TDRefinement | | | 93.16 1 | 95.57 1 | 90.36 1 | 88.79 52 | 93.57 1 | 97.27 1 | 78.23 22 | 95.55 2 | 93.00 1 | 93.98 17 | 96.01 39 | 87.53 1 | 97.69 1 | 96.81 1 | 97.33 1 | 95.34 3 |
|
COLMAP_ROB |  | 85.66 2 | 91.85 2 | 95.01 2 | 88.16 12 | 88.98 51 | 92.86 2 | 95.51 20 | 72.17 59 | 94.95 5 | 91.27 3 | 94.11 16 | 97.77 12 | 84.22 8 | 96.49 4 | 95.27 5 | 96.79 2 | 93.60 11 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
LTVRE_ROB | | 86.82 1 | 91.55 3 | 94.43 3 | 88.19 11 | 83.19 111 | 86.35 67 | 93.60 37 | 78.79 19 | 95.48 4 | 91.79 2 | 93.08 26 | 97.21 21 | 86.34 3 | 97.06 2 | 96.27 3 | 95.46 23 | 95.56 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ACMMPR | | | 91.30 4 | 92.88 11 | 89.46 4 | 91.92 11 | 91.61 5 | 96.60 5 | 79.46 14 | 90.08 31 | 88.53 14 | 89.54 65 | 95.57 48 | 84.25 7 | 95.24 20 | 94.27 13 | 95.97 11 | 93.85 7 |
|
CP-MVS | | | 91.09 5 | 92.33 25 | 89.65 2 | 92.16 10 | 90.41 27 | 96.46 10 | 80.38 8 | 88.26 46 | 89.17 11 | 87.00 96 | 96.34 31 | 83.95 10 | 95.77 11 | 94.72 8 | 95.81 17 | 93.78 9 |
|
MP-MVS |  | | 90.84 6 | 91.95 34 | 89.55 3 | 92.92 5 | 90.90 19 | 96.56 6 | 79.60 11 | 86.83 60 | 88.75 13 | 89.00 74 | 94.38 78 | 84.01 9 | 94.94 25 | 94.34 11 | 95.45 24 | 93.24 22 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMM | | 80.67 7 | 90.67 7 | 92.46 19 | 88.57 8 | 91.35 22 | 89.93 31 | 96.34 12 | 77.36 31 | 90.17 29 | 86.88 30 | 87.32 91 | 96.63 24 | 83.32 13 | 95.79 10 | 94.49 10 | 96.19 9 | 92.91 25 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMMP |  | | 90.63 8 | 92.40 20 | 88.56 9 | 91.24 28 | 91.60 6 | 96.49 9 | 77.53 27 | 87.89 49 | 86.87 31 | 87.24 93 | 96.46 26 | 82.87 16 | 95.59 15 | 94.50 9 | 96.35 6 | 93.51 17 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LGP-MVS_train | | | 90.56 9 | 92.38 21 | 88.43 10 | 90.88 32 | 91.15 11 | 95.35 22 | 77.65 26 | 86.26 65 | 87.23 24 | 90.45 54 | 97.35 18 | 83.20 14 | 95.44 16 | 93.41 21 | 96.28 8 | 92.63 26 |
|
PGM-MVS | | | 90.42 10 | 91.58 37 | 89.05 6 | 91.77 14 | 91.06 13 | 96.51 7 | 78.94 17 | 85.41 72 | 87.67 19 | 87.02 95 | 95.26 56 | 83.62 12 | 95.01 24 | 93.94 16 | 95.79 19 | 93.40 19 |
|
zzz-MVS | | | 90.38 11 | 91.35 41 | 89.25 5 | 93.08 3 | 86.59 64 | 96.45 11 | 79.00 16 | 90.23 28 | 89.30 10 | 85.87 107 | 94.97 65 | 82.54 18 | 95.05 23 | 94.83 7 | 95.14 27 | 91.94 36 |
|
DeepC-MVS | | 83.59 4 | 90.37 12 | 92.56 18 | 87.82 15 | 91.26 27 | 92.33 3 | 94.72 30 | 80.04 9 | 90.01 32 | 84.61 43 | 93.33 22 | 94.22 79 | 80.59 28 | 92.90 44 | 92.52 29 | 95.69 21 | 92.57 27 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HFP-MVS | | | 90.32 13 | 92.37 22 | 87.94 14 | 91.46 21 | 90.91 18 | 95.69 18 | 79.49 12 | 89.94 34 | 83.50 51 | 89.06 73 | 94.44 76 | 81.68 23 | 94.17 31 | 94.19 14 | 95.81 17 | 93.87 6 |
|
PMVS |  | 79.51 9 | 90.23 14 | 92.67 14 | 87.39 21 | 90.16 39 | 88.75 41 | 93.64 36 | 75.78 44 | 90.00 33 | 83.70 48 | 92.97 28 | 92.22 105 | 86.13 4 | 97.01 3 | 96.79 2 | 94.94 30 | 90.96 46 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
SMA-MVS |  | | 90.13 15 | 92.26 27 | 87.64 18 | 91.68 16 | 90.44 26 | 95.22 24 | 77.34 33 | 90.79 22 | 87.80 17 | 90.42 55 | 92.05 110 | 79.05 35 | 93.89 33 | 93.59 19 | 94.77 34 | 94.62 4 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMP | | 80.00 8 | 90.12 16 | 92.30 26 | 87.58 19 | 90.83 34 | 91.10 12 | 94.96 28 | 76.06 41 | 87.47 53 | 85.33 40 | 88.91 77 | 97.65 16 | 82.13 20 | 95.31 17 | 93.44 20 | 96.14 10 | 92.22 33 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SteuartSystems-ACMMP | | | 90.00 17 | 91.73 35 | 87.97 13 | 91.21 29 | 90.29 28 | 96.51 7 | 78.00 24 | 86.33 63 | 85.32 41 | 88.23 82 | 94.67 70 | 82.08 21 | 95.13 22 | 93.88 17 | 94.72 36 | 93.59 12 |
Skip Steuart: Steuart Systems R&D Blog. |
SD-MVS | | | 89.91 18 | 92.23 30 | 87.19 22 | 91.31 24 | 89.79 34 | 94.31 32 | 75.34 47 | 89.26 38 | 81.79 69 | 92.68 31 | 95.08 62 | 83.88 11 | 93.10 39 | 92.69 26 | 96.54 4 | 93.02 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMP_NAP | | | 89.86 19 | 91.96 33 | 87.42 20 | 91.00 30 | 90.08 29 | 96.00 16 | 76.61 37 | 89.28 35 | 87.73 18 | 90.04 57 | 91.80 113 | 78.71 38 | 94.36 29 | 93.82 18 | 94.48 39 | 94.32 5 |
|
APDe-MVS | | | 89.85 20 | 92.91 10 | 86.29 27 | 90.47 38 | 91.34 7 | 96.04 15 | 76.41 40 | 91.11 17 | 78.50 88 | 93.44 21 | 95.82 43 | 81.55 24 | 93.16 38 | 91.90 39 | 94.77 34 | 93.58 14 |
|
OPM-MVS | | | 89.82 21 | 92.24 29 | 86.99 23 | 90.86 33 | 89.35 37 | 95.07 27 | 75.91 43 | 91.16 16 | 86.87 31 | 91.07 50 | 97.29 19 | 79.13 34 | 93.32 36 | 91.99 38 | 94.12 42 | 91.49 41 |
|
DPE-MVS |  | | 89.81 22 | 92.34 24 | 86.86 24 | 89.69 44 | 91.00 16 | 95.53 19 | 76.91 34 | 88.18 47 | 83.43 55 | 93.48 20 | 95.19 57 | 81.07 27 | 92.75 46 | 92.07 37 | 94.55 38 | 93.74 10 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
WR-MVS | | | 89.79 23 | 93.66 4 | 85.27 37 | 91.32 23 | 88.27 45 | 93.49 38 | 79.86 10 | 92.75 9 | 75.37 101 | 96.86 1 | 98.38 6 | 75.10 70 | 95.93 8 | 94.07 15 | 96.46 5 | 89.39 58 |
|
TSAR-MVS + MP. | | | 89.67 24 | 92.25 28 | 86.65 26 | 91.53 18 | 90.98 17 | 96.15 14 | 73.30 56 | 87.88 50 | 81.83 68 | 92.92 29 | 95.15 60 | 82.23 19 | 93.58 35 | 92.25 34 | 94.87 31 | 93.01 24 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CPTT-MVS | | | 89.63 25 | 90.52 49 | 88.59 7 | 90.95 31 | 90.74 21 | 95.71 17 | 79.13 15 | 87.70 51 | 85.68 39 | 80.05 138 | 95.74 46 | 84.77 6 | 94.28 30 | 92.68 27 | 95.28 26 | 92.45 31 |
|
ACMH+ | | 79.05 11 | 89.62 26 | 93.08 8 | 85.58 32 | 88.58 55 | 89.26 38 | 92.18 45 | 74.23 52 | 93.55 8 | 82.66 60 | 92.32 36 | 98.35 8 | 80.29 29 | 95.28 18 | 92.34 32 | 95.52 22 | 90.43 50 |
|
DVP-MVS | | | 89.40 27 | 92.69 13 | 85.56 34 | 89.01 50 | 89.85 32 | 93.72 35 | 75.42 45 | 92.28 11 | 80.49 74 | 94.36 13 | 94.87 66 | 81.46 25 | 92.49 50 | 91.42 42 | 93.27 53 | 93.54 16 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
