test_part1 | | | 93.54 2 | 94.85 2 | 89.62 58 | 94.83 39 | 74.49 122 | 94.02 4 | 97.02 2 | 92.06 2 | 96.94 2 | 98.50 2 | 95.09 2 | 96.03 8 | 85.83 44 | 99.33 1 | 98.33 7 |
|
LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 32 | 95.54 3 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 13 | 85.07 50 | 99.27 2 | 99.54 1 |
|
WR-MVS_H | | | 89.91 50 | 91.31 32 | 85.71 122 | 96.32 10 | 62.39 231 | 89.54 67 | 93.31 65 | 90.21 10 | 95.57 9 | 95.66 28 | 81.42 112 | 95.90 14 | 80.94 93 | 98.80 3 | 98.84 5 |
|
ACMP | | 79.16 10 | 90.54 35 | 90.60 48 | 90.35 46 | 94.36 46 | 80.98 63 | 89.16 73 | 94.05 35 | 79.03 99 | 92.87 43 | 93.74 99 | 90.60 13 | 95.21 57 | 82.87 74 | 98.76 4 | 94.87 62 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ACMH+ | | 77.89 11 | 90.73 31 | 91.50 24 | 88.44 76 | 93.00 80 | 76.26 114 | 89.65 63 | 95.55 5 | 87.72 23 | 93.89 27 | 94.94 44 | 91.62 5 | 93.44 123 | 78.35 119 | 98.76 4 | 95.61 47 |
|
PS-CasMVS | | | 90.06 43 | 91.92 14 | 84.47 143 | 96.56 7 | 58.83 272 | 89.04 75 | 92.74 91 | 91.40 5 | 96.12 4 | 96.06 23 | 87.23 47 | 95.57 33 | 79.42 111 | 98.74 6 | 99.00 2 |
|
LPG-MVS_test | | | 91.47 20 | 91.68 19 | 90.82 38 | 94.75 41 | 81.69 57 | 90.00 52 | 94.27 20 | 82.35 60 | 93.67 34 | 94.82 48 | 91.18 6 | 95.52 39 | 85.36 48 | 98.73 7 | 95.23 57 |
|
LGP-MVS_train | | | | | 90.82 38 | 94.75 41 | 81.69 57 | | 94.27 20 | 82.35 60 | 93.67 34 | 94.82 48 | 91.18 6 | 95.52 39 | 85.36 48 | 98.73 7 | 95.23 57 |
|
PEN-MVS | | | 90.03 45 | 91.88 17 | 84.48 142 | 96.57 6 | 58.88 269 | 88.95 76 | 93.19 72 | 91.62 4 | 96.01 6 | 96.16 21 | 87.02 49 | 95.60 32 | 78.69 116 | 98.72 9 | 98.97 3 |
|
CP-MVSNet | | | 89.27 61 | 90.91 43 | 84.37 144 | 96.34 9 | 58.61 274 | 88.66 85 | 92.06 105 | 90.78 6 | 95.67 7 | 95.17 39 | 81.80 108 | 95.54 38 | 79.00 114 | 98.69 10 | 98.95 4 |
|
TranMVSNet+NR-MVSNet | | | 87.86 78 | 88.76 73 | 85.18 130 | 94.02 57 | 64.13 210 | 84.38 148 | 91.29 126 | 84.88 35 | 92.06 59 | 93.84 94 | 86.45 58 | 93.73 107 | 73.22 172 | 98.66 11 | 97.69 10 |
|
NR-MVSNet | | | 86.00 102 | 86.22 101 | 85.34 128 | 93.24 75 | 64.56 206 | 82.21 205 | 90.46 145 | 80.99 75 | 88.42 129 | 91.97 140 | 77.56 145 | 93.85 102 | 72.46 183 | 98.65 12 | 97.61 11 |
|
UA-Net | | | 91.49 18 | 91.53 23 | 91.39 26 | 94.98 35 | 82.95 54 | 93.52 6 | 92.79 89 | 88.22 20 | 88.53 126 | 97.64 3 | 83.45 81 | 94.55 80 | 86.02 43 | 98.60 13 | 96.67 26 |
|
FC-MVSNet-test | | | 85.93 105 | 87.05 89 | 82.58 186 | 92.25 101 | 56.44 288 | 85.75 125 | 93.09 75 | 77.33 116 | 91.94 63 | 94.65 53 | 74.78 175 | 93.41 125 | 75.11 156 | 98.58 14 | 97.88 8 |
|
DTE-MVSNet | | | 89.98 47 | 91.91 16 | 84.21 149 | 96.51 8 | 57.84 277 | 88.93 78 | 92.84 88 | 91.92 3 | 96.16 3 | 96.23 19 | 86.95 50 | 95.99 9 | 79.05 113 | 98.57 15 | 98.80 6 |
|
UniMVSNet (Re) | | | 86.87 86 | 86.98 91 | 86.55 100 | 93.11 78 | 68.48 179 | 83.80 161 | 92.87 85 | 80.37 80 | 89.61 108 | 91.81 147 | 77.72 143 | 94.18 89 | 75.00 157 | 98.53 16 | 96.99 23 |
|
Baseline_NR-MVSNet | | | 84.00 144 | 85.90 107 | 78.29 252 | 91.47 128 | 53.44 307 | 82.29 201 | 87.00 217 | 79.06 98 | 89.55 110 | 95.72 27 | 77.20 149 | 86.14 274 | 72.30 184 | 98.51 17 | 95.28 54 |
|
TDRefinement | | | 93.52 3 | 93.39 4 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 2 | 96.46 3 | 90.58 8 | 92.86 44 | 96.29 17 | 88.16 35 | 94.17 91 | 86.07 40 | 98.48 18 | 97.22 18 |
|
ACMM | | 79.39 9 | 90.65 32 | 90.99 40 | 89.63 56 | 95.03 34 | 83.53 47 | 89.62 64 | 93.35 61 | 79.20 96 | 93.83 28 | 93.60 101 | 90.81 9 | 92.96 139 | 85.02 52 | 98.45 19 | 92.41 153 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MP-MVS-pluss | | | 90.81 30 | 91.08 36 | 89.99 51 | 95.97 13 | 79.88 70 | 88.13 90 | 94.51 18 | 75.79 136 | 92.94 41 | 94.96 43 | 88.36 29 | 95.01 63 | 90.70 2 | 98.40 20 | 95.09 60 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
CP-MVS | | | 91.67 15 | 91.58 22 | 91.96 14 | 95.29 31 | 87.62 12 | 93.38 8 | 93.36 60 | 83.16 51 | 91.06 77 | 94.00 84 | 88.26 32 | 95.71 29 | 87.28 23 | 98.39 21 | 92.55 149 |
|
UniMVSNet_NR-MVSNet | | | 86.84 88 | 87.06 88 | 86.17 113 | 92.86 85 | 67.02 188 | 82.55 194 | 91.56 118 | 83.08 53 | 90.92 79 | 91.82 146 | 78.25 139 | 93.99 97 | 74.16 161 | 98.35 22 | 97.49 14 |
|
DU-MVS | | | 86.80 89 | 86.99 90 | 86.21 111 | 93.24 75 | 67.02 188 | 83.16 181 | 92.21 101 | 81.73 67 | 90.92 79 | 91.97 140 | 77.20 149 | 93.99 97 | 74.16 161 | 98.35 22 | 97.61 11 |
|
zzz-MVS | | | 91.27 23 | 91.26 34 | 91.29 29 | 96.59 4 | 86.29 17 | 88.94 77 | 91.81 114 | 84.07 38 | 92.00 60 | 94.40 66 | 86.63 54 | 95.28 53 | 88.59 5 | 98.31 24 | 92.30 157 |
|
MTAPA | | | 91.52 17 | 91.60 21 | 91.29 29 | 96.59 4 | 86.29 17 | 92.02 29 | 91.81 114 | 84.07 38 | 92.00 60 | 94.40 66 | 86.63 54 | 95.28 53 | 88.59 5 | 98.31 24 | 92.30 157 |
|
ACMH | | 76.49 14 | 89.34 60 | 91.14 35 | 83.96 155 | 92.50 93 | 70.36 163 | 89.55 65 | 93.84 45 | 81.89 66 | 94.70 13 | 95.44 33 | 90.69 10 | 88.31 248 | 83.33 69 | 98.30 26 | 93.20 125 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
COLMAP_ROB | | 83.01 3 | 91.97 12 | 91.95 13 | 92.04 12 | 93.68 65 | 86.15 21 | 93.37 9 | 95.10 12 | 90.28 9 | 92.11 57 | 95.03 42 | 89.75 22 | 94.93 65 | 79.95 103 | 98.27 27 | 95.04 61 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMMP | | | 91.91 13 | 91.87 18 | 92.03 13 | 95.53 26 | 85.91 25 | 93.35 10 | 94.16 28 | 82.52 59 | 92.39 54 | 94.14 78 | 89.15 24 | 95.62 31 | 87.35 20 | 98.24 28 | 94.56 71 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HPM-MVS | | | 92.13 10 | 92.20 12 | 91.91 17 | 95.58 25 | 84.67 41 | 93.51 7 | 94.85 15 | 82.88 55 | 91.77 65 | 93.94 92 | 90.55 14 | 95.73 28 | 88.50 7 | 98.23 29 | 95.33 52 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test_0728_THIRD | | | | | | | | | | 85.33 31 | 93.75 31 | 94.65 53 | 87.44 45 | 95.78 25 | 87.41 19 | 98.21 30 | 92.98 132 |
|
MP-MVS | | | 91.14 28 | 90.91 43 | 91.83 21 | 96.18 11 | 86.88 14 | 92.20 26 | 93.03 80 | 82.59 58 | 88.52 127 | 94.37 69 | 86.74 53 | 95.41 48 | 86.32 34 | 98.21 30 | 93.19 126 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
SteuartSystems-ACMMP | | | 91.16 27 | 91.36 27 | 90.55 42 | 93.91 60 | 80.97 64 | 91.49 36 | 93.48 58 | 82.82 56 | 92.60 50 | 93.97 85 | 88.19 33 | 96.29 4 | 87.61 15 | 98.20 32 | 94.39 81 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS_fast | | | 92.50 6 | 92.54 7 | 92.37 6 | 95.93 15 | 85.81 30 | 92.99 12 | 94.23 23 | 85.21 32 | 92.51 51 | 95.13 40 | 90.65 11 | 95.34 50 | 88.06 9 | 98.15 33 | 95.95 40 |
|
mPP-MVS | | | 91.69 14 | 91.47 25 | 92.37 6 | 96.04 12 | 88.48 10 | 92.72 17 | 92.60 94 | 83.09 52 | 91.54 68 | 94.25 74 | 87.67 43 | 95.51 42 | 87.21 24 | 98.11 34 | 93.12 128 |
|
WR-MVS | | | 83.56 152 | 84.40 139 | 81.06 210 | 93.43 70 | 54.88 299 | 78.67 255 | 85.02 241 | 81.24 72 | 90.74 83 | 91.56 153 | 72.85 198 | 91.08 190 | 68.00 220 | 98.04 35 | 97.23 17 |
|
XVG-ACMP-BASELINE | | | 89.98 47 | 89.84 54 | 90.41 44 | 94.91 37 | 84.50 44 | 89.49 69 | 93.98 37 | 79.68 89 | 92.09 58 | 93.89 93 | 83.80 77 | 93.10 137 | 82.67 76 | 98.04 35 | 93.64 112 |
|
DeepC-MVS | | 82.31 4 | 89.15 63 | 89.08 65 | 89.37 62 | 93.64 66 | 79.07 79 | 88.54 86 | 94.20 25 | 73.53 161 | 89.71 102 | 94.82 48 | 85.09 67 | 95.77 27 | 84.17 61 | 98.03 37 | 93.26 123 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FIs | | | 85.35 111 | 86.27 100 | 82.60 185 | 91.86 115 | 57.31 281 | 85.10 134 | 93.05 77 | 75.83 135 | 91.02 78 | 93.97 85 | 73.57 187 | 92.91 143 | 73.97 164 | 98.02 38 | 97.58 13 |
|
abl_6 | | | 93.02 5 | 93.16 5 | 92.60 4 | 94.73 43 | 88.99 7 | 93.26 11 | 94.19 27 | 89.11 12 | 94.43 16 | 95.27 36 | 91.86 4 | 95.09 60 | 87.54 18 | 98.02 38 | 93.71 108 |
|
Anonymous20231211 | | | 88.40 72 | 89.62 58 | 84.73 137 | 90.46 153 | 65.27 200 | 88.86 79 | 93.02 81 | 87.15 25 | 93.05 40 | 97.10 7 | 82.28 96 | 92.02 163 | 76.70 139 | 97.99 40 | 96.88 24 |
|
PGM-MVS | | | 91.20 26 | 90.95 42 | 91.93 15 | 95.67 22 | 85.85 28 | 90.00 52 | 93.90 41 | 80.32 82 | 91.74 66 | 94.41 65 | 88.17 34 | 95.98 10 | 86.37 33 | 97.99 40 | 93.96 96 |
|
APDe-MVS | | | 91.22 25 | 91.92 14 | 89.14 65 | 92.97 81 | 78.04 88 | 92.84 15 | 94.14 32 | 83.33 49 | 93.90 25 | 95.73 26 | 88.77 27 | 96.41 1 | 87.60 16 | 97.98 42 | 92.98 132 |
|
DVP-MVS | | | 90.06 43 | 91.32 31 | 86.29 106 | 94.16 52 | 72.56 138 | 90.54 44 | 91.01 134 | 83.61 45 | 93.75 31 | 94.65 53 | 89.76 20 | 95.78 25 | 86.42 31 | 97.97 43 | 90.55 206 |
|
test_0728_SECOND | | | | | 86.79 96 | 94.25 48 | 72.45 142 | 90.54 44 | 94.10 34 | | | | | 95.88 15 | 86.42 31 | 97.97 43 | 92.02 169 |
|
ZNCC-MVS | | | 91.26 24 | 91.34 30 | 91.01 35 | 95.73 20 | 83.05 52 | 92.18 27 | 94.22 24 | 80.14 85 | 91.29 74 | 93.97 85 | 87.93 40 | 95.87 16 | 88.65 4 | 97.96 45 | 94.12 91 |
|
SED-MVS | | | 90.46 38 | 91.64 20 | 86.93 93 | 94.18 49 | 72.65 133 | 90.47 47 | 93.69 49 | 83.77 42 | 94.11 23 | 94.27 70 | 90.28 16 | 95.84 20 | 86.03 41 | 97.92 46 | 92.29 159 |
|
IU-MVS | | | | | | 94.18 49 | 72.64 135 | | 90.82 137 | 56.98 298 | 89.67 104 | | | | 85.78 45 | 97.92 46 | 93.28 121 |
|
CLD-MVS | | | 83.18 160 | 82.64 163 | 84.79 135 | 89.05 172 | 67.82 185 | 77.93 263 | 92.52 95 | 68.33 219 | 85.07 184 | 81.54 307 | 82.06 100 | 92.96 139 | 69.35 206 | 97.91 48 | 93.57 115 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
