This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 10
mvs_tets99.90 299.90 299.90 599.96 499.79 3599.72 2099.88 1699.92 799.98 499.93 1499.94 199.98 699.77 12100.00 199.92 3
test_part199.89 399.88 499.94 299.91 1599.92 299.92 399.90 1199.98 299.99 399.97 999.50 2199.98 699.73 16100.00 199.92 3
jajsoiax99.89 399.89 399.89 899.96 499.78 3899.70 2399.86 2099.89 1299.98 499.90 2299.94 199.98 699.75 13100.00 199.90 5
ANet_high99.88 599.87 599.91 399.99 199.91 399.65 44100.00 199.90 8100.00 199.97 999.61 1699.97 1799.75 13100.00 199.84 15
LTVRE_ROB99.19 199.88 599.87 599.88 1299.91 1599.90 599.96 199.92 599.90 899.97 799.87 3199.81 599.95 4399.54 2599.99 1399.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 799.86 799.83 2299.94 1099.90 599.83 799.91 899.85 2099.94 1299.95 1299.73 899.90 12399.65 1799.97 3099.69 51
UniMVSNet_ETH3D99.85 899.83 899.90 599.89 2299.91 399.89 599.71 9199.93 599.95 1199.89 2699.71 999.96 3499.51 2999.97 3099.84 15
PS-MVSNAJss99.84 999.82 999.89 899.96 499.77 4099.68 3299.85 2499.95 499.98 499.92 1799.28 4199.98 699.75 13100.00 199.94 2
test_djsdf99.84 999.81 1099.91 399.94 1099.84 1799.77 1299.80 4799.73 3799.97 799.92 1799.77 799.98 699.43 36100.00 199.90 5
v7n99.82 1199.80 1199.88 1299.96 499.84 1799.82 999.82 3799.84 2299.94 1299.91 2099.13 5899.96 3499.83 999.99 1399.83 19
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 799.73 1799.85 2499.70 4499.92 1999.93 1499.45 2299.97 1799.36 45100.00 199.85 14
pm-mvs199.79 1399.79 1299.78 3899.91 1599.83 2199.76 1499.87 1899.73 3799.89 2799.87 3199.63 1499.87 16499.54 2599.92 7399.63 93
UA-Net99.78 1499.76 1599.86 1799.72 10799.71 6399.91 499.95 499.96 399.71 9799.91 2099.15 5399.97 1799.50 31100.00 199.90 5
TransMVSNet (Re)99.78 1499.77 1399.81 2799.91 1599.85 1299.75 1599.86 2099.70 4499.91 2199.89 2699.60 1899.87 16499.59 2099.74 18199.71 45
OurMVSNet-221017-099.75 1699.71 1799.84 2099.96 499.83 2199.83 799.85 2499.80 3099.93 1599.93 1498.54 13499.93 6799.59 2099.98 2299.76 36
Vis-MVSNetpermissive99.75 1699.74 1699.79 3599.88 2499.66 8199.69 2999.92 599.67 5199.77 7299.75 7999.61 1699.98 699.35 4699.98 2299.72 42
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TDRefinement99.72 1899.70 1899.77 4099.90 2099.85 1299.86 699.92 599.69 4799.78 6799.92 1799.37 3099.88 15198.93 10599.95 4899.60 116
XXY-MVS99.71 1999.67 2199.81 2799.89 2299.72 6199.59 5699.82 3799.39 10399.82 4999.84 4099.38 2899.91 10399.38 4299.93 6999.80 24
nrg03099.70 2099.66 2299.82 2499.76 8499.84 1799.61 5199.70 9599.93 599.78 6799.68 12399.10 5999.78 26799.45 3499.96 4199.83 19
FC-MVSNet-test99.70 2099.65 2399.86 1799.88 2499.86 1199.72 2099.78 5799.90 899.82 4999.83 4198.45 14999.87 16499.51 2999.97 3099.86 12
v1099.69 2299.69 1999.66 9399.81 5099.39 14899.66 3999.75 7199.60 7399.92 1999.87 3198.75 10899.86 18499.90 299.99 1399.73 41
v899.68 2399.69 1999.65 9899.80 5699.40 14699.66 3999.76 6599.64 5999.93 1599.85 3698.66 11999.84 21899.88 699.99 1399.71 45
DTE-MVSNet99.68 2399.61 3099.88 1299.80 5699.87 899.67 3699.71 9199.72 4099.84 4299.78 6598.67 11799.97 1799.30 5599.95 4899.80 24
VPA-MVSNet99.66 2599.62 2699.79 3599.68 12899.75 4899.62 4799.69 10199.85 2099.80 5999.81 5098.81 9399.91 10399.47 3399.88 9999.70 48
PS-CasMVS99.66 2599.58 3599.89 899.80 5699.85 1299.66 3999.73 7999.62 6399.84 4299.71 9998.62 12399.96 3499.30 5599.96 4199.86 12
PEN-MVS99.66 2599.59 3399.89 899.83 3799.87 899.66 3999.73 7999.70 4499.84 4299.73 8698.56 13199.96 3499.29 5899.94 6199.83 19
FMVSNet199.66 2599.63 2599.73 6899.78 7299.77 4099.68 3299.70 9599.67 5199.82 4999.83 4198.98 7499.90 12399.24 6299.97 3099.53 154
MIMVSNet199.66 2599.62 2699.80 3099.94 1099.87 899.69 2999.77 6099.78 3399.93 1599.89 2697.94 19599.92 8599.65 1799.98 2299.62 105
FIs99.65 3099.58 3599.84 2099.84 3499.85 1299.66 3999.75 7199.86 1799.74 8799.79 5898.27 16899.85 20299.37 4499.93 6999.83 19
casdiffmvs99.63 3199.61 3099.67 8699.79 6699.59 10599.13 16299.85 2499.79 3299.76 7499.72 9299.33 3599.82 23999.21 6399.94 6199.59 125
baseline99.63 3199.62 2699.66 9399.80 5699.62 9499.44 7599.80 4799.71 4199.72 9299.69 11299.15 5399.83 22999.32 5199.94 6199.53 154
Anonymous2023121199.62 3399.57 3899.76 4699.61 14499.60 10299.81 1099.73 7999.82 2699.90 2399.90 2297.97 19499.86 18499.42 4099.96 4199.80 24
DeepC-MVS98.90 499.62 3399.61 3099.67 8699.72 10799.44 13399.24 12499.71 9199.27 11899.93 1599.90 2299.70 1199.93 6798.99 9399.99 1399.64 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H99.61 3599.53 4899.87 1599.80 5699.83 2199.67 3699.75 7199.58 7699.85 3999.69 11298.18 17999.94 5499.28 6099.95 4899.83 19
ACMH98.42 699.59 3699.54 4499.72 7499.86 3099.62 9499.56 6199.79 5398.77 18999.80 5999.85 3699.64 1399.85 20298.70 12299.89 9199.70 48
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testing_299.58 3799.56 4299.62 11899.81 5099.44 13399.14 15599.43 23199.69 4799.82 4999.79 5899.14 5599.79 26399.31 5499.95 4899.63 93
v119299.57 3899.57 3899.57 13599.77 8099.22 18999.04 18199.60 15299.18 13299.87 3799.72 9299.08 6499.85 20299.89 599.98 2299.66 74
EG-PatchMatch MVS99.57 3899.56 4299.62 11899.77 8099.33 16499.26 11699.76 6599.32 11299.80 5999.78 6599.29 3999.87 16499.15 7799.91 8299.66 74
Gipumacopyleft99.57 3899.59 3399.49 15899.98 399.71 6399.72 2099.84 3099.81 2799.94 1299.78 6598.91 8399.71 29198.41 13599.95 4899.05 284
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192099.56 4199.57 3899.55 14299.75 9499.11 20399.05 17999.61 14199.15 14199.88 3399.71 9999.08 6499.87 16499.90 299.97 3099.66 74
v124099.56 4199.58 3599.51 15299.80 5699.00 21499.00 18899.65 12399.15 14199.90 2399.75 7999.09 6199.88 15199.90 299.96 4199.67 64
V4299.56 4199.54 4499.63 10999.79 6699.46 12699.39 8299.59 15999.24 12499.86 3899.70 10698.55 13299.82 23999.79 1199.95 4899.60 116
v14419299.55 4499.54 4499.58 13099.78 7299.20 19599.11 16899.62 13499.18 13299.89 2799.72 9298.66 11999.87 16499.88 699.97 3099.66 74
test20.0399.55 4499.54 4499.58 13099.79 6699.37 15499.02 18499.89 1399.60 7399.82 4999.62 15998.81 9399.89 13699.43 3699.86 11499.47 186
v114499.54 4699.53 4899.59 12699.79 6699.28 17299.10 16999.61 14199.20 13099.84 4299.73 8698.67 11799.84 21899.86 899.98 2299.64 88
CP-MVSNet99.54 4699.43 6199.87 1599.76 8499.82 2599.57 5999.61 14199.54 7799.80 5999.64 14097.79 20899.95 4399.21 6399.94 6199.84 15
TranMVSNet+NR-MVSNet99.54 4699.47 5299.76 4699.58 15199.64 8899.30 10499.63 13199.61 6799.71 9799.56 19498.76 10699.96 3499.14 8399.92 7399.68 57
v2v48299.50 4999.47 5299.58 13099.78 7299.25 18099.14 15599.58 16899.25 12299.81 5699.62 15998.24 17099.84 21899.83 999.97 3099.64 88
ACMH+98.40 899.50 4999.43 6199.71 7899.86 3099.76 4699.32 9799.77 6099.53 7999.77 7299.76 7599.26 4599.78 26797.77 19299.88 9999.60 116
Baseline_NR-MVSNet99.49 5199.37 7099.82 2499.91 1599.84 1798.83 21599.86 2099.68 4999.65 11699.88 2997.67 21699.87 16499.03 9099.86 11499.76 36
TAMVS99.49 5199.45 5699.63 10999.48 20599.42 14199.45 7299.57 17099.66 5599.78 6799.83 4197.85 20499.86 18499.44 3599.96 4199.61 112
pmmvs-eth3d99.48 5399.47 5299.51 15299.77 8099.41 14598.81 22099.66 11299.42 10299.75 7999.66 13399.20 4899.76 27798.98 9599.99 1399.36 220