X-MVS | | | 89.36 28 | 90.73 47 | 87.77 17 | 91.50 20 | 91.23 8 | 96.76 4 | 78.88 18 | 87.29 55 | 87.14 26 | 78.98 143 | 94.53 72 | 76.47 56 | 95.25 19 | 94.28 12 | 95.85 14 | 93.55 15 |
|
TSAR-MVS + ACMM | | | 89.14 29 | 92.11 32 | 85.67 31 | 89.27 47 | 90.61 24 | 90.98 51 | 79.48 13 | 88.86 41 | 79.80 80 | 93.01 27 | 93.53 88 | 83.17 15 | 92.75 46 | 92.45 30 | 91.32 83 | 93.59 12 |
|
SixPastTwentyTwo | | | 89.14 29 | 92.19 31 | 85.58 32 | 84.62 90 | 82.56 92 | 90.53 64 | 71.93 60 | 91.95 12 | 85.89 36 | 94.22 14 | 97.25 20 | 85.42 5 | 95.73 12 | 91.71 41 | 95.08 28 | 91.89 37 |
|
APD-MVS |  | | 89.14 29 | 91.25 44 | 86.67 25 | 91.73 15 | 91.02 15 | 95.50 21 | 77.74 25 | 84.04 83 | 79.47 83 | 91.48 44 | 94.85 67 | 81.14 26 | 92.94 41 | 92.20 36 | 94.47 40 | 92.24 32 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PS-CasMVS | | | 89.07 32 | 93.23 7 | 84.21 51 | 92.44 8 | 88.23 47 | 90.54 63 | 82.95 3 | 90.50 25 | 75.31 102 | 95.80 6 | 98.37 7 | 71.16 101 | 96.30 5 | 93.32 22 | 92.88 61 | 90.11 52 |
|
UA-Net | | | 89.02 33 | 91.44 39 | 86.20 28 | 94.88 1 | 89.84 33 | 94.76 29 | 77.45 29 | 85.41 72 | 74.79 105 | 88.83 78 | 88.90 138 | 78.67 40 | 96.06 7 | 95.45 4 | 96.66 3 | 95.58 1 |
|
LS3D | | | 89.02 33 | 91.69 36 | 85.91 30 | 89.72 43 | 90.81 20 | 92.56 44 | 71.69 63 | 90.83 21 | 87.24 23 | 89.71 63 | 92.07 108 | 78.37 41 | 94.43 28 | 92.59 28 | 95.86 13 | 91.35 42 |
|
DTE-MVSNet | | | 88.99 35 | 92.77 12 | 84.59 43 | 93.31 2 | 88.10 48 | 90.96 52 | 83.09 2 | 91.38 14 | 76.21 95 | 96.03 3 | 98.04 9 | 70.78 107 | 95.65 14 | 92.32 33 | 93.18 56 | 87.84 71 |
|
WR-MVS_H | | | 88.99 35 | 93.28 5 | 83.99 54 | 91.92 11 | 89.13 39 | 91.95 46 | 83.23 1 | 90.14 30 | 71.92 125 | 95.85 5 | 98.01 11 | 71.83 98 | 95.82 9 | 93.19 23 | 93.07 59 | 90.83 48 |
|
SED-MVS | | | 88.96 37 | 92.37 22 | 84.99 40 | 88.64 54 | 89.65 36 | 95.11 25 | 75.98 42 | 90.73 23 | 80.15 79 | 94.21 15 | 94.51 75 | 76.59 55 | 92.94 41 | 91.17 45 | 93.46 50 | 93.37 21 |
|
ACMH | | 78.40 12 | 88.94 38 | 92.62 16 | 84.65 42 | 86.45 75 | 87.16 59 | 91.47 48 | 68.79 85 | 95.49 3 | 89.74 6 | 93.55 19 | 98.50 3 | 77.96 44 | 94.14 32 | 89.57 63 | 93.49 48 | 89.94 54 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PEN-MVS | | | 88.86 39 | 92.92 9 | 84.11 53 | 92.92 5 | 88.05 50 | 90.83 55 | 82.67 5 | 91.04 18 | 74.83 104 | 95.97 4 | 98.47 4 | 70.38 108 | 95.70 13 | 92.43 31 | 93.05 60 | 88.78 64 |
|
HPM-MVS++ |  | | 88.74 40 | 89.54 54 | 87.80 16 | 92.58 7 | 85.69 72 | 95.10 26 | 78.01 23 | 87.08 57 | 87.66 20 | 87.89 85 | 92.07 108 | 80.28 30 | 90.97 71 | 91.41 44 | 93.17 57 | 91.69 38 |
|
CP-MVSNet | | | 88.71 41 | 92.63 15 | 84.13 52 | 92.39 9 | 88.09 49 | 90.47 68 | 82.86 4 | 88.79 43 | 75.16 103 | 94.87 9 | 97.68 15 | 71.05 103 | 96.16 6 | 93.18 24 | 92.85 62 | 89.64 56 |
|
MSP-MVS | | | 88.51 42 | 91.36 40 | 85.19 39 | 90.63 36 | 92.01 4 | 95.29 23 | 77.52 28 | 90.48 26 | 80.21 78 | 90.21 56 | 96.08 35 | 76.38 58 | 88.30 93 | 91.42 42 | 91.12 88 | 91.01 45 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
OMC-MVS | | | 88.16 43 | 91.34 42 | 84.46 46 | 86.85 71 | 90.63 23 | 93.01 41 | 67.00 100 | 90.35 27 | 87.40 22 | 86.86 98 | 96.35 30 | 77.66 48 | 92.63 48 | 90.84 47 | 94.84 32 | 91.68 39 |
|
3Dnovator+ | | 83.71 3 | 88.13 44 | 90.00 52 | 85.94 29 | 86.82 72 | 91.06 13 | 94.26 33 | 75.39 46 | 88.85 42 | 85.76 38 | 85.74 109 | 86.92 147 | 78.02 43 | 93.03 40 | 92.21 35 | 95.39 25 | 92.21 34 |
|
CSCG | | | 88.12 45 | 91.45 38 | 84.23 48 | 88.12 62 | 90.59 25 | 90.57 61 | 68.60 87 | 91.37 15 | 83.45 54 | 89.94 58 | 95.14 61 | 78.71 38 | 91.45 60 | 88.21 75 | 95.96 12 | 93.44 18 |
|
RPSCF | | | 88.05 46 | 92.61 17 | 82.73 66 | 84.24 95 | 88.40 43 | 90.04 74 | 66.29 104 | 91.46 13 | 82.29 62 | 88.93 76 | 96.01 39 | 79.38 32 | 95.15 21 | 94.90 6 | 94.15 41 | 93.40 19 |
|
xxxxxxxxxxxxxcwj | | | 88.03 47 | 91.29 43 | 84.22 49 | 88.17 60 | 87.90 52 | 90.80 56 | 71.80 61 | 89.28 35 | 82.70 58 | 89.90 59 | 97.72 13 | 77.91 45 | 91.69 55 | 90.04 55 | 93.95 45 | 92.47 28 |
|
DeepPCF-MVS | | 81.61 6 | 87.95 48 | 90.29 51 | 85.22 38 | 87.48 66 | 90.01 30 | 93.79 34 | 73.54 54 | 88.93 40 | 83.89 46 | 89.40 68 | 90.84 122 | 80.26 31 | 90.62 74 | 90.19 54 | 92.36 70 | 92.03 35 |
|
test_part1 | | | 87.86 49 | 93.26 6 | 81.56 75 | 87.23 70 | 86.76 62 | 90.91 53 | 70.06 71 | 96.50 1 | 76.74 93 | 96.63 2 | 98.62 2 | 69.45 115 | 92.93 43 | 90.92 46 | 94.98 29 | 90.46 49 |
|
SF-MVS | | | 87.85 50 | 90.95 46 | 84.22 49 | 88.17 60 | 87.90 52 | 90.80 56 | 71.80 61 | 89.28 35 | 82.70 58 | 89.90 59 | 95.37 54 | 77.91 45 | 91.69 55 | 90.04 55 | 93.95 45 | 92.47 28 |
|
DeepC-MVS_fast | | 81.78 5 | 87.38 51 | 89.64 53 | 84.75 41 | 89.89 42 | 90.70 22 | 92.74 43 | 74.45 50 | 86.02 66 | 82.16 66 | 86.05 105 | 91.99 112 | 75.84 64 | 91.16 65 | 90.44 50 | 93.41 51 | 91.09 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
v7n | | | 87.11 52 | 90.46 50 | 83.19 57 | 85.22 85 | 83.69 83 | 90.03 75 | 68.20 93 | 91.01 19 | 86.71 34 | 94.80 10 | 98.46 5 | 77.69 47 | 91.10 67 | 85.98 90 | 91.30 84 | 88.19 67 |
|
CNVR-MVS | | | 86.93 53 | 88.98 58 | 84.54 44 | 90.11 40 | 87.41 57 | 93.23 40 | 73.47 55 | 86.31 64 | 82.25 63 | 82.96 126 | 92.15 106 | 76.04 61 | 91.69 55 | 90.69 48 | 92.17 74 | 91.64 40 |
|
NCCC | | | 86.74 54 | 87.97 70 | 85.31 36 | 90.64 35 | 87.25 58 | 93.27 39 | 74.59 49 | 86.50 61 | 83.72 47 | 75.92 169 | 92.39 102 | 77.08 52 | 91.72 54 | 90.68 49 | 92.57 67 | 91.30 43 |
|
train_agg | | | 86.67 55 | 87.73 71 | 85.43 35 | 91.51 19 | 82.72 89 | 94.47 31 | 74.22 53 | 81.71 98 | 81.54 72 | 89.20 72 | 92.87 95 | 78.33 42 | 90.12 78 | 88.47 70 | 92.51 69 | 89.04 61 |
|
CDPH-MVS | | | 86.66 56 | 88.52 61 | 84.48 45 | 89.61 45 | 88.27 45 | 92.86 42 | 72.69 58 | 80.55 116 | 82.71 57 | 86.92 97 | 93.32 90 | 75.55 66 | 91.00 70 | 89.85 58 | 93.47 49 | 89.71 55 |
|
