This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
patch_mono-299.26 6699.62 198.16 27899.81 4294.59 34199.52 12499.64 3399.33 299.73 5099.90 1099.00 2599.99 199.69 199.98 299.89 2
dcpmvs_299.23 7199.58 298.16 27899.83 3794.68 34099.76 3199.52 9299.07 1899.98 199.88 1998.56 7799.93 7399.67 299.98 299.87 13
EI-MVSNet-UG-set99.58 599.57 399.64 8099.78 4899.14 13399.60 7899.45 18799.01 2499.90 499.83 4798.98 2799.93 7399.59 699.95 899.86 15
APDe-MVS99.66 199.57 399.92 199.77 5399.89 499.75 3399.56 5899.02 2199.88 699.85 3499.18 1099.96 2099.22 4499.92 1399.90 1
EI-MVSNet-Vis-set99.58 599.56 599.64 8099.78 4899.15 13299.61 7799.45 18799.01 2499.89 599.82 5499.01 1999.92 8599.56 999.95 899.85 18
Regformer-499.59 399.54 699.73 6199.76 5799.41 10199.58 9399.49 13499.02 2199.88 699.80 8399.00 2599.94 5899.45 2299.92 1399.84 22
Regformer-399.57 899.53 799.68 6899.76 5799.29 11499.58 9399.44 19699.01 2499.87 1299.80 8398.97 2899.91 9699.44 2499.92 1399.83 33
SED-MVS99.61 299.52 899.88 699.84 3399.90 299.60 7899.48 14799.08 1699.91 299.81 6799.20 799.96 2098.91 7699.85 6099.79 62
SD-MVS99.41 4699.52 899.05 17099.74 7699.68 5499.46 15999.52 9299.11 1199.88 699.91 899.43 197.70 35998.72 11199.93 1299.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS++99.59 399.50 1099.88 699.51 16199.88 899.87 699.51 10698.99 3199.88 699.81 6799.27 599.96 2098.85 9099.80 8999.81 46
TSAR-MVS + MP.99.58 599.50 1099.81 4199.91 199.66 5999.63 6599.39 21898.91 4699.78 3599.85 3499.36 299.94 5898.84 9399.88 3899.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS99.50 1699.49 1299.52 10899.76 5799.35 10699.90 199.55 6798.56 7199.77 3799.70 14098.75 6099.77 17899.64 399.78 9699.42 181
DVP-MVScopyleft99.57 899.47 1399.88 699.85 2699.89 499.57 9999.37 23399.10 1299.81 2599.80 8398.94 3599.96 2098.93 7399.86 5399.81 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
Regformer-199.53 1299.47 1399.72 6499.71 9599.44 9899.49 14599.46 17598.95 4099.83 2099.76 11399.01 1999.93 7399.17 5099.87 4299.80 56
Regformer-299.54 1099.47 1399.75 5499.71 9599.52 8899.49 14599.49 13498.94 4199.83 2099.76 11399.01 1999.94 5899.15 5399.87 4299.80 56
MSLP-MVS++99.46 2699.47 1399.44 12699.60 14399.16 12899.41 17999.71 1398.98 3499.45 12299.78 10299.19 999.54 24099.28 3999.84 6799.63 133
XVS99.53 1299.42 1799.87 1299.85 2699.83 1799.69 4299.68 1998.98 3499.37 14699.74 12498.81 4999.94 5898.79 10299.86 5399.84 22
SteuartSystems-ACMMP99.54 1099.42 1799.87 1299.82 3999.81 2799.59 8599.51 10698.62 6799.79 3099.83 4799.28 499.97 1298.48 14799.90 2599.84 22
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS99.48 2199.42 1799.65 7599.72 8999.40 10399.05 27899.66 2799.14 799.57 10199.80 8398.46 8599.94 5899.57 899.84 6799.60 139
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast99.51 1599.40 2099.85 2899.91 199.79 3399.76 3199.56 5897.72 16599.76 4499.75 11899.13 1299.92 8599.07 6099.92 1399.85 18
CS-MVS-test99.42 4199.39 2199.52 10899.77 5399.35 10699.80 2099.57 5298.56 7199.77 3799.44 24898.16 10699.77 17899.64 399.78 9699.42 181
MTAPA99.52 1499.39 2199.89 499.90 499.86 1399.66 5399.47 16598.79 5799.68 6299.81 6798.43 8799.97 1298.88 7999.90 2599.83 33
DROMVSNet99.44 3299.39 2199.58 9099.56 15399.49 9199.88 299.58 5098.38 8799.73 5099.69 14998.20 10299.70 21099.64 399.82 8299.54 152
DeepC-MVS_fast98.69 199.49 1799.39 2199.77 5099.63 12999.59 7399.36 20399.46 17599.07 1899.79 3099.82 5498.85 4599.92 8598.68 11899.87 4299.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.49 1799.37 2599.86 2199.87 1699.80 2999.66 5399.67 2298.15 11499.68 6299.69 14999.06 1699.96 2098.69 11699.87 4299.84 22
DeepPCF-MVS98.18 398.81 13699.37 2597.12 32699.60 14391.75 36398.61 33799.44 19699.35 199.83 2099.85 3498.70 6799.81 16499.02 6499.91 1899.81 46
zzz-MVS99.49 1799.36 2799.89 499.90 499.86 1399.36 20399.47 16598.79 5799.68 6299.81 6798.43 8799.97 1298.88 7999.90 2599.83 33
ACMMPR99.49 1799.36 2799.86 2199.87 1699.79 3399.66 5399.67 2298.15 11499.67 6899.69 14998.95 3299.96 2098.69 11699.87 4299.84 22
TSAR-MVS + GP.99.36 5399.36 2799.36 13299.67 11098.61 19499.07 27399.33 25099.00 2899.82 2399.81 6799.06 1699.84 14299.09 5899.42 14299.65 122
region2R99.48 2199.35 3099.87 1299.88 1299.80 2999.65 6099.66 2798.13 11699.66 7399.68 15698.96 2999.96 2098.62 12599.87 4299.84 22
APD-MVS_3200maxsize99.48 2199.35 3099.85 2899.76 5799.83 1799.63 6599.54 7598.36 9199.79 3099.82 5498.86 4499.95 4798.62 12599.81 8599.78 70
RE-MVS-def99.34 3299.76 5799.82 2399.63 6599.52 9298.38 8799.76 4499.82 5498.75 6098.61 12899.81 8599.77 72
ACMMP_NAP99.47 2499.34 3299.88 699.87 1699.86 1399.47 15699.48 14798.05 13399.76 4499.86 2898.82 4899.93 7398.82 10099.91 1899.84 22
ZNCC-MVS99.47 2499.33 3499.87 1299.87 1699.81 2799.64 6399.67 2298.08 12799.55 10699.64 17698.91 4099.96 2098.72 11199.90 2599.82 40
MVS_111021_LR99.41 4699.33 3499.65 7599.77 5399.51 9098.94 30899.85 698.82 5299.65 7999.74 12498.51 8199.80 16998.83 9699.89 3599.64 129
xxxxxxxxxxxxxcwj99.43 3699.32 3699.75 5499.76 5799.59 7399.14 26199.53 8699.00 2899.71 5599.80 8398.95 3299.93 7398.19 17299.84 6799.74 83
DPE-MVScopyleft99.46 2699.32 3699.91 299.78 4899.88 899.36 20399.51 10698.73 6199.88 699.84 4398.72 6599.96 2098.16 17799.87 4299.88 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJ99.32 5799.32 3699.30 14399.57 14998.94 16298.97 30199.46 17598.92 4599.71 5599.24 29999.01 1999.98 799.35 2999.66 12698.97 223
CP-MVS99.45 2899.32 3699.85 2899.83 3799.75 4399.69 4299.52 9298.07 12899.53 10999.63 18298.93 3999.97 1298.74 10799.91 1899.83 33
MVS_111021_HR99.41 4699.32 3699.66 7199.72 8999.47 9598.95 30699.85 698.82 5299.54 10799.73 13198.51 8199.74 18798.91 7699.88 3899.77 72
CSCG99.32 5799.32 3699.32 13899.85 2698.29 21799.71 3999.66 2798.11 12099.41 13499.80 8398.37 9499.96 2098.99 6699.96 799.72 96
