.59 6390.63 20498.31 169
thres600view793.18 13492.00 14296.75 8397.62 11994.92 3199.07 9499.36 287.96 18590.47 16996.78 17383.29 15798.71 15282.93 24090.47 20596.61 206
GA-MVS90.10 19088.69 19894.33 16992.44 27187.97 18999.08 9396.26 21589.65 13086.92 20393.11 24468.09 27896.96 22882.54 24490.15 20698.05 176
tpmvs89.16 20187.76 21193.35 19597.19 13384.75 26190.58 33897.36 14481.99 28884.56 21989.31 31583.98 14798.17 16374.85 29890.00 20797.12 197
1112_ss92.71 14091.55 15296.20 10895.56 18991.12 11498.48 16494.69 30188.29 17686.89 20498.50 10587.02 9898.66 15384.75 21689.77 20898.81 139
Test_1112_low_res92.27 15190.97 16096.18 10995.53 19191.10 11698.47 16694.66 30288.28 17786.83 20693.50 23587.00 9998.65 15484.69 21789.74 20998.80 140
XVG-OURS-SEG-HR90.95 17390.66 17091.83 22595.18 20481.14 30495.92 28695.92 24088.40 17290.33 17297.85 12570.66 26599.38 11992.83 13488.83 21094.98 220
COLMAP_ROBcopyleft82.69 1884.54 27682.82 27689.70 27496.72 15078.85 31595.89 28792.83 33071.55 33777.54 30395.89 19459.40 31799.14 13667.26 32988.26 21191.11 282
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 27781.83 28792.42 21491.73 28387.36 20285.52 34494.42 30881.40 29481.91 25787.58 32251.92 34092.81 33373.84 30588.15 21297.08 201
ab-mvs91.05 17189.17 18896.69 8995.96 17691.72 9892.62 32397.23 15285.61 22889.74 17993.89 22368.55 27499.42 11591.09 14687.84 21398.92 129
XVG-OURS90.83 17590.49 17291.86 22495.23 19981.25 30195.79 29495.92 24088.96 15190.02 17698.03 12471.60 25999.35 12591.06 14787.78 21494.98 220
AllTest84.97 27083.12 27490.52 25396.82 14678.84 31695.89 28792.17 33677.96 31775.94 30895.50 19855.48 32799.18 13171.15 31587.14 21593.55 226
TestCases90.52 25396.82 14678.84 31692.17 33677.96 31775.94 30895.50 19855.48 32799.18 13171.15 31587.14 21593.55 226
Anonymous20240521188.84 20987.03 22494.27 17198.14 10884.18 26798.44 16795.58 26776.79 32389.34 18396.88 17053.42 33799.54 9687.53 18987.12 21799.09 114
MVS_030484.13 28382.66 28288.52 29593.07 26580.15 30995.81 29398.21 2979.27 30886.85 20586.40 33441.33 35694.69 31776.36 28786.69 21890.73 294
HQP3-MVS96.37 20786.29 219
HQP-MVS91.50 16291.23 15692.29 21593.95 24086.39 22399.16 7896.37 20793.92 3187.57 19496.67 17773.34 24197.77 18993.82 11986.29 21992.72 229
plane_prior86.07 23599.14 8793.81 3986.26 221
HQP_MVS91.26 16690.95 16192.16 21993.84 24786.07 23599.02 10096.30 21193.38 4686.99 20196.52 17972.92 24597.75 19493.46 12486.17 22292.67 231
plane_prior596.30 21197.75 19493.46 12486.17 22292.67 231
OPM-MVS89.76 19589.15 18991.57 23290.53 29685.58 24698.11 20095.93 23992.88 5586.05 20996.47 18267.06 28897.87 18289.29 17186.08 22491.26 278
RPSCF85.33 26785.55 24684.67 32194.63 22862.28 35493.73 31293.76 31874.38 33185.23 21697.06 16264.09 30198.31 15880.98 25486.08 22493.41 228
CLD-MVS91.06 17090.71 16892.10 22194.05 23986.10 23399.55 3496.29 21494.16 2684.70 21897.17 15769.62 26997.82 18594.74 10386.08 22492.39 234
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test0.0.03 188.96 20588.61 20090.03 26791.09 29084.43 26498.97 10697.02 17690.21 11380.29 27596.31 18784.89 13891.93 34572.98 31185.70 22793.73 224
LPG-MVS_test88.86 20888.47 20590.06 26493.35 26080.95 30698.22 18995.94 23787.73 19483.17 23396.11 19066.28 29397.77 18990.19 15785.19 22891.46 268
