This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9186.07 4598.48 1797.22 19
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6993.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2385.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4788.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 185
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1290.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2882.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9583.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6183.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6385.07 3689.99 9894.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12184.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 178
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9088.22 1888.53 12897.64 283.45 8394.55 7886.02 4898.60 1296.67 27
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6981.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6781.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6881.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2580.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3283.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4480.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5982.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8282.59 6188.52 12994.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5080.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1775.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12378.35 12698.76 395.61 48
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5477.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6279.20 10093.83 2793.60 11090.81 792.96 13885.02 5698.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9293.95 9784.50 7195.37 5180.87 10095.50 14294.53 79
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3779.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3784.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5283.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 179
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 7075.37 14792.84 4895.28 3885.58 6496.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 7986.53 2694.29 1896.27 1782.69 9094.08 9486.25 4297.63 6197.82 8
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18588.51 1790.11 9495.12 4490.98 688.92 24977.55 14097.07 8183.13 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3585.33 3393.49 3694.64 5981.12 11995.88 1787.41 2295.94 12592.48 168
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14383.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 232
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30589.04 8392.74 9291.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30288.95 8493.19 7191.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7581.10 7795.32 1097.24 572.94 20994.85 6785.07 5497.78 5397.26 16
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31288.93 8592.84 8991.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3979.68 9292.09 6293.89 10083.80 7893.10 13582.67 8298.04 3693.64 123
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3388.89 1188.83 12394.26 7777.55 15195.86 2284.88 5895.87 12995.24 58
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25789.54 7493.31 6690.21 1095.57 995.66 2981.42 11695.90 1580.94 9998.80 298.84 5
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12192.78 9178.78 10692.51 5593.64 10988.13 3493.84 10484.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15370.00 21994.55 1596.67 1187.94 3793.59 11584.27 6495.97 12295.52 49
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 17069.87 22095.06 1196.14 2184.28 7493.07 13687.68 1596.34 10597.09 21
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17371.54 20194.28 2096.54 1381.57 11494.27 8386.26 4096.49 9997.09 21
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11793.91 4380.07 8986.75 16593.26 11493.64 290.93 19584.60 6190.75 26593.97 104
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7880.87 8191.13 7893.19 11586.22 5995.97 1282.23 8897.18 7990.45 234
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16769.27 22394.39 1696.38 1586.02 6293.52 11983.96 6695.92 12795.34 53
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10279.74 9187.50 15092.38 14381.42 11693.28 12883.07 7497.24 7791.67 202
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4881.89 6894.70 1395.44 3490.69 888.31 25983.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7286.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11794.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7286.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11794.45 82
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30888.66 9292.06 10890.78 695.67 795.17 4281.80 11295.54 4179.00 12198.69 998.95 4
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5780.16 8789.13 12093.44 11283.82 7790.98 19383.86 6895.30 15093.60 125
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2673.53 16689.71 10594.82 5185.09 6595.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23289.67 6988.38 20088.84 1394.29 1897.57 390.48 1391.26 18472.57 20397.65 6097.34 15
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4478.43 11189.16 11892.25 15072.03 22296.36 388.21 790.93 25992.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 4978.90 10492.88 4592.29 14886.11 6090.22 21786.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13578.20 11386.69 16892.28 14980.36 12895.06 6286.17 4496.49 9990.22 238
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16889.44 18788.63 1694.38 1795.77 2686.38 5893.59 11579.84 11195.21 15191.82 197
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8587.95 2089.62 10992.87 12984.56 7093.89 10077.65 13896.62 9390.70 225
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11484.26 4290.87 8793.92 9982.18 10389.29 24573.75 18594.81 17093.70 119
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22288.86 8693.02 8387.15 2393.05 4397.10 682.28 10292.02 16576.70 15097.99 4096.88 25
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11170.73 21094.19 2196.67 1176.94 16194.57 7683.07 7496.28 10796.15 33
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 19277.34 12293.63 3595.83 2565.40 25895.90 1585.01 5798.23 2797.49 13
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10893.17 7276.02 13488.64 12691.22 17684.24 7593.37 12677.97 13697.03 8295.52 49
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1579.37 9884.32 21689.33 22783.87 7694.53 7982.45 8494.89 16694.90 65
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13967.85 24386.63 16994.84 5079.58 13495.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7489.79 5182.98 18893.26 7263.94 23691.10 4189.64 18285.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 12993.13 142
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19789.67 22284.47 7295.46 4782.56 8396.26 11093.77 117
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 14079.26 9989.68 10694.81 5482.44 9487.74 26376.54 15388.74 29096.61 29
