MCST-MVS | | | 83.01 2 | 83.30 3 | 82.15 10 | 92.84 2 | 57.58 16 | 93.77 1 | 91.10 6 | 75.95 2 | 77.10 24 | 93.09 17 | 54.15 23 | 95.57 10 | 85.80 3 | 85.87 34 | 93.31 9 |
|
DELS-MVS | | | 82.32 4 | 82.50 4 | 81.79 11 | 86.80 41 | 56.89 26 | 92.77 2 | 86.30 79 | 77.83 1 | 77.88 21 | 92.13 32 | 60.24 4 | 94.78 18 | 78.97 25 | 89.61 6 | 93.69 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
SED-MVS | | | 81.92 6 | 81.75 7 | 82.44 7 | 89.48 14 | 56.89 26 | 92.48 3 | 88.94 27 | 57.50 202 | 84.61 3 | 94.09 4 | 58.81 9 | 96.37 5 | 82.28 11 | 87.60 16 | 94.06 3 |
|
OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 42 | 92.48 3 | | | | 94.01 6 | 67.21 2 | 95.10 13 | 89.82 1 | 92.55 3 | 94.06 3 |
|
DVP-MVS | | | 81.30 8 | 81.00 10 | 82.20 8 | 89.40 17 | 57.45 18 | 92.34 5 | 89.99 14 | 57.71 196 | 81.91 9 | 93.64 10 | 55.17 17 | 96.44 2 | 81.68 13 | 87.13 19 | 92.72 21 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 82.20 8 | 89.50 12 | 57.73 13 | 92.34 5 | 88.88 29 | | | | | 96.39 4 | 81.68 13 | 87.13 19 | 92.47 24 |
|
test0726 | | | | | | 89.40 17 | 57.45 18 | 92.32 7 | 88.63 37 | 57.71 196 | 83.14 7 | 93.96 7 | 55.17 17 | | | | |
|
DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 179 | 59.50 5 | 92.24 8 | 90.72 8 | 69.37 22 | 83.22 6 | 94.47 2 | 63.81 3 | 93.18 30 | 74.02 62 | 93.25 2 | 94.80 1 |
|
ETH3 D test6400 | | | 83.28 1 | 83.47 1 | 82.72 3 | 91.48 4 | 59.33 6 | 92.10 9 | 90.95 7 | 65.68 58 | 80.67 15 | 94.42 3 | 59.41 7 | 95.89 9 | 86.74 2 | 89.75 5 | 92.94 16 |
|
CNVR-MVS | | | 81.76 7 | 81.90 6 | 81.33 15 | 90.04 7 | 57.70 14 | 91.71 10 | 88.87 30 | 70.31 16 | 77.64 23 | 93.87 8 | 52.58 30 | 93.91 24 | 84.17 4 | 87.92 14 | 92.39 26 |
|
PS-MVSNAJ | | | 80.06 13 | 79.52 14 | 81.68 13 | 85.58 56 | 60.97 3 | 91.69 11 | 87.02 64 | 70.62 13 | 80.75 14 | 93.22 14 | 37.77 176 | 92.50 42 | 82.75 8 | 86.25 31 | 91.57 46 |
|
xiu_mvs_v2_base | | | 79.86 14 | 79.31 15 | 81.53 14 | 85.03 72 | 60.73 4 | 91.65 12 | 86.86 67 | 70.30 17 | 80.77 13 | 93.07 18 | 37.63 181 | 92.28 49 | 82.73 9 | 85.71 35 | 91.57 46 |
|
CANet | | | 80.90 9 | 81.17 9 | 80.09 28 | 87.62 34 | 54.21 85 | 91.60 13 | 86.47 75 | 73.13 5 | 79.89 18 | 93.10 15 | 49.88 51 | 92.98 31 | 84.09 5 | 84.75 47 | 93.08 14 |
|
lupinMVS | | | 78.38 22 | 78.11 24 | 79.19 37 | 83.02 114 | 55.24 55 | 91.57 14 | 84.82 116 | 69.12 23 | 76.67 26 | 92.02 36 | 44.82 102 | 90.23 99 | 80.83 18 | 80.09 84 | 92.08 33 |
|
NCCC | | | 79.57 16 | 79.23 16 | 80.59 18 | 89.50 12 | 56.99 24 | 91.38 15 | 88.17 46 | 67.71 37 | 73.81 44 | 92.75 21 | 46.88 73 | 93.28 28 | 78.79 27 | 84.07 53 | 91.50 50 |
|
test_yl | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 30 | 51.94 144 | 91.30 16 | 89.28 18 | 57.91 190 | 71.19 76 | 89.20 100 | 42.03 137 | 92.77 35 | 69.41 86 | 75.07 127 | 92.01 36 |
|
DCV-MVSNet | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 30 | 51.94 144 | 91.30 16 | 89.28 18 | 57.91 190 | 71.19 76 | 89.20 100 | 42.03 137 | 92.77 35 | 69.41 86 | 75.07 127 | 92.01 36 |
|
LFMVS | | | 78.52 19 | 77.14 35 | 82.67 4 | 89.58 10 | 58.90 8 | 91.27 18 | 88.05 47 | 63.22 93 | 74.63 36 | 90.83 63 | 41.38 145 | 94.40 19 | 75.42 52 | 79.90 89 | 94.72 2 |
|
VDD-MVS | | | 76.08 57 | 74.97 62 | 79.44 33 | 84.27 84 | 53.33 111 | 91.13 19 | 85.88 87 | 65.33 65 | 72.37 63 | 89.34 97 | 32.52 240 | 92.76 37 | 77.90 37 | 75.96 116 | 92.22 31 |
|
DeepPCF-MVS | | 69.37 1 | 80.65 10 | 81.56 8 | 77.94 80 | 85.46 62 | 49.56 199 | 90.99 20 | 86.66 73 | 70.58 14 | 80.07 17 | 95.30 1 | 56.18 15 | 90.97 78 | 82.57 10 | 86.22 32 | 93.28 10 |
|
VNet | | | 77.99 30 | 77.92 27 | 78.19 71 | 87.43 35 | 50.12 189 | 90.93 21 | 91.41 4 | 67.48 40 | 75.12 32 | 90.15 82 | 46.77 75 | 91.00 76 | 73.52 67 | 78.46 98 | 93.44 7 |
|
CLD-MVS | | | 75.60 65 | 75.39 56 | 76.24 117 | 80.69 170 | 52.40 135 | 90.69 22 | 86.20 82 | 74.40 3 | 65.01 126 | 88.93 104 | 42.05 136 | 90.58 88 | 76.57 43 | 73.96 133 | 85.73 171 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_part1 | | | 73.80 87 | 72.13 95 | 78.79 51 | 85.92 47 | 58.26 10 | 90.60 23 | 86.85 68 | 63.98 79 | 63.95 142 | 81.54 204 | 52.08 34 | 92.24 50 | 64.93 124 | 59.32 239 | 85.87 169 |
|
jason | | | 77.01 42 | 76.45 44 | 78.69 55 | 79.69 182 | 54.74 72 | 90.56 24 | 83.99 138 | 68.26 28 | 74.10 42 | 90.91 60 | 42.14 134 | 89.99 103 | 79.30 24 | 79.12 92 | 91.36 54 |
jason: jason. |
IB-MVS | | 68.87 2 | 74.01 83 | 72.03 100 | 79.94 29 | 83.04 113 | 55.50 47 | 90.24 25 | 88.65 35 | 67.14 42 | 61.38 168 | 81.74 201 | 53.21 26 | 94.28 20 | 60.45 157 | 62.41 222 | 90.03 86 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
VDDNet | | | 74.37 78 | 72.13 95 | 81.09 17 | 79.58 183 | 56.52 32 | 90.02 26 | 86.70 72 | 52.61 256 | 71.23 75 | 87.20 132 | 31.75 250 | 93.96 23 | 74.30 60 | 75.77 119 | 92.79 20 |
|
TSAR-MVS + GP. | | | 77.82 31 | 77.59 30 | 78.49 60 | 85.25 68 | 50.27 186 | 90.02 26 | 90.57 9 | 56.58 219 | 74.26 41 | 91.60 46 | 54.26 21 | 92.16 52 | 75.87 46 | 79.91 88 | 93.05 15 |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 29 | 77.63 29 | 79.13 39 | 88.52 23 | 55.12 60 | 89.95 28 | 85.98 86 | 68.31 27 | 71.33 74 | 92.75 21 | 45.52 92 | 90.37 92 | 71.15 79 | 85.14 43 | 91.91 38 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS++ |  | | 80.50 11 | 80.71 11 | 79.88 30 | 87.34 36 | 55.20 58 | 89.93 29 | 87.55 59 | 66.04 57 | 79.46 19 | 93.00 19 | 53.10 27 | 91.76 59 | 80.40 20 | 89.56 7 | 92.68 22 |
|
MG-MVS | | | 78.42 21 | 76.99 37 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 43 | 64.83 71 | 73.52 49 | 88.09 120 | 48.07 60 | 92.19 51 | 62.24 138 | 84.53 49 | 91.53 48 |
|
VPNet | | | 72.07 113 | 71.42 107 | 74.04 161 | 78.64 203 | 47.17 248 | 89.91 31 | 87.97 48 | 72.56 7 | 64.66 129 | 85.04 158 | 41.83 141 | 88.33 150 | 61.17 146 | 60.97 229 | 86.62 155 |
|
alignmvs | | | 78.08 28 | 77.98 25 | 78.39 66 | 83.53 97 | 53.22 114 | 89.77 32 | 85.45 92 | 66.11 52 | 76.59 28 | 91.99 38 | 54.07 24 | 89.05 122 | 77.34 40 | 77.00 108 | 92.89 18 |
|
APDe-MVS | | | 78.44 20 | 78.20 21 | 79.19 37 | 88.56 22 | 54.55 80 | 89.76 33 | 87.77 54 | 55.91 225 | 78.56 20 | 92.49 25 | 48.20 59 | 92.65 40 | 79.49 22 | 83.04 57 | 90.39 77 |
|
SteuartSystems-ACMMP | | | 77.08 41 | 76.33 46 | 79.34 35 | 80.98 161 | 55.31 53 | 89.76 33 | 86.91 66 | 62.94 97 | 71.65 69 | 91.56 47 | 42.33 130 | 92.56 41 | 77.14 41 | 83.69 55 | 90.15 84 |
Skip Steuart: Steuart Systems R&D Blog. |
Anonymous202405211 | | | 70.11 137 | 67.88 152 | 76.79 110 | 87.20 39 | 47.24 247 | 89.49 35 | 77.38 254 | 54.88 239 | 66.14 110 | 86.84 138 | 20.93 317 | 91.54 63 | 56.45 193 | 71.62 155 | 91.59 44 |
|
DP-MVS Recon | | | 71.99 114 | 70.31 118 | 77.01 102 | 90.65 6 | 53.44 105 | 89.37 36 | 82.97 159 | 56.33 222 | 63.56 150 | 89.47 94 | 34.02 225 | 92.15 54 | 54.05 205 | 72.41 149 | 85.43 178 |
|
EPNet | | | 78.36 23 | 78.49 19 | 77.97 78 | 85.49 59 | 52.04 142 | 89.36 37 | 84.07 135 | 73.22 4 | 77.03 25 | 91.72 43 | 49.32 55 | 90.17 101 | 73.46 68 | 82.77 58 | 91.69 41 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
xxxxxxxxxxxxxcwj | | | 77.31 38 | 76.54 41 | 79.61 31 | 85.35 64 | 56.34 36 | 89.31 38 | 72.84 300 | 61.55 118 | 74.63 36 | 92.38 27 | 47.75 64 | 91.35 68 | 78.18 34 | 86.85 24 | 91.15 58 |
|
save fliter | | | | | | 85.35 64 | 56.34 36 | 89.31 38 | 81.46 178 | 61.55 118 | | | | | | | |
|
CSCG | | | 80.41 12 | 79.72 12 | 82.49 5 | 89.12 21 | 57.67 15 | 89.29 40 | 91.54 3 | 59.19 162 | 71.82 68 | 90.05 84 | 59.72 6 | 96.04 7 | 78.37 29 | 88.40 12 | 93.75 5 |
|
MAR-MVS | | | 76.76 48 | 75.60 53 | 80.21 23 | 90.87 5 | 54.68 76 | 89.14 41 | 89.11 22 | 62.95 96 | 70.54 80 | 92.33 29 | 41.05 146 | 94.95 15 | 57.90 180 | 86.55 28 | 91.00 64 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CS-MVS | | | 78.19 26 | 77.97 26 | 78.82 47 | 83.52 98 | 53.08 119 | 89.10 42 | 86.30 79 | 68.01 33 | 73.57 46 | 91.26 52 | 47.28 69 | 92.35 47 | 78.21 31 | 84.51 50 | 91.05 61 |
|
test_prior3 | | | 77.59 34 | 77.33 34 | 78.39 66 | 86.35 44 | 54.91 69 | 89.04 43 | 85.45 92 | 61.88 113 | 73.55 47 | 91.46 50 | 48.01 62 | 89.70 110 | 74.73 56 | 85.46 38 | 90.55 72 |
|
test_prior2 | | | | | | | | 89.04 43 | | 61.88 113 | 73.55 47 | 91.46 50 | 48.01 62 | | 74.73 56 | 85.46 38 | |
|
ET-MVSNet_ETH3D | | | 75.23 69 | 74.08 72 | 78.67 56 | 84.52 78 | 55.59 45 | 88.92 45 | 89.21 20 | 68.06 32 | 53.13 265 | 90.22 78 | 49.71 52 | 87.62 173 | 72.12 75 | 70.82 162 | 92.82 19 |
|
PVSNet_Blended | | | 76.53 51 | 76.54 41 | 76.50 112 | 85.91 48 | 51.83 149 | 88.89 46 | 84.24 132 | 67.82 35 | 69.09 85 | 89.33 99 | 46.70 76 | 88.13 157 | 75.43 50 | 81.48 71 | 89.55 95 |
|
Anonymous20240529 | | | 69.71 147 | 67.28 166 | 77.00 103 | 83.78 94 | 50.36 180 | 88.87 47 | 85.10 110 | 47.22 286 | 64.03 140 | 83.37 176 | 27.93 273 | 92.10 55 | 57.78 182 | 67.44 183 | 88.53 121 |
|
testtj | | | 76.96 43 | 76.48 43 | 78.40 65 | 89.89 9 | 53.67 95 | 88.72 48 | 86.15 83 | 54.56 243 | 74.86 34 | 92.31 30 | 44.38 107 | 91.97 57 | 75.19 54 | 82.24 63 | 89.54 96 |
|
DPE-MVS |  | | 79.82 15 | 79.66 13 | 80.29 21 | 89.27 20 | 55.08 63 | 88.70 49 | 87.92 50 | 55.55 230 | 81.21 12 | 93.69 9 | 56.51 14 | 94.27 21 | 78.36 30 | 85.70 36 | 91.51 49 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
RRT_test8_iter05 | | | 72.74 100 | 71.20 110 | 77.36 91 | 87.25 38 | 53.51 99 | 88.68 50 | 89.53 16 | 65.20 68 | 61.32 169 | 81.27 206 | 45.89 86 | 92.48 44 | 65.99 109 | 55.65 280 | 86.10 163 |
|
