LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 25 | 91.50 1 | 63.30 118 | 84.80 33 | 87.77 10 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 66 | 68.08 90 | 97.05 1 | 96.93 1 |
|
TDRefinement | | | 86.32 2 | 86.33 3 | 86.29 1 | 88.64 32 | 81.19 5 | 88.84 2 | 90.72 1 | 78.27 9 | 87.95 15 | 92.53 14 | 79.37 14 | 84.79 63 | 74.51 48 | 96.15 3 | 92.88 7 |
|
abl_6 | | | 84.92 3 | 85.70 4 | 82.57 17 | 86.72 47 | 79.27 8 | 87.56 5 | 86.08 25 | 77.48 13 | 88.12 14 | 91.53 28 | 81.18 9 | 84.31 71 | 78.12 24 | 94.47 35 | 84.15 120 |
|
test1172 | | | 84.85 4 | 85.39 6 | 83.21 3 | 88.34 37 | 80.50 6 | 85.12 29 | 85.22 39 | 81.06 2 | 87.20 28 | 90.28 67 | 79.20 15 | 85.58 46 | 78.04 27 | 94.08 54 | 83.55 130 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 8 | 83.21 3 | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 20 | 77.51 11 | 87.65 19 | 90.73 45 | 79.20 15 | 85.58 46 | 78.11 25 | 94.46 36 | 84.89 92 |
|
HPM-MVS_fast | | | 84.59 6 | 85.10 9 | 83.06 6 | 88.60 33 | 75.83 26 | 86.27 23 | 86.89 16 | 73.69 23 | 86.17 36 | 91.70 25 | 78.23 21 | 85.20 56 | 79.45 13 | 94.91 25 | 88.15 45 |
|
SR-MVS | | | 84.51 7 | 85.27 7 | 82.25 21 | 88.52 34 | 77.71 16 | 86.81 15 | 85.25 38 | 77.42 15 | 86.15 37 | 90.24 68 | 81.69 6 | 85.94 31 | 77.77 29 | 93.58 65 | 83.09 143 |
|
test_part1 | | | 84.22 8 | 86.36 2 | 77.83 75 | 85.08 73 | 56.71 166 | 85.13 28 | 89.83 2 | 78.32 8 | 90.44 6 | 95.87 2 | 84.29 3 | 84.09 73 | 71.67 70 | 96.58 2 | 92.68 8 |
|
ACMMP | | | 84.22 8 | 84.84 11 | 82.35 20 | 89.23 23 | 76.66 25 | 87.65 4 | 85.89 28 | 71.03 43 | 85.85 41 | 90.58 49 | 78.77 18 | 85.78 38 | 79.37 16 | 95.17 17 | 84.62 102 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 10 | 81.94 23 | 84.82 76 | 75.40 29 | 91.60 1 | 87.80 8 | 73.52 24 | 88.90 11 | 93.06 7 | 71.39 75 | 81.53 115 | 81.53 3 | 92.15 86 | 88.91 37 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
HPM-MVS | | | 84.12 11 | 84.63 12 | 82.60 15 | 88.21 38 | 74.40 34 | 85.24 27 | 87.21 14 | 70.69 46 | 85.14 52 | 90.42 57 | 78.99 17 | 86.62 14 | 80.83 6 | 94.93 24 | 86.79 62 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 84.12 11 | 84.55 13 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 3 | 84.43 60 | 71.96 40 | 84.70 59 | 90.56 50 | 77.12 27 | 86.18 25 | 79.24 18 | 95.36 13 | 82.49 161 |
|
mPP-MVS | | | 84.01 13 | 84.39 14 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 11 | 82.79 87 | 72.41 34 | 85.11 53 | 90.85 41 | 76.65 30 | 84.89 60 | 79.30 17 | 94.63 32 | 82.35 164 |
|
COLMAP_ROB | | 72.78 3 | 83.75 14 | 84.11 18 | 82.68 14 | 82.97 103 | 74.39 35 | 87.18 9 | 88.18 7 | 78.98 6 | 86.11 39 | 91.47 30 | 79.70 13 | 85.76 39 | 66.91 105 | 95.46 12 | 87.89 47 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMMPR | | | 83.62 15 | 83.93 20 | 82.69 13 | 89.78 11 | 77.51 21 | 87.01 13 | 84.19 69 | 70.23 47 | 84.49 61 | 90.67 48 | 75.15 43 | 86.37 19 | 79.58 11 | 94.26 49 | 84.18 119 |
|
APD-MVS_3200maxsize | | | 83.57 16 | 84.33 15 | 81.31 33 | 82.83 106 | 73.53 43 | 85.50 26 | 87.45 13 | 74.11 20 | 86.45 34 | 90.52 53 | 80.02 12 | 84.48 67 | 77.73 30 | 94.34 47 | 85.93 72 |
|
region2R | | | 83.54 17 | 83.86 22 | 82.58 16 | 89.82 10 | 77.53 19 | 87.06 12 | 84.23 68 | 70.19 49 | 83.86 71 | 90.72 47 | 75.20 42 | 86.27 22 | 79.41 15 | 94.25 50 | 83.95 123 |
|
XVS | | | 83.51 18 | 83.73 23 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 54 | 72.71 27 | 82.87 80 | 90.39 61 | 73.86 56 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 100 |
|
LPG-MVS_test | | | 83.47 19 | 84.33 15 | 80.90 38 | 87.00 42 | 70.41 62 | 82.04 58 | 86.35 17 | 69.77 51 | 87.75 16 | 91.13 34 | 81.83 4 | 86.20 23 | 77.13 34 | 95.96 6 | 86.08 68 |
|
HFP-MVS | | | 83.39 20 | 84.03 19 | 81.48 27 | 89.25 21 | 75.69 27 | 87.01 13 | 84.27 64 | 70.23 47 | 84.47 62 | 90.43 55 | 76.79 28 | 85.94 31 | 79.58 11 | 94.23 51 | 82.82 152 |
|
MTAPA | | | 83.19 21 | 83.87 21 | 81.13 35 | 91.16 2 | 78.16 14 | 84.87 31 | 80.63 121 | 72.08 37 | 84.93 54 | 90.79 42 | 74.65 49 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 189 |
|
MP-MVS | | | 83.19 21 | 83.54 27 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 21 | 83.59 78 | 71.31 41 | 81.26 99 | 90.96 38 | 74.57 51 | 84.69 64 | 78.41 22 | 94.78 26 | 82.74 155 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 83.12 23 | 83.68 24 | 81.45 29 | 89.14 25 | 73.28 45 | 86.32 22 | 85.97 27 | 67.39 62 | 84.02 69 | 90.39 61 | 74.73 48 | 86.46 16 | 80.73 7 | 94.43 40 | 84.60 105 |
|
PGM-MVS | | | 83.07 24 | 83.25 34 | 82.54 18 | 89.57 14 | 77.21 23 | 82.04 58 | 85.40 35 | 67.96 60 | 84.91 57 | 90.88 39 | 75.59 38 | 86.57 15 | 78.16 23 | 94.71 30 | 83.82 124 |
|
SteuartSystems-ACMMP | | | 83.07 24 | 83.64 25 | 81.35 31 | 85.14 71 | 71.00 56 | 85.53 25 | 84.78 48 | 70.91 44 | 85.64 44 | 90.41 58 | 75.55 40 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 82 |
Skip Steuart: Steuart Systems R&D Blog. |
zzz-MVS | | | 83.01 26 | 83.63 26 | 81.13 35 | 91.16 2 | 78.16 14 | 82.72 54 | 80.63 121 | 72.08 37 | 84.93 54 | 90.79 42 | 74.65 49 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 189 |
|
APDe-MVS | | | 82.88 27 | 84.14 17 | 79.08 57 | 84.80 78 | 66.72 90 | 86.54 19 | 85.11 41 | 72.00 39 | 86.65 33 | 91.75 24 | 78.20 22 | 87.04 9 | 77.93 28 | 94.32 48 | 83.47 133 |
|
GST-MVS | | | 82.79 28 | 83.27 33 | 81.34 32 | 88.99 27 | 73.29 44 | 85.94 24 | 85.13 40 | 68.58 58 | 84.14 68 | 90.21 70 | 73.37 61 | 86.41 17 | 79.09 19 | 93.98 58 | 84.30 118 |
|
ACMP | | 69.50 8 | 82.64 29 | 83.38 30 | 80.40 43 | 86.50 49 | 69.44 70 | 82.30 55 | 86.08 25 | 66.80 67 | 86.70 32 | 89.99 73 | 81.64 7 | 85.95 30 | 74.35 49 | 96.11 4 | 85.81 74 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MP-MVS-pluss | | | 82.54 30 | 83.46 29 | 79.76 47 | 88.88 31 | 68.44 79 | 81.57 61 | 86.33 19 | 63.17 106 | 85.38 50 | 91.26 33 | 76.33 32 | 84.67 65 | 83.30 1 | 94.96 23 | 86.17 67 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
#test# | | | 82.40 31 | 82.71 41 | 81.48 27 | 89.25 21 | 75.69 27 | 84.47 35 | 84.27 64 | 64.45 91 | 84.47 62 | 90.43 55 | 76.79 28 | 85.94 31 | 76.01 36 | 94.23 51 | 82.82 152 |
|
ACMMP_NAP | | | 82.33 32 | 83.28 32 | 79.46 53 | 89.28 19 | 69.09 77 | 83.62 43 | 84.98 44 | 64.77 88 | 83.97 70 | 91.02 37 | 75.53 41 | 85.93 34 | 82.00 2 | 94.36 45 | 83.35 138 |
|
SMA-MVS | | | 82.12 33 | 82.68 42 | 80.43 42 | 88.90 30 | 69.52 68 | 85.12 29 | 84.76 49 | 63.53 101 | 84.23 67 | 91.47 30 | 72.02 67 | 87.16 7 | 79.74 10 | 94.36 45 | 84.61 103 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMM | | 69.25 9 | 82.11 34 | 83.31 31 | 78.49 66 | 88.17 39 | 73.96 37 | 83.11 50 | 84.52 59 | 66.40 71 | 87.45 23 | 89.16 91 | 81.02 10 | 80.52 137 | 74.27 50 | 95.73 8 | 80.98 186 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPE-MVS | | | 82.00 35 | 83.02 37 | 78.95 60 | 85.36 68 | 67.25 86 | 82.91 51 | 84.98 44 | 73.52 24 | 85.43 49 | 90.03 72 | 76.37 31 | 86.97 11 | 74.56 47 | 94.02 57 | 82.62 157 |
|
SED-MVS | | | 81.78 36 | 83.48 28 | 76.67 85 | 86.12 57 | 61.06 131 | 83.62 43 | 84.72 51 | 72.61 30 | 87.38 25 | 89.70 78 | 77.48 25 | 85.89 36 | 75.29 42 | 94.39 41 | 83.08 144 |
|
PMVS | | 70.70 6 | 81.70 37 | 83.15 35 | 77.36 81 | 90.35 6 | 82.82 2 | 82.15 56 | 79.22 143 | 74.08 21 | 87.16 30 | 91.97 20 | 84.80 2 | 76.97 196 | 64.98 115 | 93.61 63 | 72.28 271 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
UA-Net | | | 81.56 38 | 82.28 44 | 79.40 54 | 88.91 29 | 69.16 75 | 84.67 34 | 80.01 135 | 75.34 17 | 79.80 116 | 94.91 3 | 69.79 85 | 80.25 142 | 72.63 60 | 94.46 36 | 88.78 41 |
|
CPTT-MVS | | | 81.51 39 | 81.76 47 | 80.76 40 | 89.20 24 | 78.75 12 | 86.48 20 | 82.03 96 | 68.80 54 | 80.92 104 | 88.52 102 | 72.00 68 | 82.39 102 | 74.80 44 | 93.04 71 | 81.14 181 |
|
ACMH+ | | 66.64 10 | 81.20 40 | 82.48 43 | 77.35 82 | 81.16 129 | 62.39 122 | 80.51 66 | 87.80 8 | 73.02 26 | 87.57 21 | 91.08 36 | 80.28 11 | 82.44 101 | 64.82 116 | 96.10 5 | 87.21 56 |
|
testtj | | | 81.19 41 | 81.70 49 | 79.67 51 | 83.95 91 | 69.77 67 | 83.58 46 | 84.63 56 | 72.13 36 | 82.85 82 | 88.36 106 | 75.00 46 | 86.79 12 | 71.99 69 | 92.84 74 | 82.44 162 |
|
DVP-MVS | | | 81.15 42 | 83.12 36 | 75.24 105 | 86.16 55 | 60.78 136 | 83.77 41 | 80.58 124 | 72.48 32 | 85.83 42 | 90.41 58 | 78.57 19 | 85.69 41 | 75.86 39 | 94.39 41 | 79.24 213 |
|
APD-MVS | | | 81.13 43 | 81.73 48 | 79.36 55 | 84.47 83 | 70.53 61 | 83.85 39 | 83.70 76 | 69.43 53 | 83.67 73 | 88.96 98 | 75.89 36 | 86.41 17 | 72.62 61 | 92.95 72 | 81.14 181 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
3Dnovator+ | | 73.19 2 | 81.08 44 | 80.48 57 | 82.87 9 | 81.41 126 | 72.03 47 | 84.38 36 | 86.23 23 | 77.28 16 | 80.65 107 | 90.18 71 | 59.80 172 | 87.58 4 | 73.06 57 | 91.34 99 | 89.01 33 |
|
DeepC-MVS | | 72.44 4 | 81.00 45 | 80.83 56 | 81.50 26 | 86.70 48 | 70.03 66 | 82.06 57 | 87.00 15 | 59.89 128 | 80.91 105 | 90.53 51 | 72.19 65 | 88.56 1 | 73.67 54 | 94.52 34 | 85.92 73 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OPM-MVS | | | 80.99 46 | 81.63 51 | 79.07 58 | 86.86 46 | 69.39 71 | 79.41 82 | 84.00 74 | 65.64 75 | 85.54 47 | 89.28 84 | 76.32 33 | 83.47 83 | 74.03 51 | 93.57 66 | 84.35 115 |
|
LS3D | | | 80.99 46 | 80.85 55 | 81.41 30 | 78.37 159 | 71.37 52 | 87.45 6 | 85.87 29 | 77.48 13 | 81.98 89 | 89.95 75 | 69.14 88 | 85.26 52 | 66.15 106 | 91.24 101 | 87.61 51 |