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 979.47 9488.00 14293.03 12182.66 9191.47 17770.81 21296.14 11494.16 96
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11572.61 18892.16 6095.23 4166.01 25395.59 3786.02 4897.78 5397.24 17
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23384.38 16191.29 13484.88 3992.06 6393.84 10186.45 5593.73 10673.22 19498.66 1097.69 9
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2674.04 15892.70 5394.66 5585.88 6391.50 17679.72 11397.32 7596.50 31
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14491.23 13677.31 12487.07 15991.47 17082.94 8894.71 7084.67 6096.27 10992.62 163
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5579.44 9686.55 17092.95 12674.84 18295.22 5680.78 10295.83 13194.46 80
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22984.54 4183.58 23393.78 10473.36 20596.48 187.98 996.21 11194.41 86
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12591.09 14178.77 10784.85 20590.89 18980.85 12295.29 5381.14 9795.32 14792.34 176
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18692.38 10070.25 21689.35 11790.68 19882.85 8994.57 7679.55 11595.95 12492.00 192
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20881.66 7094.64 1496.53 1465.94 25494.75 6983.02 7696.83 8795.41 51
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9594.53 7977.65 13896.46 10194.14 98
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17792.87 8780.37 8389.61 11191.81 16177.72 14894.18 8975.00 17198.53 1596.99 24
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10992.09 10778.87 10584.27 22194.05 8878.35 14293.65 10880.54 10691.58 24792.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20682.55 21291.56 12483.08 5790.92 8291.82 16078.25 14393.99 9674.16 17698.35 2197.49 13
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20683.16 19592.21 10381.73 6990.92 8291.97 15477.20 15593.99 9674.16 17698.35 2197.61 10
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23265.22 22384.16 16394.23 2377.89 11691.28 7793.66 10884.35 7392.71 14580.07 10794.87 16995.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 26078.30 8586.93 11592.20 10465.94 25589.16 11893.16 11783.10 8689.89 23087.81 1194.43 18293.35 132
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20991.21 3988.64 19786.30 2889.60 11292.59 13769.22 23794.91 6673.89 18297.89 4996.72 26
v1086.54 9587.10 8984.84 13688.16 20663.28 24386.64 12492.20 10475.42 14692.81 5094.50 6374.05 19394.06 9583.88 6796.28 10797.17 20
pmmvs686.52 9688.06 7481.90 20992.22 10162.28 26084.66 15489.15 19083.54 5289.85 10297.32 488.08 3686.80 27870.43 22197.30 7696.62 28
PHI-MVS86.38 9785.81 11588.08 8288.44 20077.34 10189.35 8093.05 7973.15 17984.76 20687.70 25378.87 13894.18 8980.67 10496.29 10692.73 156
MVS_030486.35 9885.92 11187.66 8889.21 18073.16 13988.40 9583.63 27181.27 7480.87 27794.12 8671.49 22795.71 3287.79 1296.50 9894.11 100
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11780.35 8489.54 11588.01 24579.09 13692.13 16175.51 16495.06 15890.41 235
DeepC-MVS_fast80.27 886.23 10085.65 11987.96 8591.30 13376.92 10687.19 11091.99 11070.56 21184.96 20190.69 19780.01 13195.14 5978.37 12595.78 13691.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10186.83 9684.36 14987.82 21162.35 25986.42 12791.33 13376.78 12892.73 5294.48 6573.41 20293.72 10783.10 7395.41 14397.01 23
Anonymous2024052986.20 10287.13 8883.42 17790.19 15964.55 23084.55 15690.71 15085.85 3189.94 10195.24 4082.13 10490.40 21369.19 23396.40 10495.31 55
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9485.26 26878.25 8685.82 13591.82 11965.33 26888.55 12792.35 14782.62 9389.80 23286.87 3294.32 18593.18 141
CDPH-MVS86.17 10485.54 12088.05 8492.25 9975.45 12283.85 17492.01 10965.91 25786.19 17991.75 16483.77 7994.98 6477.43 14396.71 9193.73 118
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22982.21 22490.46 15780.99 7888.42 13291.97 15477.56 15093.85 10272.46 20498.65 1197.61 10
train_agg85.98 10685.28 12588.07 8392.34 9579.70 7483.94 17090.32 16265.79 25884.49 21090.97 18581.93 10893.63 11081.21 9696.54 9690.88 219
FC-MVSNet-test85.93 10787.05 9182.58 19992.25 9956.44 32385.75 13693.09 7777.33 12391.94 6694.65 5674.78 18493.41 12575.11 17098.58 1397.88 7
test_fmvsmconf_n85.88 10885.51 12186.99 9684.77 27678.21 8785.40 14391.39 13165.32 26987.72 14691.81 16182.33 9889.78 23386.68 3494.20 18892.99 149
Effi-MVS+-dtu85.82 10983.38 15693.14 387.13 22891.15 287.70 10488.42 19974.57 15483.56 23485.65 28678.49 14194.21 8772.04 20692.88 22094.05 102
TAPA-MVS77.73 1285.71 11084.83 13188.37 7888.78 19179.72 7387.15 11293.50 5869.17 22485.80 18889.56 22380.76 12392.13 16173.21 19995.51 14193.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sasdasda85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1873.44 16988.47 13087.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1873.44 16988.47 13087.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
EPP-MVSNet85.47 11385.04 12886.77 10191.52 12969.37 18491.63 3687.98 21081.51 7287.05 16091.83 15966.18 25295.29 5370.75 21596.89 8495.64 46
GeoE85.45 11485.81 11584.37 14790.08 16167.07 20585.86 13491.39 13172.33 19487.59 14890.25 21084.85 6892.37 15578.00 13491.94 24093.66 120
FIs85.35 11586.27 10382.60 19891.86 11357.31 31685.10 14893.05 7975.83 13991.02 8193.97 9273.57 19892.91 14273.97 18198.02 3997.58 12
test_fmvsmvis_n_192085.22 11685.36 12484.81 13785.80 26276.13 11985.15 14792.32 10161.40 29991.33 7490.85 19283.76 8086.16 29184.31 6393.28 21092.15 187
casdiffmvspermissive85.21 11785.85 11483.31 18086.17 25462.77 25083.03 19793.93 4274.69 15388.21 13792.68 13682.29 10191.89 16977.87 13793.75 20195.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 11885.93 11083.02 18786.30 24962.37 25884.55 15693.96 4074.48 15587.12 15492.03 15382.30 10091.94 16678.39 12494.21 18794.74 73
K. test v385.14 11984.73 13286.37 10791.13 14069.63 18285.45 14176.68 32084.06 4592.44 5796.99 862.03 27594.65 7280.58 10593.24 21194.83 72
EI-MVSNet-Vis-set85.12 12084.53 13986.88 9884.01 28972.76 14183.91 17385.18 25180.44 8288.75 12485.49 28880.08 13091.92 16782.02 9090.85 26395.97 39
MGCFI-Net85.04 12185.95 10982.31 20587.52 22063.59 23986.23 13093.96 4073.46 16788.07 14087.83 25186.46 5490.87 20076.17 15793.89 19692.47 170
EI-MVSNet-UG-set85.04 12184.44 14186.85 9983.87 29372.52 15083.82 17585.15 25280.27 8688.75 12485.45 29079.95 13291.90 16881.92 9390.80 26496.13 34
X-MVStestdata85.04 12182.70 16992.08 895.64 2386.25 1892.64 1893.33 6385.07 3689.99 9816.05 40686.57 5295.80 2587.35 2497.62 6294.20 92
MSLP-MVS++85.00 12486.03 10881.90 20991.84 11671.56 16786.75 12293.02 8375.95 13787.12 15489.39 22577.98 14489.40 24477.46 14194.78 17184.75 314
F-COLMAP84.97 12583.42 15589.63 5592.39 9383.40 4888.83 8791.92 11373.19 17880.18 29089.15 23177.04 15993.28 12865.82 26492.28 23192.21 184
3Dnovator80.37 784.80 12684.71 13585.06 13486.36 24774.71 12588.77 8990.00 17575.65 14284.96 20193.17 11674.06 19291.19 18678.28 12891.09 25389.29 256