Gipuma |  | | 86.47 57 | 89.25 56 | 83.23 56 | 83.88 103 | 78.78 121 | 85.35 117 | 68.42 89 | 92.69 10 | 89.03 12 | 91.94 37 | 96.32 33 | 81.80 22 | 94.45 27 | 86.86 83 | 90.91 89 | 83.69 100 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PHI-MVS | | | 86.37 58 | 88.14 67 | 84.30 47 | 86.65 74 | 87.56 55 | 90.76 58 | 70.16 70 | 82.55 90 | 89.65 7 | 84.89 116 | 92.40 101 | 75.97 62 | 90.88 72 | 89.70 60 | 92.58 65 | 89.03 62 |
|
MSLP-MVS++ | | | 86.29 59 | 89.10 57 | 83.01 59 | 85.71 83 | 89.79 34 | 87.04 106 | 74.39 51 | 85.17 74 | 78.92 86 | 77.59 153 | 93.57 86 | 82.60 17 | 93.23 37 | 91.88 40 | 89.42 108 | 92.46 30 |
|
TAPA-MVS | | 78.00 13 | 85.88 60 | 88.37 63 | 82.96 61 | 84.69 88 | 88.62 42 | 90.62 59 | 64.22 125 | 89.15 39 | 88.05 15 | 78.83 145 | 93.71 83 | 76.20 60 | 90.11 79 | 88.22 74 | 94.00 43 | 89.97 53 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
anonymousdsp | | | 85.62 61 | 90.53 48 | 79.88 92 | 64.64 205 | 76.35 141 | 96.28 13 | 53.53 190 | 85.63 69 | 81.59 71 | 92.81 30 | 97.71 14 | 86.88 2 | 94.56 26 | 92.83 25 | 96.35 6 | 93.84 8 |
|
TSAR-MVS + COLMAP | | | 85.51 62 | 88.36 64 | 82.19 67 | 86.05 79 | 87.69 54 | 90.50 66 | 70.60 69 | 86.40 62 | 82.33 61 | 89.69 64 | 92.52 100 | 74.01 80 | 87.53 99 | 86.84 84 | 89.63 103 | 87.80 72 |
|
CNLPA | | | 85.50 63 | 88.58 59 | 81.91 70 | 84.55 92 | 87.52 56 | 90.89 54 | 63.56 136 | 88.18 47 | 84.06 45 | 83.85 122 | 91.34 119 | 76.46 57 | 91.27 62 | 89.00 68 | 91.96 75 | 88.88 63 |
|
UniMVSNet_ETH3D | | | 85.39 64 | 91.12 45 | 78.71 100 | 90.48 37 | 83.72 82 | 81.76 140 | 82.41 6 | 93.84 6 | 64.43 159 | 95.41 7 | 98.76 1 | 63.72 142 | 93.63 34 | 89.74 59 | 89.47 107 | 82.74 113 |
|
PLC |  | 76.06 15 | 85.38 65 | 87.46 73 | 82.95 62 | 85.79 82 | 88.84 40 | 88.86 85 | 68.70 86 | 87.06 58 | 83.60 49 | 79.02 141 | 90.05 128 | 77.37 51 | 90.88 72 | 89.66 61 | 93.37 52 | 86.74 77 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TSAR-MVS + GP. | | | 85.32 66 | 87.41 75 | 82.89 63 | 90.07 41 | 85.69 72 | 89.07 83 | 72.99 57 | 82.45 91 | 74.52 109 | 85.09 114 | 87.67 144 | 79.24 33 | 91.11 66 | 90.41 51 | 91.45 80 | 89.45 57 |
|
TranMVSNet+NR-MVSNet | | | 85.23 67 | 89.38 55 | 80.39 90 | 88.78 53 | 83.77 81 | 87.40 99 | 76.75 35 | 85.47 70 | 68.99 141 | 95.18 8 | 97.55 17 | 67.13 127 | 91.61 58 | 89.13 67 | 93.26 54 | 82.95 110 |
|
HQP-MVS | | | 85.02 68 | 86.41 82 | 83.40 55 | 89.19 48 | 86.59 64 | 91.28 49 | 71.60 64 | 82.79 89 | 83.48 52 | 78.65 147 | 93.54 87 | 72.55 89 | 86.49 110 | 85.89 93 | 92.28 73 | 90.95 47 |
|
UniMVSNet (Re) | | | 84.95 69 | 88.53 60 | 80.78 81 | 87.82 64 | 84.21 78 | 88.03 91 | 76.50 38 | 81.18 109 | 69.29 139 | 92.63 34 | 96.83 23 | 69.07 116 | 91.23 64 | 89.60 62 | 93.97 44 | 84.00 98 |
|
CS-MVS-test | | | 84.94 70 | 87.32 76 | 82.17 68 | 85.81 81 | 81.60 98 | 88.59 88 | 63.65 134 | 80.19 118 | 83.48 52 | 89.54 65 | 92.96 94 | 76.74 54 | 92.10 51 | 88.42 72 | 94.72 36 | 86.44 79 |
|
DU-MVS | | | 84.88 71 | 88.27 66 | 80.92 79 | 88.30 57 | 83.59 84 | 87.06 104 | 78.35 20 | 80.64 114 | 70.49 133 | 92.67 32 | 96.91 22 | 68.13 120 | 91.79 52 | 89.29 66 | 93.20 55 | 83.02 107 |
|
MCST-MVS | | | 84.79 72 | 86.48 80 | 82.83 64 | 87.30 67 | 87.03 61 | 90.46 69 | 69.33 79 | 83.14 86 | 82.21 65 | 81.69 134 | 92.14 107 | 75.09 71 | 87.27 102 | 84.78 104 | 92.58 65 | 89.30 59 |
|
MVS_0304 | | | 84.73 73 | 86.19 84 | 83.02 58 | 88.32 56 | 86.71 63 | 91.55 47 | 70.87 67 | 73.79 146 | 82.88 56 | 85.13 113 | 93.35 89 | 72.55 89 | 88.62 88 | 87.69 77 | 91.93 76 | 88.05 70 |
|
UniMVSNet_NR-MVSNet | | | 84.62 74 | 88.00 69 | 80.68 85 | 88.18 59 | 83.83 80 | 87.06 104 | 76.47 39 | 81.46 105 | 70.49 133 | 93.24 23 | 95.56 49 | 68.13 120 | 90.43 75 | 88.47 70 | 93.78 47 | 83.02 107 |
|
EG-PatchMatch MVS | | | 84.35 75 | 87.55 72 | 80.62 86 | 86.38 76 | 82.24 94 | 86.75 107 | 64.02 130 | 84.24 79 | 78.17 90 | 89.38 69 | 95.03 64 | 78.78 37 | 89.95 80 | 86.33 87 | 89.59 104 | 85.65 86 |
|
AdaColmap |  | | 84.15 76 | 85.14 97 | 83.00 60 | 89.08 49 | 87.14 60 | 90.56 62 | 70.90 66 | 82.40 92 | 80.41 75 | 73.82 180 | 84.69 156 | 75.19 69 | 91.58 59 | 89.90 57 | 91.87 77 | 86.48 78 |
|
PCF-MVS | | 76.59 14 | 84.11 77 | 85.27 94 | 82.76 65 | 86.12 78 | 88.30 44 | 91.24 50 | 69.10 80 | 82.36 93 | 84.45 44 | 77.56 154 | 90.40 127 | 72.91 88 | 85.88 115 | 83.88 112 | 92.72 64 | 88.53 65 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVS_111021_HR | | | 83.95 78 | 86.10 86 | 81.44 76 | 84.62 90 | 80.29 109 | 90.51 65 | 68.05 94 | 84.07 82 | 80.38 76 | 84.74 117 | 91.37 118 | 74.23 76 | 90.37 76 | 87.25 79 | 90.86 90 | 84.59 91 |
|
TinyColmap | | | 83.79 79 | 86.12 85 | 81.07 78 | 83.42 108 | 81.44 100 | 85.42 115 | 68.55 88 | 88.71 44 | 89.46 8 | 87.60 87 | 92.72 96 | 70.34 109 | 89.29 83 | 81.94 130 | 89.20 109 | 81.12 125 |
|
v1192 | | | 83.61 80 | 85.23 95 | 81.72 72 | 84.05 98 | 82.15 95 | 89.54 78 | 66.20 105 | 81.38 107 | 86.76 33 | 91.79 41 | 96.03 37 | 74.88 73 | 81.81 148 | 80.92 137 | 88.91 114 | 82.50 115 |
|
v1240 | | | 83.57 81 | 84.94 101 | 81.97 69 | 84.05 98 | 81.27 102 | 89.46 80 | 66.06 107 | 81.31 108 | 87.50 21 | 91.88 40 | 95.46 52 | 76.25 59 | 81.16 153 | 80.51 141 | 88.52 121 | 82.98 109 |
|
v1921920 | | | 83.49 82 | 84.94 101 | 81.80 71 | 83.78 104 | 81.20 104 | 89.50 79 | 65.91 110 | 81.64 100 | 87.18 25 | 91.70 42 | 95.39 53 | 75.85 63 | 81.56 151 | 80.27 143 | 88.60 118 | 82.80 111 |
|
v144192 | | | 83.43 83 | 84.97 100 | 81.63 74 | 83.43 107 | 81.23 103 | 89.42 81 | 66.04 109 | 81.45 106 | 86.40 35 | 91.46 45 | 95.70 47 | 75.76 65 | 82.14 144 | 80.23 144 | 88.74 115 | 82.57 114 |
|
Vis-MVSNet |  | | 83.32 84 | 88.12 68 | 77.71 109 | 77.91 155 | 83.44 86 | 90.58 60 | 69.49 76 | 81.11 110 | 67.10 153 | 89.85 61 | 91.48 117 | 71.71 99 | 91.34 61 | 89.37 64 | 89.48 106 | 90.26 51 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v1144 | | | 83.22 85 | 85.01 98 | 81.14 77 | 83.76 105 | 81.60 98 | 88.95 84 | 65.58 115 | 81.89 97 | 85.80 37 | 91.68 43 | 95.84 42 | 74.04 79 | 82.12 145 | 80.56 140 | 88.70 117 | 81.41 123 |