IS-MVSNet | | | 86.66 91 | 86.82 95 | 86.17 113 | 92.05 108 | 66.87 190 | 91.21 38 | 88.64 185 | 86.30 29 | 89.60 109 | 92.59 123 | 69.22 220 | 94.91 66 | 73.89 165 | 97.89 49 | 96.72 25 |
|
ACMMP_NAP | | | 90.65 32 | 91.07 38 | 89.42 61 | 95.93 15 | 79.54 75 | 89.95 55 | 93.68 51 | 77.65 113 | 91.97 62 | 94.89 45 | 88.38 28 | 95.45 46 | 89.27 3 | 97.87 50 | 93.27 122 |
|
test_241102_TWO | | | | | | | | | 93.71 48 | 83.77 42 | 93.49 37 | 94.27 70 | 89.27 23 | 95.84 20 | 86.03 41 | 97.82 51 | 92.04 168 |
|
DPE-MVS | | | 90.53 36 | 91.08 36 | 88.88 67 | 93.38 71 | 78.65 84 | 89.15 74 | 94.05 35 | 84.68 36 | 93.90 25 | 94.11 80 | 88.13 36 | 96.30 3 | 84.51 58 | 97.81 52 | 91.70 180 |
|
OurMVSNet-221017-0 | | | 90.01 46 | 89.74 55 | 90.83 37 | 93.16 77 | 80.37 67 | 91.91 33 | 93.11 74 | 81.10 74 | 95.32 10 | 97.24 6 | 72.94 197 | 94.85 68 | 85.07 50 | 97.78 53 | 97.26 16 |
|
SMA-MVS | | | 90.31 39 | 90.48 49 | 89.83 52 | 95.31 30 | 79.52 76 | 90.98 40 | 93.24 71 | 75.37 143 | 92.84 45 | 95.28 35 | 85.58 66 | 96.09 7 | 87.92 10 | 97.76 54 | 93.88 99 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMPR | | | 91.49 18 | 91.35 29 | 91.92 16 | 95.74 19 | 85.88 27 | 92.58 21 | 93.25 70 | 81.99 63 | 91.40 71 | 94.17 76 | 87.51 44 | 95.87 16 | 87.74 11 | 97.76 54 | 93.99 94 |
|
HFP-MVS | | | 91.30 22 | 91.39 26 | 91.02 33 | 95.43 28 | 84.66 42 | 92.58 21 | 93.29 68 | 81.99 63 | 91.47 69 | 93.96 88 | 88.35 30 | 95.56 34 | 87.74 11 | 97.74 56 | 92.85 136 |
|
#test# | | | 90.49 37 | 90.31 51 | 91.02 33 | 95.43 28 | 84.66 42 | 90.65 42 | 93.29 68 | 77.00 120 | 91.47 69 | 93.96 88 | 88.35 30 | 95.56 34 | 84.88 53 | 97.74 56 | 92.85 136 |
|
region2R | | | 91.44 21 | 91.30 33 | 91.87 19 | 95.75 18 | 85.90 26 | 92.63 20 | 93.30 67 | 81.91 65 | 90.88 82 | 94.21 75 | 87.75 41 | 95.87 16 | 87.60 16 | 97.71 58 | 93.83 101 |
|
GST-MVS | | | 90.96 29 | 91.01 39 | 90.82 38 | 95.45 27 | 82.73 55 | 91.75 34 | 93.74 47 | 80.98 76 | 91.38 72 | 93.80 95 | 87.20 48 | 95.80 22 | 87.10 28 | 97.69 59 | 93.93 97 |
|
UniMVSNet_ETH3D | | | 89.12 64 | 90.72 46 | 84.31 147 | 97.00 2 | 64.33 209 | 89.67 62 | 88.38 189 | 88.84 15 | 94.29 19 | 97.57 4 | 90.48 15 | 91.26 184 | 72.57 182 | 97.65 60 | 97.34 15 |
|
v7n | | | 90.13 41 | 90.96 41 | 87.65 88 | 91.95 110 | 71.06 158 | 89.99 54 | 93.05 77 | 86.53 27 | 94.29 19 | 96.27 18 | 82.69 88 | 94.08 95 | 86.25 37 | 97.63 61 | 97.82 9 |
|
XVS | | | 91.54 16 | 91.36 27 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 18 | 93.33 62 | 85.07 33 | 89.99 93 | 94.03 82 | 86.57 56 | 95.80 22 | 87.35 20 | 97.62 62 | 94.20 86 |
|
X-MVStestdata | | | 85.04 118 | 82.70 161 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 18 | 93.33 62 | 85.07 33 | 89.99 93 | 16.05 354 | 86.57 56 | 95.80 22 | 87.35 20 | 97.62 62 | 94.20 86 |
|
SR-MVS-dyc-post | | | 92.41 7 | 92.41 8 | 92.39 5 | 94.13 54 | 88.95 8 | 92.87 13 | 94.16 28 | 88.75 16 | 93.79 29 | 94.43 62 | 88.83 25 | 95.51 42 | 87.16 25 | 97.60 64 | 92.73 141 |
|
RE-MVS-def | | | | 92.61 6 | | 94.13 54 | 88.95 8 | 92.87 13 | 94.16 28 | 88.75 16 | 93.79 29 | 94.43 62 | 90.64 12 | | 87.16 25 | 97.60 64 | 92.73 141 |
|
APD-MVS_3200maxsize | | | 92.05 11 | 92.24 11 | 91.48 24 | 93.02 79 | 85.17 34 | 92.47 25 | 95.05 13 | 87.65 24 | 93.21 39 | 94.39 68 | 90.09 19 | 95.08 61 | 86.67 30 | 97.60 64 | 94.18 88 |
|
9.14 | | | | 89.29 62 | | 91.84 116 | | 88.80 81 | 95.32 9 | 75.14 145 | 91.07 76 | 92.89 114 | 87.27 46 | 93.78 106 | 83.69 66 | 97.55 67 | |
|
OPM-MVS | | | 89.80 51 | 89.97 52 | 89.27 63 | 94.76 40 | 79.86 71 | 86.76 111 | 92.78 90 | 78.78 102 | 92.51 51 | 93.64 100 | 88.13 36 | 93.84 104 | 84.83 55 | 97.55 67 | 94.10 92 |
|
test1172 | | | 92.40 8 | 92.41 8 | 92.37 6 | 94.68 44 | 89.04 6 | 91.98 30 | 93.62 52 | 90.14 11 | 93.63 36 | 94.16 77 | 88.83 25 | 95.51 42 | 87.11 27 | 97.54 69 | 92.54 150 |
|
LTVRE_ROB | | 86.10 1 | 93.04 4 | 93.44 3 | 91.82 23 | 93.73 64 | 85.72 31 | 96.79 1 | 95.51 6 | 88.86 14 | 95.63 8 | 96.99 9 | 84.81 69 | 93.16 133 | 91.10 1 | 97.53 70 | 96.58 29 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
xxxxxxxxxxxxxcwj | | | 89.04 66 | 89.13 64 | 88.79 69 | 93.75 62 | 77.44 96 | 86.31 119 | 95.27 10 | 70.80 196 | 92.28 55 | 93.80 95 | 86.89 51 | 94.64 74 | 85.52 46 | 97.51 71 | 94.30 84 |
|
SF-MVS | | | 90.27 40 | 90.80 45 | 88.68 72 | 92.86 85 | 77.09 103 | 91.19 39 | 95.74 4 | 81.38 71 | 92.28 55 | 93.80 95 | 86.89 51 | 94.64 74 | 85.52 46 | 97.51 71 | 94.30 84 |
|
ETH3D-3000-0.1 | | | 88.85 69 | 88.96 69 | 88.52 73 | 91.94 112 | 77.27 102 | 88.71 83 | 95.26 11 | 76.08 127 | 90.66 85 | 92.69 121 | 84.48 72 | 93.83 105 | 83.38 68 | 97.48 73 | 94.47 76 |
|
MIMVSNet1 | | | 83.63 151 | 84.59 133 | 80.74 215 | 94.06 56 | 62.77 225 | 82.72 190 | 84.53 246 | 77.57 115 | 90.34 88 | 95.92 24 | 76.88 161 | 85.83 278 | 61.88 259 | 97.42 74 | 93.62 113 |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 75 | |
|
SR-MVS | | | 92.23 9 | 92.34 10 | 91.91 17 | 94.89 38 | 87.85 11 | 92.51 23 | 93.87 44 | 88.20 21 | 93.24 38 | 94.02 83 | 90.15 18 | 95.67 30 | 86.82 29 | 97.34 76 | 92.19 165 |
|
nrg030 | | | 87.85 79 | 88.49 74 | 85.91 116 | 90.07 160 | 69.73 166 | 87.86 93 | 94.20 25 | 74.04 155 | 92.70 49 | 94.66 52 | 85.88 65 | 91.50 175 | 79.72 105 | 97.32 77 | 96.50 30 |
|
pmmvs6 | | | 86.52 93 | 88.06 77 | 81.90 195 | 92.22 103 | 62.28 234 | 84.66 140 | 89.15 178 | 83.54 47 | 89.85 98 | 97.32 5 | 88.08 38 | 86.80 264 | 70.43 199 | 97.30 78 | 96.62 27 |
|
SD-MVS | | | 88.96 67 | 89.88 53 | 86.22 109 | 91.63 119 | 77.07 104 | 89.82 58 | 93.77 46 | 78.90 100 | 92.88 42 | 92.29 134 | 86.11 62 | 90.22 216 | 86.24 38 | 97.24 79 | 91.36 189 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CPTT-MVS | | | 89.39 59 | 88.98 68 | 90.63 41 | 95.09 33 | 86.95 13 | 92.09 28 | 92.30 100 | 79.74 88 | 87.50 142 | 92.38 129 | 81.42 112 | 93.28 128 | 83.07 71 | 97.24 79 | 91.67 181 |
|
APD-MVS | | | 89.54 56 | 89.63 57 | 89.26 64 | 92.57 90 | 81.34 62 | 90.19 50 | 93.08 76 | 80.87 77 | 91.13 75 | 93.19 104 | 86.22 61 | 95.97 11 | 82.23 80 | 97.18 81 | 90.45 208 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
wuyk23d | | | 75.13 249 | 79.30 207 | 62.63 323 | 75.56 332 | 75.18 119 | 80.89 224 | 73.10 311 | 75.06 146 | 94.76 12 | 95.32 34 | 87.73 42 | 52.85 351 | 34.16 350 | 97.11 82 | 59.85 347 |
|
PMVS | | 80.48 6 | 90.08 42 | 90.66 47 | 88.34 79 | 96.71 3 | 92.97 1 | 90.31 49 | 89.57 173 | 88.51 19 | 90.11 90 | 95.12 41 | 90.98 8 | 88.92 238 | 77.55 130 | 97.07 83 | 83.13 300 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
OMC-MVS | | | 88.19 74 | 87.52 82 | 90.19 49 | 91.94 112 | 81.68 59 | 87.49 98 | 93.17 73 | 76.02 130 | 88.64 124 | 91.22 158 | 84.24 74 | 93.37 126 | 77.97 126 | 97.03 84 | 95.52 48 |
|
test_prior3 | | | 86.31 96 | 86.31 99 | 86.32 104 | 90.59 150 | 71.99 148 | 83.37 173 | 92.85 86 | 75.43 140 | 84.58 193 | 91.57 151 | 81.92 106 | 94.17 91 | 79.54 108 | 96.97 85 | 92.80 138 |
|
test_prior2 | | | | | | | | 83.37 173 | | 75.43 140 | 84.58 193 | 91.57 151 | 81.92 106 | | 79.54 108 | 96.97 85 | |
|
EPP-MVSNet | | | 85.47 110 | 85.04 121 | 86.77 97 | 91.52 126 | 69.37 169 | 91.63 35 | 87.98 198 | 81.51 70 | 87.05 151 | 91.83 145 | 66.18 234 | 95.29 51 | 70.75 194 | 96.89 87 | 95.64 45 |
|
ETH3D cwj APD-0.16 | | | 87.83 80 | 87.62 81 | 88.47 75 | 91.21 133 | 78.20 86 | 87.26 100 | 94.54 17 | 72.05 186 | 88.89 118 | 92.31 133 | 83.86 75 | 94.24 85 | 81.59 87 | 96.87 88 | 92.97 135 |
|
VDDNet | | | 84.35 133 | 85.39 117 | 81.25 205 | 95.13 32 | 59.32 262 | 85.42 131 | 81.11 264 | 86.41 28 | 87.41 143 | 96.21 20 | 73.61 186 | 90.61 207 | 66.33 230 | 96.85 89 | 93.81 106 |
|
VPNet | | | 80.25 202 | 81.68 175 | 75.94 277 | 92.46 94 | 47.98 336 | 76.70 280 | 81.67 262 | 73.45 162 | 84.87 188 | 92.82 116 | 74.66 178 | 86.51 268 | 61.66 262 | 96.85 89 | 93.33 119 |
|
SixPastTwentyTwo | | | 87.20 85 | 87.45 83 | 86.45 102 | 92.52 92 | 69.19 175 | 87.84 94 | 88.05 195 | 81.66 68 | 94.64 14 | 96.53 15 | 65.94 235 | 94.75 70 | 83.02 73 | 96.83 91 | 95.41 50 |
|
VPA-MVSNet | | | 83.47 155 | 84.73 126 | 79.69 232 | 90.29 155 | 57.52 280 | 81.30 219 | 88.69 184 | 76.29 124 | 87.58 141 | 94.44 61 | 80.60 120 | 87.20 257 | 66.60 229 | 96.82 92 | 94.34 83 |
|
Gipuma | | | 84.44 130 | 86.33 98 | 78.78 242 | 84.20 257 | 73.57 127 | 89.55 65 | 90.44 146 | 84.24 37 | 84.38 197 | 94.89 45 | 76.35 164 | 80.40 308 | 76.14 145 | 96.80 93 | 82.36 308 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ZD-MVS | | | | | | 92.22 103 | 80.48 66 | | 91.85 111 | 71.22 193 | 90.38 87 | 92.98 109 | 86.06 63 | 96.11 6 | 81.99 82 | 96.75 94 | |
|
CDPH-MVS | | | 86.17 101 | 85.54 114 | 88.05 84 | 92.25 101 | 75.45 117 | 83.85 158 | 92.01 106 | 65.91 241 | 86.19 166 | 91.75 149 | 83.77 78 | 94.98 64 | 77.43 133 | 96.71 95 | 93.73 107 |
|
DP-MVS | | | 88.60 71 | 89.01 66 | 87.36 91 | 91.30 130 | 77.50 95 | 87.55 96 | 92.97 83 | 87.95 22 | 89.62 106 | 92.87 115 | 84.56 70 | 93.89 101 | 77.65 128 | 96.62 96 | 90.70 200 |
|
testtj | | | 89.51 57 | 89.48 60 | 89.59 59 | 92.26 100 | 80.80 65 | 90.14 51 | 93.54 56 | 83.37 48 | 90.57 86 | 92.55 126 | 84.99 68 | 96.15 5 | 81.26 88 | 96.61 97 | 91.83 176 |
|