IterMVS-LS84.73 12784.98 12983.96 16087.35 22363.66 23783.25 19189.88 17776.06 13289.62 10992.37 14673.40 20492.52 15078.16 13194.77 17395.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 12884.34 14585.49 12990.18 16075.86 12079.23 26587.13 22073.35 17185.56 19289.34 22683.60 8290.50 21176.64 15194.05 19290.09 243
HQP-MVS84.61 12984.06 14886.27 11091.19 13670.66 17284.77 14992.68 9373.30 17480.55 28290.17 21472.10 21894.61 7477.30 14594.47 18093.56 128
v119284.57 13084.69 13684.21 15587.75 21362.88 24783.02 19891.43 12869.08 22689.98 10090.89 18972.70 21393.62 11382.41 8594.97 16396.13 34
FMVSNet184.55 13185.45 12281.85 21190.27 15861.05 27386.83 11888.27 20578.57 11089.66 10895.64 3075.43 17590.68 20669.09 23495.33 14693.82 112
v114484.54 13284.72 13484.00 15887.67 21662.55 25482.97 20090.93 14670.32 21589.80 10390.99 18473.50 19993.48 12181.69 9594.65 17695.97 39
Gipumacopyleft84.44 13386.33 10278.78 25784.20 28773.57 13289.55 7290.44 15884.24 4384.38 21394.89 4876.35 17280.40 33876.14 15896.80 8982.36 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13483.93 15185.63 12591.59 12171.58 16583.52 18392.13 10661.82 29283.96 22789.75 22179.93 13393.46 12278.33 12794.34 18491.87 196
VDDNet84.35 13585.39 12381.25 22095.13 3159.32 29585.42 14281.11 29186.41 2787.41 15196.21 1973.61 19790.61 20966.33 25796.85 8593.81 115
ETV-MVS84.31 13683.91 15285.52 12788.58 19670.40 17584.50 16093.37 6078.76 10884.07 22578.72 36480.39 12795.13 6073.82 18492.98 21891.04 215
v124084.30 13784.51 14083.65 16987.65 21761.26 27082.85 20491.54 12567.94 24190.68 8990.65 20171.71 22593.64 10982.84 7994.78 17196.07 36
MVS_111021_LR84.28 13883.76 15385.83 12289.23 17983.07 5180.99 24083.56 27272.71 18686.07 18289.07 23281.75 11386.19 29077.11 14793.36 20688.24 270
h-mvs3384.25 13982.76 16888.72 7191.82 11882.60 5684.00 16984.98 25871.27 20386.70 16690.55 20363.04 27293.92 9978.26 12994.20 18889.63 248
v14419284.24 14084.41 14283.71 16887.59 21961.57 26682.95 20191.03 14267.82 24489.80 10390.49 20473.28 20693.51 12081.88 9494.89 16696.04 38
dcpmvs_284.23 14185.14 12681.50 21788.61 19561.98 26482.90 20393.11 7568.66 23292.77 5192.39 14278.50 14087.63 26576.99 14992.30 22894.90 65
v192192084.23 14184.37 14483.79 16487.64 21861.71 26582.91 20291.20 13767.94 24190.06 9590.34 20772.04 22193.59 11582.32 8694.91 16496.07 36
VDD-MVS84.23 14184.58 13883.20 18491.17 13965.16 22583.25 19184.97 25979.79 9087.18 15394.27 7474.77 18590.89 19869.24 23096.54 9693.55 130
v2v48284.09 14484.24 14683.62 17087.13 22861.40 26782.71 20789.71 18072.19 19789.55 11391.41 17170.70 23193.20 13081.02 9893.76 19896.25 32
EG-PatchMatch MVS84.08 14584.11 14783.98 15992.22 10172.61 14782.20 22687.02 22572.63 18788.86 12191.02 18378.52 13991.11 18973.41 19191.09 25388.21 271
DP-MVS Recon84.05 14683.22 15886.52 10591.73 11975.27 12383.23 19392.40 9872.04 19882.04 25788.33 24177.91 14693.95 9866.17 25895.12 15690.34 237
TransMVSNet (Re)84.02 14785.74 11778.85 25691.00 14355.20 33382.29 22087.26 21679.65 9388.38 13495.52 3383.00 8786.88 27667.97 24896.60 9494.45 82
Baseline_NR-MVSNet84.00 14885.90 11278.29 26891.47 13153.44 34282.29 22087.00 22879.06 10289.55 11395.72 2877.20 15586.14 29272.30 20598.51 1695.28 56
TSAR-MVS + GP.83.95 14982.69 17087.72 8689.27 17881.45 6383.72 17981.58 29074.73 15285.66 18986.06 28172.56 21592.69 14775.44 16695.21 15189.01 264
alignmvs83.94 15083.98 15083.80 16387.80 21267.88 20084.54 15891.42 13073.27 17788.41 13387.96 24672.33 21690.83 20176.02 16094.11 19092.69 160
Effi-MVS+83.90 15184.01 14983.57 17487.22 22665.61 22186.55 12692.40 9878.64 10981.34 27284.18 30983.65 8192.93 14074.22 17587.87 30292.17 186
CANet83.79 15282.85 16786.63 10286.17 25472.21 15783.76 17891.43 12877.24 12574.39 34187.45 25975.36 17695.42 4977.03 14892.83 22192.25 183
pm-mvs183.69 15384.95 13079.91 24390.04 16559.66 29182.43 21687.44 21375.52 14487.85 14495.26 3981.25 11885.65 30168.74 24096.04 11994.42 85
AdaColmapbinary83.66 15483.69 15483.57 17490.05 16472.26 15586.29 12990.00 17578.19 11481.65 26687.16 26583.40 8494.24 8661.69 29894.76 17484.21 323
MIMVSNet183.63 15584.59 13780.74 23094.06 5362.77 25082.72 20684.53 26477.57 12190.34 9195.92 2476.88 16785.83 29961.88 29697.42 7293.62 124
test_fmvsm_n_192083.60 15682.89 16685.74 12385.22 26977.74 9584.12 16590.48 15659.87 31886.45 17891.12 18075.65 17385.89 29782.28 8790.87 26193.58 126
WR-MVS83.56 15784.40 14381.06 22693.43 6754.88 33478.67 27385.02 25681.24 7590.74 8891.56 16872.85 21091.08 19068.00 24798.04 3697.23 18
CNLPA83.55 15883.10 16384.90 13589.34 17683.87 4684.54 15888.77 19479.09 10183.54 23588.66 23874.87 18181.73 32966.84 25392.29 23089.11 258
LCM-MVSNet-Re83.48 15985.06 12778.75 25885.94 26055.75 32880.05 24994.27 2076.47 12996.09 594.54 6283.31 8589.75 23659.95 30894.89 16690.75 222
hse-mvs283.47 16081.81 18388.47 7591.03 14282.27 5782.61 20883.69 26971.27 20386.70 16686.05 28263.04 27292.41 15378.26 12993.62 20590.71 224
V4283.47 16083.37 15783.75 16683.16 30663.33 24281.31 23490.23 16969.51 22290.91 8490.81 19474.16 19192.29 15980.06 10890.22 27295.62 47
VPA-MVSNet83.47 16084.73 13279.69 24790.29 15757.52 31581.30 23688.69 19676.29 13087.58 14994.44 6680.60 12687.20 27066.60 25696.82 8894.34 89
PAPM_NR83.23 16383.19 16083.33 17990.90 14565.98 21788.19 9790.78 14978.13 11580.87 27787.92 24973.49 20192.42 15270.07 22388.40 29291.60 204
CLD-MVS83.18 16482.64 17184.79 13889.05 18267.82 20177.93 28292.52 9668.33 23485.07 19881.54 34082.06 10592.96 13869.35 22997.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 16585.68 11875.65 30281.24 32445.26 38579.94 25192.91 8683.83 4691.33 7496.88 1080.25 12985.92 29468.89 23795.89 12895.76 43
FA-MVS(test-final)83.13 16683.02 16483.43 17686.16 25666.08 21688.00 9988.36 20175.55 14385.02 19992.75 13465.12 25992.50 15174.94 17291.30 25191.72 199
114514_t83.10 16782.54 17484.77 13992.90 8069.10 19186.65 12390.62 15454.66 34781.46 26990.81 19476.98 16094.38 8272.62 20296.18 11290.82 221
UGNet82.78 16881.64 18586.21 11386.20 25376.24 11786.86 11685.68 24377.07 12673.76 34592.82 13069.64 23391.82 17269.04 23693.69 20290.56 231
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 16981.93 18185.19 13182.08 31380.15 7085.53 13988.76 19568.01 23885.58 19187.75 25271.80 22486.85 27774.02 18093.87 19788.58 267
EI-MVSNet82.61 17082.42 17683.20 18483.25 30363.66 23783.50 18485.07 25376.06 13286.55 17085.10 29673.41 20290.25 21478.15 13390.67 26795.68 45
QAPM82.59 17182.59 17382.58 19986.44 24266.69 21089.94 6290.36 16167.97 24084.94 20392.58 13972.71 21292.18 16070.63 21887.73 30488.85 265
fmvsm_s_conf0.1_n_a82.58 17281.93 18184.50 14487.68 21573.35 13386.14 13177.70 30961.64 29785.02 19991.62 16677.75 14786.24 28782.79 8087.07 31193.91 108
Fast-Effi-MVS+-dtu82.54 17381.41 19385.90 11985.60 26376.53 11183.07 19689.62 18473.02 18179.11 30083.51 31580.74 12490.24 21668.76 23989.29 28190.94 217