EI-MVSNet-UG-set99.48 5399.50 5099.42 17799.57 16198.65 24499.24 12499.46 22399.68 4999.80 5999.66 13398.99 7399.89 13699.19 6899.90 8399.72 42
APDe-MVS99.48 5399.36 7399.85 1999.55 17299.81 2899.50 6599.69 10198.99 15899.75 7999.71 9998.79 10099.93 6798.46 13499.85 11799.80 24
PMMVS299.48 5399.45 5699.57 13599.76 8498.99 21598.09 28899.90 1198.95 16499.78 6799.58 18399.57 1999.93 6799.48 3299.95 4899.79 30
DSMNet-mixed99.48 5399.65 2398.95 25299.71 11097.27 30299.50 6599.82 3799.59 7599.41 19499.85 3699.62 15100.00 199.53 2799.89 9199.59 125
DP-MVS99.48 5399.39 6599.74 6099.57 16199.62 9499.29 11199.61 14199.87 1599.74 8799.76 7598.69 11399.87 16498.20 15499.80 15399.75 39
EI-MVSNet-Vis-set99.47 5999.49 5199.42 17799.57 16198.66 24299.24 12499.46 22399.67 5199.79 6499.65 13898.97 7699.89 13699.15 7799.89 9199.71 45
VPNet99.46 6099.37 7099.71 7899.82 4399.59 10599.48 6999.70 9599.81 2799.69 10299.58 18397.66 22099.86 18499.17 7399.44 26499.67 64
ACMM98.09 1199.46 6099.38 6799.72 7499.80 5699.69 7499.13 16299.65 12398.99 15899.64 11899.72 9299.39 2499.86 18498.23 15199.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Regformer-499.45 6299.44 5899.50 15599.52 18398.94 22199.17 14599.53 19499.64 5999.76 7499.60 17598.96 7999.90 12398.91 10699.84 12199.67 64
COLMAP_ROBcopyleft98.06 1299.45 6299.37 7099.70 8299.83 3799.70 7099.38 8499.78 5799.53 7999.67 10899.78 6599.19 4999.86 18497.32 22599.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tfpnnormal99.43 6499.38 6799.60 12499.87 2899.75 4899.59 5699.78 5799.71 4199.90 2399.69 11298.85 9199.90 12397.25 23599.78 16499.15 261
HPM-MVS_fast99.43 6499.30 8699.80 3099.83 3799.81 2899.52 6399.70 9598.35 23399.51 17099.50 21299.31 3699.88 15198.18 15899.84 12199.69 51
3Dnovator99.15 299.43 6499.36 7399.65 9899.39 23399.42 14199.70 2399.56 17599.23 12699.35 20599.80 5299.17 5199.95 4398.21 15399.84 12199.59 125
Anonymous2024052999.42 6799.34 7599.65 9899.53 17899.60 10299.63 4699.39 24599.47 8999.76 7499.78 6598.13 18199.86 18498.70 12299.68 20599.49 177
SixPastTwentyTwo99.42 6799.30 8699.76 4699.92 1499.67 7999.70 2399.14 29299.65 5799.89 2799.90 2296.20 26899.94 5499.42 4099.92 7399.67 64
GBi-Net99.42 6799.31 8199.73 6899.49 19999.77 4099.68 3299.70 9599.44 9599.62 12999.83 4197.21 23999.90 12398.96 9999.90 8399.53 154
test199.42 6799.31 8199.73 6899.49 19999.77 4099.68 3299.70 9599.44 9599.62 12999.83 4197.21 23999.90 12398.96 9999.90 8399.53 154
Regformer-399.41 7199.41 6399.40 18699.52 18398.70 23999.17 14599.44 22899.62 6399.75 7999.60 17598.90 8699.85 20298.89 10799.84 12199.65 82
MVSFormer99.41 7199.44 5899.31 21099.57 16198.40 25699.77 1299.80 4799.73 3799.63 12299.30 26198.02 18999.98 699.43 3699.69 20299.55 142
IterMVS-LS99.41 7199.47 5299.25 22299.81 5098.09 27598.85 21299.76 6599.62 6399.83 4799.64 14098.54 13499.97 1799.15 7799.99 1399.68 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 7499.28 9399.77 4099.69 12099.82 2599.20 13499.54 18599.13 14399.82 4999.63 15098.91 8399.92 8597.85 18799.70 19999.58 130
v14899.40 7499.41 6399.39 18999.76 8498.94 22199.09 17399.59 15999.17 13599.81 5699.61 16898.41 15299.69 29999.32 5199.94 6199.53 154
NR-MVSNet99.40 7499.31 8199.68 8499.43 22399.55 11499.73 1799.50 20899.46 9399.88 3399.36 24797.54 22499.87 16498.97 9799.87 10799.63 93
PVSNet_Blended_VisFu99.40 7499.38 6799.44 17299.90 2098.66 24298.94 20399.91 897.97 25899.79 6499.73 8699.05 6999.97 1799.15 7799.99 1399.68 57
EU-MVSNet99.39 7899.62 2698.72 27999.88 2496.44 31899.56 6199.85 2499.90 899.90 2399.85 3698.09 18399.83 22999.58 2299.95 4899.90 5
CHOSEN 1792x268899.39 7899.30 8699.65 9899.88 2499.25 18098.78 22799.88 1698.66 19799.96 999.79 5897.45 22799.93 6799.34 4799.99 1399.78 31
EI-MVSNet99.38 8099.44 5899.21 22899.58 15198.09 27599.26 11699.46 22399.62 6399.75 7999.67 12998.54 13499.85 20299.15 7799.92 7399.68 57
UGNet99.38 8099.34 7599.49 15898.90 31498.90 22999.70 2399.35 25699.86 1798.57 29799.81 5098.50 14499.93 6799.38 4299.98 2299.66 74
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet99.37 8299.25 10099.72 7499.47 21099.56 11198.97 19999.61 14199.43 10099.67 10899.28 26697.85 20499.95 4399.17 7399.81 14899.65 82
UniMVSNet (Re)99.37 8299.26 9899.68 8499.51 18899.58 10898.98 19799.60 15299.43 10099.70 9999.36 24797.70 21199.88 15199.20 6699.87 10799.59 125
CSCG99.37 8299.29 9199.60 12499.71 11099.46 12699.43 7799.85 2498.79 18699.41 19499.60 17598.92 8199.92 8598.02 16899.92 7399.43 203
PM-MVS99.36 8599.29 9199.58 13099.83 3799.66 8198.95 20199.86 2098.85 17899.81 5699.73 8698.40 15699.92 8598.36 13899.83 13199.17 257
abl_699.36 8599.23 10399.75 5599.71 11099.74 5499.33 9499.76 6599.07 15199.65 11699.63 15099.09 6199.92 8597.13 24399.76 17099.58 130
new-patchmatchnet99.35 8799.57 3898.71 28199.82 4396.62 31698.55 24799.75 7199.50 8299.88 3399.87 3199.31 3699.88 15199.43 36100.00 199.62 105
Anonymous2023120699.35 8799.31 8199.47 16399.74 10099.06 21399.28 11299.74 7699.23 12699.72 9299.53 20497.63 22299.88 15199.11 8599.84 12199.48 181
MTAPA99.35 8799.20 10599.80 3099.81 5099.81 2899.33 9499.53 19499.27 11899.42 18699.63 15098.21 17499.95 4397.83 19099.79 15899.65 82
FMVSNet299.35 8799.28 9399.55 14299.49 19999.35 16199.45 7299.57 17099.44 9599.70 9999.74 8297.21 23999.87 16499.03 9099.94 6199.44 197
3Dnovator+98.92 399.35 8799.24 10199.67 8699.35 24399.47 12299.62 4799.50 20899.44 9599.12 24699.78 6598.77 10599.94 5497.87 18499.72 19399.62 105
TSAR-MVS + MP.99.34 9299.24 10199.63 10999.82 4399.37 15499.26 11699.35 25698.77 18999.57 14599.70 10699.27 4499.88 15197.71 19799.75 17399.65 82
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-299.34 9299.27 9699.53 14899.41 22999.10 20798.99 19399.53 19499.47 8999.66 11299.52 20698.80 9799.89 13698.31 14499.74 18199.60 116
diffmvs99.34 9299.32 8099.39 18999.67 13398.77 23698.57 24599.81 4699.61 6799.48 17399.41 23498.47 14599.86 18498.97 9799.90 8399.53 154
DELS-MVS99.34 9299.30 8699.48 16199.51 18899.36 15798.12 28499.53 19499.36 10799.41 19499.61 16899.22 4799.87 16499.21 6399.68 20599.20 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DU-MVS99.33 9699.21 10499.71 7899.43 22399.56 11198.83 21599.53 19499.38 10499.67 10899.36 24797.67 21699.95 4399.17 7399.81 14899.63 93
ab-mvs99.33 9699.28 9399.47 16399.57 16199.39 14899.78 1199.43 23198.87 17699.57 14599.82 4798.06 18699.87 16498.69 12499.73 18899.15 261
DVP-MVS99.32 9899.17 10899.77 4099.69 12099.80 3399.14 15599.31 26599.16 13799.62 12999.61 16898.35 16099.91 10397.88 18199.72 19399.61 112
Regformer-199.32 9899.27 9699.47 16399.41 22998.95 22098.99 19399.48 21599.48 8499.66 11299.52 20698.78 10299.87 16498.36 13899.74 18199.60 116
APD-MVS_3200maxsize99.31 10099.16 10999.74 6099.53 17899.75 4899.27 11599.61 14199.19 13199.57 14599.64 14098.76 10699.90 12397.29 22799.62 22499.56 139
zzz-MVS99.30 10199.14 11399.80 3099.81 5099.81 2898.73 23299.53 19499.27 11899.42 18699.63 15098.21 17499.95 4397.83 19099.79 15899.65 82
SteuartSystems-ACMMP99.30 10199.14 11399.76 4699.87 2899.66 8199.18 14099.60 15298.55 20899.57 14599.67 12999.03 7199.94 5497.01 24799.80 15399.69 51
Skip Steuart: Steuart Systems R&D Blog.
