LTVRE_ROB | | 99.39 1 | 99.90 1 | 99.87 2 | 99.93 1 | 99.97 2 | 99.82 7 | 99.91 3 | 99.92 32 | 99.75 5 | 99.93 5 | 99.89 31 | 100.00 1 | 99.87 2 | 99.93 3 | 99.82 8 | 99.96 3 | 99.90 3 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v7n | | | 99.89 2 | 99.86 4 | 99.93 1 | 99.97 2 | 99.83 3 | 99.93 1 | 99.96 11 | 99.77 4 | 99.89 17 | 99.99 1 | 99.86 75 | 99.84 5 | 99.89 8 | 99.81 9 | 99.97 1 | 99.88 7 |
|
SixPastTwentyTwo | | | 99.89 2 | 99.85 6 | 99.93 1 | 99.97 2 | 99.88 2 | 99.92 2 | 99.97 1 | 99.66 13 | 99.94 4 | 99.94 11 | 99.74 103 | 99.81 7 | 99.97 1 | 99.89 1 | 99.96 3 | 99.89 5 |
|
test_part1 | | | 99.88 4 | 99.89 1 | 99.88 12 | 99.96 7 | 99.90 1 | 99.83 17 | 99.97 1 | 99.84 2 | 99.93 5 | 99.91 23 | 99.83 85 | 99.63 39 | 99.89 8 | 99.88 2 | 99.96 3 | 99.95 1 |
|
pmmvs6 | | | 99.88 4 | 99.87 2 | 99.89 9 | 99.97 2 | 99.76 16 | 99.89 5 | 99.96 11 | 99.82 3 | 99.90 15 | 99.92 16 | 99.95 25 | 99.68 29 | 99.93 3 | 99.88 2 | 99.95 8 | 99.86 10 |
|
anonymousdsp | | | 99.87 6 | 99.86 4 | 99.88 12 | 99.95 10 | 99.75 22 | 99.90 4 | 99.96 11 | 99.69 8 | 99.83 50 | 99.96 4 | 99.99 3 | 99.74 21 | 99.95 2 | 99.83 5 | 99.91 20 | 99.88 7 |
|
FC-MVSNet-test | | | 99.84 7 | 99.80 7 | 99.89 9 | 99.96 7 | 99.83 3 | 99.84 14 | 99.95 22 | 99.37 44 | 99.77 65 | 99.95 6 | 99.96 13 | 99.85 3 | 99.93 3 | 99.83 5 | 99.95 8 | 99.72 35 |
|
UniMVSNet_ETH3D | | | 99.81 8 | 99.79 8 | 99.85 19 | 99.98 1 | 99.76 16 | 99.73 44 | 99.96 11 | 99.68 10 | 99.87 28 | 99.59 79 | 99.91 55 | 99.58 47 | 99.90 7 | 99.85 4 | 99.96 3 | 99.81 17 |
|
TDRefinement | | | 99.81 8 | 99.76 10 | 99.86 16 | 99.83 83 | 99.53 55 | 99.89 5 | 99.91 37 | 99.73 6 | 99.88 22 | 99.83 44 | 99.96 13 | 99.76 16 | 99.91 6 | 99.81 9 | 99.86 36 | 99.59 62 |
|
WR-MVS | | | 99.79 10 | 99.68 14 | 99.91 5 | 99.95 10 | 99.83 3 | 99.87 9 | 99.96 11 | 99.39 43 | 99.93 5 | 99.87 35 | 99.29 148 | 99.77 14 | 99.83 18 | 99.72 16 | 99.97 1 | 99.82 14 |
|
MIMVSNet1 | | | 99.79 10 | 99.75 11 | 99.84 20 | 99.89 36 | 99.83 3 | 99.84 14 | 99.89 45 | 99.31 50 | 99.93 5 | 99.92 16 | 99.97 8 | 99.68 29 | 99.89 8 | 99.64 22 | 99.82 50 | 99.66 46 |
|
pm-mvs1 | | | 99.77 12 | 99.69 13 | 99.86 16 | 99.94 20 | 99.68 31 | 99.84 14 | 99.93 25 | 99.59 22 | 99.87 28 | 99.92 16 | 99.21 151 | 99.65 35 | 99.88 12 | 99.77 12 | 99.93 17 | 99.78 23 |
|
PEN-MVS | | | 99.77 12 | 99.65 17 | 99.91 5 | 99.95 10 | 99.80 12 | 99.86 10 | 99.97 1 | 99.08 78 | 99.89 17 | 99.69 63 | 99.68 114 | 99.84 5 | 99.81 22 | 99.64 22 | 99.95 8 | 99.81 17 |
|
EU-MVSNet | | | 99.76 14 | 99.74 12 | 99.78 37 | 99.82 88 | 99.81 10 | 99.88 7 | 99.87 50 | 99.31 50 | 99.75 71 | 99.91 23 | 99.76 102 | 99.78 12 | 99.84 17 | 99.74 15 | 99.56 128 | 99.81 17 |
|
Vis-MVSNet |  | | 99.76 14 | 99.78 9 | 99.75 45 | 99.92 26 | 99.77 15 | 99.83 17 | 99.85 61 | 99.43 37 | 99.85 41 | 99.84 41 | 100.00 1 | 99.13 110 | 99.83 18 | 99.66 20 | 99.90 22 | 99.90 3 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DTE-MVSNet | | | 99.75 16 | 99.61 23 | 99.92 4 | 99.95 10 | 99.81 10 | 99.86 10 | 99.96 11 | 99.18 66 | 99.92 10 | 99.66 66 | 99.45 133 | 99.85 3 | 99.80 23 | 99.56 28 | 99.96 3 | 99.79 22 |
|
tfpnnormal | | | 99.74 17 | 99.63 20 | 99.86 16 | 99.93 23 | 99.75 22 | 99.80 26 | 99.89 45 | 99.31 50 | 99.88 22 | 99.43 100 | 99.66 117 | 99.77 14 | 99.80 23 | 99.71 17 | 99.92 18 | 99.76 27 |
|
DeepC-MVS | | 99.05 5 | 99.74 17 | 99.64 18 | 99.84 20 | 99.90 33 | 99.39 86 | 99.79 27 | 99.81 91 | 99.69 8 | 99.90 15 | 99.87 35 | 99.98 4 | 99.81 7 | 99.62 49 | 99.32 55 | 99.83 47 | 99.65 49 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