ACMMPcopyleft99.45 2899.32 3699.82 3899.89 999.67 5799.62 7199.69 1898.12 11899.63 8499.84 4398.73 6499.96 2098.55 14299.83 7699.81 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.45 2899.31 4399.85 2899.76 5799.82 2399.63 6599.52 9298.38 8799.76 4499.82 5498.53 7899.95 4798.61 12899.81 8599.77 72
PGM-MVS99.45 2899.31 4399.86 2199.87 1699.78 4099.58 9399.65 3297.84 15099.71 5599.80 8399.12 1399.97 1298.33 16399.87 4299.83 33
abl_699.44 3299.31 4399.83 3699.85 2699.75 4399.66 5399.59 4498.13 11699.82 2399.81 6798.60 7499.96 2098.46 15199.88 3899.79 62
SMA-MVScopyleft99.44 3299.30 4699.85 2899.73 8499.83 1799.56 10699.47 16597.45 19499.78 3599.82 5499.18 1099.91 9698.79 10299.89 3599.81 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.43 3699.30 4699.82 3899.79 4699.74 4699.29 22399.40 21498.79 5799.52 11199.62 18898.91 4099.90 11198.64 12399.75 10599.82 40
mPP-MVS99.44 3299.30 4699.86 2199.88 1299.79 3399.69 4299.48 14798.12 11899.50 11499.75 11898.78 5299.97 1298.57 13699.89 3599.83 33
CNVR-MVS99.42 4199.30 4699.78 4899.62 13599.71 4999.26 23999.52 9298.82 5299.39 14199.71 13698.96 2999.85 13698.59 13399.80 8999.77 72
test117299.43 3699.29 5099.85 2899.75 6899.82 2399.60 7899.56 5898.28 9999.74 4899.79 9598.53 7899.95 4798.55 14299.78 9699.79 62
SR-MVS99.43 3699.29 5099.86 2199.75 6899.83 1799.59 8599.62 3498.21 10899.73 5099.79 9598.68 6899.96 2098.44 15399.77 10199.79 62
UA-Net99.42 4199.29 5099.80 4399.62 13599.55 8099.50 13599.70 1598.79 5799.77 3799.96 197.45 12399.96 2098.92 7599.90 2599.89 2
#test#99.43 3699.29 5099.86 2199.87 1699.80 2999.55 11599.67 2297.83 15199.68 6299.69 14999.06 1699.96 2098.39 15599.87 4299.84 22
HPM-MVScopyleft99.42 4199.28 5499.83 3699.90 499.72 4799.81 1699.54 7597.59 17799.68 6299.63 18298.91 4099.94 5898.58 13499.91 1899.84 22
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu99.36 5399.28 5499.61 8599.86 2299.07 14299.47 15699.93 297.66 17399.71 5599.86 2897.73 11899.96 2099.47 2099.82 8299.79 62
MSP-MVS99.42 4199.27 5699.88 699.89 999.80 2999.67 4999.50 12698.70 6399.77 3799.49 23398.21 10199.95 4798.46 15199.77 10199.88 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26399.51 10698.86 4899.84 1599.47 24298.18 10399.99 199.50 1399.31 15299.08 208
xiu_mvs_v1_base99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26399.51 10698.86 4899.84 1599.47 24298.18 10399.99 199.50 1399.31 15299.08 208
xiu_mvs_v1_base_debi99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26399.51 10698.86 4899.84 1599.47 24298.18 10399.99 199.50 1399.31 15299.08 208
xiu_mvs_v2_base99.26 6699.25 6099.29 14699.53 15798.91 16699.02 28799.45 18798.80 5699.71 5599.26 29798.94 3599.98 799.34 3399.23 15798.98 222
SF-MVS99.38 5199.24 6199.79 4699.79 4699.68 5499.57 9999.54 7597.82 15699.71 5599.80 8398.95 3299.93 7398.19 17299.84 6799.74 83
GST-MVS99.40 4999.24 6199.85 2899.86 2299.79 3399.60 7899.67 2297.97 13999.63 8499.68 15698.52 8099.95 4798.38 15799.86 5399.81 46
HPM-MVS++copyleft99.39 5099.23 6399.87 1299.75 6899.84 1699.43 17099.51 10698.68 6599.27 16899.53 22098.64 7399.96 2098.44 15399.80 8999.79 62
ETV-MVS99.26 6699.21 6499.40 12899.46 18299.30 11399.56 10699.52 9298.52 7599.44 12699.27 29598.41 9199.86 13099.10 5799.59 13499.04 215
MP-MVS-pluss99.37 5299.20 6599.88 699.90 499.87 1299.30 21999.52 9297.18 22099.60 9499.79 9598.79 5199.95 4798.83 9699.91 1899.83 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5599.19 6699.79 4699.61 13999.65 6299.30 21999.48 14798.86 4899.21 18499.63 18298.72 6599.90 11198.25 16899.63 13199.80 56
DeepC-MVS98.35 299.30 5999.19 6699.64 8099.82 3999.23 12199.62 7199.55 6798.94 4199.63 8499.95 295.82 17999.94 5899.37 2899.97 599.73 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS99.30 5999.17 6899.70 6799.56 15399.52 8899.58 9399.80 897.12 22699.62 8899.73 13198.58 7599.90 11198.61 12899.91 1899.68 112
MP-MVScopyleft99.33 5699.15 6999.87 1299.88 1299.82 2399.66 5399.46 17598.09 12399.48 11899.74 12498.29 9899.96 2097.93 19599.87 4299.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet99.25 6999.14 7099.59 8799.41 19299.16 12899.35 20999.57 5298.82 5299.51 11399.61 19296.46 15699.95 4799.59 699.98 299.65 122
CHOSEN 280x42099.12 9099.13 7199.08 16699.66 11997.89 23898.43 34799.71 1398.88 4799.62 8899.76 11396.63 15199.70 21099.46 2199.99 199.66 118
MVSFormer99.17 7899.12 7299.29 14699.51 16198.94 16299.88 299.46 17597.55 18299.80 2899.65 16997.39 12499.28 28299.03 6299.85 6099.65 122
LS3D99.27 6499.12 7299.74 5999.18 25099.75 4399.56 10699.57 5298.45 8199.49 11799.85 3497.77 11799.94 5898.33 16399.84 6799.52 158
9.1499.10 7499.72 8999.40 18799.51 10697.53 18799.64 8399.78 10298.84 4699.91 9697.63 22299.82 82
CHOSEN 1792x268899.19 7499.10 7499.45 12299.89 998.52 20399.39 19199.94 198.73 6199.11 20299.89 1495.50 18999.94 5899.50 1399.97 599.89 2
EIA-MVS99.18 7699.09 7699.45 12299.49 17399.18 12599.67 4999.53 8697.66 17399.40 13999.44 24898.10 10899.81 16498.94 7199.62 13299.35 189
APD-MVScopyleft99.27 6499.08 7799.84 3599.75 6899.79 3399.50 13599.50 12697.16 22299.77 3799.82 5498.78 5299.94 5897.56 23199.86 5399.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 9099.08 7799.24 15499.46 18298.55 19799.51 12999.46 17598.09 12399.45 12299.82 5498.34 9599.51 24198.70 11398.93 18299.67 115
test_prior399.21 7299.05 7999.68 6899.67 11099.48 9398.96 30299.56 5898.34 9399.01 22199.52 22398.68 6899.83 15397.96 19299.74 10899.74 83
sss99.17 7899.05 7999.53 10299.62 13598.97 15399.36 20399.62 3497.83 15199.67 6899.65 16997.37 12899.95 4799.19 4799.19 16099.68 112
3Dnovator97.25 999.24 7099.05 7999.81 4199.12 26399.66 5999.84 1099.74 1099.09 1598.92 23799.90 1095.94 17399.98 798.95 7099.92 1399.79 62
F-COLMAP99.19 7499.04 8299.64 8099.78 4899.27 11799.42 17799.54 7597.29 21099.41 13499.59 19898.42 9099.93 7398.19 17299.69 11899.73 90
OMC-MVS99.08 10199.04 8299.20 15799.67 11098.22 22199.28 22599.52 9298.07 12899.66 7399.81 6797.79 11699.78 17697.79 20699.81 8599.60 139
jason99.13 8499.03 8499.45 12299.46 18298.87 16999.12 26399.26 27698.03 13699.79 3099.65 16997.02 13899.85 13699.02 6499.90 2599.65 122
jason: jason.