testgi99.29 10399.26 9899.37 19699.75 9498.81 23398.84 21399.89 1398.38 22699.75 7999.04 30299.36 3399.86 18499.08 8799.25 29299.45 192
ACMMP_NAP99.28 10499.11 12399.79 3599.75 9499.81 2898.95 20199.53 19498.27 24299.53 16399.73 8698.75 10899.87 16497.70 19999.83 13199.68 57
LCM-MVSNet-Re99.28 10499.15 11299.67 8699.33 25899.76 4699.34 9299.97 298.93 16899.91 2199.79 5898.68 11499.93 6796.80 26099.56 23999.30 232
mvs_anonymous99.28 10499.39 6598.94 25399.19 28397.81 28799.02 18499.55 18099.78 3399.85 3999.80 5298.24 17099.86 18499.57 2399.50 25699.15 261
MVS_Test99.28 10499.31 8199.19 23199.35 24398.79 23599.36 9099.49 21399.17 13599.21 23299.67 12998.78 10299.66 31999.09 8699.66 21699.10 271
SR-MVS-dyc-post99.27 10899.11 12399.73 6899.54 17399.74 5499.26 11699.62 13499.16 13799.52 16599.64 14098.41 15299.91 10397.27 23099.61 23199.54 149
XVS99.27 10899.11 12399.75 5599.71 11099.71 6399.37 8899.61 14199.29 11498.76 28399.47 22498.47 14599.88 15197.62 20799.73 18899.67 64
OPM-MVS99.26 11099.13 11699.63 10999.70 11799.61 10098.58 24199.48 21598.50 21499.52 16599.63 15099.14 5599.76 27797.89 18099.77 16899.51 166
HFP-MVS99.25 11199.08 13499.76 4699.73 10399.70 7099.31 10199.59 15998.36 22899.36 20399.37 24298.80 9799.91 10397.43 22099.75 17399.68 57
HPM-MVScopyleft99.25 11199.07 13899.78 3899.81 5099.75 4899.61 5199.67 10897.72 27299.35 20599.25 27299.23 4699.92 8597.21 23899.82 14099.67 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.25 11199.08 13499.74 6099.79 6699.68 7799.50 6599.65 12398.07 25299.52 16599.69 11298.57 12999.92 8597.18 24099.79 15899.63 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D99.24 11499.11 12399.61 12298.38 34399.79 3599.57 5999.68 10499.61 6799.15 24199.71 9998.70 11299.91 10397.54 21399.68 20599.13 268
test117299.23 11599.05 14499.74 6099.52 18399.75 4899.20 13499.61 14198.97 16099.48 17399.58 18398.41 15299.91 10397.15 24299.55 24399.57 136
xiu_mvs_v1_base_debu99.23 11599.34 7598.91 25999.59 14898.23 26498.47 25699.66 11299.61 6799.68 10498.94 31699.39 2499.97 1799.18 7099.55 24398.51 318
xiu_mvs_v1_base99.23 11599.34 7598.91 25999.59 14898.23 26498.47 25699.66 11299.61 6799.68 10498.94 31699.39 2499.97 1799.18 7099.55 24398.51 318
xiu_mvs_v1_base_debi99.23 11599.34 7598.91 25999.59 14898.23 26498.47 25699.66 11299.61 6799.68 10498.94 31699.39 2499.97 1799.18 7099.55 24398.51 318
region2R99.23 11599.05 14499.77 4099.76 8499.70 7099.31 10199.59 15998.41 22299.32 21299.36 24798.73 11199.93 6797.29 22799.74 18199.67 64
ACMMPR99.23 11599.06 14099.76 4699.74 10099.69 7499.31 10199.59 15998.36 22899.35 20599.38 24198.61 12599.93 6797.43 22099.75 17399.67 64
XVG-ACMP-BASELINE99.23 11599.10 13199.63 10999.82 4399.58 10898.83 21599.72 8898.36 22899.60 13799.71 9998.92 8199.91 10397.08 24599.84 12199.40 209
CP-MVS99.23 11599.05 14499.75 5599.66 13499.66 8199.38 8499.62 13498.38 22699.06 25499.27 26898.79 10099.94 5497.51 21699.82 14099.66 74
DeepC-MVS_fast98.47 599.23 11599.12 12099.56 13999.28 26899.22 18998.99 19399.40 24299.08 14999.58 14299.64 14098.90 8699.83 22997.44 21999.75 17399.63 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS99.22 12499.04 15099.77 4099.76 8499.73 5799.28 11299.56 17598.19 24799.14 24399.29 26498.84 9299.92 8597.53 21599.80 15399.64 88
D2MVS99.22 12499.19 10699.29 21399.69 12098.74 23798.81 22099.41 23598.55 20899.68 10499.69 11298.13 18199.87 16498.82 11299.98 2299.24 241
LPG-MVS_test99.22 12499.05 14499.74 6099.82 4399.63 9299.16 15199.73 7997.56 27899.64 11899.69 11299.37 3099.89 13696.66 26899.87 10799.69 51
CDS-MVSNet99.22 12499.13 11699.50 15599.35 24399.11 20398.96 20099.54 18599.46 9399.61 13599.70 10696.31 26599.83 22999.34 4799.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040299.22 12499.14 11399.45 17099.79 6699.43 13899.28 11299.68 10499.54 7799.40 19999.56 19499.07 6699.82 23996.01 29399.96 4199.11 269
AllTest99.21 12999.07 13899.63 10999.78 7299.64 8899.12 16699.83 3298.63 20099.63 12299.72 9298.68 11499.75 28196.38 28299.83 13199.51 166
XVG-OURS99.21 12999.06 14099.65 9899.82 4399.62 9497.87 31299.74 7698.36 22899.66 11299.68 12399.71 999.90 12396.84 25899.88 9999.43 203
Fast-Effi-MVS+-dtu99.20 13199.12 12099.43 17599.25 27399.69 7499.05 17999.82 3799.50 8298.97 25899.05 29998.98 7499.98 698.20 15499.24 29498.62 310
VDD-MVS99.20 13199.11 12399.44 17299.43 22398.98 21699.50 6598.32 32799.80 3099.56 15299.69 11296.99 24999.85 20298.99 9399.73 18899.50 172
PGM-MVS99.20 13199.01 15799.77 4099.75 9499.71 6399.16 15199.72 8897.99 25699.42 18699.60 17598.81 9399.93 6796.91 25299.74 18199.66 74
SR-MVS99.19 13499.00 16099.74 6099.51 18899.72 6199.18 14099.60 15298.85 17899.47 17599.58 18398.38 15799.92 8596.92 25199.54 24999.57 136
SMA-MVScopyleft99.19 13499.00 16099.73 6899.46 21599.73 5799.13 16299.52 20297.40 28899.57 14599.64 14098.93 8099.83 22997.61 20999.79 15899.63 93
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs599.19 13499.11 12399.42 17799.76 8498.88 23098.55 24799.73 7998.82 18299.72 9299.62 15996.56 25599.82 23999.32 5199.95 4899.56 139
mPP-MVS99.19 13499.00 16099.76 4699.76 8499.68 7799.38 8499.54 18598.34 23799.01 25699.50 21298.53 13899.93 6797.18 24099.78 16499.66 74
ETV-MVS99.18 13899.18 10799.16 23499.34 25399.28 17299.12 16699.79 5399.48 8498.93 26298.55 33699.40 2399.93 6798.51 13299.52 25398.28 327
VNet99.18 13899.06 14099.56 13999.24 27599.36 15799.33 9499.31 26599.67 5199.47 17599.57 19196.48 25899.84 21899.15 7799.30 28699.47 186
RPSCF99.18 13899.02 15499.64 10599.83 3799.85 1299.44 7599.82 3798.33 23899.50 17199.78 6597.90 19899.65 32696.78 26199.83 13199.44 197
DeepPCF-MVS98.42 699.18 13899.02 15499.67 8699.22 27799.75 4897.25 33999.47 21998.72 19499.66 11299.70 10699.29 3999.63 32998.07 16799.81 14899.62 105
EPP-MVSNet99.17 14299.00 16099.66 9399.80 5699.43 13899.70 2399.24 28299.48 8499.56 15299.77 7294.89 28199.93 6798.72 12199.89 9199.63 93
GST-MVS99.16 14398.96 17199.75 5599.73 10399.73 5799.20 13499.55 18098.22 24499.32 21299.35 25298.65 12199.91 10396.86 25599.74 18199.62 105
MVP-Stereo99.16 14399.08 13499.43 17599.48 20599.07 21199.08 17699.55 18098.63 20099.31 21499.68 12398.19 17799.78 26798.18 15899.58 23799.45 192
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-OURS-SEG-HR99.16 14398.99 16599.66 9399.84 3499.64 8898.25 27499.73 7998.39 22599.63 12299.43 23299.70 1199.90 12397.34 22498.64 32399.44 197
jason99.16 14399.11 12399.32 20799.75 9498.44 25398.26 27399.39 24598.70 19599.74 8799.30 26198.54 13499.97 1798.48 13399.82 14099.55 142
jason: jason.