thisisatest0515 | | | 99.73 19 | 99.67 15 | 99.81 27 | 99.93 23 | 99.74 24 | 99.68 52 | 99.91 37 | 99.59 22 | 99.88 22 | 99.73 53 | 99.81 90 | 99.55 51 | 99.59 50 | 99.53 33 | 99.89 25 | 99.70 40 |
|
PS-CasMVS | | | 99.73 19 | 99.59 28 | 99.90 8 | 99.95 10 | 99.80 12 | 99.85 13 | 99.97 1 | 98.95 96 | 99.86 34 | 99.73 53 | 99.36 140 | 99.81 7 | 99.83 18 | 99.67 19 | 99.95 8 | 99.83 13 |
|
WR-MVS_H | | | 99.73 19 | 99.61 23 | 99.88 12 | 99.95 10 | 99.82 7 | 99.83 17 | 99.96 11 | 99.01 88 | 99.84 45 | 99.71 60 | 99.41 139 | 99.74 21 | 99.77 28 | 99.70 18 | 99.95 8 | 99.82 14 |
|
TransMVSNet (Re) | | | 99.72 22 | 99.59 28 | 99.88 12 | 99.95 10 | 99.76 16 | 99.88 7 | 99.94 23 | 99.58 24 | 99.92 10 | 99.90 28 | 98.55 166 | 99.65 35 | 99.89 8 | 99.76 13 | 99.95 8 | 99.70 40 |
|
ACMH | | 99.11 4 | 99.72 22 | 99.63 20 | 99.84 20 | 99.87 48 | 99.59 44 | 99.83 17 | 99.88 49 | 99.46 36 | 99.87 28 | 99.66 66 | 99.95 25 | 99.76 16 | 99.73 33 | 99.47 41 | 99.84 42 | 99.52 92 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FC-MVSNet-train | | | 99.70 24 | 99.67 15 | 99.74 51 | 99.94 20 | 99.71 27 | 99.82 22 | 99.91 37 | 99.14 74 | 99.53 128 | 99.70 61 | 99.88 67 | 99.33 83 | 99.88 12 | 99.61 27 | 99.94 15 | 99.77 24 |
|
COLMAP_ROB |  | 99.18 2 | 99.70 24 | 99.60 26 | 99.81 27 | 99.84 77 | 99.37 93 | 99.76 32 | 99.84 70 | 99.54 30 | 99.82 53 | 99.64 70 | 99.95 25 | 99.75 18 | 99.79 25 | 99.56 28 | 99.83 47 | 99.37 123 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 98.94 6 | 99.69 26 | 99.59 28 | 99.81 27 | 99.88 42 | 99.41 83 | 99.75 36 | 99.86 54 | 99.43 37 | 99.80 57 | 99.54 84 | 99.97 8 | 99.73 24 | 99.82 21 | 99.52 35 | 99.85 39 | 99.43 109 |
|
test20.03 | | | 99.68 27 | 99.60 26 | 99.76 41 | 99.91 30 | 99.70 30 | 99.68 52 | 99.87 50 | 99.05 85 | 99.88 22 | 99.92 16 | 99.88 67 | 99.50 62 | 99.77 28 | 99.42 48 | 99.75 70 | 99.49 95 |
|
CP-MVSNet | | | 99.68 27 | 99.51 38 | 99.89 9 | 99.95 10 | 99.76 16 | 99.83 17 | 99.96 11 | 98.83 113 | 99.84 45 | 99.65 69 | 99.09 153 | 99.80 10 | 99.78 26 | 99.62 26 | 99.95 8 | 99.82 14 |
|
PVSNet_Blended_VisFu | | | 99.66 29 | 99.64 18 | 99.67 63 | 99.91 30 | 99.71 27 | 99.61 64 | 99.79 101 | 99.41 39 | 99.91 13 | 99.85 39 | 99.61 120 | 99.00 121 | 99.67 40 | 99.42 48 | 99.81 53 | 99.81 17 |
|
v10 | | | 99.65 30 | 99.51 38 | 99.81 27 | 99.83 83 | 99.61 40 | 99.75 36 | 99.94 23 | 99.56 26 | 99.76 68 | 99.94 11 | 99.60 122 | 99.73 24 | 99.11 124 | 99.01 94 | 99.85 39 | 99.74 30 |
|
CHOSEN 1792x2688 | | | 99.65 30 | 99.55 32 | 99.77 40 | 99.93 23 | 99.60 41 | 99.79 27 | 99.92 32 | 99.73 6 | 99.74 78 | 99.93 14 | 99.98 4 | 99.80 10 | 98.83 165 | 99.01 94 | 99.45 147 | 99.76 27 |
|
UA-Net | | | 99.64 32 | 99.62 22 | 99.66 65 | 99.97 2 | 99.82 7 | 99.14 151 | 99.96 11 | 98.95 96 | 99.52 134 | 99.38 108 | 99.86 75 | 99.55 51 | 99.72 34 | 99.66 20 | 99.80 57 | 99.94 2 |
|
Baseline_NR-MVSNet | | | 99.62 33 | 99.48 42 | 99.78 37 | 99.85 71 | 99.76 16 | 99.59 69 | 99.82 83 | 98.84 111 | 99.88 22 | 99.91 23 | 99.04 154 | 99.61 41 | 99.46 62 | 99.78 11 | 99.94 15 | 99.60 60 |
|
pmmvs-eth3d | | | 99.61 34 | 99.48 42 | 99.75 45 | 99.87 48 | 99.30 109 | 99.75 36 | 99.89 45 | 99.23 58 | 99.85 41 | 99.88 34 | 99.97 8 | 99.49 66 | 99.46 62 | 99.01 94 | 99.68 89 | 99.52 92 |
|
v1144 | | | 99.61 34 | 99.43 50 | 99.82 23 | 99.88 42 | 99.41 83 | 99.76 32 | 99.86 54 | 99.64 16 | 99.84 45 | 99.95 6 | 99.49 131 | 99.74 21 | 99.00 135 | 98.93 106 | 99.84 42 | 99.58 70 |
|