LGP-MVS_train90.06 26493.35 26080.95 30695.94 23787.73 19483.17 23396.11 19066.28 29397.77 18990.19 15785.19 22891.46 268
ACMM86.95 1388.77 21488.22 20890.43 25593.61 25281.34 29998.50 16195.92 24087.88 18883.85 22795.20 20367.20 28697.89 18086.90 19584.90 23092.06 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CMPMVSbinary58.40 2180.48 30080.11 30081.59 33385.10 34159.56 35694.14 30995.95 23568.54 34660.71 35293.31 23655.35 33097.87 18283.06 23984.85 23187.33 336
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMP87.39 1088.71 21688.24 20790.12 26393.91 24581.06 30598.50 16195.67 26189.43 13980.37 27395.55 19765.67 29597.83 18490.55 15484.51 23291.47 267
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf88.26 22387.73 21289.84 27088.05 32682.21 29197.77 21996.17 22286.84 21082.41 24591.95 26072.07 25395.99 27989.83 15984.50 23391.32 275
jajsoiax87.35 23586.51 23289.87 26887.75 33181.74 29497.03 24995.98 23088.47 16480.15 27793.80 22561.47 31096.36 25889.44 16684.47 23491.50 266
mvs_tets87.09 23886.22 23589.71 27387.87 32781.39 29896.73 26395.90 24588.19 17979.99 27993.61 23059.96 31696.31 26689.40 16784.34 23591.43 270
Anonymous2024052987.66 23285.58 24593.92 18497.59 12285.01 25798.13 19697.13 16466.69 35188.47 18996.01 19355.09 33199.51 10187.00 19284.12 23697.23 196
anonymousdsp86.69 24485.75 24389.53 27986.46 33782.94 28096.39 27095.71 25783.97 25579.63 28490.70 28368.85 27295.94 28286.01 20184.02 23789.72 315
XVG-ACMP-BASELINE85.86 25884.95 25488.57 29489.90 30277.12 32694.30 30695.60 26687.40 20282.12 25092.99 24753.42 33797.66 19885.02 21383.83 23890.92 286
ACMMP++83.83 238
ET-MVSNet_ETH3D92.56 14691.45 15495.88 12296.39 15994.13 5599.46 4796.97 17992.18 7266.94 34498.29 11794.65 1194.28 32294.34 11183.82 24099.24 103
EG-PatchMatch MVS79.92 30277.59 30686.90 30887.06 33577.90 32596.20 28294.06 31574.61 32966.53 34688.76 31740.40 35896.20 27167.02 33083.66 24186.61 340
D2MVS87.96 22587.39 21789.70 27491.84 28183.40 27598.31 18498.49 2088.04 18378.23 30090.26 29973.57 23996.79 23684.21 22383.53 24288.90 325
UniMVSNet_ETH3D85.65 26583.79 27191.21 23690.41 29880.75 30895.36 29795.78 25378.76 31381.83 26294.33 21349.86 34596.66 23984.30 22183.52 24396.22 215
PVSNet_BlendedMVS93.36 12893.20 11793.84 18798.77 9091.61 10199.47 4298.04 4091.44 8694.21 11892.63 25183.50 15199.87 4797.41 4683.37 24490.05 310
PS-MVSNAJss89.54 19989.05 19091.00 24188.77 31784.36 26597.39 23295.97 23188.47 16481.88 25893.80 22582.48 17496.50 24889.34 16883.34 24592.15 244
EI-MVSNet89.87 19489.38 18591.36 23594.32 23285.87 24097.61 22896.59 19185.10 23685.51 21397.10 15981.30 19196.56 24483.85 23283.03 24691.64 257
MVSTER92.71 14092.32 13393.86 18697.29 13092.95 8299.01 10296.59 19190.09 11985.51 21394.00 21994.61 1296.56 24490.77 15383.03 24692.08 247
FIs90.70 17889.87 17793.18 19892.29 27291.12 11498.17 19598.25 2689.11 14683.44 22994.82 20882.26 17896.17 27387.76 18582.76 24892.25 239
tpm89.67 19688.95 19291.82 22692.54 27081.43 29692.95 31895.92 24087.81 18990.50 16889.44 31284.99 13695.65 29583.67 23382.71 24998.38 163
ACMMP++_ref82.64 250
FC-MVSNet-test90.22 18689.40 18492.67 21291.78 28289.86 15297.89 21198.22 2888.81 15782.96 23694.66 21081.90 18495.96 28185.89 20682.52 25192.20 243