CDS-MVSNet99.09 9999.03 8499.25 15299.42 18998.73 18399.45 16099.46 17598.11 12099.46 12199.77 10998.01 11199.37 26398.70 11398.92 18499.66 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
API-MVS99.04 10699.03 8499.06 16899.40 19799.31 11299.55 11599.56 5898.54 7399.33 15699.39 26598.76 5799.78 17696.98 27099.78 9698.07 341
ETH3D-3000-0.199.21 7299.02 8799.77 5099.73 8499.69 5299.38 19699.51 10697.45 19499.61 9099.75 11898.51 8199.91 9697.45 24399.83 7699.71 103
diffmvs99.14 8299.02 8799.51 11299.61 13998.96 15799.28 22599.49 13498.46 8099.72 5499.71 13696.50 15599.88 12499.31 3699.11 16699.67 115
baseline99.15 8199.02 8799.53 10299.66 11999.14 13399.72 3799.48 14798.35 9299.42 13099.84 4396.07 16799.79 17299.51 1299.14 16499.67 115
MG-MVS99.13 8499.02 8799.45 12299.57 14998.63 19199.07 27399.34 24398.99 3199.61 9099.82 5497.98 11299.87 12797.00 26899.80 8999.85 18
lupinMVS99.13 8499.01 9199.46 12199.51 16198.94 16299.05 27899.16 29197.86 14699.80 2899.56 20897.39 12499.86 13098.94 7199.85 6099.58 147
mvs_anonymous99.03 10898.99 9299.16 16199.38 20198.52 20399.51 12999.38 22497.79 15799.38 14499.81 6797.30 12999.45 24699.35 2998.99 17999.51 164
EPP-MVSNet99.13 8498.99 9299.53 10299.65 12499.06 14399.81 1699.33 25097.43 19899.60 9499.88 1997.14 13399.84 14299.13 5498.94 18199.69 108
CNLPA99.14 8298.99 9299.59 8799.58 14799.41 10199.16 25599.44 19698.45 8199.19 19099.49 23398.08 10999.89 11997.73 21399.75 10599.48 169
casdiffmvs99.13 8498.98 9599.56 9499.65 12499.16 12899.56 10699.50 12698.33 9699.41 13499.86 2895.92 17499.83 15399.45 2299.16 16199.70 105
MVS_Test99.10 9898.97 9699.48 11699.49 17399.14 13399.67 4999.34 24397.31 20899.58 9999.76 11397.65 12099.82 16098.87 8399.07 17299.46 176
PVSNet_Blended99.08 10198.97 9699.42 12799.76 5798.79 18098.78 32399.91 396.74 25599.67 6899.49 23397.53 12199.88 12498.98 6799.85 6099.60 139
Vis-MVSNetpermissive99.12 9098.97 9699.56 9499.78 4899.10 13899.68 4799.66 2798.49 7799.86 1399.87 2594.77 21899.84 14299.19 4799.41 14399.74 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+97.12 1399.18 7698.97 9699.82 3899.17 25699.68 5499.81 1699.51 10699.20 598.72 26399.89 1495.68 18499.97 1298.86 8899.86 5399.81 46
DP-MVS Recon99.12 9098.95 10099.65 7599.74 7699.70 5199.27 23099.57 5296.40 28599.42 13099.68 15698.75 6099.80 16997.98 19199.72 11299.44 179
DP-MVS99.16 8098.95 10099.78 4899.77 5399.53 8599.41 17999.50 12697.03 23799.04 21899.88 1997.39 12499.92 8598.66 12199.90 2599.87 13
PS-MVSNAJss98.92 11998.92 10298.90 19598.78 31298.53 19999.78 2699.54 7598.07 12899.00 22699.76 11399.01 1999.37 26399.13 5497.23 26298.81 233
HyFIR lowres test99.11 9598.92 10299.65 7599.90 499.37 10499.02 28799.91 397.67 17299.59 9799.75 11895.90 17699.73 19499.53 1099.02 17799.86 15
CDPH-MVS99.13 8498.91 10499.80 4399.75 6899.71 4999.15 25999.41 20896.60 26899.60 9499.55 21198.83 4799.90 11197.48 23899.83 7699.78 70
VNet99.11 9598.90 10599.73 6199.52 15999.56 7899.41 17999.39 21899.01 2499.74 4899.78 10295.56 18799.92 8599.52 1198.18 22099.72 96
CPTT-MVS99.11 9598.90 10599.74 5999.80 4599.46 9699.59 8599.49 13497.03 23799.63 8499.69 14997.27 13199.96 2097.82 20499.84 6799.81 46
Effi-MVS+-dtu98.78 14098.89 10798.47 25099.33 21196.91 28499.57 9999.30 26798.47 7899.41 13498.99 32596.78 14599.74 18798.73 10999.38 14498.74 248
WTY-MVS99.06 10398.88 10899.61 8599.62 13599.16 12899.37 19999.56 5898.04 13499.53 10999.62 18896.84 14399.94 5898.85 9098.49 20699.72 96
testtj99.12 9098.87 10999.86 2199.72 8999.79 3399.44 16499.51 10697.29 21099.59 9799.74 12498.15 10799.96 2096.74 28399.69 11899.81 46
CANet_DTU98.97 11698.87 10999.25 15299.33 21198.42 21499.08 27299.30 26799.16 699.43 12799.75 11895.27 19799.97 1298.56 13999.95 899.36 188
112199.09 9998.87 10999.75 5499.74 7699.60 7099.27 23099.48 14796.82 25399.25 17599.65 16998.38 9299.93 7397.53 23499.67 12599.73 90
IS-MVSNet99.05 10598.87 10999.57 9299.73 8499.32 10999.75 3399.20 28698.02 13799.56 10299.86 2896.54 15499.67 21698.09 18199.13 16599.73 90
canonicalmvs99.02 10998.86 11399.51 11299.42 18999.32 10999.80 2099.48 14798.63 6699.31 15898.81 33497.09 13599.75 18699.27 4197.90 23099.47 174
PLCcopyleft97.94 499.02 10998.85 11499.53 10299.66 11999.01 14899.24 24399.52 9296.85 24999.27 16899.48 23998.25 10099.91 9697.76 20999.62 13299.65 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETH3D cwj APD-0.1699.06 10398.84 11599.72 6499.51 16199.60 7099.23 24499.44 19697.04 23599.39 14199.67 16298.30 9799.92 8597.27 25099.69 11899.64 129
mvs-test198.86 12498.84 11598.89 19899.33 21197.77 24499.44 16499.30 26798.47 7899.10 20599.43 25196.78 14599.95 4798.73 10999.02 17798.96 225
PAPM_NR99.04 10698.84 11599.66 7199.74 7699.44 9899.39 19199.38 22497.70 16799.28 16599.28 29298.34 9599.85 13696.96 27299.45 14099.69 108
PVSNet96.02 1798.85 13298.84 11598.89 19899.73 8497.28 25798.32 35399.60 4197.86 14699.50 11499.57 20596.75 14899.86 13098.56 13999.70 11799.54 152
Fast-Effi-MVS+-dtu98.77 14298.83 11998.60 23199.41 19296.99 27899.52 12499.49 13498.11 12099.24 17699.34 27896.96 14199.79 17297.95 19499.45 14099.02 218
PVSNet_BlendedMVS98.86 12498.80 12099.03 17399.76 5798.79 18099.28 22599.91 397.42 20099.67 6899.37 26997.53 12199.88 12498.98 6797.29 26198.42 324
AdaColmapbinary99.01 11298.80 12099.66 7199.56 15399.54 8299.18 25399.70 1598.18 11299.35 15299.63 18296.32 16199.90 11197.48 23899.77 10199.55 150
MSDG98.98 11498.80 12099.53 10299.76 5799.19 12398.75 32699.55 6797.25 21499.47 11999.77 10997.82 11599.87 12796.93 27599.90 2599.54 152
train_agg99.02 10998.77 12399.77 5099.67 11099.65 6299.05 27899.41 20896.28 28998.95 23299.49 23398.76 5799.91 9697.63 22299.72 11299.75 78
1112_ss98.98 11498.77 12399.59 8799.68 10999.02 14699.25 24199.48 14797.23 21799.13 19899.58 20196.93 14299.90 11198.87 8398.78 19399.84 22
agg_prior199.01 11298.76 12599.76 5399.67 11099.62 6698.99 29499.40 21496.26 29298.87 24599.49 23398.77 5599.91 9697.69 21999.72 11299.75 78
COLMAP_ROBcopyleft97.56 698.86 12498.75 12699.17 16099.88 1298.53 19999.34 21299.59 4497.55 18298.70 27099.89 1495.83 17899.90 11198.10 18099.90 2599.08 208
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest98.87 12198.72 12799.31 13999.86 2298.48 20999.56 10699.61 3697.85 14899.36 14999.85 3495.95 17199.85 13696.66 28999.83 7699.59 143
Vis-MVSNet (Re-imp)98.87 12198.72 12799.31 13999.71 9598.88 16899.80 2099.44 19697.91 14499.36 14999.78 10295.49 19099.43 25597.91 19699.11 16699.62 135
DPM-MVS98.95 11798.71 12999.66 7199.63 12999.55 8098.64 33699.10 29797.93 14299.42 13099.55 21198.67 7199.80 16995.80 30599.68 12399.61 137
EPNet98.86 12498.71 12999.30 14397.20 35998.18 22299.62 7198.91 31999.28 398.63 28199.81 6795.96 17099.99 199.24 4399.72 11299.73 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 12198.69 13199.40 12899.22 24198.72 18499.44 16499.68 1999.24 499.18 19399.42 25492.74 27299.96 2099.34 3399.94 1199.53 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS98.73 14498.68 13298.88 20199.70 10297.73 24698.92 30999.55 6798.52 7599.45 12299.84 4395.27 19799.91 9698.08 18598.84 18999.00 219
EI-MVSNet98.67 14998.67 13398.68 22899.35 20697.97 23299.50 13599.38 22496.93 24699.20 18799.83 4797.87 11399.36 26798.38 15797.56 24298.71 252
CVMVSNet98.57 15598.67 13398.30 26899.35 20695.59 31899.50 13599.55 6798.60 6999.39 14199.83 4794.48 23299.45 24698.75 10698.56 20299.85 18