v8 | | | 99.61 34 | 99.45 48 | 99.79 36 | 99.80 94 | 99.59 44 | 99.73 44 | 99.93 25 | 99.48 34 | 99.77 65 | 99.90 28 | 99.48 132 | 99.67 32 | 99.11 124 | 98.89 110 | 99.84 42 | 99.73 32 |
|
casdiffmvs | | | 99.61 34 | 99.55 32 | 99.68 61 | 99.89 36 | 99.53 55 | 99.64 58 | 99.68 141 | 99.51 31 | 99.62 111 | 99.90 28 | 99.96 13 | 99.37 77 | 99.28 94 | 99.25 58 | 99.88 27 | 99.44 106 |
|
CSCG | | | 99.61 34 | 99.52 37 | 99.71 55 | 99.89 36 | 99.62 38 | 99.52 86 | 99.76 122 | 99.61 20 | 99.69 95 | 99.73 53 | 99.96 13 | 99.57 49 | 99.27 97 | 98.62 141 | 99.81 53 | 99.85 12 |
|
v1192 | | | 99.60 39 | 99.41 54 | 99.82 23 | 99.89 36 | 99.43 78 | 99.81 24 | 99.84 70 | 99.63 18 | 99.85 41 | 99.95 6 | 99.35 143 | 99.72 26 | 99.01 133 | 98.90 109 | 99.82 50 | 99.58 70 |
|
APDe-MVS | | | 99.60 39 | 99.48 42 | 99.73 53 | 99.85 71 | 99.51 66 | 99.75 36 | 99.85 61 | 99.17 67 | 99.81 56 | 99.56 82 | 99.94 35 | 99.44 73 | 99.42 71 | 99.22 59 | 99.67 91 | 99.54 84 |
|
v1921920 | | | 99.59 41 | 99.40 57 | 99.82 23 | 99.88 42 | 99.45 73 | 99.81 24 | 99.83 76 | 99.65 14 | 99.86 34 | 99.95 6 | 99.29 148 | 99.75 18 | 98.98 139 | 98.86 114 | 99.78 61 | 99.59 62 |
|
TranMVSNet+NR-MVSNet | | | 99.59 41 | 99.42 53 | 99.80 32 | 99.87 48 | 99.55 49 | 99.64 58 | 99.86 54 | 99.05 85 | 99.88 22 | 99.72 57 | 99.33 146 | 99.64 37 | 99.47 61 | 99.14 69 | 99.91 20 | 99.67 45 |
|
EG-PatchMatch MVS | | | 99.59 41 | 99.49 41 | 99.70 58 | 99.82 88 | 99.26 116 | 99.39 114 | 99.83 76 | 98.99 90 | 99.93 5 | 99.54 84 | 99.92 49 | 99.51 58 | 99.78 26 | 99.50 36 | 99.73 79 | 99.41 113 |
|
pmmvs5 | | | 99.58 44 | 99.47 45 | 99.70 58 | 99.84 77 | 99.50 67 | 99.58 73 | 99.80 98 | 98.98 93 | 99.73 84 | 99.92 16 | 99.81 90 | 99.49 66 | 99.28 94 | 99.05 88 | 99.77 65 | 99.73 32 |
|
v144192 | | | 99.58 44 | 99.39 58 | 99.80 32 | 99.87 48 | 99.44 75 | 99.77 29 | 99.84 70 | 99.64 16 | 99.86 34 | 99.93 14 | 99.35 143 | 99.72 26 | 98.92 145 | 98.82 118 | 99.74 75 | 99.66 46 |
|
v148 | | | 99.58 44 | 99.43 50 | 99.76 41 | 99.87 48 | 99.40 85 | 99.76 32 | 99.85 61 | 99.48 34 | 99.83 50 | 99.82 46 | 99.83 85 | 99.51 58 | 99.20 110 | 98.82 118 | 99.75 70 | 99.45 103 |
|
v1240 | | | 99.58 44 | 99.38 61 | 99.82 23 | 99.89 36 | 99.49 68 | 99.82 22 | 99.83 76 | 99.63 18 | 99.86 34 | 99.96 4 | 98.92 160 | 99.75 18 | 99.15 120 | 98.96 103 | 99.76 67 | 99.56 77 |
|
V42 | | | 99.57 48 | 99.41 54 | 99.75 45 | 99.84 77 | 99.37 93 | 99.73 44 | 99.83 76 | 99.41 39 | 99.75 71 | 99.89 31 | 99.42 137 | 99.60 43 | 99.15 120 | 98.96 103 | 99.76 67 | 99.65 49 |
|
TSAR-MVS + MP. | | | 99.56 49 | 99.54 35 | 99.58 82 | 99.69 137 | 99.14 137 | 99.73 44 | 99.45 178 | 99.50 32 | 99.35 165 | 99.60 77 | 99.93 41 | 99.50 62 | 99.56 53 | 99.37 53 | 99.77 65 | 99.64 52 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v2v482 | | | 99.56 49 | 99.35 64 | 99.81 27 | 99.87 48 | 99.35 99 | 99.75 36 | 99.85 61 | 99.56 26 | 99.87 28 | 99.95 6 | 99.44 135 | 99.66 33 | 98.91 148 | 98.76 124 | 99.86 36 | 99.45 103 |
|
Gipuma |  | | 99.55 51 | 99.23 83 | 99.91 5 | 99.87 48 | 99.52 62 | 99.86 10 | 99.93 25 | 99.87 1 | 99.96 2 | 96.72 201 | 99.55 127 | 99.97 1 | 99.77 28 | 99.46 43 | 99.87 33 | 99.74 30 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DVP-MVS | | | 99.53 52 | 99.51 38 | 99.55 90 | 99.82 88 | 99.58 46 | 99.54 81 | 99.78 106 | 99.28 56 | 99.21 175 | 99.70 61 | 99.97 8 | 99.32 86 | 99.32 82 | 99.14 69 | 99.64 104 | 99.58 70 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
NR-MVSNet | | | 99.52 53 | 99.29 73 | 99.80 32 | 99.96 7 | 99.38 89 | 99.55 77 | 99.81 91 | 98.86 108 | 99.87 28 | 99.51 94 | 98.81 162 | 99.72 26 | 99.86 15 | 99.04 90 | 99.89 25 | 99.54 84 |