MVS_Test82.47 17483.22 15880.22 24082.62 31257.75 31482.54 21391.96 11271.16 20782.89 24592.52 14177.41 15290.50 21180.04 10987.84 30392.40 173
v14882.31 17582.48 17581.81 21485.59 26459.66 29181.47 23386.02 23972.85 18288.05 14190.65 20170.73 23090.91 19775.15 16991.79 24194.87 67
API-MVS82.28 17682.61 17281.30 21986.29 25069.79 17888.71 9087.67 21278.42 11282.15 25684.15 31077.98 14491.59 17565.39 26792.75 22282.51 349
MVSFormer82.23 17781.57 19084.19 15785.54 26569.26 18691.98 3190.08 17371.54 20176.23 32185.07 29958.69 29794.27 8386.26 4088.77 28889.03 262
fmvsm_s_conf0.5_n_a82.21 17881.51 19284.32 15286.56 24073.35 13385.46 14077.30 31361.81 29384.51 20990.88 19177.36 15386.21 28982.72 8186.97 31693.38 131
EIA-MVS82.19 17981.23 19885.10 13387.95 20969.17 19083.22 19493.33 6370.42 21278.58 30379.77 35677.29 15494.20 8871.51 20888.96 28691.93 195
fmvsm_s_conf0.1_n82.17 18081.59 18883.94 16286.87 23871.57 16685.19 14677.42 31262.27 29184.47 21291.33 17376.43 16985.91 29583.14 7187.14 30994.33 90
PCF-MVS74.62 1582.15 18180.92 20285.84 12189.43 17472.30 15480.53 24491.82 11957.36 33587.81 14589.92 21877.67 14993.63 11058.69 31395.08 15791.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18280.31 20987.45 9090.86 14780.29 6985.88 13390.65 15268.17 23776.32 32086.33 27673.12 20892.61 14961.40 30190.02 27589.44 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n82.06 18381.54 19183.60 17183.94 29073.90 13083.35 18886.10 23658.97 32083.80 22990.36 20674.23 19086.94 27582.90 7790.22 27289.94 245
GBi-Net82.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20572.43 18986.00 18395.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
test182.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20572.43 18986.00 18395.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
OpenMVScopyleft76.72 1381.98 18682.00 18081.93 20884.42 28268.22 19588.50 9489.48 18666.92 25081.80 26491.86 15672.59 21490.16 21971.19 21191.25 25287.40 286
KD-MVS_self_test81.93 18783.14 16278.30 26784.75 27752.75 34680.37 24689.42 18870.24 21790.26 9393.39 11374.55 18986.77 27968.61 24296.64 9295.38 52
fmvsm_s_conf0.5_n81.91 18881.30 19583.75 16686.02 25971.56 16784.73 15277.11 31662.44 28884.00 22690.68 19876.42 17085.89 29783.14 7187.11 31093.81 115
SDMVSNet81.90 18983.17 16178.10 27188.81 18962.45 25676.08 31386.05 23873.67 16383.41 23693.04 11982.35 9780.65 33670.06 22495.03 15991.21 211
tfpnnormal81.79 19082.95 16578.31 26688.93 18655.40 32980.83 24382.85 27876.81 12785.90 18794.14 8474.58 18886.51 28366.82 25495.68 14093.01 148
c3_l81.64 19181.59 18881.79 21580.86 33059.15 29978.61 27490.18 17168.36 23387.20 15287.11 26769.39 23491.62 17478.16 13194.43 18294.60 75
PVSNet_Blended_VisFu81.55 19280.49 20784.70 14291.58 12473.24 13784.21 16291.67 12362.86 28280.94 27587.16 26567.27 24692.87 14469.82 22688.94 28787.99 277
fmvsm_l_conf0.5_n_a81.46 19380.87 20383.25 18183.73 29573.21 13883.00 19985.59 24558.22 32782.96 24490.09 21672.30 21786.65 28181.97 9289.95 27689.88 246
DELS-MVS81.44 19481.25 19682.03 20784.27 28662.87 24876.47 30792.49 9770.97 20881.64 26783.83 31275.03 17992.70 14674.29 17492.22 23490.51 233
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 19581.61 18780.41 23786.38 24458.75 30683.93 17286.58 23172.43 18987.65 14792.98 12363.78 26690.22 21766.86 25193.92 19492.27 181
TinyColmap81.25 19682.34 17777.99 27485.33 26760.68 28182.32 21988.33 20371.26 20586.97 16192.22 15277.10 15886.98 27462.37 29095.17 15386.31 297
AUN-MVS81.18 19778.78 23088.39 7790.93 14482.14 5882.51 21483.67 27064.69 27380.29 28685.91 28551.07 33592.38 15476.29 15693.63 20490.65 229
tttt051781.07 19879.58 22285.52 12788.99 18566.45 21387.03 11475.51 32873.76 16288.32 13690.20 21137.96 38894.16 9379.36 11995.13 15495.93 42
Fast-Effi-MVS+81.04 19980.57 20482.46 20387.50 22163.22 24478.37 27789.63 18368.01 23881.87 26082.08 33382.31 9992.65 14867.10 25088.30 29891.51 207
BH-untuned80.96 20080.99 20080.84 22988.55 19768.23 19480.33 24788.46 19872.79 18586.55 17086.76 27174.72 18691.77 17361.79 29788.99 28582.52 348
eth_miper_zixun_eth80.84 20180.22 21382.71 19681.41 32260.98 27677.81 28490.14 17267.31 24886.95 16287.24 26464.26 26292.31 15775.23 16891.61 24594.85 71
xiu_mvs_v1_base_debu80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21765.43 26479.59 29282.73 32776.94 16190.14 22273.22 19488.33 29486.90 291
xiu_mvs_v1_base80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21765.43 26479.59 29282.73 32776.94 16190.14 22273.22 19488.33 29486.90 291
xiu_mvs_v1_base_debi80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21765.43 26479.59 29282.73 32776.94 16190.14 22273.22 19488.33 29486.90 291
IterMVS-SCA-FT80.64 20579.41 22384.34 15183.93 29169.66 18176.28 30981.09 29272.43 18986.47 17690.19 21260.46 28293.15 13377.45 14286.39 32290.22 238
BH-RMVSNet80.53 20680.22 21381.49 21887.19 22766.21 21577.79 28586.23 23474.21 15783.69 23088.50 23973.25 20790.75 20363.18 28787.90 30187.52 284
Anonymous20240521180.51 20781.19 19978.49 26388.48 19857.26 31776.63 30382.49 28181.21 7684.30 21992.24 15167.99 24386.24 28762.22 29195.13 15491.98 194
DIV-MVS_self_test80.43 20880.23 21181.02 22779.99 33859.25 29677.07 29587.02 22567.38 24586.19 17989.22 22863.09 27090.16 21976.32 15495.80 13493.66 120
cl____80.42 20980.23 21181.02 22779.99 33859.25 29677.07 29587.02 22567.37 24686.18 18189.21 22963.08 27190.16 21976.31 15595.80 13493.65 122
diffmvspermissive80.40 21080.48 20880.17 24179.02 35060.04 28577.54 28990.28 16866.65 25382.40 25187.33 26273.50 19987.35 26877.98 13589.62 27993.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 21178.41 23786.23 11176.75 36473.28 13587.18 11177.45 31176.24 13168.14 37388.93 23465.41 25793.85 10269.47 22896.12 11691.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 21280.04 21881.24 22279.82 34058.95 30177.66 28689.66 18165.75 26185.99 18685.11 29568.29 24291.42 18176.03 15992.03 23693.33 133
MG-MVS80.32 21380.94 20178.47 26488.18 20452.62 34982.29 22085.01 25772.01 19979.24 29992.54 14069.36 23593.36 12770.65 21789.19 28489.45 250
bld_raw_dy_0_6480.29 21480.03 21981.09 22486.14 25759.69 29078.24 27891.87 11563.91 27778.46 30584.08 31169.23 23692.89 14373.70 18794.61 17790.69 226
VPNet80.25 21581.68 18475.94 30092.46 9247.98 37276.70 30181.67 28873.45 16884.87 20492.82 13074.66 18786.51 28361.66 29996.85 8593.33 133
MAR-MVS80.24 21678.74 23284.73 14086.87 23878.18 8885.75 13687.81 21165.67 26377.84 30978.50 36573.79 19690.53 21061.59 30090.87 26185.49 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 21779.00 22783.78 16588.17 20586.66 1581.31 23466.81 38069.64 22188.33 13590.19 21264.58 26083.63 32071.99 20790.03 27481.06 367
Anonymous2024052180.18 21881.25 19676.95 28783.15 30760.84 27882.46 21585.99 24068.76 23086.78 16393.73 10759.13 29477.44 35073.71 18697.55 6792.56 164
LFMVS80.15 21980.56 20578.89 25589.19 18155.93 32585.22 14573.78 34082.96 5884.28 22092.72 13557.38 30690.07 22663.80 28195.75 13790.68 227