|
SF-MVS | | | 80.72 48 | 81.80 46 | 77.48 79 | 82.03 117 | 64.40 110 | 83.41 48 | 88.46 6 | 65.28 82 | 84.29 65 | 89.18 88 | 73.73 59 | 83.22 88 | 76.01 36 | 93.77 60 | 84.81 96 |
|
XVG-ACMP-BASELINE | | | 80.54 49 | 81.06 53 | 78.98 59 | 87.01 41 | 72.91 46 | 80.23 74 | 85.56 30 | 66.56 70 | 85.64 44 | 89.57 80 | 69.12 89 | 80.55 136 | 72.51 62 | 93.37 67 | 83.48 132 |
|
MSP-MVS | | | 80.49 50 | 79.67 65 | 82.96 7 | 89.70 12 | 77.46 22 | 87.16 10 | 85.10 42 | 64.94 87 | 81.05 101 | 88.38 105 | 57.10 200 | 87.10 8 | 79.75 8 | 83.87 214 | 84.31 116 |
|
PEN-MVS | | | 80.46 51 | 82.91 38 | 73.11 133 | 89.83 9 | 39.02 291 | 77.06 112 | 82.61 90 | 80.04 4 | 90.60 5 | 92.85 10 | 74.93 47 | 85.21 55 | 63.15 129 | 95.15 18 | 95.09 2 |
|
PS-CasMVS | | | 80.41 52 | 82.86 40 | 73.07 134 | 89.93 7 | 39.21 288 | 77.15 110 | 81.28 109 | 79.74 5 | 90.87 3 | 92.73 12 | 75.03 45 | 84.93 59 | 63.83 125 | 95.19 16 | 95.07 3 |
|
DTE-MVSNet | | | 80.35 53 | 82.89 39 | 72.74 145 | 89.84 8 | 37.34 306 | 77.16 109 | 81.81 99 | 80.45 3 | 90.92 2 | 92.95 8 | 74.57 51 | 86.12 28 | 63.65 126 | 94.68 31 | 94.76 6 |
|
xxxxxxxxxxxxxcwj | | | 80.31 54 | 80.94 54 | 78.42 68 | 87.00 42 | 67.23 87 | 79.24 83 | 88.61 5 | 56.65 161 | 84.29 65 | 89.18 88 | 73.73 59 | 83.22 88 | 76.01 36 | 93.77 60 | 84.81 96 |
|
SD-MVS | | | 80.28 55 | 81.55 52 | 76.47 90 | 83.57 94 | 67.83 83 | 83.39 49 | 85.35 37 | 64.42 92 | 86.14 38 | 87.07 122 | 74.02 55 | 80.97 127 | 77.70 31 | 92.32 85 | 80.62 196 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
WR-MVS_H | | | 80.22 56 | 82.17 45 | 74.39 112 | 89.46 15 | 42.69 265 | 78.24 97 | 82.24 93 | 78.21 10 | 89.57 9 | 92.10 19 | 68.05 100 | 85.59 45 | 66.04 108 | 95.62 10 | 94.88 5 |
|
HPM-MVS++ | | | 79.89 57 | 79.80 63 | 80.18 45 | 89.02 26 | 78.44 13 | 83.49 47 | 80.18 132 | 64.71 90 | 78.11 136 | 88.39 104 | 65.46 124 | 83.14 90 | 77.64 32 | 91.20 102 | 78.94 216 |
|
XVG-OURS-SEG-HR | | | 79.62 58 | 79.99 61 | 78.49 66 | 86.46 50 | 74.79 33 | 77.15 110 | 85.39 36 | 66.73 68 | 80.39 111 | 88.85 100 | 74.43 54 | 78.33 177 | 74.73 46 | 85.79 185 | 82.35 164 |
|
XVG-OURS | | | 79.51 59 | 79.82 62 | 78.58 65 | 86.11 60 | 74.96 32 | 76.33 119 | 84.95 46 | 66.89 64 | 82.75 83 | 88.99 97 | 66.82 111 | 78.37 175 | 74.80 44 | 90.76 117 | 82.40 163 |
|
CP-MVSNet | | | 79.48 60 | 81.65 50 | 72.98 137 | 89.66 13 | 39.06 290 | 76.76 113 | 80.46 126 | 78.91 7 | 90.32 7 | 91.70 25 | 68.49 95 | 84.89 60 | 63.40 128 | 95.12 19 | 95.01 4 |
|
OMC-MVS | | | 79.41 61 | 78.79 70 | 81.28 34 | 80.62 133 | 70.71 60 | 80.91 64 | 84.76 49 | 62.54 110 | 81.77 91 | 86.65 139 | 71.46 73 | 83.53 82 | 67.95 95 | 92.44 82 | 89.60 23 |
|
v7n | | | 79.37 62 | 80.41 58 | 76.28 92 | 78.67 158 | 55.81 170 | 79.22 85 | 82.51 92 | 70.72 45 | 87.54 22 | 92.44 15 | 68.00 102 | 81.34 116 | 72.84 58 | 91.72 88 | 91.69 11 |
|
ETH3D-3000-0.1 | | | 79.14 63 | 79.80 63 | 77.16 84 | 80.67 132 | 64.57 107 | 80.26 72 | 87.60 12 | 60.74 122 | 82.47 86 | 88.03 114 | 71.73 70 | 81.81 111 | 73.12 56 | 93.61 63 | 85.09 87 |
|
TSAR-MVS + MP. | | | 79.05 64 | 78.81 69 | 79.74 48 | 88.94 28 | 67.52 84 | 86.61 18 | 81.38 107 | 51.71 215 | 77.15 146 | 91.42 32 | 65.49 123 | 87.20 6 | 79.44 14 | 87.17 172 | 84.51 110 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
mvs_tets | | | 78.93 65 | 78.67 73 | 79.72 49 | 84.81 77 | 73.93 38 | 80.65 65 | 76.50 182 | 51.98 213 | 87.40 24 | 91.86 22 | 76.09 35 | 78.53 167 | 68.58 85 | 90.20 123 | 86.69 64 |
|
test_djsdf | | | 78.88 66 | 78.27 76 | 80.70 41 | 81.42 125 | 71.24 54 | 83.98 37 | 75.72 188 | 52.27 208 | 87.37 27 | 92.25 17 | 68.04 101 | 80.56 134 | 72.28 65 | 91.15 104 | 90.32 21 |
|
HQP_MVS | | | 78.77 67 | 78.78 71 | 78.72 62 | 85.18 69 | 65.18 102 | 82.74 52 | 85.49 32 | 65.45 77 | 78.23 133 | 89.11 93 | 60.83 163 | 86.15 26 | 71.09 72 | 90.94 109 | 84.82 94 |
|
anonymousdsp | | | 78.60 68 | 77.80 79 | 81.00 37 | 78.01 164 | 74.34 36 | 80.09 75 | 76.12 184 | 50.51 229 | 89.19 10 | 90.88 39 | 71.45 74 | 77.78 188 | 73.38 55 | 90.60 119 | 90.90 17 |
|
OurMVSNet-221017-0 | | | 78.57 69 | 78.53 75 | 78.67 63 | 80.48 134 | 64.16 111 | 80.24 73 | 82.06 95 | 61.89 114 | 88.77 12 | 93.32 5 | 57.15 198 | 82.60 100 | 70.08 78 | 92.80 76 | 89.25 27 |
|
jajsoiax | | | 78.51 70 | 78.16 77 | 79.59 52 | 84.65 80 | 73.83 40 | 80.42 68 | 76.12 184 | 51.33 221 | 87.19 29 | 91.51 29 | 73.79 58 | 78.44 171 | 68.27 88 | 90.13 128 | 86.49 65 |
|
CNVR-MVS | | | 78.49 71 | 78.59 74 | 78.16 71 | 85.86 64 | 67.40 85 | 78.12 100 | 81.50 103 | 63.92 96 | 77.51 143 | 86.56 143 | 68.43 97 | 84.82 62 | 73.83 52 | 91.61 93 | 82.26 167 |
|
DeepPCF-MVS | | 71.07 5 | 78.48 72 | 77.14 85 | 82.52 19 | 84.39 87 | 77.04 24 | 76.35 117 | 84.05 72 | 56.66 160 | 80.27 112 | 85.31 168 | 68.56 94 | 87.03 10 | 67.39 100 | 91.26 100 | 83.50 131 |
|
DP-MVS | | | 78.44 73 | 79.29 67 | 75.90 96 | 81.86 120 | 65.33 100 | 79.05 87 | 84.63 56 | 74.83 19 | 80.41 110 | 86.27 149 | 71.68 71 | 83.45 84 | 62.45 133 | 92.40 83 | 78.92 217 |
|
ETH3D cwj APD-0.16 | | | 78.38 74 | 78.72 72 | 77.38 80 | 80.09 137 | 66.16 95 | 79.08 86 | 86.13 24 | 57.55 151 | 80.93 103 | 87.76 117 | 71.98 69 | 82.73 98 | 72.11 68 | 92.83 75 | 83.25 140 |
|
NCCC | | | 78.25 75 | 78.04 78 | 78.89 61 | 85.61 65 | 69.45 69 | 79.80 79 | 80.99 118 | 65.77 74 | 75.55 175 | 86.25 151 | 67.42 105 | 85.42 48 | 70.10 77 | 90.88 115 | 81.81 174 |
|
test_0402 | | | 78.17 76 | 79.48 66 | 74.24 115 | 83.50 95 | 59.15 152 | 72.52 157 | 74.60 201 | 75.34 17 | 88.69 13 | 91.81 23 | 75.06 44 | 82.37 103 | 65.10 113 | 88.68 149 | 81.20 179 |
|
AllTest | | | 77.66 77 | 77.43 81 | 78.35 69 | 79.19 150 | 70.81 57 | 78.60 91 | 88.64 3 | 65.37 80 | 80.09 114 | 88.17 110 | 70.33 80 | 78.43 172 | 55.60 186 | 90.90 113 | 85.81 74 |
|
PS-MVSNAJss | | | 77.54 78 | 77.35 82 | 78.13 73 | 84.88 75 | 66.37 93 | 78.55 92 | 79.59 140 | 53.48 199 | 86.29 35 | 92.43 16 | 62.39 145 | 80.25 142 | 67.90 96 | 90.61 118 | 87.77 48 |
|
ACMH | | 63.62 14 | 77.50 79 | 80.11 60 | 69.68 183 | 79.61 141 | 56.28 167 | 78.81 88 | 83.62 77 | 63.41 104 | 87.14 31 | 90.23 69 | 76.11 34 | 73.32 231 | 67.58 97 | 94.44 39 | 79.44 211 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CDPH-MVS | | | 77.33 80 | 77.06 86 | 78.14 72 | 84.21 88 | 63.98 113 | 76.07 122 | 83.45 79 | 54.20 188 | 77.68 142 | 87.18 118 | 69.98 83 | 85.37 49 | 68.01 92 | 92.72 80 | 85.08 89 |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 81 | 76.33 90 | 79.70 50 | 83.90 93 | 67.94 81 | 80.06 77 | 83.75 75 | 56.73 159 | 74.88 183 | 85.32 167 | 65.54 122 | 87.79 2 | 65.61 111 | 91.14 105 | 83.35 138 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
X-MVStestdata | | | 76.81 82 | 74.79 101 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 54 | 72.71 27 | 82.87 80 | 9.95 354 | 73.86 56 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 100 |
|
UniMVSNet_ETH3D | | | 76.74 83 | 79.02 68 | 69.92 182 | 89.27 20 | 43.81 253 | 74.47 143 | 71.70 221 | 72.33 35 | 85.50 48 | 93.65 4 | 77.98 23 | 76.88 199 | 54.60 196 | 91.64 91 | 89.08 31 |
|
test_prior3 | | | 76.71 84 | 77.19 83 | 75.27 103 | 82.15 115 | 59.85 145 | 75.57 126 | 84.33 62 | 58.92 136 | 76.53 165 | 86.78 130 | 67.83 103 | 83.39 85 | 69.81 80 | 92.76 78 | 82.58 158 |
|
train_agg | | | 76.38 85 | 76.55 87 | 75.86 97 | 85.47 66 | 69.32 73 | 76.42 115 | 78.69 152 | 54.00 192 | 76.97 149 | 86.74 133 | 66.60 113 | 81.10 122 | 72.50 63 | 91.56 94 | 77.15 233 |
|
TranMVSNet+NR-MVSNet | | | 76.13 86 | 77.66 80 | 71.56 159 | 84.61 81 | 42.57 267 | 70.98 182 | 78.29 161 | 68.67 57 | 83.04 77 | 89.26 85 | 72.99 63 | 80.75 133 | 55.58 189 | 95.47 11 | 91.35 12 |
|
agg_prior1 | | | 75.89 87 | 76.41 88 | 74.31 114 | 84.44 85 | 66.02 96 | 76.12 121 | 78.62 155 | 54.40 186 | 76.95 151 | 86.85 127 | 66.44 115 | 80.34 139 | 72.45 64 | 91.42 97 | 76.57 237 |
|
SixPastTwentyTwo | | | 75.77 88 | 76.34 89 | 74.06 118 | 81.69 123 | 54.84 175 | 76.47 114 | 75.49 190 | 64.10 95 | 87.73 18 | 92.24 18 | 50.45 232 | 81.30 118 | 67.41 99 | 91.46 96 | 86.04 70 |
|
RPSCF | | | 75.76 89 | 74.37 107 | 79.93 46 | 74.81 204 | 77.53 19 | 77.53 104 | 79.30 142 | 59.44 131 | 78.88 125 | 89.80 77 | 71.26 76 | 73.09 233 | 57.45 168 | 80.89 245 | 89.17 30 |
|
ETH3 D test6400 | | | 75.73 90 | 76.00 92 | 74.92 106 | 81.75 121 | 56.93 163 | 78.31 95 | 84.60 58 | 52.83 204 | 77.15 146 | 85.14 170 | 68.59 93 | 84.03 74 | 65.44 112 | 90.20 123 | 83.82 124 |
|
v10 | | | 75.69 91 | 76.20 91 | 74.16 116 | 74.44 215 | 48.69 210 | 75.84 125 | 82.93 86 | 59.02 135 | 85.92 40 | 89.17 90 | 58.56 182 | 82.74 97 | 70.73 74 | 89.14 145 | 91.05 14 |
|
Anonymous20231211 | | | 75.54 92 | 77.19 83 | 70.59 168 | 77.67 170 | 45.70 244 | 74.73 139 | 80.19 131 | 68.80 54 | 82.95 79 | 92.91 9 | 66.26 116 | 76.76 202 | 58.41 164 | 92.77 77 | 89.30 26 |
|
Effi-MVS+-dtu | | | 75.43 93 | 72.28 142 | 84.91 2 | 77.05 173 | 83.58 1 | 78.47 93 | 77.70 169 | 57.68 146 | 74.89 182 | 78.13 250 | 64.80 129 | 84.26 72 | 56.46 178 | 85.32 192 | 86.88 61 |
|
Regformer-2 | | | 75.32 94 | 74.47 105 | 77.88 74 | 74.22 217 | 66.65 91 | 72.77 155 | 77.54 171 | 68.47 59 | 80.44 109 | 72.08 297 | 70.60 79 | 80.97 127 | 70.08 78 | 84.02 212 | 86.01 71 |
|