114514_t98.93 11898.67 13399.72 6499.85 2699.53 8599.62 7199.59 4492.65 34999.71 5599.78 10298.06 11099.90 11198.84 9399.91 1899.74 83
Test_1112_low_res98.89 12098.66 13699.57 9299.69 10598.95 15999.03 28499.47 16596.98 23999.15 19699.23 30096.77 14799.89 11998.83 9698.78 19399.86 15
HY-MVS97.30 798.85 13298.64 13799.47 11999.42 18999.08 14099.62 7199.36 23497.39 20399.28 16599.68 15696.44 15899.92 8598.37 15998.22 21599.40 186
test_yl98.86 12498.63 13899.54 9699.49 17399.18 12599.50 13599.07 30298.22 10699.61 9099.51 22795.37 19399.84 14298.60 13198.33 20999.59 143
DCV-MVSNet98.86 12498.63 13899.54 9699.49 17399.18 12599.50 13599.07 30298.22 10699.61 9099.51 22795.37 19399.84 14298.60 13198.33 20999.59 143
FIs98.78 14098.63 13899.23 15699.18 25099.54 8299.83 1399.59 4498.28 9998.79 25799.81 6796.75 14899.37 26399.08 5996.38 28098.78 236
ab-mvs98.86 12498.63 13899.54 9699.64 12699.19 12399.44 16499.54 7597.77 15999.30 16099.81 6794.20 24099.93 7399.17 5098.82 19099.49 168
MAR-MVS98.86 12498.63 13899.54 9699.37 20399.66 5999.45 16099.54 7596.61 26699.01 22199.40 26197.09 13599.86 13097.68 22199.53 13899.10 203
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GeoE98.85 13298.62 14399.53 10299.61 13999.08 14099.80 2099.51 10697.10 23099.31 15899.78 10295.23 20199.77 17898.21 17099.03 17599.75 78
FC-MVSNet-test98.75 14398.62 14399.15 16399.08 27299.45 9799.86 999.60 4198.23 10598.70 27099.82 5496.80 14499.22 29299.07 6096.38 28098.79 235
XVG-OURS-SEG-HR98.69 14798.62 14398.89 19899.71 9597.74 24599.12 26399.54 7598.44 8499.42 13099.71 13694.20 24099.92 8598.54 14498.90 18699.00 219
RPSCF98.22 17698.62 14396.99 32799.82 3991.58 36499.72 3799.44 19696.61 26699.66 7399.89 1495.92 17499.82 16097.46 24199.10 16999.57 148
PatchMatch-RL98.84 13598.62 14399.52 10899.71 9599.28 11599.06 27699.77 997.74 16499.50 11499.53 22095.41 19199.84 14297.17 26199.64 12999.44 179
PMMVS98.80 13998.62 14399.34 13399.27 22998.70 18598.76 32599.31 26397.34 20599.21 18499.07 31697.20 13299.82 16098.56 13998.87 18799.52 158
Effi-MVS+98.81 13698.59 14999.48 11699.46 18299.12 13798.08 35999.50 12697.50 19099.38 14499.41 25896.37 16099.81 16499.11 5698.54 20399.51 164
test_djsdf98.67 14998.57 15098.98 17998.70 32398.91 16699.88 299.46 17597.55 18299.22 18199.88 1995.73 18299.28 28299.03 6297.62 23798.75 244
alignmvs98.81 13698.56 15199.58 9099.43 18899.42 10099.51 12998.96 31298.61 6899.35 15298.92 33194.78 21599.77 17899.35 2998.11 22699.54 152
131498.68 14898.54 15299.11 16598.89 29698.65 18999.27 23099.49 13496.89 24797.99 31899.56 20897.72 11999.83 15397.74 21299.27 15598.84 232
D2MVS98.41 16398.50 15398.15 28199.26 23196.62 29499.40 18799.61 3697.71 16698.98 22899.36 27296.04 16899.67 21698.70 11397.41 25798.15 339
tpmrst98.33 16998.48 15497.90 29899.16 25894.78 33899.31 21799.11 29697.27 21299.45 12299.59 19895.33 19599.84 14298.48 14798.61 19699.09 207
RRT_MVS98.60 15498.44 15599.05 17098.88 29799.14 13399.49 14599.38 22497.76 16099.29 16399.86 2895.38 19299.36 26798.81 10197.16 26698.64 284
Fast-Effi-MVS+98.70 14598.43 15699.51 11299.51 16199.28 11599.52 12499.47 16596.11 30799.01 22199.34 27896.20 16599.84 14297.88 19898.82 19099.39 187
nrg03098.64 15298.42 15799.28 14999.05 27899.69 5299.81 1699.46 17598.04 13499.01 22199.82 5496.69 15099.38 26099.34 3394.59 32098.78 236
IterMVS-LS98.46 15898.42 15798.58 23599.59 14598.00 23099.37 19999.43 20496.94 24599.07 21299.59 19897.87 11399.03 31998.32 16595.62 30098.71 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned98.42 16198.36 15998.59 23299.49 17396.70 29099.27 23099.13 29597.24 21698.80 25599.38 26695.75 18199.74 18797.07 26699.16 16199.33 192
PatchmatchNetpermissive98.31 17098.36 15998.19 27699.16 25895.32 32799.27 23098.92 31697.37 20499.37 14699.58 20194.90 20999.70 21097.43 24599.21 15899.54 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ETH3 D test640098.70 14598.35 16199.73 6199.69 10599.60 7099.16 25599.45 18795.42 31899.27 16899.60 19597.39 12499.91 9695.36 31699.83 7699.70 105
PAPR98.63 15398.34 16299.51 11299.40 19799.03 14598.80 32199.36 23496.33 28699.00 22699.12 31498.46 8599.84 14295.23 31899.37 15199.66 118
ACMM97.58 598.37 16798.34 16298.48 24699.41 19297.10 26599.56 10699.45 18798.53 7499.04 21899.85 3493.00 26499.71 20498.74 10797.45 25398.64 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER98.49 15698.32 16499.00 17799.35 20699.02 14699.54 11899.38 22497.41 20199.20 18799.73 13193.86 25299.36 26798.87 8397.56 24298.62 294
MDTV_nov1_ep1398.32 16499.11 26594.44 34399.27 23098.74 33397.51 18999.40 13999.62 18894.78 21599.76 18497.59 22598.81 192
QAPM98.67 14998.30 16699.80 4399.20 24599.67 5799.77 2899.72 1194.74 33098.73 26299.90 1095.78 18099.98 796.96 27299.88 3899.76 77
anonymousdsp98.44 15998.28 16798.94 18598.50 33898.96 15799.77 2899.50 12697.07 23298.87 24599.77 10994.76 21999.28 28298.66 12197.60 23898.57 309
jajsoiax98.43 16098.28 16798.88 20198.60 33398.43 21299.82 1499.53 8698.19 10998.63 28199.80 8393.22 26299.44 25199.22 4497.50 24898.77 240
mvs_tets98.40 16598.23 16998.91 19398.67 32698.51 20599.66 5399.53 8698.19 10998.65 27999.81 6792.75 27099.44 25199.31 3697.48 25298.77 240
HQP_MVS98.27 17598.22 17098.44 25599.29 22496.97 28099.39 19199.47 16598.97 3799.11 20299.61 19292.71 27599.69 21497.78 20797.63 23598.67 272
SCA98.19 18098.16 17198.27 27399.30 22095.55 31999.07 27398.97 31097.57 18099.43 12799.57 20592.72 27399.74 18797.58 22699.20 15999.52 158
LCM-MVSNet-Re97.83 23398.15 17296.87 33299.30 22092.25 36199.59 8598.26 34897.43 19896.20 34799.13 31196.27 16398.73 34298.17 17698.99 17999.64 129
tttt051798.42 16198.14 17399.28 14999.66 11998.38 21599.74 3696.85 36497.68 16999.79 3099.74 12491.39 30899.89 11998.83 9699.56 13599.57 148
LPG-MVS_test98.22 17698.13 17498.49 24499.33 21197.05 27199.58 9399.55 6797.46 19199.24 17699.83 4792.58 28099.72 19898.09 18197.51 24698.68 265
OpenMVScopyleft96.50 1698.47 15798.12 17599.52 10899.04 27999.53 8599.82 1499.72 1194.56 33398.08 31399.88 1994.73 22199.98 797.47 24099.76 10499.06 214
test111198.04 20198.11 17697.83 30299.74 7693.82 34999.58 9395.40 37199.12 1099.65 7999.93 490.73 31699.84 14299.43 2599.38 14499.82 40
miper_ehance_all_eth98.18 18298.10 17798.41 25799.23 23797.72 24798.72 32999.31 26396.60 26898.88 24399.29 29097.29 13099.13 30697.60 22495.99 28998.38 329
OPM-MVS98.19 18098.10 17798.45 25298.88 29797.07 26999.28 22599.38 22498.57 7099.22 18199.81 6792.12 29199.66 21998.08 18597.54 24498.61 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS98.16 18498.10 17798.33 26499.29 22496.82 28798.75 32699.44 19697.83 15199.13 19899.55 21192.92 26699.67 21698.32 16597.69 23498.48 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS98.38 16698.09 18099.24 15499.26 23199.32 10999.56 10699.55 6797.45 19498.71 26499.83 4793.23 26099.63 23198.88 7996.32 28298.76 242
miper_enhance_ethall98.16 18498.08 18198.41 25798.96 29197.72 24798.45 34699.32 26096.95 24398.97 23099.17 30697.06 13799.22 29297.86 20095.99 28998.29 332
ADS-MVSNet98.20 17998.08 18198.56 23899.33 21196.48 29899.23 24499.15 29296.24 29499.10 20599.67 16294.11 24499.71 20496.81 28099.05 17399.48 169
BH-RMVSNet98.41 16398.08 18199.40 12899.41 19298.83 17699.30 21998.77 32997.70 16798.94 23499.65 16992.91 26899.74 18796.52 29199.55 13799.64 129