|
MVS_111021_LR | | | 83.20 86 | 85.33 93 | 80.73 84 | 82.88 115 | 78.23 126 | 89.61 77 | 65.23 117 | 82.08 95 | 81.19 73 | 85.31 111 | 92.04 111 | 75.22 68 | 89.50 81 | 85.90 92 | 90.24 93 | 84.23 94 |
|
v10 | | | 83.17 87 | 85.22 96 | 80.78 81 | 83.26 110 | 82.99 88 | 88.66 87 | 66.49 103 | 79.24 126 | 83.60 49 | 91.46 45 | 95.47 51 | 74.12 77 | 82.60 143 | 80.66 138 | 88.53 120 | 84.11 97 |
|
PVSNet_Blended_VisFu | | | 83.00 88 | 84.16 112 | 81.65 73 | 82.17 122 | 86.01 68 | 88.03 91 | 71.23 65 | 76.05 139 | 79.54 82 | 83.88 121 | 83.44 157 | 77.49 50 | 87.38 100 | 84.93 102 | 91.41 81 | 87.40 75 |
|
NR-MVSNet | | | 82.89 89 | 87.43 74 | 77.59 111 | 83.91 102 | 83.59 84 | 87.10 103 | 78.35 20 | 80.64 114 | 68.85 142 | 92.67 32 | 96.50 25 | 54.19 177 | 87.19 105 | 88.68 69 | 93.16 58 | 82.75 112 |
|
CANet | | | 82.84 90 | 84.60 105 | 80.78 81 | 87.30 67 | 85.20 75 | 90.23 71 | 69.00 81 | 72.16 155 | 78.73 87 | 84.49 119 | 90.70 125 | 69.54 113 | 87.65 98 | 86.17 88 | 89.87 100 | 85.84 84 |
|
Baseline_NR-MVSNet | | | 82.79 91 | 86.51 79 | 78.44 106 | 88.30 57 | 75.62 149 | 87.81 93 | 74.97 48 | 81.53 102 | 66.84 154 | 94.71 12 | 96.46 26 | 66.90 128 | 91.79 52 | 83.37 121 | 85.83 150 | 82.09 118 |
|
EPP-MVSNet | | | 82.76 92 | 86.47 81 | 78.45 105 | 86.00 80 | 84.47 77 | 85.39 116 | 68.42 89 | 84.17 80 | 62.97 163 | 89.26 71 | 76.84 181 | 72.13 95 | 92.56 49 | 90.40 52 | 95.76 20 | 87.56 74 |
|
CLD-MVS | | | 82.75 93 | 87.22 77 | 77.54 112 | 88.01 63 | 85.76 71 | 90.23 71 | 54.52 184 | 82.28 94 | 82.11 67 | 88.48 81 | 95.27 55 | 63.95 140 | 89.41 82 | 88.29 73 | 86.45 141 | 81.01 127 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Effi-MVS+ | | | 82.33 94 | 83.87 115 | 80.52 88 | 84.51 93 | 81.32 101 | 87.53 97 | 68.05 94 | 74.94 144 | 79.67 81 | 82.37 131 | 92.31 103 | 72.21 92 | 85.06 122 | 86.91 82 | 91.18 86 | 84.20 95 |
|
3Dnovator | | 79.41 10 | 82.21 95 | 86.07 87 | 77.71 109 | 79.31 140 | 84.61 76 | 87.18 101 | 61.02 157 | 85.65 68 | 76.11 96 | 85.07 115 | 85.38 154 | 70.96 105 | 87.22 103 | 86.47 86 | 91.66 78 | 88.12 69 |
|
v8 | | | 82.20 96 | 84.56 106 | 79.45 95 | 82.42 118 | 81.65 97 | 87.26 100 | 64.27 124 | 79.36 125 | 81.70 70 | 91.04 51 | 95.75 45 | 73.30 87 | 82.82 139 | 79.18 150 | 87.74 128 | 82.09 118 |
|
v2v482 | | | 82.20 96 | 84.26 109 | 79.81 93 | 82.67 117 | 80.18 110 | 87.67 96 | 63.96 132 | 81.69 99 | 84.73 42 | 91.27 48 | 96.33 32 | 72.05 96 | 81.94 147 | 79.56 147 | 87.79 127 | 78.84 143 |
|
Effi-MVS+-dtu | | | 82.04 98 | 83.39 123 | 80.48 89 | 85.48 84 | 86.57 66 | 88.40 89 | 68.28 91 | 69.04 169 | 73.13 119 | 76.26 164 | 91.11 121 | 74.74 74 | 88.40 91 | 87.76 76 | 92.84 63 | 84.57 92 |
|
MAR-MVS | | | 81.98 99 | 82.92 125 | 80.88 80 | 85.18 86 | 85.85 69 | 89.13 82 | 69.52 74 | 71.21 159 | 82.25 63 | 71.28 191 | 88.89 139 | 69.69 110 | 88.71 86 | 86.96 80 | 89.52 105 | 87.57 73 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
GeoE | | | 81.92 100 | 83.87 115 | 79.66 94 | 84.64 89 | 79.87 111 | 89.75 76 | 65.90 111 | 76.12 138 | 75.87 98 | 84.62 118 | 92.23 104 | 71.96 97 | 86.83 107 | 83.60 115 | 89.83 101 | 83.81 99 |
|
IS_MVSNet | | | 81.72 101 | 85.01 98 | 77.90 108 | 86.19 77 | 82.64 91 | 85.56 114 | 70.02 72 | 80.11 120 | 63.52 161 | 87.28 92 | 81.18 166 | 67.26 125 | 91.08 69 | 89.33 65 | 94.82 33 | 83.42 103 |
|
FPMVS | | | 81.56 102 | 84.04 114 | 78.66 101 | 82.92 113 | 75.96 145 | 86.48 110 | 65.66 114 | 84.67 78 | 71.47 128 | 77.78 151 | 83.22 160 | 77.57 49 | 91.24 63 | 90.21 53 | 87.84 126 | 85.21 88 |
|
DPM-MVS | | | 81.42 103 | 82.11 129 | 80.62 86 | 87.54 65 | 85.30 74 | 90.18 73 | 68.96 82 | 81.00 112 | 79.15 85 | 70.45 197 | 83.29 159 | 67.67 124 | 82.81 140 | 83.46 116 | 90.19 94 | 88.48 66 |
|
Fast-Effi-MVS+ | | | 81.42 103 | 83.82 117 | 78.62 102 | 82.24 120 | 80.62 107 | 87.72 94 | 63.51 137 | 73.01 148 | 74.75 106 | 83.80 123 | 92.70 97 | 73.44 85 | 88.15 95 | 85.26 97 | 90.05 95 | 83.17 104 |
|
DROMVSNet | | | 81.42 103 | 83.82 117 | 78.62 102 | 82.24 120 | 80.62 107 | 87.72 94 | 63.51 137 | 73.01 148 | 74.75 106 | 83.80 123 | 92.70 97 | 73.44 85 | 88.15 95 | 85.26 97 | 90.05 95 | 83.17 104 |
|
USDC | | | 81.39 106 | 83.07 124 | 79.43 96 | 81.48 126 | 78.95 120 | 82.62 135 | 66.17 106 | 87.45 54 | 90.73 4 | 82.40 130 | 93.65 85 | 66.57 130 | 83.63 135 | 77.97 153 | 89.00 112 | 77.45 151 |
|
MSDG | | | 81.39 106 | 84.23 111 | 78.09 107 | 82.40 119 | 82.47 93 | 85.31 119 | 60.91 158 | 79.73 123 | 80.26 77 | 86.30 101 | 88.27 142 | 69.67 111 | 87.20 104 | 84.98 101 | 89.97 98 | 80.67 129 |
|
canonicalmvs | | | 81.22 108 | 86.04 88 | 75.60 120 | 83.17 112 | 83.18 87 | 80.29 149 | 65.82 113 | 85.97 67 | 67.98 149 | 77.74 152 | 91.51 116 | 65.17 136 | 88.62 88 | 86.15 89 | 91.17 87 | 89.09 60 |
|
thisisatest0515 | | | 81.18 109 | 84.32 108 | 77.52 113 | 76.73 166 | 74.84 155 | 85.06 120 | 61.37 154 | 81.05 111 | 73.95 112 | 88.79 79 | 89.25 135 | 75.49 67 | 85.98 114 | 84.78 104 | 92.53 68 | 85.56 87 |
|
pmmvs6 | | | 80.46 110 | 88.34 65 | 71.26 144 | 81.96 123 | 77.51 130 | 77.54 164 | 68.83 84 | 93.72 7 | 55.92 178 | 93.94 18 | 98.03 10 | 55.94 167 | 89.21 84 | 85.61 94 | 87.36 132 | 80.38 131 |
|
QAPM | | | 80.43 111 | 84.34 107 | 75.86 118 | 79.40 139 | 82.06 96 | 79.86 154 | 61.94 151 | 83.28 85 | 74.73 108 | 81.74 133 | 85.44 153 | 70.97 104 | 84.99 127 | 84.71 106 | 88.29 122 | 88.14 68 |
|
PM-MVS | | | 80.42 112 | 83.63 120 | 76.67 115 | 78.04 152 | 72.37 165 | 87.14 102 | 60.18 163 | 80.13 119 | 71.75 126 | 86.12 104 | 93.92 82 | 77.08 52 | 86.56 109 | 85.12 100 | 85.83 150 | 81.18 124 |
|
DCV-MVSNet | | | 80.04 113 | 85.67 92 | 73.48 135 | 82.91 114 | 81.11 105 | 80.44 148 | 66.06 107 | 85.01 75 | 62.53 166 | 78.84 144 | 94.43 77 | 58.51 158 | 88.66 87 | 85.91 91 | 90.41 92 | 85.73 85 |
|