ITE_SJBPF87.93 29992.26 27376.44 32793.47 32587.67 19779.95 28095.49 20056.50 32497.38 21675.24 29482.33 25289.98 312
RRT_MVS91.95 15691.09 15794.53 16396.71 15295.12 2898.64 14296.23 21789.04 14885.24 21595.06 20487.71 8296.43 25489.10 17482.06 25392.05 249
OpenMVS_ROBcopyleft73.86 2077.99 31475.06 31886.77 30983.81 34677.94 32496.38 27191.53 34667.54 34968.38 33787.13 33043.94 35296.08 27755.03 35381.83 25486.29 343
LTVRE_ROB81.71 1984.59 27582.72 28190.18 26192.89 26883.18 27893.15 31794.74 29878.99 31075.14 31592.69 24965.64 29697.63 20069.46 32281.82 25589.74 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
USDC84.74 27182.93 27590.16 26291.73 28383.54 27495.00 30093.30 32688.77 15873.19 32393.30 23753.62 33697.65 19975.88 29181.54 25689.30 320
ACMH83.09 1784.60 27482.61 28490.57 25193.18 26382.94 28096.27 27494.92 29681.01 29972.61 33093.61 23056.54 32397.79 18774.31 30181.07 25790.99 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net86.67 24584.96 25291.80 22795.11 20888.81 17396.77 25895.25 28582.94 27282.12 25090.25 30062.89 30594.97 30979.04 26780.24 25891.62 259
test186.67 24584.96 25291.80 22795.11 20888.81 17396.77 25895.25 28582.94 27282.12 25090.25 30062.89 30594.97 30979.04 26780.24 25891.62 259
FMVSNet388.81 21387.08 22393.99 18396.52 15694.59 4598.08 20396.20 21985.85 22582.12 25091.60 26574.05 23795.40 30279.04 26780.24 25891.99 251
baseline192.61 14491.28 15596.58 9497.05 14194.63 4497.72 22396.20 21989.82 12588.56 18896.85 17186.85 10197.82 18588.42 17780.10 26197.30 193
testgi82.29 29281.00 29586.17 31287.24 33374.84 33297.39 23291.62 34488.63 15975.85 31195.42 20146.07 35191.55 34666.87 33279.94 26292.12 245
test_040278.81 30976.33 31386.26 31191.18 28978.44 32095.88 28991.34 34768.55 34570.51 33389.91 30752.65 33994.99 30847.14 35779.78 26385.34 348
FMVSNet286.90 24084.79 25893.24 19795.11 20892.54 9097.67 22695.86 25182.94 27280.55 27191.17 27462.89 30595.29 30477.23 27879.71 26491.90 253
pmmvs487.58 23486.17 23791.80 22789.58 30788.92 17197.25 24095.28 28482.54 28080.49 27293.17 24175.62 22196.05 27882.75 24178.90 26590.42 301
ACMH+83.78 1584.21 28082.56 28589.15 28793.73 25179.16 31396.43 26994.28 31181.09 29874.00 31994.03 21754.58 33397.67 19776.10 28978.81 26690.63 298
bset_n11_16_dypcd89.07 20387.85 21092.76 20886.16 33990.66 13197.30 23695.62 26389.78 12783.94 22693.15 24374.85 22495.89 28891.34 14478.48 26791.74 255
XXY-MVS87.75 22986.02 23892.95 20390.46 29789.70 15697.71 22595.90 24584.02 25380.95 26794.05 21467.51 28497.10 22485.16 21078.41 26892.04 250
pmmvs585.87 25784.40 26690.30 26088.53 32184.23 26698.60 14993.71 32081.53 29380.29 27592.02 25664.51 30095.52 29882.04 24978.34 26991.15 280
LF4IMVS81.94 29581.17 29484.25 32387.23 33468.87 35193.35 31691.93 34183.35 26675.40 31393.00 24649.25 34896.65 24078.88 27078.11 27087.22 338
cl-mvsnet289.57 19888.79 19691.91 22397.94 11287.62 19497.98 20896.51 19985.03 23982.37 24691.79 26183.65 14996.50 24885.96 20377.89 27191.61 262
miper_ehance_all_eth88.94 20688.12 20991.40 23395.32 19786.93 21397.85 21595.55 26884.19 25181.97 25691.50 26784.16 14595.91 28684.69 21777.89 27191.36 273