|
zzz-MVS | | | 99.51 54 | 99.36 62 | 99.68 61 | 99.88 42 | 99.38 89 | 99.53 82 | 99.84 70 | 99.11 77 | 99.59 119 | 98.93 145 | 99.95 25 | 99.58 47 | 99.44 69 | 99.21 61 | 99.65 95 | 99.52 92 |
|
ACMMPR | | | 99.51 54 | 99.32 68 | 99.72 54 | 99.87 48 | 99.33 102 | 99.61 64 | 99.85 61 | 99.19 64 | 99.73 84 | 98.73 156 | 99.95 25 | 99.61 41 | 99.35 77 | 99.14 69 | 99.66 93 | 99.58 70 |
|
UniMVSNet (Re) | | | 99.50 56 | 99.29 73 | 99.75 45 | 99.86 62 | 99.47 71 | 99.51 89 | 99.82 83 | 98.90 104 | 99.89 17 | 99.64 70 | 99.00 155 | 99.55 51 | 99.32 82 | 99.08 83 | 99.90 22 | 99.59 62 |
|
FMVSNet1 | | | 99.50 56 | 99.57 31 | 99.42 111 | 99.67 144 | 99.65 34 | 99.60 68 | 99.91 37 | 99.40 41 | 99.39 158 | 99.83 44 | 99.27 150 | 98.14 159 | 99.68 37 | 99.50 36 | 99.81 53 | 99.68 42 |
|
HyFIR lowres test | | | 99.50 56 | 99.26 77 | 99.80 32 | 99.95 10 | 99.62 38 | 99.76 32 | 99.97 1 | 99.67 11 | 99.56 125 | 99.94 11 | 98.40 169 | 99.78 12 | 98.84 164 | 98.59 144 | 99.76 67 | 99.72 35 |
|
PM-MVS | | | 99.49 59 | 99.43 50 | 99.57 85 | 99.76 116 | 99.34 101 | 99.53 82 | 99.77 113 | 98.93 100 | 99.75 71 | 99.46 98 | 99.83 85 | 99.11 112 | 99.72 34 | 99.29 57 | 99.49 142 | 99.46 102 |
|
Anonymous20231206 | | | 99.48 60 | 99.31 70 | 99.69 60 | 99.79 98 | 99.57 47 | 99.63 62 | 99.79 101 | 98.88 106 | 99.91 13 | 99.72 57 | 99.93 41 | 99.59 44 | 99.24 100 | 98.63 140 | 99.43 152 | 99.18 140 |
|
DU-MVS | | | 99.48 60 | 99.26 77 | 99.75 45 | 99.85 71 | 99.38 89 | 99.50 93 | 99.81 91 | 98.86 108 | 99.89 17 | 99.51 94 | 98.98 156 | 99.59 44 | 99.46 62 | 98.97 101 | 99.87 33 | 99.63 53 |
|
RPSCF | | | 99.48 60 | 99.45 48 | 99.52 97 | 99.73 130 | 99.33 102 | 99.13 152 | 99.77 113 | 99.33 48 | 99.47 145 | 99.39 107 | 99.92 49 | 99.36 78 | 99.63 46 | 99.13 77 | 99.63 107 | 99.41 113 |
|
ACMMP_NAP | | | 99.47 63 | 99.33 66 | 99.63 73 | 99.85 71 | 99.28 114 | 99.56 76 | 99.83 76 | 98.75 119 | 99.48 142 | 99.03 142 | 99.95 25 | 99.47 72 | 99.48 58 | 99.19 62 | 99.57 125 | 99.59 62 |
|
Anonymous20231211 | | | 99.47 63 | 99.39 58 | 99.57 85 | 99.89 36 | 99.60 41 | 99.50 93 | 99.69 135 | 98.91 103 | 99.62 111 | 99.17 128 | 99.35 143 | 98.86 134 | 99.63 46 | 99.46 43 | 99.84 42 | 99.62 56 |
|
SteuartSystems-ACMMP | | | 99.47 63 | 99.22 86 | 99.76 41 | 99.88 42 | 99.36 95 | 99.65 57 | 99.84 70 | 98.47 143 | 99.80 57 | 98.68 159 | 99.96 13 | 99.68 29 | 99.37 74 | 99.06 85 | 99.72 82 | 99.66 46 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMM | | 98.37 12 | 99.47 63 | 99.23 83 | 99.74 51 | 99.86 62 | 99.19 131 | 99.68 52 | 99.86 54 | 99.16 71 | 99.71 92 | 98.52 170 | 99.95 25 | 99.62 40 | 99.35 77 | 99.02 92 | 99.74 75 | 99.42 112 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HFP-MVS | | | 99.46 67 | 99.30 71 | 99.65 67 | 99.82 88 | 99.25 119 | 99.50 93 | 99.82 83 | 99.23 58 | 99.58 123 | 98.86 147 | 99.94 35 | 99.56 50 | 99.14 122 | 99.12 80 | 99.63 107 | 99.56 77 |
|
LGP-MVS_train | | | 99.46 67 | 99.18 96 | 99.78 37 | 99.87 48 | 99.25 119 | 99.71 50 | 99.87 50 | 98.02 175 | 99.79 60 | 98.90 146 | 99.96 13 | 99.66 33 | 99.49 57 | 99.17 65 | 99.79 60 | 99.49 95 |
|
SED-MVS | | | 99.45 69 | 99.46 47 | 99.42 111 | 99.77 111 | 99.57 47 | 99.42 108 | 99.80 98 | 99.06 82 | 99.38 159 | 99.66 66 | 99.96 13 | 98.65 145 | 99.31 84 | 99.14 69 | 99.53 133 | 99.55 82 |
|
ETV-MVS | | | 99.45 69 | 99.32 68 | 99.60 78 | 99.79 98 | 99.60 41 | 99.40 113 | 99.78 106 | 97.88 182 | 99.83 50 | 99.33 111 | 99.70 111 | 98.97 124 | 99.74 31 | 99.43 47 | 99.84 42 | 99.58 70 |