PHI-MVS | | | 77.49 35 | 77.00 36 | 78.95 41 | 85.33 66 | 50.69 169 | 88.57 51 | 88.59 41 | 58.14 185 | 73.60 45 | 93.31 12 | 43.14 125 | 93.79 25 | 73.81 63 | 88.53 11 | 92.37 27 |
|
WTY-MVS | | | 77.47 36 | 77.52 31 | 77.30 93 | 88.33 26 | 46.25 260 | 88.46 52 | 90.32 10 | 71.40 10 | 72.32 64 | 91.72 43 | 53.44 25 | 92.37 46 | 66.28 108 | 75.42 122 | 93.28 10 |
|
ETH3D-3000-0.1 | | | 78.73 18 | 78.71 18 | 78.78 52 | 85.58 56 | 52.40 135 | 88.42 53 | 89.03 24 | 60.01 143 | 76.06 29 | 92.80 20 | 48.34 57 | 92.88 33 | 81.66 15 | 86.48 29 | 91.04 62 |
|
9.14 | | | | 78.19 22 | | 85.67 53 | | 88.32 54 | 88.84 31 | 59.89 145 | 74.58 39 | 92.62 24 | 46.80 74 | 92.66 39 | 81.40 17 | 85.62 37 | |
|
MVS_111021_HR | | | 76.39 53 | 75.38 57 | 79.42 34 | 85.33 66 | 56.47 33 | 88.15 55 | 84.97 112 | 65.15 69 | 66.06 112 | 89.88 87 | 43.79 113 | 92.16 52 | 75.03 55 | 80.03 87 | 89.64 94 |
|
MS-PatchMatch | | | 72.34 108 | 71.26 108 | 75.61 130 | 82.38 133 | 55.55 46 | 88.00 56 | 89.95 15 | 65.38 63 | 56.51 241 | 80.74 212 | 32.28 243 | 92.89 32 | 57.95 179 | 88.10 13 | 78.39 277 |
|
HQP-NCC | | | | | | 79.02 192 | | 88.00 56 | | 65.45 59 | 64.48 133 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 192 | | 88.00 56 | | 65.45 59 | 64.48 133 | | | | | | |
|
HQP-MVS | | | 72.34 108 | 71.44 106 | 75.03 141 | 79.02 192 | 51.56 154 | 88.00 56 | 83.68 142 | 65.45 59 | 64.48 133 | 85.13 156 | 37.35 187 | 88.62 137 | 66.70 103 | 73.12 141 | 84.91 185 |
|
canonicalmvs | | | 78.17 27 | 77.86 28 | 79.12 40 | 84.30 81 | 54.22 84 | 87.71 60 | 84.57 123 | 67.70 38 | 77.70 22 | 92.11 35 | 50.90 42 | 89.95 104 | 78.18 34 | 77.54 103 | 93.20 12 |
|
VPA-MVSNet | | | 71.12 122 | 70.66 114 | 72.49 195 | 78.75 198 | 44.43 279 | 87.64 61 | 90.02 13 | 63.97 80 | 65.02 125 | 81.58 203 | 42.14 134 | 87.42 178 | 63.42 131 | 63.38 211 | 85.63 175 |
|
test_8 | | | | | | 85.72 50 | 55.31 53 | 87.60 62 | 83.88 139 | 57.84 193 | 72.84 56 | 90.99 55 | 44.99 97 | 88.34 149 | | | |
|
Regformer-1 | | | 77.80 32 | 77.44 32 | 78.88 44 | 87.78 32 | 52.44 134 | 87.60 62 | 90.08 12 | 68.86 24 | 72.49 62 | 91.79 40 | 47.69 66 | 94.90 16 | 73.57 66 | 77.05 105 | 89.31 99 |
|
Regformer-2 | | | 77.15 40 | 76.82 39 | 78.14 72 | 87.78 32 | 51.84 148 | 87.60 62 | 89.12 21 | 67.23 41 | 71.93 67 | 91.79 40 | 46.03 84 | 93.53 27 | 72.85 72 | 77.05 105 | 89.05 108 |
|
TEST9 | | | | | | 85.68 51 | 55.42 49 | 87.59 65 | 84.00 136 | 57.72 195 | 72.99 53 | 90.98 56 | 44.87 100 | 88.58 139 | | | |
|
train_agg | | | 76.91 44 | 76.40 45 | 78.45 63 | 85.68 51 | 55.42 49 | 87.59 65 | 84.00 136 | 57.84 193 | 72.99 53 | 90.98 56 | 44.99 97 | 88.58 139 | 78.19 32 | 85.32 41 | 91.34 56 |
|
SMA-MVS |  | | 79.10 17 | 78.76 17 | 80.12 26 | 84.42 79 | 55.87 43 | 87.58 67 | 86.76 70 | 61.48 122 | 80.26 16 | 93.10 15 | 46.53 78 | 92.41 45 | 79.97 21 | 88.77 9 | 92.08 33 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
agg_prior1 | | | 76.68 50 | 76.24 48 | 78.00 76 | 85.64 54 | 54.92 67 | 87.55 68 | 83.61 145 | 57.99 189 | 72.53 60 | 91.05 53 | 45.36 93 | 88.10 159 | 77.76 38 | 84.68 48 | 90.99 65 |
|
plane_prior | | | | | | | 49.57 197 | 87.43 69 | | 64.57 73 | | | | | | 72.84 145 | |
|
TR-MVS | | | 69.71 147 | 67.85 154 | 75.27 138 | 82.94 118 | 48.48 225 | 87.40 70 | 80.86 188 | 57.15 207 | 64.61 131 | 87.08 135 | 32.67 239 | 89.64 113 | 46.38 253 | 71.55 157 | 87.68 136 |
|
CDPH-MVS | | | 76.05 58 | 75.19 58 | 78.62 58 | 86.51 43 | 54.98 66 | 87.32 71 | 84.59 122 | 58.62 179 | 70.75 78 | 90.85 62 | 43.10 127 | 90.63 87 | 70.50 82 | 84.51 50 | 90.24 80 |
|
3Dnovator+ | | 62.71 7 | 72.29 110 | 70.50 115 | 77.65 85 | 83.40 102 | 51.29 163 | 87.32 71 | 86.40 77 | 59.01 171 | 58.49 209 | 88.32 115 | 32.40 241 | 91.27 70 | 57.04 188 | 82.15 66 | 90.38 78 |
|
API-MVS | | | 74.17 81 | 72.07 98 | 80.49 19 | 90.02 8 | 58.55 9 | 87.30 73 | 84.27 129 | 57.51 201 | 65.77 117 | 87.77 127 | 41.61 143 | 95.97 8 | 51.71 222 | 82.63 59 | 86.94 146 |
|
BH-RMVSNet | | | 70.08 139 | 68.01 149 | 76.27 116 | 84.21 85 | 51.22 165 | 87.29 74 | 79.33 219 | 58.96 174 | 63.63 149 | 86.77 139 | 33.29 234 | 90.30 97 | 44.63 261 | 73.96 133 | 87.30 143 |
|
MTMP | | | | | | | | 87.27 75 | 15.34 363 | | | | | | | | |
|
APD-MVS |  | | 76.15 56 | 75.68 51 | 77.54 87 | 88.52 23 | 53.44 105 | 87.26 76 | 85.03 111 | 53.79 247 | 74.91 33 | 91.68 45 | 43.80 112 | 90.31 95 | 74.36 59 | 81.82 67 | 88.87 112 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
EIA-MVS | | | 75.92 60 | 75.18 59 | 78.13 73 | 85.14 69 | 51.60 153 | 87.17 77 | 85.32 99 | 64.69 72 | 68.56 88 | 90.53 70 | 45.79 89 | 91.58 62 | 67.21 100 | 82.18 65 | 91.20 57 |
|
test_prior4 | | | | | | | 56.39 35 | 87.15 78 | | | | | | | | | |
|
casdiffmvs | | | 77.36 37 | 76.85 38 | 78.88 44 | 80.40 176 | 54.66 78 | 87.06 79 | 85.88 87 | 72.11 8 | 71.57 71 | 88.63 113 | 50.89 44 | 90.35 93 | 76.00 45 | 79.11 93 | 91.63 43 |
|
cascas | | | 69.01 159 | 66.13 187 | 77.66 84 | 79.36 184 | 55.41 51 | 86.99 80 | 83.75 141 | 56.69 216 | 58.92 199 | 81.35 205 | 24.31 298 | 92.10 55 | 53.23 208 | 70.61 163 | 85.46 177 |
|
nrg030 | | | 72.27 112 | 71.56 103 | 74.42 152 | 75.93 243 | 50.60 171 | 86.97 81 | 83.21 153 | 62.75 99 | 67.15 100 | 84.38 162 | 50.07 48 | 86.66 196 | 71.19 78 | 62.37 223 | 85.99 164 |
|
#test# | | | 74.86 76 | 73.78 76 | 78.10 74 | 84.30 81 | 53.68 93 | 86.95 82 | 84.36 126 | 59.00 172 | 65.78 115 | 90.56 67 | 40.70 151 | 90.90 79 | 71.48 77 | 80.88 73 | 89.71 91 |
|
114514_t | | | 69.87 145 | 67.88 152 | 75.85 128 | 88.38 25 | 52.35 138 | 86.94 83 | 83.68 142 | 53.70 248 | 55.68 247 | 85.60 152 | 30.07 262 | 91.20 71 | 55.84 195 | 71.02 160 | 83.99 197 |
|
CP-MVS | | | 72.59 105 | 71.46 105 | 76.00 126 | 82.93 119 | 52.32 139 | 86.93 84 | 82.48 164 | 55.15 234 | 63.65 148 | 90.44 75 | 35.03 218 | 88.53 143 | 68.69 92 | 77.83 101 | 87.15 144 |
|
ZNCC-MVS | | | 75.82 64 | 75.02 61 | 78.23 70 | 83.88 93 | 53.80 91 | 86.91 85 | 86.05 85 | 59.71 147 | 67.85 95 | 90.55 69 | 42.23 132 | 91.02 75 | 72.66 74 | 85.29 42 | 89.87 90 |
|
PAPM | | | 76.76 48 | 76.07 50 | 78.81 48 | 80.20 177 | 59.11 7 | 86.86 86 | 86.23 81 | 68.60 25 | 70.18 82 | 88.84 107 | 51.57 36 | 87.16 182 | 65.48 115 | 86.68 26 | 90.15 84 |
|
Fast-Effi-MVS+ | | | 72.73 101 | 71.15 112 | 77.48 88 | 82.75 125 | 54.76 71 | 86.77 87 | 80.64 191 | 63.05 95 | 65.93 113 | 84.01 165 | 44.42 106 | 89.03 123 | 56.45 193 | 76.36 115 | 88.64 117 |
|
ETH3D cwj APD-0.16 | | | 78.36 23 | 78.19 22 | 78.86 46 | 84.21 85 | 52.68 128 | 86.70 88 | 89.02 25 | 59.13 168 | 75.37 31 | 92.49 25 | 49.06 56 | 93.20 29 | 80.67 19 | 87.08 21 | 90.71 70 |
|
thisisatest0515 | | | 73.64 91 | 72.20 93 | 77.97 78 | 81.63 144 | 53.01 122 | 86.69 89 | 88.81 32 | 62.53 102 | 64.06 139 | 85.65 151 | 52.15 33 | 92.50 42 | 58.43 169 | 69.84 168 | 88.39 123 |
|
SF-MVS | | | 77.64 33 | 77.42 33 | 78.32 69 | 83.75 95 | 52.47 133 | 86.63 90 | 87.80 51 | 58.78 176 | 74.63 36 | 92.38 27 | 47.75 64 | 91.35 68 | 78.18 34 | 86.85 24 | 91.15 58 |
|
BH-w/o | | | 70.02 141 | 68.51 142 | 74.56 148 | 82.77 123 | 50.39 178 | 86.60 91 | 78.14 240 | 59.77 146 | 59.65 183 | 85.57 153 | 39.27 165 | 87.30 180 | 49.86 231 | 74.94 129 | 85.99 164 |
|
mvs-test1 | | | 69.04 157 | 67.57 160 | 73.44 179 | 75.17 249 | 51.68 152 | 86.57 92 | 74.48 284 | 62.15 106 | 62.07 164 | 85.79 149 | 30.59 258 | 87.48 176 | 65.40 120 | 65.94 194 | 81.18 248 |
|
DeepC-MVS | | 67.15 4 | 76.90 46 | 76.27 47 | 78.80 49 | 80.70 169 | 55.02 64 | 86.39 93 | 86.71 71 | 66.96 44 | 67.91 94 | 89.97 86 | 48.03 61 | 91.41 67 | 75.60 49 | 84.14 52 | 89.96 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TransMVSNet (Re) | | | 62.82 238 | 60.76 240 | 69.02 252 | 73.98 265 | 41.61 303 | 86.36 94 | 79.30 220 | 56.90 209 | 52.53 268 | 76.44 255 | 41.85 140 | 87.60 174 | 38.83 278 | 40.61 331 | 77.86 283 |
|
MSLP-MVS++ | | | 74.21 80 | 72.25 92 | 80.11 27 | 81.45 155 | 56.47 33 | 86.32 95 | 79.65 209 | 58.19 184 | 66.36 108 | 92.29 31 | 36.11 207 | 90.66 85 | 67.39 98 | 82.49 60 | 93.18 13 |
|
QAPM | | | 71.88 115 | 69.33 134 | 79.52 32 | 82.20 135 | 54.30 83 | 86.30 96 | 88.77 33 | 56.61 218 | 59.72 182 | 87.48 130 | 33.90 228 | 95.36 11 | 47.48 246 | 81.49 70 | 88.90 111 |
|
WR-MVS | | | 67.58 186 | 66.76 174 | 70.04 244 | 75.92 244 | 45.06 275 | 86.23 97 | 85.28 102 | 64.31 75 | 58.50 208 | 81.00 207 | 44.80 104 | 82.00 263 | 49.21 236 | 55.57 281 | 83.06 218 |
|
PVSNet_BlendedMVS | | | 73.42 93 | 73.30 78 | 73.76 170 | 85.91 48 | 51.83 149 | 86.18 98 | 84.24 132 | 65.40 62 | 69.09 85 | 80.86 210 | 46.70 76 | 88.13 157 | 75.43 50 | 65.92 195 | 81.33 244 |
|
ETV-MVS | | | 77.17 39 | 76.74 40 | 78.48 61 | 81.80 140 | 54.55 80 | 86.13 99 | 85.33 98 | 68.20 29 | 73.10 52 | 90.52 71 | 45.23 95 | 90.66 85 | 79.37 23 | 80.95 72 | 90.22 81 |
|
AdaColmap |  | | 67.86 181 | 65.48 201 | 75.00 142 | 88.15 29 | 54.99 65 | 86.10 100 | 76.63 268 | 49.30 276 | 57.80 218 | 86.65 142 | 29.39 265 | 88.94 132 | 45.10 259 | 70.21 166 | 81.06 249 |
|
OPM-MVS | | | 70.75 130 | 69.58 129 | 74.26 157 | 75.55 248 | 51.34 161 | 86.05 101 | 83.29 152 | 61.94 112 | 62.95 155 | 85.77 150 | 34.15 224 | 88.44 145 | 65.44 119 | 71.07 159 | 82.99 219 |
|
Vis-MVSNet |  | | 70.61 132 | 69.34 133 | 74.42 152 | 80.95 165 | 48.49 224 | 86.03 102 | 77.51 251 | 58.74 177 | 65.55 119 | 87.78 126 | 34.37 222 | 85.95 220 | 52.53 220 | 80.61 77 | 88.80 113 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Anonymous20231211 | | | 66.08 217 | 63.67 221 | 73.31 181 | 83.07 112 | 48.75 217 | 86.01 103 | 84.67 121 | 45.27 302 | 56.54 239 | 76.67 253 | 28.06 272 | 88.95 130 | 52.78 215 | 59.95 232 | 82.23 226 |