miper_enhance_ethall90.33 18389.70 17892.22 21697.12 13788.93 17098.35 18095.96 23388.60 16183.14 23592.33 25387.38 8896.18 27286.49 19877.89 27191.55 265
TinyColmap80.42 30177.94 30587.85 30092.09 27678.58 31893.74 31189.94 35274.99 32769.77 33491.78 26246.09 35097.58 20465.17 33777.89 27187.38 334
FMVSNet183.94 28581.32 29391.80 22791.94 27988.81 17396.77 25895.25 28577.98 31578.25 29990.25 30050.37 34494.97 30973.27 30977.81 27591.62 259
OurMVSNet-221017-084.13 28383.59 27285.77 31587.81 32870.24 34694.89 30193.65 32286.08 22376.53 30493.28 23861.41 31196.14 27580.95 25577.69 27690.93 285
IterMVS85.81 26084.67 26089.22 28593.51 25483.67 27396.32 27394.80 29785.09 23778.69 29290.17 30666.57 29293.17 33079.48 26577.42 27790.81 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 26384.64 26189.00 29093.46 25782.90 28296.27 27494.70 30085.02 24078.62 29490.35 29866.61 29093.33 32779.38 26677.36 27890.76 292
RRT_test8_iter0591.04 17290.40 17492.95 20396.20 16989.75 15598.97 10696.38 20688.52 16382.00 25593.51 23490.69 3696.73 23890.43 15576.91 27992.38 235
our_test_384.47 27882.80 27789.50 28089.01 31483.90 27197.03 24994.56 30481.33 29575.36 31490.52 29571.69 25894.54 32068.81 32476.84 28090.07 308
EU-MVSNet84.19 28184.42 26583.52 32688.64 32067.37 35296.04 28595.76 25585.29 23378.44 29793.18 24070.67 26491.48 34775.79 29275.98 28191.70 256
Anonymous2023120680.76 29979.42 30384.79 32084.78 34272.98 33896.53 26792.97 32879.56 30774.33 31688.83 31661.27 31292.15 34260.59 34675.92 28289.24 322
IterMVS-LS88.34 22087.44 21691.04 24094.10 23685.85 24198.10 20195.48 27285.12 23582.03 25491.21 27381.35 19095.63 29683.86 23175.73 28391.63 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet89.10 20287.66 21493.45 19492.56 26991.02 12097.97 20998.32 2486.92 20986.03 21092.01 25768.84 27397.10 22490.92 14975.34 28492.23 241
nrg03090.23 18588.87 19394.32 17091.53 28593.54 6598.79 12695.89 24788.12 18184.55 22094.61 21178.80 20796.88 23192.35 13875.21 28592.53 233
cl-mvsnet____87.82 22686.79 22890.89 24594.88 22185.43 24897.81 21695.24 28882.91 27680.71 27091.22 27281.97 18395.84 28981.34 25375.06 28691.40 272
cl-mvsnet187.82 22686.81 22790.87 24694.87 22285.39 25097.81 21695.22 29282.92 27580.76 26991.31 27181.99 18195.81 29181.36 25275.04 28791.42 271
v119286.32 25284.71 25991.17 23789.53 30986.40 22298.13 19695.44 27682.52 28182.42 24490.62 28971.58 26096.33 26577.23 27874.88 28890.79 290
v124085.77 26284.11 26790.73 24989.26 31385.15 25597.88 21395.23 29181.89 29182.16 24990.55 29469.60 27096.31 26675.59 29374.87 28990.72 295
FMVSNet582.29 29280.54 29687.52 30393.79 25084.01 26993.73 31292.47 33376.92 32274.27 31786.15 33663.69 30489.24 35169.07 32374.79 29089.29 321
v114486.83 24285.31 24991.40 23389.75 30487.21 21098.31 18495.45 27483.22 26782.70 23990.78 28073.36 24096.36 25879.49 26474.69 29190.63 298
Anonymous2024052178.63 31176.90 31183.82 32482.82 34872.86 33995.72 29593.57 32373.55 33472.17 33184.79 33949.69 34692.51 33865.29 33674.50 29286.09 344
v192192086.02 25584.44 26490.77 24889.32 31285.20 25298.10 20195.35 28382.19 28682.25 24890.71 28270.73 26396.30 26976.85 28374.49 29390.80 289
WR-MVS88.54 21887.22 22292.52 21391.93 28089.50 15998.56 15497.84 5386.99 20581.87 25993.81 22474.25 23695.92 28585.29 20974.43 29492.12 245