DPE-MVS99.14 14798.92 17899.82 2499.57 16199.77 4098.74 23099.60 15298.55 20899.76 7499.69 11298.23 17399.92 8596.39 28199.75 17399.76 36
MP-MVS-pluss99.14 14798.92 17899.80 3099.83 3799.83 2198.61 23799.63 13196.84 30799.44 18099.58 18398.81 9399.91 10397.70 19999.82 14099.67 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs499.13 14999.06 14099.36 19999.57 16199.10 20798.01 29699.25 27998.78 18899.58 14299.44 23198.24 17099.76 27798.74 11999.93 6999.22 246
MVS_111021_LR99.13 14999.03 15299.42 17799.58 15199.32 16697.91 31199.73 7998.68 19699.31 21499.48 21999.09 6199.66 31997.70 19999.77 16899.29 235
EIA-MVS99.12 15199.01 15799.45 17099.36 24199.62 9499.34 9299.79 5398.41 22298.84 27398.89 32198.75 10899.84 21898.15 16299.51 25498.89 297
#test#99.12 15198.90 18299.76 4699.73 10399.70 7099.10 16999.59 15997.60 27799.36 20399.37 24298.80 9799.91 10396.84 25899.75 17399.68 57
TSAR-MVS + GP.99.12 15199.04 15099.38 19399.34 25399.16 19898.15 28099.29 27098.18 24899.63 12299.62 15999.18 5099.68 31098.20 15499.74 18199.30 232
MVS_111021_HR99.12 15199.02 15499.40 18699.50 19499.11 20397.92 30999.71 9198.76 19299.08 25099.47 22499.17 5199.54 33997.85 18799.76 17099.54 149
xxxxxxxxxxxxxcwj99.11 15598.96 17199.54 14699.53 17899.25 18098.29 27099.76 6599.07 15199.42 18699.61 16898.86 8999.87 16496.45 27999.68 20599.49 177
CANet99.11 15599.05 14499.28 21598.83 32398.56 24698.71 23599.41 23599.25 12299.23 22699.22 27997.66 22099.94 5499.19 6899.97 3099.33 226
WR-MVS99.11 15598.93 17499.66 9399.30 26499.42 14198.42 26299.37 25299.04 15699.57 14599.20 28396.89 25199.86 18498.66 12699.87 10799.70 48
PHI-MVS99.11 15598.95 17399.59 12699.13 29199.59 10599.17 14599.65 12397.88 26499.25 22299.46 22798.97 7699.80 26097.26 23299.82 14099.37 217
SF-MVS99.10 15998.93 17499.62 11899.58 15199.51 11799.13 16299.65 12397.97 25899.42 18699.61 16898.86 8999.87 16496.45 27999.68 20599.49 177
CS-MVS99.09 16099.03 15299.25 22299.45 21899.49 11999.41 7899.82 3799.10 14898.03 32498.48 34099.30 3899.89 13698.30 14599.41 27098.35 324
MSDG99.08 16198.98 16899.37 19699.60 14699.13 20197.54 32599.74 7698.84 18199.53 16399.55 20099.10 5999.79 26397.07 24699.86 11499.18 255
Effi-MVS+-dtu99.07 16298.92 17899.52 14998.89 31799.78 3899.15 15399.66 11299.34 10898.92 26599.24 27797.69 21399.98 698.11 16499.28 28898.81 304
Effi-MVS+99.06 16398.97 16999.34 20199.31 26098.98 21698.31 26999.91 898.81 18398.79 27998.94 31699.14 5599.84 21898.79 11498.74 31999.20 251
MP-MVScopyleft99.06 16398.83 19199.76 4699.76 8499.71 6399.32 9799.50 20898.35 23398.97 25899.48 21998.37 15899.92 8595.95 29999.75 17399.63 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDA-MVSNet-bldmvs99.06 16399.05 14499.07 24499.80 5697.83 28698.89 20599.72 8899.29 11499.63 12299.70 10696.47 25999.89 13698.17 16099.82 14099.50 172
MSLP-MVS++99.05 16699.09 13298.91 25999.21 27898.36 26098.82 21999.47 21998.85 17898.90 26899.56 19498.78 10299.09 35098.57 12999.68 20599.26 238
1112_ss99.05 16698.84 18999.67 8699.66 13499.29 17098.52 25299.82 3797.65 27599.43 18499.16 28696.42 26199.91 10399.07 8899.84 12199.80 24
ACMP97.51 1499.05 16698.84 18999.67 8699.78 7299.55 11498.88 20699.66 11297.11 30199.47 17599.60 17599.07 6699.89 13696.18 28899.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS99.04 16998.79 19699.81 2799.78 7299.73 5799.35 9199.57 17098.54 21199.54 15998.99 30696.81 25299.93 6796.97 24999.53 25199.77 32
PVSNet_BlendedMVS99.03 17099.01 15799.09 24099.54 17397.99 27998.58 24199.82 3797.62 27699.34 20899.71 9998.52 14199.77 27597.98 17399.97 3099.52 164
IS-MVSNet99.03 17098.85 18799.55 14299.80 5699.25 18099.73 1799.15 29199.37 10599.61 13599.71 9994.73 28499.81 25597.70 19999.88 9999.58 130
xiu_mvs_v2_base99.02 17299.11 12398.77 27699.37 23998.09 27598.13 28399.51 20599.47 8999.42 18698.54 33799.38 2899.97 1798.83 11099.33 28398.24 329
Fast-Effi-MVS+99.02 17298.87 18599.46 16699.38 23699.50 11899.04 18199.79 5397.17 29798.62 29298.74 32999.34 3499.95 4398.32 14399.41 27098.92 295
canonicalmvs99.02 17299.00 16099.09 24099.10 29998.70 23999.61 5199.66 11299.63 6298.64 29197.65 35199.04 7099.54 33998.79 11498.92 30899.04 285
MCST-MVS99.02 17298.81 19399.65 9899.58 15199.49 11998.58 24199.07 29598.40 22499.04 25599.25 27298.51 14399.80 26097.31 22699.51 25499.65 82
SD-MVS99.01 17699.30 8698.15 30199.50 19499.40 14698.94 20399.61 14199.22 12999.75 7999.82 4799.54 2095.51 35697.48 21799.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LF4IMVS99.01 17698.92 17899.27 21799.71 11099.28 17298.59 24099.77 6098.32 23999.39 20099.41 23498.62 12399.84 21896.62 27199.84 12198.69 308
IterMVS-SCA-FT99.00 17899.16 10998.51 28699.75 9495.90 32698.07 29199.84 3099.84 2299.89 2799.73 8696.01 27299.99 499.33 49100.00 199.63 93
MS-PatchMatch99.00 17898.97 16999.09 24099.11 29898.19 26798.76 22999.33 25998.49 21699.44 18099.58 18398.21 17499.69 29998.20 15499.62 22499.39 212
PS-MVSNAJ99.00 17899.08 13498.76 27799.37 23998.10 27498.00 29899.51 20599.47 8999.41 19498.50 33999.28 4199.97 1798.83 11099.34 28198.20 333
CNVR-MVS98.99 18198.80 19599.56 13999.25 27399.43 13898.54 25099.27 27498.58 20598.80 27899.43 23298.53 13899.70 29397.22 23799.59 23699.54 149
VDDNet98.97 18298.82 19299.42 17799.71 11098.81 23399.62 4798.68 31199.81 2799.38 20199.80 5294.25 28899.85 20298.79 11499.32 28499.59 125
IterMVS98.97 18299.16 10998.42 29099.74 10095.64 32998.06 29399.83 3299.83 2599.85 3999.74 8296.10 27199.99 499.27 61100.00 199.63 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap98.97 18298.93 17499.07 24499.46 21598.19 26797.75 31699.75 7198.79 18699.54 15999.70 10698.97 7699.62 33096.63 27099.83 13199.41 207
HPM-MVS++copyleft98.96 18598.70 20399.74 6099.52 18399.71 6398.86 21099.19 28798.47 21898.59 29599.06 29898.08 18599.91 10396.94 25099.60 23499.60 116
lupinMVS98.96 18598.87 18599.24 22599.57 16198.40 25698.12 28499.18 28898.28 24199.63 12299.13 28898.02 18999.97 1798.22 15299.69 20299.35 223
USDC98.96 18598.93 17499.05 24699.54 17397.99 27997.07 34299.80 4798.21 24599.75 7999.77 7298.43 15099.64 32897.90 17999.88 9999.51 166
YYNet198.95 18898.99 16598.84 26999.64 13897.14 30698.22 27699.32 26198.92 17099.59 14099.66 13397.40 22999.83 22998.27 14899.90 8399.55 142
MDA-MVSNet_test_wron98.95 18898.99 16598.85 26799.64 13897.16 30598.23 27599.33 25998.93 16899.56 15299.66 13397.39 23199.83 22998.29 14699.88 9999.55 142
Test_1112_low_res98.95 18898.73 19899.63 10999.68 12899.15 20098.09 28899.80 4797.14 29999.46 17899.40 23696.11 27099.89 13699.01 9299.84 12199.84 15