|
EG-PatchMatch MVS | | | 62.40 245 | 59.59 247 | 70.81 231 | 73.29 270 | 49.05 208 | 85.81 104 | 84.78 118 | 51.85 263 | 44.19 306 | 73.48 282 | 15.52 338 | 89.85 105 | 40.16 275 | 67.24 184 | 73.54 318 |
|
PVSNet_Blended_VisFu | | | 73.40 94 | 72.44 88 | 76.30 115 | 81.32 159 | 54.70 75 | 85.81 104 | 78.82 226 | 63.70 85 | 64.53 132 | 85.38 155 | 47.11 72 | 87.38 179 | 67.75 97 | 77.55 102 | 86.81 153 |
|
HQP_MVS | | | 70.96 126 | 69.91 126 | 74.12 159 | 77.95 214 | 49.57 197 | 85.76 106 | 82.59 162 | 63.60 88 | 62.15 162 | 83.28 178 | 36.04 210 | 88.30 152 | 65.46 116 | 72.34 150 | 84.49 188 |
|
plane_prior2 | | | | | | | | 85.76 106 | | 63.60 88 | | | | | | | |
|
GST-MVS | | | 74.87 75 | 73.90 74 | 77.77 81 | 83.30 104 | 53.45 104 | 85.75 108 | 85.29 101 | 59.22 161 | 66.50 107 | 89.85 88 | 40.94 147 | 90.76 82 | 70.94 80 | 83.35 56 | 89.10 107 |
|
SD-MVS | | | 76.18 55 | 74.85 64 | 80.18 24 | 85.39 63 | 56.90 25 | 85.75 108 | 82.45 165 | 56.79 214 | 74.48 40 | 91.81 39 | 43.72 116 | 90.75 83 | 74.61 58 | 78.65 96 | 92.91 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CHOSEN 1792x2688 | | | 76.24 54 | 74.03 73 | 82.88 1 | 83.09 110 | 62.84 2 | 85.73 110 | 85.39 95 | 69.79 19 | 64.87 128 | 83.49 174 | 41.52 144 | 93.69 26 | 70.55 81 | 81.82 67 | 92.12 32 |
|
FMVSNet3 | | | 68.84 161 | 67.40 164 | 73.19 183 | 85.05 70 | 48.53 222 | 85.71 111 | 85.36 96 | 60.90 132 | 57.58 224 | 79.15 223 | 42.16 133 | 86.77 192 | 47.25 248 | 63.40 208 | 84.27 192 |
|
MP-MVS |  | | 74.99 74 | 74.33 70 | 76.95 105 | 82.89 120 | 53.05 121 | 85.63 112 | 83.50 147 | 57.86 192 | 67.25 99 | 90.24 77 | 43.38 122 | 88.85 134 | 76.03 44 | 82.23 64 | 88.96 110 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
HFP-MVS | | | 74.37 78 | 73.13 81 | 78.10 74 | 84.30 81 | 53.68 93 | 85.58 113 | 84.36 126 | 56.82 212 | 65.78 115 | 90.56 67 | 40.70 151 | 90.90 79 | 69.18 89 | 80.88 73 | 89.71 91 |
|
ACMMPR | | | 73.76 88 | 72.61 84 | 77.24 98 | 83.92 91 | 52.96 124 | 85.58 113 | 84.29 128 | 56.82 212 | 65.12 122 | 90.45 72 | 37.24 191 | 90.18 100 | 69.18 89 | 80.84 75 | 88.58 119 |
|
BH-untuned | | | 68.28 174 | 66.40 179 | 73.91 164 | 81.62 145 | 50.01 191 | 85.56 115 | 77.39 253 | 57.63 198 | 57.47 229 | 83.69 172 | 36.36 205 | 87.08 184 | 44.81 260 | 73.08 144 | 84.65 187 |
|
region2R | | | 73.75 89 | 72.55 86 | 77.33 92 | 83.90 92 | 52.98 123 | 85.54 116 | 84.09 134 | 56.83 211 | 65.10 123 | 90.45 72 | 37.34 189 | 90.24 98 | 68.89 91 | 80.83 76 | 88.77 115 |
|
xiu_mvs_v1_base_debu | | | 71.60 118 | 70.29 119 | 75.55 131 | 77.26 225 | 53.15 115 | 85.34 117 | 79.37 213 | 55.83 226 | 72.54 57 | 90.19 79 | 22.38 308 | 86.66 196 | 73.28 69 | 76.39 112 | 86.85 150 |
|
xiu_mvs_v1_base | | | 71.60 118 | 70.29 119 | 75.55 131 | 77.26 225 | 53.15 115 | 85.34 117 | 79.37 213 | 55.83 226 | 72.54 57 | 90.19 79 | 22.38 308 | 86.66 196 | 73.28 69 | 76.39 112 | 86.85 150 |
|
xiu_mvs_v1_base_debi | | | 71.60 118 | 70.29 119 | 75.55 131 | 77.26 225 | 53.15 115 | 85.34 117 | 79.37 213 | 55.83 226 | 72.54 57 | 90.19 79 | 22.38 308 | 86.66 196 | 73.28 69 | 76.39 112 | 86.85 150 |
|
NR-MVSNet | | | 67.25 196 | 65.99 190 | 71.04 228 | 73.27 271 | 43.91 283 | 85.32 120 | 84.75 119 | 66.05 56 | 53.65 263 | 82.11 197 | 45.05 96 | 85.97 219 | 47.55 245 | 56.18 272 | 83.24 213 |
|
Effi-MVS+ | | | 75.24 68 | 73.61 77 | 80.16 25 | 81.92 138 | 57.42 20 | 85.21 121 | 76.71 266 | 60.68 136 | 73.32 51 | 89.34 97 | 47.30 68 | 91.63 61 | 68.28 94 | 79.72 90 | 91.42 51 |
|
æ— å…ˆéªŒ | | | | | | | | 85.19 122 | 78.00 243 | 49.08 277 | | | | 85.13 235 | 52.78 215 | | 87.45 140 |
|
FMVSNet2 | | | 67.57 187 | 65.79 194 | 72.90 186 | 82.71 126 | 47.97 239 | 85.15 123 | 84.93 113 | 58.55 180 | 56.71 237 | 78.26 230 | 36.72 201 | 86.67 195 | 46.15 255 | 62.94 219 | 84.07 194 |
|
test-LLR | | | 69.65 150 | 69.01 138 | 71.60 217 | 78.67 200 | 48.17 232 | 85.13 124 | 79.72 206 | 59.18 164 | 63.13 153 | 82.58 189 | 36.91 196 | 80.24 277 | 60.56 153 | 75.17 124 | 86.39 160 |
|
TESTMET0.1,1 | | | 72.86 99 | 72.33 89 | 74.46 150 | 81.98 137 | 50.77 167 | 85.13 124 | 85.47 91 | 66.09 53 | 67.30 97 | 83.69 172 | 37.27 190 | 83.57 252 | 65.06 123 | 78.97 95 | 89.05 108 |
|
test-mter | | | 68.36 171 | 67.29 165 | 71.60 217 | 78.67 200 | 48.17 232 | 85.13 124 | 79.72 206 | 53.38 250 | 63.13 153 | 82.58 189 | 27.23 279 | 80.24 277 | 60.56 153 | 75.17 124 | 86.39 160 |
|
Regformer-3 | | | 76.02 59 | 75.47 55 | 77.70 83 | 85.49 59 | 51.47 157 | 85.12 127 | 90.19 11 | 68.52 26 | 69.36 83 | 90.66 65 | 46.45 79 | 94.81 17 | 70.25 84 | 73.16 139 | 86.81 153 |
|
Regformer-4 | | | 75.06 73 | 74.59 68 | 76.47 113 | 85.49 59 | 50.33 182 | 85.12 127 | 88.61 39 | 66.42 46 | 68.48 89 | 90.66 65 | 44.15 108 | 92.68 38 | 69.24 88 | 73.16 139 | 86.39 160 |
|
1112_ss | | | 70.05 140 | 69.37 132 | 72.10 202 | 80.77 168 | 42.78 293 | 85.12 127 | 76.75 265 | 59.69 148 | 61.19 171 | 92.12 33 | 47.48 67 | 83.84 247 | 53.04 211 | 68.21 177 | 89.66 93 |
|
XXY-MVS | | | 70.18 136 | 69.28 136 | 72.89 188 | 77.64 218 | 42.88 292 | 85.06 130 | 87.50 60 | 62.58 101 | 62.66 159 | 82.34 194 | 43.64 118 | 89.83 106 | 58.42 171 | 63.70 207 | 85.96 166 |
|
MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 49 | 82.99 116 | 52.71 127 | 85.04 131 | 88.63 37 | 66.08 54 | 86.77 2 | 92.75 21 | 72.05 1 | 91.46 66 | 83.35 6 | 93.53 1 | 92.23 29 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
thres200 | | | 68.71 167 | 67.27 167 | 73.02 184 | 84.73 75 | 46.76 251 | 85.03 132 | 87.73 55 | 62.34 105 | 59.87 179 | 83.45 175 | 43.15 124 | 88.32 151 | 31.25 314 | 67.91 181 | 83.98 199 |
|
MVP-Stereo | | | 70.97 125 | 70.44 116 | 72.59 192 | 76.03 242 | 51.36 160 | 85.02 133 | 86.99 65 | 60.31 140 | 56.53 240 | 78.92 225 | 40.11 158 | 90.00 102 | 60.00 162 | 90.01 4 | 76.41 299 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PS-MVSNAJss | | | 68.78 166 | 67.17 168 | 73.62 176 | 73.01 273 | 48.33 230 | 84.95 134 | 84.81 117 | 59.30 160 | 58.91 200 | 79.84 216 | 37.77 176 | 88.86 133 | 62.83 134 | 63.12 217 | 83.67 206 |
|
v2v482 | | | 69.55 153 | 67.64 157 | 75.26 139 | 72.32 283 | 53.83 90 | 84.93 135 | 81.94 169 | 65.37 64 | 60.80 173 | 79.25 221 | 41.62 142 | 88.98 129 | 63.03 133 | 59.51 236 | 82.98 220 |
|
XVS | | | 72.92 98 | 71.62 102 | 76.81 107 | 83.41 99 | 52.48 131 | 84.88 136 | 83.20 154 | 58.03 186 | 63.91 143 | 89.63 92 | 35.50 214 | 89.78 107 | 65.50 113 | 80.50 79 | 88.16 124 |
|
X-MVStestdata | | | 65.85 219 | 62.20 228 | 76.81 107 | 83.41 99 | 52.48 131 | 84.88 136 | 83.20 154 | 58.03 186 | 63.91 143 | 4.82 361 | 35.50 214 | 89.78 107 | 65.50 113 | 80.50 79 | 88.16 124 |
|
Fast-Effi-MVS+-dtu | | | 66.53 210 | 64.10 219 | 73.84 167 | 72.41 281 | 52.30 140 | 84.73 138 | 75.66 275 | 59.51 151 | 56.34 242 | 79.11 224 | 28.11 271 | 85.85 222 | 57.74 183 | 63.29 212 | 83.35 209 |
|
hse-mvs3 | | | 73.95 84 | 72.89 83 | 77.15 99 | 80.17 178 | 50.37 179 | 84.68 139 | 83.33 148 | 68.08 30 | 71.97 66 | 88.65 112 | 42.50 129 | 91.15 73 | 78.82 26 | 57.78 260 | 89.91 89 |
|
v1144 | | | 68.81 163 | 66.82 171 | 74.80 146 | 72.34 282 | 53.46 101 | 84.68 139 | 81.77 175 | 64.25 76 | 60.28 178 | 77.91 232 | 40.23 155 | 88.95 130 | 60.37 158 | 59.52 235 | 81.97 228 |
|
CANet_DTU | | | 73.71 90 | 73.14 79 | 75.40 134 | 82.61 130 | 50.05 190 | 84.67 141 | 79.36 216 | 69.72 20 | 75.39 30 | 90.03 85 | 29.41 264 | 85.93 221 | 67.99 96 | 79.11 93 | 90.22 81 |
|
PVSNet | | 62.49 8 | 69.27 155 | 67.81 155 | 73.64 174 | 84.41 80 | 51.85 147 | 84.63 142 | 77.80 245 | 66.42 46 | 59.80 181 | 84.95 159 | 22.14 312 | 80.44 275 | 55.03 198 | 75.11 126 | 88.62 118 |
|
mPP-MVS | | | 71.79 117 | 70.38 117 | 76.04 124 | 82.65 129 | 52.06 141 | 84.45 143 | 81.78 174 | 55.59 229 | 62.05 165 | 89.68 91 | 33.48 232 | 88.28 154 | 65.45 118 | 78.24 100 | 87.77 134 |
|
CL-MVSNet_2432*1600 | | | 62.98 236 | 61.14 237 | 68.50 263 | 65.86 322 | 42.96 290 | 84.37 144 | 82.98 158 | 60.98 130 | 53.95 259 | 72.70 289 | 40.43 153 | 83.71 250 | 41.10 273 | 47.93 309 | 78.83 269 |
|
OpenMVS |  | 61.00 11 | 69.99 143 | 67.55 161 | 77.30 93 | 78.37 210 | 54.07 89 | 84.36 145 | 85.76 89 | 57.22 206 | 56.71 237 | 87.67 128 | 30.79 257 | 92.83 34 | 43.04 267 | 84.06 54 | 85.01 183 |
|
MP-MVS-pluss | | | 75.54 66 | 75.03 60 | 77.04 100 | 81.37 157 | 52.65 130 | 84.34 146 | 84.46 124 | 61.16 125 | 69.14 84 | 91.76 42 | 39.98 160 | 88.99 128 | 78.19 32 | 84.89 46 | 89.48 97 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPR | | | 75.20 70 | 74.13 71 | 78.41 64 | 88.31 27 | 55.10 62 | 84.31 147 | 85.66 90 | 63.76 84 | 67.55 96 | 90.73 64 | 43.48 121 | 89.40 116 | 66.36 107 | 77.03 107 | 90.73 69 |
|
SR-MVS | | | 70.92 127 | 69.73 128 | 74.50 149 | 83.38 103 | 50.48 175 | 84.27 148 | 79.35 217 | 48.96 279 | 66.57 106 | 90.45 72 | 33.65 231 | 87.11 183 | 66.42 105 | 74.56 130 | 85.91 167 |
|
v148 | | | 68.24 176 | 66.35 180 | 73.88 165 | 71.76 286 | 51.47 157 | 84.23 149 | 81.90 173 | 63.69 86 | 58.94 197 | 76.44 255 | 43.72 116 | 87.78 169 | 60.63 151 | 55.86 277 | 82.39 225 |
|
UniMVSNet_NR-MVSNet | | | 68.82 162 | 68.29 146 | 70.40 237 | 75.71 246 | 42.59 295 | 84.23 149 | 86.78 69 | 66.31 48 | 58.51 206 | 82.45 191 | 51.57 36 | 84.64 243 | 53.11 209 | 55.96 275 | 83.96 201 |
|
v144192 | | | 67.86 181 | 65.76 195 | 74.16 158 | 71.68 287 | 53.09 118 | 84.14 151 | 80.83 189 | 62.85 98 | 59.21 193 | 77.28 242 | 39.30 164 | 88.00 162 | 58.67 168 | 57.88 258 | 81.40 241 |