F-COLMAP | | | 75.29 95 | 73.99 112 | 79.18 56 | 81.73 122 | 71.90 48 | 81.86 60 | 82.98 84 | 59.86 129 | 72.27 215 | 84.00 181 | 64.56 132 | 83.07 93 | 51.48 215 | 87.19 171 | 82.56 160 |
|
HQP-MVS | | | 75.24 96 | 75.01 100 | 75.94 95 | 82.37 110 | 58.80 155 | 77.32 106 | 84.12 70 | 59.08 132 | 71.58 223 | 85.96 161 | 58.09 187 | 85.30 51 | 67.38 101 | 89.16 142 | 83.73 128 |
|
TAPA-MVS | | 65.27 12 | 75.16 97 | 74.29 109 | 77.77 76 | 74.86 203 | 68.08 80 | 77.89 101 | 84.04 73 | 55.15 174 | 76.19 171 | 83.39 186 | 66.91 109 | 80.11 147 | 60.04 153 | 90.14 127 | 85.13 86 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS-MVSNet | | | 75.10 98 | 75.42 99 | 74.15 117 | 79.23 148 | 48.05 219 | 79.43 80 | 78.04 165 | 70.09 50 | 79.17 123 | 88.02 115 | 53.04 218 | 83.60 80 | 58.05 166 | 93.76 62 | 90.79 18 |
|
v8 | | | 75.07 99 | 75.64 96 | 73.35 127 | 73.42 227 | 47.46 228 | 75.20 130 | 81.45 105 | 60.05 126 | 85.64 44 | 89.26 85 | 58.08 189 | 81.80 112 | 69.71 82 | 87.97 155 | 90.79 18 |
|
UniMVSNet (Re) | | | 75.00 100 | 75.48 98 | 73.56 125 | 83.14 100 | 47.92 221 | 70.41 189 | 81.04 117 | 63.67 99 | 79.54 118 | 86.37 148 | 62.83 139 | 81.82 110 | 57.10 172 | 95.25 15 | 90.94 16 |
|
PHI-MVS | | | 74.92 101 | 74.36 108 | 76.61 86 | 76.40 183 | 62.32 123 | 80.38 69 | 83.15 82 | 54.16 190 | 73.23 206 | 80.75 214 | 62.19 148 | 83.86 76 | 68.02 91 | 90.92 112 | 83.65 129 |
|
DU-MVS | | | 74.91 102 | 75.57 97 | 72.93 139 | 83.50 95 | 45.79 241 | 69.47 197 | 80.14 133 | 65.22 83 | 81.74 93 | 87.08 120 | 61.82 151 | 81.07 124 | 56.21 181 | 94.98 21 | 91.93 9 |
|
UniMVSNet_NR-MVSNet | | | 74.90 103 | 75.65 95 | 72.64 148 | 83.04 101 | 45.79 241 | 69.26 200 | 78.81 149 | 66.66 69 | 81.74 93 | 86.88 126 | 63.26 137 | 81.07 124 | 56.21 181 | 94.98 21 | 91.05 14 |
|
nrg030 | | | 74.87 104 | 75.99 93 | 71.52 160 | 74.90 202 | 49.88 205 | 74.10 146 | 82.58 91 | 54.55 185 | 83.50 75 | 89.21 87 | 71.51 72 | 75.74 211 | 61.24 140 | 92.34 84 | 88.94 36 |
|
Vis-MVSNet | | | 74.85 105 | 74.56 103 | 75.72 98 | 81.63 124 | 64.64 106 | 76.35 117 | 79.06 145 | 62.85 108 | 73.33 204 | 88.41 103 | 62.54 143 | 79.59 153 | 63.94 124 | 82.92 222 | 82.94 148 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Regformer-4 | | | 74.64 106 | 73.67 117 | 77.55 77 | 74.74 206 | 64.49 109 | 72.91 152 | 75.42 192 | 67.45 61 | 80.24 113 | 72.07 299 | 68.98 90 | 80.19 146 | 70.29 76 | 80.91 243 | 87.98 46 |
|
MSLP-MVS++ | | | 74.48 107 | 75.78 94 | 70.59 168 | 84.66 79 | 62.40 121 | 78.65 90 | 84.24 67 | 60.55 124 | 77.71 141 | 81.98 202 | 63.12 138 | 77.64 190 | 62.95 130 | 88.14 151 | 71.73 276 |
|
Regformer-1 | | | 74.28 108 | 73.63 119 | 76.21 94 | 74.22 217 | 64.12 112 | 72.77 155 | 75.46 191 | 66.86 66 | 79.27 121 | 72.08 297 | 69.29 87 | 78.74 163 | 68.73 84 | 84.02 212 | 85.77 79 |
|
AdaColmap | | | 74.22 109 | 74.56 103 | 73.20 131 | 81.95 118 | 60.97 133 | 79.43 80 | 80.90 119 | 65.57 76 | 72.54 213 | 81.76 206 | 70.98 78 | 85.26 52 | 47.88 245 | 90.00 129 | 73.37 259 |
|
CSCG | | | 74.12 110 | 74.39 106 | 73.33 128 | 79.35 145 | 61.66 128 | 77.45 105 | 81.98 97 | 62.47 112 | 79.06 124 | 80.19 223 | 61.83 150 | 78.79 162 | 59.83 155 | 87.35 165 | 79.54 210 |
|
PAPM_NR | | | 73.91 111 | 74.16 110 | 73.16 132 | 81.90 119 | 53.50 184 | 81.28 62 | 81.40 106 | 66.17 72 | 73.30 205 | 83.31 190 | 59.96 168 | 83.10 92 | 58.45 163 | 81.66 237 | 82.87 150 |
|
EPP-MVSNet | | | 73.86 112 | 73.38 123 | 75.31 102 | 78.19 161 | 53.35 186 | 80.45 67 | 77.32 175 | 65.11 85 | 76.47 167 | 86.80 128 | 49.47 236 | 83.77 77 | 53.89 204 | 92.72 80 | 88.81 40 |
|
mvs-test1 | | | 73.81 113 | 70.69 163 | 83.18 5 | 77.05 173 | 81.39 3 | 75.39 128 | 77.70 169 | 57.68 146 | 71.19 232 | 74.72 275 | 64.80 129 | 83.66 79 | 56.46 178 | 81.19 241 | 84.50 111 |
|
RRT_MVS | | | 73.80 114 | 71.19 158 | 81.60 24 | 71.04 248 | 70.33 64 | 78.78 89 | 74.91 198 | 56.96 155 | 77.83 138 | 85.56 165 | 32.82 313 | 87.39 5 | 71.16 71 | 91.68 90 | 87.07 60 |
|
K. test v3 | | | 73.67 115 | 73.61 120 | 73.87 120 | 79.78 139 | 55.62 173 | 74.69 141 | 62.04 281 | 66.16 73 | 84.76 58 | 93.23 6 | 49.47 236 | 80.97 127 | 65.66 110 | 86.67 178 | 85.02 91 |
|
NR-MVSNet | | | 73.62 116 | 74.05 111 | 72.33 154 | 83.50 95 | 43.71 254 | 65.65 251 | 77.32 175 | 64.32 93 | 75.59 174 | 87.08 120 | 62.45 144 | 81.34 116 | 54.90 192 | 95.63 9 | 91.93 9 |
|
DP-MVS Recon | | | 73.57 117 | 72.69 136 | 76.23 93 | 82.85 105 | 63.39 116 | 74.32 144 | 82.96 85 | 57.75 145 | 70.35 239 | 81.98 202 | 64.34 134 | 84.41 70 | 49.69 229 | 89.95 131 | 80.89 187 |
|
CNLPA | | | 73.44 118 | 73.03 132 | 74.66 107 | 78.27 160 | 75.29 30 | 75.99 123 | 78.49 157 | 65.39 79 | 75.67 173 | 83.22 194 | 61.23 159 | 66.77 287 | 53.70 206 | 85.33 191 | 81.92 173 |
|
MCST-MVS | | | 73.42 119 | 73.34 125 | 73.63 124 | 81.28 127 | 59.17 151 | 74.80 137 | 83.13 83 | 45.50 264 | 72.84 209 | 83.78 184 | 65.15 126 | 80.99 126 | 64.54 117 | 89.09 146 | 80.73 194 |
|
v1192 | | | 73.40 120 | 73.42 121 | 73.32 129 | 74.65 212 | 48.67 211 | 72.21 160 | 81.73 100 | 52.76 205 | 81.85 90 | 84.56 174 | 57.12 199 | 82.24 107 | 68.58 85 | 87.33 166 | 89.06 32 |
|
114514_t | | | 73.40 120 | 73.33 126 | 73.64 123 | 84.15 90 | 57.11 162 | 78.20 98 | 80.02 134 | 43.76 278 | 72.55 212 | 86.07 159 | 64.00 135 | 83.35 87 | 60.14 151 | 91.03 108 | 80.45 199 |
|
FC-MVSNet-test | | | 73.32 122 | 74.78 102 | 68.93 196 | 79.21 149 | 36.57 308 | 71.82 170 | 79.54 141 | 57.63 150 | 82.57 85 | 90.38 63 | 59.38 175 | 78.99 158 | 57.91 167 | 94.56 33 | 91.23 13 |
|
v1144 | | | 73.29 123 | 73.39 122 | 73.01 135 | 74.12 221 | 48.11 218 | 72.01 163 | 81.08 116 | 53.83 196 | 81.77 91 | 84.68 172 | 58.07 190 | 81.91 109 | 68.10 89 | 86.86 174 | 88.99 35 |
|
baseline | | | 73.10 124 | 73.96 113 | 70.51 170 | 71.46 246 | 46.39 239 | 72.08 161 | 84.40 61 | 55.95 166 | 76.62 161 | 86.46 146 | 67.20 106 | 78.03 184 | 64.22 120 | 87.27 169 | 87.11 59 |
|
TSAR-MVS + GP. | | | 73.08 125 | 71.60 152 | 77.54 78 | 78.99 156 | 70.73 59 | 74.96 132 | 69.38 245 | 60.73 123 | 74.39 192 | 78.44 246 | 57.72 195 | 82.78 96 | 60.16 150 | 89.60 137 | 79.11 215 |
|
v1240 | | | 73.06 126 | 73.14 128 | 72.84 142 | 74.74 206 | 47.27 231 | 71.88 169 | 81.11 113 | 51.80 214 | 82.28 88 | 84.21 178 | 56.22 207 | 82.34 104 | 68.82 83 | 87.17 172 | 88.91 37 |
|
casdiffmvs | | | 73.06 126 | 73.84 114 | 70.72 166 | 71.32 247 | 46.71 235 | 70.93 183 | 84.26 66 | 55.62 169 | 77.46 144 | 87.10 119 | 67.09 107 | 77.81 186 | 63.95 122 | 86.83 175 | 87.64 50 |
|
IterMVS-LS | | | 73.01 128 | 73.12 130 | 72.66 147 | 73.79 224 | 49.90 202 | 71.63 171 | 78.44 158 | 58.22 140 | 80.51 108 | 86.63 140 | 58.15 186 | 79.62 151 | 62.51 131 | 88.20 150 | 88.48 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CANet | | | 73.00 129 | 71.84 147 | 76.48 89 | 75.82 191 | 61.28 129 | 74.81 135 | 80.37 129 | 63.17 106 | 62.43 288 | 80.50 218 | 61.10 161 | 85.16 58 | 64.00 121 | 84.34 208 | 83.01 147 |
|
v144192 | | | 72.99 130 | 73.06 131 | 72.77 143 | 74.58 213 | 47.48 227 | 71.90 168 | 80.44 127 | 51.57 217 | 81.46 97 | 84.11 180 | 58.04 191 | 82.12 108 | 67.98 93 | 87.47 162 | 88.70 42 |
|
MVS_111021_HR | | | 72.98 131 | 72.97 134 | 72.99 136 | 80.82 130 | 65.47 99 | 68.81 206 | 72.77 212 | 57.67 148 | 75.76 172 | 82.38 199 | 71.01 77 | 77.17 194 | 61.38 139 | 86.15 181 | 76.32 238 |
|
v1921920 | | | 72.96 132 | 72.98 133 | 72.89 141 | 74.67 209 | 47.58 226 | 71.92 167 | 80.69 120 | 51.70 216 | 81.69 95 | 83.89 182 | 56.58 205 | 82.25 106 | 68.34 87 | 87.36 164 | 88.82 39 |
|
CLD-MVS | | | 72.88 133 | 72.36 140 | 74.43 111 | 77.03 175 | 54.30 179 | 68.77 209 | 83.43 80 | 52.12 210 | 76.79 159 | 74.44 279 | 69.54 86 | 83.91 75 | 55.88 184 | 93.25 70 | 85.09 87 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Regformer-3 | | | 72.86 134 | 72.28 142 | 74.62 108 | 74.74 206 | 60.18 142 | 72.91 152 | 71.76 220 | 64.74 89 | 78.42 131 | 72.07 299 | 67.00 108 | 76.28 206 | 67.97 94 | 80.91 243 | 87.39 53 |
|
EI-MVSNet-Vis-set | | | 72.78 135 | 71.87 146 | 75.54 100 | 74.77 205 | 59.02 153 | 72.24 159 | 71.56 224 | 63.92 96 | 78.59 127 | 71.59 305 | 66.22 117 | 78.60 165 | 67.58 97 | 80.32 251 | 89.00 34 |
|
ETV-MVS | | | 72.72 136 | 72.16 145 | 74.38 113 | 76.90 179 | 55.95 168 | 73.34 150 | 84.67 53 | 62.04 113 | 72.19 218 | 70.81 309 | 65.90 120 | 85.24 54 | 58.64 161 | 84.96 199 | 81.95 172 |
|
PCF-MVS | | 63.80 13 | 72.70 137 | 71.69 149 | 75.72 98 | 78.10 162 | 60.01 144 | 73.04 151 | 81.50 103 | 45.34 268 | 79.66 117 | 84.35 177 | 65.15 126 | 82.65 99 | 48.70 237 | 89.38 141 | 84.50 111 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EI-MVSNet-UG-set | | | 72.63 138 | 71.68 150 | 75.47 101 | 74.67 209 | 58.64 158 | 72.02 162 | 71.50 225 | 63.53 101 | 78.58 129 | 71.39 308 | 65.98 118 | 78.53 167 | 67.30 103 | 80.18 253 | 89.23 28 |
|
Anonymous20240529 | | | 72.56 139 | 73.79 116 | 68.86 198 | 76.89 180 | 45.21 246 | 68.80 208 | 77.25 177 | 67.16 63 | 76.89 154 | 90.44 54 | 65.95 119 | 74.19 228 | 50.75 221 | 90.00 129 | 87.18 58 |
|
FIs | | | 72.56 139 | 73.80 115 | 68.84 199 | 78.74 157 | 37.74 302 | 71.02 181 | 79.83 136 | 56.12 164 | 80.88 106 | 89.45 82 | 58.18 184 | 78.28 178 | 56.63 174 | 93.36 68 | 90.51 20 |
|