ADS-MVSNet298.02 20598.07 18497.87 29999.33 21195.19 33099.23 24499.08 30096.24 29499.10 20599.67 16294.11 24498.93 33696.81 28099.05 17399.48 169
ECVR-MVScopyleft98.04 20198.05 18598.00 29199.74 7694.37 34499.59 8594.98 37299.13 899.66 7399.93 490.67 31799.84 14299.40 2699.38 14499.80 56
c3_l98.12 19098.04 18698.38 26199.30 22097.69 25098.81 32099.33 25096.67 26098.83 25199.34 27897.11 13498.99 32597.58 22695.34 30698.48 315
thisisatest053098.35 16898.03 18799.31 13999.63 12998.56 19699.54 11896.75 36697.53 18799.73 5099.65 16991.25 31199.89 11998.62 12599.56 13599.48 169
EU-MVSNet97.98 21298.03 18797.81 30598.72 32096.65 29399.66 5399.66 2798.09 12398.35 30299.82 5495.25 20098.01 35297.41 24695.30 30798.78 236
tpmvs97.98 21298.02 18997.84 30199.04 27994.73 33999.31 21799.20 28696.10 31198.76 26099.42 25494.94 20599.81 16496.97 27198.45 20798.97 223
UniMVSNet (Re)98.29 17398.00 19099.13 16499.00 28499.36 10599.49 14599.51 10697.95 14098.97 23099.13 31196.30 16299.38 26098.36 16193.34 33698.66 280
ACMH97.28 898.10 19197.99 19198.44 25599.41 19296.96 28299.60 7899.56 5898.09 12398.15 31199.91 890.87 31599.70 21098.88 7997.45 25398.67 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521198.30 17297.98 19299.26 15199.57 14998.16 22399.41 17998.55 34596.03 31299.19 19099.74 12491.87 29599.92 8599.16 5298.29 21499.70 105
bset_n11_16_dypcd98.16 18497.97 19398.73 22398.26 34398.28 21997.99 36198.01 35497.68 16999.10 20599.63 18295.68 18499.15 30298.78 10596.55 27598.75 244
UniMVSNet_NR-MVSNet98.22 17697.97 19398.96 18298.92 29498.98 15099.48 15199.53 8697.76 16098.71 26499.46 24696.43 15999.22 29298.57 13692.87 34398.69 260
eth_miper_zixun_eth98.05 20097.96 19598.33 26499.26 23197.38 25598.56 34299.31 26396.65 26298.88 24399.52 22396.58 15299.12 31097.39 24795.53 30398.47 317
EPNet_dtu98.03 20397.96 19598.23 27498.27 34295.54 32199.23 24498.75 33099.02 2197.82 32399.71 13696.11 16699.48 24293.04 34399.65 12899.69 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet98.29 17397.95 19799.30 14399.16 25899.54 8299.50 13599.58 5098.27 10199.35 15299.37 26992.53 28299.65 22399.35 2994.46 32198.72 250
baseline198.31 17097.95 19799.38 13199.50 17198.74 18299.59 8598.93 31498.41 8599.14 19799.60 19594.59 22799.79 17298.48 14793.29 33799.61 137
ACMP97.20 1198.06 19597.94 19998.45 25299.37 20397.01 27699.44 16499.49 13497.54 18598.45 29499.79 9591.95 29499.72 19897.91 19697.49 25198.62 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet98.17 18397.93 20098.87 20599.18 25098.49 20799.22 24999.33 25096.96 24199.56 10299.38 26694.33 23699.00 32494.83 32498.58 19999.14 200
miper_lstm_enhance98.00 21097.91 20198.28 27299.34 21097.43 25498.88 31399.36 23496.48 27898.80 25599.55 21195.98 16998.91 33797.27 25095.50 30498.51 313
pmmvs498.13 18897.90 20298.81 21698.61 33298.87 16998.99 29499.21 28596.44 28199.06 21699.58 20195.90 17699.11 31197.18 26096.11 28698.46 321
test-LLR98.06 19597.90 20298.55 24098.79 30997.10 26598.67 33297.75 35797.34 20598.61 28498.85 33294.45 23399.45 24697.25 25299.38 14499.10 203
HQP-MVS98.02 20597.90 20298.37 26299.19 24796.83 28598.98 29899.39 21898.24 10298.66 27399.40 26192.47 28499.64 22697.19 25897.58 24098.64 284
LTVRE_ROB97.16 1298.02 20597.90 20298.40 25999.23 23796.80 28899.70 4099.60 4197.12 22698.18 31099.70 14091.73 30099.72 19898.39 15597.45 25398.68 265
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-w/o98.00 21097.89 20698.32 26699.35 20696.20 30799.01 29298.90 32196.42 28398.38 29999.00 32495.26 19999.72 19896.06 29998.61 19699.03 216
WR-MVS_H98.13 18897.87 20798.90 19599.02 28298.84 17399.70 4099.59 4497.27 21298.40 29899.19 30595.53 18899.23 28998.34 16293.78 33298.61 303
DIV-MVS_self_test98.01 20897.85 20898.48 24699.24 23697.95 23698.71 33099.35 23996.50 27398.60 28699.54 21695.72 18399.03 31997.21 25495.77 29598.46 321
cl____98.01 20897.84 20998.55 24099.25 23597.97 23298.71 33099.34 24396.47 28098.59 28799.54 21695.65 18699.21 29797.21 25495.77 29598.46 321
dp97.75 24797.80 21097.59 31399.10 26893.71 35299.32 21598.88 32396.48 27899.08 21199.55 21192.67 27899.82 16096.52 29198.58 19999.24 196
thisisatest051598.14 18797.79 21199.19 15899.50 17198.50 20698.61 33796.82 36596.95 24399.54 10799.43 25191.66 30499.86 13098.08 18599.51 13999.22 197
V4298.06 19597.79 21198.86 20898.98 28898.84 17399.69 4299.34 24396.53 27299.30 16099.37 26994.67 22499.32 27797.57 23094.66 31898.42 324
DU-MVS98.08 19497.79 21198.96 18298.87 30198.98 15099.41 17999.45 18797.87 14598.71 26499.50 23094.82 21299.22 29298.57 13692.87 34398.68 265
CP-MVSNet98.09 19297.78 21499.01 17598.97 29099.24 12099.67 4999.46 17597.25 21498.48 29399.64 17693.79 25399.06 31598.63 12494.10 32898.74 248
ACMH+97.24 1097.92 22097.78 21498.32 26699.46 18296.68 29299.56 10699.54 7598.41 8597.79 32599.87 2590.18 32499.66 21998.05 18997.18 26598.62 294
v2v48298.06 19597.77 21698.92 18998.90 29598.82 17799.57 9999.36 23496.65 26299.19 19099.35 27594.20 24099.25 28797.72 21594.97 31498.69 260
OurMVSNet-221017-097.88 22397.77 21698.19 27698.71 32296.53 29699.88 299.00 30797.79 15798.78 25899.94 391.68 30199.35 27197.21 25496.99 26998.69 260
IterMVS97.83 23397.77 21698.02 28899.58 14796.27 30599.02 28799.48 14797.22 21898.71 26499.70 14092.75 27099.13 30697.46 24196.00 28898.67 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet398.03 20397.76 21998.84 21299.39 20098.98 15099.40 18799.38 22496.67 26099.07 21299.28 29292.93 26598.98 32697.10 26396.65 27198.56 310
IterMVS-SCA-FT97.82 23697.75 22098.06 28599.57 14996.36 30299.02 28799.49 13497.18 22098.71 26499.72 13592.72 27399.14 30397.44 24495.86 29498.67 272
MVP-Stereo97.81 23897.75 22097.99 29297.53 35296.60 29598.96 30298.85 32597.22 21897.23 33499.36 27295.28 19699.46 24595.51 31199.78 9697.92 353
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS98.06 19597.73 22299.06 16898.86 30499.25 11999.19 25299.35 23997.30 20998.66 27399.43 25193.94 24999.21 29798.58 13494.28 32598.71 252
CostFormer97.72 25397.73 22297.71 30999.15 26194.02 34899.54 11899.02 30694.67 33199.04 21899.35 27592.35 29099.77 17898.50 14697.94 22999.34 191
XVG-ACMP-BASELINE97.83 23397.71 22498.20 27599.11 26596.33 30399.41 17999.52 9298.06 13299.05 21799.50 23089.64 33099.73 19497.73 21397.38 25998.53 311
v114497.98 21297.69 22598.85 21198.87 30198.66 18899.54 11899.35 23996.27 29199.23 18099.35 27594.67 22499.23 28996.73 28495.16 31098.68 265
Anonymous2024052998.09 19297.68 22699.34 13399.66 11998.44 21199.40 18799.43 20493.67 34099.22 18199.89 1490.23 32399.93 7399.26 4298.33 20999.66 118
our_test_397.65 26697.68 22697.55 31598.62 33094.97 33498.84 31799.30 26796.83 25298.19 30999.34 27897.01 13999.02 32195.00 32296.01 28798.64 284
TranMVSNet+NR-MVSNet97.93 21797.66 22898.76 22298.78 31298.62 19299.65 6099.49 13497.76 16098.49 29299.60 19594.23 23998.97 33398.00 19092.90 34198.70 256
Patchmatch-test97.93 21797.65 22998.77 22199.18 25097.07 26999.03 28499.14 29496.16 30298.74 26199.57 20594.56 22999.72 19893.36 33999.11 16699.52 158
EPMVS97.82 23697.65 22998.35 26398.88 29795.98 31199.49 14594.71 37497.57 18099.26 17399.48 23992.46 28799.71 20497.87 19999.08 17199.35 189
cl2297.85 22897.64 23198.48 24699.09 27097.87 23998.60 33999.33 25097.11 22998.87 24599.22 30192.38 28999.17 30198.21 17095.99 28998.42 324