DPM-MVS80.10 22079.18 22682.88 19490.71 15069.74 17978.87 27090.84 14760.29 31475.64 33085.92 28467.28 24593.11 13471.24 21091.79 24185.77 303
MSDG80.06 22179.99 22180.25 23983.91 29268.04 19977.51 29089.19 18977.65 11981.94 25883.45 31776.37 17186.31 28663.31 28686.59 31986.41 295
FE-MVS79.98 22278.86 22883.36 17886.47 24166.45 21389.73 6584.74 26372.80 18484.22 22491.38 17244.95 36993.60 11463.93 28091.50 24890.04 244
sd_testset79.95 22381.39 19475.64 30388.81 18958.07 31076.16 31282.81 27973.67 16383.41 23693.04 11980.96 12177.65 34958.62 31495.03 15991.21 211
ab-mvs79.67 22480.56 20576.99 28688.48 19856.93 31984.70 15386.06 23768.95 22880.78 27993.08 11875.30 17784.62 30956.78 32390.90 26089.43 252
VNet79.31 22580.27 21076.44 29487.92 21053.95 33875.58 31984.35 26574.39 15682.23 25490.72 19672.84 21184.39 31260.38 30793.98 19390.97 216
thisisatest053079.07 22677.33 24884.26 15487.13 22864.58 22883.66 18175.95 32368.86 22985.22 19687.36 26138.10 38693.57 11875.47 16594.28 18694.62 74
cl2278.97 22778.21 24081.24 22277.74 35459.01 30077.46 29287.13 22065.79 25884.32 21685.10 29658.96 29690.88 19975.36 16792.03 23693.84 110
iter_conf05_1178.94 22878.39 23880.61 23485.07 27159.49 29376.99 29891.20 13758.42 32475.59 33181.77 33772.02 22393.89 10070.55 21993.90 19588.45 269
patch_mono-278.89 22979.39 22477.41 28384.78 27568.11 19775.60 31783.11 27560.96 30779.36 29689.89 21975.18 17872.97 36173.32 19392.30 22891.15 213
RPMNet78.88 23078.28 23980.68 23379.58 34162.64 25282.58 21094.16 2874.80 15175.72 32892.59 13748.69 34395.56 3973.48 19082.91 35783.85 328
PAPR78.84 23178.10 24181.07 22585.17 27060.22 28482.21 22490.57 15562.51 28475.32 33584.61 30474.99 18092.30 15859.48 31188.04 30090.68 227
iter_conf0578.81 23277.35 24783.21 18382.98 31060.75 28084.09 16688.34 20263.12 28084.25 22389.48 22431.41 39794.51 8176.64 15195.83 13194.38 88
PVSNet_BlendedMVS78.80 23377.84 24281.65 21684.43 28063.41 24079.49 25990.44 15861.70 29675.43 33287.07 26869.11 23891.44 17960.68 30592.24 23290.11 242
FMVSNet378.80 23378.55 23479.57 24982.89 31156.89 32181.76 22885.77 24269.04 22786.00 18390.44 20551.75 33390.09 22565.95 26093.34 20791.72 199
test_yl78.71 23578.51 23579.32 25284.32 28458.84 30378.38 27585.33 24875.99 13582.49 24986.57 27258.01 30090.02 22862.74 28892.73 22389.10 259
DCV-MVSNet78.71 23578.51 23579.32 25284.32 28458.84 30378.38 27585.33 24875.99 13582.49 24986.57 27258.01 30090.02 22862.74 28892.73 22389.10 259
test111178.53 23778.85 22977.56 28092.22 10147.49 37482.61 20869.24 36972.43 18985.28 19594.20 8051.91 33190.07 22665.36 26896.45 10295.11 62
ECVR-MVScopyleft78.44 23878.63 23377.88 27691.85 11448.95 36883.68 18069.91 36672.30 19584.26 22294.20 8051.89 33289.82 23163.58 28296.02 12094.87 67
pmmvs-eth3d78.42 23977.04 25082.57 20187.44 22274.41 12780.86 24279.67 30055.68 34184.69 20790.31 20960.91 28085.42 30262.20 29291.59 24687.88 280
mvs_anonymous78.13 24078.76 23176.23 29979.24 34750.31 36578.69 27284.82 26161.60 29883.09 24392.82 13073.89 19587.01 27168.33 24686.41 32191.37 208
TAMVS78.08 24176.36 25683.23 18290.62 15172.87 14079.08 26680.01 29961.72 29581.35 27186.92 27063.96 26588.78 25350.61 36193.01 21788.04 276
miper_enhance_ethall77.83 24276.93 25180.51 23576.15 37058.01 31175.47 32188.82 19358.05 32983.59 23280.69 34464.41 26191.20 18573.16 20092.03 23692.33 177
Vis-MVSNet (Re-imp)77.82 24377.79 24377.92 27588.82 18851.29 35983.28 18971.97 35474.04 15882.23 25489.78 22057.38 30689.41 24357.22 32295.41 14393.05 146
CANet_DTU77.81 24477.05 24980.09 24281.37 32359.90 28883.26 19088.29 20469.16 22567.83 37683.72 31360.93 27989.47 23869.22 23289.70 27890.88 219
OpenMVS_ROBcopyleft70.19 1777.77 24577.46 24478.71 25984.39 28361.15 27181.18 23882.52 28062.45 28783.34 23887.37 26066.20 25188.66 25564.69 27585.02 33886.32 296
SSC-MVS77.55 24681.64 18565.29 36690.46 15420.33 41173.56 33768.28 37185.44 3288.18 13994.64 5970.93 22981.33 33171.25 20992.03 23694.20 92
MDA-MVSNet-bldmvs77.47 24776.90 25279.16 25479.03 34964.59 22766.58 37675.67 32673.15 17988.86 12188.99 23366.94 24781.23 33264.71 27488.22 29991.64 203
jason77.42 24875.75 26282.43 20487.10 23169.27 18577.99 28181.94 28651.47 36577.84 30985.07 29960.32 28489.00 24770.74 21689.27 28389.03 262
jason: jason.
CDS-MVSNet77.32 24975.40 26583.06 18689.00 18472.48 15177.90 28382.17 28460.81 30878.94 30183.49 31659.30 29288.76 25454.64 34192.37 22787.93 279
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 25076.75 25378.52 26287.01 23461.30 26975.55 32087.12 22361.24 30474.45 34078.79 36377.20 15590.93 19564.62 27784.80 34583.32 337
MVSTER77.09 25175.70 26381.25 22075.27 37861.08 27277.49 29185.07 25360.78 30986.55 17088.68 23743.14 37890.25 21473.69 18890.67 26792.42 171
PS-MVSNAJ77.04 25276.53 25578.56 26187.09 23261.40 26775.26 32287.13 22061.25 30374.38 34277.22 37676.94 16190.94 19464.63 27684.83 34483.35 336
IterMVS76.91 25376.34 25778.64 26080.91 32864.03 23476.30 30879.03 30364.88 27283.11 24189.16 23059.90 28884.46 31068.61 24285.15 33687.42 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 25475.67 26480.34 23880.48 33662.16 26373.50 33884.80 26257.61 33382.24 25387.54 25651.31 33487.65 26470.40 22293.19 21391.23 210
CL-MVSNet_self_test76.81 25577.38 24675.12 30686.90 23651.34 35773.20 34180.63 29668.30 23581.80 26488.40 24066.92 24880.90 33355.35 33594.90 16593.12 144
TR-MVS76.77 25675.79 26179.72 24686.10 25865.79 21977.14 29383.02 27665.20 27081.40 27082.10 33166.30 25090.73 20555.57 33285.27 33282.65 343
USDC76.63 25776.73 25476.34 29683.46 29757.20 31880.02 25088.04 20952.14 36183.65 23191.25 17563.24 26986.65 28154.66 34094.11 19085.17 309
BH-w/o76.57 25876.07 26078.10 27186.88 23765.92 21877.63 28786.33 23265.69 26280.89 27679.95 35368.97 24090.74 20453.01 35185.25 33377.62 378
Patchmtry76.56 25977.46 24473.83 31279.37 34646.60 37882.41 21776.90 31773.81 16185.56 19292.38 14348.07 34683.98 31763.36 28595.31 14990.92 218
PVSNet_Blended76.49 26075.40 26579.76 24584.43 28063.41 24075.14 32390.44 15857.36 33575.43 33278.30 36669.11 23891.44 17960.68 30587.70 30584.42 319
miper_lstm_enhance76.45 26176.10 25977.51 28176.72 36560.97 27764.69 38085.04 25563.98 27683.20 24088.22 24256.67 31078.79 34773.22 19493.12 21492.78 155
lupinMVS76.37 26274.46 27482.09 20685.54 26569.26 18676.79 29980.77 29550.68 37276.23 32182.82 32558.69 29788.94 24869.85 22588.77 28888.07 273
cascas76.29 26374.81 27080.72 23284.47 27962.94 24673.89 33587.34 21455.94 34075.16 33776.53 38163.97 26491.16 18765.00 27190.97 25888.06 275
WB-MVS76.06 26480.01 22064.19 36989.96 16720.58 41072.18 34668.19 37283.21 5486.46 17793.49 11170.19 23278.97 34565.96 25990.46 27193.02 147
thres600view775.97 26575.35 26777.85 27887.01 23451.84 35580.45 24573.26 34575.20 14883.10 24286.31 27845.54 36089.05 24655.03 33892.24 23292.66 161
GA-MVS75.83 26674.61 27179.48 25181.87 31559.25 29673.42 33982.88 27768.68 23179.75 29181.80 33650.62 33789.46 23966.85 25285.64 32989.72 247
MVP-Stereo75.81 26773.51 28382.71 19689.35 17573.62 13180.06 24885.20 25060.30 31373.96 34387.94 24757.89 30489.45 24052.02 35574.87 38985.06 311