v2v482 | | | 72.55 141 | 72.58 137 | 72.43 151 | 72.92 238 | 46.72 234 | 71.41 174 | 79.13 144 | 55.27 172 | 81.17 100 | 85.25 169 | 55.41 209 | 81.13 121 | 67.25 104 | 85.46 187 | 89.43 25 |
|
canonicalmvs | | | 72.29 142 | 73.38 123 | 69.04 191 | 74.23 216 | 47.37 229 | 73.93 147 | 83.18 81 | 54.36 187 | 76.61 162 | 81.64 208 | 72.03 66 | 75.34 215 | 57.12 171 | 87.28 168 | 84.40 113 |
|
Effi-MVS+ | | | 72.10 143 | 72.28 142 | 71.58 158 | 74.21 220 | 50.33 198 | 74.72 140 | 82.73 88 | 62.62 109 | 70.77 235 | 76.83 260 | 69.96 84 | 80.97 127 | 60.20 148 | 78.43 270 | 83.45 135 |
|
MVS_111021_LR | | | 72.10 143 | 71.82 148 | 72.95 138 | 79.53 143 | 73.90 39 | 70.45 188 | 66.64 255 | 56.87 156 | 76.81 158 | 81.76 206 | 68.78 91 | 71.76 251 | 61.81 134 | 83.74 216 | 73.18 261 |
|
testing_2 | | | 72.01 145 | 72.36 140 | 70.95 164 | 70.79 250 | 48.70 209 | 72.81 154 | 78.09 164 | 48.79 246 | 84.46 64 | 89.15 92 | 57.90 193 | 78.55 166 | 61.55 138 | 87.74 157 | 85.61 81 |
|
pmmvs6 | | | 71.82 146 | 73.66 118 | 66.31 228 | 75.94 190 | 42.01 269 | 66.99 234 | 72.53 215 | 63.45 103 | 76.43 168 | 92.78 11 | 72.95 64 | 69.69 265 | 51.41 216 | 90.46 120 | 87.22 55 |
|
PLC | | 62.01 16 | 71.79 147 | 70.28 166 | 76.33 91 | 80.31 136 | 68.63 78 | 78.18 99 | 81.24 110 | 54.57 184 | 67.09 265 | 80.63 216 | 59.44 173 | 81.74 114 | 46.91 252 | 84.17 209 | 78.63 218 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
VDDNet | | | 71.60 148 | 73.13 129 | 67.02 221 | 86.29 51 | 41.11 274 | 69.97 191 | 66.50 256 | 68.72 56 | 74.74 185 | 91.70 25 | 59.90 169 | 75.81 209 | 48.58 239 | 91.72 88 | 84.15 120 |
|
3Dnovator | | 65.95 11 | 71.50 149 | 71.22 157 | 72.34 153 | 73.16 231 | 63.09 119 | 78.37 94 | 78.32 159 | 57.67 148 | 72.22 217 | 84.61 173 | 54.77 210 | 78.47 169 | 60.82 146 | 81.07 242 | 75.45 244 |
|
CS-MVS | | | 71.24 150 | 70.57 164 | 73.26 130 | 74.93 199 | 52.00 190 | 73.59 148 | 85.55 31 | 55.58 170 | 68.88 252 | 70.17 316 | 64.37 133 | 85.62 44 | 57.19 170 | 84.83 201 | 82.17 168 |
|
WR-MVS | | | 71.20 151 | 72.48 138 | 67.36 216 | 84.98 74 | 35.70 316 | 64.43 265 | 68.66 248 | 65.05 86 | 81.49 96 | 86.43 147 | 57.57 196 | 76.48 204 | 50.36 225 | 93.32 69 | 89.90 22 |
|
V42 | | | 71.06 152 | 70.83 161 | 71.72 157 | 67.25 282 | 47.14 232 | 65.94 245 | 80.35 130 | 51.35 220 | 83.40 76 | 83.23 192 | 59.25 176 | 78.80 161 | 65.91 109 | 80.81 247 | 89.23 28 |
|
FMVSNet1 | | | 71.06 152 | 72.48 138 | 66.81 222 | 77.65 171 | 40.68 279 | 71.96 164 | 73.03 207 | 61.14 118 | 79.45 120 | 90.36 64 | 60.44 165 | 75.20 217 | 50.20 226 | 88.05 152 | 84.54 106 |
|
API-MVS | | | 70.97 154 | 71.51 154 | 69.37 185 | 75.20 196 | 55.94 169 | 80.99 63 | 76.84 179 | 62.48 111 | 71.24 230 | 77.51 256 | 61.51 155 | 80.96 131 | 52.04 211 | 85.76 186 | 71.22 280 |
|
VDD-MVS | | | 70.81 155 | 71.44 155 | 68.91 197 | 79.07 155 | 46.51 236 | 67.82 221 | 70.83 238 | 61.23 117 | 74.07 196 | 88.69 101 | 59.86 170 | 75.62 212 | 51.11 218 | 90.28 122 | 84.61 103 |
|
EG-PatchMatch MVS | | | 70.70 156 | 70.88 160 | 70.16 176 | 82.64 109 | 58.80 155 | 71.48 172 | 73.64 205 | 54.98 175 | 76.55 163 | 81.77 205 | 61.10 161 | 78.94 159 | 54.87 193 | 80.84 246 | 72.74 266 |
|
Baseline_NR-MVSNet | | | 70.62 157 | 73.19 127 | 62.92 257 | 76.97 176 | 34.44 324 | 68.84 204 | 70.88 237 | 60.25 125 | 79.50 119 | 90.53 51 | 61.82 151 | 69.11 269 | 54.67 195 | 95.27 14 | 85.22 83 |
|
alignmvs | | | 70.54 158 | 71.00 159 | 69.15 190 | 73.50 225 | 48.04 220 | 69.85 194 | 79.62 137 | 53.94 195 | 76.54 164 | 82.00 201 | 59.00 178 | 74.68 223 | 57.32 169 | 87.21 170 | 84.72 98 |
|
MG-MVS | | | 70.47 159 | 71.34 156 | 67.85 210 | 79.26 147 | 40.42 283 | 74.67 142 | 75.15 197 | 58.41 139 | 68.74 256 | 88.14 113 | 56.08 208 | 83.69 78 | 59.90 154 | 81.71 236 | 79.43 212 |
|
AUN-MVS | | | 70.22 160 | 67.88 196 | 77.22 83 | 82.96 104 | 71.61 49 | 69.08 202 | 71.39 227 | 49.17 242 | 71.70 221 | 78.07 251 | 37.62 300 | 79.21 155 | 61.81 134 | 89.15 144 | 80.82 189 |
|
UGNet | | | 70.20 161 | 69.05 176 | 73.65 122 | 76.24 185 | 63.64 114 | 75.87 124 | 72.53 215 | 61.48 116 | 60.93 298 | 86.14 155 | 52.37 222 | 77.12 195 | 50.67 222 | 85.21 193 | 80.17 204 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet_Blended_VisFu | | | 70.04 162 | 68.88 179 | 73.53 126 | 82.71 107 | 63.62 115 | 74.81 135 | 81.95 98 | 48.53 248 | 67.16 264 | 79.18 238 | 51.42 228 | 78.38 174 | 54.39 200 | 79.72 260 | 78.60 219 |
|
Fast-Effi-MVS+-dtu | | | 70.00 163 | 68.74 183 | 73.77 121 | 73.47 226 | 64.53 108 | 71.36 175 | 78.14 163 | 55.81 168 | 68.84 255 | 74.71 276 | 65.36 125 | 75.75 210 | 52.00 212 | 79.00 264 | 81.03 183 |
|
DPM-MVS | | | 69.98 164 | 69.22 175 | 72.26 155 | 82.69 108 | 58.82 154 | 70.53 187 | 81.23 111 | 47.79 255 | 64.16 277 | 80.21 221 | 51.32 229 | 83.12 91 | 60.14 151 | 84.95 200 | 74.83 250 |
|
MVSFormer | | | 69.93 165 | 69.03 177 | 72.63 149 | 74.93 199 | 59.19 149 | 83.98 37 | 75.72 188 | 52.27 208 | 63.53 284 | 76.74 261 | 43.19 268 | 80.56 134 | 72.28 65 | 78.67 268 | 78.14 225 |
|
MVS_Test | | | 69.84 166 | 70.71 162 | 67.24 217 | 67.49 281 | 43.25 261 | 69.87 193 | 81.22 112 | 52.69 206 | 71.57 226 | 86.68 136 | 62.09 149 | 74.51 225 | 66.05 107 | 78.74 266 | 83.96 122 |
|
cl_fuxian | | | 69.82 167 | 69.89 168 | 69.61 184 | 66.24 290 | 43.48 257 | 68.12 218 | 79.61 139 | 51.43 219 | 77.72 140 | 80.18 224 | 54.61 213 | 78.15 183 | 63.62 127 | 87.50 161 | 87.20 57 |
|
TransMVSNet (Re) | | | 69.62 168 | 71.63 151 | 63.57 247 | 76.51 182 | 35.93 314 | 65.75 250 | 71.29 230 | 61.05 119 | 75.02 180 | 89.90 76 | 65.88 121 | 70.41 263 | 49.79 228 | 89.48 139 | 84.38 114 |
|
EI-MVSNet | | | 69.61 169 | 69.01 178 | 71.41 162 | 73.94 222 | 49.90 202 | 71.31 177 | 71.32 228 | 58.22 140 | 75.40 178 | 70.44 311 | 58.16 185 | 75.85 207 | 62.51 131 | 79.81 257 | 88.48 43 |
|
Gipuma | | | 69.55 170 | 72.83 135 | 59.70 280 | 63.63 309 | 53.97 181 | 80.08 76 | 75.93 186 | 64.24 94 | 73.49 201 | 88.93 99 | 57.89 194 | 62.46 301 | 59.75 156 | 91.55 95 | 62.67 327 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tttt0517 | | | 69.46 171 | 67.79 197 | 74.46 109 | 75.34 194 | 52.72 188 | 75.05 131 | 63.27 272 | 54.69 181 | 78.87 126 | 84.37 176 | 26.63 342 | 81.15 120 | 63.95 122 | 87.93 156 | 89.51 24 |
|
eth_miper_zixun_eth | | | 69.42 172 | 68.73 184 | 71.50 161 | 67.99 275 | 46.42 237 | 67.58 223 | 78.81 149 | 50.72 227 | 78.13 135 | 80.34 220 | 50.15 234 | 80.34 139 | 60.18 149 | 84.65 202 | 87.74 49 |
|
BH-untuned | | | 69.39 173 | 69.46 170 | 69.18 189 | 77.96 165 | 56.88 164 | 68.47 215 | 77.53 172 | 56.77 158 | 77.79 139 | 79.63 230 | 60.30 167 | 80.20 145 | 46.04 256 | 80.65 248 | 70.47 285 |
|
v148 | | | 69.38 174 | 69.39 171 | 69.36 186 | 69.14 268 | 44.56 249 | 68.83 205 | 72.70 213 | 54.79 179 | 78.59 127 | 84.12 179 | 54.69 211 | 76.74 203 | 59.40 158 | 82.20 228 | 86.79 62 |
|
1121 | | | 69.23 175 | 68.26 188 | 72.12 156 | 88.36 36 | 71.40 51 | 68.59 210 | 62.06 279 | 43.80 277 | 74.75 184 | 86.18 152 | 52.92 219 | 76.85 200 | 54.47 197 | 83.27 220 | 68.12 302 |
|
PAPR | | | 69.20 176 | 68.66 185 | 70.82 165 | 75.15 198 | 47.77 223 | 75.31 129 | 81.11 113 | 49.62 239 | 66.33 267 | 79.27 235 | 61.53 154 | 82.96 94 | 48.12 243 | 81.50 239 | 81.74 175 |
|
QAPM | | | 69.18 177 | 69.26 173 | 68.94 195 | 71.61 245 | 52.58 189 | 80.37 70 | 78.79 151 | 49.63 238 | 73.51 200 | 85.14 170 | 53.66 216 | 79.12 156 | 55.11 191 | 75.54 286 | 75.11 248 |
|
LCM-MVSNet-Re | | | 69.10 178 | 71.57 153 | 61.70 264 | 70.37 258 | 34.30 326 | 61.45 287 | 79.62 137 | 56.81 157 | 89.59 8 | 88.16 112 | 68.44 96 | 72.94 234 | 42.30 272 | 87.33 166 | 77.85 230 |
|
EPNet | | | 69.10 178 | 67.32 202 | 74.46 109 | 68.33 272 | 61.27 130 | 77.56 103 | 63.57 270 | 60.95 120 | 56.62 314 | 82.75 195 | 51.53 227 | 81.24 119 | 54.36 201 | 90.20 123 | 80.88 188 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 68.83 180 | 68.31 186 | 70.38 171 | 70.55 257 | 48.31 214 | 63.78 272 | 82.13 94 | 54.00 192 | 68.96 251 | 75.17 271 | 58.95 179 | 80.06 148 | 58.55 162 | 82.74 224 | 82.76 154 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Fast-Effi-MVS+ | | | 68.81 181 | 68.30 187 | 70.35 172 | 74.66 211 | 48.61 212 | 66.06 244 | 78.32 159 | 50.62 228 | 71.48 229 | 75.54 267 | 68.75 92 | 79.59 153 | 50.55 224 | 78.73 267 | 82.86 151 |
|
OpenMVS | | 62.51 15 | 68.76 182 | 68.75 182 | 68.78 200 | 70.56 256 | 53.91 182 | 78.29 96 | 77.35 174 | 48.85 245 | 70.22 241 | 83.52 185 | 52.65 221 | 76.93 197 | 55.31 190 | 81.99 230 | 75.49 243 |
|
VPA-MVSNet | | | 68.71 183 | 70.37 165 | 63.72 246 | 76.13 187 | 38.06 300 | 64.10 267 | 71.48 226 | 56.60 163 | 74.10 195 | 88.31 107 | 64.78 131 | 69.72 264 | 47.69 247 | 90.15 126 | 83.37 137 |
|
BH-RMVSNet | | | 68.69 184 | 68.20 192 | 70.14 177 | 76.40 183 | 53.90 183 | 64.62 262 | 73.48 206 | 58.01 142 | 73.91 198 | 81.78 204 | 59.09 177 | 78.22 179 | 48.59 238 | 77.96 275 | 78.31 222 |
|
EIA-MVS | | | 68.59 185 | 67.16 204 | 72.90 140 | 75.18 197 | 55.64 172 | 69.39 198 | 81.29 108 | 52.44 207 | 64.53 275 | 70.69 310 | 60.33 166 | 82.30 105 | 54.27 202 | 76.31 281 | 80.75 193 |
|
pm-mvs1 | | | 68.40 186 | 69.85 169 | 64.04 244 | 73.10 235 | 39.94 285 | 64.61 263 | 70.50 239 | 55.52 171 | 73.97 197 | 89.33 83 | 63.91 136 | 68.38 273 | 49.68 230 | 88.02 153 | 83.81 126 |