TransMVSNet (Re) | | | 84.02 143 | 85.74 110 | 78.85 241 | 91.00 140 | 55.20 298 | 82.29 201 | 87.26 205 | 79.65 90 | 88.38 131 | 95.52 32 | 83.00 85 | 86.88 262 | 67.97 221 | 96.60 98 | 94.45 79 |
|
ambc | | | | | 82.98 176 | 90.55 152 | 64.86 203 | 88.20 88 | 89.15 178 | | 89.40 113 | 93.96 88 | 71.67 212 | 91.38 183 | 78.83 115 | 96.55 99 | 92.71 144 |
|
train_agg | | | 85.98 104 | 85.28 118 | 88.07 83 | 92.34 97 | 79.70 73 | 83.94 154 | 90.32 150 | 65.79 242 | 84.49 195 | 90.97 168 | 81.93 104 | 93.63 111 | 81.21 89 | 96.54 100 | 90.88 196 |
|
VDD-MVS | | | 84.23 138 | 84.58 134 | 83.20 172 | 91.17 137 | 65.16 202 | 83.25 177 | 84.97 243 | 79.79 87 | 87.18 145 | 94.27 70 | 74.77 176 | 90.89 197 | 69.24 207 | 96.54 100 | 93.55 118 |
|
HPM-MVS++ | | | 88.93 68 | 88.45 75 | 90.38 45 | 94.92 36 | 85.85 28 | 89.70 59 | 91.27 127 | 78.20 109 | 86.69 157 | 92.28 135 | 80.36 123 | 95.06 62 | 86.17 39 | 96.49 102 | 90.22 211 |
|
test_djsdf | | | 89.62 54 | 89.01 66 | 91.45 25 | 92.36 96 | 82.98 53 | 91.98 30 | 90.08 163 | 71.54 190 | 94.28 21 | 96.54 14 | 81.57 110 | 94.27 82 | 86.26 35 | 96.49 102 | 97.09 20 |
|
test9_res | | | | | | | | | | | | | | | 80.83 95 | 96.45 104 | 90.57 204 |
|
Anonymous20240529 | | | 86.20 100 | 87.13 86 | 83.42 168 | 90.19 157 | 64.55 207 | 84.55 143 | 90.71 139 | 85.85 30 | 89.94 96 | 95.24 38 | 82.13 98 | 90.40 211 | 69.19 210 | 96.40 105 | 95.31 53 |
|
agg_prior1 | | | 85.72 107 | 85.20 119 | 87.28 92 | 91.58 123 | 77.69 92 | 83.69 164 | 90.30 154 | 66.29 238 | 84.32 199 | 91.07 165 | 82.13 98 | 93.18 131 | 81.02 91 | 96.36 106 | 90.98 192 |
|
anonymousdsp | | | 89.73 53 | 88.88 70 | 92.27 9 | 89.82 164 | 86.67 15 | 90.51 46 | 90.20 160 | 69.87 207 | 95.06 11 | 96.14 22 | 84.28 73 | 93.07 138 | 87.68 13 | 96.34 107 | 97.09 20 |
|
PHI-MVS | | | 86.38 95 | 85.81 109 | 88.08 82 | 88.44 184 | 77.34 99 | 89.35 72 | 93.05 77 | 73.15 172 | 84.76 190 | 87.70 225 | 78.87 134 | 94.18 89 | 80.67 98 | 96.29 108 | 92.73 141 |
|
PS-MVSNAJss | | | 88.31 73 | 87.90 78 | 89.56 60 | 93.31 73 | 77.96 89 | 87.94 92 | 91.97 108 | 70.73 198 | 94.19 22 | 96.67 12 | 76.94 155 | 94.57 78 | 83.07 71 | 96.28 109 | 96.15 32 |
|
v10 | | | 86.54 92 | 87.10 87 | 84.84 134 | 88.16 190 | 63.28 219 | 86.64 114 | 92.20 102 | 75.42 142 | 92.81 47 | 94.50 58 | 74.05 182 | 94.06 96 | 83.88 63 | 96.28 109 | 97.17 19 |
|
CNVR-MVS | | | 87.81 81 | 87.68 80 | 88.21 81 | 92.87 83 | 77.30 101 | 85.25 132 | 91.23 128 | 77.31 117 | 87.07 150 | 91.47 155 | 82.94 86 | 94.71 71 | 84.67 56 | 96.27 111 | 92.62 148 |
|
RRT_MVS | | | 83.25 158 | 81.08 184 | 89.74 53 | 80.55 297 | 79.32 77 | 86.41 118 | 86.69 218 | 72.33 184 | 87.00 152 | 91.08 163 | 44.98 331 | 95.55 37 | 84.47 59 | 96.24 112 | 94.36 82 |
|
114514_t | | | 83.10 162 | 82.54 166 | 84.77 136 | 92.90 82 | 69.10 177 | 86.65 113 | 90.62 143 | 54.66 307 | 81.46 240 | 90.81 175 | 76.98 154 | 94.38 81 | 72.62 181 | 96.18 113 | 90.82 198 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 106 | 96.16 114 | 90.22 211 |
|
AllTest | | | 87.97 77 | 87.40 85 | 89.68 54 | 91.59 120 | 83.40 48 | 89.50 68 | 95.44 7 | 79.47 91 | 88.00 136 | 93.03 107 | 82.66 89 | 91.47 176 | 70.81 191 | 96.14 115 | 94.16 89 |
|
TestCases | | | | | 89.68 54 | 91.59 120 | 83.40 48 | | 95.44 7 | 79.47 91 | 88.00 136 | 93.03 107 | 82.66 89 | 91.47 176 | 70.81 191 | 96.14 115 | 94.16 89 |
|
EPNet | | | 80.37 199 | 78.41 216 | 86.23 108 | 76.75 323 | 73.28 129 | 87.18 102 | 77.45 281 | 76.24 126 | 68.14 323 | 88.93 209 | 65.41 237 | 93.85 102 | 69.47 205 | 96.12 117 | 91.55 186 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pm-mvs1 | | | 83.69 149 | 84.95 123 | 79.91 227 | 90.04 162 | 59.66 259 | 82.43 197 | 87.44 202 | 75.52 139 | 87.85 138 | 95.26 37 | 81.25 114 | 85.65 280 | 68.74 215 | 96.04 118 | 94.42 80 |
|
mvs_tets | | | 89.78 52 | 89.27 63 | 91.30 28 | 93.51 67 | 84.79 39 | 89.89 57 | 90.63 142 | 70.00 206 | 94.55 15 | 96.67 12 | 87.94 39 | 93.59 115 | 84.27 60 | 95.97 119 | 95.52 48 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 84 | 86.21 102 | 90.49 43 | 91.48 127 | 84.90 37 | 83.41 172 | 92.38 99 | 70.25 204 | 89.35 114 | 90.68 179 | 82.85 87 | 94.57 78 | 79.55 107 | 95.95 120 | 92.00 170 |
|
jajsoiax | | | 89.41 58 | 88.81 72 | 91.19 32 | 93.38 71 | 84.72 40 | 89.70 59 | 90.29 157 | 69.27 210 | 94.39 17 | 96.38 16 | 86.02 64 | 93.52 119 | 83.96 62 | 95.92 121 | 95.34 51 |
|
ANet_high | | | 83.17 161 | 85.68 112 | 75.65 278 | 81.24 284 | 45.26 342 | 79.94 234 | 92.91 84 | 83.83 41 | 91.33 73 | 96.88 11 | 80.25 124 | 85.92 276 | 68.89 213 | 95.89 122 | 95.76 42 |
|
3Dnovator+ | | 83.92 2 | 89.97 49 | 89.66 56 | 90.92 36 | 91.27 132 | 81.66 60 | 91.25 37 | 94.13 33 | 88.89 13 | 88.83 121 | 94.26 73 | 77.55 146 | 95.86 19 | 84.88 53 | 95.87 123 | 95.24 56 |
|
HQP_MVS | | | 87.75 82 | 87.43 84 | 88.70 71 | 93.45 68 | 76.42 112 | 89.45 70 | 93.61 53 | 79.44 93 | 86.55 159 | 92.95 112 | 74.84 173 | 95.22 55 | 80.78 96 | 95.83 124 | 94.46 77 |
|
plane_prior5 | | | | | | | | | 93.61 53 | | | | | 95.22 55 | 80.78 96 | 95.83 124 | 94.46 77 |
|
cl-mvsnet_ | | | 80.42 197 | 80.23 195 | 81.02 211 | 79.99 300 | 59.25 263 | 77.07 276 | 87.02 214 | 67.37 230 | 86.18 168 | 89.21 203 | 63.08 249 | 90.16 218 | 76.31 143 | 95.80 126 | 93.65 111 |
|
cl-mvsnet1 | | | 80.43 196 | 80.23 195 | 81.02 211 | 79.99 300 | 59.25 263 | 77.07 276 | 87.02 214 | 67.38 229 | 86.19 166 | 89.22 202 | 63.09 248 | 90.16 218 | 76.32 142 | 95.80 126 | 93.66 110 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 98 | 85.65 113 | 87.96 85 | 91.30 130 | 76.92 105 | 87.19 101 | 91.99 107 | 70.56 199 | 84.96 185 | 90.69 178 | 80.01 126 | 95.14 58 | 78.37 118 | 95.78 128 | 91.82 177 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LFMVS | | | 80.15 205 | 80.56 189 | 78.89 240 | 89.19 171 | 55.93 290 | 85.22 133 | 73.78 305 | 82.96 54 | 84.28 203 | 92.72 120 | 57.38 281 | 90.07 225 | 63.80 246 | 95.75 129 | 90.68 201 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 130 | |
|
原ACMM1 | | | | | 84.60 140 | 92.81 88 | 74.01 125 | | 91.50 120 | 62.59 263 | 82.73 222 | 90.67 180 | 76.53 162 | 94.25 84 | 69.24 207 | 95.69 131 | 85.55 268 |
|
tfpnnormal | | | 81.79 178 | 82.95 159 | 78.31 251 | 88.93 176 | 55.40 294 | 80.83 226 | 82.85 253 | 76.81 121 | 85.90 175 | 94.14 78 | 74.58 179 | 86.51 268 | 66.82 228 | 95.68 132 | 93.01 131 |
|
ETH3 D test6400 | | | 85.09 116 | 84.87 124 | 85.75 121 | 90.80 145 | 69.34 170 | 85.90 123 | 93.31 65 | 65.43 248 | 86.11 169 | 89.95 193 | 80.92 116 | 94.86 67 | 75.90 148 | 95.57 133 | 93.05 129 |
|
TAPA-MVS | | 77.73 12 | 85.71 108 | 84.83 125 | 88.37 78 | 88.78 178 | 79.72 72 | 87.15 103 | 93.50 57 | 69.17 211 | 85.80 176 | 89.56 198 | 80.76 118 | 92.13 158 | 73.21 177 | 95.51 134 | 93.25 124 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
LS3D | | | 90.60 34 | 90.34 50 | 91.38 27 | 89.03 173 | 84.23 45 | 93.58 5 | 94.68 16 | 90.65 7 | 90.33 89 | 93.95 91 | 84.50 71 | 95.37 49 | 80.87 94 | 95.50 135 | 94.53 75 |
|
v8 | | | 86.22 99 | 86.83 94 | 84.36 145 | 87.82 195 | 62.35 233 | 86.42 117 | 91.33 125 | 76.78 122 | 92.73 48 | 94.48 60 | 73.41 191 | 93.72 108 | 83.10 70 | 95.41 136 | 97.01 22 |
|
Vis-MVSNet (Re-imp) | | | 77.82 224 | 77.79 221 | 77.92 258 | 88.82 177 | 51.29 323 | 83.28 175 | 71.97 318 | 74.04 155 | 82.23 228 | 89.78 196 | 57.38 281 | 89.41 233 | 57.22 286 | 95.41 136 | 93.05 129 |
|
OPU-MVS | | | | | 88.27 80 | 91.89 114 | 77.83 90 | 90.47 47 | | | | 91.22 158 | 81.12 115 | 94.68 72 | 74.48 158 | 95.35 138 | 92.29 159 |
|
FMVSNet1 | | | 84.55 127 | 85.45 116 | 81.85 197 | 90.27 156 | 61.05 245 | 86.83 108 | 88.27 192 | 78.57 106 | 89.66 105 | 95.64 29 | 75.43 167 | 90.68 204 | 69.09 211 | 95.33 139 | 93.82 103 |
|
test12 | | | | | 86.57 99 | 90.74 146 | 72.63 136 | | 90.69 140 | | 82.76 221 | | 79.20 131 | 94.80 69 | | 95.32 140 | 92.27 161 |
|
NCCC | | | 87.36 83 | 86.87 93 | 88.83 68 | 92.32 99 | 78.84 82 | 86.58 115 | 91.09 132 | 78.77 103 | 84.85 189 | 90.89 172 | 80.85 117 | 95.29 51 | 81.14 90 | 95.32 140 | 92.34 155 |
|
Patchmtry | | | 76.56 238 | 77.46 223 | 73.83 286 | 79.37 308 | 46.60 339 | 82.41 198 | 76.90 283 | 73.81 158 | 85.56 180 | 92.38 129 | 48.07 309 | 83.98 294 | 63.36 249 | 95.31 142 | 90.92 195 |
|
XVG-OURS | | | 89.18 62 | 88.83 71 | 90.23 48 | 94.28 47 | 86.11 23 | 85.91 122 | 93.60 55 | 80.16 84 | 89.13 117 | 93.44 102 | 83.82 76 | 90.98 192 | 83.86 64 | 95.30 143 | 93.60 114 |
|
TSAR-MVS + GP. | | | 83.95 145 | 82.69 162 | 87.72 86 | 89.27 169 | 81.45 61 | 83.72 163 | 81.58 263 | 74.73 148 | 85.66 177 | 86.06 250 | 72.56 203 | 92.69 147 | 75.44 152 | 95.21 144 | 89.01 233 |
|
test_0402 | | | 88.65 70 | 89.58 59 | 85.88 118 | 92.55 91 | 72.22 146 | 84.01 153 | 89.44 175 | 88.63 18 | 94.38 18 | 95.77 25 | 86.38 60 | 93.59 115 | 79.84 104 | 95.21 144 | 91.82 177 |
|
TinyColmap | | | 81.25 183 | 82.34 169 | 77.99 257 | 85.33 241 | 60.68 251 | 82.32 200 | 88.33 190 | 71.26 192 | 86.97 153 | 92.22 138 | 77.10 152 | 86.98 261 | 62.37 254 | 95.17 146 | 86.31 261 |
|
Anonymous202405211 | | | 80.51 195 | 81.19 183 | 78.49 248 | 88.48 182 | 57.26 282 | 76.63 281 | 82.49 255 | 81.21 73 | 84.30 202 | 92.24 137 | 67.99 226 | 86.24 272 | 62.22 255 | 95.13 147 | 91.98 173 |