|
UGNet | | | 68.71 167 | 67.11 169 | 73.50 178 | 80.55 174 | 47.61 241 | 84.08 152 | 78.51 234 | 59.45 152 | 65.68 118 | 82.73 187 | 23.78 300 | 85.08 237 | 52.80 214 | 76.40 111 | 87.80 133 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PMMVS | | | 72.98 97 | 72.05 99 | 75.78 129 | 83.57 96 | 48.60 219 | 84.08 152 | 82.85 161 | 61.62 117 | 68.24 92 | 90.33 76 | 28.35 268 | 87.78 169 | 72.71 73 | 76.69 110 | 90.95 66 |
|
ACMMP_NAP | | | 76.43 52 | 75.66 52 | 78.73 53 | 81.92 138 | 54.67 77 | 84.06 154 | 85.35 97 | 61.10 127 | 72.99 53 | 91.50 48 | 40.25 154 | 91.00 76 | 76.84 42 | 86.98 22 | 90.51 76 |
|
v1192 | | | 67.96 180 | 65.74 196 | 74.63 147 | 71.79 285 | 53.43 107 | 84.06 154 | 80.99 187 | 63.19 94 | 59.56 186 | 77.46 239 | 37.50 186 | 88.65 136 | 58.20 174 | 58.93 242 | 81.79 231 |
|
zzz-MVS | | | 74.15 82 | 73.11 82 | 77.27 95 | 81.54 150 | 53.57 97 | 84.02 156 | 81.31 181 | 59.41 154 | 68.39 90 | 90.96 58 | 36.07 208 | 89.01 124 | 73.80 64 | 82.45 61 | 89.23 101 |
|
FIs | | | 70.00 142 | 70.24 122 | 69.30 250 | 77.93 216 | 38.55 316 | 83.99 157 | 87.72 56 | 66.86 45 | 57.66 222 | 84.17 164 | 52.28 31 | 85.31 228 | 52.72 219 | 68.80 174 | 84.02 195 |
|
MVS_Test | | | 75.85 61 | 74.93 63 | 78.62 58 | 84.08 87 | 55.20 58 | 83.99 157 | 85.17 106 | 68.07 31 | 73.38 50 | 82.76 184 | 50.44 46 | 89.00 126 | 65.90 111 | 80.61 77 | 91.64 42 |
|
baseline | | | 76.86 47 | 76.24 48 | 78.71 54 | 80.47 175 | 54.20 87 | 83.90 159 | 84.88 115 | 71.38 11 | 71.51 72 | 89.15 102 | 50.51 45 | 90.55 89 | 75.71 47 | 78.65 96 | 91.39 52 |
|
baseline2 | | | 75.15 71 | 74.54 69 | 76.98 104 | 81.67 143 | 51.74 151 | 83.84 160 | 91.94 1 | 69.97 18 | 58.98 196 | 86.02 147 | 59.73 5 | 91.73 60 | 68.37 93 | 70.40 165 | 87.48 138 |
|
EPP-MVSNet | | | 71.14 121 | 70.07 124 | 74.33 155 | 79.18 189 | 46.52 254 | 83.81 161 | 86.49 74 | 56.32 223 | 57.95 215 | 84.90 160 | 54.23 22 | 89.14 119 | 58.14 175 | 69.65 170 | 87.33 141 |
|
原ACMM2 | | | | | | | | 83.77 162 | | | | | | | | | |
|
v1921920 | | | 67.45 190 | 65.23 208 | 74.10 160 | 71.51 290 | 52.90 125 | 83.75 163 | 80.44 194 | 62.48 104 | 59.12 195 | 77.13 243 | 36.98 194 | 87.90 163 | 57.53 184 | 58.14 252 | 81.49 236 |
|
OpenMVS_ROB |  | 53.19 17 | 59.20 260 | 56.00 271 | 68.83 255 | 71.13 295 | 44.30 280 | 83.64 164 | 75.02 281 | 46.42 294 | 46.48 302 | 73.03 285 | 18.69 325 | 88.14 156 | 27.74 327 | 61.80 225 | 74.05 314 |
|
MVSTER | | | 73.25 95 | 72.33 89 | 76.01 125 | 85.54 58 | 53.76 92 | 83.52 165 | 87.16 62 | 67.06 43 | 63.88 145 | 81.66 202 | 52.77 28 | 90.44 90 | 64.66 125 | 64.69 200 | 83.84 204 |
|
GBi-Net | | | 67.09 200 | 65.47 202 | 71.96 208 | 82.71 126 | 46.36 256 | 83.52 165 | 83.31 149 | 58.55 180 | 57.58 224 | 76.23 259 | 36.72 201 | 86.20 205 | 47.25 248 | 63.40 208 | 83.32 210 |
|
test1 | | | 67.09 200 | 65.47 202 | 71.96 208 | 82.71 126 | 46.36 256 | 83.52 165 | 83.31 149 | 58.55 180 | 57.58 224 | 76.23 259 | 36.72 201 | 86.20 205 | 47.25 248 | 63.40 208 | 83.32 210 |
|
FMVSNet1 | | | 64.57 224 | 62.11 229 | 71.96 208 | 77.32 223 | 46.36 256 | 83.52 165 | 83.31 149 | 52.43 258 | 54.42 254 | 76.23 259 | 27.80 275 | 86.20 205 | 42.59 271 | 61.34 228 | 83.32 210 |
|
baseline1 | | | 72.51 106 | 72.12 97 | 73.69 172 | 85.05 70 | 44.46 277 | 83.51 169 | 86.13 84 | 71.61 9 | 64.64 130 | 87.97 123 | 55.00 20 | 89.48 115 | 59.07 164 | 56.05 274 | 87.13 145 |
|
CDS-MVSNet | | | 70.48 134 | 69.43 130 | 73.64 174 | 77.56 220 | 48.83 216 | 83.51 169 | 77.45 252 | 63.27 92 | 62.33 161 | 85.54 154 | 43.85 110 | 83.29 256 | 57.38 187 | 74.00 132 | 88.79 114 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
thisisatest0530 | | | 70.47 135 | 68.56 141 | 76.20 119 | 79.78 181 | 51.52 156 | 83.49 171 | 88.58 42 | 57.62 199 | 58.60 205 | 82.79 183 | 51.03 41 | 91.48 65 | 52.84 213 | 62.36 224 | 85.59 176 |
|
Test_1112_low_res | | | 67.18 198 | 66.23 184 | 70.02 245 | 78.75 198 | 41.02 307 | 83.43 172 | 73.69 292 | 57.29 205 | 58.45 211 | 82.39 193 | 45.30 94 | 80.88 270 | 50.50 227 | 66.26 193 | 88.16 124 |
|
ACMMP |  | | 70.81 129 | 69.29 135 | 75.39 135 | 81.52 154 | 51.92 146 | 83.43 172 | 83.03 157 | 56.67 217 | 58.80 203 | 88.91 105 | 31.92 248 | 88.58 139 | 65.89 112 | 73.39 138 | 85.67 172 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
tfpn200view9 | | | 67.57 187 | 66.13 187 | 71.89 215 | 84.05 88 | 45.07 272 | 83.40 174 | 87.71 57 | 60.79 133 | 57.79 219 | 82.76 184 | 43.53 119 | 87.80 166 | 28.80 320 | 66.36 190 | 82.78 223 |
|
thres400 | | | 67.40 194 | 66.13 187 | 71.19 225 | 84.05 88 | 45.07 272 | 83.40 174 | 87.71 57 | 60.79 133 | 57.79 219 | 82.76 184 | 43.53 119 | 87.80 166 | 28.80 320 | 66.36 190 | 80.71 254 |
|
v1240 | | | 66.99 203 | 64.68 213 | 73.93 163 | 71.38 293 | 52.66 129 | 83.39 176 | 79.98 200 | 61.97 111 | 58.44 212 | 77.11 244 | 35.25 216 | 87.81 165 | 56.46 192 | 58.15 250 | 81.33 244 |
|
Baseline_NR-MVSNet | | | 65.49 222 | 64.27 217 | 69.13 251 | 74.37 262 | 41.65 302 | 83.39 176 | 78.85 224 | 59.56 150 | 59.62 185 | 76.88 250 | 40.75 148 | 87.44 177 | 49.99 229 | 55.05 282 | 78.28 279 |
|
miper_enhance_ethall | | | 69.77 146 | 68.90 139 | 72.38 198 | 78.93 195 | 49.91 193 | 83.29 178 | 78.85 224 | 64.90 70 | 59.37 189 | 79.46 218 | 52.77 28 | 85.16 234 | 63.78 128 | 58.72 243 | 82.08 227 |
|
diffmvs | | | 75.11 72 | 74.65 67 | 76.46 114 | 78.52 206 | 53.35 109 | 83.28 179 | 79.94 201 | 70.51 15 | 71.64 70 | 88.72 108 | 46.02 85 | 86.08 215 | 77.52 39 | 75.75 120 | 89.96 87 |
|
ACMP | | 61.11 9 | 66.24 215 | 64.33 216 | 72.00 207 | 74.89 256 | 49.12 206 | 83.18 180 | 79.83 204 | 55.41 232 | 52.29 270 | 82.68 188 | 25.83 287 | 86.10 211 | 60.89 148 | 63.94 205 | 80.78 252 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
GA-MVS | | | 69.04 157 | 66.70 176 | 76.06 123 | 75.11 251 | 52.36 137 | 83.12 181 | 80.23 197 | 63.32 91 | 60.65 175 | 79.22 222 | 30.98 256 | 88.37 147 | 61.25 145 | 66.41 189 | 87.46 139 |
|
3Dnovator | | 64.70 6 | 74.46 77 | 72.48 87 | 80.41 20 | 82.84 122 | 55.40 52 | 83.08 182 | 88.61 39 | 67.61 39 | 59.85 180 | 88.66 109 | 34.57 221 | 93.97 22 | 58.42 171 | 88.70 10 | 91.85 40 |
|
PGM-MVS | | | 72.60 103 | 71.20 110 | 76.80 109 | 82.95 117 | 52.82 126 | 83.07 183 | 82.14 166 | 56.51 220 | 63.18 152 | 89.81 89 | 35.68 213 | 89.76 109 | 67.30 99 | 80.19 83 | 87.83 132 |
|
LPG-MVS_test | | | 66.44 212 | 64.58 214 | 72.02 205 | 74.42 260 | 48.60 219 | 83.07 183 | 80.64 191 | 54.69 241 | 53.75 261 | 83.83 168 | 25.73 289 | 86.98 186 | 60.33 159 | 64.71 198 | 80.48 256 |
|
TranMVSNet+NR-MVSNet | | | 66.94 205 | 65.61 199 | 70.93 230 | 73.45 268 | 43.38 288 | 83.02 185 | 84.25 130 | 65.31 66 | 58.33 213 | 81.90 200 | 39.92 161 | 85.52 224 | 49.43 234 | 54.89 284 | 83.89 203 |
|
test0.0.03 1 | | | 62.54 240 | 62.44 226 | 62.86 300 | 72.28 284 | 29.51 342 | 82.93 186 | 78.78 227 | 59.18 164 | 53.07 266 | 82.41 192 | 36.91 196 | 77.39 304 | 37.45 281 | 58.96 241 | 81.66 234 |
|
pm-mvs1 | | | 64.12 227 | 62.56 225 | 68.78 257 | 71.68 287 | 38.87 315 | 82.89 187 | 81.57 176 | 55.54 231 | 53.89 260 | 77.82 234 | 37.73 179 | 86.74 193 | 48.46 241 | 53.49 294 | 80.72 253 |
|
DWT-MVSNet_test | | | 75.47 67 | 73.87 75 | 80.29 21 | 87.33 37 | 57.05 23 | 82.86 188 | 87.96 49 | 72.59 6 | 67.29 98 | 87.79 125 | 51.61 35 | 91.52 64 | 54.75 202 | 72.63 147 | 92.29 28 |
|
EPNet_dtu | | | 66.25 214 | 66.71 175 | 64.87 290 | 78.66 202 | 34.12 328 | 82.80 189 | 75.51 276 | 61.75 115 | 64.47 136 | 86.90 137 | 37.06 193 | 72.46 328 | 43.65 265 | 69.63 171 | 88.02 130 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test1172 | | | 69.64 151 | 68.38 145 | 73.41 180 | 82.77 123 | 48.84 215 | 82.79 190 | 78.34 238 | 47.02 289 | 65.27 121 | 90.07 83 | 31.17 254 | 86.09 213 | 64.51 126 | 73.49 137 | 85.31 179 |
|
pmmvs5 | | | 62.80 239 | 61.18 236 | 67.66 267 | 69.53 304 | 42.37 300 | 82.65 191 | 75.19 280 | 54.30 246 | 52.03 273 | 78.51 229 | 31.64 251 | 80.67 271 | 48.60 239 | 58.15 250 | 79.95 263 |
|
cl-mvsnet_ | | | 67.43 191 | 65.93 191 | 71.95 211 | 76.33 235 | 48.02 237 | 82.58 192 | 79.12 221 | 61.30 124 | 56.72 236 | 76.92 248 | 46.12 81 | 86.44 203 | 57.98 177 | 56.31 269 | 81.38 243 |
|
cl-mvsnet1 | | | 67.43 191 | 65.93 191 | 71.94 212 | 76.33 235 | 48.01 238 | 82.57 193 | 79.11 222 | 61.31 123 | 56.73 235 | 76.92 248 | 46.09 82 | 86.43 204 | 57.98 177 | 56.31 269 | 81.39 242 |
|
TAMVS | | | 69.51 154 | 68.16 148 | 73.56 177 | 76.30 237 | 48.71 218 | 82.57 193 | 77.17 257 | 62.10 108 | 61.32 169 | 84.23 163 | 41.90 139 | 83.46 254 | 54.80 201 | 73.09 143 | 88.50 122 |
|
EI-MVSNet-Vis-set | | | 73.19 96 | 72.60 85 | 74.99 143 | 82.56 131 | 49.80 195 | 82.55 195 | 89.00 26 | 66.17 51 | 65.89 114 | 88.98 103 | 43.83 111 | 92.29 48 | 65.38 122 | 69.01 173 | 82.87 222 |
|
DP-MVS | | | 59.24 259 | 56.12 270 | 68.63 260 | 88.24 28 | 50.35 181 | 82.51 196 | 64.43 329 | 41.10 322 | 46.70 300 | 78.77 226 | 24.75 297 | 88.57 142 | 22.26 339 | 56.29 271 | 66.96 337 |
|
miper_ehance_all_eth | | | 68.70 169 | 67.58 158 | 72.08 203 | 76.91 231 | 49.48 202 | 82.47 197 | 78.45 236 | 62.68 100 | 58.28 214 | 77.88 233 | 50.90 42 | 85.01 238 | 61.91 141 | 58.72 243 | 81.75 232 |
|
cl-mvsnet2 | | | 68.85 160 | 67.69 156 | 72.35 199 | 78.07 213 | 49.98 192 | 82.45 198 | 78.48 235 | 62.50 103 | 58.46 210 | 77.95 231 | 49.99 49 | 85.17 233 | 62.55 135 | 58.72 243 | 81.90 229 |
|