|
miper_ehance_all_eth | | | 68.36 187 | 68.16 193 | 68.98 193 | 65.14 300 | 43.34 259 | 67.07 233 | 78.92 148 | 49.11 243 | 76.21 170 | 77.72 253 | 53.48 217 | 77.92 185 | 61.16 142 | 84.59 204 | 85.68 80 |
|
GBi-Net | | | 68.30 188 | 68.79 180 | 66.81 222 | 73.14 232 | 40.68 279 | 71.96 164 | 73.03 207 | 54.81 176 | 74.72 186 | 90.36 64 | 48.63 243 | 75.20 217 | 47.12 249 | 85.37 188 | 84.54 106 |
|
test1 | | | 68.30 188 | 68.79 180 | 66.81 222 | 73.14 232 | 40.68 279 | 71.96 164 | 73.03 207 | 54.81 176 | 74.72 186 | 90.36 64 | 48.63 243 | 75.20 217 | 47.12 249 | 85.37 188 | 84.54 106 |
|
cl-mvsnet1 | | | 68.27 190 | 68.26 188 | 68.29 205 | 64.98 301 | 43.67 255 | 65.89 246 | 74.67 199 | 50.04 234 | 76.86 156 | 82.43 197 | 48.74 241 | 75.38 213 | 60.94 144 | 89.81 133 | 85.81 74 |
|
cl-mvsnet_ | | | 68.26 191 | 68.26 188 | 68.29 205 | 64.98 301 | 43.67 255 | 65.89 246 | 74.67 199 | 50.04 234 | 76.86 156 | 82.42 198 | 48.74 241 | 75.38 213 | 60.92 145 | 89.81 133 | 85.80 78 |
|
TinyColmap | | | 67.98 192 | 69.28 172 | 64.08 242 | 67.98 276 | 46.82 233 | 70.04 190 | 75.26 195 | 53.05 201 | 77.36 145 | 86.79 129 | 59.39 174 | 72.59 241 | 45.64 258 | 88.01 154 | 72.83 264 |
|
xiu_mvs_v1_base_debu | | | 67.87 193 | 67.07 205 | 70.26 173 | 79.13 152 | 61.90 125 | 67.34 227 | 71.25 231 | 47.98 251 | 67.70 260 | 74.19 284 | 61.31 156 | 72.62 238 | 56.51 175 | 78.26 272 | 76.27 239 |
|
xiu_mvs_v1_base | | | 67.87 193 | 67.07 205 | 70.26 173 | 79.13 152 | 61.90 125 | 67.34 227 | 71.25 231 | 47.98 251 | 67.70 260 | 74.19 284 | 61.31 156 | 72.62 238 | 56.51 175 | 78.26 272 | 76.27 239 |
|
xiu_mvs_v1_base_debi | | | 67.87 193 | 67.07 205 | 70.26 173 | 79.13 152 | 61.90 125 | 67.34 227 | 71.25 231 | 47.98 251 | 67.70 260 | 74.19 284 | 61.31 156 | 72.62 238 | 56.51 175 | 78.26 272 | 76.27 239 |
|
MAR-MVS | | | 67.72 196 | 66.16 211 | 72.40 152 | 74.45 214 | 64.99 105 | 74.87 133 | 77.50 173 | 48.67 247 | 65.78 271 | 68.58 328 | 57.01 202 | 77.79 187 | 46.68 254 | 81.92 231 | 74.42 253 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
IterMVS-SCA-FT | | | 67.68 197 | 66.07 212 | 72.49 150 | 73.34 229 | 58.20 160 | 63.80 271 | 65.55 261 | 48.10 250 | 76.91 153 | 82.64 196 | 45.20 255 | 78.84 160 | 61.20 141 | 77.89 276 | 80.44 200 |
|
LF4IMVS | | | 67.50 198 | 67.31 203 | 68.08 208 | 58.86 333 | 61.93 124 | 71.43 173 | 75.90 187 | 44.67 273 | 72.42 214 | 80.20 222 | 57.16 197 | 70.44 261 | 58.99 160 | 86.12 182 | 71.88 274 |
|
FMVSNet2 | | | 67.48 199 | 68.21 191 | 65.29 233 | 73.14 232 | 38.94 292 | 68.81 206 | 71.21 234 | 54.81 176 | 76.73 160 | 86.48 145 | 48.63 243 | 74.60 224 | 47.98 244 | 86.11 183 | 82.35 164 |
|
MSDG | | | 67.47 200 | 67.48 201 | 67.46 215 | 70.70 253 | 54.69 177 | 66.90 236 | 78.17 162 | 60.88 121 | 70.41 238 | 74.76 273 | 61.22 160 | 73.18 232 | 47.38 248 | 76.87 278 | 74.49 252 |
|
diffmvs | | | 67.42 201 | 67.50 200 | 67.20 218 | 62.26 314 | 45.21 246 | 64.87 259 | 77.04 178 | 48.21 249 | 71.74 220 | 79.70 229 | 58.40 183 | 71.17 255 | 64.99 114 | 80.27 252 | 85.22 83 |
|
cl-mvsnet2 | | | 67.14 202 | 66.51 209 | 69.03 192 | 63.20 310 | 43.46 258 | 66.88 237 | 76.25 183 | 49.22 241 | 74.48 190 | 77.88 252 | 45.49 254 | 77.40 192 | 60.64 147 | 84.59 204 | 86.24 66 |
|
ANet_high | | | 67.08 203 | 69.94 167 | 58.51 287 | 57.55 338 | 27.09 345 | 58.43 305 | 76.80 180 | 63.56 100 | 82.40 87 | 91.93 21 | 59.82 171 | 64.98 295 | 50.10 227 | 88.86 148 | 83.46 134 |
|
LFMVS | | | 67.06 204 | 67.89 195 | 64.56 238 | 78.02 163 | 38.25 297 | 70.81 186 | 59.60 287 | 65.18 84 | 71.06 233 | 86.56 143 | 43.85 264 | 75.22 216 | 46.35 255 | 89.63 136 | 80.21 203 |
|
thisisatest0530 | | | 67.05 205 | 65.16 214 | 72.73 146 | 73.10 235 | 50.55 197 | 71.26 179 | 63.91 268 | 50.22 231 | 74.46 191 | 80.75 214 | 26.81 341 | 80.25 142 | 59.43 157 | 86.50 179 | 87.37 54 |
|
MIMVSNet1 | | | 66.57 206 | 69.23 174 | 58.59 286 | 81.26 128 | 37.73 303 | 64.06 268 | 57.62 293 | 57.02 154 | 78.40 132 | 90.75 44 | 62.65 140 | 58.10 314 | 41.77 277 | 89.58 138 | 79.95 205 |
|
tfpnnormal | | | 66.48 207 | 67.93 194 | 62.16 262 | 73.40 228 | 36.65 307 | 63.45 274 | 64.99 264 | 55.97 165 | 72.82 210 | 87.80 116 | 57.06 201 | 69.10 270 | 48.31 242 | 87.54 159 | 80.72 195 |
|
CL-MVSNet_2432*1600 | | | 66.38 208 | 67.51 199 | 62.97 256 | 61.76 316 | 34.39 325 | 58.11 307 | 75.30 194 | 50.84 226 | 77.12 148 | 85.42 166 | 56.84 203 | 69.44 266 | 51.07 219 | 91.16 103 | 85.08 89 |
|
Anonymous202405211 | | | 66.02 209 | 66.89 208 | 63.43 250 | 74.22 217 | 38.14 298 | 59.00 302 | 66.13 257 | 63.33 105 | 69.76 245 | 85.95 162 | 51.88 223 | 70.50 260 | 44.23 264 | 87.52 160 | 81.64 176 |
|
miper_enhance_ethall | | | 65.86 210 | 65.05 222 | 68.28 207 | 61.62 318 | 42.62 266 | 64.74 260 | 77.97 166 | 42.52 287 | 73.42 203 | 72.79 294 | 49.66 235 | 77.68 189 | 58.12 165 | 84.59 204 | 84.54 106 |
|
RRT_test8_iter05 | | | 65.80 211 | 65.13 217 | 67.80 213 | 67.02 285 | 40.85 278 | 67.13 232 | 75.33 193 | 49.73 236 | 72.69 211 | 81.32 209 | 24.45 352 | 77.37 193 | 61.69 137 | 86.82 176 | 85.18 85 |
|
RPMNet | | | 65.77 212 | 65.08 221 | 67.84 211 | 66.37 287 | 48.24 216 | 70.93 183 | 86.27 20 | 54.66 182 | 61.35 292 | 86.77 132 | 33.29 310 | 85.67 43 | 55.93 183 | 70.17 314 | 69.62 294 |
|
VPNet | | | 65.58 213 | 67.56 198 | 59.65 281 | 79.72 140 | 30.17 339 | 60.27 296 | 62.14 276 | 54.19 189 | 71.24 230 | 86.63 140 | 58.80 180 | 67.62 278 | 44.17 265 | 90.87 116 | 81.18 180 |
|
PVSNet_BlendedMVS | | | 65.38 214 | 64.30 223 | 68.61 201 | 69.81 261 | 49.36 206 | 65.60 253 | 78.96 146 | 45.50 264 | 59.98 301 | 78.61 244 | 51.82 224 | 78.20 180 | 44.30 262 | 84.11 210 | 78.27 223 |
|
TAMVS | | | 65.31 215 | 63.75 227 | 69.97 181 | 82.23 114 | 59.76 147 | 66.78 238 | 63.37 271 | 45.20 269 | 69.79 244 | 79.37 234 | 47.42 249 | 72.17 244 | 34.48 317 | 85.15 195 | 77.99 229 |
|
test_yl | | | 65.11 216 | 65.09 219 | 65.18 234 | 70.59 254 | 40.86 276 | 63.22 279 | 72.79 210 | 57.91 143 | 68.88 252 | 79.07 241 | 42.85 271 | 74.89 221 | 45.50 259 | 84.97 196 | 79.81 206 |
|
DCV-MVSNet | | | 65.11 216 | 65.09 219 | 65.18 234 | 70.59 254 | 40.86 276 | 63.22 279 | 72.79 210 | 57.91 143 | 68.88 252 | 79.07 241 | 42.85 271 | 74.89 221 | 45.50 259 | 84.97 196 | 79.81 206 |
|
mvs_anonymous | | | 65.08 218 | 65.49 213 | 63.83 245 | 63.79 307 | 37.60 304 | 66.52 241 | 69.82 243 | 43.44 282 | 73.46 202 | 86.08 158 | 58.79 181 | 71.75 252 | 51.90 213 | 75.63 285 | 82.15 169 |
|
FMVSNet3 | | | 65.00 219 | 65.16 214 | 64.52 239 | 69.47 264 | 37.56 305 | 66.63 239 | 70.38 240 | 51.55 218 | 74.72 186 | 83.27 191 | 37.89 299 | 74.44 226 | 47.12 249 | 85.37 188 | 81.57 177 |
|
BH-w/o | | | 64.81 220 | 64.29 224 | 66.36 227 | 76.08 189 | 54.71 176 | 65.61 252 | 75.23 196 | 50.10 233 | 71.05 234 | 71.86 304 | 54.33 214 | 79.02 157 | 38.20 297 | 76.14 282 | 65.36 317 |
|
cascas | | | 64.59 221 | 62.77 237 | 70.05 179 | 75.27 195 | 50.02 201 | 61.79 286 | 71.61 222 | 42.46 288 | 63.68 282 | 68.89 325 | 49.33 238 | 80.35 138 | 47.82 246 | 84.05 211 | 79.78 208 |
|
TR-MVS | | | 64.59 221 | 63.54 230 | 67.73 214 | 75.75 193 | 50.83 196 | 63.39 275 | 70.29 241 | 49.33 240 | 71.55 227 | 74.55 277 | 50.94 230 | 78.46 170 | 40.43 284 | 75.69 284 | 73.89 257 |
|
PM-MVS | | | 64.49 223 | 63.61 229 | 67.14 220 | 76.68 181 | 75.15 31 | 68.49 214 | 42.85 339 | 51.17 223 | 77.85 137 | 80.51 217 | 45.76 250 | 66.31 290 | 52.83 210 | 76.35 280 | 59.96 333 |
|
jason | | | 64.47 224 | 62.84 236 | 69.34 188 | 76.91 178 | 59.20 148 | 67.15 231 | 65.67 258 | 35.29 320 | 65.16 273 | 76.74 261 | 44.67 259 | 70.68 257 | 54.74 194 | 79.28 263 | 78.14 225 |
jason: jason. |
xiu_mvs_v2_base | | | 64.43 225 | 63.96 225 | 65.85 232 | 77.72 169 | 51.32 194 | 63.63 273 | 72.31 218 | 45.06 272 | 61.70 289 | 69.66 318 | 62.56 141 | 73.93 230 | 49.06 234 | 73.91 296 | 72.31 270 |
|
pmmvs-eth3d | | | 64.41 226 | 63.27 232 | 67.82 212 | 75.81 192 | 60.18 142 | 69.49 196 | 62.05 280 | 38.81 305 | 74.13 194 | 82.23 200 | 43.76 265 | 68.65 271 | 42.53 271 | 80.63 250 | 74.63 251 |
|
CDS-MVSNet | | | 64.33 227 | 62.66 238 | 69.35 187 | 80.44 135 | 58.28 159 | 65.26 255 | 65.66 259 | 44.36 274 | 67.30 263 | 75.54 267 | 43.27 267 | 71.77 250 | 37.68 300 | 84.44 207 | 78.01 228 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PS-MVSNAJ | | | 64.27 228 | 63.73 228 | 65.90 231 | 77.82 167 | 51.42 193 | 63.33 276 | 72.33 217 | 45.09 271 | 61.60 290 | 68.04 329 | 62.39 145 | 73.95 229 | 49.07 233 | 73.87 297 | 72.34 269 |
|
ab-mvs | | | 64.11 229 | 65.13 217 | 61.05 271 | 71.99 243 | 38.03 301 | 67.59 222 | 68.79 247 | 49.08 244 | 65.32 272 | 86.26 150 | 58.02 192 | 66.85 285 | 39.33 288 | 79.79 259 | 78.27 223 |
|
CANet_DTU | | | 64.04 230 | 63.83 226 | 64.66 237 | 68.39 269 | 42.97 263 | 73.45 149 | 74.50 202 | 52.05 212 | 54.78 321 | 75.44 270 | 43.99 263 | 70.42 262 | 53.49 208 | 78.41 271 | 80.59 197 |
|
VNet | | | 64.01 231 | 65.15 216 | 60.57 275 | 73.28 230 | 35.61 317 | 57.60 309 | 67.08 253 | 54.61 183 | 66.76 266 | 83.37 188 | 56.28 206 | 66.87 283 | 42.19 273 | 85.20 194 | 79.23 214 |
|
lupinMVS | | | 63.36 232 | 61.49 246 | 68.97 194 | 74.93 199 | 59.19 149 | 65.80 249 | 64.52 266 | 34.68 325 | 63.53 284 | 74.25 282 | 43.19 268 | 70.62 258 | 53.88 205 | 78.67 268 | 77.10 234 |