|
ACMP | | 98.32 13 | 99.44 71 | 99.18 96 | 99.75 45 | 99.83 83 | 99.18 132 | 99.64 58 | 99.83 76 | 98.81 115 | 99.79 60 | 98.42 177 | 99.96 13 | 99.64 37 | 99.46 62 | 98.98 100 | 99.74 75 | 99.44 106 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DCV-MVSNet | | | 99.43 72 | 99.23 83 | 99.67 63 | 99.92 26 | 99.76 16 | 99.64 58 | 99.93 25 | 99.06 82 | 99.68 102 | 97.77 189 | 98.97 157 | 98.97 124 | 99.72 34 | 99.54 32 | 99.88 27 | 99.81 17 |
|
SMA-MVS |  | | 99.43 72 | 99.41 54 | 99.45 108 | 99.82 88 | 99.31 107 | 99.02 166 | 99.59 156 | 99.06 82 | 99.34 168 | 99.53 90 | 99.96 13 | 99.38 76 | 99.29 89 | 99.13 77 | 99.53 133 | 99.59 62 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
testgi | | | 99.43 72 | 99.47 45 | 99.38 120 | 99.90 33 | 99.67 33 | 99.30 132 | 99.73 130 | 98.64 131 | 99.53 128 | 99.52 92 | 99.90 58 | 98.08 162 | 99.65 44 | 99.40 52 | 99.75 70 | 99.55 82 |
|
DELS-MVS | | | 99.42 75 | 99.53 36 | 99.29 134 | 99.52 172 | 99.43 78 | 99.42 108 | 99.28 194 | 99.16 71 | 99.72 87 | 99.82 46 | 99.97 8 | 98.17 156 | 99.56 53 | 99.16 66 | 99.65 95 | 99.59 62 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator | | 99.16 3 | 99.42 75 | 99.22 86 | 99.65 67 | 99.78 103 | 99.13 141 | 99.50 93 | 99.85 61 | 99.40 41 | 99.80 57 | 98.59 166 | 99.79 98 | 99.30 90 | 99.20 110 | 99.06 85 | 99.71 85 | 99.35 126 |
|
DPE-MVS | | | 99.41 77 | 99.36 62 | 99.47 104 | 99.66 145 | 99.48 69 | 99.46 104 | 99.75 127 | 98.65 127 | 99.41 155 | 99.67 64 | 99.95 25 | 98.82 135 | 99.21 107 | 99.14 69 | 99.72 82 | 99.40 118 |
|
UniMVSNet_NR-MVSNet | | | 99.41 77 | 99.12 108 | 99.76 41 | 99.86 62 | 99.48 69 | 99.50 93 | 99.81 91 | 98.84 111 | 99.89 17 | 99.45 99 | 98.32 172 | 99.59 44 | 99.22 104 | 98.89 110 | 99.90 22 | 99.63 53 |
|
CP-MVS | | | 99.41 77 | 99.20 91 | 99.65 67 | 99.80 94 | 99.23 126 | 99.44 106 | 99.75 127 | 98.60 136 | 99.74 78 | 98.66 160 | 99.93 41 | 99.48 69 | 99.33 81 | 99.16 66 | 99.73 79 | 99.48 98 |
|
QAPM | | | 99.41 77 | 99.21 90 | 99.64 72 | 99.78 103 | 99.16 134 | 99.51 89 | 99.85 61 | 99.20 61 | 99.72 87 | 99.43 100 | 99.81 90 | 99.25 94 | 98.87 154 | 98.71 132 | 99.71 85 | 99.30 131 |
|
UGNet | | | 99.40 81 | 99.61 23 | 99.16 154 | 99.88 42 | 99.64 36 | 99.61 64 | 99.77 113 | 99.31 50 | 99.63 110 | 99.33 111 | 99.93 41 | 96.46 197 | 99.63 46 | 99.53 33 | 99.63 107 | 99.89 5 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet (Re-imp) | | | 99.40 81 | 99.28 75 | 99.55 90 | 99.92 26 | 99.68 31 | 99.31 127 | 99.87 50 | 98.69 124 | 99.16 177 | 99.08 137 | 98.64 165 | 99.20 98 | 99.65 44 | 99.46 43 | 99.83 47 | 99.72 35 |
|
OPM-MVS | | | 99.39 83 | 99.22 86 | 99.59 79 | 99.76 116 | 98.82 166 | 99.51 89 | 99.79 101 | 99.17 67 | 99.53 128 | 99.31 116 | 99.95 25 | 99.35 79 | 99.22 104 | 98.79 123 | 99.60 117 | 99.27 134 |
|
Fast-Effi-MVS+ | | | 99.39 83 | 99.18 96 | 99.63 73 | 99.86 62 | 99.28 114 | 99.45 105 | 99.91 37 | 98.47 143 | 99.61 114 | 99.50 96 | 99.57 124 | 99.17 99 | 99.24 100 | 98.66 137 | 99.78 61 | 99.59 62 |
|
LS3D | | | 99.39 83 | 99.28 75 | 99.52 97 | 99.77 111 | 99.39 86 | 99.55 77 | 99.82 83 | 98.93 100 | 99.64 108 | 98.52 170 | 99.67 116 | 98.58 149 | 99.74 31 | 99.63 24 | 99.75 70 | 99.06 156 |
|
CS-MVS | | | 99.38 86 | 99.19 93 | 99.59 79 | 99.86 62 | 99.65 34 | 99.28 135 | 99.77 113 | 97.97 178 | 99.75 71 | 98.42 177 | 99.70 111 | 99.03 119 | 99.57 52 | 99.42 48 | 99.87 33 | 99.61 58 |
|
diffmvs | | | 99.38 86 | 99.33 66 | 99.45 108 | 99.87 48 | 99.39 86 | 99.28 135 | 99.58 159 | 99.55 28 | 99.50 138 | 99.85 39 | 99.85 81 | 98.94 129 | 98.58 177 | 98.68 135 | 99.51 139 | 99.39 120 |