UniMVSNet (Re) | | | 67.71 184 | 66.80 172 | 70.45 235 | 74.44 259 | 42.93 291 | 82.42 199 | 84.90 114 | 63.69 86 | 59.63 184 | 80.99 208 | 47.18 70 | 85.23 232 | 51.17 225 | 56.75 266 | 83.19 215 |
|
v8 | | | 67.25 196 | 64.99 211 | 74.04 161 | 72.89 276 | 53.31 112 | 82.37 200 | 80.11 199 | 61.54 120 | 54.29 256 | 76.02 264 | 42.89 128 | 88.41 146 | 58.43 169 | 56.36 267 | 80.39 258 |
|
RRT_MVS | | | 65.43 223 | 64.01 220 | 69.68 247 | 81.54 150 | 50.15 187 | 82.31 201 | 76.78 264 | 55.25 233 | 60.64 176 | 82.00 199 | 25.18 293 | 79.00 287 | 60.96 147 | 51.45 301 | 79.89 264 |
|
ACMM | | 58.35 12 | 64.35 226 | 62.01 230 | 71.38 221 | 74.21 263 | 48.51 223 | 82.25 202 | 79.66 208 | 47.61 283 | 54.54 253 | 80.11 214 | 25.26 292 | 86.00 216 | 51.26 223 | 63.16 215 | 79.64 266 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
thres600view7 | | | 66.46 211 | 65.12 209 | 70.47 234 | 83.41 99 | 43.80 285 | 82.15 203 | 87.78 52 | 59.37 156 | 56.02 244 | 82.21 195 | 43.73 114 | 86.90 190 | 26.51 331 | 64.94 197 | 80.71 254 |
|
cl_fuxian | | | 67.97 179 | 66.66 177 | 71.91 214 | 76.20 239 | 49.31 204 | 82.13 204 | 78.00 243 | 61.99 110 | 57.64 223 | 76.94 247 | 49.41 53 | 84.93 239 | 60.62 152 | 57.01 264 | 81.49 236 |
|
Effi-MVS+-dtu | | | 66.24 215 | 64.96 212 | 70.08 242 | 75.17 249 | 49.64 196 | 82.01 205 | 74.48 284 | 62.15 106 | 57.83 217 | 76.08 263 | 30.59 258 | 83.79 248 | 65.40 120 | 60.93 230 | 76.81 292 |
|
our_test_3 | | | 59.11 262 | 55.08 278 | 71.18 226 | 71.42 291 | 53.29 113 | 81.96 206 | 74.52 283 | 48.32 280 | 42.08 315 | 69.28 312 | 28.14 270 | 82.15 260 | 34.35 301 | 45.68 321 | 78.11 282 |
|
CPTT-MVS | | | 67.15 199 | 65.84 193 | 71.07 227 | 80.96 162 | 50.32 183 | 81.94 207 | 74.10 287 | 46.18 297 | 57.91 216 | 87.64 129 | 29.57 263 | 81.31 266 | 64.10 127 | 70.18 167 | 81.56 235 |
|
APD-MVS_3200maxsize | | | 69.62 152 | 68.23 147 | 73.80 169 | 81.58 148 | 48.22 231 | 81.91 208 | 79.50 212 | 48.21 281 | 64.24 138 | 89.75 90 | 31.91 249 | 87.55 175 | 63.08 132 | 73.85 135 | 85.64 174 |
|
v10 | | | 66.61 209 | 64.20 218 | 73.83 168 | 72.59 279 | 53.37 108 | 81.88 209 | 79.91 203 | 61.11 126 | 54.09 258 | 75.60 266 | 40.06 159 | 88.26 155 | 56.47 191 | 56.10 273 | 79.86 265 |
|
EI-MVSNet-UG-set | | | 72.37 107 | 71.73 101 | 74.29 156 | 81.60 146 | 49.29 205 | 81.85 210 | 88.64 36 | 65.29 67 | 65.05 124 | 88.29 116 | 43.18 123 | 91.83 58 | 63.74 129 | 67.97 180 | 81.75 232 |
|
ppachtmachnet_test | | | 58.56 270 | 54.34 279 | 71.24 223 | 71.42 291 | 54.74 72 | 81.84 211 | 72.27 303 | 49.02 278 | 45.86 305 | 68.99 313 | 26.27 284 | 83.30 255 | 30.12 316 | 43.23 326 | 75.69 302 |
|
test_0402 | | | 56.45 282 | 53.03 286 | 66.69 277 | 76.78 232 | 50.31 184 | 81.76 212 | 69.61 319 | 42.79 318 | 43.88 307 | 72.13 296 | 22.82 306 | 86.46 202 | 16.57 349 | 50.94 302 | 63.31 343 |
|
旧先验2 | | | | | | | | 81.73 213 | | 45.53 300 | 74.66 35 | | | 70.48 335 | 58.31 173 | | |
|
thres100view900 | | | 66.87 206 | 65.42 205 | 71.24 223 | 83.29 105 | 43.15 289 | 81.67 214 | 87.78 52 | 59.04 170 | 55.92 245 | 82.18 196 | 43.73 114 | 87.80 166 | 28.80 320 | 66.36 190 | 82.78 223 |
|
MVSFormer | | | 73.53 92 | 72.19 94 | 77.57 86 | 83.02 114 | 55.24 55 | 81.63 215 | 81.44 179 | 50.28 270 | 76.67 26 | 90.91 60 | 44.82 102 | 86.11 209 | 60.83 149 | 80.09 84 | 91.36 54 |
|
test_djsdf | | | 63.84 229 | 61.56 233 | 70.70 232 | 68.78 308 | 44.69 276 | 81.63 215 | 81.44 179 | 50.28 270 | 52.27 271 | 76.26 258 | 26.72 282 | 86.11 209 | 60.83 149 | 55.84 278 | 81.29 247 |
|
æ–°å‡ ä½•2 | | | | | | | | 81.61 217 | | | | | | | | | |
|
TSAR-MVS + MP. | | | 78.31 25 | 78.26 20 | 78.48 61 | 81.33 158 | 56.31 38 | 81.59 218 | 86.41 76 | 69.61 21 | 81.72 11 | 88.16 119 | 55.09 19 | 88.04 161 | 74.12 61 | 86.31 30 | 91.09 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SR-MVS-dyc-post | | | 68.27 175 | 66.87 170 | 72.48 196 | 80.96 162 | 48.14 234 | 81.54 219 | 76.98 260 | 46.42 294 | 62.75 157 | 89.42 95 | 31.17 254 | 86.09 213 | 60.52 155 | 72.06 153 | 83.19 215 |
|
RE-MVS-def | | | | 66.66 177 | | 80.96 162 | 48.14 234 | 81.54 219 | 76.98 260 | 46.42 294 | 62.75 157 | 89.42 95 | 29.28 266 | | 60.52 155 | 72.06 153 | 83.19 215 |
|
V42 | | | 67.66 185 | 65.60 200 | 73.86 166 | 70.69 298 | 53.63 96 | 81.50 221 | 78.61 232 | 63.85 82 | 59.49 188 | 77.49 238 | 37.98 173 | 87.65 172 | 62.33 136 | 58.43 247 | 80.29 259 |
|
DU-MVS | | | 66.84 207 | 65.74 196 | 70.16 240 | 73.27 271 | 42.59 295 | 81.50 221 | 82.92 160 | 63.53 90 | 58.51 206 | 82.11 197 | 40.75 148 | 84.64 243 | 53.11 209 | 55.96 275 | 83.24 213 |
|
HyFIR lowres test | | | 69.94 144 | 67.58 158 | 77.04 100 | 77.11 230 | 57.29 21 | 81.49 223 | 79.11 222 | 58.27 183 | 58.86 201 | 80.41 213 | 42.33 130 | 86.96 188 | 61.91 141 | 68.68 176 | 86.87 148 |
|
IterMVS-LS | | | 66.63 208 | 65.36 206 | 70.42 236 | 75.10 252 | 48.90 213 | 81.45 224 | 76.69 267 | 61.05 128 | 55.71 246 | 77.10 245 | 45.86 88 | 83.65 251 | 57.44 185 | 57.88 258 | 78.70 270 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
bset_n11_16_dypcd | | | 65.51 221 | 63.21 223 | 72.41 197 | 68.84 307 | 50.15 187 | 81.25 225 | 72.40 302 | 59.17 166 | 59.20 194 | 78.66 227 | 25.69 291 | 85.27 230 | 66.80 102 | 56.88 265 | 81.80 230 |
|
jajsoiax | | | 63.21 234 | 60.84 239 | 70.32 238 | 68.33 313 | 44.45 278 | 81.23 226 | 81.05 186 | 53.37 251 | 50.96 280 | 77.81 235 | 17.49 330 | 85.49 226 | 59.31 163 | 58.05 253 | 81.02 250 |
|
HPM-MVS_fast | | | 67.86 181 | 66.28 183 | 72.61 191 | 80.67 171 | 48.34 229 | 81.18 227 | 75.95 274 | 50.81 269 | 59.55 187 | 88.05 122 | 27.86 274 | 85.98 217 | 58.83 166 | 73.58 136 | 83.51 207 |
|
tfpnnormal | | | 61.47 249 | 59.09 252 | 68.62 261 | 76.29 238 | 41.69 301 | 81.14 228 | 85.16 107 | 54.48 244 | 51.32 276 | 73.63 280 | 32.32 242 | 86.89 191 | 21.78 341 | 55.71 279 | 77.29 289 |
|
IS-MVSNet | | | 68.80 164 | 67.55 161 | 72.54 193 | 78.50 207 | 43.43 287 | 81.03 229 | 79.35 217 | 59.12 169 | 57.27 232 | 86.71 140 | 46.05 83 | 87.70 171 | 44.32 262 | 75.60 121 | 86.49 157 |
|
eth_miper_zixun_eth | | | 66.98 204 | 65.28 207 | 72.06 204 | 75.61 247 | 50.40 177 | 81.00 230 | 76.97 263 | 62.00 109 | 56.99 234 | 76.97 246 | 44.84 101 | 85.58 223 | 58.75 167 | 54.42 287 | 80.21 260 |
|
mvs_tets | | | 62.96 237 | 60.55 241 | 70.19 239 | 68.22 316 | 44.24 282 | 80.90 231 | 80.74 190 | 52.99 254 | 50.82 282 | 77.56 236 | 16.74 333 | 85.44 227 | 59.04 165 | 57.94 255 | 80.89 251 |
|
tttt0517 | | | 68.33 173 | 66.29 182 | 74.46 150 | 78.08 212 | 49.06 207 | 80.88 232 | 89.08 23 | 54.40 245 | 54.75 251 | 80.77 211 | 51.31 38 | 90.33 94 | 49.35 235 | 58.01 254 | 83.99 197 |
|
FC-MVSNet-test | | | 67.49 189 | 67.91 150 | 66.21 280 | 76.06 240 | 33.06 333 | 80.82 233 | 87.18 61 | 64.44 74 | 54.81 249 | 82.87 181 | 50.40 47 | 82.60 258 | 48.05 243 | 66.55 188 | 82.98 220 |
|
sss | | | 70.49 133 | 70.13 123 | 71.58 219 | 81.59 147 | 39.02 314 | 80.78 234 | 84.71 120 | 59.34 157 | 66.61 104 | 88.09 120 | 37.17 192 | 85.52 224 | 61.82 143 | 71.02 160 | 90.20 83 |
|
HPM-MVS |  | | 72.60 103 | 71.50 104 | 75.89 127 | 82.02 136 | 51.42 159 | 80.70 235 | 83.05 156 | 56.12 224 | 64.03 140 | 89.53 93 | 37.55 183 | 88.37 147 | 70.48 83 | 80.04 86 | 87.88 131 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
pmmvs6 | | | 59.64 256 | 57.15 262 | 67.09 271 | 66.01 320 | 36.86 323 | 80.50 236 | 78.64 230 | 45.05 304 | 49.05 287 | 73.94 275 | 27.28 278 | 86.10 211 | 43.96 264 | 49.94 304 | 78.31 278 |
|
IterMVS | | | 63.77 231 | 61.67 231 | 70.08 242 | 72.68 278 | 51.24 164 | 80.44 237 | 75.51 276 | 60.51 138 | 51.41 275 | 73.70 279 | 32.08 245 | 78.91 288 | 54.30 204 | 54.35 288 | 80.08 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 59.12 261 | 58.81 255 | 60.08 313 | 70.68 299 | 45.07 272 | 80.42 238 | 74.25 286 | 43.54 315 | 50.02 283 | 73.73 276 | 31.97 246 | 56.74 346 | 51.06 226 | 53.60 293 | 78.42 276 |
|
ACMH+ | | 54.58 15 | 58.55 271 | 55.24 274 | 68.50 263 | 74.68 258 | 45.80 266 | 80.27 239 | 70.21 317 | 47.15 287 | 42.77 314 | 75.48 267 | 16.73 334 | 85.98 217 | 35.10 299 | 54.78 285 | 73.72 316 |
|
Anonymous20231206 | | | 59.08 263 | 57.59 259 | 63.55 295 | 68.77 309 | 32.14 338 | 80.26 240 | 79.78 205 | 50.00 273 | 49.39 285 | 72.39 293 | 26.64 283 | 78.36 291 | 33.12 307 | 57.94 255 | 80.14 261 |
|
1314 | | | 71.11 123 | 69.41 131 | 76.22 118 | 79.32 186 | 50.49 174 | 80.23 241 | 85.14 109 | 59.44 153 | 58.93 198 | 88.89 106 | 33.83 230 | 89.60 114 | 61.49 144 | 77.42 104 | 88.57 120 |
|
1121 | | | 68.79 165 | 66.77 173 | 74.82 145 | 83.08 111 | 53.46 101 | 80.23 241 | 71.53 310 | 45.47 301 | 66.31 109 | 87.19 133 | 34.02 225 | 85.13 235 | 52.78 215 | 80.36 81 | 85.87 169 |
|
MVS | | | 76.91 44 | 75.48 54 | 81.23 16 | 84.56 77 | 55.21 57 | 80.23 241 | 91.64 2 | 58.65 178 | 65.37 120 | 91.48 49 | 45.72 90 | 95.05 14 | 72.11 76 | 89.52 8 | 93.44 7 |
|
ACMH | | 53.70 16 | 59.78 255 | 55.94 272 | 71.28 222 | 76.59 233 | 48.35 228 | 80.15 244 | 76.11 272 | 49.74 274 | 41.91 317 | 73.45 283 | 16.50 335 | 90.31 95 | 31.42 312 | 57.63 261 | 75.17 307 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs4 | | | 63.34 233 | 61.07 238 | 70.16 240 | 70.14 300 | 50.53 173 | 79.97 245 | 71.41 312 | 55.08 235 | 54.12 257 | 78.58 228 | 32.79 238 | 82.09 262 | 50.33 228 | 57.22 263 | 77.86 283 |
|
abl_6 | | | 68.03 178 | 66.15 186 | 73.66 173 | 78.54 205 | 48.48 225 | 79.77 246 | 78.04 241 | 47.39 285 | 63.70 147 | 88.25 117 | 28.21 269 | 89.06 120 | 60.17 161 | 71.25 158 | 83.45 208 |