casdiffmvs | | | 79.93 114 | 84.11 113 | 75.05 125 | 81.41 128 | 78.99 119 | 82.95 132 | 62.90 145 | 81.53 102 | 68.60 146 | 91.94 37 | 96.03 37 | 65.84 134 | 82.89 138 | 77.07 161 | 88.59 119 | 80.34 135 |
|
CS-MVS | | | 79.80 115 | 80.83 135 | 78.60 104 | 84.11 96 | 78.49 122 | 85.82 112 | 58.91 170 | 65.79 180 | 77.94 91 | 78.53 148 | 89.70 129 | 72.51 91 | 87.89 97 | 84.32 108 | 92.34 71 | 81.12 125 |
|
IterMVS-LS | | | 79.79 116 | 82.56 127 | 76.56 117 | 81.83 124 | 77.85 128 | 79.90 153 | 69.42 78 | 78.93 128 | 71.21 129 | 90.47 53 | 85.20 155 | 70.86 106 | 80.54 158 | 80.57 139 | 86.15 143 | 84.36 93 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DELS-MVS | | | 79.71 117 | 83.74 119 | 75.01 127 | 79.31 140 | 82.68 90 | 84.79 122 | 60.06 164 | 75.43 142 | 69.09 140 | 86.13 103 | 89.38 132 | 67.16 126 | 85.12 121 | 83.87 113 | 89.65 102 | 83.57 101 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
pmmvs-eth3d | | | 79.64 118 | 82.06 130 | 76.83 114 | 80.05 134 | 72.64 163 | 87.47 98 | 66.59 102 | 80.83 113 | 73.50 115 | 89.32 70 | 93.20 91 | 67.78 122 | 80.78 156 | 81.64 133 | 85.58 153 | 76.01 153 |
|
UGNet | | | 79.62 119 | 85.91 89 | 72.28 141 | 73.52 176 | 83.91 79 | 86.64 108 | 69.51 75 | 79.85 122 | 62.57 165 | 85.82 108 | 89.63 130 | 53.18 181 | 88.39 92 | 87.35 78 | 88.28 123 | 86.43 80 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
V42 | | | 79.59 120 | 83.59 121 | 74.93 130 | 69.61 189 | 77.05 137 | 86.59 109 | 55.84 179 | 78.42 130 | 77.29 92 | 89.84 62 | 95.08 62 | 74.12 77 | 83.05 136 | 80.11 145 | 86.12 144 | 81.59 122 |
|
Anonymous20231211 | | | 79.37 121 | 85.78 90 | 71.89 142 | 82.87 116 | 79.66 115 | 78.77 161 | 63.93 133 | 83.36 84 | 59.39 170 | 90.54 52 | 94.66 71 | 56.46 165 | 87.38 100 | 84.12 110 | 89.92 99 | 80.74 128 |
|
EPNet | | | 79.36 122 | 79.44 139 | 79.27 99 | 89.51 46 | 77.20 135 | 88.35 90 | 77.35 32 | 68.27 171 | 74.29 110 | 76.31 162 | 79.22 171 | 59.63 154 | 85.02 126 | 85.45 96 | 86.49 140 | 84.61 90 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v148 | | | 79.33 123 | 82.32 128 | 75.84 119 | 80.14 133 | 75.74 146 | 81.98 139 | 57.06 176 | 81.51 104 | 79.36 84 | 89.42 67 | 96.42 28 | 71.32 100 | 81.54 152 | 75.29 170 | 85.20 155 | 76.32 152 |
|
FC-MVSNet-train | | | 79.20 124 | 86.29 83 | 70.94 148 | 84.06 97 | 77.67 129 | 85.68 113 | 64.11 127 | 82.90 88 | 52.22 192 | 92.57 35 | 93.69 84 | 49.52 192 | 88.30 93 | 86.93 81 | 90.03 97 | 81.95 120 |
|
TransMVSNet (Re) | | | 79.05 125 | 86.66 78 | 70.18 154 | 83.32 109 | 75.99 144 | 77.54 164 | 63.98 131 | 90.68 24 | 55.84 179 | 94.80 10 | 96.06 36 | 53.73 180 | 86.27 112 | 83.22 122 | 86.65 136 | 79.61 140 |
|
ETV-MVS | | | 79.01 126 | 77.98 146 | 80.22 91 | 86.69 73 | 79.73 114 | 88.80 86 | 68.27 92 | 63.22 193 | 71.56 127 | 70.25 199 | 73.63 191 | 73.66 83 | 90.30 77 | 86.77 85 | 92.33 72 | 81.95 120 |
|
EIA-MVS | | | 78.57 127 | 77.90 147 | 79.35 97 | 87.24 69 | 80.71 106 | 86.16 111 | 64.03 129 | 62.63 198 | 73.49 116 | 73.60 181 | 76.12 185 | 73.83 81 | 88.49 90 | 84.93 102 | 91.36 82 | 78.78 144 |
|
OpenMVS |  | 75.38 16 | 78.44 128 | 81.39 133 | 74.99 128 | 80.46 131 | 79.85 112 | 79.99 151 | 58.31 173 | 77.34 133 | 73.85 113 | 77.19 157 | 82.33 164 | 68.60 119 | 84.67 129 | 81.95 129 | 88.72 116 | 86.40 81 |
|
pm-mvs1 | | | 78.21 129 | 85.68 91 | 69.50 159 | 80.38 132 | 75.73 147 | 76.25 172 | 65.04 118 | 87.59 52 | 54.47 183 | 93.16 25 | 95.99 41 | 54.20 176 | 86.37 111 | 82.98 125 | 86.64 137 | 77.96 149 |
|
FMVSNet1 | | | 78.20 130 | 84.83 103 | 70.46 152 | 78.62 147 | 79.03 118 | 77.90 163 | 67.53 99 | 83.02 87 | 55.10 181 | 87.19 94 | 93.18 92 | 55.65 170 | 85.57 116 | 83.39 118 | 87.98 125 | 82.40 116 |
|
DI_MVS_plusplus_trai | | | 77.64 131 | 79.64 138 | 75.31 123 | 79.87 136 | 76.89 138 | 81.55 143 | 63.64 135 | 76.21 137 | 72.03 124 | 85.59 110 | 82.97 161 | 66.63 129 | 79.27 164 | 77.78 155 | 88.14 124 | 78.76 145 |
|
IterMVS-SCA-FT | | | 77.23 132 | 79.18 141 | 74.96 129 | 76.67 167 | 79.85 112 | 75.58 181 | 61.34 155 | 73.10 147 | 73.79 114 | 86.23 102 | 79.61 170 | 79.00 36 | 80.28 160 | 75.50 169 | 83.41 167 | 79.70 139 |
|
tfpnnormal | | | 77.16 133 | 84.26 109 | 68.88 162 | 81.02 129 | 75.02 152 | 76.52 171 | 63.30 140 | 87.29 55 | 52.40 190 | 91.24 49 | 93.97 80 | 54.85 174 | 85.46 119 | 81.08 135 | 85.18 156 | 75.76 156 |
|
Fast-Effi-MVS+-dtu | | | 76.92 134 | 77.18 152 | 76.62 116 | 79.55 137 | 79.17 117 | 84.80 121 | 77.40 30 | 64.46 188 | 68.75 144 | 70.81 195 | 86.57 148 | 63.36 147 | 81.74 149 | 81.76 131 | 85.86 149 | 75.78 155 |
|
diffmvs | | | 76.74 135 | 81.61 132 | 71.06 146 | 75.64 171 | 74.45 158 | 80.68 147 | 57.57 175 | 77.48 131 | 67.62 152 | 88.95 75 | 93.94 81 | 61.98 149 | 79.74 161 | 76.18 165 | 82.85 168 | 80.50 130 |
|
MVS_Test | | | 76.72 136 | 79.40 140 | 73.60 134 | 78.85 146 | 74.99 153 | 79.91 152 | 61.56 153 | 69.67 163 | 72.44 120 | 85.98 106 | 90.78 123 | 63.50 145 | 78.30 166 | 75.74 168 | 85.33 154 | 80.31 136 |
|
MDA-MVSNet-bldmvs | | | 76.51 137 | 82.87 126 | 69.09 161 | 50.71 216 | 74.72 157 | 84.05 126 | 60.27 162 | 81.62 101 | 71.16 130 | 88.21 83 | 91.58 114 | 69.62 112 | 92.78 45 | 77.48 158 | 78.75 178 | 73.69 164 |
|
EU-MVSNet | | | 76.48 138 | 80.53 136 | 71.75 143 | 67.62 195 | 70.30 170 | 81.74 141 | 54.06 187 | 75.47 141 | 71.01 131 | 80.10 136 | 93.17 93 | 73.67 82 | 83.73 134 | 77.85 154 | 82.40 169 | 83.07 106 |
|
PVSNet_BlendedMVS | | | 76.45 139 | 78.12 144 | 74.49 131 | 76.76 160 | 78.46 123 | 79.65 155 | 63.26 141 | 65.42 184 | 73.15 117 | 75.05 174 | 88.96 136 | 66.51 131 | 82.73 141 | 77.66 156 | 87.61 129 | 78.60 146 |
|
PVSNet_Blended | | | 76.45 139 | 78.12 144 | 74.49 131 | 76.76 160 | 78.46 123 | 79.65 155 | 63.26 141 | 65.42 184 | 73.15 117 | 75.05 174 | 88.96 136 | 66.51 131 | 82.73 141 | 77.66 156 | 87.61 129 | 78.60 146 |
|
Vis-MVSNet (Re-imp) | | | 76.15 141 | 80.84 134 | 70.68 149 | 83.66 106 | 74.80 156 | 81.66 142 | 69.59 73 | 80.48 117 | 46.94 201 | 87.44 89 | 80.63 168 | 53.14 182 | 86.87 106 | 84.56 107 | 89.12 110 | 71.12 169 |