|
CANet | | | 99.36 88 | 99.39 58 | 99.34 131 | 99.80 94 | 99.35 99 | 99.41 112 | 99.47 176 | 99.20 61 | 99.74 78 | 99.54 84 | 99.68 114 | 98.05 164 | 99.23 102 | 98.97 101 | 99.57 125 | 99.73 32 |
|
MVS_0304 | | | 99.36 88 | 99.35 64 | 99.37 126 | 99.85 71 | 99.36 95 | 99.39 114 | 99.56 162 | 99.36 46 | 99.75 71 | 99.23 122 | 99.90 58 | 97.97 171 | 99.00 135 | 98.83 117 | 99.69 88 | 99.77 24 |
|
ACMMP |  | | 99.36 88 | 99.06 115 | 99.71 55 | 99.86 62 | 99.36 95 | 99.63 62 | 99.85 61 | 98.33 158 | 99.72 87 | 97.73 191 | 99.94 35 | 99.53 54 | 99.37 74 | 99.13 77 | 99.65 95 | 99.56 77 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SD-MVS | | | 99.35 91 | 99.26 77 | 99.46 106 | 99.66 145 | 99.15 136 | 98.92 175 | 99.67 144 | 99.55 28 | 99.35 165 | 98.83 149 | 99.91 55 | 99.35 79 | 99.19 113 | 98.53 146 | 99.78 61 | 99.68 42 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS |  | | 99.35 91 | 99.09 113 | 99.65 67 | 99.84 77 | 99.22 127 | 99.59 69 | 99.78 106 | 98.13 167 | 99.67 103 | 98.44 174 | 99.93 41 | 99.43 75 | 99.31 84 | 99.09 82 | 99.60 117 | 99.49 95 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
pmmvs4 | | | 99.34 93 | 99.15 103 | 99.57 85 | 99.77 111 | 98.90 158 | 99.51 89 | 99.77 113 | 99.07 80 | 99.73 84 | 99.72 57 | 99.84 83 | 99.07 114 | 98.85 159 | 98.39 155 | 99.55 131 | 99.27 134 |
|
EPP-MVSNet | | | 99.34 93 | 99.10 111 | 99.62 77 | 99.94 20 | 99.74 24 | 99.66 56 | 99.80 98 | 99.07 80 | 98.93 188 | 99.61 74 | 96.13 186 | 99.49 66 | 99.67 40 | 99.63 24 | 99.92 18 | 99.86 10 |
|
TSAR-MVS + GP. | | | 99.33 95 | 99.17 100 | 99.51 99 | 99.71 135 | 99.00 153 | 98.84 184 | 99.71 132 | 98.23 164 | 99.74 78 | 99.53 90 | 99.90 58 | 99.35 79 | 99.38 73 | 98.85 115 | 99.72 82 | 99.31 129 |
|
PHI-MVS | | | 99.33 95 | 99.19 93 | 99.49 102 | 99.69 137 | 99.25 119 | 99.27 137 | 99.59 156 | 98.44 147 | 99.78 64 | 99.15 129 | 99.92 49 | 98.95 128 | 99.39 72 | 99.04 90 | 99.64 104 | 99.18 140 |
|
MSP-MVS | | | 99.32 97 | 99.26 77 | 99.38 120 | 99.76 116 | 99.54 52 | 99.42 108 | 99.72 131 | 98.92 102 | 98.84 195 | 98.96 144 | 99.96 13 | 98.91 130 | 98.72 172 | 99.14 69 | 99.63 107 | 99.58 70 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 99.32 97 | 98.99 124 | 99.71 55 | 99.86 62 | 99.31 107 | 99.59 69 | 99.86 54 | 97.51 191 | 99.75 71 | 98.23 181 | 99.94 35 | 99.53 54 | 99.29 89 | 99.08 83 | 99.65 95 | 99.54 84 |
|
DeepC-MVS_fast | | 98.69 9 | 99.32 97 | 99.13 106 | 99.53 93 | 99.63 152 | 98.78 169 | 99.53 82 | 99.33 192 | 99.08 78 | 99.77 65 | 99.18 127 | 99.89 61 | 99.29 91 | 99.00 135 | 98.70 133 | 99.65 95 | 99.30 131 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSDG | | | 99.32 97 | 99.09 113 | 99.58 82 | 99.75 120 | 98.74 173 | 99.36 119 | 99.54 165 | 99.14 74 | 99.72 87 | 99.24 120 | 99.89 61 | 99.51 58 | 99.30 86 | 98.76 124 | 99.62 113 | 98.54 175 |
|
TSAR-MVS + ACMM | | | 99.31 101 | 99.26 77 | 99.37 126 | 99.66 145 | 98.97 156 | 99.20 144 | 99.56 162 | 99.33 48 | 99.19 176 | 99.54 84 | 99.91 55 | 99.32 86 | 99.12 123 | 98.34 158 | 99.29 166 | 99.65 49 |
|
3Dnovator+ | | 98.92 7 | 99.31 101 | 99.03 119 | 99.63 73 | 99.77 111 | 98.90 158 | 99.52 86 | 99.81 91 | 99.37 44 | 99.72 87 | 98.03 186 | 99.73 106 | 99.32 86 | 98.99 138 | 98.81 121 | 99.67 91 | 99.36 124 |
|
X-MVS | | | 99.30 103 | 98.99 124 | 99.66 65 | 99.85 71 | 99.30 109 | 99.49 100 | 99.82 83 | 98.32 159 | 99.69 95 | 97.31 198 | 99.93 41 | 99.50 62 | 99.37 74 | 99.16 66 | 99.60 117 | 99.53 87 |
|