|
MVS_111021_LR | | | 69.07 156 | 67.91 150 | 72.54 193 | 77.27 224 | 49.56 199 | 79.77 246 | 73.96 290 | 59.33 159 | 60.73 174 | 87.82 124 | 30.19 261 | 81.53 264 | 69.94 85 | 72.19 152 | 86.53 156 |
|
CNLPA | | | 60.59 253 | 58.44 256 | 67.05 273 | 79.21 188 | 47.26 246 | 79.75 248 | 64.34 330 | 42.46 320 | 51.90 274 | 83.94 166 | 27.79 276 | 75.41 313 | 37.12 283 | 59.49 237 | 78.47 274 |
|
EI-MVSNet | | | 69.70 149 | 68.70 140 | 72.68 190 | 75.00 254 | 48.90 213 | 79.54 249 | 87.16 62 | 61.05 128 | 63.88 145 | 83.74 170 | 45.87 87 | 90.44 90 | 57.42 186 | 64.68 201 | 78.70 270 |
|
CVMVSNet | | | 60.85 252 | 60.44 243 | 62.07 301 | 75.00 254 | 32.73 335 | 79.54 249 | 73.49 295 | 36.98 332 | 56.28 243 | 83.74 170 | 29.28 266 | 69.53 337 | 46.48 252 | 63.23 213 | 83.94 202 |
|
AUN-MVS | | | 68.20 177 | 66.35 180 | 73.76 170 | 76.37 234 | 47.45 243 | 79.52 251 | 79.52 211 | 60.98 130 | 62.34 160 | 86.02 147 | 36.59 204 | 86.94 189 | 62.32 137 | 53.47 295 | 86.89 147 |
|
PVSNet_0 | | 57.04 13 | 61.19 250 | 57.24 261 | 73.02 184 | 77.45 222 | 50.31 184 | 79.43 252 | 77.36 255 | 63.96 81 | 47.51 297 | 72.45 292 | 25.03 295 | 83.78 249 | 52.76 218 | 19.22 352 | 84.96 184 |
|
PCF-MVS | | 61.03 10 | 70.10 138 | 68.40 144 | 75.22 140 | 77.15 229 | 51.99 143 | 79.30 253 | 82.12 167 | 56.47 221 | 61.88 166 | 86.48 145 | 43.98 109 | 87.24 181 | 55.37 197 | 72.79 146 | 86.43 159 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PLC |  | 52.38 18 | 60.89 251 | 58.97 254 | 66.68 278 | 81.77 141 | 45.70 267 | 78.96 254 | 74.04 289 | 43.66 314 | 47.63 294 | 83.19 180 | 23.52 303 | 77.78 303 | 37.47 280 | 60.46 231 | 76.55 298 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
D2MVS | | | 63.49 232 | 61.39 235 | 69.77 246 | 69.29 305 | 48.93 212 | 78.89 255 | 77.71 248 | 60.64 137 | 49.70 284 | 72.10 298 | 27.08 280 | 83.48 253 | 54.48 203 | 62.65 220 | 76.90 291 |
|
OMC-MVS | | | 65.97 218 | 65.06 210 | 68.71 259 | 72.97 274 | 42.58 297 | 78.61 256 | 75.35 279 | 54.72 240 | 59.31 191 | 86.25 146 | 33.30 233 | 77.88 300 | 57.99 176 | 67.05 185 | 85.66 173 |
|
PAPM_NR | | | 71.80 116 | 69.98 125 | 77.26 97 | 81.54 150 | 53.34 110 | 78.60 257 | 85.25 104 | 53.46 249 | 60.53 177 | 88.66 109 | 45.69 91 | 89.24 118 | 56.49 190 | 79.62 91 | 89.19 104 |
|
mvs_anonymous | | | 72.29 110 | 70.74 113 | 76.94 106 | 82.85 121 | 54.72 74 | 78.43 258 | 81.54 177 | 63.77 83 | 61.69 167 | 79.32 220 | 51.11 39 | 85.31 228 | 62.15 140 | 75.79 118 | 90.79 68 |
|
test222 | | | | | | 79.36 184 | 50.97 166 | 77.99 259 | 67.84 322 | 42.54 319 | 62.84 156 | 86.53 143 | 30.26 260 | | | 76.91 109 | 85.23 180 |
|
v7n | | | 62.50 242 | 59.27 251 | 72.20 201 | 67.25 319 | 49.83 194 | 77.87 260 | 80.12 198 | 52.50 257 | 48.80 288 | 73.07 284 | 32.10 244 | 87.90 163 | 46.83 251 | 54.92 283 | 78.86 268 |
|
test20.03 | | | 55.22 289 | 54.07 282 | 58.68 317 | 63.14 335 | 25.00 349 | 77.69 261 | 74.78 282 | 52.64 255 | 43.43 310 | 72.39 293 | 26.21 285 | 74.76 315 | 29.31 318 | 47.05 316 | 76.28 300 |
|
testdata1 | | | | | | | | 77.55 262 | | 64.14 77 | | | | | | | |
|
PEN-MVS | | | 58.35 273 | 57.15 262 | 61.94 303 | 67.55 318 | 34.39 327 | 77.01 263 | 78.35 237 | 51.87 262 | 47.72 293 | 76.73 252 | 33.91 227 | 73.75 321 | 34.03 302 | 47.17 314 | 77.68 285 |
|
WR-MVS_H | | | 58.91 266 | 58.04 257 | 61.54 306 | 69.07 306 | 33.83 330 | 76.91 264 | 81.99 168 | 51.40 266 | 48.17 289 | 74.67 271 | 40.23 155 | 74.15 317 | 31.78 311 | 48.10 307 | 76.64 296 |
|
CP-MVSNet | | | 58.54 272 | 57.57 260 | 61.46 307 | 68.50 311 | 33.96 329 | 76.90 265 | 78.60 233 | 51.67 265 | 47.83 292 | 76.60 254 | 34.99 219 | 72.79 326 | 35.45 292 | 47.58 310 | 77.64 287 |
|
PS-CasMVS | | | 58.12 274 | 57.03 264 | 61.37 308 | 68.24 315 | 33.80 331 | 76.73 266 | 78.01 242 | 51.20 267 | 47.54 296 | 76.20 262 | 32.85 236 | 72.76 327 | 35.17 297 | 47.37 312 | 77.55 288 |
|
tpm | | | 68.36 171 | 67.48 163 | 70.97 229 | 79.93 180 | 51.34 161 | 76.58 267 | 78.75 228 | 67.73 36 | 63.54 151 | 74.86 270 | 48.33 58 | 72.36 329 | 53.93 206 | 63.71 206 | 89.21 103 |
|
MVS_0304 | | | 56.72 278 | 55.17 275 | 61.37 308 | 70.71 296 | 36.80 324 | 75.74 268 | 68.75 321 | 44.11 312 | 52.53 268 | 68.20 315 | 15.05 339 | 74.53 316 | 42.98 268 | 58.44 246 | 72.79 323 |
|
DTE-MVSNet | | | 57.03 277 | 55.73 273 | 60.95 312 | 65.94 321 | 32.57 336 | 75.71 269 | 77.09 259 | 51.16 268 | 46.65 301 | 76.34 257 | 32.84 237 | 73.22 325 | 30.94 315 | 44.87 322 | 77.06 290 |
|
tpmrst | | | 71.04 124 | 69.77 127 | 74.86 144 | 83.19 107 | 55.86 44 | 75.64 270 | 78.73 229 | 67.88 34 | 64.99 127 | 73.73 276 | 49.96 50 | 79.56 286 | 65.92 110 | 67.85 182 | 89.14 106 |
|
CostFormer | | | 73.89 86 | 72.30 91 | 78.66 57 | 82.36 134 | 56.58 29 | 75.56 271 | 85.30 100 | 66.06 55 | 70.50 81 | 76.88 250 | 57.02 12 | 89.06 120 | 68.27 95 | 68.74 175 | 90.33 79 |
|
HY-MVS | | 67.03 5 | 73.90 85 | 73.14 79 | 76.18 120 | 84.70 76 | 47.36 244 | 75.56 271 | 86.36 78 | 66.27 49 | 70.66 79 | 83.91 167 | 51.05 40 | 89.31 117 | 67.10 101 | 72.61 148 | 91.88 39 |
|
K. test v3 | | | 54.04 294 | 49.42 302 | 67.92 266 | 68.55 310 | 42.57 298 | 75.51 273 | 63.07 332 | 52.07 259 | 39.21 325 | 64.59 325 | 19.34 322 | 82.21 259 | 37.11 284 | 25.31 349 | 78.97 267 |
|
Vis-MVSNet (Re-imp) | | | 65.52 220 | 65.63 198 | 65.17 288 | 77.49 221 | 30.54 340 | 75.49 274 | 77.73 247 | 59.34 157 | 52.26 272 | 86.69 141 | 49.38 54 | 80.53 274 | 37.07 285 | 75.28 123 | 84.42 190 |
|
pmmvs-eth3d | | | 55.97 286 | 52.78 290 | 65.54 284 | 61.02 340 | 46.44 255 | 75.36 275 | 67.72 323 | 49.61 275 | 43.65 309 | 67.58 317 | 21.63 314 | 77.04 305 | 44.11 263 | 44.33 323 | 73.15 322 |
|
TAPA-MVS | | 56.12 14 | 61.82 248 | 60.18 245 | 66.71 276 | 78.48 208 | 37.97 319 | 75.19 276 | 76.41 271 | 46.82 290 | 57.04 233 | 86.52 144 | 27.67 277 | 77.03 306 | 26.50 332 | 67.02 186 | 85.14 181 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
FMVSNet5 | | | 58.61 269 | 56.45 266 | 65.10 289 | 77.20 228 | 39.74 311 | 74.77 277 | 77.12 258 | 50.27 272 | 43.28 312 | 67.71 316 | 26.15 286 | 76.90 308 | 36.78 288 | 54.78 285 | 78.65 272 |
|
SixPastTwentyTwo | | | 54.37 291 | 50.10 298 | 67.21 270 | 70.70 297 | 41.46 304 | 74.73 278 | 64.69 328 | 47.56 284 | 39.12 326 | 69.49 309 | 18.49 327 | 84.69 242 | 31.87 310 | 34.20 342 | 75.48 304 |
|
F-COLMAP | | | 55.96 287 | 53.65 285 | 62.87 299 | 72.76 277 | 42.77 294 | 74.70 279 | 70.37 316 | 40.03 323 | 41.11 321 | 79.36 219 | 17.77 329 | 73.70 322 | 32.80 308 | 53.96 290 | 72.15 324 |
|
MSDG | | | 59.44 257 | 55.14 277 | 72.32 200 | 74.69 257 | 50.71 168 | 74.39 280 | 73.58 293 | 44.44 308 | 43.40 311 | 77.52 237 | 19.45 321 | 90.87 81 | 31.31 313 | 57.49 262 | 75.38 305 |
|
tpm2 | | | 70.82 128 | 68.44 143 | 77.98 77 | 80.78 167 | 56.11 40 | 74.21 281 | 81.28 184 | 60.24 141 | 68.04 93 | 75.27 268 | 52.26 32 | 88.50 144 | 55.82 196 | 68.03 179 | 89.33 98 |
|
UniMVSNet_ETH3D | | | 62.51 241 | 60.49 242 | 68.57 262 | 68.30 314 | 40.88 309 | 73.89 282 | 79.93 202 | 51.81 264 | 54.77 250 | 79.61 217 | 24.80 296 | 81.10 267 | 49.93 230 | 61.35 227 | 83.73 205 |
|
UA-Net | | | 67.32 195 | 66.23 184 | 70.59 233 | 78.85 196 | 41.23 306 | 73.60 283 | 75.45 278 | 61.54 120 | 66.61 104 | 84.53 161 | 38.73 169 | 86.57 201 | 42.48 272 | 74.24 131 | 83.98 199 |
|
Anonymous20240521 | | | 51.65 303 | 48.42 304 | 61.34 310 | 56.43 346 | 39.65 313 | 73.57 284 | 73.47 298 | 36.64 334 | 36.59 331 | 63.98 326 | 10.75 345 | 72.25 330 | 35.35 293 | 49.01 305 | 72.11 325 |
|
ab-mvs | | | 70.65 131 | 69.11 137 | 75.29 137 | 80.87 166 | 46.23 261 | 73.48 285 | 85.24 105 | 59.99 144 | 66.65 102 | 80.94 209 | 43.13 126 | 88.69 135 | 63.58 130 | 68.07 178 | 90.95 66 |
|
LS3D | | | 56.40 283 | 53.82 283 | 64.12 292 | 81.12 160 | 45.69 268 | 73.42 286 | 66.14 325 | 35.30 340 | 43.24 313 | 79.88 215 | 22.18 311 | 79.62 285 | 19.10 347 | 64.00 204 | 67.05 336 |
|
testmvs | | | 6.14 333 | 8.18 336 | 0.01 345 | 0.01 366 | 0.00 368 | 73.40 287 | 0.00 367 | 0.00 362 | 0.02 363 | 0.15 363 | 0.00 368 | 0.00 363 | 0.02 361 | 0.00 361 | 0.02 359 |
|
UnsupCasMVSNet_eth | | | 57.56 275 | 55.15 276 | 64.79 291 | 64.57 330 | 33.12 332 | 73.17 288 | 83.87 140 | 58.98 173 | 41.75 318 | 70.03 308 | 22.54 307 | 79.92 281 | 46.12 256 | 35.31 337 | 81.32 246 |
|
anonymousdsp | | | 60.46 254 | 57.65 258 | 68.88 253 | 63.63 333 | 45.09 271 | 72.93 289 | 78.63 231 | 46.52 292 | 51.12 277 | 72.80 288 | 21.46 315 | 83.07 257 | 57.79 181 | 53.97 289 | 78.47 274 |
|
EU-MVSNet | | | 52.63 300 | 50.72 296 | 58.37 318 | 62.69 337 | 28.13 347 | 72.60 290 | 75.97 273 | 30.94 342 | 40.76 323 | 72.11 297 | 20.16 319 | 70.80 333 | 35.11 298 | 46.11 319 | 76.19 301 |
|
dp | | | 64.41 225 | 61.58 232 | 72.90 186 | 82.40 132 | 54.09 88 | 72.53 291 | 76.59 269 | 60.39 139 | 55.68 247 | 70.39 307 | 35.18 217 | 76.90 308 | 39.34 277 | 61.71 226 | 87.73 135 |
|
N_pmnet | | | 41.25 315 | 39.77 318 | 45.66 331 | 68.50 311 | 0.82 366 | 72.51 292 | 0.38 366 | 35.61 337 | 35.26 336 | 61.51 331 | 20.07 320 | 67.74 338 | 23.51 338 | 40.63 330 | 68.42 335 |
|
MDTV_nov1_ep13 | | | | 61.56 233 | | 81.68 142 | 55.12 60 | 72.41 293 | 78.18 239 | 59.19 162 | 58.85 202 | 69.29 311 | 34.69 220 | 86.16 208 | 36.76 289 | 62.96 218 | |
|
YYNet1 | | | 53.82 296 | 49.96 299 | 65.41 286 | 70.09 302 | 48.95 210 | 72.30 294 | 71.66 308 | 44.25 310 | 31.89 344 | 63.07 329 | 23.73 301 | 73.95 319 | 33.26 305 | 39.40 333 | 73.34 319 |
|