|
tttt0517 | | | 81.07 185 | 79.58 205 | 85.52 125 | 88.99 175 | 66.45 194 | 87.03 105 | 75.51 294 | 73.76 159 | 88.32 133 | 90.20 188 | 37.96 347 | 94.16 94 | 79.36 112 | 95.13 147 | 95.93 41 |
|
DP-MVS Recon | | | 84.05 142 | 83.22 154 | 86.52 101 | 91.73 118 | 75.27 118 | 83.23 179 | 92.40 97 | 72.04 187 | 82.04 231 | 88.33 215 | 77.91 142 | 93.95 100 | 66.17 231 | 95.12 149 | 90.34 210 |
|
PCF-MVS | | 74.62 15 | 82.15 173 | 80.92 187 | 85.84 119 | 89.43 166 | 72.30 144 | 80.53 228 | 91.82 113 | 57.36 296 | 87.81 139 | 89.92 195 | 77.67 144 | 93.63 111 | 58.69 278 | 95.08 150 | 91.58 185 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CSCG | | | 86.26 97 | 86.47 97 | 85.60 124 | 90.87 143 | 74.26 124 | 87.98 91 | 91.85 111 | 80.35 81 | 89.54 112 | 88.01 219 | 79.09 132 | 92.13 158 | 75.51 150 | 95.06 151 | 90.41 209 |
|
plane_prior | | | | | | | 76.42 112 | 87.15 103 | | 75.94 134 | | | | | | 95.03 152 | |
|
new-patchmatchnet | | | 70.10 287 | 73.37 261 | 60.29 330 | 81.23 285 | 16.95 358 | 59.54 341 | 74.62 297 | 62.93 261 | 80.97 245 | 87.93 222 | 62.83 251 | 71.90 327 | 55.24 298 | 95.01 153 | 92.00 170 |
|
v1192 | | | 84.57 126 | 84.69 130 | 84.21 149 | 87.75 197 | 62.88 223 | 83.02 184 | 91.43 122 | 69.08 213 | 89.98 95 | 90.89 172 | 72.70 201 | 93.62 114 | 82.41 77 | 94.97 154 | 96.13 33 |
|
v1921920 | | | 84.23 138 | 84.37 140 | 83.79 158 | 87.64 201 | 61.71 237 | 82.91 187 | 91.20 129 | 67.94 224 | 90.06 91 | 90.34 185 | 72.04 208 | 93.59 115 | 82.32 79 | 94.91 155 | 96.07 35 |
|
v144192 | | | 84.24 137 | 84.41 138 | 83.71 161 | 87.59 202 | 61.57 238 | 82.95 186 | 91.03 133 | 67.82 227 | 89.80 100 | 90.49 183 | 73.28 194 | 93.51 120 | 81.88 85 | 94.89 156 | 96.04 37 |
|
testing_2 | | | 84.36 131 | 84.64 132 | 83.50 167 | 86.74 220 | 63.97 213 | 84.56 142 | 90.31 152 | 66.22 239 | 91.62 67 | 94.55 56 | 75.88 165 | 91.95 164 | 77.02 138 | 94.89 156 | 94.56 71 |
|
LCM-MVSNet-Re | | | 83.48 154 | 85.06 120 | 78.75 243 | 85.94 236 | 55.75 293 | 80.05 232 | 94.27 20 | 76.47 123 | 96.09 5 | 94.54 57 | 83.31 83 | 89.75 229 | 59.95 273 | 94.89 156 | 90.75 199 |
|
v1240 | | | 84.30 135 | 84.51 136 | 83.65 162 | 87.65 200 | 61.26 242 | 82.85 188 | 91.54 119 | 67.94 224 | 90.68 84 | 90.65 181 | 71.71 211 | 93.64 110 | 82.84 75 | 94.78 159 | 96.07 35 |
|
MSLP-MVS++ | | | 85.00 120 | 86.03 105 | 81.90 195 | 91.84 116 | 71.56 156 | 86.75 112 | 93.02 81 | 75.95 133 | 87.12 146 | 89.39 199 | 77.98 140 | 89.40 234 | 77.46 131 | 94.78 159 | 84.75 277 |
|
IterMVS-LS | | | 84.73 123 | 84.98 122 | 83.96 155 | 87.35 205 | 63.66 214 | 83.25 177 | 89.88 167 | 76.06 128 | 89.62 106 | 92.37 132 | 73.40 193 | 92.52 150 | 78.16 122 | 94.77 161 | 95.69 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
AdaColmap | | | 83.66 150 | 83.69 150 | 83.57 165 | 90.05 161 | 72.26 145 | 86.29 121 | 90.00 165 | 78.19 110 | 81.65 238 | 87.16 235 | 83.40 82 | 94.24 85 | 61.69 261 | 94.76 162 | 84.21 282 |
|
ITE_SJBPF | | | | | 90.11 50 | 90.72 147 | 84.97 36 | | 90.30 154 | 81.56 69 | 90.02 92 | 91.20 160 | 82.40 92 | 90.81 200 | 73.58 169 | 94.66 163 | 94.56 71 |
|
v1144 | | | 84.54 129 | 84.72 128 | 84.00 153 | 87.67 199 | 62.55 229 | 82.97 185 | 90.93 135 | 70.32 203 | 89.80 100 | 90.99 167 | 73.50 188 | 93.48 121 | 81.69 86 | 94.65 164 | 95.97 38 |
|
test20.03 | | | 73.75 262 | 74.59 250 | 71.22 299 | 81.11 286 | 51.12 325 | 70.15 320 | 72.10 317 | 70.42 200 | 80.28 258 | 91.50 154 | 64.21 241 | 74.72 324 | 46.96 333 | 94.58 165 | 87.82 247 |
|
TSAR-MVS + MP. | | | 88.14 75 | 87.82 79 | 89.09 66 | 95.72 21 | 76.74 108 | 92.49 24 | 91.19 130 | 67.85 226 | 86.63 158 | 94.84 47 | 79.58 130 | 95.96 12 | 87.62 14 | 94.50 166 | 94.56 71 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HQP3-MVS | | | | | | | | | 92.68 92 | | | | | | | 94.47 167 | |
|
HQP-MVS | | | 84.61 125 | 84.06 144 | 86.27 107 | 91.19 134 | 70.66 160 | 84.77 136 | 92.68 92 | 73.30 167 | 80.55 253 | 90.17 191 | 72.10 205 | 94.61 76 | 77.30 134 | 94.47 167 | 93.56 116 |
|
cl_fuxian | | | 81.64 179 | 81.59 178 | 81.79 201 | 80.86 290 | 59.15 266 | 78.61 256 | 90.18 161 | 68.36 218 | 87.20 144 | 87.11 237 | 69.39 218 | 91.62 173 | 78.16 122 | 94.43 169 | 94.60 70 |
|
MCST-MVS | | | 84.36 131 | 83.93 147 | 85.63 123 | 91.59 120 | 71.58 155 | 83.52 167 | 92.13 103 | 61.82 269 | 83.96 206 | 89.75 197 | 79.93 129 | 93.46 122 | 78.33 120 | 94.34 170 | 91.87 175 |
|
thisisatest0530 | | | 79.07 210 | 77.33 225 | 84.26 148 | 87.13 210 | 64.58 205 | 83.66 165 | 75.95 289 | 68.86 216 | 85.22 183 | 87.36 232 | 38.10 345 | 93.57 118 | 75.47 151 | 94.28 171 | 94.62 68 |
|
baseline | | | 85.20 113 | 85.93 106 | 83.02 175 | 86.30 228 | 62.37 232 | 84.55 143 | 93.96 38 | 74.48 152 | 87.12 146 | 92.03 139 | 82.30 94 | 91.94 165 | 78.39 117 | 94.21 172 | 94.74 67 |
|
RRT_test8_iter05 | | | 78.08 221 | 77.52 222 | 79.75 230 | 80.84 291 | 52.54 314 | 80.61 227 | 88.96 180 | 67.77 228 | 84.62 192 | 89.29 201 | 33.89 352 | 92.10 161 | 77.59 129 | 94.15 173 | 94.62 68 |
|
alignmvs | | | 83.94 146 | 83.98 146 | 83.80 157 | 87.80 196 | 67.88 184 | 84.54 145 | 91.42 124 | 73.27 170 | 88.41 130 | 87.96 220 | 72.33 204 | 90.83 199 | 76.02 147 | 94.11 174 | 92.69 145 |
|
USDC | | | 76.63 236 | 76.73 232 | 76.34 274 | 83.46 266 | 57.20 283 | 80.02 233 | 88.04 196 | 52.14 322 | 83.65 210 | 91.25 157 | 63.24 247 | 86.65 267 | 54.66 302 | 94.11 174 | 85.17 272 |
|
MVS_111021_HR | | | 84.63 124 | 84.34 141 | 85.49 127 | 90.18 158 | 75.86 116 | 79.23 248 | 87.13 209 | 73.35 164 | 85.56 180 | 89.34 200 | 83.60 80 | 90.50 209 | 76.64 140 | 94.05 176 | 90.09 216 |
|
VNet | | | 79.31 209 | 80.27 194 | 76.44 272 | 87.92 193 | 53.95 303 | 75.58 293 | 84.35 247 | 74.39 153 | 82.23 228 | 90.72 177 | 72.84 199 | 84.39 291 | 60.38 272 | 93.98 177 | 90.97 193 |
|
FMVSNet2 | | | 81.31 182 | 81.61 177 | 80.41 221 | 86.38 223 | 58.75 273 | 83.93 156 | 86.58 220 | 72.43 180 | 87.65 140 | 92.98 109 | 63.78 244 | 90.22 216 | 66.86 225 | 93.92 178 | 92.27 161 |
|
LF4IMVS | | | 82.75 164 | 81.93 174 | 85.19 129 | 82.08 275 | 80.15 69 | 85.53 129 | 88.76 183 | 68.01 221 | 85.58 179 | 87.75 224 | 71.80 210 | 86.85 263 | 74.02 163 | 93.87 179 | 88.58 236 |
|
canonicalmvs | | | 85.50 109 | 86.14 103 | 83.58 164 | 87.97 191 | 67.13 187 | 87.55 96 | 94.32 19 | 73.44 163 | 88.47 128 | 87.54 228 | 86.45 58 | 91.06 191 | 75.76 149 | 93.76 180 | 92.54 150 |
|
v2v482 | | | 84.09 140 | 84.24 142 | 83.62 163 | 87.13 210 | 61.40 239 | 82.71 191 | 89.71 169 | 72.19 185 | 89.55 110 | 91.41 156 | 70.70 216 | 93.20 130 | 81.02 91 | 93.76 180 | 96.25 31 |
|
casdiffmvs | | | 85.21 112 | 85.85 108 | 83.31 170 | 86.17 233 | 62.77 225 | 83.03 183 | 93.93 39 | 74.69 149 | 88.21 134 | 92.68 122 | 82.29 95 | 91.89 168 | 77.87 127 | 93.75 182 | 95.27 55 |
|
UGNet | | | 82.78 163 | 81.64 176 | 86.21 111 | 86.20 232 | 76.24 115 | 86.86 106 | 85.68 228 | 77.07 119 | 73.76 303 | 92.82 116 | 69.64 217 | 91.82 171 | 69.04 212 | 93.69 183 | 90.56 205 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
旧先验1 | | | | | | 91.97 109 | 71.77 150 | | 81.78 261 | | | 91.84 144 | 73.92 183 | | | 93.65 184 | 83.61 290 |
|
AUN-MVS | | | 81.18 184 | 78.78 210 | 88.39 77 | 90.93 141 | 82.14 56 | 82.51 196 | 83.67 248 | 64.69 256 | 80.29 256 | 85.91 253 | 51.07 301 | 92.38 152 | 76.29 144 | 93.63 185 | 90.65 203 |
|
MVS_111021_LR | | | 84.28 136 | 83.76 149 | 85.83 120 | 89.23 170 | 83.07 51 | 80.99 223 | 83.56 249 | 72.71 178 | 86.07 170 | 89.07 207 | 81.75 109 | 86.19 273 | 77.11 136 | 93.36 186 | 88.24 237 |
|
GBi-Net | | | 82.02 175 | 82.07 171 | 81.85 197 | 86.38 223 | 61.05 245 | 86.83 108 | 88.27 192 | 72.43 180 | 86.00 171 | 95.64 29 | 63.78 244 | 90.68 204 | 65.95 232 | 93.34 187 | 93.82 103 |
|
test1 | | | 82.02 175 | 82.07 171 | 81.85 197 | 86.38 223 | 61.05 245 | 86.83 108 | 88.27 192 | 72.43 180 | 86.00 171 | 95.64 29 | 63.78 244 | 90.68 204 | 65.95 232 | 93.34 187 | 93.82 103 |
|
FMVSNet3 | | | 78.80 214 | 78.55 213 | 79.57 234 | 82.89 273 | 56.89 286 | 81.76 209 | 85.77 227 | 69.04 214 | 86.00 171 | 90.44 184 | 51.75 299 | 90.09 224 | 65.95 232 | 93.34 187 | 91.72 179 |
|
CS-MVS | | | 83.43 157 | 83.04 158 | 84.59 141 | 87.87 194 | 66.61 192 | 85.57 128 | 94.90 14 | 73.02 174 | 81.12 244 | 78.56 325 | 80.00 127 | 95.52 39 | 73.04 179 | 93.29 190 | 91.62 183 |
|
K. test v3 | | | 85.14 114 | 84.73 126 | 86.37 103 | 91.13 138 | 69.63 168 | 85.45 130 | 76.68 286 | 84.06 40 | 92.44 53 | 96.99 9 | 62.03 252 | 94.65 73 | 80.58 99 | 93.24 191 | 94.83 66 |
|
Anonymous20231206 | | | 71.38 280 | 71.88 275 | 69.88 300 | 86.31 227 | 54.37 300 | 70.39 319 | 74.62 297 | 52.57 318 | 76.73 279 | 88.76 210 | 59.94 263 | 72.06 326 | 44.35 338 | 93.23 192 | 83.23 298 |
|
D2MVS | | | 76.84 234 | 75.67 242 | 80.34 222 | 80.48 298 | 62.16 236 | 73.50 307 | 84.80 245 | 57.61 294 | 82.24 227 | 87.54 228 | 51.31 300 | 87.65 253 | 70.40 200 | 93.19 193 | 91.23 190 |
|
miper_lstm_enhance | | | 76.45 240 | 76.10 237 | 77.51 262 | 76.72 324 | 60.97 249 | 64.69 335 | 85.04 240 | 63.98 258 | 83.20 216 | 88.22 216 | 56.67 284 | 78.79 313 | 73.22 172 | 93.12 194 | 92.78 140 |
|
新几何1 | | | | | 82.95 177 | 93.96 58 | 78.56 85 | | 80.24 269 | 55.45 303 | 83.93 207 | 91.08 163 | 71.19 214 | 88.33 247 | 65.84 235 | 93.07 195 | 81.95 313 |