MVS_111021_HR | | | 99.30 103 | 99.14 104 | 99.48 103 | 99.58 168 | 99.25 119 | 99.27 137 | 99.61 151 | 98.74 120 | 99.66 105 | 99.02 143 | 99.84 83 | 99.33 83 | 99.20 110 | 98.76 124 | 99.44 149 | 99.18 140 |
|
TAPA-MVS | | 98.54 10 | 99.30 103 | 99.24 82 | 99.36 130 | 99.44 187 | 98.77 171 | 99.00 168 | 99.41 183 | 99.23 58 | 99.60 117 | 99.50 96 | 99.86 75 | 99.15 106 | 99.29 89 | 98.95 105 | 99.56 128 | 99.08 153 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 99.30 103 | 99.01 123 | 99.63 73 | 99.75 120 | 98.89 161 | 99.35 122 | 99.60 153 | 98.53 141 | 99.86 34 | 99.57 81 | 99.94 35 | 99.52 57 | 98.96 140 | 98.10 171 | 99.70 87 | 99.08 153 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
USDC | | | 99.29 107 | 98.98 126 | 99.65 67 | 99.72 132 | 98.87 164 | 99.47 102 | 99.66 147 | 99.35 47 | 99.87 28 | 99.58 80 | 99.87 74 | 99.51 58 | 98.85 159 | 97.93 177 | 99.65 95 | 98.38 179 |
|
PMVS |  | 94.32 17 | 99.27 108 | 99.55 32 | 98.94 172 | 99.60 161 | 99.43 78 | 99.39 114 | 99.54 165 | 98.99 90 | 99.69 95 | 99.60 77 | 99.81 90 | 95.68 202 | 99.88 12 | 99.83 5 | 99.73 79 | 99.31 129 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVS_111021_LR | | | 99.25 109 | 99.13 106 | 99.39 116 | 99.50 180 | 99.14 137 | 99.23 142 | 99.50 173 | 98.67 125 | 99.61 114 | 99.12 133 | 99.81 90 | 99.16 102 | 99.28 94 | 98.67 136 | 99.35 162 | 99.21 139 |
|
baseline | | | 99.24 110 | 99.30 71 | 99.17 153 | 99.78 103 | 99.14 137 | 99.10 156 | 99.69 135 | 98.97 94 | 99.49 140 | 99.84 41 | 99.88 67 | 97.99 170 | 98.85 159 | 98.73 130 | 98.98 181 | 99.72 35 |
|
EIA-MVS | | | 99.23 111 | 99.03 119 | 99.47 104 | 99.83 83 | 99.64 36 | 99.16 148 | 99.81 91 | 97.11 198 | 99.65 107 | 98.44 174 | 99.78 101 | 98.61 148 | 99.46 62 | 99.22 59 | 99.75 70 | 99.59 62 |
|
HPM-MVS++ |  | | 99.23 111 | 98.98 126 | 99.53 93 | 99.75 120 | 99.02 151 | 99.44 106 | 99.77 113 | 98.65 127 | 99.52 134 | 98.72 157 | 99.92 49 | 99.33 83 | 98.77 170 | 98.40 154 | 99.40 156 | 99.36 124 |
|
PMMVS2 | | | 99.23 111 | 99.22 86 | 99.24 141 | 99.80 94 | 99.14 137 | 99.50 93 | 99.82 83 | 99.12 76 | 98.41 209 | 99.91 23 | 99.98 4 | 98.51 150 | 99.48 58 | 98.76 124 | 99.38 158 | 98.14 187 |
|
CPTT-MVS | | | 99.21 114 | 98.89 137 | 99.58 82 | 99.72 132 | 99.12 144 | 99.30 132 | 99.76 122 | 98.62 132 | 99.66 105 | 97.51 194 | 99.89 61 | 99.48 69 | 99.01 133 | 98.64 139 | 99.58 124 | 99.40 118 |
|
TinyColmap | | | 99.21 114 | 98.89 137 | 99.59 79 | 99.61 157 | 98.61 182 | 99.47 102 | 99.67 144 | 99.02 87 | 99.82 53 | 99.15 129 | 99.74 103 | 99.35 79 | 99.17 118 | 98.33 159 | 99.63 107 | 98.22 185 |
|
Effi-MVS+ | | | 99.20 116 | 98.93 132 | 99.50 101 | 99.79 98 | 99.26 116 | 98.82 187 | 99.96 11 | 98.37 157 | 99.60 117 | 99.12 133 | 98.36 170 | 99.05 117 | 98.93 143 | 98.82 118 | 99.78 61 | 99.68 42 |
|
PVSNet_BlendedMVS | | | 99.20 116 | 99.17 100 | 99.23 142 | 99.69 137 | 99.33 102 | 99.04 161 | 99.13 197 | 98.41 153 | 99.79 60 | 99.33 111 | 99.36 140 | 98.10 160 | 99.29 89 | 98.87 112 | 99.65 95 | 99.56 77 |
|
PVSNet_Blended | | | 99.20 116 | 99.17 100 | 99.23 142 | 99.69 137 | 99.33 102 | 99.04 161 | 99.13 197 | 98.41 153 | 99.79 60 | 99.33 111 | 99.36 140 | 98.10 160 | 99.29 89 | 98.87 112 | 99.65 95 | 99.56 77 |
|
MCST-MVS | | | 99.17 119 | 98.82 145 | 99.57 85 | 99.75 120 | 98.70 177 | 99.25 141 | 99.69 135 | 98.62 132 | 99.59 119 | 98.54 168 | 99.79 98 | 99.53 54 | 98.48 181 | 98.15 167 | 99.64 104 | 99.43 109 |
|