MDA-MVSNet_test_wron | | | 53.82 296 | 49.95 300 | 65.43 285 | 70.13 301 | 49.05 208 | 72.30 294 | 71.65 309 | 44.23 311 | 31.85 345 | 63.13 328 | 23.68 302 | 74.01 318 | 33.25 306 | 39.35 334 | 73.23 321 |
|
testgi | | | 54.25 293 | 52.57 292 | 59.29 315 | 62.76 336 | 21.65 354 | 72.21 296 | 70.47 315 | 53.25 252 | 41.94 316 | 77.33 241 | 14.28 340 | 77.95 299 | 29.18 319 | 51.72 300 | 78.28 279 |
|
KD-MVS_2432*1600 | | | 59.04 264 | 56.44 267 | 66.86 274 | 79.07 190 | 45.87 264 | 72.13 297 | 80.42 195 | 55.03 236 | 48.15 290 | 71.01 301 | 36.73 199 | 78.05 296 | 35.21 295 | 30.18 347 | 76.67 293 |
|
miper_refine_blended | | | 59.04 264 | 56.44 267 | 66.86 274 | 79.07 190 | 45.87 264 | 72.13 297 | 80.42 195 | 55.03 236 | 48.15 290 | 71.01 301 | 36.73 199 | 78.05 296 | 35.21 295 | 30.18 347 | 76.67 293 |
|
PatchmatchNet |  | | 67.07 202 | 63.63 222 | 77.40 90 | 83.10 108 | 58.03 11 | 72.11 299 | 77.77 246 | 58.85 175 | 59.37 189 | 70.83 303 | 37.84 175 | 84.93 239 | 42.96 269 | 69.83 169 | 89.26 100 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test123 | | | 6.01 334 | 8.01 337 | 0.01 345 | 0.00 367 | 0.01 367 | 71.93 300 | 0.00 367 | 0.00 362 | 0.02 363 | 0.11 364 | 0.00 368 | 0.00 363 | 0.02 361 | 0.00 361 | 0.02 359 |
|
EPMVS | | | 68.45 170 | 65.44 204 | 77.47 89 | 84.91 73 | 56.17 39 | 71.89 301 | 81.91 172 | 61.72 116 | 60.85 172 | 72.49 290 | 36.21 206 | 87.06 185 | 47.32 247 | 71.62 155 | 89.17 105 |
|
UnsupCasMVSNet_bld | | | 53.86 295 | 50.53 297 | 63.84 293 | 63.52 334 | 34.75 326 | 71.38 302 | 81.92 171 | 46.53 291 | 38.95 327 | 57.93 340 | 20.55 318 | 80.20 279 | 39.91 276 | 34.09 343 | 76.57 297 |
|
COLMAP_ROB |  | 43.60 20 | 50.90 305 | 48.05 306 | 59.47 314 | 67.81 317 | 40.57 310 | 71.25 303 | 62.72 334 | 36.49 335 | 36.19 333 | 73.51 281 | 13.48 341 | 73.92 320 | 20.71 343 | 50.26 303 | 63.92 342 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MDTV_nov1_ep13_2view | | | | | | | 43.62 286 | 71.13 304 | | 54.95 238 | 59.29 192 | | 36.76 198 | | 46.33 254 | | 87.32 142 |
|
test_post1 | | | | | | | | 70.84 305 | | | | 14.72 360 | 34.33 223 | 83.86 246 | 48.80 237 | | |
|
new-patchmatchnet | | | 48.21 309 | 46.55 311 | 53.18 325 | 57.73 344 | 18.19 358 | 70.24 306 | 71.02 314 | 45.70 298 | 33.70 339 | 60.23 334 | 18.00 328 | 69.86 336 | 27.97 326 | 34.35 340 | 71.49 330 |
|
pmmvs3 | | | 45.53 314 | 41.55 317 | 57.44 320 | 48.97 352 | 39.68 312 | 70.06 307 | 57.66 338 | 28.32 345 | 34.06 338 | 57.29 341 | 8.50 350 | 66.85 339 | 34.86 300 | 34.26 341 | 65.80 339 |
|
tpmvs | | | 62.45 244 | 59.42 249 | 71.53 220 | 83.93 90 | 54.32 82 | 70.03 308 | 77.61 249 | 51.91 261 | 53.48 264 | 68.29 314 | 37.91 174 | 86.66 196 | 33.36 304 | 58.27 248 | 73.62 317 |
|
tpm cat1 | | | 66.28 213 | 62.78 224 | 76.77 111 | 81.40 156 | 57.14 22 | 70.03 308 | 77.19 256 | 53.00 253 | 58.76 204 | 70.73 306 | 46.17 80 | 86.73 194 | 43.27 266 | 64.46 202 | 86.44 158 |
|
PatchMatch-RL | | | 56.66 279 | 53.75 284 | 65.37 287 | 77.91 217 | 45.28 270 | 69.78 310 | 60.38 335 | 41.35 321 | 47.57 295 | 73.73 276 | 16.83 332 | 76.91 307 | 36.99 286 | 59.21 240 | 73.92 315 |
|
MDA-MVSNet-bldmvs | | | 51.56 304 | 47.75 309 | 63.00 298 | 71.60 289 | 47.32 245 | 69.70 311 | 72.12 304 | 43.81 313 | 27.65 349 | 63.38 327 | 21.97 313 | 75.96 310 | 27.30 329 | 32.19 344 | 65.70 340 |
|
miper_lstm_enhance | | | 63.91 228 | 62.30 227 | 68.75 258 | 75.06 253 | 46.78 250 | 69.02 312 | 81.14 185 | 59.68 149 | 52.76 267 | 72.39 293 | 40.71 150 | 77.99 298 | 56.81 189 | 53.09 296 | 81.48 238 |
|
GG-mvs-BLEND | | | | | 77.77 81 | 86.68 42 | 50.61 170 | 68.67 313 | 88.45 44 | | 68.73 87 | 87.45 131 | 59.15 8 | 90.67 84 | 54.83 199 | 87.67 15 | 92.03 35 |
|
OurMVSNet-221017-0 | | | 52.39 301 | 48.73 303 | 63.35 297 | 65.21 326 | 38.42 317 | 68.54 314 | 64.95 327 | 38.19 327 | 39.57 324 | 71.43 300 | 13.23 342 | 79.92 281 | 37.16 282 | 40.32 332 | 71.72 327 |
|
MIMVSNet1 | | | 50.35 306 | 47.81 307 | 57.96 319 | 61.53 339 | 27.80 348 | 67.40 315 | 74.06 288 | 43.25 316 | 33.31 343 | 65.38 324 | 16.03 336 | 71.34 331 | 21.80 340 | 47.55 311 | 74.75 309 |
|
MTAPA | | | 72.73 101 | 71.22 109 | 77.27 95 | 81.54 150 | 53.57 97 | 67.06 316 | 81.31 181 | 59.41 154 | 68.39 90 | 90.96 58 | 36.07 208 | 89.01 124 | 73.80 64 | 82.45 61 | 89.23 101 |
|
MIMVSNet | | | 63.12 235 | 60.29 244 | 71.61 216 | 75.92 244 | 46.65 252 | 65.15 317 | 81.94 169 | 59.14 167 | 54.65 252 | 69.47 310 | 25.74 288 | 80.63 272 | 41.03 274 | 69.56 172 | 87.55 137 |
|
XVG-OURS-SEG-HR | | | 62.02 246 | 59.54 248 | 69.46 249 | 65.30 325 | 45.88 263 | 65.06 318 | 73.57 294 | 46.45 293 | 57.42 230 | 83.35 177 | 26.95 281 | 78.09 294 | 53.77 207 | 64.03 203 | 84.42 190 |
|
XVG-OURS | | | 61.88 247 | 59.34 250 | 69.49 248 | 65.37 324 | 46.27 259 | 64.80 319 | 73.49 295 | 47.04 288 | 57.41 231 | 82.85 182 | 25.15 294 | 78.18 292 | 53.00 212 | 64.98 196 | 84.01 196 |
|
gg-mvs-nofinetune | | | 67.43 191 | 64.53 215 | 76.13 121 | 85.95 46 | 47.79 240 | 64.38 320 | 88.28 45 | 39.34 324 | 66.62 103 | 41.27 346 | 58.69 11 | 89.00 126 | 49.64 233 | 86.62 27 | 91.59 44 |
|
XVG-ACMP-BASELINE | | | 56.03 285 | 52.85 289 | 65.58 283 | 61.91 338 | 40.95 308 | 63.36 321 | 72.43 301 | 45.20 303 | 46.02 303 | 74.09 273 | 9.20 349 | 78.12 293 | 45.13 258 | 58.27 248 | 77.66 286 |
|
TinyColmap | | | 48.15 310 | 44.49 314 | 59.13 316 | 65.73 323 | 38.04 318 | 63.34 322 | 62.86 333 | 38.78 325 | 29.48 347 | 67.23 319 | 6.46 354 | 73.30 324 | 24.59 335 | 41.90 329 | 66.04 338 |
|
MVS-HIRNet | | | 49.01 308 | 44.71 312 | 61.92 304 | 76.06 240 | 46.61 253 | 63.23 323 | 54.90 341 | 24.77 347 | 33.56 340 | 36.60 349 | 21.28 316 | 75.88 311 | 29.49 317 | 62.54 221 | 63.26 344 |
|
PM-MVS | | | 46.92 312 | 43.76 316 | 56.41 322 | 52.18 349 | 32.26 337 | 63.21 324 | 38.18 353 | 37.99 329 | 40.78 322 | 66.20 320 | 5.09 357 | 65.42 340 | 48.19 242 | 41.99 328 | 71.54 329 |
|
AllTest | | | 47.32 311 | 44.66 313 | 55.32 323 | 65.08 327 | 37.50 321 | 62.96 325 | 54.25 343 | 35.45 338 | 33.42 341 | 72.82 286 | 9.98 346 | 59.33 343 | 24.13 336 | 43.84 324 | 69.13 332 |
|
USDC | | | 54.36 292 | 51.23 295 | 63.76 294 | 64.29 331 | 37.71 320 | 62.84 326 | 73.48 297 | 56.85 210 | 35.47 335 | 71.94 299 | 9.23 348 | 78.43 290 | 38.43 279 | 48.57 306 | 75.13 308 |
|
Patchmatch-RL test | | | 58.72 268 | 54.32 280 | 71.92 213 | 63.91 332 | 44.25 281 | 61.73 327 | 55.19 340 | 57.38 204 | 49.31 286 | 54.24 343 | 37.60 182 | 80.89 269 | 62.19 139 | 47.28 313 | 90.63 71 |
|
SCA | | | 63.84 229 | 60.01 246 | 75.32 136 | 78.58 204 | 57.92 12 | 61.61 328 | 77.53 250 | 56.71 215 | 57.75 221 | 70.77 304 | 31.97 246 | 79.91 283 | 48.80 237 | 56.36 267 | 88.13 127 |
|
CMPMVS |  | 40.41 21 | 55.34 288 | 52.64 291 | 63.46 296 | 60.88 341 | 43.84 284 | 61.58 329 | 71.06 313 | 30.43 343 | 36.33 332 | 74.63 272 | 24.14 299 | 75.44 312 | 48.05 243 | 66.62 187 | 71.12 331 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
LCM-MVSNet-Re | | | 58.82 267 | 56.54 265 | 65.68 282 | 79.31 187 | 29.09 345 | 61.39 330 | 45.79 348 | 60.73 135 | 37.65 330 | 72.47 291 | 31.42 252 | 81.08 268 | 49.66 232 | 70.41 164 | 86.87 148 |
|
CR-MVSNet | | | 62.47 243 | 59.04 253 | 72.77 189 | 73.97 266 | 56.57 30 | 60.52 331 | 71.72 306 | 60.04 142 | 57.49 227 | 65.86 321 | 38.94 166 | 80.31 276 | 42.86 270 | 59.93 233 | 81.42 239 |
|
RPMNet | | | 59.29 258 | 54.25 281 | 74.42 152 | 73.97 266 | 56.57 30 | 60.52 331 | 76.98 260 | 35.72 336 | 57.49 227 | 58.87 339 | 37.73 179 | 85.26 231 | 27.01 330 | 59.93 233 | 81.42 239 |
|
Patchmtry | | | 56.56 281 | 52.95 288 | 67.42 269 | 72.53 280 | 50.59 172 | 59.05 333 | 71.72 306 | 37.86 330 | 46.92 298 | 65.86 321 | 38.94 166 | 80.06 280 | 36.94 287 | 46.72 318 | 71.60 328 |
|
TDRefinement | | | 40.91 316 | 38.37 319 | 48.55 329 | 50.45 350 | 33.03 334 | 58.98 334 | 50.97 346 | 28.50 344 | 29.89 346 | 67.39 318 | 6.21 356 | 54.51 347 | 17.67 348 | 35.25 338 | 58.11 345 |
|
DIV-MVS_2432*1600 | | | 49.24 307 | 46.85 310 | 56.44 321 | 54.32 347 | 22.87 351 | 57.39 335 | 73.36 299 | 44.36 309 | 37.98 329 | 59.30 338 | 18.97 324 | 71.17 332 | 33.48 303 | 42.44 327 | 75.26 306 |
|
PatchT | | | 56.60 280 | 52.97 287 | 67.48 268 | 72.94 275 | 46.16 262 | 57.30 336 | 73.78 291 | 38.77 326 | 54.37 255 | 57.26 342 | 37.52 184 | 78.06 295 | 32.02 309 | 52.79 297 | 78.23 281 |
|
ANet_high | | | 34.39 319 | 29.59 324 | 48.78 328 | 30.34 360 | 22.28 352 | 55.53 337 | 63.79 331 | 38.11 328 | 15.47 353 | 36.56 350 | 6.94 351 | 59.98 342 | 13.93 351 | 5.64 360 | 64.08 341 |
|
ADS-MVSNet2 | | | 55.21 290 | 51.44 294 | 66.51 279 | 80.60 172 | 49.56 199 | 55.03 338 | 65.44 326 | 44.72 305 | 51.00 278 | 61.19 332 | 22.83 304 | 75.41 313 | 28.54 323 | 53.63 291 | 74.57 311 |
|
ADS-MVSNet | | | 56.17 284 | 51.95 293 | 68.84 254 | 80.60 172 | 53.07 120 | 55.03 338 | 70.02 318 | 44.72 305 | 51.00 278 | 61.19 332 | 22.83 304 | 78.88 289 | 28.54 323 | 53.63 291 | 74.57 311 |
|
RPSCF | | | 45.77 313 | 44.13 315 | 50.68 327 | 57.67 345 | 29.66 341 | 54.92 340 | 45.25 350 | 26.69 346 | 45.92 304 | 75.92 265 | 17.43 331 | 45.70 354 | 27.44 328 | 45.95 320 | 76.67 293 |
|
new_pmnet | | | 33.56 320 | 31.89 323 | 38.59 334 | 49.01 351 | 20.42 355 | 51.01 341 | 37.92 354 | 20.58 348 | 23.45 350 | 46.79 345 | 6.66 353 | 49.28 352 | 20.00 346 | 31.57 346 | 46.09 350 |
|
E-PMN | | | 19.16 326 | 18.40 330 | 21.44 340 | 36.19 358 | 13.63 361 | 47.59 342 | 30.89 358 | 10.73 356 | 5.91 360 | 16.59 356 | 3.66 360 | 39.77 356 | 5.95 357 | 8.14 355 | 10.92 355 |