CANet_DTU98.91 19198.85 18799.09 24098.79 32998.13 27098.18 27799.31 26599.48 8498.86 27199.51 20996.56 25599.95 4399.05 8999.95 4899.19 253
HyFIR lowres test98.91 19198.64 20699.73 6899.85 3399.47 12298.07 29199.83 3298.64 19999.89 2799.60 17592.57 302100.00 199.33 4999.97 3099.72 42
HQP_MVS98.90 19398.68 20599.55 14299.58 15199.24 18598.80 22399.54 18598.94 16599.14 24399.25 27297.24 23799.82 23995.84 30299.78 16499.60 116
sss98.90 19398.77 19799.27 21799.48 20598.44 25398.72 23399.32 26197.94 26299.37 20299.35 25296.31 26599.91 10398.85 10999.63 22399.47 186
OMC-MVS98.90 19398.72 19999.44 17299.39 23399.42 14198.58 24199.64 12997.31 29399.44 18099.62 15998.59 12799.69 29996.17 28999.79 15899.22 246
ppachtmachnet_test98.89 19699.12 12098.20 30099.66 13495.24 33397.63 32199.68 10499.08 14999.78 6799.62 15998.65 12199.88 15198.02 16899.96 4199.48 181
MVS_030498.88 19798.71 20099.39 18998.85 32198.91 22899.45 7299.30 26898.56 20697.26 34299.68 12396.18 26999.96 3499.17 7399.94 6199.29 235
new_pmnet98.88 19798.89 18398.84 26999.70 11797.62 29398.15 28099.50 20897.98 25799.62 12999.54 20298.15 18099.94 5497.55 21299.84 12198.95 292
K. test v398.87 19998.60 20999.69 8399.93 1399.46 12699.74 1694.97 35099.78 3399.88 3399.88 2993.66 29499.97 1799.61 1999.95 4899.64 88
APD-MVScopyleft98.87 19998.59 21199.71 7899.50 19499.62 9499.01 18699.57 17096.80 30999.54 15999.63 15098.29 16699.91 10395.24 31699.71 19799.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
our_test_398.85 20199.09 13298.13 30299.66 13494.90 33697.72 31799.58 16899.07 15199.64 11899.62 15998.19 17799.93 6798.41 13599.95 4899.55 142
mvs-test198.83 20298.70 20399.22 22798.89 31799.65 8698.88 20699.66 11299.34 10898.29 30898.94 31697.69 21399.96 3498.11 16498.54 32798.04 337
UnsupCasMVSNet_eth98.83 20298.57 21599.59 12699.68 12899.45 13198.99 19399.67 10899.48 8499.55 15799.36 24794.92 28099.86 18498.95 10396.57 34899.45 192
NCCC98.82 20498.57 21599.58 13099.21 27899.31 16798.61 23799.25 27998.65 19898.43 30599.26 27097.86 20299.81 25596.55 27299.27 29199.61 112
PMVScopyleft92.94 2198.82 20498.81 19398.85 26799.84 3497.99 27999.20 13499.47 21999.71 4199.42 18699.82 4798.09 18399.47 34493.88 33599.85 11799.07 282
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FMVSNet398.80 20698.63 20899.32 20799.13 29198.72 23899.10 16999.48 21599.23 12699.62 12999.64 14092.57 30299.86 18498.96 9999.90 8399.39 212
Patchmtry98.78 20798.54 21899.49 15898.89 31799.19 19699.32 9799.67 10899.65 5799.72 9299.79 5891.87 30999.95 4398.00 17299.97 3099.33 226
ETH3D-3000-0.198.77 20898.50 22299.59 12699.47 21099.53 11698.77 22899.60 15297.33 29299.23 22699.50 21297.91 19799.83 22995.02 32099.67 21299.41 207
Vis-MVSNet (Re-imp)98.77 20898.58 21499.34 20199.78 7298.88 23099.61 5199.56 17599.11 14799.24 22599.56 19493.00 30099.78 26797.43 22099.89 9199.35 223
CLD-MVS98.76 21098.57 21599.33 20399.57 16198.97 21897.53 32799.55 18096.41 31399.27 22099.13 28899.07 6699.78 26796.73 26499.89 9199.23 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521198.75 21198.46 22499.63 10999.34 25399.66 8199.47 7197.65 33699.28 11799.56 15299.50 21293.15 29799.84 21898.62 12799.58 23799.40 209
RRT_MVS98.75 21198.54 21899.41 18498.14 35298.61 24598.98 19799.66 11299.31 11399.84 4299.75 7991.98 30699.98 699.20 6699.95 4899.62 105
CPTT-MVS98.74 21398.44 22699.64 10599.61 14499.38 15199.18 14099.55 18096.49 31299.27 22099.37 24297.11 24599.92 8595.74 30699.67 21299.62 105
F-COLMAP98.74 21398.45 22599.62 11899.57 16199.47 12298.84 21399.65 12396.31 31698.93 26299.19 28597.68 21599.87 16496.52 27499.37 27899.53 154
N_pmnet98.73 21598.53 22099.35 20099.72 10798.67 24198.34 26594.65 35198.35 23399.79 6499.68 12398.03 18799.93 6798.28 14799.92 7399.44 197
cl_fuxian98.72 21698.71 20098.72 27999.12 29397.22 30497.68 32099.56 17598.90 17299.54 15999.48 21996.37 26499.73 28597.88 18199.88 9999.21 248
PVSNet_Blended98.70 21798.59 21199.02 24899.54 17397.99 27997.58 32499.82 3795.70 32599.34 20898.98 30998.52 14199.77 27597.98 17399.83 13199.30 232
eth_miper_zixun_eth98.68 21898.71 20098.60 28399.10 29996.84 31397.52 32999.54 18598.94 16599.58 14299.48 21996.25 26799.76 27798.01 17199.93 6999.21 248
PatchMatch-RL98.68 21898.47 22399.30 21299.44 22199.28 17298.14 28299.54 18597.12 30099.11 24799.25 27297.80 20799.70 29396.51 27599.30 28698.93 294
miper_lstm_enhance98.65 22098.60 20998.82 27499.20 28197.33 30197.78 31599.66 11299.01 15799.59 14099.50 21294.62 28599.85 20298.12 16399.90 8399.26 238
test_prior398.62 22198.34 23799.46 16699.35 24399.22 18997.95 30599.39 24597.87 26598.05 32199.05 29997.90 19899.69 29995.99 29599.49 25899.48 181
CVMVSNet98.61 22298.88 18497.80 31099.58 15193.60 34199.26 11699.64 12999.66 5599.72 9299.67 12993.26 29699.93 6799.30 5599.81 14899.87 10
Patchmatch-RL test98.60 22398.36 23499.33 20399.77 8099.07 21198.27 27299.87 1898.91 17199.74 8799.72 9290.57 32699.79 26398.55 13099.85 11799.11 269
RPMNet98.60 22398.53 22098.83 27199.05 30498.12 27199.30 10499.62 13499.86 1799.16 23999.74 8292.53 30499.92 8598.75 11898.77 31598.44 321
AdaColmapbinary98.60 22398.35 23699.38 19399.12 29399.22 18998.67 23699.42 23497.84 26998.81 27699.27 26897.32 23599.81 25595.14 31799.53 25199.10 271
miper_ehance_all_eth98.59 22698.59 21198.59 28498.98 31097.07 30797.49 33099.52 20298.50 21499.52 16599.37 24296.41 26399.71 29197.86 18599.62 22499.00 290
WTY-MVS98.59 22698.37 23399.26 21999.43 22398.40 25698.74 23099.13 29498.10 25099.21 23299.24 27794.82 28299.90 12397.86 18598.77 31599.49 177
CNLPA98.57 22898.34 23799.28 21599.18 28599.10 20798.34 26599.41 23598.48 21798.52 30098.98 30997.05 24799.78 26795.59 30899.50 25698.96 291
testtj98.56 22998.17 25199.72 7499.45 21899.60 10298.88 20699.50 20896.88 30499.18 23899.48 21997.08 24699.92 8593.69 33699.38 27499.63 93
112198.56 22998.24 24299.52 14999.49 19999.24 18599.30 10499.22 28495.77 32398.52 30099.29 26497.39 23199.85 20295.79 30499.34 28199.46 190
CDPH-MVS98.56 22998.20 24699.61 12299.50 19499.46 12698.32 26899.41 23595.22 33099.21 23299.10 29598.34 16299.82 23995.09 31999.66 21699.56 139
UnsupCasMVSNet_bld98.55 23298.27 24199.40 18699.56 17199.37 15497.97 30499.68 10497.49 28499.08 25099.35 25295.41 27999.82 23997.70 19998.19 33599.01 289
cl-mvsnet_98.54 23398.41 22998.92 25799.03 30797.80 28897.46 33199.59 15998.90 17299.60 13799.46 22793.85 29199.78 26797.97 17599.89 9199.17 257