|
1121 | | | 80.86 188 | 79.81 204 | 84.02 152 | 93.93 59 | 78.70 83 | 81.64 212 | 80.18 270 | 55.43 304 | 83.67 209 | 91.15 161 | 71.29 213 | 91.41 181 | 67.95 222 | 93.06 196 | 81.96 312 |
|
lessismore_v0 | | | | | 85.95 115 | 91.10 139 | 70.99 159 | | 70.91 324 | | 91.79 64 | 94.42 64 | 61.76 253 | 92.93 141 | 79.52 110 | 93.03 197 | 93.93 97 |
|
TAMVS | | | 78.08 221 | 76.36 234 | 83.23 171 | 90.62 149 | 72.87 131 | 79.08 249 | 80.01 272 | 61.72 271 | 81.35 242 | 86.92 239 | 63.96 243 | 88.78 242 | 50.61 317 | 93.01 198 | 88.04 241 |
|
ETV-MVS | | | 84.31 134 | 83.91 148 | 85.52 125 | 88.58 180 | 70.40 162 | 84.50 147 | 93.37 59 | 78.76 104 | 84.07 205 | 78.72 324 | 80.39 122 | 95.13 59 | 73.82 167 | 92.98 199 | 91.04 191 |
|
EPNet_dtu | | | 72.87 269 | 71.33 281 | 77.49 263 | 77.72 317 | 60.55 252 | 82.35 199 | 75.79 290 | 66.49 237 | 58.39 351 | 81.06 310 | 53.68 296 | 85.98 275 | 53.55 306 | 92.97 200 | 85.95 264 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+-dtu | | | 85.82 106 | 83.38 152 | 93.14 3 | 87.13 210 | 91.15 2 | 87.70 95 | 88.42 187 | 74.57 150 | 83.56 212 | 85.65 254 | 78.49 136 | 94.21 87 | 72.04 185 | 92.88 201 | 94.05 93 |
|
CANet | | | 83.79 148 | 82.85 160 | 86.63 98 | 86.17 233 | 72.21 147 | 83.76 162 | 91.43 122 | 77.24 118 | 74.39 300 | 87.45 230 | 75.36 168 | 95.42 47 | 77.03 137 | 92.83 202 | 92.25 163 |
|
API-MVS | | | 82.28 170 | 82.61 164 | 81.30 204 | 86.29 229 | 69.79 164 | 88.71 83 | 87.67 201 | 78.42 108 | 82.15 230 | 84.15 281 | 77.98 140 | 91.59 174 | 65.39 238 | 92.75 203 | 82.51 307 |
|
test_yl | | | 78.71 216 | 78.51 214 | 79.32 237 | 84.32 252 | 58.84 270 | 78.38 257 | 85.33 232 | 75.99 131 | 82.49 223 | 86.57 241 | 58.01 275 | 90.02 226 | 62.74 252 | 92.73 204 | 89.10 228 |
|
DCV-MVSNet | | | 78.71 216 | 78.51 214 | 79.32 237 | 84.32 252 | 58.84 270 | 78.38 257 | 85.33 232 | 75.99 131 | 82.49 223 | 86.57 241 | 58.01 275 | 90.02 226 | 62.74 252 | 92.73 204 | 89.10 228 |
|
Regformer-1 | | | 86.00 102 | 85.50 115 | 87.49 89 | 84.18 258 | 76.90 106 | 83.52 167 | 87.94 199 | 82.18 62 | 89.19 115 | 85.07 269 | 82.28 96 | 91.89 168 | 82.40 78 | 92.72 206 | 93.69 109 |
|
Regformer-2 | | | 86.74 90 | 86.08 104 | 88.73 70 | 84.18 258 | 79.20 78 | 83.52 167 | 89.33 176 | 83.33 49 | 89.92 97 | 85.07 269 | 83.23 84 | 93.16 133 | 83.39 67 | 92.72 206 | 93.83 101 |
|
testgi | | | 72.36 272 | 74.61 248 | 65.59 317 | 80.56 296 | 42.82 348 | 68.29 325 | 73.35 308 | 66.87 234 | 81.84 234 | 89.93 194 | 72.08 207 | 66.92 340 | 46.05 335 | 92.54 208 | 87.01 255 |
|
FMVSNet5 | | | 72.10 275 | 71.69 276 | 73.32 287 | 81.57 280 | 53.02 310 | 76.77 279 | 78.37 277 | 63.31 259 | 76.37 281 | 91.85 143 | 36.68 349 | 78.98 311 | 47.87 329 | 92.45 209 | 87.95 243 |
|
CDS-MVSNet | | | 77.32 229 | 75.40 243 | 83.06 174 | 89.00 174 | 72.48 141 | 77.90 264 | 82.17 258 | 60.81 276 | 78.94 268 | 83.49 286 | 59.30 268 | 88.76 243 | 54.64 303 | 92.37 210 | 87.93 244 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CNLPA | | | 83.55 153 | 83.10 157 | 84.90 133 | 89.34 168 | 83.87 46 | 84.54 145 | 88.77 182 | 79.09 97 | 83.54 213 | 88.66 213 | 74.87 172 | 81.73 303 | 66.84 227 | 92.29 211 | 89.11 227 |
|
F-COLMAP | | | 84.97 121 | 83.42 151 | 89.63 56 | 92.39 95 | 83.40 48 | 88.83 80 | 91.92 110 | 73.19 171 | 80.18 259 | 89.15 205 | 77.04 153 | 93.28 128 | 65.82 236 | 92.28 212 | 92.21 164 |
|
thres600view7 | | | 75.97 243 | 75.35 245 | 77.85 260 | 87.01 216 | 51.84 320 | 80.45 229 | 73.26 309 | 75.20 144 | 83.10 218 | 86.31 247 | 45.54 322 | 89.05 235 | 55.03 300 | 92.24 213 | 92.66 146 |
|
PVSNet_BlendedMVS | | | 78.80 214 | 77.84 220 | 81.65 202 | 84.43 248 | 63.41 216 | 79.49 242 | 90.44 146 | 61.70 272 | 75.43 293 | 87.07 238 | 69.11 221 | 91.44 178 | 60.68 270 | 92.24 213 | 90.11 215 |
|
DELS-MVS | | | 81.44 181 | 81.25 181 | 82.03 193 | 84.27 254 | 62.87 224 | 76.47 285 | 92.49 96 | 70.97 195 | 81.64 239 | 83.83 282 | 75.03 170 | 92.70 146 | 74.29 159 | 92.22 215 | 90.51 207 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
testdata | | | | | 79.54 235 | 92.87 83 | 72.34 143 | | 80.14 271 | 59.91 283 | 85.47 182 | 91.75 149 | 67.96 227 | 85.24 282 | 68.57 218 | 92.18 216 | 81.06 326 |
|
cl-mvsnet2 | | | 78.97 211 | 78.21 218 | 81.24 207 | 77.74 316 | 59.01 267 | 77.46 273 | 87.13 209 | 65.79 242 | 84.32 199 | 85.10 266 | 58.96 271 | 90.88 198 | 75.36 153 | 92.03 217 | 93.84 100 |
|
miper_ehance_all_eth | | | 80.34 200 | 80.04 202 | 81.24 207 | 79.82 302 | 58.95 268 | 77.66 267 | 89.66 170 | 65.75 245 | 85.99 174 | 85.11 265 | 68.29 225 | 91.42 180 | 76.03 146 | 92.03 217 | 93.33 119 |
|
miper_enhance_ethall | | | 77.83 223 | 76.93 229 | 80.51 219 | 76.15 329 | 58.01 276 | 75.47 295 | 88.82 181 | 58.05 290 | 83.59 211 | 80.69 311 | 64.41 239 | 91.20 185 | 73.16 178 | 92.03 217 | 92.33 156 |
|
MVS_0304 | | | 78.17 219 | 77.23 226 | 80.99 213 | 84.13 260 | 69.07 178 | 81.39 216 | 80.81 267 | 76.28 125 | 67.53 328 | 89.11 206 | 62.87 250 | 86.77 265 | 60.90 269 | 92.01 220 | 87.13 253 |
|
DPM-MVS | | | 80.10 206 | 79.18 208 | 82.88 181 | 90.71 148 | 69.74 165 | 78.87 252 | 90.84 136 | 60.29 281 | 75.64 292 | 85.92 252 | 67.28 228 | 93.11 136 | 71.24 189 | 91.79 221 | 85.77 267 |
|
v148 | | | 82.31 169 | 82.48 167 | 81.81 200 | 85.59 238 | 59.66 259 | 81.47 215 | 86.02 225 | 72.85 176 | 88.05 135 | 90.65 181 | 70.73 215 | 90.91 196 | 75.15 155 | 91.79 221 | 94.87 62 |
|
test222 | | | | | | 93.31 73 | 76.54 109 | 79.38 243 | 77.79 279 | 52.59 317 | 82.36 226 | 90.84 174 | 66.83 231 | | | 91.69 223 | 81.25 321 |
|
eth_miper_zixun_eth | | | 80.84 189 | 80.22 197 | 82.71 183 | 81.41 282 | 60.98 248 | 77.81 265 | 90.14 162 | 67.31 231 | 86.95 154 | 87.24 234 | 64.26 240 | 92.31 154 | 75.23 154 | 91.61 224 | 94.85 64 |
|
pmmvs-eth3d | | | 78.42 218 | 77.04 228 | 82.57 188 | 87.44 204 | 74.41 123 | 80.86 225 | 79.67 273 | 55.68 302 | 84.69 191 | 90.31 187 | 60.91 256 | 85.42 281 | 62.20 256 | 91.59 225 | 87.88 245 |
|
Vis-MVSNet | | | 86.86 87 | 86.58 96 | 87.72 86 | 92.09 106 | 77.43 98 | 87.35 99 | 92.09 104 | 78.87 101 | 84.27 204 | 94.05 81 | 78.35 138 | 93.65 109 | 80.54 100 | 91.58 226 | 92.08 167 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
thisisatest0515 | | | 73.00 268 | 70.52 283 | 80.46 220 | 81.45 281 | 59.90 257 | 73.16 310 | 74.31 301 | 57.86 291 | 76.08 287 | 77.78 328 | 37.60 348 | 92.12 160 | 65.00 239 | 91.45 227 | 89.35 222 |
|
ppachtmachnet_test | | | 74.73 256 | 74.00 255 | 76.90 267 | 80.71 294 | 56.89 286 | 71.53 315 | 78.42 276 | 58.24 288 | 79.32 265 | 82.92 294 | 57.91 278 | 84.26 292 | 65.60 237 | 91.36 228 | 89.56 218 |
|
OpenMVS | | 76.72 13 | 81.98 177 | 82.00 173 | 81.93 194 | 84.42 250 | 68.22 181 | 88.50 87 | 89.48 174 | 66.92 233 | 81.80 237 | 91.86 142 | 72.59 202 | 90.16 218 | 71.19 190 | 91.25 229 | 87.40 250 |
|
EG-PatchMatch MVS | | | 84.08 141 | 84.11 143 | 83.98 154 | 92.22 103 | 72.61 137 | 82.20 207 | 87.02 214 | 72.63 179 | 88.86 119 | 91.02 166 | 78.52 135 | 91.11 189 | 73.41 171 | 91.09 230 | 88.21 238 |
|
3Dnovator | | 80.37 7 | 84.80 122 | 84.71 129 | 85.06 132 | 86.36 226 | 74.71 120 | 88.77 82 | 90.00 165 | 75.65 138 | 84.96 185 | 93.17 105 | 74.06 181 | 91.19 186 | 78.28 121 | 91.09 230 | 89.29 225 |
|
Regformer-3 | | | 85.06 117 | 84.67 131 | 86.22 109 | 84.27 254 | 73.43 128 | 84.07 151 | 85.26 234 | 80.77 78 | 88.62 125 | 85.48 257 | 80.56 121 | 90.39 212 | 81.99 82 | 91.04 232 | 94.85 64 |
|
Regformer-4 | | | 86.41 94 | 85.71 111 | 88.52 73 | 84.27 254 | 77.57 94 | 84.07 151 | 88.00 197 | 82.82 56 | 89.84 99 | 85.48 257 | 82.06 100 | 92.77 145 | 83.83 65 | 91.04 232 | 95.22 59 |
|
thres100view900 | | | 75.45 246 | 75.05 246 | 76.66 271 | 87.27 206 | 51.88 319 | 81.07 222 | 73.26 309 | 75.68 137 | 83.25 215 | 86.37 244 | 45.54 322 | 88.80 239 | 51.98 313 | 90.99 234 | 89.31 223 |
|
tfpn200view9 | | | 74.86 254 | 74.23 253 | 76.74 270 | 86.24 230 | 52.12 316 | 79.24 246 | 73.87 303 | 73.34 165 | 81.82 235 | 84.60 277 | 46.02 316 | 88.80 239 | 51.98 313 | 90.99 234 | 89.31 223 |
|
thres400 | | | 75.14 248 | 74.23 253 | 77.86 259 | 86.24 230 | 52.12 316 | 79.24 246 | 73.87 303 | 73.34 165 | 81.82 235 | 84.60 277 | 46.02 316 | 88.80 239 | 51.98 313 | 90.99 234 | 92.66 146 |
|
cascas | | | 76.29 242 | 74.81 247 | 80.72 217 | 84.47 247 | 62.94 222 | 73.89 305 | 87.34 203 | 55.94 301 | 75.16 297 | 76.53 336 | 63.97 242 | 91.16 187 | 65.00 239 | 90.97 237 | 88.06 240 |
|
MSP-MVS | | | 89.08 65 | 88.16 76 | 91.83 21 | 95.76 17 | 86.14 22 | 92.75 16 | 93.90 41 | 78.43 107 | 89.16 116 | 92.25 136 | 72.03 209 | 96.36 2 | 88.21 8 | 90.93 238 | 92.98 132 |
|
ab-mvs | | | 79.67 208 | 80.56 189 | 76.99 265 | 88.48 182 | 56.93 284 | 84.70 139 | 86.06 224 | 68.95 215 | 80.78 249 | 93.08 106 | 75.30 169 | 84.62 289 | 56.78 287 | 90.90 239 | 89.43 221 |
|
MAR-MVS | | | 80.24 203 | 78.74 212 | 84.73 137 | 86.87 219 | 78.18 87 | 85.75 125 | 87.81 200 | 65.67 247 | 77.84 273 | 78.50 326 | 73.79 185 | 90.53 208 | 61.59 264 | 90.87 240 | 85.49 270 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
EI-MVSNet-Vis-set | | | 85.12 115 | 84.53 135 | 86.88 94 | 84.01 261 | 72.76 132 | 83.91 157 | 85.18 236 | 80.44 79 | 88.75 122 | 85.49 256 | 80.08 125 | 91.92 166 | 82.02 81 | 90.85 241 | 95.97 38 |