ppachtmachnet_test83.63 28781.57 29089.80 27189.01 31485.09 25697.13 24694.50 30578.84 31176.14 30691.00 27669.78 26794.61 31963.40 33974.36 29589.71 316
Patchmtry83.61 28881.64 28889.50 28093.36 25982.84 28584.10 35194.20 31369.47 34479.57 28586.88 33184.43 14294.78 31568.48 32674.30 29690.88 287
V4287.00 23985.68 24490.98 24289.91 30186.08 23498.32 18395.61 26583.67 26182.72 23890.67 28574.00 23896.53 24681.94 25074.28 29790.32 303
Anonymous2023121184.72 27282.65 28390.91 24397.71 11684.55 26397.28 23896.67 18766.88 35079.18 29090.87 27958.47 31896.60 24282.61 24374.20 29891.59 264
SixPastTwentyTwo82.63 29181.58 28985.79 31488.12 32571.01 34595.17 29992.54 33284.33 25072.93 32892.08 25460.41 31595.61 29774.47 30074.15 29990.75 293
v2v48287.27 23785.76 24291.78 23189.59 30687.58 19598.56 15495.54 26984.53 24782.51 24291.78 26273.11 24496.47 25182.07 24774.14 30091.30 276
v14419286.40 25084.89 25590.91 24389.48 31085.59 24598.21 19195.43 27782.45 28282.62 24090.58 29272.79 24896.36 25878.45 27374.04 30190.79 290
cl_fuxian88.19 22487.23 22191.06 23994.97 21786.17 23197.72 22395.38 28083.43 26481.68 26391.37 26982.81 16795.72 29384.04 22973.70 30291.29 277
eth_miper_zixun_eth87.76 22887.00 22590.06 26494.67 22782.65 28897.02 25195.37 28184.19 25181.86 26191.58 26681.47 18895.90 28783.24 23473.61 30391.61 262
miper_lstm_enhance86.90 24086.20 23689.00 29094.53 22981.19 30296.74 26295.24 28882.33 28480.15 27790.51 29681.99 18194.68 31880.71 25873.58 30491.12 281
tfpnnormal83.65 28681.35 29290.56 25291.37 28888.06 18697.29 23797.87 5178.51 31476.20 30590.91 27764.78 29996.47 25161.71 34473.50 30587.13 339
N_pmnet70.19 32369.87 32571.12 33988.24 32330.63 37095.85 29228.70 37070.18 34168.73 33686.55 33364.04 30293.81 32453.12 35573.46 30688.94 324
CP-MVSNet86.54 24885.45 24889.79 27291.02 29282.78 28697.38 23497.56 10985.37 23279.53 28693.03 24571.86 25695.25 30579.92 26273.43 30791.34 274
PS-CasMVS85.81 26084.58 26289.49 28290.77 29482.11 29297.20 24497.36 14484.83 24479.12 29192.84 24867.42 28595.16 30778.39 27473.25 30891.21 279
WR-MVS_H86.53 24985.49 24789.66 27791.04 29183.31 27797.53 23098.20 3084.95 24279.64 28390.90 27878.01 21295.33 30376.29 28872.81 30990.35 302
FPMVS61.57 32560.32 32865.34 34160.14 36442.44 36591.02 33489.72 35444.15 35742.63 35980.93 34619.02 36380.59 35942.50 35872.76 31073.00 355
v1085.73 26384.01 26990.87 24690.03 29986.73 21697.20 24495.22 29281.25 29679.85 28289.75 30973.30 24396.28 27076.87 28272.64 31189.61 317
test_part188.43 21986.68 22993.67 19297.56 12492.40 9298.12 19896.55 19682.26 28580.31 27493.16 24274.59 22996.62 24185.00 21472.61 31291.99 251
UniMVSNet (Re)89.50 20088.32 20693.03 20092.21 27490.96 12298.90 11398.39 2289.13 14583.22 23092.03 25581.69 18596.34 26486.79 19672.53 31391.81 254
UniMVSNet_NR-MVSNet89.60 19788.55 20392.75 20992.17 27590.07 14498.74 12898.15 3488.37 17383.21 23193.98 22082.86 16695.93 28386.95 19372.47 31492.25 239
DU-MVS88.83 21187.51 21592.79 20691.46 28690.07 14498.71 12997.62 9588.87 15683.21 23193.68 22774.63 22595.93 28386.95 19372.47 31492.36 236
v886.11 25484.45 26391.10 23889.99 30086.85 21497.24 24195.36 28281.99 28879.89 28189.86 30874.53 23096.39 25678.83 27172.32 31690.05 310