cl-mvsnet198.54 23398.42 22898.92 25799.03 30797.80 28897.46 33199.59 15998.90 17299.60 13799.46 22793.87 29099.78 26797.97 17599.89 9199.18 255
MG-MVS98.52 23598.39 23198.94 25399.15 28897.39 30098.18 27799.21 28698.89 17599.23 22699.63 15097.37 23399.74 28394.22 32999.61 23199.69 51
ETH3D cwj APD-0.1698.50 23698.16 25299.51 15299.04 30699.39 14898.47 25699.47 21996.70 31198.78 28199.33 25697.62 22399.86 18494.69 32599.38 27499.28 237
DP-MVS Recon98.50 23698.23 24399.31 21099.49 19999.46 12698.56 24699.63 13194.86 33698.85 27299.37 24297.81 20699.59 33696.08 29099.44 26498.88 298
CMPMVSbinary77.52 2398.50 23698.19 24999.41 18498.33 34599.56 11199.01 18699.59 15995.44 32799.57 14599.80 5295.64 27699.46 34696.47 27899.92 7399.21 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
114514_t98.49 23998.11 25499.64 10599.73 10399.58 10899.24 12499.76 6589.94 34999.42 18699.56 19497.76 21099.86 18497.74 19599.82 14099.47 186
PMMVS98.49 23998.29 24099.11 23898.96 31198.42 25597.54 32599.32 26197.53 28198.47 30498.15 34697.88 20199.82 23997.46 21899.24 29499.09 274
MVSTER98.47 24198.22 24499.24 22599.06 30398.35 26199.08 17699.46 22399.27 11899.75 7999.66 13388.61 33699.85 20299.14 8399.92 7399.52 164
LFMVS98.46 24298.19 24999.26 21999.24 27598.52 24999.62 4796.94 34399.87 1599.31 21499.58 18391.04 31799.81 25598.68 12599.42 26999.45 192
PatchT98.45 24398.32 23998.83 27198.94 31298.29 26299.24 12498.82 30699.84 2299.08 25099.76 7591.37 31299.94 5498.82 11299.00 30598.26 328
MIMVSNet98.43 24498.20 24699.11 23899.53 17898.38 25999.58 5898.61 31598.96 16399.33 21099.76 7590.92 31999.81 25597.38 22399.76 17099.15 261
PVSNet97.47 1598.42 24598.44 22698.35 29399.46 21596.26 32096.70 34799.34 25897.68 27499.00 25799.13 28897.40 22999.72 28797.59 21199.68 20599.08 277
CHOSEN 280x42098.41 24698.41 22998.40 29199.34 25395.89 32796.94 34499.44 22898.80 18599.25 22299.52 20693.51 29599.98 698.94 10499.98 2299.32 229
BH-RMVSNet98.41 24698.14 25399.21 22899.21 27898.47 25098.60 23998.26 32898.35 23398.93 26299.31 25997.20 24299.66 31994.32 32799.10 29999.51 166
QAPM98.40 24897.99 25999.65 9899.39 23399.47 12299.67 3699.52 20291.70 34698.78 28199.80 5298.55 13299.95 4394.71 32499.75 17399.53 154
API-MVS98.38 24998.39 23198.35 29398.83 32399.26 17699.14 15599.18 28898.59 20498.66 29098.78 32798.61 12599.57 33894.14 33099.56 23996.21 349
HQP-MVS98.36 25098.02 25899.39 18999.31 26098.94 22197.98 30199.37 25297.45 28598.15 31598.83 32496.67 25399.70 29394.73 32299.67 21299.53 154
PAPM_NR98.36 25098.04 25799.33 20399.48 20598.93 22598.79 22699.28 27397.54 28098.56 29898.57 33497.12 24499.69 29994.09 33198.90 31099.38 214
PLCcopyleft97.35 1698.36 25097.99 25999.48 16199.32 25999.24 18598.50 25499.51 20595.19 33298.58 29698.96 31496.95 25099.83 22995.63 30799.25 29299.37 217
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg98.35 25397.95 26399.57 13599.35 24399.35 16198.11 28699.41 23594.90 33497.92 32798.99 30698.02 18999.85 20295.38 31499.44 26499.50 172
CR-MVSNet98.35 25398.20 24698.83 27199.05 30498.12 27199.30 10499.67 10897.39 28999.16 23999.79 5891.87 30999.91 10398.78 11798.77 31598.44 321
agg_prior198.33 25597.92 26999.57 13599.35 24399.36 15797.99 30099.39 24594.85 33797.76 33698.98 30998.03 18799.85 20295.49 31099.44 26499.51 166
DPM-MVS98.28 25697.94 26799.32 20799.36 24199.11 20397.31 33798.78 30896.88 30498.84 27399.11 29497.77 20999.61 33494.03 33399.36 27999.23 244
alignmvs98.28 25697.96 26299.25 22299.12 29398.93 22599.03 18398.42 32399.64 5998.72 28697.85 34990.86 32299.62 33098.88 10899.13 29799.19 253
test_yl98.25 25897.95 26399.13 23699.17 28698.47 25099.00 18898.67 31398.97 16099.22 23099.02 30491.31 31399.69 29997.26 23298.93 30699.24 241
DCV-MVSNet98.25 25897.95 26399.13 23699.17 28698.47 25099.00 18898.67 31398.97 16099.22 23099.02 30491.31 31399.69 29997.26 23298.93 30699.24 241
MAR-MVS98.24 26097.92 26999.19 23198.78 33199.65 8699.17 14599.14 29295.36 32898.04 32398.81 32697.47 22699.72 28795.47 31299.06 30098.21 331
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 26197.89 27399.26 21999.19 28399.26 17699.65 4499.69 10191.33 34798.14 31999.77 7298.28 16799.96 3495.41 31399.55 24398.58 314
BH-untuned98.22 26298.09 25598.58 28599.38 23697.24 30398.55 24798.98 30197.81 27099.20 23798.76 32897.01 24899.65 32694.83 32198.33 33198.86 300
HY-MVS98.23 998.21 26397.95 26398.99 24999.03 30798.24 26399.61 5198.72 31096.81 30898.73 28599.51 20994.06 28999.86 18496.91 25298.20 33398.86 300
EPNet98.13 26497.77 27799.18 23394.57 35897.99 27999.24 12497.96 33199.74 3697.29 34199.62 15993.13 29899.97 1798.59 12899.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SCA98.11 26598.36 23497.36 32199.20 28192.99 34498.17 27998.49 32198.24 24399.10 24999.57 19196.01 27299.94 5496.86 25599.62 22499.14 265
Patchmatch-test98.10 26697.98 26198.48 28899.27 27096.48 31799.40 8099.07 29598.81 18399.23 22699.57 19190.11 33099.87 16496.69 26599.64 22199.09 274
pmmvs398.08 26797.80 27498.91 25999.41 22997.69 29297.87 31299.66 11295.87 32199.50 17199.51 20990.35 32899.97 1798.55 13099.47 26199.08 277
JIA-IIPM98.06 26897.92 26998.50 28798.59 33897.02 30898.80 22398.51 31999.88 1497.89 32999.87 3191.89 30899.90 12398.16 16197.68 34498.59 312
miper_enhance_ethall98.03 26997.94 26798.32 29598.27 34696.43 31996.95 34399.41 23596.37 31599.43 18498.96 31494.74 28399.69 29997.71 19799.62 22498.83 303
TAPA-MVS97.92 1398.03 26997.55 28399.46 16699.47 21099.44 13398.50 25499.62 13486.79 35099.07 25399.26 27098.26 16999.62 33097.28 22999.73 18899.31 231
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
131498.00 27197.90 27298.27 29998.90 31497.45 29899.30 10499.06 29794.98 33397.21 34399.12 29298.43 15099.67 31595.58 30998.56 32697.71 341
GA-MVS97.99 27297.68 28098.93 25699.52 18398.04 27897.19 34199.05 29898.32 23998.81 27698.97 31289.89 33399.41 34798.33 14299.05 30199.34 225
MVS-HIRNet97.86 27398.22 24496.76 32799.28 26891.53 35398.38 26492.60 35699.13 14399.31 21499.96 1197.18 24399.68 31098.34 14199.83 13199.07 282
AUN-MVS97.82 27497.38 28599.14 23599.27 27098.53 24798.72 23399.02 29998.10 25097.18 34499.03 30389.26 33599.85 20297.94 17797.91 34199.03 286
FMVSNet597.80 27597.25 28999.42 17798.83 32398.97 21899.38 8499.80 4798.87 17699.25 22299.69 11280.60 35799.91 10398.96 9999.90 8399.38 214
ADS-MVSNet297.78 27697.66 28298.12 30399.14 28995.36 33199.22 13198.75 30996.97 30298.25 31199.64 14090.90 32099.94 5496.51 27599.56 23999.08 277