|
ET-MVSNet_ETH3D | | | 63.32 233 | 60.69 252 | 71.20 163 | 70.15 260 | 55.66 171 | 65.02 258 | 64.32 267 | 43.28 286 | 68.99 250 | 72.05 303 | 25.46 348 | 78.19 182 | 54.16 203 | 82.80 223 | 79.74 209 |
|
MVSTER | | | 63.29 234 | 61.60 245 | 68.36 203 | 59.77 330 | 46.21 240 | 60.62 293 | 71.32 228 | 41.83 290 | 75.40 178 | 79.12 239 | 30.25 334 | 75.85 207 | 56.30 180 | 79.81 257 | 83.03 146 |
|
OpenMVS_ROB | | 54.93 17 | 63.23 235 | 63.28 231 | 63.07 254 | 69.81 261 | 45.34 245 | 68.52 213 | 67.14 252 | 43.74 279 | 70.61 237 | 79.22 236 | 47.90 247 | 72.66 237 | 48.75 236 | 73.84 298 | 71.21 281 |
|
IterMVS | | | 63.12 236 | 62.48 239 | 65.02 236 | 66.34 289 | 52.86 187 | 63.81 270 | 62.25 275 | 46.57 261 | 71.51 228 | 80.40 219 | 44.60 260 | 66.82 286 | 51.38 217 | 75.47 287 | 75.38 246 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 63.01 237 | 60.47 253 | 70.61 167 | 83.04 101 | 54.10 180 | 59.93 298 | 72.24 219 | 33.67 330 | 69.00 249 | 75.63 266 | 38.69 293 | 76.93 197 | 36.60 308 | 75.45 288 | 80.81 192 |
|
GA-MVS | | | 62.91 238 | 61.66 242 | 66.66 226 | 67.09 284 | 44.49 250 | 61.18 291 | 69.36 246 | 51.33 221 | 69.33 247 | 74.47 278 | 36.83 301 | 74.94 220 | 50.60 223 | 74.72 293 | 80.57 198 |
|
PVSNet_Blended | | | 62.90 239 | 61.64 243 | 66.69 225 | 69.81 261 | 49.36 206 | 61.23 290 | 78.96 146 | 42.04 289 | 59.98 301 | 68.86 326 | 51.82 224 | 78.20 180 | 44.30 262 | 77.77 277 | 72.52 267 |
|
USDC | | | 62.80 240 | 63.10 234 | 61.89 263 | 65.19 297 | 43.30 260 | 67.42 226 | 74.20 203 | 35.80 319 | 72.25 216 | 84.48 175 | 45.67 252 | 71.95 249 | 37.95 299 | 84.97 196 | 70.42 287 |
|
Vis-MVSNet (Re-imp) | | | 62.74 241 | 63.21 233 | 61.34 269 | 72.19 241 | 31.56 336 | 67.31 230 | 53.87 310 | 53.60 198 | 69.88 243 | 83.37 188 | 40.52 285 | 70.98 256 | 41.40 278 | 86.78 177 | 81.48 178 |
|
D2MVS | | | 62.58 242 | 61.05 249 | 67.20 218 | 63.85 306 | 47.92 221 | 56.29 311 | 69.58 244 | 39.32 300 | 70.07 242 | 78.19 248 | 34.93 306 | 72.68 236 | 53.44 209 | 83.74 216 | 81.00 185 |
|
MVS_0304 | | | 62.51 243 | 62.27 240 | 63.25 251 | 69.39 265 | 48.47 213 | 64.05 269 | 62.48 274 | 59.69 130 | 54.10 326 | 81.04 213 | 45.71 251 | 66.31 290 | 41.38 279 | 82.58 226 | 74.96 249 |
|
MDA-MVSNet-bldmvs | | | 62.34 244 | 61.73 241 | 64.16 240 | 61.64 317 | 49.90 202 | 48.11 332 | 57.24 299 | 53.31 200 | 80.95 102 | 79.39 233 | 49.00 239 | 61.55 305 | 45.92 257 | 80.05 254 | 81.03 183 |
|
miper_lstm_enhance | | | 61.97 245 | 61.63 244 | 62.98 255 | 60.04 326 | 45.74 243 | 47.53 334 | 70.95 235 | 44.04 275 | 73.06 207 | 78.84 243 | 39.72 288 | 60.33 307 | 55.82 185 | 84.64 203 | 82.88 149 |
|
wuyk23d | | | 61.97 245 | 66.25 210 | 49.12 311 | 58.19 337 | 60.77 138 | 66.32 242 | 52.97 316 | 55.93 167 | 90.62 4 | 86.91 125 | 73.07 62 | 35.98 350 | 20.63 352 | 91.63 92 | 50.62 341 |
|
thres600view7 | | | 61.82 247 | 61.38 247 | 63.12 253 | 71.81 244 | 34.93 321 | 64.64 261 | 56.99 300 | 54.78 180 | 70.33 240 | 79.74 228 | 32.07 320 | 72.42 243 | 38.61 294 | 83.46 218 | 82.02 170 |
|
PAPM | | | 61.79 248 | 60.37 254 | 66.05 229 | 76.09 188 | 41.87 270 | 69.30 199 | 76.79 181 | 40.64 297 | 53.80 327 | 79.62 231 | 44.38 261 | 82.92 95 | 29.64 335 | 73.11 300 | 73.36 260 |
|
MVP-Stereo | | | 61.56 249 | 59.22 260 | 68.58 202 | 79.28 146 | 60.44 140 | 69.20 201 | 71.57 223 | 43.58 281 | 56.42 315 | 78.37 247 | 39.57 290 | 76.46 205 | 34.86 316 | 60.16 338 | 68.86 301 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CMPMVS | | 48.73 20 | 61.54 250 | 60.89 250 | 63.52 248 | 61.08 321 | 51.55 192 | 68.07 219 | 68.00 251 | 33.88 327 | 65.87 269 | 81.25 211 | 37.91 298 | 67.71 276 | 49.32 232 | 82.60 225 | 71.31 279 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
thres100view900 | | | 61.17 251 | 61.09 248 | 61.39 268 | 72.14 242 | 35.01 320 | 65.42 254 | 56.99 300 | 55.23 173 | 70.71 236 | 79.90 226 | 32.07 320 | 72.09 245 | 35.61 313 | 81.73 233 | 77.08 235 |
|
Patchmtry | | | 60.91 252 | 63.01 235 | 54.62 296 | 66.10 292 | 26.27 348 | 67.47 225 | 56.40 303 | 54.05 191 | 72.04 219 | 86.66 137 | 33.19 311 | 60.17 308 | 43.69 266 | 87.45 163 | 77.42 231 |
|
EU-MVSNet | | | 60.82 253 | 60.80 251 | 60.86 274 | 68.37 270 | 41.16 273 | 72.27 158 | 68.27 250 | 26.96 348 | 69.08 248 | 75.71 265 | 32.09 319 | 67.44 279 | 55.59 188 | 78.90 265 | 73.97 255 |
|
pmmvs4 | | | 60.78 254 | 59.04 262 | 66.00 230 | 73.06 237 | 57.67 161 | 64.53 264 | 60.22 285 | 36.91 314 | 65.96 268 | 77.27 257 | 39.66 289 | 68.54 272 | 38.87 291 | 74.89 292 | 71.80 275 |
|
thres400 | | | 60.77 255 | 59.97 256 | 63.15 252 | 70.78 251 | 35.35 318 | 63.27 277 | 57.47 294 | 53.00 202 | 68.31 257 | 77.09 258 | 32.45 317 | 72.09 245 | 35.61 313 | 81.73 233 | 82.02 170 |
|
MVS | | | 60.62 256 | 59.97 256 | 62.58 259 | 68.13 274 | 47.28 230 | 68.59 210 | 73.96 204 | 32.19 334 | 59.94 303 | 68.86 326 | 50.48 231 | 77.64 190 | 41.85 276 | 75.74 283 | 62.83 325 |
|
thisisatest0515 | | | 60.48 257 | 57.86 271 | 68.34 204 | 67.25 282 | 46.42 237 | 60.58 294 | 62.14 276 | 40.82 295 | 63.58 283 | 69.12 321 | 26.28 344 | 78.34 176 | 48.83 235 | 82.13 229 | 80.26 202 |
|
tfpn200view9 | | | 60.35 258 | 59.97 256 | 61.51 266 | 70.78 251 | 35.35 318 | 63.27 277 | 57.47 294 | 53.00 202 | 68.31 257 | 77.09 258 | 32.45 317 | 72.09 245 | 35.61 313 | 81.73 233 | 77.08 235 |
|
ppachtmachnet_test | | | 60.26 259 | 59.61 259 | 62.20 261 | 67.70 279 | 44.33 251 | 58.18 306 | 60.96 284 | 40.75 296 | 65.80 270 | 72.57 295 | 41.23 278 | 63.92 297 | 46.87 253 | 82.42 227 | 78.33 221 |
|
Patchmatch-RL test | | | 59.95 260 | 59.12 261 | 62.44 260 | 72.46 240 | 54.61 178 | 59.63 299 | 47.51 332 | 41.05 294 | 74.58 189 | 74.30 281 | 31.06 328 | 65.31 292 | 51.61 214 | 79.85 256 | 67.39 305 |
|
1314 | | | 59.83 261 | 58.86 264 | 62.74 258 | 65.71 294 | 44.78 248 | 68.59 210 | 72.63 214 | 33.54 332 | 61.05 296 | 67.29 334 | 43.62 266 | 71.26 254 | 49.49 231 | 67.84 325 | 72.19 272 |
|
IB-MVS | | 49.67 18 | 59.69 262 | 56.96 277 | 67.90 209 | 68.19 273 | 50.30 199 | 61.42 288 | 65.18 263 | 47.57 257 | 55.83 318 | 67.15 335 | 23.77 353 | 79.60 152 | 43.56 268 | 79.97 255 | 73.79 258 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
1112_ss | | | 59.48 263 | 58.99 263 | 60.96 273 | 77.84 166 | 42.39 268 | 61.42 288 | 68.45 249 | 37.96 309 | 59.93 304 | 67.46 331 | 45.11 257 | 65.07 294 | 40.89 282 | 71.81 305 | 75.41 245 |
|
FPMVS | | | 59.43 264 | 60.07 255 | 57.51 290 | 77.62 172 | 71.52 50 | 62.33 283 | 50.92 321 | 57.40 152 | 69.40 246 | 80.00 225 | 39.14 291 | 61.92 304 | 37.47 303 | 66.36 327 | 39.09 350 |
|
CVMVSNet | | | 59.21 265 | 58.44 268 | 61.51 266 | 73.94 222 | 47.76 224 | 71.31 177 | 64.56 265 | 26.91 349 | 60.34 300 | 70.44 311 | 36.24 303 | 67.65 277 | 53.57 207 | 68.66 322 | 69.12 299 |
|
CR-MVSNet | | | 58.96 266 | 58.49 267 | 60.36 277 | 66.37 287 | 48.24 216 | 70.93 183 | 56.40 303 | 32.87 333 | 61.35 292 | 86.66 137 | 33.19 311 | 63.22 300 | 48.50 240 | 70.17 314 | 69.62 294 |
|
EPNet_dtu | | | 58.93 267 | 58.52 266 | 60.16 279 | 67.91 277 | 47.70 225 | 69.97 191 | 58.02 291 | 49.73 236 | 47.28 342 | 73.02 293 | 38.14 295 | 62.34 302 | 36.57 309 | 85.99 184 | 70.43 286 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Test_1112_low_res | | | 58.78 268 | 58.69 265 | 59.04 284 | 79.41 144 | 38.13 299 | 57.62 308 | 66.98 254 | 34.74 323 | 59.62 305 | 77.56 255 | 42.92 270 | 63.65 299 | 38.66 293 | 70.73 311 | 75.35 247 |
|
PatchMatch-RL | | | 58.68 269 | 57.72 272 | 61.57 265 | 76.21 186 | 73.59 42 | 61.83 285 | 49.00 328 | 47.30 259 | 61.08 294 | 68.97 323 | 50.16 233 | 59.01 311 | 36.06 312 | 68.84 321 | 52.10 340 |
|
SCA | | | 58.57 270 | 58.04 270 | 60.17 278 | 70.17 259 | 41.07 275 | 65.19 256 | 53.38 314 | 43.34 285 | 61.00 297 | 73.48 288 | 45.20 255 | 69.38 267 | 40.34 285 | 70.31 313 | 70.05 289 |
|
CHOSEN 1792x2688 | | | 58.09 271 | 56.30 282 | 63.45 249 | 79.95 138 | 50.93 195 | 54.07 319 | 65.59 260 | 28.56 345 | 61.53 291 | 74.33 280 | 41.09 281 | 66.52 289 | 33.91 320 | 67.69 326 | 72.92 263 |
|
HY-MVS | | 49.31 19 | 57.96 272 | 57.59 273 | 59.10 283 | 66.85 286 | 36.17 311 | 65.13 257 | 65.39 262 | 39.24 302 | 54.69 323 | 78.14 249 | 44.28 262 | 67.18 282 | 33.75 321 | 70.79 310 | 73.95 256 |
|
baseline1 | | | 57.82 273 | 58.36 269 | 56.19 293 | 69.17 267 | 30.76 338 | 62.94 281 | 55.21 306 | 46.04 263 | 63.83 280 | 78.47 245 | 41.20 279 | 63.68 298 | 39.44 287 | 68.99 320 | 74.13 254 |
|
thres200 | | | 57.55 274 | 57.02 276 | 59.17 282 | 67.89 278 | 34.93 321 | 58.91 304 | 57.25 298 | 50.24 230 | 64.01 278 | 71.46 307 | 32.49 316 | 71.39 253 | 31.31 327 | 79.57 261 | 71.19 282 |
|
CostFormer | | | 57.35 275 | 56.14 283 | 60.97 272 | 63.76 308 | 38.43 294 | 67.50 224 | 60.22 285 | 37.14 313 | 59.12 306 | 76.34 263 | 32.78 314 | 71.99 248 | 39.12 290 | 69.27 319 | 72.47 268 |
|
our_test_3 | | | 56.46 276 | 56.51 280 | 56.30 292 | 67.70 279 | 39.66 287 | 55.36 316 | 52.34 319 | 40.57 298 | 63.85 279 | 69.91 317 | 40.04 287 | 58.22 313 | 43.49 269 | 75.29 291 | 71.03 284 |
|
tpm2 | | | 56.12 277 | 54.64 290 | 60.55 276 | 66.24 290 | 36.01 312 | 68.14 217 | 56.77 302 | 33.60 331 | 58.25 309 | 75.52 269 | 30.25 334 | 74.33 227 | 33.27 322 | 69.76 318 | 71.32 278 |