v897.95 21697.63 23298.93 18798.95 29298.81 17999.80 2099.41 20896.03 31299.10 20599.42 25494.92 20899.30 28096.94 27494.08 32998.66 280
NR-MVSNet97.97 21597.61 23399.02 17498.87 30199.26 11899.47 15699.42 20697.63 17597.08 33999.50 23095.07 20499.13 30697.86 20093.59 33498.68 265
v14419297.92 22097.60 23498.87 20598.83 30798.65 18999.55 11599.34 24396.20 29799.32 15799.40 26194.36 23599.26 28696.37 29695.03 31398.70 256
RRT_test8_iter0597.72 25397.60 23498.08 28399.23 23796.08 31099.63 6599.49 13497.54 18598.94 23499.81 6787.99 34799.35 27199.21 4696.51 27798.81 233
PS-CasMVS97.93 21797.59 23698.95 18498.99 28599.06 14399.68 4799.52 9297.13 22498.31 30499.68 15692.44 28899.05 31698.51 14594.08 32998.75 244
v14897.79 24197.55 23798.50 24398.74 31797.72 24799.54 11899.33 25096.26 29298.90 24099.51 22794.68 22399.14 30397.83 20393.15 34098.63 292
baseline297.87 22597.55 23798.82 21499.18 25098.02 22999.41 17996.58 36896.97 24096.51 34499.17 30693.43 25799.57 23697.71 21699.03 17598.86 230
tpm97.67 26497.55 23798.03 28699.02 28295.01 33399.43 17098.54 34696.44 28199.12 20099.34 27891.83 29799.60 23497.75 21196.46 27899.48 169
Anonymous2023121197.88 22397.54 24098.90 19599.71 9598.53 19999.48 15199.57 5294.16 33698.81 25399.68 15693.23 26099.42 25698.84 9394.42 32398.76 242
v7n97.87 22597.52 24198.92 18998.76 31698.58 19599.84 1099.46 17596.20 29798.91 23899.70 14094.89 21099.44 25196.03 30093.89 33198.75 244
v1097.85 22897.52 24198.86 20898.99 28598.67 18799.75 3399.41 20895.70 31598.98 22899.41 25894.75 22099.23 28996.01 30194.63 31998.67 272
thres600view797.86 22797.51 24398.92 18999.72 8997.95 23699.59 8598.74 33397.94 14199.27 16898.62 34191.75 29899.86 13093.73 33598.19 21998.96 225
testgi97.65 26697.50 24498.13 28299.36 20596.45 29999.42 17799.48 14797.76 16097.87 32199.45 24791.09 31298.81 34094.53 32698.52 20499.13 202
GBi-Net97.68 26197.48 24598.29 26999.51 16197.26 26099.43 17099.48 14796.49 27499.07 21299.32 28590.26 32098.98 32697.10 26396.65 27198.62 294
test197.68 26197.48 24598.29 26999.51 16197.26 26099.43 17099.48 14796.49 27499.07 21299.32 28590.26 32098.98 32697.10 26396.65 27198.62 294
tfpnnormal97.84 23197.47 24798.98 17999.20 24599.22 12299.64 6399.61 3696.32 28798.27 30799.70 14093.35 25999.44 25195.69 30795.40 30598.27 333
GA-MVS97.85 22897.47 24799.00 17799.38 20197.99 23198.57 34099.15 29297.04 23598.90 24099.30 28889.83 32699.38 26096.70 28698.33 20999.62 135
LF4IMVS97.52 27397.46 24997.70 31098.98 28895.55 31999.29 22398.82 32898.07 12898.66 27399.64 17689.97 32599.61 23397.01 26796.68 27097.94 351
ppachtmachnet_test97.49 27997.45 25097.61 31298.62 33095.24 32898.80 32199.46 17596.11 30798.22 30899.62 18896.45 15798.97 33393.77 33495.97 29298.61 303
thres100view90097.76 24397.45 25098.69 22799.72 8997.86 24199.59 8598.74 33397.93 14299.26 17398.62 34191.75 29899.83 15393.22 34098.18 22098.37 330
v192192097.80 24097.45 25098.84 21298.80 30898.53 19999.52 12499.34 24396.15 30499.24 17699.47 24293.98 24899.29 28195.40 31495.13 31198.69 260
Baseline_NR-MVSNet97.76 24397.45 25098.68 22899.09 27098.29 21799.41 17998.85 32595.65 31698.63 28199.67 16294.82 21299.10 31398.07 18892.89 34298.64 284
MIMVSNet97.73 25197.45 25098.57 23699.45 18797.50 25299.02 28798.98 30996.11 30799.41 13499.14 31090.28 31998.74 34195.74 30698.93 18299.47 174
v119297.81 23897.44 25598.91 19398.88 29798.68 18699.51 12999.34 24396.18 29999.20 18799.34 27894.03 24799.36 26795.32 31795.18 30998.69 260
VPNet97.84 23197.44 25599.01 17599.21 24398.94 16299.48 15199.57 5298.38 8799.28 16599.73 13188.89 33699.39 25899.19 4793.27 33898.71 252
PEN-MVS97.76 24397.44 25598.72 22598.77 31598.54 19899.78 2699.51 10697.06 23498.29 30699.64 17692.63 27998.89 33998.09 18193.16 33998.72 250
cascas97.69 25997.43 25898.48 24698.60 33397.30 25698.18 35899.39 21892.96 34898.41 29798.78 33793.77 25499.27 28598.16 17798.61 19698.86 230
test0.0.03 197.71 25797.42 25998.56 23898.41 34197.82 24298.78 32398.63 34297.34 20598.05 31798.98 32894.45 23398.98 32695.04 32197.15 26798.89 229
TR-MVS97.76 24397.41 26098.82 21499.06 27597.87 23998.87 31598.56 34496.63 26598.68 27299.22 30192.49 28399.65 22395.40 31497.79 23298.95 228
DWT-MVSNet_test97.53 27297.40 26197.93 29599.03 28194.86 33799.57 9998.63 34296.59 27098.36 30198.79 33589.32 33299.74 18798.14 17998.16 22499.20 199
Patchmtry97.75 24797.40 26198.81 21699.10 26898.87 16999.11 26999.33 25094.83 32898.81 25399.38 26694.33 23699.02 32196.10 29895.57 30198.53 311
tfpn200view997.72 25397.38 26398.72 22599.69 10597.96 23499.50 13598.73 33897.83 15199.17 19498.45 34691.67 30299.83 15393.22 34098.18 22098.37 330
thres40097.77 24297.38 26398.92 18999.69 10597.96 23499.50 13598.73 33897.83 15199.17 19498.45 34691.67 30299.83 15393.22 34098.18 22098.96 225
tpm cat197.39 28297.36 26597.50 31799.17 25693.73 35199.43 17099.31 26391.27 35398.71 26499.08 31594.31 23899.77 17896.41 29598.50 20599.00 219
FMVSNet297.72 25397.36 26598.80 21899.51 16198.84 17399.45 16099.42 20696.49 27498.86 25099.29 29090.26 32098.98 32696.44 29396.56 27498.58 308
LFMVS97.90 22297.35 26799.54 9699.52 15999.01 14899.39 19198.24 34997.10 23099.65 7999.79 9584.79 35999.91 9699.28 3998.38 20899.69 108
VDD-MVS97.73 25197.35 26798.88 20199.47 18197.12 26499.34 21298.85 32598.19 10999.67 6899.85 3482.98 36299.92 8599.49 1798.32 21399.60 139
DSMNet-mixed97.25 28697.35 26796.95 33097.84 34993.61 35599.57 9996.63 36796.13 30698.87 24598.61 34394.59 22797.70 35995.08 32098.86 18899.55 150
tpm297.44 28197.34 27097.74 30899.15 26194.36 34599.45 16098.94 31393.45 34598.90 24099.44 24891.35 30999.59 23597.31 24898.07 22799.29 194
TAPA-MVS97.07 1597.74 25097.34 27098.94 18599.70 10297.53 25199.25 24199.51 10691.90 35199.30 16099.63 18298.78 5299.64 22688.09 36399.87 4299.65 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SixPastTwentyTwo97.50 27697.33 27298.03 28698.65 32796.23 30699.77 2898.68 34197.14 22397.90 32099.93 490.45 31899.18 30097.00 26896.43 27998.67 272
MS-PatchMatch97.24 28797.32 27396.99 32798.45 34093.51 35698.82 31999.32 26097.41 20198.13 31299.30 28888.99 33599.56 23795.68 30899.80 8997.90 354
v124097.69 25997.32 27398.79 21998.85 30598.43 21299.48 15199.36 23496.11 30799.27 16899.36 27293.76 25599.24 28894.46 32795.23 30898.70 256
pmmvs597.52 27397.30 27598.16 27898.57 33596.73 28999.27 23098.90 32196.14 30598.37 30099.53 22091.54 30799.14 30397.51 23695.87 29398.63 292
h-mvs3397.70 25897.28 27698.97 18199.70 10297.27 25899.36 20399.45 18798.94 4199.66 7399.64 17694.93 20699.99 199.48 1884.36 36099.65 122
pm-mvs197.68 26197.28 27698.88 20199.06 27598.62 19299.50 13599.45 18796.32 28797.87 32199.79 9592.47 28499.35 27197.54 23393.54 33598.67 272
thres20097.61 26897.28 27698.62 23099.64 12698.03 22899.26 23998.74 33397.68 16999.09 21098.32 35091.66 30499.81 16492.88 34498.22 21598.03 344
TESTMET0.1,197.55 27097.27 27998.40 25998.93 29396.53 29698.67 33297.61 36096.96 24198.64 28099.28 29288.63 34099.45 24697.30 24999.38 14499.21 198
test_part197.75 24797.24 28099.29 14699.59 14599.63 6599.65 6099.49 13496.17 30098.44 29599.69 14989.80 32799.47 24398.68 11893.66 33398.78 236
USDC97.34 28397.20 28197.75 30799.07 27395.20 32998.51 34499.04 30597.99 13898.31 30499.86 2889.02 33499.55 23995.67 30997.36 26098.49 314
DTE-MVSNet97.51 27597.19 28298.46 25198.63 32998.13 22699.84 1099.48 14796.68 25997.97 31999.67 16292.92 26698.56 34396.88 27992.60 34698.70 256