ETH3 D test640097.76 27797.19 29299.50 15599.38 23699.26 17698.34 26599.49 21392.99 34398.54 29999.20 28395.92 27499.82 23991.14 34399.66 21699.40 209
baseline197.73 27897.33 28698.96 25199.30 26497.73 29099.40 8098.42 32399.33 11199.46 17899.21 28191.18 31599.82 23998.35 14091.26 35399.32 229
tpmrst97.73 27898.07 25696.73 32998.71 33592.00 34899.10 16998.86 30398.52 21298.92 26599.54 20291.90 30799.82 23998.02 16899.03 30398.37 323
ADS-MVSNet97.72 28097.67 28197.86 30899.14 28994.65 33799.22 13198.86 30396.97 30298.25 31199.64 14090.90 32099.84 21896.51 27599.56 23999.08 277
PatchmatchNetpermissive97.65 28197.80 27497.18 32498.82 32692.49 34699.17 14598.39 32598.12 24998.79 27999.58 18390.71 32499.89 13697.23 23699.41 27099.16 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051797.62 28297.20 29198.90 26599.76 8497.40 29999.48 6994.36 35299.06 15599.70 9999.49 21784.55 35199.94 5498.73 12099.65 21999.36 220
EPNet_dtu97.62 28297.79 27697.11 32696.67 35792.31 34798.51 25398.04 32999.24 12495.77 35199.47 22493.78 29399.66 31998.98 9599.62 22499.37 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d97.58 28499.13 11692.93 33899.69 12099.49 11999.52 6399.77 6097.97 25899.96 999.79 5899.84 399.94 5495.85 30199.82 14079.36 352
cl-mvsnet297.56 28597.28 28798.40 29198.37 34496.75 31497.24 34099.37 25297.31 29399.41 19499.22 27987.30 33899.37 34897.70 19999.62 22499.08 277
PAPR97.56 28597.07 29499.04 24798.80 32898.11 27397.63 32199.25 27994.56 34098.02 32598.25 34597.43 22899.68 31090.90 34498.74 31999.33 226
thisisatest053097.45 28796.95 29898.94 25399.68 12897.73 29099.09 17394.19 35498.61 20399.56 15299.30 26184.30 35299.93 6798.27 14899.54 24999.16 259
TR-MVS97.44 28897.15 29398.32 29598.53 34097.46 29798.47 25697.91 33396.85 30698.21 31498.51 33896.42 26199.51 34292.16 33997.29 34697.98 338
tpmvs97.39 28997.69 27996.52 33298.41 34291.76 35099.30 10498.94 30297.74 27197.85 33299.55 20092.40 30599.73 28596.25 28798.73 32198.06 336
test0.0.03 197.37 29096.91 30198.74 27897.72 35397.57 29497.60 32397.36 34298.00 25499.21 23298.02 34790.04 33199.79 26398.37 13795.89 35198.86 300
OpenMVS_ROBcopyleft97.31 1797.36 29196.84 30298.89 26699.29 26699.45 13198.87 20999.48 21586.54 35299.44 18099.74 8297.34 23499.86 18491.61 34099.28 28897.37 345
RRT_test8_iter0597.35 29297.25 28997.63 31598.81 32793.13 34399.26 11699.89 1399.51 8199.83 4799.68 12379.03 36099.88 15199.53 2799.72 19399.89 9
BH-w/o97.20 29397.01 29697.76 31199.08 30295.69 32898.03 29598.52 31895.76 32497.96 32698.02 34795.62 27799.47 34492.82 33897.25 34798.12 335
test-LLR97.15 29496.95 29897.74 31398.18 34995.02 33497.38 33396.10 34498.00 25497.81 33398.58 33290.04 33199.91 10397.69 20598.78 31398.31 325
tpm97.15 29496.95 29897.75 31298.91 31394.24 33999.32 9797.96 33197.71 27398.29 30899.32 25786.72 34699.92 8598.10 16696.24 35099.09 274
E-PMN97.14 29697.43 28496.27 33498.79 32991.62 35295.54 35199.01 30099.44 9598.88 26999.12 29292.78 30199.68 31094.30 32899.03 30397.50 342
cascas96.99 29796.82 30397.48 31797.57 35695.64 32996.43 34999.56 17591.75 34597.13 34597.61 35295.58 27898.63 35396.68 26699.11 29898.18 334
thisisatest051596.98 29896.42 30598.66 28299.42 22897.47 29697.27 33894.30 35397.24 29599.15 24198.86 32385.01 34999.87 16497.10 24499.39 27398.63 309
EMVS96.96 29997.28 28795.99 33798.76 33391.03 35595.26 35298.61 31599.34 10898.92 26598.88 32293.79 29299.66 31992.87 33799.05 30197.30 346
dp96.86 30097.07 29496.24 33598.68 33790.30 35999.19 13998.38 32697.35 29198.23 31399.59 18187.23 33999.82 23996.27 28698.73 32198.59 312
baseline296.83 30196.28 30798.46 28999.09 30196.91 31198.83 21593.87 35597.23 29696.23 35098.36 34288.12 33799.90 12396.68 26698.14 33798.57 315
ET-MVSNet_ETH3D96.78 30296.07 31198.91 25999.26 27297.92 28597.70 31996.05 34797.96 26192.37 35598.43 34187.06 34099.90 12398.27 14897.56 34598.91 296
tpm cat196.78 30296.98 29796.16 33698.85 32190.59 35899.08 17699.32 26192.37 34497.73 33899.46 22791.15 31699.69 29996.07 29198.80 31298.21 331
PCF-MVS96.03 1896.73 30495.86 31599.33 20399.44 22199.16 19896.87 34599.44 22886.58 35198.95 26099.40 23694.38 28799.88 15187.93 34899.80 15398.95 292
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer96.71 30596.79 30496.46 33398.90 31490.71 35799.41 7898.68 31194.69 33998.14 31999.34 25586.32 34899.80 26097.60 21098.07 33998.88 298
MVEpermissive92.54 2296.66 30696.11 31098.31 29799.68 12897.55 29597.94 30795.60 34999.37 10590.68 35698.70 33096.56 25598.61 35486.94 35399.55 24398.77 306
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view796.60 30796.16 30997.93 30699.63 14096.09 32499.18 14097.57 33798.77 18998.72 28697.32 35587.04 34199.72 28788.57 34698.62 32497.98 338
EPMVS96.53 30896.32 30697.17 32598.18 34992.97 34599.39 8289.95 35898.21 24598.61 29399.59 18186.69 34799.72 28796.99 24899.23 29698.81 304
thres40096.40 30995.89 31397.92 30799.58 15196.11 32299.00 18897.54 34098.43 21998.52 30096.98 35886.85 34399.67 31587.62 34998.51 32897.98 338
thres100view90096.39 31096.03 31297.47 31899.63 14095.93 32599.18 14097.57 33798.75 19398.70 28897.31 35687.04 34199.67 31587.62 34998.51 32896.81 347
tpm296.35 31196.22 30896.73 32998.88 32091.75 35199.21 13398.51 31993.27 34297.89 32999.21 28184.83 35099.70 29396.04 29298.18 33698.75 307
FPMVS96.32 31295.50 32098.79 27599.60 14698.17 26998.46 26198.80 30797.16 29896.28 34799.63 15082.19 35399.09 35088.45 34798.89 31199.10 271
tfpn200view996.30 31395.89 31397.53 31699.58 15196.11 32299.00 18897.54 34098.43 21998.52 30096.98 35886.85 34399.67 31587.62 34998.51 32896.81 347
TESTMET0.1,196.24 31495.84 31697.41 32098.24 34793.84 34097.38 33395.84 34898.43 21997.81 33398.56 33579.77 35899.89 13697.77 19298.77 31598.52 317
test-mter96.23 31595.73 31897.74 31398.18 34995.02 33497.38 33396.10 34497.90 26397.81 33398.58 33279.12 35999.91 10397.69 20598.78 31398.31 325
X-MVStestdata96.09 31694.87 32499.75 5599.71 11099.71 6399.37 8899.61 14199.29 11498.76 28361.30 36198.47 14599.88 15197.62 20799.73 18899.67 64
thres20096.09 31695.68 31997.33 32399.48 20596.22 32198.53 25197.57 33798.06 25398.37 30796.73 36086.84 34599.61 33486.99 35298.57 32596.16 350
DWT-MVSNet_test96.03 31895.80 31796.71 33198.50 34191.93 34999.25 12397.87 33495.99 32096.81 34697.61 35281.02 35599.66 31997.20 23997.98 34098.54 316
gg-mvs-nofinetune95.87 31995.17 32397.97 30598.19 34896.95 30999.69 2989.23 35999.89 1296.24 34999.94 1381.19 35499.51 34293.99 33498.20 33397.44 343
PVSNet_095.53 1995.85 32095.31 32297.47 31898.78 33193.48 34295.72 35099.40 24296.18 31897.37 33997.73 35095.73 27599.58 33795.49 31081.40 35499.36 220