|
tpmvs | | | 55.84 278 | 55.45 288 | 57.01 291 | 60.33 325 | 33.20 331 | 65.89 246 | 59.29 289 | 47.52 258 | 56.04 316 | 73.60 287 | 31.05 329 | 68.06 275 | 40.64 283 | 64.64 330 | 69.77 292 |
|
gg-mvs-nofinetune | | | 55.75 279 | 56.75 279 | 52.72 300 | 62.87 311 | 28.04 344 | 68.92 203 | 41.36 347 | 71.09 42 | 50.80 334 | 92.63 13 | 20.74 356 | 66.86 284 | 29.97 333 | 72.41 302 | 63.25 324 |
|
test20.03 | | | 55.74 280 | 57.51 274 | 50.42 304 | 59.89 329 | 32.09 334 | 50.63 326 | 49.01 327 | 50.11 232 | 65.07 274 | 83.23 192 | 45.61 253 | 48.11 326 | 30.22 331 | 83.82 215 | 71.07 283 |
|
MS-PatchMatch | | | 55.59 281 | 54.89 289 | 57.68 289 | 69.18 266 | 49.05 208 | 61.00 292 | 62.93 273 | 35.98 317 | 58.36 308 | 68.93 324 | 36.71 302 | 66.59 288 | 37.62 302 | 63.30 334 | 57.39 336 |
|
baseline2 | | | 55.57 282 | 52.74 296 | 64.05 243 | 65.26 296 | 44.11 252 | 62.38 282 | 54.43 309 | 39.03 303 | 51.21 332 | 67.35 333 | 33.66 309 | 72.45 242 | 37.14 305 | 64.22 332 | 75.60 242 |
|
XXY-MVS | | | 55.19 283 | 57.40 275 | 48.56 313 | 64.45 304 | 34.84 323 | 51.54 325 | 53.59 312 | 38.99 304 | 63.79 281 | 79.43 232 | 56.59 204 | 45.57 330 | 36.92 307 | 71.29 307 | 65.25 318 |
|
FMVSNet5 | | | 55.08 284 | 55.54 287 | 53.71 297 | 65.80 293 | 33.50 330 | 56.22 312 | 52.50 318 | 43.72 280 | 61.06 295 | 83.38 187 | 25.46 348 | 54.87 317 | 30.11 332 | 81.64 238 | 72.75 265 |
|
PatchmatchNet | | | 54.60 285 | 54.27 291 | 55.59 294 | 65.17 299 | 39.08 289 | 66.92 235 | 51.80 320 | 39.89 299 | 58.39 307 | 73.12 292 | 31.69 322 | 58.33 312 | 43.01 270 | 58.38 344 | 69.38 297 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MIMVSNet | | | 54.39 286 | 56.12 284 | 49.20 309 | 72.57 239 | 30.91 337 | 59.98 297 | 48.43 330 | 41.66 291 | 55.94 317 | 83.86 183 | 41.19 280 | 50.42 322 | 26.05 342 | 75.38 289 | 66.27 313 |
|
Anonymous20231206 | | | 54.13 287 | 55.82 285 | 49.04 312 | 70.89 249 | 35.96 313 | 51.73 324 | 50.87 322 | 34.86 321 | 62.49 287 | 79.22 236 | 42.52 274 | 44.29 338 | 27.95 340 | 81.88 232 | 66.88 309 |
|
JIA-IIPM | | | 54.03 288 | 51.62 300 | 61.25 270 | 59.14 332 | 55.21 174 | 59.10 301 | 47.72 331 | 50.85 225 | 50.31 338 | 85.81 163 | 20.10 358 | 63.97 296 | 36.16 311 | 55.41 349 | 64.55 322 |
|
tpm cat1 | | | 54.02 289 | 52.63 297 | 58.19 288 | 64.85 303 | 39.86 286 | 66.26 243 | 57.28 297 | 32.16 335 | 56.90 312 | 70.39 313 | 32.75 315 | 65.30 293 | 34.29 318 | 58.79 341 | 69.41 296 |
|
testgi | | | 54.00 290 | 56.86 278 | 45.45 321 | 58.20 336 | 25.81 349 | 49.05 328 | 49.50 326 | 45.43 267 | 67.84 259 | 81.17 212 | 51.81 226 | 43.20 342 | 29.30 336 | 79.41 262 | 67.34 307 |
|
PatchT | | | 53.35 291 | 56.47 281 | 43.99 327 | 64.19 305 | 17.46 356 | 59.15 300 | 43.10 338 | 52.11 211 | 54.74 322 | 86.95 124 | 29.97 337 | 49.98 323 | 43.62 267 | 74.40 294 | 64.53 323 |
|
DWT-MVSNet_test | | | 53.04 292 | 51.12 303 | 58.77 285 | 61.23 319 | 38.67 293 | 62.16 284 | 57.74 292 | 38.24 306 | 51.76 331 | 59.07 345 | 21.36 355 | 67.40 280 | 44.80 261 | 63.76 333 | 70.25 288 |
|
new-patchmatchnet | | | 52.89 293 | 55.76 286 | 44.26 326 | 59.94 328 | 6.31 359 | 37.36 349 | 50.76 323 | 41.10 292 | 64.28 276 | 79.82 227 | 44.77 258 | 48.43 325 | 36.24 310 | 87.61 158 | 78.03 227 |
|
YYNet1 | | | 52.58 294 | 53.50 293 | 49.85 305 | 54.15 352 | 36.45 310 | 40.53 343 | 46.55 334 | 38.09 308 | 75.52 176 | 73.31 291 | 41.08 282 | 43.88 339 | 41.10 280 | 71.14 309 | 69.21 298 |
|
MDA-MVSNet_test_wron | | | 52.57 295 | 53.49 294 | 49.81 306 | 54.24 351 | 36.47 309 | 40.48 344 | 46.58 333 | 38.13 307 | 75.47 177 | 73.32 290 | 41.05 283 | 43.85 340 | 40.98 281 | 71.20 308 | 69.10 300 |
|
pmmvs5 | | | 52.49 296 | 52.58 298 | 52.21 302 | 54.99 349 | 32.38 333 | 55.45 315 | 53.84 311 | 32.15 336 | 55.49 320 | 74.81 272 | 38.08 296 | 57.37 315 | 34.02 319 | 74.40 294 | 66.88 309 |
|
UnsupCasMVSNet_eth | | | 52.26 297 | 53.29 295 | 49.16 310 | 55.08 348 | 33.67 329 | 50.03 327 | 58.79 290 | 37.67 310 | 63.43 286 | 74.75 274 | 41.82 276 | 45.83 329 | 38.59 295 | 59.42 340 | 67.98 304 |
|
N_pmnet | | | 52.06 298 | 51.11 304 | 54.92 295 | 59.64 331 | 71.03 55 | 37.42 348 | 61.62 283 | 33.68 329 | 57.12 310 | 72.10 296 | 37.94 297 | 31.03 352 | 29.13 339 | 71.35 306 | 62.70 326 |
|
PVSNet | | 43.83 21 | 51.56 299 | 51.17 302 | 52.73 299 | 68.34 271 | 38.27 296 | 48.22 331 | 53.56 313 | 36.41 315 | 54.29 324 | 64.94 338 | 34.60 307 | 54.20 320 | 30.34 330 | 69.87 316 | 65.71 316 |
|
tpm | | | 50.60 300 | 52.42 299 | 45.14 323 | 65.18 298 | 26.29 347 | 60.30 295 | 43.50 337 | 37.41 311 | 57.01 311 | 79.09 240 | 30.20 336 | 42.32 343 | 32.77 324 | 66.36 327 | 66.81 311 |
|
test-LLR | | | 50.43 301 | 50.69 306 | 49.64 307 | 60.76 322 | 41.87 270 | 53.18 321 | 45.48 335 | 43.41 283 | 49.41 339 | 60.47 343 | 29.22 339 | 44.73 336 | 42.09 274 | 72.14 303 | 62.33 329 |
|
tpmrst | | | 50.15 302 | 51.38 301 | 46.45 318 | 56.05 343 | 24.77 350 | 64.40 266 | 49.98 324 | 36.14 316 | 53.32 328 | 69.59 319 | 35.16 305 | 48.69 324 | 39.24 289 | 58.51 343 | 65.89 314 |
|
UnsupCasMVSNet_bld | | | 50.01 303 | 51.03 305 | 46.95 314 | 58.61 334 | 32.64 332 | 48.31 330 | 53.27 315 | 34.27 326 | 60.47 299 | 71.53 306 | 41.40 277 | 47.07 327 | 30.68 329 | 60.78 337 | 61.13 331 |
|
WTY-MVS | | | 49.39 304 | 50.31 307 | 46.62 317 | 61.22 320 | 32.00 335 | 46.61 337 | 49.77 325 | 33.87 328 | 54.12 325 | 69.55 320 | 41.96 275 | 45.40 332 | 31.28 328 | 64.42 331 | 62.47 328 |
|
ADS-MVSNet2 | | | 48.76 305 | 47.25 313 | 53.29 298 | 55.90 345 | 40.54 282 | 47.34 335 | 54.99 308 | 31.41 341 | 50.48 335 | 72.06 301 | 31.23 325 | 54.26 319 | 25.93 343 | 55.93 346 | 65.07 319 |
|
test-mter | | | 48.56 306 | 48.20 311 | 49.64 307 | 60.76 322 | 41.87 270 | 53.18 321 | 45.48 335 | 31.91 339 | 49.41 339 | 60.47 343 | 18.34 359 | 44.73 336 | 42.09 274 | 72.14 303 | 62.33 329 |
|
Patchmatch-test | | | 47.93 307 | 49.96 308 | 41.84 330 | 57.42 339 | 24.26 351 | 48.75 329 | 41.49 346 | 39.30 301 | 56.79 313 | 73.48 288 | 30.48 333 | 33.87 351 | 29.29 337 | 72.61 301 | 67.39 305 |
|
test0.0.03 1 | | | 47.72 308 | 48.31 310 | 45.93 319 | 55.53 347 | 29.39 340 | 46.40 338 | 41.21 348 | 43.41 283 | 55.81 319 | 67.65 330 | 29.22 339 | 43.77 341 | 25.73 345 | 69.87 316 | 64.62 321 |
|
sss | | | 47.59 309 | 48.32 309 | 45.40 322 | 56.73 342 | 33.96 327 | 45.17 340 | 48.51 329 | 32.11 338 | 52.37 330 | 65.79 336 | 40.39 286 | 41.91 346 | 31.85 325 | 61.97 335 | 60.35 332 |
|
pmmvs3 | | | 46.71 310 | 45.09 317 | 51.55 303 | 56.76 341 | 48.25 215 | 55.78 314 | 39.53 351 | 24.13 352 | 50.35 337 | 63.40 339 | 15.90 362 | 51.08 321 | 29.29 337 | 70.69 312 | 55.33 339 |
|
EPMVS | | | 45.74 311 | 46.53 314 | 43.39 328 | 54.14 353 | 22.33 353 | 55.02 317 | 35.00 354 | 34.69 324 | 51.09 333 | 70.20 315 | 25.92 346 | 42.04 345 | 37.19 304 | 55.50 348 | 65.78 315 |
|
MVS-HIRNet | | | 45.53 312 | 47.29 312 | 40.24 333 | 62.29 313 | 26.82 346 | 56.02 313 | 37.41 352 | 29.74 344 | 43.69 351 | 81.27 210 | 33.96 308 | 55.48 316 | 24.46 348 | 56.79 345 | 38.43 351 |
|
TESTMET0.1,1 | | | 45.17 313 | 44.93 318 | 45.89 320 | 56.02 344 | 38.31 295 | 53.18 321 | 41.94 345 | 27.85 346 | 44.86 347 | 56.47 346 | 17.93 360 | 41.50 347 | 38.08 298 | 68.06 323 | 57.85 335 |
|
E-PMN | | | 45.17 313 | 45.36 316 | 44.60 325 | 50.07 354 | 42.75 264 | 38.66 346 | 42.29 343 | 46.39 262 | 39.55 352 | 51.15 350 | 26.00 345 | 45.37 333 | 37.68 300 | 76.41 279 | 45.69 347 |
|
PMMVS | | | 44.69 315 | 43.95 322 | 46.92 315 | 50.05 355 | 53.47 185 | 48.08 333 | 42.40 341 | 22.36 353 | 44.01 350 | 53.05 348 | 42.60 273 | 45.49 331 | 31.69 326 | 61.36 336 | 41.79 348 |
|
ADS-MVSNet | | | 44.62 316 | 45.58 315 | 41.73 331 | 55.90 345 | 20.83 354 | 47.34 335 | 39.94 350 | 31.41 341 | 50.48 335 | 72.06 301 | 31.23 325 | 39.31 348 | 25.93 343 | 55.93 346 | 65.07 319 |
|
EMVS | | | 44.61 317 | 44.45 321 | 45.10 324 | 48.91 356 | 43.00 262 | 37.92 347 | 41.10 349 | 46.75 260 | 38.00 354 | 48.43 352 | 26.42 343 | 46.27 328 | 37.11 306 | 75.38 289 | 46.03 346 |
|
dp | | | 44.09 318 | 44.88 319 | 41.72 332 | 58.53 335 | 23.18 352 | 54.70 318 | 42.38 342 | 34.80 322 | 44.25 349 | 65.61 337 | 24.48 351 | 44.80 335 | 29.77 334 | 49.42 351 | 57.18 337 |
|
DSMNet-mixed | | | 43.18 319 | 44.66 320 | 38.75 335 | 54.75 350 | 28.88 343 | 57.06 310 | 27.42 357 | 13.47 354 | 47.27 343 | 77.67 254 | 38.83 292 | 39.29 349 | 25.32 347 | 60.12 339 | 48.08 343 |
|
CHOSEN 280x420 | | | 41.62 320 | 39.89 325 | 46.80 316 | 61.81 315 | 51.59 191 | 33.56 350 | 35.74 353 | 27.48 347 | 37.64 355 | 53.53 347 | 23.24 354 | 42.09 344 | 27.39 341 | 58.64 342 | 46.72 345 |
|
PVSNet_0 | | 36.71 22 | 41.12 321 | 40.78 324 | 42.14 329 | 59.97 327 | 40.13 284 | 40.97 342 | 42.24 344 | 30.81 343 | 44.86 347 | 49.41 351 | 40.70 284 | 45.12 334 | 23.15 349 | 34.96 353 | 41.16 349 |
|
PMMVS2 | | | 37.74 322 | 40.87 323 | 28.36 337 | 42.41 358 | 5.35 360 | 24.61 351 | 27.75 356 | 32.15 336 | 47.85 341 | 70.27 314 | 35.85 304 | 29.51 353 | 19.08 353 | 67.85 324 | 50.22 342 |
|
new_pmnet | | | 37.55 323 | 39.80 326 | 30.79 336 | 56.83 340 | 16.46 357 | 39.35 345 | 30.65 355 | 25.59 350 | 45.26 345 | 61.60 342 | 24.54 350 | 28.02 354 | 21.60 350 | 52.80 350 | 47.90 344 |
|