VPNet88.30 22186.57 23093.49 19391.95 27891.35 10698.18 19397.20 15888.61 16084.52 22194.89 20662.21 30896.76 23789.34 16872.26 31792.36 236
v7n84.42 27982.75 28089.43 28388.15 32481.86 29396.75 26195.67 26180.53 30278.38 29889.43 31369.89 26696.35 26373.83 30672.13 31890.07 308
new_pmnet76.02 31773.71 32082.95 32783.88 34572.85 34091.26 33292.26 33570.44 34062.60 35081.37 34547.64 34992.32 34061.85 34372.10 31983.68 351
IB-MVS89.43 692.12 15390.83 16695.98 11895.40 19690.78 12699.81 698.06 3891.23 9385.63 21293.66 22990.63 3798.78 14591.22 14571.85 32098.36 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
NR-MVSNet87.74 23186.00 23992.96 20291.46 28690.68 13096.65 26597.42 13788.02 18473.42 32293.68 22777.31 21595.83 29084.26 22271.82 32192.36 236
v14886.38 25185.06 25190.37 25989.47 31184.10 26898.52 15695.48 27283.80 25780.93 26890.22 30374.60 22796.31 26680.92 25671.55 32290.69 296
Baseline_NR-MVSNet85.83 25984.82 25788.87 29388.73 31883.34 27698.63 14491.66 34380.41 30682.44 24391.35 27074.63 22595.42 30184.13 22571.39 32387.84 331
TranMVSNet+NR-MVSNet87.75 22986.31 23492.07 22290.81 29388.56 17898.33 18197.18 15987.76 19181.87 25993.90 22272.45 24995.43 30083.13 23871.30 32492.23 241
PEN-MVS85.21 26883.93 27089.07 28989.89 30381.31 30097.09 24797.24 15084.45 24978.66 29392.68 25068.44 27694.87 31275.98 29070.92 32591.04 283
MIMVSNet175.92 31873.30 32183.81 32581.29 35275.57 32992.26 32592.05 33973.09 33567.48 34386.18 33540.87 35787.64 35455.78 35270.68 32688.21 329
pm-mvs184.68 27382.78 27990.40 25689.58 30785.18 25397.31 23594.73 29981.93 29076.05 30792.01 25765.48 29796.11 27678.75 27269.14 32789.91 313
DTE-MVSNet84.14 28282.80 27788.14 29888.95 31679.87 31296.81 25796.24 21683.50 26377.60 30292.52 25267.89 28294.24 32372.64 31369.05 32890.32 303
test20.0378.51 31277.48 30781.62 33283.07 34771.03 34496.11 28392.83 33081.66 29269.31 33589.68 31057.53 32087.29 35558.65 35068.47 32986.53 341
hse-mvs392.47 14891.95 14494.05 18097.13 13685.01 25798.36 17998.08 3793.85 3696.27 8096.73 17583.19 16099.43 11495.81 7968.09 33097.70 183
K. test v381.04 29879.77 30184.83 31987.41 33270.23 34795.60 29693.93 31783.70 26067.51 34289.35 31455.76 32593.58 32676.67 28568.03 33190.67 297
MDA-MVSNet_test_wron79.65 30577.05 30987.45 30487.79 33080.13 31096.25 27794.44 30673.87 33251.80 35587.47 32668.04 27992.12 34366.02 33367.79 33290.09 306
YYNet179.64 30677.04 31087.43 30587.80 32979.98 31196.23 27894.44 30673.83 33351.83 35487.53 32367.96 28192.07 34466.00 33467.75 33390.23 305
AUN-MVS90.17 18889.50 18192.19 21896.21 16682.67 28797.76 22197.53 11488.05 18291.67 14796.15 18883.10 16397.47 21088.11 18266.91 33496.43 212
hse-mvs291.67 16091.51 15392.15 22096.22 16582.61 28997.74 22297.53 11493.85 3696.27 8096.15 18883.19 16097.44 21395.81 7966.86 33596.40 213
pmmvs679.90 30377.31 30887.67 30284.17 34478.13 32295.86 29193.68 32167.94 34872.67 32989.62 31150.98 34395.75 29274.80 29966.04 33689.14 323
Gipumacopyleft54.77 32852.22 33262.40 34386.50 33659.37 35750.20 36290.35 35136.52 35941.20 36049.49 36118.33 36581.29 35732.10 36065.34 33746.54 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft76.08 33690.74 29551.65 36290.84 34986.47 22057.89 35387.98 31935.88 35992.60 33565.77 33565.06 33883.97 350