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 26875.20 26877.27 28475.01 38169.47 18378.93 26784.88 26046.67 37987.08 15887.84 25050.44 33971.62 36677.42 14488.53 29190.72 223
thres100view90075.45 26975.05 26976.66 29387.27 22451.88 35481.07 23973.26 34575.68 14183.25 23986.37 27545.54 36088.80 25051.98 35690.99 25589.31 254
ET-MVSNet_ETH3D75.28 27072.77 29182.81 19583.03 30968.11 19777.09 29476.51 32160.67 31177.60 31480.52 34838.04 38791.15 18870.78 21490.68 26689.17 257
thres40075.14 27174.23 27677.86 27786.24 25152.12 35179.24 26373.87 33873.34 17281.82 26284.60 30546.02 35488.80 25051.98 35690.99 25592.66 161
wuyk23d75.13 27279.30 22562.63 37275.56 37475.18 12480.89 24173.10 34775.06 15094.76 1295.32 3587.73 4052.85 40234.16 40297.11 8059.85 399
EU-MVSNet75.12 27374.43 27577.18 28583.11 30859.48 29485.71 13882.43 28239.76 39985.64 19088.76 23544.71 37187.88 26273.86 18385.88 32884.16 324
HyFIR lowres test75.12 27372.66 29382.50 20291.44 13265.19 22472.47 34487.31 21546.79 37880.29 28684.30 30752.70 32892.10 16451.88 36086.73 31790.22 238
CMPMVSbinary59.41 2075.12 27373.57 28179.77 24475.84 37367.22 20281.21 23782.18 28350.78 37076.50 31787.66 25455.20 32082.99 32362.17 29490.64 27089.09 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 27672.98 28980.73 23184.95 27271.71 16476.23 31077.59 31052.83 35577.73 31386.38 27456.35 31384.97 30657.72 32187.05 31285.51 306
tfpn200view974.86 27774.23 27676.74 29286.24 25152.12 35179.24 26373.87 33873.34 17281.82 26284.60 30546.02 35488.80 25051.98 35690.99 25589.31 254
1112_ss74.82 27873.74 27978.04 27389.57 16960.04 28576.49 30687.09 22454.31 34873.66 34679.80 35460.25 28586.76 28058.37 31584.15 34987.32 287
EGC-MVSNET74.79 27969.99 31989.19 6394.89 3787.00 1191.89 3486.28 2331.09 4072.23 40995.98 2381.87 11189.48 23779.76 11295.96 12391.10 214
ppachtmachnet_test74.73 28074.00 27876.90 28980.71 33356.89 32171.53 35278.42 30558.24 32679.32 29882.92 32457.91 30384.26 31465.60 26691.36 25089.56 249
Patchmatch-RL test74.48 28173.68 28076.89 29084.83 27466.54 21172.29 34569.16 37057.70 33186.76 16486.33 27645.79 35982.59 32469.63 22790.65 26981.54 358
PatchMatch-RL74.48 28173.22 28678.27 26987.70 21485.26 3475.92 31570.09 36464.34 27476.09 32481.25 34265.87 25578.07 34853.86 34383.82 35171.48 387
XXY-MVS74.44 28376.19 25869.21 34484.61 27852.43 35071.70 34977.18 31560.73 31080.60 28090.96 18775.44 17469.35 37256.13 32888.33 29485.86 302
test250674.12 28473.39 28476.28 29791.85 11444.20 38884.06 16748.20 40772.30 19581.90 25994.20 8027.22 40889.77 23464.81 27396.02 12094.87 67
CR-MVSNet74.00 28573.04 28876.85 29179.58 34162.64 25282.58 21076.90 31750.50 37375.72 32892.38 14348.07 34684.07 31668.72 24182.91 35783.85 328
Test_1112_low_res73.90 28673.08 28776.35 29590.35 15655.95 32473.40 34086.17 23550.70 37173.14 34785.94 28358.31 29985.90 29656.51 32583.22 35487.20 288
test20.0373.75 28774.59 27371.22 33281.11 32651.12 36170.15 36272.10 35370.42 21280.28 28891.50 16964.21 26374.72 36046.96 37994.58 17887.82 282
test_fmvs273.57 28872.80 29075.90 30172.74 39368.84 19277.07 29584.32 26645.14 38582.89 24584.22 30848.37 34470.36 36973.40 19287.03 31388.52 268
SCA73.32 28972.57 29575.58 30481.62 31955.86 32678.89 26971.37 35961.73 29474.93 33883.42 31860.46 28287.01 27158.11 31982.63 36283.88 325
baseline173.26 29073.54 28272.43 32684.92 27347.79 37379.89 25274.00 33665.93 25678.81 30286.28 27956.36 31281.63 33056.63 32479.04 37887.87 281
131473.22 29172.56 29675.20 30580.41 33757.84 31281.64 23185.36 24751.68 36473.10 34876.65 38061.45 27785.19 30463.54 28379.21 37682.59 344
MVS73.21 29272.59 29475.06 30780.97 32760.81 27981.64 23185.92 24146.03 38371.68 35577.54 37168.47 24189.77 23455.70 33185.39 33074.60 384
HY-MVS64.64 1873.03 29372.47 29774.71 30883.36 30154.19 33682.14 22781.96 28556.76 33969.57 36886.21 28060.03 28684.83 30849.58 36782.65 36085.11 310
thisisatest051573.00 29470.52 31180.46 23681.45 32159.90 28873.16 34274.31 33557.86 33076.08 32577.78 36937.60 38992.12 16365.00 27191.45 24989.35 253
EPNet_dtu72.87 29571.33 30777.49 28277.72 35560.55 28282.35 21875.79 32466.49 25458.39 40281.06 34353.68 32485.98 29353.55 34692.97 21985.95 300
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 29671.41 30676.28 29783.25 30360.34 28383.50 18479.02 30437.77 40276.33 31985.10 29649.60 34287.41 26770.54 22077.54 38481.08 365
CHOSEN 1792x268872.45 29770.56 31078.13 27090.02 16663.08 24568.72 36783.16 27442.99 39375.92 32685.46 28957.22 30885.18 30549.87 36581.67 36486.14 298
testgi72.36 29874.61 27165.59 36380.56 33542.82 39368.29 36873.35 34466.87 25181.84 26189.93 21772.08 22066.92 38546.05 38292.54 22587.01 290
thres20072.34 29971.55 30574.70 30983.48 29651.60 35675.02 32473.71 34170.14 21878.56 30480.57 34746.20 35288.20 26046.99 37889.29 28184.32 320
FPMVS72.29 30072.00 29973.14 31788.63 19485.00 3674.65 32867.39 37471.94 20077.80 31187.66 25450.48 33875.83 35649.95 36379.51 37258.58 401
FMVSNet572.10 30171.69 30173.32 31581.57 32053.02 34576.77 30078.37 30663.31 27876.37 31891.85 15736.68 39078.98 34447.87 37592.45 22687.95 278
our_test_371.85 30271.59 30272.62 32380.71 33353.78 33969.72 36471.71 35858.80 32278.03 30680.51 34956.61 31178.84 34662.20 29286.04 32785.23 308
PAPM71.77 30370.06 31776.92 28886.39 24353.97 33776.62 30486.62 23053.44 35263.97 39284.73 30357.79 30592.34 15639.65 39381.33 36884.45 318
IB-MVS62.13 1971.64 30468.97 32879.66 24880.80 33262.26 26173.94 33476.90 31763.27 27968.63 37276.79 37833.83 39491.84 17159.28 31287.26 30784.88 312
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 30572.30 29869.62 34176.47 36752.70 34870.03 36380.97 29359.18 31979.36 29688.21 24360.50 28169.12 37358.33 31777.62 38387.04 289
testing371.53 30670.79 30873.77 31388.89 18741.86 39576.60 30559.12 39772.83 18380.97 27382.08 33319.80 41387.33 26965.12 27091.68 24492.13 188
test_vis3_rt71.42 30770.67 30973.64 31469.66 39970.46 17466.97 37589.73 17842.68 39588.20 13883.04 32043.77 37360.07 39765.35 26986.66 31890.39 236
Anonymous2023120671.38 30871.88 30069.88 33986.31 24854.37 33570.39 36074.62 33152.57 35776.73 31688.76 23559.94 28772.06 36344.35 38693.23 21283.23 339
test_vis1_n_192071.30 30971.58 30470.47 33577.58 35759.99 28774.25 32984.22 26751.06 36774.85 33979.10 36055.10 32168.83 37568.86 23879.20 37782.58 345
MIMVSNet71.09 31071.59 30269.57 34287.23 22550.07 36678.91 26871.83 35560.20 31671.26 35691.76 16355.08 32276.09 35441.06 39187.02 31482.54 347
test_fmvs1_n70.94 31170.41 31472.53 32573.92 38366.93 20875.99 31484.21 26843.31 39279.40 29579.39 35843.47 37468.55 37769.05 23584.91 34182.10 352
MS-PatchMatch70.93 31270.22 31573.06 31881.85 31662.50 25573.82 33677.90 30752.44 35875.92 32681.27 34155.67 31781.75 32855.37 33477.70 38274.94 383
pmmvs570.73 31370.07 31672.72 32177.03 36252.73 34774.14 33075.65 32750.36 37472.17 35385.37 29355.42 31980.67 33552.86 35287.59 30684.77 313