tmp_tt95.75 32195.42 32196.76 32789.90 35994.42 33898.86 21097.87 33478.01 35399.30 21899.69 11297.70 21195.89 35599.29 5898.14 33799.95 1
MVS95.72 32294.63 32698.99 24998.56 33997.98 28499.30 10498.86 30372.71 35597.30 34099.08 29698.34 16299.74 28389.21 34598.33 33199.26 238
PAPM95.61 32394.71 32598.31 29799.12 29396.63 31596.66 34898.46 32290.77 34896.25 34898.68 33193.01 29999.69 29981.60 35497.86 34398.62 310
IB-MVS95.41 2095.30 32494.46 32797.84 30998.76 33395.33 33297.33 33696.07 34696.02 31995.37 35397.41 35476.17 36199.96 3497.54 21395.44 35298.22 330
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test12329.31 32533.05 33018.08 33925.93 36112.24 36197.53 32710.93 36211.78 35624.21 35750.08 36521.04 3628.60 35723.51 35532.43 35633.39 353
testmvs28.94 32633.33 32815.79 34026.03 3609.81 36296.77 34615.67 36111.55 35723.87 35850.74 36419.03 3638.53 35823.21 35633.07 35529.03 354
cdsmvs_eth3d_5k24.88 32733.17 3290.00 3410.00 3620.00 3630.00 35399.62 1340.00 3580.00 35999.13 28899.82 40.00 3590.00 3570.00 3570.00 355
pcd_1.5k_mvsjas16.61 32822.14 3310.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 359100.00 199.28 410.00 3590.00 3570.00 3570.00 355
uanet_test8.33 32911.11 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 359100.00 10.00 3640.00 3590.00 3570.00 3570.00 355
sosnet-low-res8.33 32911.11 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 359100.00 10.00 3640.00 3590.00 3570.00 3570.00 355
sosnet8.33 32911.11 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 359100.00 10.00 3640.00 3590.00 3570.00 3570.00 355
uncertanet8.33 32911.11 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 359100.00 10.00 3640.00 3590.00 3570.00 3570.00 355
Regformer8.33 32911.11 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 359100.00 10.00 3640.00 3590.00 3570.00 3570.00 355
uanet8.33 32911.11 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 359100.00 10.00 3640.00 3590.00 3570.00 3570.00 355
ab-mvs-re8.26 33511.02 3380.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 35999.16 2860.00 3640.00 3590.00 3570.00 3570.00 355
ZD-MVS99.43 22399.61 10099.43 23196.38 31499.11 24799.07 29797.86 20299.92 8594.04 33299.49 258
RE-MVS-def99.13 11699.54 17399.74 5499.26 11699.62 13499.16 13799.52 16599.64 14098.57 12997.27 23099.61 23199.54 149
IU-MVS99.69 12099.77 4099.22 28497.50 28399.69 10297.75 19499.70 19999.77 32
OPU-MVS99.29 21399.12 29399.44 13399.20 13499.40 23699.00 7298.84 35296.54 27399.60 23499.58 130
test_241102_TWO99.54 18599.13 14399.76 7499.63 15098.32 16599.92 8597.85 18799.69 20299.75 39
test_241102_ONE99.69 12099.82 2599.54 18599.12 14699.82 4999.49 21798.91 8399.52 341
9.1498.64 20699.45 21898.81 22099.60 15297.52 28299.28 21999.56 19498.53 13899.83 22995.36 31599.64 221
save fliter99.53 17899.25 18098.29 27099.38 25199.07 151
test_0728_THIRD99.18 13299.62 12999.61 16898.58 12899.91 10397.72 19699.80 15399.77 32
test_0728_SECOND99.83 2299.70 11799.79 3599.14 15599.61 14199.92 8597.88 18199.72 19399.77 32
test072699.69 12099.80 3399.24 12499.57 17099.16 13799.73 9199.65 13898.35 160
GSMVS99.14 265
test_part299.62 14399.67 7999.55 157
sam_mvs190.81 32399.14 265
sam_mvs90.52 327
ambc99.20 23099.35 24398.53 24799.17 14599.46 22399.67 10899.80 5298.46 14899.70 29397.92 17899.70 19999.38 214
MTGPAbinary99.53 194
test_post199.14 15551.63 36389.54 33499.82 23996.86 255
test_post52.41 36290.25 32999.86 184
patchmatchnet-post99.62 15990.58 32599.94 54
GG-mvs-BLEND97.36 32197.59 35496.87 31299.70 2388.49 36094.64 35497.26 35780.66 35699.12 34991.50 34196.50 34996.08 351
MTMP99.09 17398.59 317
gm-plane-assit97.59 35489.02 36093.47 34198.30 34399.84 21896.38 282
test9_res95.10 31899.44 26499.50 172
TEST999.35 24399.35 16198.11 28699.41 23594.83 33897.92 32798.99 30698.02 18999.85 202
test_899.34 25399.31 16798.08 29099.40 24294.90 33497.87 33198.97 31298.02 18999.84 218
agg_prior294.58 32699.46 26399.50 172
agg_prior99.35 24399.36 15799.39 24597.76 33699.85 202
TestCases99.63 10999.78 7299.64 8899.83 3298.63 20099.63 12299.72 9298.68 11499.75 28196.38 28299.83 13199.51 166
test_prior499.19 19698.00 298
test_prior297.95 30597.87 26598.05 32199.05 29997.90 19895.99 29599.49 258
test_prior99.46 16699.35 24399.22 18999.39 24599.69 29999.48 181
旧先验297.94 30795.33 32998.94 26199.88 15196.75 262
新几何298.04 294
新几何199.52 14999.50 19499.22 18999.26 27695.66 32698.60 29499.28 26697.67 21699.89 13695.95 29999.32 28499.45 192
旧先验199.49 19999.29 17099.26 27699.39 24097.67 21699.36 27999.46 190
无先验98.01 29699.23 28395.83 32299.85 20295.79 30499.44 197
原ACMM297.92 309
原ACMM199.37 19699.47 21098.87 23299.27 27496.74 31098.26 31099.32 25797.93 19699.82 23995.96 29899.38 27499.43 203
test22299.51 18899.08 21097.83 31499.29 27095.21 33198.68 28999.31 25997.28 23699.38 27499.43 203
testdata299.89 13695.99 295
segment_acmp98.37 158
testdata99.42 17799.51 18898.93 22599.30 26896.20 31798.87 27099.40 23698.33 16499.89 13696.29 28599.28 28899.44 197
testdata197.72 31797.86 268
test1299.54 14699.29 26699.33 16499.16 29098.43 30597.54 22499.82 23999.47 26199.48 181
plane_prior799.58 15199.38 151
plane_prior699.47 21099.26 17697.24 237
plane_prior599.54 18599.82 23995.84 30299.78 16499.60 116
plane_prior499.25 272
plane_prior399.31 16798.36 22899.14 243
plane_prior298.80 22398.94 165
plane_prior199.51 188
plane_prior99.24 18598.42 26297.87 26599.71 197
n20.00 363
nn0.00 363
door-mid99.83 32
lessismore_v099.64 10599.86 3099.38 15190.66 35799.89 2799.83 4194.56 28699.97 1799.56 2499.92 7399.57 136
LGP-MVS_train99.74 6099.82 4399.63 9299.73 7997.56 27899.64 11899.69 11299.37 3099.89 13696.66 26899.87 10799.69 51
test1199.29 270
door99.77 60
HQP5-MVS98.94 221
HQP-NCC99.31 26097.98 30197.45 28598.15 315
ACMP_Plane99.31 26097.98 30197.45 28598.15 315
BP-MVS94.73 322
HQP4-MVS98.15 31599.70 29399.53 154
HQP3-MVS99.37 25299.67 212
HQP2-MVS96.67 253
NP-MVS99.40 23299.13 20198.83 324
MDTV_nov1_ep13_2view91.44 35499.14 15597.37 29099.21 23291.78 31196.75 26299.03 286
MDTV_nov1_ep1397.73 27898.70 33690.83 35699.15 15398.02 33098.51 21398.82 27599.61 16890.98 31899.66 31996.89 25498.92 308
ACMMP++_ref99.94 61
ACMMP++99.79 158
Test By Simon98.41 152
ITE_SJBPF99.38 19399.63 14099.44 13399.73 7998.56 20699.33 21099.53 20498.88 8899.68 31096.01 29399.65 21999.02 288
DeepMVS_CXcopyleft97.98 30499.69 12096.95 30999.26 27675.51 35495.74 35298.28 34496.47 25999.62 33091.23 34297.89 34297.38 344