|
PatchMatch-RL | | | 76.05 142 | 76.64 156 | 75.36 122 | 77.84 156 | 69.87 173 | 81.09 145 | 63.43 139 | 71.66 157 | 68.34 148 | 71.70 187 | 81.76 165 | 74.98 72 | 84.83 128 | 83.44 117 | 86.45 141 | 73.22 166 |
|
pmmvs4 | | | 75.92 143 | 77.48 151 | 74.10 133 | 78.21 151 | 70.94 167 | 84.06 125 | 64.78 120 | 75.13 143 | 68.47 147 | 84.12 120 | 83.32 158 | 64.74 139 | 75.93 178 | 79.14 151 | 84.31 160 | 73.77 163 |
|
FC-MVSNet-test | | | 75.91 144 | 83.59 121 | 66.95 173 | 76.63 168 | 69.07 175 | 85.33 118 | 64.97 119 | 84.87 77 | 41.95 206 | 93.17 24 | 87.04 146 | 47.78 195 | 91.09 68 | 85.56 95 | 85.06 157 | 74.34 159 |
|
tttt0517 | | | 75.86 145 | 76.23 160 | 75.42 121 | 75.55 172 | 74.06 159 | 82.73 133 | 60.31 160 | 69.24 165 | 70.24 135 | 79.18 140 | 58.79 209 | 72.17 93 | 84.49 130 | 83.08 123 | 91.54 79 | 84.80 89 |
|
CVMVSNet | | | 75.65 146 | 77.62 150 | 73.35 138 | 71.95 182 | 69.89 172 | 83.04 131 | 60.84 159 | 69.12 167 | 68.76 143 | 79.92 139 | 78.93 173 | 73.64 84 | 81.02 154 | 81.01 136 | 81.86 172 | 83.43 102 |
|
thisisatest0530 | | | 75.54 147 | 75.95 164 | 75.05 125 | 75.08 173 | 73.56 160 | 82.15 138 | 60.31 160 | 69.17 166 | 69.32 138 | 79.02 141 | 58.78 210 | 72.17 93 | 83.88 133 | 83.08 123 | 91.30 84 | 84.20 95 |
|
IB-MVS | | 71.28 17 | 75.21 148 | 77.00 154 | 73.12 139 | 76.76 160 | 77.45 131 | 83.05 130 | 58.92 169 | 63.01 194 | 64.31 160 | 59.99 212 | 87.57 145 | 68.64 118 | 86.26 113 | 82.34 128 | 87.05 135 | 82.36 117 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CANet_DTU | | | 75.04 149 | 78.45 142 | 71.07 145 | 77.27 157 | 77.96 127 | 83.88 127 | 58.00 174 | 64.11 189 | 68.67 145 | 75.65 171 | 88.37 141 | 53.92 179 | 82.05 146 | 81.11 134 | 84.67 158 | 79.88 138 |
|
GA-MVS | | | 75.01 150 | 76.39 158 | 73.39 136 | 78.37 148 | 75.66 148 | 80.03 150 | 58.40 172 | 70.51 161 | 75.85 99 | 83.24 125 | 76.14 184 | 63.75 141 | 77.28 170 | 76.62 164 | 83.97 162 | 75.30 158 |
|
ET-MVSNet_ETH3D | | | 74.71 151 | 74.19 171 | 75.31 123 | 79.22 142 | 75.29 150 | 82.70 134 | 64.05 128 | 65.45 183 | 70.96 132 | 77.15 158 | 57.70 211 | 65.89 133 | 84.40 131 | 81.65 132 | 89.03 111 | 77.67 150 |
|
FMVSNet2 | | | 74.43 152 | 79.70 137 | 68.27 165 | 76.76 160 | 77.36 132 | 75.77 176 | 65.36 116 | 72.28 153 | 52.97 187 | 81.92 132 | 85.61 152 | 52.73 185 | 80.66 157 | 79.73 146 | 86.04 145 | 80.37 132 |
|
thres600view7 | | | 74.34 153 | 78.43 143 | 69.56 158 | 80.47 130 | 76.28 142 | 78.65 162 | 62.56 147 | 77.39 132 | 52.53 188 | 74.03 178 | 76.78 182 | 55.90 169 | 85.06 122 | 85.19 99 | 87.25 133 | 74.29 160 |
|
IterMVS | | | 73.62 154 | 76.53 157 | 70.23 153 | 71.83 183 | 77.18 136 | 80.69 146 | 53.22 191 | 72.23 154 | 66.62 155 | 85.21 112 | 78.96 172 | 69.54 113 | 76.28 177 | 71.63 180 | 79.45 175 | 74.25 161 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MIMVSNet1 | | | 73.40 155 | 81.85 131 | 63.55 185 | 72.90 179 | 64.37 189 | 84.58 123 | 53.60 189 | 90.84 20 | 53.92 184 | 87.75 86 | 96.10 34 | 45.31 198 | 85.37 120 | 79.32 149 | 70.98 193 | 69.18 178 |
|
HyFIR lowres test | | | 73.29 156 | 74.14 172 | 72.30 140 | 73.08 178 | 78.33 125 | 83.12 129 | 62.41 149 | 63.81 190 | 62.13 167 | 76.67 161 | 78.50 174 | 71.09 102 | 74.13 182 | 77.47 159 | 81.98 171 | 70.10 173 |
|
GBi-Net | | | 73.17 157 | 77.64 148 | 67.95 168 | 76.76 160 | 77.36 132 | 75.77 176 | 64.57 121 | 62.99 195 | 51.83 193 | 76.05 165 | 77.76 177 | 52.73 185 | 85.57 116 | 83.39 118 | 86.04 145 | 80.37 132 |
|
test1 | | | 73.17 157 | 77.64 148 | 67.95 168 | 76.76 160 | 77.36 132 | 75.77 176 | 64.57 121 | 62.99 195 | 51.83 193 | 76.05 165 | 77.76 177 | 52.73 185 | 85.57 116 | 83.39 118 | 86.04 145 | 80.37 132 |
|
thres400 | | | 73.13 159 | 76.99 155 | 68.62 163 | 79.46 138 | 74.93 154 | 77.23 166 | 61.23 156 | 75.54 140 | 52.31 191 | 72.20 186 | 77.10 180 | 54.89 172 | 82.92 137 | 82.62 127 | 86.57 139 | 73.66 165 |
|
CDS-MVSNet | | | 73.07 160 | 77.02 153 | 68.46 164 | 81.62 125 | 72.89 162 | 79.56 157 | 70.78 68 | 69.56 164 | 52.52 189 | 77.37 156 | 81.12 167 | 42.60 200 | 84.20 132 | 83.93 111 | 83.65 163 | 70.07 174 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MDTV_nov1_ep13_2view | | | 72.96 161 | 75.59 165 | 69.88 155 | 71.15 186 | 64.86 188 | 82.31 137 | 54.45 185 | 76.30 136 | 78.32 89 | 86.52 99 | 91.58 114 | 61.35 150 | 76.80 171 | 66.83 191 | 71.70 186 | 66.26 182 |
|
gg-mvs-nofinetune | | | 72.68 162 | 75.21 168 | 69.73 156 | 81.48 126 | 69.04 176 | 70.48 193 | 76.67 36 | 86.92 59 | 67.80 151 | 88.06 84 | 64.67 199 | 42.12 202 | 77.60 168 | 73.65 173 | 79.81 174 | 66.57 181 |
|
thres200 | | | 72.41 163 | 76.00 163 | 68.21 166 | 78.28 149 | 76.28 142 | 74.94 182 | 62.56 147 | 72.14 156 | 51.35 196 | 69.59 201 | 76.51 183 | 54.89 172 | 85.06 122 | 80.51 141 | 87.25 133 | 71.92 168 |
|
tfpn200view9 | | | 72.01 164 | 75.40 166 | 68.06 167 | 77.97 153 | 76.44 140 | 77.04 168 | 62.67 146 | 66.81 174 | 50.82 197 | 67.30 203 | 75.67 187 | 52.46 188 | 85.06 122 | 82.64 126 | 87.41 131 | 73.86 162 |
|
EPNet_dtu | | | 71.90 165 | 73.03 177 | 70.59 150 | 78.28 149 | 61.64 194 | 82.44 136 | 64.12 126 | 63.26 192 | 69.74 136 | 71.47 189 | 82.41 162 | 51.89 189 | 78.83 165 | 78.01 152 | 77.07 179 | 75.60 157 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
gm-plane-assit | | | 71.56 166 | 69.99 181 | 73.39 136 | 84.43 94 | 73.21 161 | 90.42 70 | 51.36 197 | 84.08 81 | 76.00 97 | 91.30 47 | 37.09 223 | 59.01 156 | 73.65 185 | 70.24 184 | 79.09 177 | 60.37 198 |
|
CMPMVS |  | 55.74 18 | 71.56 166 | 76.26 159 | 66.08 178 | 68.11 193 | 63.91 191 | 63.17 207 | 50.52 199 | 68.79 170 | 75.49 100 | 70.78 196 | 85.67 151 | 63.54 144 | 81.58 150 | 77.20 160 | 75.63 180 | 85.86 83 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet3 | | | 71.40 168 | 75.20 169 | 66.97 172 | 75.00 174 | 76.59 139 | 74.29 183 | 64.57 121 | 62.99 195 | 51.83 193 | 76.05 165 | 77.76 177 | 51.49 190 | 76.58 174 | 77.03 162 | 84.62 159 | 79.43 141 |