PatchT70.52 31472.76 29263.79 37179.38 34533.53 40577.63 28765.37 38373.61 16571.77 35492.79 13344.38 37275.65 35764.53 27885.37 33182.18 351
test_vis1_n70.29 31569.99 31971.20 33375.97 37266.50 21276.69 30280.81 29444.22 38875.43 33277.23 37550.00 34068.59 37666.71 25582.85 35978.52 377
N_pmnet70.20 31668.80 33074.38 31080.91 32884.81 3959.12 39176.45 32255.06 34475.31 33682.36 33055.74 31654.82 40147.02 37787.24 30883.52 332
tpmvs70.16 31769.56 32271.96 32874.71 38248.13 37079.63 25475.45 32965.02 27170.26 36481.88 33545.34 36585.68 30058.34 31675.39 38882.08 353
new-patchmatchnet70.10 31873.37 28560.29 37981.23 32516.95 41259.54 38974.62 33162.93 28180.97 27387.93 24862.83 27471.90 36455.24 33695.01 16292.00 192
YYNet170.06 31970.44 31268.90 34673.76 38553.42 34358.99 39267.20 37658.42 32487.10 15685.39 29259.82 28967.32 38259.79 30983.50 35385.96 299
MDA-MVSNet_test_wron70.05 32070.44 31268.88 34773.84 38453.47 34158.93 39367.28 37558.43 32387.09 15785.40 29159.80 29067.25 38359.66 31083.54 35285.92 301
CostFormer69.98 32168.68 33173.87 31177.14 36050.72 36379.26 26274.51 33351.94 36370.97 35984.75 30245.16 36887.49 26655.16 33779.23 37583.40 335
testing9169.94 32268.99 32772.80 32083.81 29445.89 38171.57 35173.64 34368.24 23670.77 36277.82 36834.37 39384.44 31153.64 34587.00 31588.07 273
baseline269.77 32366.89 33978.41 26579.51 34358.09 30976.23 31069.57 36757.50 33464.82 39077.45 37346.02 35488.44 25653.08 34877.83 38088.70 266
PatchmatchNetpermissive69.71 32468.83 32972.33 32777.66 35653.60 34079.29 26169.99 36557.66 33272.53 35182.93 32346.45 35180.08 34060.91 30472.09 39283.31 338
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 32569.05 32571.14 33469.15 40065.77 22073.98 33383.32 27342.83 39477.77 31278.27 36743.39 37768.50 37868.39 24584.38 34879.15 375
JIA-IIPM69.41 32666.64 34377.70 27973.19 38871.24 16975.67 31665.56 38270.42 21265.18 38692.97 12533.64 39583.06 32153.52 34769.61 39878.79 376
Syy-MVS69.40 32770.03 31867.49 35681.72 31738.94 39871.00 35461.99 38861.38 30070.81 36072.36 39161.37 27879.30 34264.50 27985.18 33484.22 321
testing9969.27 32868.15 33472.63 32283.29 30245.45 38371.15 35371.08 36067.34 24770.43 36377.77 37032.24 39684.35 31353.72 34486.33 32388.10 272
UnsupCasMVSNet_bld69.21 32969.68 32167.82 35479.42 34451.15 36067.82 37275.79 32454.15 34977.47 31585.36 29459.26 29370.64 36848.46 37279.35 37481.66 356
test_cas_vis1_n_192069.20 33069.12 32369.43 34373.68 38662.82 24970.38 36177.21 31446.18 38280.46 28578.95 36252.03 33065.53 39065.77 26577.45 38579.95 373
gg-mvs-nofinetune68.96 33169.11 32468.52 35276.12 37145.32 38483.59 18255.88 40286.68 2464.62 39197.01 730.36 40083.97 31844.78 38582.94 35676.26 380
WB-MVSnew68.72 33269.01 32667.85 35383.22 30543.98 38974.93 32565.98 38155.09 34373.83 34479.11 35965.63 25671.89 36538.21 39885.04 33787.69 283
tpm268.45 33366.83 34073.30 31678.93 35148.50 36979.76 25371.76 35647.50 37769.92 36683.60 31442.07 38088.40 25748.44 37379.51 37283.01 342
tpm67.95 33468.08 33567.55 35578.74 35243.53 39175.60 31767.10 37954.92 34572.23 35288.10 24442.87 37975.97 35552.21 35480.95 37183.15 340
WTY-MVS67.91 33568.35 33266.58 36080.82 33148.12 37165.96 37772.60 34853.67 35171.20 35781.68 33958.97 29569.06 37448.57 37181.67 36482.55 346
testing1167.38 33665.93 34471.73 33083.37 30046.60 37870.95 35669.40 36862.47 28666.14 37976.66 37931.22 39884.10 31549.10 36984.10 35084.49 316
test-LLR67.21 33766.74 34168.63 35076.45 36855.21 33167.89 36967.14 37762.43 28965.08 38772.39 38943.41 37569.37 37061.00 30284.89 34281.31 360
testing22266.93 33865.30 35071.81 32983.38 29945.83 38272.06 34767.50 37364.12 27569.68 36776.37 38227.34 40783.00 32238.88 39488.38 29386.62 294
sss66.92 33967.26 33765.90 36277.23 35951.10 36264.79 37971.72 35752.12 36270.13 36580.18 35157.96 30265.36 39150.21 36281.01 37081.25 362
KD-MVS_2432*160066.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30577.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
miper_refine_blended66.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30577.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
dmvs_re66.81 34266.98 33866.28 36176.87 36358.68 30771.66 35072.24 35160.29 31469.52 36973.53 38852.38 32964.40 39344.90 38481.44 36775.76 381
tpm cat166.76 34365.21 35171.42 33177.09 36150.62 36478.01 28073.68 34244.89 38668.64 37179.00 36145.51 36282.42 32749.91 36470.15 39581.23 364
UWE-MVS66.43 34465.56 34969.05 34584.15 28840.98 39673.06 34364.71 38454.84 34676.18 32379.62 35729.21 40280.50 33738.54 39789.75 27785.66 304
PVSNet58.17 2166.41 34565.63 34868.75 34881.96 31449.88 36762.19 38672.51 35051.03 36868.04 37475.34 38650.84 33674.77 35845.82 38382.96 35581.60 357
tpmrst66.28 34666.69 34265.05 36772.82 39239.33 39778.20 27970.69 36353.16 35467.88 37580.36 35048.18 34574.75 35958.13 31870.79 39481.08 365
Patchmatch-test65.91 34767.38 33661.48 37775.51 37543.21 39268.84 36663.79 38662.48 28572.80 35083.42 31844.89 37059.52 39948.27 37486.45 32081.70 355
ADS-MVSNet265.87 34863.64 35672.55 32473.16 38956.92 32067.10 37374.81 33049.74 37566.04 38182.97 32146.71 34977.26 35142.29 38869.96 39683.46 333
test_vis1_rt65.64 34964.09 35370.31 33666.09 40570.20 17761.16 38781.60 28938.65 40072.87 34969.66 39452.84 32660.04 39856.16 32777.77 38180.68 369
mvsany_test365.48 35062.97 35873.03 31969.99 39876.17 11864.83 37843.71 40943.68 39080.25 28987.05 26952.83 32763.09 39651.92 35972.44 39179.84 374
test-mter65.00 35163.79 35568.63 35076.45 36855.21 33167.89 36967.14 37750.98 36965.08 38772.39 38928.27 40569.37 37061.00 30284.89 34281.31 360
ETVMVS64.67 35263.34 35768.64 34983.44 29841.89 39469.56 36561.70 39361.33 30268.74 37075.76 38428.76 40379.35 34134.65 40186.16 32684.67 315
myMVS_eth3d64.66 35363.89 35466.97 35881.72 31737.39 40171.00 35461.99 38861.38 30070.81 36072.36 39120.96 41279.30 34249.59 36685.18 33484.22 321
test0.0.03 164.66 35364.36 35265.57 36475.03 38046.89 37764.69 38061.58 39462.43 28971.18 35877.54 37143.41 37568.47 37940.75 39282.65 36081.35 359
test_f64.31 35565.85 34559.67 38066.54 40462.24 26257.76 39470.96 36140.13 39784.36 21482.09 33246.93 34851.67 40361.99 29581.89 36365.12 395
pmmvs362.47 35660.02 36969.80 34071.58 39664.00 23570.52 35958.44 40039.77 39866.05 38075.84 38327.10 40972.28 36246.15 38184.77 34673.11 385
EPMVS62.47 35662.63 36062.01 37370.63 39738.74 39974.76 32652.86 40453.91 35067.71 37780.01 35239.40 38466.60 38655.54 33368.81 40080.68 369
ADS-MVSNet61.90 35862.19 36261.03 37873.16 38936.42 40367.10 37361.75 39149.74 37566.04 38182.97 32146.71 34963.21 39442.29 38869.96 39683.46 333
PMMVS61.65 35960.38 36665.47 36565.40 40869.26 18663.97 38261.73 39236.80 40360.11 39768.43 39659.42 29166.35 38748.97 37078.57 37960.81 398
E-PMN61.59 36061.62 36361.49 37666.81 40355.40 32953.77 39760.34 39666.80 25258.90 40065.50 39940.48 38366.12 38855.72 33086.25 32462.95 397
TESTMET0.1,161.29 36160.32 36764.19 36972.06 39451.30 35867.89 36962.09 38745.27 38460.65 39669.01 39527.93 40664.74 39256.31 32681.65 36676.53 379