|
EMVS | | | 18.42 327 | 17.66 331 | 20.71 341 | 34.13 359 | 12.64 362 | 46.94 343 | 29.94 359 | 10.46 358 | 5.58 361 | 14.93 359 | 4.23 359 | 38.83 357 | 5.24 359 | 7.51 357 | 10.67 356 |
|
CHOSEN 280x420 | | | 57.53 276 | 56.38 269 | 60.97 311 | 74.01 264 | 48.10 236 | 46.30 344 | 54.31 342 | 48.18 282 | 50.88 281 | 77.43 240 | 38.37 172 | 59.16 345 | 54.83 199 | 63.14 216 | 75.66 303 |
|
LTVRE_ROB | | 45.45 19 | 52.73 299 | 49.74 301 | 61.69 305 | 69.78 303 | 34.99 325 | 44.52 345 | 67.60 324 | 43.11 317 | 43.79 308 | 74.03 274 | 18.54 326 | 81.45 265 | 28.39 325 | 57.94 255 | 68.62 334 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LF4IMVS | | | 33.04 321 | 32.55 322 | 34.52 337 | 40.96 355 | 22.03 353 | 44.45 346 | 35.62 356 | 20.42 349 | 28.12 348 | 62.35 330 | 5.03 358 | 31.88 359 | 21.61 342 | 34.42 339 | 49.63 348 |
|
Patchmatch-test | | | 53.33 298 | 48.17 305 | 68.81 256 | 73.31 269 | 42.38 299 | 42.98 347 | 58.23 337 | 32.53 341 | 38.79 328 | 70.77 304 | 39.66 162 | 73.51 323 | 25.18 334 | 52.06 299 | 90.55 72 |
|
PMMVS2 | | | 26.71 324 | 22.98 328 | 37.87 335 | 36.89 357 | 8.51 364 | 42.51 348 | 29.32 360 | 19.09 352 | 13.01 354 | 37.54 347 | 2.23 361 | 53.11 348 | 14.54 350 | 11.71 353 | 51.99 347 |
|
FPMVS | | | 35.40 318 | 33.67 321 | 40.57 333 | 46.34 354 | 28.74 346 | 41.05 349 | 57.05 339 | 20.37 350 | 22.27 351 | 53.38 344 | 6.87 352 | 44.94 355 | 8.62 353 | 47.11 315 | 48.01 349 |
|
PMVS |  | 19.57 22 | 25.07 325 | 22.43 329 | 32.99 338 | 23.12 363 | 22.98 350 | 40.98 350 | 35.19 357 | 15.99 353 | 11.95 356 | 35.87 351 | 1.47 365 | 49.29 351 | 5.41 358 | 31.90 345 | 26.70 352 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
JIA-IIPM | | | 52.33 302 | 47.77 308 | 66.03 281 | 71.20 294 | 46.92 249 | 40.00 351 | 76.48 270 | 37.10 331 | 46.73 299 | 37.02 348 | 32.96 235 | 77.88 300 | 35.97 290 | 52.45 298 | 73.29 320 |
|
DSMNet-mixed | | | 38.35 317 | 35.36 320 | 47.33 330 | 48.11 353 | 14.91 360 | 37.87 352 | 36.60 355 | 19.18 351 | 34.37 337 | 59.56 337 | 15.53 337 | 53.01 349 | 20.14 345 | 46.89 317 | 74.07 313 |
|
ambc | | | | | 62.06 302 | 53.98 348 | 29.38 343 | 35.08 353 | 79.65 209 | | 41.37 319 | 59.96 335 | 6.27 355 | 82.15 260 | 35.34 294 | 38.22 335 | 74.65 310 |
|
LCM-MVSNet | | | 28.07 322 | 23.85 327 | 40.71 332 | 27.46 362 | 18.93 357 | 30.82 354 | 46.19 347 | 12.76 355 | 16.40 352 | 34.70 352 | 1.90 363 | 48.69 353 | 20.25 344 | 24.22 350 | 54.51 346 |
|
wuyk23d | | | 9.11 331 | 8.77 335 | 10.15 343 | 40.18 356 | 16.76 359 | 20.28 355 | 1.01 365 | 2.58 360 | 2.66 362 | 0.98 362 | 0.23 367 | 12.49 361 | 4.08 360 | 6.90 358 | 1.19 358 |
|
MVE |  | 16.60 23 | 17.34 329 | 13.39 332 | 29.16 339 | 28.43 361 | 19.72 356 | 13.73 356 | 23.63 361 | 7.23 359 | 7.96 358 | 21.41 354 | 0.80 366 | 36.08 358 | 6.97 355 | 10.39 354 | 31.69 351 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
Gipuma |  | | 27.47 323 | 24.26 326 | 37.12 336 | 60.55 342 | 29.17 344 | 11.68 357 | 60.00 336 | 14.18 354 | 10.52 357 | 15.12 358 | 2.20 362 | 63.01 341 | 8.39 354 | 35.65 336 | 19.18 353 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tmp_tt | | | 9.44 330 | 10.68 333 | 5.73 344 | 2.49 365 | 4.21 365 | 10.48 358 | 18.04 362 | 0.34 361 | 12.59 355 | 20.49 355 | 11.39 343 | 7.03 362 | 13.84 352 | 6.46 359 | 5.95 357 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 367 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 362 | 0.00 365 | 0.00 365 | 0.00 368 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
cdsmvs_eth3d_5k | | | 18.33 328 | 24.44 325 | 0.00 347 | 0.00 367 | 0.00 368 | 0.00 359 | 89.40 17 | 0.00 362 | 0.00 365 | 92.02 36 | 38.55 170 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 3.15 335 | 4.20 338 | 0.00 347 | 0.00 367 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 362 | 0.00 365 | 0.00 365 | 37.77 176 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 367 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 362 | 0.00 365 | 0.00 365 | 0.00 368 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 367 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 362 | 0.00 365 | 0.00 365 | 0.00 368 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 367 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 362 | 0.00 365 | 0.00 365 | 0.00 368 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 367 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 362 | 0.00 365 | 0.00 365 | 0.00 368 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
ab-mvs-re | | | 7.68 332 | 10.24 334 | 0.00 347 | 0.00 367 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 362 | 0.00 365 | 92.12 33 | 0.00 368 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 367 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 362 | 0.00 365 | 0.00 365 | 0.00 368 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
ZD-MVS | | | | | | 89.55 11 | 53.46 101 | | 84.38 125 | 57.02 208 | 73.97 43 | 91.03 54 | 44.57 105 | 91.17 72 | 75.41 53 | 81.78 69 | |
|
IU-MVS | | | | | | 89.48 14 | 57.49 17 | | 91.38 5 | 66.22 50 | 88.26 1 | | | | 82.83 7 | 87.60 16 | 92.44 25 |
|
test_241102_TWO | | | | | | | | | 88.76 34 | 57.50 202 | 83.60 5 | 94.09 4 | 56.14 16 | 96.37 5 | 82.28 11 | 87.43 18 | 92.55 23 |
|
test_241102_ONE | | | | | | 89.48 14 | 56.89 26 | | 88.94 27 | 57.53 200 | 84.61 3 | 93.29 13 | 58.81 9 | 96.45 1 | | | |
|
test_0728_THIRD | | | | | | | | | | 58.00 188 | 81.91 9 | 93.64 10 | 56.54 13 | 96.44 2 | 81.64 16 | 86.86 23 | 92.23 29 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 127 |
|
test_part2 | | | | | | 89.33 19 | 55.48 48 | | | | 82.27 8 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 168 | | | | 88.13 127 |
|
sam_mvs | | | | | | | | | | | | | 35.99 212 | | | | |
|
MTGPA |  | | | | | | | | 81.31 181 | | | | | | | | |
|
test_post | | | | | | | | | | | | 16.22 357 | 37.52 184 | 84.72 241 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 336 | 38.41 171 | 79.91 283 | | | |
|
gm-plane-assit | | | | | | 83.24 106 | 54.21 85 | | | 70.91 12 | | 88.23 118 | | 95.25 12 | 66.37 106 | | |
|
test9_res | | | | | | | | | | | | | | | 78.72 28 | 85.44 40 | 91.39 52 |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 48 | 85.11 44 | 91.01 63 |
|
agg_prior | | | | | | 85.64 54 | 54.92 67 | | 83.61 145 | | 72.53 60 | | | 88.10 159 | | | |
|
TestCases | | | | | 55.32 323 | 65.08 327 | 37.50 321 | | 54.25 343 | 35.45 338 | 33.42 341 | 72.82 286 | 9.98 346 | 59.33 343 | 24.13 336 | 43.84 324 | 69.13 332 |
|
test_prior | | | | | 78.39 66 | 86.35 44 | 54.91 69 | | 85.45 92 | | | | | 89.70 110 | | | 90.55 72 |
|
æ–°å‡ ä½•1 | | | | | 73.30 182 | 83.10 108 | 53.48 100 | | 71.43 311 | 45.55 299 | 66.14 110 | 87.17 134 | 33.88 229 | 80.54 273 | 48.50 240 | 80.33 82 | 85.88 168 |
|
旧先验1 | | | | | | 81.57 149 | 47.48 242 | | 71.83 305 | | | 88.66 109 | 36.94 195 | | | 78.34 99 | 88.67 116 |
|
原ACMM1 | | | | | 76.13 121 | 84.89 74 | 54.59 79 | | 85.26 103 | 51.98 260 | 66.70 101 | 87.07 136 | 40.15 157 | 89.70 110 | 51.23 224 | 85.06 45 | 84.10 193 |
|
testdata2 | | | | | | | | | | | | | | 77.81 302 | 45.64 257 | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 99 | | | | |
|
testdata | | | | | 67.08 272 | 77.59 219 | 45.46 269 | | 69.20 320 | 44.47 307 | 71.50 73 | 88.34 114 | 31.21 253 | 70.76 334 | 52.20 221 | 75.88 117 | 85.03 182 |
|
test12 | | | | | 79.24 36 | 86.89 40 | 56.08 41 | | 85.16 107 | | 72.27 65 | | 47.15 71 | 91.10 74 | | 85.93 33 | 90.54 75 |
|
plane_prior7 | | | | | | 77.95 214 | 48.46 227 | | | | | | | | | | |
|
plane_prior6 | | | | | | 78.42 209 | 49.39 203 | | | | | | 36.04 210 | | | | |
|
plane_prior5 | | | | | | | | | 82.59 162 | | | | | 88.30 152 | 65.46 116 | 72.34 150 | 84.49 188 |
|
plane_prior4 | | | | | | | | | | | | 83.28 178 | | | | | |
|
plane_prior3 | | | | | | | 48.95 210 | | | 64.01 78 | 62.15 162 | | | | | | |
|
plane_prior1 | | | | | | 78.31 211 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 367 | | | | | | | | |
|
nn | | | | | | | | | 0.00 367 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 352 | | | | | | | | |
|
lessismore_v0 | | | | | 67.98 265 | 64.76 329 | 41.25 305 | | 45.75 349 | | 36.03 334 | 65.63 323 | 19.29 323 | 84.11 245 | 35.67 291 | 21.24 351 | 78.59 273 |
|
LGP-MVS_train | | | | | 72.02 205 | 74.42 260 | 48.60 219 | | 80.64 191 | 54.69 241 | 53.75 261 | 83.83 168 | 25.73 289 | 86.98 186 | 60.33 159 | 64.71 198 | 80.48 256 |
|
test11 | | | | | | | | | 84.25 130 | | | | | | | | |
|
door | | | | | | | | | 43.27 351 | | | | | | | | |
|
HQP5-MVS | | | | | | | 51.56 154 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 103 | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 136 | | | 88.61 138 | | | 84.91 185 |
|
HQP3-MVS | | | | | | | | | 83.68 142 | | | | | | | 73.12 141 | |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 187 | | | | |
|
NP-MVS | | | | | | 78.76 197 | 50.43 176 | | | | | 85.12 157 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 214 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 238 | |
|
Test By Simon | | | | | | | | | | | | | 39.38 163 | | | | |
|
ITE_SJBPF | | | | | 51.84 326 | 58.03 343 | 31.94 339 | | 53.57 345 | 36.67 333 | 41.32 320 | 75.23 269 | 11.17 344 | 51.57 350 | 25.81 333 | 48.04 308 | 72.02 326 |
|
DeepMVS_CX |  | | | | 13.10 342 | 21.34 364 | 8.99 363 | | 10.02 364 | 10.59 357 | 7.53 359 | 30.55 353 | 1.82 364 | 14.55 360 | 6.83 356 | 7.52 356 | 15.75 354 |
|