|
MS-PatchMatch | | | 71.18 169 | 73.99 173 | 67.89 170 | 77.16 158 | 71.76 166 | 77.18 167 | 56.38 178 | 67.35 172 | 55.04 182 | 74.63 176 | 75.70 186 | 62.38 148 | 76.62 173 | 75.97 167 | 79.22 176 | 75.90 154 |
|
test20.03 | | | 69.91 170 | 76.20 161 | 62.58 186 | 84.01 100 | 67.34 181 | 75.67 180 | 65.88 112 | 79.98 121 | 40.28 210 | 82.65 127 | 89.31 134 | 39.63 205 | 77.41 169 | 73.28 174 | 69.98 194 | 63.40 189 |
|
thres100view900 | | | 69.86 171 | 72.97 178 | 66.24 175 | 77.97 153 | 72.49 164 | 73.29 186 | 59.12 167 | 66.81 174 | 50.82 197 | 67.30 203 | 75.67 187 | 50.54 191 | 78.24 167 | 79.40 148 | 85.71 152 | 70.88 170 |
|
baseline1 | | | 69.62 172 | 73.55 175 | 65.02 184 | 78.95 145 | 70.39 169 | 71.38 192 | 62.03 150 | 70.97 160 | 47.95 200 | 78.47 149 | 68.19 197 | 47.77 196 | 79.65 163 | 76.94 163 | 82.05 170 | 70.27 172 |
|
CR-MVSNet | | | 69.56 173 | 68.34 186 | 70.99 147 | 72.78 181 | 67.63 179 | 64.47 205 | 67.74 97 | 59.93 204 | 72.30 121 | 80.10 136 | 56.77 213 | 65.04 137 | 71.64 190 | 72.91 176 | 83.61 165 | 69.40 176 |
|
baseline | | | 69.33 174 | 75.37 167 | 62.28 188 | 66.54 201 | 66.67 184 | 73.95 185 | 48.07 200 | 66.10 177 | 59.26 171 | 82.45 128 | 86.30 149 | 54.44 175 | 74.42 181 | 73.25 175 | 71.42 189 | 78.43 148 |
|
pmmvs5 | | | 68.91 175 | 74.35 170 | 62.56 187 | 67.45 197 | 66.78 183 | 71.70 189 | 51.47 196 | 67.17 173 | 56.25 177 | 82.41 129 | 88.59 140 | 47.21 197 | 73.21 188 | 74.23 171 | 81.30 173 | 68.03 180 |
|
CHOSEN 1792x2688 | | | 68.80 176 | 71.09 179 | 66.13 177 | 69.11 191 | 68.89 177 | 78.98 160 | 54.68 182 | 61.63 200 | 56.69 175 | 71.56 188 | 78.39 175 | 67.69 123 | 72.13 189 | 72.01 179 | 69.63 196 | 73.02 167 |
|
baseline2 | | | 68.71 177 | 68.34 186 | 69.14 160 | 75.69 170 | 69.70 174 | 76.60 170 | 55.53 181 | 60.13 203 | 62.07 168 | 66.76 205 | 60.35 204 | 60.77 151 | 76.53 176 | 74.03 172 | 84.19 161 | 70.88 170 |
|
SCA | | | 68.54 178 | 67.52 188 | 69.73 156 | 67.79 194 | 75.04 151 | 76.96 169 | 68.94 83 | 66.41 176 | 67.86 150 | 74.03 178 | 60.96 202 | 65.55 135 | 68.99 198 | 65.67 192 | 71.30 191 | 61.54 197 |
|
testgi | | | 68.20 179 | 76.05 162 | 59.04 192 | 79.99 135 | 67.32 182 | 81.16 144 | 51.78 195 | 84.91 76 | 39.36 211 | 73.42 182 | 95.19 57 | 32.79 211 | 76.54 175 | 70.40 183 | 69.14 197 | 64.55 185 |
|
MVSTER | | | 68.08 180 | 69.73 182 | 66.16 176 | 66.33 203 | 70.06 171 | 75.71 179 | 52.36 193 | 55.18 212 | 58.64 172 | 70.23 200 | 56.72 214 | 57.34 162 | 79.68 162 | 76.03 166 | 86.61 138 | 80.20 137 |
|
Anonymous20231206 | | | 67.28 181 | 73.41 176 | 60.12 191 | 76.45 169 | 63.61 192 | 74.21 184 | 56.52 177 | 76.35 135 | 42.23 205 | 75.81 170 | 90.47 126 | 41.51 203 | 74.52 179 | 69.97 185 | 69.83 195 | 63.17 190 |
|
RPMNet | | | 67.02 182 | 63.99 197 | 70.56 151 | 71.55 184 | 67.63 179 | 75.81 174 | 69.44 77 | 59.93 204 | 63.24 162 | 64.32 207 | 47.51 222 | 59.68 153 | 70.37 195 | 69.64 186 | 83.64 164 | 68.49 179 |
|
CostFormer | | | 66.81 183 | 66.94 189 | 66.67 174 | 72.79 180 | 68.25 178 | 79.55 158 | 55.57 180 | 65.52 182 | 62.77 164 | 76.98 159 | 60.09 205 | 56.73 164 | 65.69 206 | 62.35 195 | 72.59 185 | 69.71 175 |
|
PatchT | | | 66.25 184 | 66.76 190 | 65.67 181 | 55.87 211 | 60.75 195 | 70.17 194 | 59.00 168 | 59.80 206 | 72.30 121 | 78.68 146 | 54.12 218 | 65.04 137 | 71.64 190 | 72.91 176 | 71.63 188 | 69.40 176 |
|
dps | | | 65.14 185 | 64.50 195 | 65.89 180 | 71.41 185 | 65.81 187 | 71.44 191 | 61.59 152 | 58.56 207 | 61.43 169 | 75.45 172 | 52.70 220 | 58.06 160 | 69.57 197 | 64.65 193 | 71.39 190 | 64.77 184 |
|
MDTV_nov1_ep13 | | | 64.96 186 | 64.77 194 | 65.18 183 | 67.08 198 | 62.46 193 | 75.80 175 | 51.10 198 | 62.27 199 | 69.74 136 | 74.12 177 | 62.65 200 | 55.64 171 | 68.19 200 | 62.16 199 | 71.70 186 | 61.57 196 |
|
PatchmatchNet |  | | 64.81 187 | 63.74 198 | 66.06 179 | 69.21 190 | 58.62 198 | 73.16 187 | 60.01 165 | 65.92 178 | 66.19 157 | 76.27 163 | 59.09 206 | 60.45 152 | 66.58 203 | 61.47 201 | 67.33 200 | 58.24 203 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tpm cat1 | | | 64.79 188 | 62.74 202 | 67.17 171 | 74.61 175 | 65.91 186 | 76.18 173 | 59.32 166 | 64.88 187 | 66.41 156 | 71.21 192 | 53.56 219 | 59.17 155 | 61.53 210 | 58.16 204 | 67.33 200 | 63.95 186 |
|
MIMVSNet | | | 63.02 189 | 69.02 184 | 56.01 197 | 68.20 192 | 59.26 197 | 70.01 196 | 53.79 188 | 71.56 158 | 41.26 209 | 71.38 190 | 82.38 163 | 36.38 207 | 71.43 192 | 67.32 190 | 66.45 202 | 59.83 200 |
|
TAMVS | | | 63.02 189 | 69.30 183 | 55.70 199 | 70.12 187 | 56.89 200 | 69.63 197 | 45.13 203 | 70.23 162 | 38.00 212 | 77.79 150 | 75.15 189 | 42.60 200 | 74.48 180 | 72.81 178 | 68.70 198 | 57.75 205 |
|
tpm | | | 62.79 191 | 63.25 199 | 62.26 189 | 70.09 188 | 53.78 203 | 71.65 190 | 47.31 201 | 65.72 181 | 76.70 94 | 80.62 135 | 56.40 216 | 48.11 194 | 64.20 208 | 58.54 202 | 59.70 206 | 63.47 188 |
|
pmmvs3 | | | 62.72 192 | 68.71 185 | 55.74 198 | 50.74 215 | 57.10 199 | 70.05 195 | 28.82 213 | 61.57 202 | 57.39 174 | 71.19 193 | 85.73 150 | 53.96 178 | 73.36 187 | 69.43 187 | 73.47 184 | 62.55 192 |
|
pmnet_mix02 | | | 62.60 193 | 70.81 180 | 53.02 204 | 66.56 200 | 50.44 210 | 62.81 208 | 46.84 202 | 79.13 127 | 43.76 204 | 87.45 88 | 90.75 124 | 39.85 204 | 70.48 194 | 57.09 205 | 58.27 208 | 60.32 199 |
|
new-patchmatchnet | | | 62.59 194 | 73.79 174 | 49.53 208 | 76.98 159 | 53.57 204 | 53.46 216 | 54.64 183 | 85.43 71 | 28.81 215 | 91.94 37 | 96.41 29 | 25.28 213 | 76.80 171 | 53.66 211 | 57.99 209 | 58.69 202 |
|
test-LLR | | | 62.15 195 | 59.46 211 | 65.29 182 | 79.07 143 | 52.66 206 | 69.46 199 | 62.93 143 | 50.76 215 | 53.81 185 | 63.11 209 | 58.91 207 | 52.87 183 | 66.54 204 | 62.34 196 | 73.59 182 | 61.87 194 |
|