MDA-MVSNet-bldmvs77.82 31574.75 31987.03 30788.33 32278.52 31996.34 27292.85 32975.57 32648.87 35787.89 32057.32 32292.49 33960.79 34564.80 33990.08 307
Patchmatch-RL test81.90 29680.13 29987.23 30680.71 35370.12 34884.07 35288.19 35883.16 26970.57 33282.18 34487.18 9592.59 33682.28 24662.78 34098.98 120
lessismore_v085.08 31785.59 34069.28 34990.56 35067.68 34190.21 30454.21 33595.46 29973.88 30462.64 34190.50 300
PM-MVS74.88 31972.85 32280.98 33478.98 35664.75 35390.81 33585.77 36080.95 30068.23 33982.81 34229.08 36192.84 33276.54 28662.46 34285.36 347
pmmvs-eth3d78.71 31076.16 31486.38 31080.25 35481.19 30294.17 30892.13 33877.97 31666.90 34582.31 34355.76 32592.56 33773.63 30862.31 34385.38 346
ambc79.60 33572.76 35956.61 35876.20 35792.01 34068.25 33880.23 34823.34 36294.73 31673.78 30760.81 34487.48 333
test_method70.10 32468.66 32774.41 33786.30 33855.84 35994.47 30389.82 35335.18 36066.15 34784.75 34030.54 36077.96 36070.40 32160.33 34589.44 319
TDRefinement78.01 31375.31 31686.10 31370.06 36073.84 33593.59 31591.58 34574.51 33073.08 32691.04 27549.63 34797.12 22174.88 29759.47 34687.33 336
TransMVSNet (Re)81.97 29479.61 30289.08 28889.70 30584.01 26997.26 23991.85 34278.84 31173.07 32791.62 26467.17 28795.21 30667.50 32859.46 34788.02 330
PMVScopyleft41.42 2345.67 33142.50 33455.17 34534.28 36932.37 36866.24 36078.71 36530.72 36122.04 36659.59 3584.59 37077.85 36127.49 36158.84 34855.29 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DIV-MVS_2432*160077.47 31675.88 31582.24 32881.59 35068.93 35092.83 32294.02 31677.03 32173.14 32483.39 34155.44 32990.42 34867.95 32757.53 34987.38 334
CL-MVSNet_2432*160079.89 30478.34 30484.54 32281.56 35175.01 33096.88 25595.62 26381.10 29775.86 31085.81 33768.49 27590.26 34963.21 34056.51 35088.35 328
UnsupCasMVSNet_eth78.90 30876.67 31285.58 31682.81 34974.94 33191.98 32696.31 21084.64 24665.84 34887.71 32151.33 34192.23 34172.89 31256.50 35189.56 318
PVSNet_083.28 1687.31 23685.16 25093.74 19094.78 22484.59 26298.91 11298.69 1889.81 12678.59 29693.23 23961.95 30999.34 12694.75 10255.72 35297.30 193
new-patchmatchnet74.80 32072.40 32381.99 33178.36 35772.20 34294.44 30492.36 33477.06 32063.47 34979.98 34951.04 34288.85 35260.53 34754.35 35384.92 349
pmmvs372.86 32269.76 32682.17 32973.86 35874.19 33494.20 30789.01 35664.23 35467.72 34080.91 34741.48 35488.65 35362.40 34254.02 35483.68 351
LCM-MVSNet60.07 32656.37 32971.18 33854.81 36648.67 36382.17 35689.48 35537.95 35849.13 35669.12 35313.75 36981.76 35659.28 34851.63 35583.10 353
UnsupCasMVSNet_bld73.85 32170.14 32484.99 31879.44 35575.73 32888.53 33995.24 28870.12 34261.94 35174.81 35241.41 35593.62 32568.65 32551.13 35685.62 345
KD-MVS_2432*160082.98 28980.52 29790.38 25794.32 23288.98 16792.87 32095.87 24980.46 30473.79 32087.49 32482.76 16993.29 32870.56 31946.53 35788.87 326
miper_refine_blended82.98 28980.52 29790.38 25794.32 23288.98 16792.87 32095.87 24980.46 30473.79 32087.49 32482.76 16993.29 32870.56 31946.53 35788.87 326
PMMVS258.97 32755.07 33070.69 34062.72 36155.37 36085.97 34380.52 36349.48 35645.94 35868.31 35415.73 36780.78 35849.79 35637.12 35975.91 354