hse-mvs297.50 27697.14 28398.59 23299.49 17397.05 27199.28 22599.22 28298.94 4199.66 7399.42 25494.93 20699.65 22399.48 1883.80 36299.08 208
test-mter97.49 27997.13 28498.55 24098.79 30997.10 26598.67 33297.75 35796.65 26298.61 28498.85 33288.23 34499.45 24697.25 25299.38 14499.10 203
PAPM97.59 26997.09 28599.07 16799.06 27598.26 22098.30 35499.10 29794.88 32798.08 31399.34 27896.27 16399.64 22689.87 35698.92 18499.31 193
PCF-MVS97.08 1497.66 26597.06 28699.47 11999.61 13999.09 13998.04 36099.25 27891.24 35498.51 29099.70 14094.55 23099.91 9692.76 34799.85 6099.42 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet97.55 27097.02 28799.16 16199.49 17398.12 22799.38 19699.30 26795.35 31999.68 6299.90 1082.62 36499.93 7399.31 3698.13 22599.42 181
JIA-IIPM97.50 27697.02 28798.93 18798.73 31897.80 24399.30 21998.97 31091.73 35298.91 23894.86 36595.10 20399.71 20497.58 22697.98 22899.28 195
TinyColmap97.12 28996.89 28997.83 30299.07 27395.52 32298.57 34098.74 33397.58 17997.81 32499.79 9588.16 34599.56 23795.10 31997.21 26398.39 328
UniMVSNet_ETH3D97.32 28496.81 29098.87 20599.40 19797.46 25399.51 12999.53 8695.86 31498.54 28999.77 10982.44 36599.66 21998.68 11897.52 24599.50 167
K. test v397.10 29096.79 29198.01 28998.72 32096.33 30399.87 697.05 36397.59 17796.16 34899.80 8388.71 33799.04 31796.69 28796.55 27598.65 282
test250696.81 29496.65 29297.29 32299.74 7692.21 36299.60 7885.06 38199.13 899.77 3799.93 487.82 35199.85 13699.38 2799.38 14499.80 56
TransMVSNet (Re)97.15 28896.58 29398.86 20899.12 26398.85 17299.49 14598.91 31995.48 31797.16 33799.80 8393.38 25899.11 31194.16 33291.73 34898.62 294
MVS97.28 28596.55 29499.48 11698.78 31298.95 15999.27 23099.39 21883.53 36498.08 31399.54 21696.97 14099.87 12794.23 33099.16 16199.63 133
MVS_030496.79 29596.52 29597.59 31399.22 24194.92 33699.04 28399.59 4496.49 27498.43 29698.99 32580.48 36899.39 25897.15 26299.27 15598.47 317
PatchT97.03 29196.44 29698.79 21998.99 28598.34 21699.16 25599.07 30292.13 35099.52 11197.31 36094.54 23198.98 32688.54 36198.73 19599.03 216
FMVSNet196.84 29396.36 29798.29 26999.32 21897.26 26099.43 17099.48 14795.11 32298.55 28899.32 28583.95 36198.98 32695.81 30496.26 28398.62 294
AUN-MVS96.88 29296.31 29898.59 23299.48 18097.04 27499.27 23099.22 28297.44 19798.51 29099.41 25891.97 29399.66 21997.71 21683.83 36199.07 213
test_040296.64 29796.24 29997.85 30098.85 30596.43 30099.44 16499.26 27693.52 34296.98 34199.52 22388.52 34199.20 29992.58 34997.50 24897.93 352
FMVSNet596.43 30296.19 30097.15 32399.11 26595.89 31399.32 21599.52 9294.47 33598.34 30399.07 31687.54 35297.07 36392.61 34895.72 29898.47 317
UnsupCasMVSNet_eth96.44 30196.12 30197.40 31998.65 32795.65 31699.36 20399.51 10697.13 22496.04 35098.99 32588.40 34298.17 34896.71 28590.27 35198.40 327
pmmvs696.53 29996.09 30297.82 30498.69 32495.47 32399.37 19999.47 16593.46 34497.41 33099.78 10287.06 35399.33 27596.92 27792.70 34598.65 282
Anonymous2023120696.22 30496.03 30396.79 33497.31 35794.14 34799.63 6599.08 30096.17 30097.04 34099.06 31893.94 24997.76 35886.96 36695.06 31298.47 317
new_pmnet96.38 30396.03 30397.41 31898.13 34695.16 33299.05 27899.20 28693.94 33797.39 33198.79 33591.61 30699.04 31790.43 35495.77 29598.05 343
test20.0396.12 30895.96 30596.63 33597.44 35395.45 32499.51 12999.38 22496.55 27196.16 34899.25 29893.76 25596.17 36887.35 36594.22 32698.27 333
RPMNet96.72 29695.90 30699.19 15899.18 25098.49 20799.22 24999.52 9288.72 36099.56 10297.38 35794.08 24699.95 4786.87 36798.58 19999.14 200
Anonymous2024052196.20 30695.89 30797.13 32597.72 35194.96 33599.79 2599.29 27293.01 34797.20 33699.03 32189.69 32998.36 34691.16 35296.13 28598.07 341
N_pmnet94.95 32095.83 30892.31 34698.47 33979.33 37399.12 26392.81 37993.87 33897.68 32699.13 31193.87 25199.01 32391.38 35196.19 28498.59 307
Patchmatch-RL test95.84 31195.81 30995.95 34095.61 36590.57 36598.24 35598.39 34795.10 32495.20 35398.67 34094.78 21597.77 35796.28 29790.02 35299.51 164
EG-PatchMatch MVS95.97 31095.69 31096.81 33397.78 35092.79 35999.16 25598.93 31496.16 30294.08 35799.22 30182.72 36399.47 24395.67 30997.50 24898.17 338
ET-MVSNet_ETH3D96.49 30095.64 31199.05 17099.53 15798.82 17798.84 31797.51 36197.63 17584.77 36599.21 30492.09 29298.91 33798.98 6792.21 34799.41 185
PVSNet_094.43 1996.09 30995.47 31297.94 29499.31 21994.34 34697.81 36299.70 1597.12 22697.46 32998.75 33889.71 32899.79 17297.69 21981.69 36499.68 112
X-MVStestdata96.55 29895.45 31399.87 1299.85 2699.83 1799.69 4299.68 1998.98 3499.37 14664.01 37798.81 4999.94 5898.79 10299.86 5399.84 22
IB-MVS95.67 1896.22 30495.44 31498.57 23699.21 24396.70 29098.65 33597.74 35996.71 25797.27 33398.54 34486.03 35599.92 8598.47 15086.30 35899.10 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune96.17 30795.32 31598.73 22398.79 30998.14 22599.38 19694.09 37591.07 35698.07 31691.04 37089.62 33199.35 27196.75 28299.09 17098.68 265
MVS-HIRNet95.75 31295.16 31697.51 31699.30 22093.69 35398.88 31395.78 36985.09 36398.78 25892.65 36791.29 31099.37 26394.85 32399.85 6099.46 176
MIMVSNet195.51 31395.04 31796.92 33197.38 35495.60 31799.52 12499.50 12693.65 34196.97 34299.17 30685.28 35896.56 36788.36 36295.55 30298.60 306
CMPMVSbinary69.68 2394.13 32694.90 31891.84 34797.24 35880.01 37298.52 34399.48 14789.01 35891.99 36299.67 16285.67 35799.13 30695.44 31297.03 26896.39 363
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d95.34 31794.73 31997.15 32395.53 36795.94 31299.35 20999.10 29795.13 32093.55 35897.54 35588.15 34697.91 35494.58 32589.69 35497.61 356
MDA-MVSNet_test_wron95.45 31494.60 32098.01 28998.16 34597.21 26399.11 26999.24 28093.49 34380.73 37098.98 32893.02 26398.18 34794.22 33194.45 32298.64 284
TDRefinement95.42 31594.57 32197.97 29389.83 37496.11 30999.48 15198.75 33096.74 25596.68 34399.88 1988.65 33999.71 20498.37 15982.74 36398.09 340
YYNet195.36 31694.51 32297.92 29697.89 34897.10 26599.10 27199.23 28193.26 34680.77 36999.04 32092.81 26998.02 35194.30 32894.18 32798.64 284
KD-MVS_self_test95.00 31894.34 32396.96 32997.07 36295.39 32699.56 10699.44 19695.11 32297.13 33897.32 35991.86 29697.27 36290.35 35581.23 36598.23 337
new-patchmatchnet94.48 32494.08 32495.67 34195.08 36892.41 36099.18 25399.28 27494.55 33493.49 35997.37 35887.86 35097.01 36491.57 35088.36 35597.61 356
MDA-MVSNet-bldmvs94.96 31993.98 32597.92 29698.24 34497.27 25899.15 25999.33 25093.80 33980.09 37199.03 32188.31 34397.86 35693.49 33894.36 32498.62 294
CL-MVSNet_self_test94.49 32393.97 32696.08 33996.16 36393.67 35498.33 35299.38 22495.13 32097.33 33298.15 35292.69 27796.57 36688.67 36079.87 36697.99 348
KD-MVS_2432*160094.62 32193.72 32797.31 32097.19 36095.82 31498.34 35099.20 28695.00 32597.57 32798.35 34887.95 34898.10 34992.87 34577.00 36898.01 345
miper_refine_blended94.62 32193.72 32797.31 32097.19 36095.82 31498.34 35099.20 28695.00 32597.57 32798.35 34887.95 34898.10 34992.87 34577.00 36898.01 345
OpenMVS_ROBcopyleft92.34 2094.38 32593.70 32996.41 33897.38 35493.17 35799.06 27698.75 33086.58 36194.84 35698.26 35181.53 36699.32 27789.01 35997.87 23196.76 361
pmmvs394.09 32793.25 33096.60 33694.76 36994.49 34298.92 30998.18 35289.66 35796.48 34598.06 35386.28 35497.33 36189.68 35787.20 35797.97 350
UnsupCasMVSNet_bld93.53 32892.51 33196.58 33797.38 35493.82 34998.24 35599.48 14791.10 35593.10 36096.66 36174.89 36998.37 34594.03 33387.71 35697.56 358