|
EI-MVSNet-UG-set | | | 85.04 118 | 84.44 137 | 86.85 95 | 83.87 264 | 72.52 140 | 83.82 159 | 85.15 237 | 80.27 83 | 88.75 122 | 85.45 260 | 79.95 128 | 91.90 167 | 81.92 84 | 90.80 242 | 96.13 33 |
|
XVG-OURS-SEG-HR | | | 89.59 55 | 89.37 61 | 90.28 47 | 94.47 45 | 85.95 24 | 86.84 107 | 93.91 40 | 80.07 86 | 86.75 156 | 93.26 103 | 93.64 3 | 90.93 194 | 84.60 57 | 90.75 243 | 93.97 95 |
|
ET-MVSNet_ETH3D | | | 75.28 247 | 72.77 266 | 82.81 182 | 83.03 272 | 68.11 182 | 77.09 275 | 76.51 287 | 60.67 279 | 77.60 277 | 80.52 313 | 38.04 346 | 91.15 188 | 70.78 193 | 90.68 244 | 89.17 226 |
|
EI-MVSNet | | | 82.61 165 | 82.42 168 | 83.20 172 | 83.25 268 | 63.66 214 | 83.50 170 | 85.07 238 | 76.06 128 | 86.55 159 | 85.10 266 | 73.41 191 | 90.25 213 | 78.15 124 | 90.67 245 | 95.68 44 |
|
MVSTER | | | 77.09 231 | 75.70 241 | 81.25 205 | 75.27 336 | 61.08 244 | 77.49 272 | 85.07 238 | 60.78 277 | 86.55 159 | 88.68 212 | 43.14 337 | 90.25 213 | 73.69 168 | 90.67 245 | 92.42 152 |
|
Patchmatch-RL test | | | 74.48 257 | 73.68 257 | 76.89 268 | 84.83 245 | 66.54 193 | 72.29 312 | 69.16 329 | 57.70 292 | 86.76 155 | 86.33 245 | 45.79 321 | 82.59 300 | 69.63 204 | 90.65 247 | 81.54 317 |
|
CMPMVS | | 59.41 20 | 75.12 250 | 73.57 258 | 79.77 228 | 75.84 331 | 67.22 186 | 81.21 220 | 82.18 257 | 50.78 330 | 76.50 280 | 87.66 226 | 55.20 293 | 82.99 299 | 62.17 258 | 90.64 248 | 89.09 230 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
V42 | | | 83.47 155 | 83.37 153 | 83.75 160 | 83.16 270 | 63.33 218 | 81.31 217 | 90.23 159 | 69.51 209 | 90.91 81 | 90.81 175 | 74.16 180 | 92.29 156 | 80.06 101 | 90.22 249 | 95.62 46 |
|
PM-MVS | | | 80.20 204 | 79.00 209 | 83.78 159 | 88.17 189 | 86.66 16 | 81.31 217 | 66.81 336 | 69.64 208 | 88.33 132 | 90.19 189 | 64.58 238 | 83.63 297 | 71.99 187 | 90.03 250 | 81.06 326 |
|
PLC | | 73.85 16 | 82.09 174 | 80.31 193 | 87.45 90 | 90.86 144 | 80.29 68 | 85.88 124 | 90.65 141 | 68.17 220 | 76.32 283 | 86.33 245 | 73.12 196 | 92.61 149 | 61.40 265 | 90.02 251 | 89.44 220 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
mvs-test1 | | | 84.55 127 | 82.12 170 | 91.84 20 | 87.13 210 | 89.54 4 | 85.05 135 | 88.42 187 | 74.57 150 | 80.60 250 | 82.98 290 | 78.49 136 | 93.98 99 | 72.04 185 | 89.77 252 | 92.00 170 |
|
CANet_DTU | | | 77.81 225 | 77.05 227 | 80.09 226 | 81.37 283 | 59.90 257 | 83.26 176 | 88.29 191 | 69.16 212 | 67.83 326 | 83.72 283 | 60.93 255 | 89.47 230 | 69.22 209 | 89.70 253 | 90.88 196 |
|
diffmvs | | | 80.40 198 | 80.48 192 | 80.17 225 | 79.02 312 | 60.04 255 | 77.54 270 | 90.28 158 | 66.65 236 | 82.40 225 | 87.33 233 | 73.50 188 | 87.35 256 | 77.98 125 | 89.62 254 | 93.13 127 |
|
PMMVS2 | | | 55.64 322 | 59.27 322 | 44.74 336 | 64.30 356 | 12.32 359 | 40.60 350 | 49.79 355 | 53.19 314 | 65.06 338 | 84.81 273 | 53.60 297 | 49.76 352 | 32.68 352 | 89.41 255 | 72.15 337 |
|
Fast-Effi-MVS+-dtu | | | 82.54 167 | 81.41 180 | 85.90 117 | 85.60 237 | 76.53 111 | 83.07 182 | 89.62 172 | 73.02 174 | 79.11 267 | 83.51 285 | 80.74 119 | 90.24 215 | 68.76 214 | 89.29 256 | 90.94 194 |
|
thres200 | | | 72.34 273 | 71.55 279 | 74.70 283 | 83.48 265 | 51.60 321 | 75.02 298 | 73.71 306 | 70.14 205 | 78.56 271 | 80.57 312 | 46.20 314 | 88.20 249 | 46.99 332 | 89.29 256 | 84.32 281 |
|
jason | | | 77.42 228 | 75.75 240 | 82.43 191 | 87.10 214 | 69.27 171 | 77.99 262 | 81.94 260 | 51.47 326 | 77.84 273 | 85.07 269 | 60.32 260 | 89.00 236 | 70.74 195 | 89.27 258 | 89.03 231 |
jason: jason. |
MG-MVS | | | 80.32 201 | 80.94 186 | 78.47 249 | 88.18 188 | 52.62 313 | 82.29 201 | 85.01 242 | 72.01 188 | 79.24 266 | 92.54 127 | 69.36 219 | 93.36 127 | 70.65 196 | 89.19 259 | 89.45 219 |
|
BH-untuned | | | 80.96 187 | 80.99 185 | 80.84 214 | 88.55 181 | 68.23 180 | 80.33 230 | 88.46 186 | 72.79 177 | 86.55 159 | 86.76 240 | 74.72 177 | 91.77 172 | 61.79 260 | 88.99 260 | 82.52 306 |
|
EIA-MVS | | | 82.19 172 | 81.23 182 | 85.10 131 | 87.95 192 | 69.17 176 | 83.22 180 | 93.33 62 | 70.42 200 | 78.58 270 | 79.77 321 | 77.29 148 | 94.20 88 | 71.51 188 | 88.96 261 | 91.93 174 |
|
PVSNet_Blended_VisFu | | | 81.55 180 | 80.49 191 | 84.70 139 | 91.58 123 | 73.24 130 | 84.21 149 | 91.67 117 | 62.86 262 | 80.94 246 | 87.16 235 | 67.27 229 | 92.87 144 | 69.82 203 | 88.94 262 | 87.99 242 |
|
MVSFormer | | | 82.23 171 | 81.57 179 | 84.19 151 | 85.54 239 | 69.26 172 | 91.98 30 | 90.08 163 | 71.54 190 | 76.23 284 | 85.07 269 | 58.69 272 | 94.27 82 | 86.26 35 | 88.77 263 | 89.03 231 |
|
lupinMVS | | | 76.37 241 | 74.46 251 | 82.09 192 | 85.54 239 | 69.26 172 | 76.79 278 | 80.77 268 | 50.68 332 | 76.23 284 | 82.82 295 | 58.69 272 | 88.94 237 | 69.85 202 | 88.77 263 | 88.07 239 |
|
RPSCF | | | 88.00 76 | 86.93 92 | 91.22 31 | 90.08 159 | 89.30 5 | 89.68 61 | 91.11 131 | 79.26 95 | 89.68 103 | 94.81 51 | 82.44 91 | 87.74 252 | 76.54 141 | 88.74 265 | 96.61 28 |
|
PAPM_NR | | | 83.23 159 | 83.19 156 | 83.33 169 | 90.90 142 | 65.98 196 | 88.19 89 | 90.78 138 | 78.13 111 | 80.87 248 | 87.92 223 | 73.49 190 | 92.42 151 | 70.07 201 | 88.40 266 | 91.60 184 |
|
xiu_mvs_v1_base_debu | | | 80.84 189 | 80.14 199 | 82.93 178 | 88.31 185 | 71.73 151 | 79.53 239 | 87.17 206 | 65.43 248 | 79.59 261 | 82.73 297 | 76.94 155 | 90.14 221 | 73.22 172 | 88.33 267 | 86.90 256 |
|
xiu_mvs_v1_base | | | 80.84 189 | 80.14 199 | 82.93 178 | 88.31 185 | 71.73 151 | 79.53 239 | 87.17 206 | 65.43 248 | 79.59 261 | 82.73 297 | 76.94 155 | 90.14 221 | 73.22 172 | 88.33 267 | 86.90 256 |
|
xiu_mvs_v1_base_debi | | | 80.84 189 | 80.14 199 | 82.93 178 | 88.31 185 | 71.73 151 | 79.53 239 | 87.17 206 | 65.43 248 | 79.59 261 | 82.73 297 | 76.94 155 | 90.14 221 | 73.22 172 | 88.33 267 | 86.90 256 |
|
XXY-MVS | | | 74.44 259 | 76.19 236 | 69.21 304 | 84.61 246 | 52.43 315 | 71.70 314 | 77.18 282 | 60.73 278 | 80.60 250 | 90.96 170 | 75.44 166 | 69.35 332 | 56.13 291 | 88.33 267 | 85.86 266 |
|
Fast-Effi-MVS+ | | | 81.04 186 | 80.57 188 | 82.46 190 | 87.50 203 | 63.22 220 | 78.37 259 | 89.63 171 | 68.01 221 | 81.87 233 | 82.08 302 | 82.31 93 | 92.65 148 | 67.10 224 | 88.30 271 | 91.51 187 |
|
MDA-MVSNet-bldmvs | | | 77.47 227 | 76.90 230 | 79.16 239 | 79.03 311 | 64.59 204 | 66.58 332 | 75.67 292 | 73.15 172 | 88.86 119 | 88.99 208 | 66.94 230 | 81.23 305 | 64.71 241 | 88.22 272 | 91.64 182 |
|
PAPR | | | 78.84 213 | 78.10 219 | 81.07 209 | 85.17 242 | 60.22 254 | 82.21 205 | 90.57 144 | 62.51 264 | 75.32 295 | 84.61 276 | 74.99 171 | 92.30 155 | 59.48 276 | 88.04 273 | 90.68 201 |
|
BH-RMVSNet | | | 80.53 194 | 80.22 197 | 81.49 203 | 87.19 209 | 66.21 195 | 77.79 266 | 86.23 222 | 74.21 154 | 83.69 208 | 88.50 214 | 73.25 195 | 90.75 201 | 63.18 251 | 87.90 274 | 87.52 248 |
|
Effi-MVS+ | | | 83.90 147 | 84.01 145 | 83.57 165 | 87.22 208 | 65.61 199 | 86.55 116 | 92.40 97 | 78.64 105 | 81.34 243 | 84.18 280 | 83.65 79 | 92.93 141 | 74.22 160 | 87.87 275 | 92.17 166 |
|
MVS_Test | | | 82.47 168 | 83.22 154 | 80.22 224 | 82.62 274 | 57.75 279 | 82.54 195 | 91.96 109 | 71.16 194 | 82.89 220 | 92.52 128 | 77.41 147 | 90.50 209 | 80.04 102 | 87.84 276 | 92.40 154 |
|
QAPM | | | 82.59 166 | 82.59 165 | 82.58 186 | 86.44 221 | 66.69 191 | 89.94 56 | 90.36 149 | 67.97 223 | 84.94 187 | 92.58 125 | 72.71 200 | 92.18 157 | 70.63 197 | 87.73 277 | 88.85 234 |
|
PVSNet_Blended | | | 76.49 239 | 75.40 243 | 79.76 229 | 84.43 248 | 63.41 216 | 75.14 297 | 90.44 146 | 57.36 296 | 75.43 293 | 78.30 327 | 69.11 221 | 91.44 178 | 60.68 270 | 87.70 278 | 84.42 280 |
|
pmmvs5 | | | 70.73 283 | 70.07 287 | 72.72 291 | 77.03 322 | 52.73 311 | 74.14 302 | 75.65 293 | 50.36 334 | 72.17 310 | 85.37 263 | 55.42 292 | 80.67 307 | 52.86 310 | 87.59 279 | 84.77 276 |
|
IB-MVS | | 62.13 19 | 71.64 278 | 68.97 292 | 79.66 233 | 80.80 293 | 62.26 235 | 73.94 304 | 76.90 283 | 63.27 260 | 68.63 322 | 76.79 334 | 33.83 353 | 91.84 170 | 59.28 277 | 87.26 280 | 84.88 275 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
N_pmnet | | | 70.20 285 | 68.80 294 | 74.38 284 | 80.91 288 | 84.81 38 | 59.12 343 | 76.45 288 | 55.06 305 | 75.31 296 | 82.36 300 | 55.74 289 | 54.82 350 | 47.02 331 | 87.24 281 | 83.52 291 |
|
pmmvs4 | | | 74.92 253 | 72.98 265 | 80.73 216 | 84.95 243 | 71.71 154 | 76.23 288 | 77.59 280 | 52.83 316 | 77.73 276 | 86.38 243 | 56.35 287 | 84.97 285 | 57.72 285 | 87.05 282 | 85.51 269 |
|
MIMVSNet | | | 71.09 281 | 71.59 277 | 69.57 303 | 87.23 207 | 50.07 331 | 78.91 250 | 71.83 319 | 60.20 282 | 71.26 313 | 91.76 148 | 55.08 294 | 76.09 318 | 41.06 343 | 87.02 283 | 82.54 305 |
|
HyFIR lowres test | | | 75.12 250 | 72.66 268 | 82.50 189 | 91.44 129 | 65.19 201 | 72.47 311 | 87.31 204 | 46.79 338 | 80.29 256 | 84.30 279 | 52.70 298 | 92.10 161 | 51.88 316 | 86.73 284 | 90.22 211 |
|
MSDG | | | 80.06 207 | 79.99 203 | 80.25 223 | 83.91 263 | 68.04 183 | 77.51 271 | 89.19 177 | 77.65 113 | 81.94 232 | 83.45 287 | 76.37 163 | 86.31 271 | 63.31 250 | 86.59 285 | 86.41 259 |
|
Patchmatch-test | | | 65.91 305 | 67.38 299 | 61.48 328 | 75.51 333 | 43.21 347 | 68.84 323 | 63.79 340 | 62.48 265 | 72.80 307 | 83.42 288 | 44.89 332 | 59.52 349 | 48.27 328 | 86.45 286 | 81.70 314 |
|