MVE | | 27.91 23 | 36.69 324 | 35.64 327 | 39.84 334 | 43.37 357 | 35.85 315 | 19.49 352 | 24.61 358 | 24.68 351 | 39.05 353 | 62.63 341 | 38.67 294 | 27.10 355 | 21.04 351 | 47.25 352 | 56.56 338 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
cdsmvs_eth3d_5k | | | 17.71 325 | 23.62 328 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 70.17 242 | 0.00 359 | 0.00 360 | 74.25 282 | 68.16 99 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
tmp_tt | | | 11.98 326 | 14.73 329 | 3.72 339 | 2.28 360 | 4.62 361 | 19.44 353 | 14.50 360 | 0.47 356 | 21.55 356 | 9.58 355 | 25.78 347 | 4.57 357 | 11.61 354 | 27.37 354 | 1.96 353 |
|
ab-mvs-re | | | 5.62 327 | 7.50 330 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 67.46 331 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
pcd_1.5k_mvsjas | | | 5.20 328 | 6.93 331 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 62.39 145 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
test123 | | | 4.43 329 | 5.78 332 | 0.39 341 | 0.97 361 | 0.28 362 | 46.33 339 | 0.45 362 | 0.31 357 | 0.62 358 | 1.50 358 | 0.61 364 | 0.11 359 | 0.56 356 | 0.63 356 | 0.77 355 |
|
testmvs | | | 4.06 330 | 5.28 333 | 0.41 340 | 0.64 362 | 0.16 363 | 42.54 341 | 0.31 363 | 0.26 358 | 0.50 359 | 1.40 359 | 0.77 363 | 0.17 358 | 0.56 356 | 0.55 357 | 0.90 354 |
|
uanet_test | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
sosnet-low-res | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
sosnet | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
uncertanet | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
Regformer | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
uanet | | | 0.00 331 | 0.00 334 | 0.00 342 | 0.00 363 | 0.00 364 | 0.00 354 | 0.00 364 | 0.00 359 | 0.00 360 | 0.00 360 | 0.00 365 | 0.00 360 | 0.00 358 | 0.00 358 | 0.00 356 |
|
ZD-MVS | | | | | | 83.91 92 | 69.36 72 | | 81.09 115 | 58.91 138 | 82.73 84 | 89.11 93 | 75.77 37 | 86.63 13 | 72.73 59 | 92.93 73 | |
|
RE-MVS-def | | | | 85.50 5 | | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 20 | 77.51 11 | 87.65 19 | 90.73 45 | 81.38 8 | | 78.11 25 | 94.46 36 | 84.89 92 |
|
IU-MVS | | | | | | 86.12 57 | 60.90 135 | | 80.38 128 | 45.49 266 | 81.31 98 | | | | 75.64 41 | 94.39 41 | 84.65 99 |
|
OPU-MVS | | | | | 78.65 64 | 83.44 98 | 66.85 89 | 83.62 43 | | | | 86.12 156 | 66.82 111 | 86.01 29 | 61.72 136 | 89.79 135 | 83.08 144 |
|
test_241102_TWO | | | | | | | | | 84.80 47 | 72.61 30 | 84.93 54 | 89.70 78 | 77.73 24 | 85.89 36 | 75.29 42 | 94.22 53 | 83.25 140 |
|
test_241102_ONE | | | | | | 86.12 57 | 61.06 131 | | 84.72 51 | 72.64 29 | 87.38 25 | 89.47 81 | 77.48 25 | 85.74 40 | | | |
|
9.14 | | | | 80.22 59 | | 80.68 131 | | 80.35 71 | 87.69 11 | 59.90 127 | 83.00 78 | 88.20 109 | 74.57 51 | 81.75 113 | 73.75 53 | 93.78 59 | |
|
save fliter | | | | | | 87.00 42 | 67.23 87 | 79.24 83 | 77.94 167 | 56.65 161 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 74.03 22 | 85.83 42 | 90.41 58 | 75.58 39 | 85.69 41 | 77.43 33 | 94.74 29 | 84.31 116 |
|
test_0728_SECOND | | | | | 76.57 87 | 86.20 52 | 60.57 139 | 83.77 41 | 85.49 32 | | | | | 85.90 35 | 75.86 39 | 94.39 41 | 83.25 140 |
|
test0726 | | | | | | 86.16 55 | 60.78 136 | 83.81 40 | 85.10 42 | 72.48 32 | 85.27 51 | 89.96 74 | 78.57 19 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 289 |
|
test_part2 | | | | | | 85.90 61 | 66.44 92 | | | | 84.61 60 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 323 | | | | 70.05 289 |
|
sam_mvs | | | | | | | | | | | | | 31.21 327 | | | | |
|
ambc | | | | | 70.10 178 | 77.74 168 | 50.21 200 | 74.28 145 | 77.93 168 | | 79.26 122 | 88.29 108 | 54.11 215 | 79.77 150 | 64.43 118 | 91.10 106 | 80.30 201 |
|
MTGPA | | | | | | | | | 80.63 121 | | | | | | | | |
|
test_post1 | | | | | | | | 66.63 239 | | | | 2.08 356 | 30.66 332 | 59.33 310 | 40.34 285 | | |
|
test_post | | | | | | | | | | | | 1.99 357 | 30.91 330 | 54.76 318 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 322 | 31.32 324 | 69.38 267 | | | |
|
GG-mvs-BLEND | | | | | 52.24 301 | 60.64 324 | 29.21 342 | 69.73 195 | 42.41 340 | | 45.47 344 | 52.33 349 | 20.43 357 | 68.16 274 | 25.52 346 | 65.42 329 | 59.36 334 |
|
MTMP | | | | | | | | 84.83 32 | 19.26 359 | | | | | | | | |
|
gm-plane-assit | | | | | | 62.51 312 | 33.91 328 | | | 37.25 312 | | 62.71 340 | | 72.74 235 | 38.70 292 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 67 | 91.37 98 | 77.40 232 |
|
TEST9 | | | | | | 85.47 66 | 69.32 73 | 76.42 115 | 78.69 152 | 53.73 197 | 76.97 149 | 86.74 133 | 66.84 110 | 81.10 122 | | | |
|
test_8 | | | | | | 85.09 72 | 67.89 82 | 76.26 120 | 78.66 154 | 54.00 192 | 76.89 154 | 86.72 135 | 66.60 113 | 80.89 132 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 75 | 90.93 111 | 78.55 220 |
|
agg_prior | | | | | | 84.44 85 | 66.02 96 | | 78.62 155 | | 76.95 151 | | | 80.34 139 | | | |
|
TestCases | | | | | 78.35 69 | 79.19 150 | 70.81 57 | | 88.64 3 | 65.37 80 | 80.09 114 | 88.17 110 | 70.33 80 | 78.43 172 | 55.60 186 | 90.90 113 | 85.81 74 |
|
test_prior4 | | | | | | | 70.14 65 | 77.57 102 | | | | | | | | | |
|
test_prior2 | | | | | | | | 75.57 126 | | 58.92 136 | 76.53 165 | 86.78 130 | 67.83 103 | | 69.81 80 | 92.76 78 | |
|
test_prior | | | | | 75.27 103 | 82.15 115 | 59.85 145 | | 84.33 62 | | | | | 83.39 85 | | | 82.58 158 |
|
旧先验2 | | | | | | | | 71.17 180 | | 45.11 270 | 78.54 130 | | | 61.28 306 | 59.19 159 | | |
|
新几何2 | | | | | | | | 71.33 176 | | | | | | | | | |
|
新几何1 | | | | | 69.99 180 | 88.37 35 | 71.34 53 | | 62.08 278 | 43.85 276 | 74.99 181 | 86.11 157 | 52.85 220 | 70.57 259 | 50.99 220 | 83.23 221 | 68.05 303 |
|
旧先验1 | | | | | | 84.55 82 | 60.36 141 | | 63.69 269 | | | 87.05 123 | 54.65 212 | | | 83.34 219 | 69.66 293 |
|
无先验 | | | | | | | | 74.82 134 | 70.94 236 | 47.75 256 | | | | 76.85 200 | 54.47 197 | | 72.09 273 |
|
原ACMM2 | | | | | | | | 74.78 138 | | | | | | | | | |
|
原ACMM1 | | | | | 73.90 119 | 85.90 61 | 65.15 104 | | 81.67 101 | 50.97 224 | 74.25 193 | 86.16 154 | 61.60 153 | 83.54 81 | 56.75 173 | 91.08 107 | 73.00 262 |
|
test222 | | | | | | 87.30 40 | 69.15 76 | 67.85 220 | 59.59 288 | 41.06 293 | 73.05 208 | 85.72 164 | 48.03 246 | | | 80.65 248 | 66.92 308 |
|
testdata2 | | | | | | | | | | | | | | 67.30 281 | 48.34 241 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 98 | | | | |
|
testdata | | | | | 64.13 241 | 85.87 63 | 63.34 117 | | 61.80 282 | 47.83 254 | 76.42 169 | 86.60 142 | 48.83 240 | 62.31 303 | 54.46 199 | 81.26 240 | 66.74 312 |
|
testdata1 | | | | | | | | 68.34 216 | | 57.24 153 | | | | | | | |
|
test12 | | | | | 76.51 88 | 82.28 113 | 60.94 134 | | 81.64 102 | | 73.60 199 | | 64.88 128 | 85.19 57 | | 90.42 121 | 83.38 136 |
|
plane_prior7 | | | | | | 85.18 69 | 66.21 94 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 89 | 65.31 101 | | | | | | 60.83 163 | | | | |
|
plane_prior5 | | | | | | | | | 85.49 32 | | | | | 86.15 26 | 71.09 72 | 90.94 109 | 84.82 94 |
|
plane_prior4 | | | | | | | | | | | | 89.11 93 | | | | | |
|
plane_prior3 | | | | | | | 65.67 98 | | | 63.82 98 | 78.23 133 | | | | | | |
|
plane_prior2 | | | | | | | | 82.74 52 | | 65.45 77 | | | | | | | |
|
plane_prior1 | | | | | | 84.46 84 | | | | | | | | | | | |
|
plane_prior | | | | | | | 65.18 102 | 80.06 77 | | 61.88 115 | | | | | | 89.91 132 | |
|
n2 | | | | | | | | | 0.00 364 | | | | | | | | |
|
nn | | | | | | | | | 0.00 364 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 307 | | | | | | | | |
|
lessismore_v0 | | | | | 72.75 144 | 79.60 142 | 56.83 165 | | 57.37 296 | | 83.80 72 | 89.01 96 | 47.45 248 | 78.74 163 | 64.39 119 | 86.49 180 | 82.69 156 |
|
LGP-MVS_train | | | | | 80.90 38 | 87.00 42 | 70.41 62 | | 86.35 17 | 69.77 51 | 87.75 16 | 91.13 34 | 81.83 4 | 86.20 23 | 77.13 34 | 95.96 6 | 86.08 68 |
|
test11 | | | | | | | | | 82.71 89 | | | | | | | | |
|
door | | | | | | | | | 52.91 317 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 155 | | | | | | | | | | |
|
HQP-NCC | | | | | | 82.37 110 | | 77.32 106 | | 59.08 132 | 71.58 223 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 110 | | 77.32 106 | | 59.08 132 | 71.58 223 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 101 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 222 | | | 85.31 50 | | | 83.74 127 |
|
HQP3-MVS | | | | | | | | | 84.12 70 | | | | | | | 89.16 142 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 187 | | | | |
|
NP-MVS | | | | | | 83.34 99 | 63.07 120 | | | | | 85.97 160 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 355 | 53.74 320 | | 31.57 340 | 44.89 346 | | 29.90 338 | | 32.93 323 | | 71.48 277 |
|
MDTV_nov1_ep13 | | | | 54.05 292 | | 65.54 295 | 29.30 341 | 59.00 302 | 55.22 305 | 35.96 318 | 52.44 329 | 75.98 264 | 30.77 331 | 59.62 309 | 38.21 296 | 73.33 299 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 140 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 87 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 141 | | | | |
|
ITE_SJBPF | | | | | 80.35 44 | 76.94 177 | 73.60 41 | | 80.48 125 | 66.87 65 | 83.64 74 | 86.18 152 | 70.25 82 | 79.90 149 | 61.12 143 | 88.95 147 | 87.56 52 |
|
DeepMVS_CX | | | | | 11.83 338 | 15.51 359 | 13.86 358 | | 11.25 361 | 5.76 355 | 20.85 357 | 26.46 353 | 17.06 361 | 9.22 356 | 9.69 355 | 13.82 355 | 12.42 352 |
|