PM-MVS92.96 32992.23 33295.14 34295.61 36589.98 36799.37 19998.21 35094.80 32995.04 35597.69 35465.06 37197.90 35594.30 32889.98 35397.54 359
test_method91.10 33091.36 33390.31 35095.85 36473.72 37894.89 36799.25 27868.39 37095.82 35199.02 32380.50 36798.95 33593.64 33694.89 31798.25 335
Gipumacopyleft90.99 33190.15 33493.51 34398.73 31890.12 36693.98 36899.45 18779.32 36692.28 36194.91 36469.61 37097.98 35387.42 36495.67 29992.45 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS84.93 33485.65 33582.75 35586.77 37663.39 38098.35 34998.92 31674.11 36783.39 36798.98 32850.85 37592.40 37284.54 36994.97 31492.46 366
PMMVS286.87 33285.37 33691.35 34990.21 37383.80 36898.89 31297.45 36283.13 36591.67 36395.03 36348.49 37694.70 37085.86 36877.62 36795.54 364
LCM-MVSNet86.80 33385.22 33791.53 34887.81 37580.96 37198.23 35798.99 30871.05 36890.13 36496.51 36248.45 37796.88 36590.51 35385.30 35996.76 361
tmp_tt82.80 33581.52 33886.66 35166.61 38168.44 37992.79 37097.92 35568.96 36980.04 37299.85 3485.77 35696.15 36997.86 20043.89 37495.39 365
E-PMN80.61 33779.88 33982.81 35490.75 37276.38 37697.69 36395.76 37066.44 37283.52 36692.25 36862.54 37387.16 37468.53 37361.40 37184.89 372
EMVS80.02 33879.22 34082.43 35691.19 37176.40 37597.55 36592.49 38066.36 37383.01 36891.27 36964.63 37285.79 37565.82 37460.65 37285.08 371
EGC-MVSNET82.80 33577.86 34197.62 31197.91 34796.12 30899.33 21499.28 2748.40 37825.05 37999.27 29584.11 36099.33 27589.20 35898.22 21597.42 360
PMVScopyleft70.75 2275.98 34174.97 34279.01 35770.98 38055.18 38193.37 36998.21 35065.08 37461.78 37593.83 36621.74 38292.53 37178.59 37091.12 35089.34 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 33974.86 34384.62 35375.88 37977.61 37497.63 36493.15 37888.81 35964.27 37489.29 37136.51 37883.93 37675.89 37152.31 37392.33 368
MVEpermissive76.82 2176.91 34074.31 34484.70 35285.38 37876.05 37796.88 36693.17 37767.39 37171.28 37389.01 37221.66 38387.69 37371.74 37272.29 37090.35 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 34343.78 34525.37 36036.04 38316.84 38498.36 34826.56 38220.06 37638.51 37767.32 37329.64 38015.30 37937.59 37639.90 37543.98 374
test12339.01 34442.50 34628.53 35939.17 38220.91 38398.75 32619.17 38419.83 37738.57 37666.67 37433.16 37915.42 37837.50 37729.66 37649.26 373
wuyk23d40.18 34241.29 34736.84 35886.18 37749.12 38279.73 37122.81 38327.64 37525.46 37828.45 37821.98 38148.89 37755.80 37523.56 37712.51 375
cdsmvs_eth3d_5k24.64 34532.85 3480.00 3610.00 3840.00 3850.00 37299.51 1060.00 3790.00 38099.56 20896.58 1520.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.30 34611.06 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.58 2010.00 3840.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas8.27 34711.03 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 38099.01 190.00 3800.00 3780.00 3780.00 376
test_blank0.13 3480.17 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3801.57 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.91 199.93 199.87 699.56 5899.10 1299.81 25
MSC_two_6792asdad99.87 1299.51 16199.76 4199.33 25099.96 2098.87 8399.84 6799.89 2
PC_three_145298.18 11299.84 1599.70 14099.31 398.52 34498.30 16799.80 8999.81 46
No_MVS99.87 1299.51 16199.76 4199.33 25099.96 2098.87 8399.84 6799.89 2
test_one_060199.81 4299.88 899.49 13498.97 3799.65 7999.81 6799.09 14
eth-test20.00 384
eth-test0.00 384
ZD-MVS99.71 9599.79 3399.61 3696.84 25099.56 10299.54 21698.58 7599.96 2096.93 27599.75 105
IU-MVS99.84 3399.88 899.32 26098.30 9899.84 1598.86 8899.85 6099.89 2
OPU-MVS99.64 8099.56 15399.72 4799.60 7899.70 14099.27 599.42 25698.24 16999.80 8999.79 62
test_241102_TWO99.48 14799.08 1699.88 699.81 6798.94 3599.96 2098.91 7699.84 6799.88 8
test_241102_ONE99.84 3399.90 299.48 14799.07 1899.91 299.74 12499.20 799.76 184
save fliter99.76 5799.59 7399.14 26199.40 21499.00 28
test_0728_THIRD98.99 3199.81 2599.80 8399.09 1499.96 2098.85 9099.90 2599.88 8
test_0728_SECOND99.91 299.84 3399.89 499.57 9999.51 10699.96 2098.93 7399.86 5399.88 8
test072699.85 2699.89 499.62 7199.50 12699.10 1299.86 1399.82 5498.94 35
GSMVS99.52 158
test_part299.81 4299.83 1799.77 37
sam_mvs194.86 21199.52 158
sam_mvs94.72 222
ambc93.06 34592.68 37082.36 36998.47 34598.73 33895.09 35497.41 35655.55 37499.10 31396.42 29491.32 34997.71 355
MTGPAbinary99.47 165
test_post199.23 24465.14 37694.18 24399.71 20497.58 226
test_post65.99 37594.65 22699.73 194
patchmatchnet-post98.70 33994.79 21499.74 187
GG-mvs-BLEND98.45 25298.55 33698.16 22399.43 17093.68 37697.23 33498.46 34589.30 33399.22 29295.43 31398.22 21597.98 349
MTMP99.54 11898.88 323
gm-plane-assit98.54 33792.96 35894.65 33299.15 30999.64 22697.56 231
test9_res97.49 23799.72 11299.75 78
TEST999.67 11099.65 6299.05 27899.41 20896.22 29698.95 23299.49 23398.77 5599.91 96
test_899.67 11099.61 6899.03 28499.41 20896.28 28998.93 23699.48 23998.76 5799.91 96
agg_prior297.21 25499.73 11199.75 78
agg_prior99.67 11099.62 6699.40 21498.87 24599.91 96
TestCases99.31 13999.86 2298.48 20999.61 3697.85 14899.36 14999.85 3495.95 17199.85 13696.66 28999.83 7699.59 143
test_prior499.56 7898.99 294
test_prior298.96 30298.34 9399.01 22199.52 22398.68 6897.96 19299.74 108
test_prior99.68 6899.67 11099.48 9399.56 5899.83 15399.74 83
旧先验298.96 30296.70 25899.47 11999.94 5898.19 172
新几何299.01 292
新几何199.75 5499.75 6899.59 7399.54 7596.76 25499.29 16399.64 17698.43 8799.94 5896.92 27799.66 12699.72 96
旧先验199.74 7699.59 7399.54 7599.69 14998.47 8499.68 12399.73 90
无先验98.99 29499.51 10696.89 24799.93 7397.53 23499.72 96
原ACMM298.95 306
原ACMM199.65 7599.73 8499.33 10899.47 16597.46 19199.12 20099.66 16898.67 7199.91 9697.70 21899.69 11899.71 103
test22299.75 6899.49 9198.91 31199.49 13496.42 28399.34 15599.65 16998.28 9999.69 11899.72 96
testdata299.95 4796.67 288
segment_acmp98.96 29
testdata99.54 9699.75 6898.95 15999.51 10697.07 23299.43 12799.70 14098.87 4399.94 5897.76 20999.64 12999.72 96
testdata198.85 31698.32 97
test1299.75 5499.64 12699.61 6899.29 27299.21 18498.38 9299.89 11999.74 10899.74 83
plane_prior799.29 22497.03 275
plane_prior699.27 22996.98 27992.71 275
plane_prior599.47 16599.69 21497.78 20797.63 23598.67 272
plane_prior499.61 192
plane_prior397.00 27798.69 6499.11 202
plane_prior299.39 19198.97 37
plane_prior199.26 231
plane_prior96.97 28099.21 25198.45 8197.60 238
n20.00 385
nn0.00 385
door-mid98.05 353
lessismore_v097.79 30698.69 32495.44 32594.75 37395.71 35299.87 2588.69 33899.32 27795.89 30294.93 31698.62 294
LGP-MVS_train98.49 24499.33 21197.05 27199.55 6797.46 19199.24 17699.83 4792.58 28099.72 19898.09 18197.51 24698.68 265
test1199.35 239
door97.92 355
HQP5-MVS96.83 285
HQP-NCC99.19 24798.98 29898.24 10298.66 273
ACMP_Plane99.19 24798.98 29898.24 10298.66 273
BP-MVS97.19 258
HQP4-MVS98.66 27399.64 22698.64 284
HQP3-MVS99.39 21897.58 240
HQP2-MVS92.47 284
NP-MVS99.23 23796.92 28399.40 261
MDTV_nov1_ep13_2view95.18 33199.35 20996.84 25099.58 9995.19 20297.82 20499.46 176
ACMMP++_ref97.19 264
ACMMP++97.43 256
Test By Simon98.75 60
ITE_SJBPF98.08 28399.29 22496.37 30198.92 31698.34 9398.83 25199.75 11891.09 31299.62 23295.82 30397.40 25898.25 335
DeepMVS_CXcopyleft93.34 34499.29 22482.27 37099.22 28285.15 36296.33 34699.05 31990.97 31499.73 19493.57 33797.77 23398.01 345