mvs_anonymous | | | 78.13 220 | 78.76 211 | 76.23 276 | 79.24 309 | 50.31 330 | 78.69 254 | 84.82 244 | 61.60 273 | 83.09 219 | 92.82 116 | 73.89 184 | 87.01 258 | 68.33 219 | 86.41 287 | 91.37 188 |
|
IterMVS-SCA-FT | | | 80.64 193 | 79.41 206 | 84.34 146 | 83.93 262 | 69.66 167 | 76.28 287 | 81.09 265 | 72.43 180 | 86.47 165 | 90.19 189 | 60.46 258 | 93.15 135 | 77.45 132 | 86.39 288 | 90.22 211 |
|
E-PMN | | | 61.59 313 | 61.62 315 | 61.49 327 | 66.81 353 | 55.40 294 | 53.77 347 | 60.34 346 | 66.80 235 | 58.90 349 | 65.50 348 | 40.48 342 | 66.12 343 | 55.72 293 | 86.25 289 | 62.95 345 |
|
EMVS | | | 61.10 316 | 60.81 317 | 61.99 325 | 65.96 354 | 55.86 291 | 53.10 348 | 58.97 348 | 67.06 232 | 56.89 352 | 63.33 349 | 40.98 340 | 67.03 339 | 54.79 301 | 86.18 290 | 63.08 344 |
|
our_test_3 | | | 71.85 276 | 71.59 277 | 72.62 293 | 80.71 294 | 53.78 304 | 69.72 322 | 71.71 322 | 58.80 285 | 78.03 272 | 80.51 314 | 56.61 285 | 78.84 312 | 62.20 256 | 86.04 291 | 85.23 271 |
|
EU-MVSNet | | | 75.12 250 | 74.43 252 | 77.18 264 | 83.11 271 | 59.48 261 | 85.71 127 | 82.43 256 | 39.76 350 | 85.64 178 | 88.76 210 | 44.71 333 | 87.88 251 | 73.86 166 | 85.88 292 | 84.16 283 |
|
GA-MVS | | | 75.83 244 | 74.61 248 | 79.48 236 | 81.87 277 | 59.25 263 | 73.42 308 | 82.88 252 | 68.68 217 | 79.75 260 | 81.80 304 | 50.62 303 | 89.46 231 | 66.85 226 | 85.64 293 | 89.72 217 |
|
MVS | | | 73.21 266 | 72.59 269 | 75.06 281 | 80.97 287 | 60.81 250 | 81.64 212 | 85.92 226 | 46.03 341 | 71.68 312 | 77.54 329 | 68.47 224 | 89.77 228 | 55.70 294 | 85.39 294 | 74.60 335 |
|
PatchT | | | 70.52 284 | 72.76 267 | 63.79 322 | 79.38 307 | 33.53 354 | 77.63 268 | 65.37 338 | 73.61 160 | 71.77 311 | 92.79 119 | 44.38 334 | 75.65 321 | 64.53 245 | 85.37 295 | 82.18 310 |
|
TR-MVS | | | 76.77 235 | 75.79 239 | 79.72 231 | 86.10 235 | 65.79 198 | 77.14 274 | 83.02 251 | 65.20 253 | 81.40 241 | 82.10 301 | 66.30 232 | 90.73 203 | 55.57 295 | 85.27 296 | 82.65 302 |
|
BH-w/o | | | 76.57 237 | 76.07 238 | 78.10 255 | 86.88 218 | 65.92 197 | 77.63 268 | 86.33 221 | 65.69 246 | 80.89 247 | 79.95 318 | 68.97 223 | 90.74 202 | 53.01 309 | 85.25 297 | 77.62 330 |
|
IterMVS | | | 76.91 233 | 76.34 235 | 78.64 245 | 80.91 288 | 64.03 211 | 76.30 286 | 79.03 274 | 64.88 255 | 83.11 217 | 89.16 204 | 59.90 264 | 84.46 290 | 68.61 217 | 85.15 298 | 87.42 249 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
OpenMVS_ROB | | 70.19 17 | 77.77 226 | 77.46 223 | 78.71 244 | 84.39 251 | 61.15 243 | 81.18 221 | 82.52 254 | 62.45 266 | 83.34 214 | 87.37 231 | 66.20 233 | 88.66 244 | 64.69 242 | 85.02 299 | 86.32 260 |
|
test-LLR | | | 67.21 299 | 66.74 303 | 68.63 308 | 76.45 327 | 55.21 296 | 67.89 326 | 67.14 333 | 62.43 267 | 65.08 336 | 72.39 341 | 43.41 335 | 69.37 330 | 61.00 266 | 84.89 300 | 81.31 319 |
|
test-mter | | | 65.00 307 | 63.79 310 | 68.63 308 | 76.45 327 | 55.21 296 | 67.89 326 | 67.14 333 | 50.98 329 | 65.08 336 | 72.39 341 | 28.27 359 | 69.37 330 | 61.00 266 | 84.89 300 | 81.31 319 |
|
PS-MVSNAJ | | | 77.04 232 | 76.53 233 | 78.56 246 | 87.09 215 | 61.40 239 | 75.26 296 | 87.13 209 | 61.25 274 | 74.38 301 | 77.22 333 | 76.94 155 | 90.94 193 | 64.63 243 | 84.83 302 | 83.35 295 |
|
xiu_mvs_v2_base | | | 77.19 230 | 76.75 231 | 78.52 247 | 87.01 216 | 61.30 241 | 75.55 294 | 87.12 212 | 61.24 275 | 74.45 299 | 78.79 323 | 77.20 149 | 90.93 194 | 64.62 244 | 84.80 303 | 83.32 296 |
|
pmmvs3 | | | 62.47 309 | 60.02 321 | 69.80 301 | 71.58 351 | 64.00 212 | 70.52 318 | 58.44 349 | 39.77 349 | 66.05 330 | 75.84 337 | 27.10 361 | 72.28 325 | 46.15 334 | 84.77 304 | 73.11 336 |
|
MDTV_nov1_ep13 | | | | 68.29 297 | | 78.03 315 | 43.87 345 | 74.12 303 | 72.22 316 | 52.17 320 | 67.02 329 | 85.54 255 | 45.36 326 | 80.85 306 | 55.73 292 | 84.42 305 | |
|
1112_ss | | | 74.82 255 | 73.74 256 | 78.04 256 | 89.57 165 | 60.04 255 | 76.49 284 | 87.09 213 | 54.31 308 | 73.66 304 | 79.80 319 | 60.25 261 | 86.76 266 | 58.37 279 | 84.15 306 | 87.32 251 |
|
PatchMatch-RL | | | 74.48 257 | 73.22 262 | 78.27 253 | 87.70 198 | 85.26 33 | 75.92 290 | 70.09 326 | 64.34 257 | 76.09 286 | 81.25 309 | 65.87 236 | 78.07 314 | 53.86 305 | 83.82 307 | 71.48 338 |
|
MDA-MVSNet_test_wron | | | 70.05 289 | 70.44 284 | 68.88 306 | 73.84 341 | 53.47 306 | 58.93 345 | 67.28 331 | 58.43 286 | 87.09 149 | 85.40 261 | 59.80 266 | 67.25 338 | 59.66 275 | 83.54 308 | 85.92 265 |
|
YYNet1 | | | 70.06 288 | 70.44 284 | 68.90 305 | 73.76 342 | 53.42 308 | 58.99 344 | 67.20 332 | 58.42 287 | 87.10 148 | 85.39 262 | 59.82 265 | 67.32 337 | 59.79 274 | 83.50 309 | 85.96 263 |
|
Test_1112_low_res | | | 73.90 261 | 73.08 263 | 76.35 273 | 90.35 154 | 55.95 289 | 73.40 309 | 86.17 223 | 50.70 331 | 73.14 305 | 85.94 251 | 58.31 274 | 85.90 277 | 56.51 289 | 83.22 310 | 87.20 252 |
|
PVSNet | | 58.17 21 | 66.41 303 | 65.63 306 | 68.75 307 | 81.96 276 | 49.88 332 | 62.19 339 | 72.51 315 | 51.03 328 | 68.04 324 | 75.34 339 | 50.84 302 | 74.77 322 | 45.82 336 | 82.96 311 | 81.60 316 |
|
gg-mvs-nofinetune | | | 68.96 295 | 69.11 291 | 68.52 310 | 76.12 330 | 45.32 341 | 83.59 166 | 55.88 351 | 86.68 26 | 64.62 340 | 97.01 8 | 30.36 357 | 83.97 295 | 44.78 337 | 82.94 312 | 76.26 332 |
|
CR-MVSNet | | | 74.00 260 | 73.04 264 | 76.85 269 | 79.58 303 | 62.64 227 | 82.58 192 | 76.90 283 | 50.50 333 | 75.72 290 | 92.38 129 | 48.07 309 | 84.07 293 | 68.72 216 | 82.91 313 | 83.85 287 |
|
RPMNet | | | 78.88 212 | 78.28 217 | 80.68 218 | 79.58 303 | 62.64 227 | 82.58 192 | 94.16 28 | 74.80 147 | 75.72 290 | 92.59 123 | 48.69 307 | 95.56 34 | 73.48 170 | 82.91 313 | 83.85 287 |
|
test0.0.03 1 | | | 64.66 308 | 64.36 309 | 65.57 318 | 75.03 338 | 46.89 338 | 64.69 335 | 61.58 345 | 62.43 267 | 71.18 315 | 77.54 329 | 43.41 335 | 68.47 335 | 40.75 344 | 82.65 315 | 81.35 318 |
|
HY-MVS | | 64.64 18 | 73.03 267 | 72.47 272 | 74.71 282 | 83.36 267 | 54.19 301 | 82.14 208 | 81.96 259 | 56.76 300 | 69.57 320 | 86.21 249 | 60.03 262 | 84.83 288 | 49.58 322 | 82.65 315 | 85.11 273 |
|
SCA | | | 73.32 263 | 72.57 270 | 75.58 279 | 81.62 279 | 55.86 291 | 78.89 251 | 71.37 323 | 61.73 270 | 74.93 298 | 83.42 288 | 60.46 258 | 87.01 258 | 58.11 283 | 82.63 317 | 83.88 284 |
|
CHOSEN 1792x2688 | | | 72.45 271 | 70.56 282 | 78.13 254 | 90.02 163 | 63.08 221 | 68.72 324 | 83.16 250 | 42.99 347 | 75.92 288 | 85.46 259 | 57.22 283 | 85.18 284 | 49.87 321 | 81.67 318 | 86.14 262 |
|
WTY-MVS | | | 67.91 298 | 68.35 296 | 66.58 315 | 80.82 292 | 48.12 335 | 65.96 333 | 72.60 313 | 53.67 312 | 71.20 314 | 81.68 306 | 58.97 270 | 69.06 334 | 48.57 325 | 81.67 318 | 82.55 304 |
|
TESTMET0.1,1 | | | 61.29 314 | 60.32 319 | 64.19 321 | 72.06 349 | 51.30 322 | 67.89 326 | 62.09 341 | 45.27 342 | 60.65 345 | 69.01 344 | 27.93 360 | 64.74 346 | 56.31 290 | 81.65 320 | 76.53 331 |
|
PAPM | | | 71.77 277 | 70.06 288 | 76.92 266 | 86.39 222 | 53.97 302 | 76.62 282 | 86.62 219 | 53.44 313 | 63.97 341 | 84.73 275 | 57.79 280 | 92.34 153 | 39.65 345 | 81.33 321 | 84.45 279 |
|
DSMNet-mixed | | | 60.98 317 | 61.61 316 | 59.09 332 | 72.88 347 | 45.05 343 | 74.70 300 | 46.61 356 | 26.20 353 | 65.34 334 | 90.32 186 | 55.46 291 | 63.12 348 | 41.72 342 | 81.30 322 | 69.09 342 |
|
sss | | | 66.92 300 | 67.26 300 | 65.90 316 | 77.23 319 | 51.10 326 | 64.79 334 | 71.72 321 | 52.12 323 | 70.13 318 | 80.18 316 | 57.96 277 | 65.36 345 | 50.21 318 | 81.01 323 | 81.25 321 |
|
tpm | | | 67.95 297 | 68.08 298 | 67.55 312 | 78.74 314 | 43.53 346 | 75.60 292 | 67.10 335 | 54.92 306 | 72.23 309 | 88.10 218 | 42.87 338 | 75.97 319 | 52.21 311 | 80.95 324 | 83.15 299 |
|
tpm2 | | | 68.45 296 | 66.83 302 | 73.30 288 | 78.93 313 | 48.50 333 | 79.76 236 | 71.76 320 | 47.50 337 | 69.92 319 | 83.60 284 | 42.07 339 | 88.40 246 | 48.44 327 | 79.51 325 | 83.01 301 |
|
FPMVS | | | 72.29 274 | 72.00 274 | 73.14 289 | 88.63 179 | 85.00 35 | 74.65 301 | 67.39 330 | 71.94 189 | 77.80 275 | 87.66 226 | 50.48 304 | 75.83 320 | 49.95 319 | 79.51 325 | 58.58 349 |
|
UnsupCasMVSNet_bld | | | 69.21 294 | 69.68 289 | 67.82 311 | 79.42 306 | 51.15 324 | 67.82 329 | 75.79 290 | 54.15 309 | 77.47 278 | 85.36 264 | 59.26 269 | 70.64 329 | 48.46 326 | 79.35 327 | 81.66 315 |
|
CostFormer | | | 69.98 290 | 68.68 295 | 73.87 285 | 77.14 320 | 50.72 328 | 79.26 245 | 74.51 299 | 51.94 324 | 70.97 316 | 84.75 274 | 45.16 330 | 87.49 254 | 55.16 299 | 79.23 328 | 83.40 294 |
|
1314 | | | 73.22 265 | 72.56 271 | 75.20 280 | 80.41 299 | 57.84 277 | 81.64 212 | 85.36 231 | 51.68 325 | 73.10 306 | 76.65 335 | 61.45 254 | 85.19 283 | 63.54 247 | 79.21 329 | 82.59 303 |
|
baseline1 | | | 73.26 264 | 73.54 259 | 72.43 295 | 84.92 244 | 47.79 337 | 79.89 235 | 74.00 302 | 65.93 240 | 78.81 269 | 86.28 248 | 56.36 286 | 81.63 304 | 56.63 288 | 79.04 330 | 87.87 246 |
|
PMMVS | | | 61.65 312 | 60.38 318 | 65.47 319 | 65.40 355 | 69.26 172 | 63.97 337 | 61.73 344 | 36.80 352 | 60.11 346 | 68.43 345 | 59.42 267 | 66.35 342 | 48.97 324 | 78.57 331 | 60.81 346 |
|
baseline2 | | | 69.77 291 | 66.89 301 | 78.41 250 | 79.51 305 | 58.09 275 | 76.23 288 | 69.57 328 | 57.50 295 | 64.82 339 | 77.45 331 | 46.02 316 | 88.44 245 | 53.08 308 | 77.83 332 | 88.70 235 |
|