MVEpermissive44.00 2241.70 33237.64 33753.90 34649.46 36743.37 36465.09 36166.66 36726.19 36425.77 36548.53 3623.58 37263.35 36426.15 36227.28 36054.97 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 33340.93 33541.29 34761.97 36233.83 36784.00 35365.17 36827.17 36227.56 36246.72 36317.63 36660.41 36519.32 36318.82 36129.61 361
ANet_high50.71 33046.17 33364.33 34244.27 36852.30 36176.13 35878.73 36464.95 35227.37 36355.23 36014.61 36867.74 36236.01 35918.23 36272.95 356
EMVS39.96 33439.88 33640.18 34859.57 36532.12 36984.79 35064.57 36926.27 36326.14 36444.18 36618.73 36459.29 36617.03 36417.67 36329.12 362
tmp_tt53.66 32952.86 33156.05 34432.75 37041.97 36673.42 35976.12 36621.91 36539.68 36196.39 18542.59 35365.10 36378.00 27514.92 36461.08 357
wuyk23d16.71 33716.73 34116.65 34960.15 36325.22 37141.24 3635.17 3716.56 3665.48 3693.61 3693.64 37122.72 36715.20 3659.52 3651.99 365
testmvs18.81 33623.05 3396.10 3514.48 3712.29 37397.78 2183.00 3723.27 36718.60 36762.71 3561.53 3742.49 36914.26 3661.80 36613.50 364
test12316.58 33819.47 3407.91 3503.59 3725.37 37294.32 3051.39 3732.49 36813.98 36844.60 3652.91 3732.65 36811.35 3670.57 36715.70 363
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k22.52 33530.03 3380.00 3520.00 3730.00 3740.00 36497.17 1600.00 3690.00 37098.77 8374.35 2330.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas6.87 3409.16 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37082.48 1740.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.21 33910.94 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37098.50 1050.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
test_241102_ONE99.63 2195.24 2197.72 7494.16 2699.30 499.49 1093.32 1599.98 10
save fliter99.34 5393.85 5999.65 2497.63 9395.69 11
test072699.66 1595.20 2699.77 1097.70 7993.95 2999.35 399.54 393.18 18
GSMVS98.84 134
test_part299.54 3695.42 1798.13 33
sam_mvs188.39 7098.84 134
sam_mvs87.08 96
MTGPAbinary97.45 130
test_post190.74 33741.37 36785.38 13496.36 25883.16 236
test_post46.00 36487.37 8997.11 222
patchmatchnet-post84.86 33888.73 6496.81 234
MTMP99.21 7291.09 348
gm-plane-assit94.69 22688.14 18488.22 17897.20 15498.29 16090.79 152
TEST999.57 3393.17 7299.38 5997.66 8389.57 13598.39 2799.18 3590.88 3299.66 80
test_899.55 3593.07 7699.37 6297.64 8990.18 11598.36 2999.19 3290.94 3099.64 86
agg_prior99.54 3692.66 8497.64 8997.98 4199.61 89
test_prior492.00 9499.41 56
test_prior97.01 6299.58 2991.77 9597.57 10799.49 10499.79 34
旧先验298.67 13885.75 22798.96 1298.97 14293.84 117
新几何298.26 187
无先验98.52 15697.82 5587.20 20499.90 4087.64 18799.85 29
原ACMM298.69 134
testdata299.88 4484.16 224
segment_acmp90.56 39
testdata197.89 21192.43 63
plane_prior793.84 24785.73 243
plane_prior693.92 24486.02 23772.92 245
plane_prior496.52 179
plane_prior385.91 23893.65 4186.99 201
plane_prior299.02 10093.38 46
plane_prior193.90 246
n20.00 374
nn0.00 374
door-mid84.90 362
test1197.68 81
door85.30 361
HQP5-MVS86.39 223
HQP-NCC93.95 24099.16 7893.92 3187.57 194
ACMP_Plane93.95 24099.16 7893.92 3187.57 194
BP-MVS93.82 119
HQP4-MVS87.57 19497.77 18992.72 229
HQP2-MVS73.34 241
NP-MVS93.94 24386.22 22996.67 177
MDTV_nov1_ep13_2view91.17 11391.38 33087.45 20193.08 13486.67 10787.02 19198.95 127
Test By Simon83.62 150