PMMVS | | | 61.98 196 | 65.61 192 | 57.74 194 | 45.03 217 | 51.76 208 | 69.54 198 | 35.05 210 | 55.49 211 | 55.32 180 | 68.23 202 | 78.39 175 | 58.09 159 | 70.21 196 | 71.56 181 | 83.42 166 | 63.66 187 |
|
test0.0.03 1 | | | 61.79 197 | 65.33 193 | 57.65 195 | 79.07 143 | 64.09 190 | 68.51 202 | 62.93 143 | 61.59 201 | 33.71 214 | 61.58 211 | 71.58 195 | 33.43 210 | 70.95 193 | 68.68 188 | 68.26 199 | 58.82 201 |
|
MVS-HIRNet | | | 59.74 198 | 58.74 214 | 60.92 190 | 57.74 210 | 45.81 214 | 56.02 214 | 58.69 171 | 55.69 210 | 65.17 158 | 70.86 194 | 71.66 193 | 56.75 163 | 61.11 211 | 53.74 210 | 71.17 192 | 52.28 209 |
|
tpmrst | | | 59.42 199 | 60.02 209 | 58.71 193 | 67.56 196 | 53.10 205 | 66.99 203 | 51.88 194 | 63.80 191 | 57.68 173 | 76.73 160 | 56.49 215 | 48.73 193 | 56.47 214 | 55.55 207 | 59.43 207 | 58.02 204 |
|
test-mter | | | 59.39 200 | 61.59 204 | 56.82 196 | 53.21 212 | 54.82 202 | 73.12 188 | 26.57 215 | 53.19 213 | 56.31 176 | 64.71 206 | 60.47 203 | 56.36 166 | 68.69 199 | 64.27 194 | 75.38 181 | 65.00 183 |
|
E-PMN | | | 59.07 201 | 62.79 201 | 54.72 200 | 67.01 199 | 47.81 213 | 60.44 211 | 43.40 204 | 72.95 150 | 44.63 203 | 70.42 198 | 73.17 192 | 58.73 157 | 80.97 155 | 51.98 212 | 54.14 212 | 42.26 214 |
|
EMVS | | | 58.97 202 | 62.63 203 | 54.70 201 | 66.26 204 | 48.71 211 | 61.74 209 | 42.71 205 | 72.80 152 | 46.00 202 | 73.01 185 | 71.66 193 | 57.91 161 | 80.41 159 | 50.68 214 | 53.55 213 | 41.11 215 |
|
TESTMET0.1,1 | | | 57.21 203 | 59.46 211 | 54.60 202 | 50.95 214 | 52.66 206 | 69.46 199 | 26.91 214 | 50.76 215 | 53.81 185 | 63.11 209 | 58.91 207 | 52.87 183 | 66.54 204 | 62.34 196 | 73.59 182 | 61.87 194 |
|
ADS-MVSNet | | | 56.89 204 | 61.09 205 | 52.00 206 | 59.48 208 | 48.10 212 | 58.02 212 | 54.37 186 | 72.82 151 | 49.19 199 | 75.32 173 | 65.97 198 | 37.96 206 | 59.34 213 | 54.66 209 | 52.99 214 | 51.42 210 |
|
EPMVS | | | 56.62 205 | 59.77 210 | 52.94 205 | 62.41 206 | 50.55 209 | 60.66 210 | 52.83 192 | 65.15 186 | 41.80 207 | 77.46 155 | 57.28 212 | 42.68 199 | 59.81 212 | 54.82 208 | 57.23 210 | 53.35 208 |
|
FMVSNet5 | | | 56.37 206 | 60.14 208 | 51.98 207 | 60.83 207 | 59.58 196 | 66.85 204 | 42.37 206 | 52.68 214 | 41.33 208 | 47.09 215 | 54.68 217 | 35.28 208 | 73.88 183 | 70.77 182 | 65.24 203 | 62.26 193 |
|
CHOSEN 280x420 | | | 56.32 207 | 58.85 213 | 53.36 203 | 51.63 213 | 39.91 217 | 69.12 201 | 38.61 209 | 56.29 209 | 36.79 213 | 48.84 214 | 62.59 201 | 63.39 146 | 73.61 186 | 67.66 189 | 60.61 204 | 63.07 191 |
|
N_pmnet | | | 54.95 208 | 65.90 191 | 42.18 209 | 66.37 202 | 43.86 216 | 57.92 213 | 39.79 208 | 79.54 124 | 17.24 220 | 86.31 100 | 87.91 143 | 25.44 212 | 64.68 207 | 51.76 213 | 46.33 215 | 47.23 212 |
|
new_pmnet | | | 52.29 209 | 63.16 200 | 39.61 211 | 58.89 209 | 44.70 215 | 48.78 218 | 34.73 211 | 65.88 179 | 17.85 219 | 73.42 182 | 80.00 169 | 23.06 214 | 67.00 202 | 62.28 198 | 54.36 211 | 48.81 211 |
|
MVE |  | 41.12 19 | 51.80 210 | 60.92 206 | 41.16 210 | 35.21 219 | 34.14 219 | 48.45 219 | 41.39 207 | 69.11 168 | 19.53 218 | 63.33 208 | 73.80 190 | 63.56 143 | 67.19 201 | 61.51 200 | 38.85 216 | 57.38 206 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 48.13 211 | 64.06 196 | 29.55 212 | 44.06 218 | 36.69 218 | 51.95 217 | 29.97 212 | 74.75 145 | 8.90 222 | 76.02 168 | 91.24 120 | 7.53 216 | 73.78 184 | 55.91 206 | 34.87 217 | 40.01 216 |
|
GG-mvs-BLEND | | | 41.63 212 | 60.36 207 | 19.78 213 | 0.14 224 | 66.04 185 | 55.66 215 | 0.17 221 | 57.64 208 | 2.42 223 | 51.82 213 | 69.42 196 | 0.28 220 | 64.11 209 | 58.29 203 | 60.02 205 | 55.18 207 |
|
test_method | | | 22.69 213 | 26.99 215 | 17.67 214 | 2.13 221 | 4.31 222 | 27.50 220 | 4.53 217 | 37.94 217 | 24.52 217 | 36.20 217 | 51.40 221 | 15.26 215 | 29.86 216 | 17.09 216 | 32.07 218 | 12.16 217 |
|
test123 | | | 1.06 214 | 1.41 216 | 0.64 216 | 0.39 222 | 0.48 223 | 0.52 225 | 0.25 220 | 1.11 221 | 1.37 224 | 2.01 220 | 1.98 226 | 0.87 218 | 1.43 218 | 1.27 217 | 0.46 222 | 1.62 219 |
|
testmvs | | | 0.93 215 | 1.37 217 | 0.41 217 | 0.36 223 | 0.36 224 | 0.62 224 | 0.39 219 | 1.48 220 | 0.18 225 | 2.41 219 | 1.31 227 | 0.41 219 | 1.25 219 | 1.08 218 | 0.48 221 | 1.68 218 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 87.10 29 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 89.43 131 | | | | | |
|
SR-MVS | | | | | | 91.82 13 | | | 80.80 7 | | | | 95.53 50 | | | | | |
|
Anonymous202405211 | | | | 84.68 104 | | 83.92 101 | 79.45 116 | 79.03 159 | 67.79 96 | 82.01 96 | | 88.77 80 | 92.58 99 | 55.93 168 | 86.68 108 | 84.26 109 | 88.92 113 | 78.98 142 |
|
our_test_3 | | | | | | 73.27 177 | 70.91 168 | 83.26 128 | | | | | | | | | | |
|
ambc | | | | 88.38 62 | | 91.62 17 | 87.97 51 | 84.48 124 | | 88.64 45 | 87.93 16 | 87.38 90 | 94.82 69 | 74.53 75 | 89.14 85 | 83.86 114 | 85.94 148 | 86.84 76 |
|
MTAPA | | | | | | | | | | | 89.37 9 | | 94.85 67 | | | | | |
|
MTMP | | | | | | | | | | | 90.54 5 | | 95.16 59 | | | | | |
|
Patchmatch-RL test | | | | | | | | 4.13 223 | | | | | | | | | | |
|
tmp_tt | | | | | 13.54 215 | 16.73 220 | 6.42 221 | 8.49 222 | 2.36 218 | 28.69 219 | 27.44 216 | 18.40 218 | 13.51 225 | 3.70 217 | 33.23 215 | 36.26 215 | 22.54 220 | |
|
XVS | | | | | | 91.28 25 | 91.23 8 | 96.89 2 | | | 87.14 26 | | 94.53 72 | | | | 95.84 15 | |
|
X-MVStestdata | | | | | | 91.28 25 | 91.23 8 | 96.89 2 | | | 87.14 26 | | 94.53 72 | | | | 95.84 15 | |
|
abl_6 | | | | | 79.30 98 | 84.98 87 | 85.78 70 | 90.50 66 | 66.88 101 | 77.08 134 | 74.02 111 | 73.29 184 | 89.34 133 | 68.94 117 | | | 90.49 91 | 85.98 82 |
|
mPP-MVS | | | | | | 93.05 4 | | | | | | | 95.77 44 | | | | | |
|
NP-MVS | | | | | | | | | | 78.65 129 | | | | | | | | |
|
Patchmtry | | | | | | | 56.88 201 | 64.47 205 | 67.74 97 | | 72.30 121 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 17.78 220 | 20.40 221 | 6.69 216 | 31.41 218 | 9.80 221 | 38.61 216 | 34.88 224 | 33.78 209 | 28.41 217 | | 23.59 219 | 45.77 213 |
|