MS-PatchMatch | | | 70.93 282 | 70.22 286 | 73.06 290 | 81.85 278 | 62.50 230 | 73.82 306 | 77.90 278 | 52.44 319 | 75.92 288 | 81.27 308 | 55.67 290 | 81.75 302 | 55.37 297 | 77.70 333 | 74.94 334 |
|
UnsupCasMVSNet_eth | | | 71.63 279 | 72.30 273 | 69.62 302 | 76.47 326 | 52.70 312 | 70.03 321 | 80.97 266 | 59.18 284 | 79.36 264 | 88.21 217 | 60.50 257 | 69.12 333 | 58.33 281 | 77.62 334 | 87.04 254 |
|
CVMVSNet | | | 72.62 270 | 71.41 280 | 76.28 275 | 83.25 268 | 60.34 253 | 83.50 170 | 79.02 275 | 37.77 351 | 76.33 282 | 85.10 266 | 49.60 306 | 87.41 255 | 70.54 198 | 77.54 335 | 81.08 324 |
|
GG-mvs-BLEND | | | | | 67.16 313 | 73.36 343 | 46.54 340 | 84.15 150 | 55.04 352 | | 58.64 350 | 61.95 351 | 29.93 358 | 83.87 296 | 38.71 347 | 76.92 336 | 71.07 339 |
|
CHOSEN 280x420 | | | 59.08 319 | 56.52 324 | 66.76 314 | 76.51 325 | 64.39 208 | 49.62 349 | 59.00 347 | 43.86 345 | 55.66 353 | 68.41 346 | 35.55 351 | 68.21 336 | 43.25 339 | 76.78 337 | 67.69 343 |
|
tpmvs | | | 70.16 286 | 69.56 290 | 71.96 297 | 74.71 340 | 48.13 334 | 79.63 237 | 75.45 295 | 65.02 254 | 70.26 317 | 81.88 303 | 45.34 327 | 85.68 279 | 58.34 280 | 75.39 338 | 82.08 311 |
|
MVP-Stereo | | | 75.81 245 | 73.51 260 | 82.71 183 | 89.35 167 | 73.62 126 | 80.06 231 | 85.20 235 | 60.30 280 | 73.96 302 | 87.94 221 | 57.89 279 | 89.45 232 | 52.02 312 | 74.87 339 | 85.06 274 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
DWT-MVSNet_test | | | 66.43 302 | 64.37 308 | 72.63 292 | 74.86 339 | 50.86 327 | 76.52 283 | 72.74 312 | 54.06 310 | 65.50 333 | 68.30 347 | 32.13 355 | 84.84 287 | 61.63 263 | 73.59 340 | 82.19 309 |
|
new_pmnet | | | 55.69 321 | 57.66 323 | 49.76 335 | 75.47 334 | 30.59 355 | 59.56 340 | 51.45 354 | 43.62 346 | 62.49 342 | 75.48 338 | 40.96 341 | 49.15 353 | 37.39 348 | 72.52 341 | 69.55 341 |
|
PatchmatchNet | | | 69.71 292 | 68.83 293 | 72.33 296 | 77.66 318 | 53.60 305 | 79.29 244 | 69.99 327 | 57.66 293 | 72.53 308 | 82.93 293 | 46.45 313 | 80.08 310 | 60.91 268 | 72.09 342 | 83.31 297 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MVS-HIRNet | | | 61.16 315 | 62.92 312 | 55.87 333 | 79.09 310 | 35.34 353 | 71.83 313 | 57.98 350 | 46.56 339 | 59.05 348 | 91.14 162 | 49.95 305 | 76.43 317 | 38.74 346 | 71.92 343 | 55.84 350 |
|
tpmrst | | | 66.28 304 | 66.69 304 | 65.05 320 | 72.82 348 | 39.33 349 | 78.20 260 | 70.69 325 | 53.16 315 | 67.88 325 | 80.36 315 | 48.18 308 | 74.75 323 | 58.13 282 | 70.79 344 | 81.08 324 |
|
tpm cat1 | | | 66.76 301 | 65.21 307 | 71.42 298 | 77.09 321 | 50.62 329 | 78.01 261 | 73.68 307 | 44.89 343 | 68.64 321 | 79.00 322 | 45.51 324 | 82.42 301 | 49.91 320 | 70.15 345 | 81.23 323 |
|
ADS-MVSNet2 | | | 65.87 306 | 63.64 311 | 72.55 294 | 73.16 345 | 56.92 285 | 67.10 330 | 74.81 296 | 49.74 335 | 66.04 331 | 82.97 291 | 46.71 311 | 77.26 315 | 42.29 340 | 69.96 346 | 83.46 292 |
|
ADS-MVSNet | | | 61.90 311 | 62.19 314 | 61.03 329 | 73.16 345 | 36.42 352 | 67.10 330 | 61.75 343 | 49.74 335 | 66.04 331 | 82.97 291 | 46.71 311 | 63.21 347 | 42.29 340 | 69.96 346 | 83.46 292 |
|
JIA-IIPM | | | 69.41 293 | 66.64 305 | 77.70 261 | 73.19 344 | 71.24 157 | 75.67 291 | 65.56 337 | 70.42 200 | 65.18 335 | 92.97 111 | 33.64 354 | 83.06 298 | 53.52 307 | 69.61 348 | 78.79 329 |
|
EPMVS | | | 62.47 309 | 62.63 313 | 62.01 324 | 70.63 352 | 38.74 350 | 74.76 299 | 52.86 353 | 53.91 311 | 67.71 327 | 80.01 317 | 39.40 343 | 66.60 341 | 55.54 296 | 68.81 349 | 80.68 328 |
|
MVE | | 40.22 23 | 51.82 323 | 50.47 326 | 55.87 333 | 62.66 357 | 51.91 318 | 31.61 352 | 39.28 357 | 40.65 348 | 50.76 354 | 74.98 340 | 56.24 288 | 44.67 354 | 33.94 351 | 64.11 350 | 71.04 340 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
dp | | | 60.70 318 | 60.29 320 | 61.92 326 | 72.04 350 | 38.67 351 | 70.83 316 | 64.08 339 | 51.28 327 | 60.75 344 | 77.28 332 | 36.59 350 | 71.58 328 | 47.41 330 | 62.34 351 | 75.52 333 |
|
PVSNet_0 | | 51.08 22 | 56.10 320 | 54.97 325 | 59.48 331 | 75.12 337 | 53.28 309 | 55.16 346 | 61.89 342 | 44.30 344 | 59.16 347 | 62.48 350 | 54.22 295 | 65.91 344 | 35.40 349 | 47.01 352 | 59.25 348 |
|
tmp_tt | | | 20.25 325 | 24.50 328 | 7.49 338 | 4.47 359 | 8.70 360 | 34.17 351 | 25.16 359 | 1.00 355 | 32.43 356 | 18.49 353 | 39.37 344 | 9.21 356 | 21.64 353 | 43.75 353 | 4.57 352 |
|
DeepMVS_CX | | | | | 24.13 337 | 32.95 358 | 29.49 356 | | 21.63 360 | 12.07 354 | 37.95 355 | 45.07 352 | 30.84 356 | 19.21 355 | 17.94 354 | 33.06 354 | 23.69 351 |
|
testmvs | | | 5.91 329 | 7.65 332 | 0.72 340 | 1.20 360 | 0.37 362 | 59.14 342 | 0.67 362 | 0.49 357 | 1.11 357 | 2.76 357 | 0.94 363 | 0.24 358 | 1.02 356 | 1.47 355 | 1.55 354 |
|
test123 | | | 6.27 328 | 8.08 331 | 0.84 339 | 1.11 361 | 0.57 361 | 62.90 338 | 0.82 361 | 0.54 356 | 1.07 358 | 2.75 358 | 1.26 362 | 0.30 357 | 1.04 355 | 1.26 356 | 1.66 353 |
|
uanet_test | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
cdsmvs_eth3d_5k | | | 20.81 324 | 27.75 327 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 85.44 230 | 0.00 358 | 0.00 359 | 82.82 295 | 81.46 111 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
pcd_1.5k_mvsjas | | | 6.41 327 | 8.55 330 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 76.94 155 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
sosnet-low-res | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
sosnet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
uncertanet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
Regformer | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
ab-mvs-re | | | 6.65 326 | 8.87 329 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 79.80 319 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
uanet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
test_241102_ONE | | | | | | 94.18 49 | 72.65 133 | | 93.69 49 | 83.62 44 | 94.11 23 | 93.78 98 | 90.28 16 | 95.50 45 | | | |
|
save fliter | | | | | | 93.75 62 | 77.44 96 | 86.31 119 | 89.72 168 | 70.80 196 | | | | | | | |
|
test0726 | | | | | | 94.16 52 | 72.56 138 | 90.63 43 | 93.90 41 | 83.61 45 | 93.75 31 | 94.49 59 | 89.76 20 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 284 |
|
test_part2 | | | | | | 93.86 61 | 77.77 91 | | | | 92.84 45 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 315 | | | | 83.88 284 |
|
sam_mvs | | | | | | | | | | | | | 45.92 320 | | | | |
|
MTGPA | | | | | | | | | 91.81 114 | | | | | | | | |
|
test_post1 | | | | | | | | 78.85 253 | | | | 3.13 355 | 45.19 329 | 80.13 309 | 58.11 283 | | |
|
test_post | | | | | | | | | | | | 3.10 356 | 45.43 325 | 77.22 316 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 305 | 45.93 319 | 87.01 258 | | | |
|
MTMP | | | | | | | | 90.66 41 | 33.14 358 | | | | | | | | |
|
gm-plane-assit | | | | | | 75.42 335 | 44.97 344 | | | 52.17 320 | | 72.36 343 | | 87.90 250 | 54.10 304 | | |
|
TEST9 | | | | | | 92.34 97 | 79.70 73 | 83.94 154 | 90.32 150 | 65.41 252 | 84.49 195 | 90.97 168 | 82.03 102 | 93.63 111 | | | |
|
test_8 | | | | | | 92.09 106 | 78.87 81 | 83.82 159 | 90.31 152 | 65.79 242 | 84.36 198 | 90.96 170 | 81.93 104 | 93.44 123 | | | |
|
agg_prior | | | | | | 91.58 123 | 77.69 92 | | 90.30 154 | | 84.32 199 | | | 93.18 131 | | | |
|
test_prior4 | | | | | | | 78.97 80 | 84.59 141 | | | | | | | | | |
|
test_prior | | | | | 86.32 104 | 90.59 150 | 71.99 148 | | 92.85 86 | | | | | 94.17 91 | | | 92.80 138 |
|
旧先验2 | | | | | | | | 81.73 210 | | 56.88 299 | 86.54 164 | | | 84.90 286 | 72.81 180 | | |
|
新几何2 | | | | | | | | 81.72 211 | | | | | | | | | |
|
无先验 | | | | | | | | 82.81 189 | 85.62 229 | 58.09 289 | | | | 91.41 181 | 67.95 222 | | 84.48 278 |
|
原ACMM2 | | | | | | | | 82.26 204 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 86.43 270 | 63.52 248 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 103 | | | | |
|
testdata1 | | | | | | | | 79.62 238 | | 73.95 157 | | | | | | | |
|
plane_prior7 | | | | | | 93.45 68 | 77.31 100 | | | | | | | | | | |
|
plane_prior6 | | | | | | 92.61 89 | 76.54 109 | | | | | | 74.84 173 | | | | |
|
plane_prior4 | | | | | | | | | | | | 92.95 112 | | | | | |
|
plane_prior3 | | | | | | | 76.85 107 | | | 77.79 112 | 86.55 159 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 70 | | 79.44 93 | | | | | | | |
|
plane_prior1 | | | | | | 92.83 87 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 363 | | | | | | | | |
|
nn | | | | | | | | | 0.00 363 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 300 | | | | | | | | |
|
test11 | | | | | | | | | 91.46 121 | | | | | | | | |
|
door | | | | | | | | | 72.57 314 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 160 | | | | | | | | | | |
|
HQP-NCC | | | | | | 91.19 134 | | 84.77 136 | | 73.30 167 | 80.55 253 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 134 | | 84.77 136 | | 73.30 167 | 80.55 253 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 134 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 252 | | | 94.61 76 | | | 93.56 116 |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 205 | | | | |
|
NP-MVS | | | | | | 91.95 110 | 74.55 121 | | | | | 90.17 191 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 357 | 70.76 317 | | 46.47 340 | 61.27 343 | | 45.20 328 | | 49.18 323 | | 83.75 289 |
|
Test By Simon | | | | | | | | | | | | | 79.09 132 | | | | |
|