MVS-HIRNet61.16 36262.92 35955.87 38379.09 34835.34 40471.83 34857.98 40146.56 38059.05 39991.14 17949.95 34176.43 35338.74 39571.92 39355.84 402
EMVS61.10 36360.81 36561.99 37465.96 40655.86 32653.10 39858.97 39967.06 24956.89 40363.33 40040.98 38167.03 38454.79 33986.18 32563.08 396
DSMNet-mixed60.98 36461.61 36459.09 38272.88 39145.05 38674.70 32746.61 40826.20 40465.34 38590.32 20855.46 31863.12 39541.72 39081.30 36969.09 391
dp60.70 36560.29 36861.92 37572.04 39538.67 40070.83 35764.08 38551.28 36660.75 39577.28 37436.59 39171.58 36747.41 37662.34 40275.52 382
dmvs_testset60.59 36662.54 36154.72 38577.26 35827.74 40874.05 33261.00 39560.48 31265.62 38467.03 39855.93 31568.23 38032.07 40569.46 39968.17 392
CHOSEN 280x42059.08 36756.52 37266.76 35976.51 36664.39 23149.62 39959.00 39843.86 38955.66 40468.41 39735.55 39268.21 38143.25 38776.78 38767.69 393
mvsany_test158.48 36856.47 37364.50 36865.90 40768.21 19656.95 39542.11 41038.30 40165.69 38377.19 37756.96 30959.35 40046.16 38058.96 40365.93 394
PVSNet_051.08 2256.10 36954.97 37459.48 38175.12 37953.28 34455.16 39661.89 39044.30 38759.16 39862.48 40154.22 32365.91 38935.40 40047.01 40459.25 400
new_pmnet55.69 37057.66 37149.76 38675.47 37630.59 40659.56 38851.45 40543.62 39162.49 39375.48 38540.96 38249.15 40537.39 39972.52 39069.55 390
PMMVS255.64 37159.27 37044.74 38764.30 40912.32 41340.60 40049.79 40653.19 35365.06 38984.81 30153.60 32549.76 40432.68 40489.41 28072.15 386
MVEpermissive40.22 2351.82 37250.47 37555.87 38362.66 41051.91 35331.61 40239.28 41140.65 39650.76 40574.98 38756.24 31444.67 40633.94 40364.11 40171.04 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 37329.60 37633.06 38817.99 4123.84 41513.62 40373.92 3372.79 40618.29 40853.41 40328.53 40443.25 40722.56 40635.27 40652.11 403
cdsmvs_eth3d_5k20.81 37427.75 3770.00 3930.00 4160.00 4180.00 40485.44 2460.00 4110.00 41282.82 32581.46 1150.00 4120.00 4110.00 4100.00 408
tmp_tt20.25 37524.50 3787.49 3904.47 4138.70 41434.17 40125.16 4131.00 40832.43 40718.49 40539.37 3859.21 40921.64 40743.75 4054.57 405
ab-mvs-re6.65 3768.87 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41279.80 3540.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.41 3778.55 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41176.94 1610.00 4120.00 4110.00 4100.00 408
test1236.27 3788.08 3810.84 3911.11 4150.57 41662.90 3830.82 4150.54 4091.07 4112.75 4101.26 4140.30 4101.04 4091.26 4091.66 406
testmvs5.91 3797.65 3820.72 3921.20 4140.37 41759.14 3900.67 4160.49 4101.11 4102.76 4090.94 4150.24 4111.02 4101.47 4081.55 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS37.39 40152.61 353
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14396.05 887.45 2098.17 3292.40 173
PC_three_145258.96 32190.06 9591.33 17380.66 12593.03 13775.78 16195.94 12592.48 168
No_MVS88.81 6991.55 12677.99 9091.01 14396.05 887.45 2098.17 3292.40 173
test_one_060193.85 5873.27 13694.11 3486.57 2593.47 3894.64 5988.42 26
eth-test20.00 416
eth-test0.00 416
ZD-MVS92.22 10180.48 6791.85 11771.22 20690.38 9092.98 12386.06 6196.11 681.99 9196.75 90
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
IU-MVS94.18 4672.64 14490.82 14856.98 33789.67 10785.78 5097.92 4693.28 135
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11994.68 7174.48 17395.35 14592.29 179
test_241102_TWO93.71 5183.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 190
test_241102_ONE94.18 4672.65 14293.69 5283.62 4994.11 2293.78 10490.28 1495.50 46
9.1489.29 5891.84 11688.80 8895.32 1175.14 14991.07 7992.89 12887.27 4493.78 10583.69 6997.55 67
save fliter93.75 5977.44 9986.31 12889.72 17970.80 209
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3595.88 1786.42 3697.97 4392.02 191
test072694.16 4972.56 14890.63 4593.90 4483.61 5093.75 3094.49 6489.76 18
GSMVS83.88 325
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35383.88 325
sam_mvs45.92 358
ambc82.98 18890.55 15364.86 22688.20 9689.15 19089.40 11693.96 9571.67 22691.38 18378.83 12296.55 9592.71 159
MTGPAbinary91.81 121
test_post178.85 2713.13 40745.19 36780.13 33958.11 319
test_post3.10 40845.43 36377.22 352
patchmatchnet-post81.71 33845.93 35787.01 271
GG-mvs-BLEND67.16 35773.36 38746.54 38084.15 16455.04 40358.64 40161.95 40229.93 40183.87 31938.71 39676.92 38671.07 388
MTMP90.66 4433.14 412
gm-plane-assit75.42 37744.97 38752.17 35972.36 39187.90 26154.10 342
test9_res80.83 10196.45 10290.57 230
TEST992.34 9579.70 7483.94 17090.32 16265.41 26784.49 21090.97 18582.03 10693.63 110
test_892.09 10578.87 8183.82 17590.31 16465.79 25884.36 21490.96 18781.93 10893.44 123
agg_prior279.68 11496.16 11390.22 238
agg_prior91.58 12477.69 9690.30 16584.32 21693.18 131
TestCases89.68 5391.59 12183.40 4895.44 979.47 9488.00 14293.03 12182.66 9191.47 17770.81 21296.14 11494.16 96
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20891.57 16781.92 11079.54 11696.97 83
test_prior86.32 10890.59 15271.99 15992.85 8894.17 9192.80 154
旧先验281.73 22956.88 33886.54 17584.90 30772.81 201
新几何281.72 230
新几何182.95 19093.96 5578.56 8480.24 29755.45 34283.93 22891.08 18271.19 22888.33 25865.84 26393.07 21581.95 354
旧先验191.97 10871.77 16081.78 28791.84 15873.92 19493.65 20383.61 331
无先验82.81 20585.62 24458.09 32891.41 18267.95 24984.48 317
原ACMM282.26 223
原ACMM184.60 14392.81 8674.01 12991.50 12662.59 28382.73 24890.67 20076.53 16894.25 8569.24 23095.69 13985.55 305
test22293.31 7076.54 10979.38 26077.79 30852.59 35682.36 25290.84 19366.83 24991.69 24381.25 362
testdata286.43 28563.52 284
segment_acmp81.94 107
testdata79.54 25092.87 8172.34 15380.14 29859.91 31785.47 19491.75 16467.96 24485.24 30368.57 24492.18 23581.06 367
testdata179.62 25573.95 160
test1286.57 10390.74 14872.63 14690.69 15182.76 24779.20 13594.80 6895.32 14792.27 181
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 182
plane_prior593.61 5595.22 5680.78 10295.83 13194.46 80
plane_prior492.95 126
plane_prior376.85 10777.79 11886.55 170
plane_prior289.45 7779.44 96
plane_prior192.83 85
plane_prior76.42 11387.15 11275.94 13895.03 159
n20.00 417
nn0.00 417
door-mid74.45 334
lessismore_v085.95 11791.10 14170.99 17170.91 36291.79 6794.42 6961.76 27692.93 14079.52 11793.03 21693.93 106
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
test1191.46 127
door72.57 349
HQP5-MVS70.66 172
HQP-NCC91.19 13684.77 14973.30 17480.55 282
ACMP_Plane91.19 13684.77 14973.30 17480.55 282
BP-MVS77.30 145
HQP4-MVS80.56 28194.61 7493.56 128
HQP3-MVS92.68 9394.47 180
HQP2-MVS72.10 218
NP-MVS91.95 10974.55 12690.17 214
MDTV_nov1_ep13_2view27.60 40970.76 35846.47 38161.27 39445.20 36649.18 36883.75 330
MDTV_nov1_ep1368.29 33378.03 35343.87 39074.12 33172.22 35252.17 35967.02 37885.54 28745.36 36480.85 33455.73 32984.42 347
ACMMP++_ref95.74 138
ACMMP++97.35 73
Test By Simon79.09 136
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16581.56 7190.02 9791.20 17882.40 9690.81 20273.58 18994.66 17594.56 76
DeepMVS_CXcopyleft24.13 38932.95 41129.49 40721.63 41412.07 40537.95 40645.07 40430.84 39919.21 40817.94 40833.06 40723.69 404