APD-MVS |  | | 99.17 119 | 98.92 133 | 99.46 106 | 99.78 103 | 99.24 124 | 99.34 123 | 99.78 106 | 97.79 185 | 99.48 142 | 98.25 180 | 99.88 67 | 98.77 138 | 99.18 116 | 98.92 107 | 99.63 107 | 99.18 140 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
OpenMVS |  | 98.82 8 | 99.17 119 | 98.85 141 | 99.53 93 | 99.75 120 | 99.06 149 | 99.36 119 | 99.82 83 | 98.28 161 | 99.76 68 | 98.47 172 | 99.61 120 | 98.91 130 | 98.80 167 | 98.70 133 | 99.60 117 | 99.04 160 |
|
IterMVS-LS | | | 99.16 122 | 98.82 145 | 99.57 85 | 99.87 48 | 99.71 27 | 99.58 73 | 99.92 32 | 99.24 57 | 99.71 92 | 99.73 53 | 95.79 187 | 98.91 130 | 98.82 166 | 98.66 137 | 99.43 152 | 99.77 24 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DeepPCF-MVS | | 98.38 11 | 99.16 122 | 99.20 91 | 99.12 158 | 99.20 204 | 98.71 176 | 98.85 183 | 99.06 200 | 99.17 67 | 98.96 187 | 99.61 74 | 99.86 75 | 99.29 91 | 99.17 118 | 98.72 131 | 99.36 160 | 99.15 148 |
|
IterMVS-SCA-FT | | | 99.15 124 | 98.96 129 | 99.38 120 | 99.87 48 | 99.54 52 | 99.53 82 | 99.79 101 | 98.94 98 | 99.82 53 | 99.92 16 | 97.65 178 | 98.82 135 | 98.95 142 | 98.26 161 | 98.45 190 | 99.47 101 |
|
CDS-MVSNet | | | 99.15 124 | 99.10 111 | 99.21 148 | 99.59 165 | 99.22 127 | 99.48 101 | 99.47 176 | 98.89 105 | 99.41 155 | 99.84 41 | 98.11 175 | 97.76 174 | 99.26 99 | 99.01 94 | 99.57 125 | 99.38 121 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IS_MVSNet | | | 99.15 124 | 99.12 108 | 99.19 151 | 99.92 26 | 99.73 26 | 99.55 77 | 99.86 54 | 98.45 146 | 96.91 215 | 98.74 155 | 98.33 171 | 99.02 120 | 99.54 55 | 99.47 41 | 99.88 27 | 99.61 58 |
|
MDA-MVSNet-bldmvs | | | 99.11 127 | 99.11 110 | 99.12 158 | 99.91 30 | 99.38 89 | 99.77 29 | 98.72 204 | 99.31 50 | 99.85 41 | 99.43 100 | 98.26 173 | 99.48 69 | 99.85 16 | 98.47 149 | 96.99 201 | 99.08 153 |
|
OMC-MVS | | | 99.11 127 | 98.95 130 | 99.29 134 | 99.37 193 | 98.57 184 | 99.19 145 | 99.20 196 | 98.87 107 | 99.58 123 | 99.13 131 | 99.88 67 | 99.00 121 | 99.19 113 | 98.46 150 | 99.43 152 | 98.57 174 |
|
MVS_Test | | | 99.09 129 | 98.92 133 | 99.29 134 | 99.61 157 | 99.07 148 | 99.04 161 | 99.81 91 | 98.58 138 | 99.37 162 | 99.74 51 | 98.87 161 | 98.41 153 | 98.61 176 | 98.01 175 | 99.50 141 | 99.57 76 |
|
CNVR-MVS | | | 99.08 130 | 98.83 142 | 99.37 126 | 99.61 157 | 98.74 173 | 99.15 149 | 99.54 165 | 98.59 137 | 99.37 162 | 98.15 183 | 99.88 67 | 99.08 113 | 98.91 148 | 98.46 150 | 99.48 143 | 99.06 156 |
|
IterMVS | | | 99.08 130 | 98.90 136 | 99.29 134 | 99.87 48 | 99.53 55 | 99.52 86 | 99.77 113 | 98.94 98 | 99.75 71 | 99.91 23 | 97.52 182 | 98.72 142 | 98.86 157 | 98.14 168 | 98.09 193 | 99.43 109 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet2 | | | 99.07 132 | 99.19 93 | 98.93 174 | 99.02 209 | 99.53 55 | 99.31 127 | 99.84 70 | 98.86 108 | 98.88 191 | 99.64 70 | 98.44 168 | 96.92 191 | 99.35 77 | 99.00 98 | 99.61 114 | 99.53 87 |
|
CVMVSNet | | | 99.06 133 | 98.88 140 | 99.28 138 | 99.52 172 | 99.53 55 | 99.42 108 | 99.69 135 | 98.74 120 | 98.27 211 | 99.89 31 | 95.48 190 | 99.44 73 | 99.46 62 | 99.33 54 | 99.32 165 | 99.75 29 |
|
CDPH-MVS | | | 99.05 134 | 98.63 152 | 99.54 92 | 99.75 120 | 98.78 169 | 99.59 69 | 99.68 141 | 97.79 185 | 99.37 162 | 98.20 182 | 99.86 75 | 99.14 108 | 98.58 177 | 98.01 175 | 99.68 89 | 99.16 146 |
|
TAMVS | | | 99.05 134 | 99.02 122 | 99.08 163 | 99.69 137 | 99.22 127 | 99.33 124 | 99.32 193 | 99.16 71 | 98.97 186 | 99.87 35 | 97.36 183 | 97.76 174 | 99.21 107 | 99.00 98 | 99.44 149 | 99.33 127 |
|
CANet_DTU | | | 99.03 136 | 99.18 96 | 98.87 177 | 99.58 168 | 99.03 150 | 99.18 146 | 99.41 183 | 98.65 127 | 99.74 78 | 99.55 83 | 99.71 108 | 96.13 200 | 99.19 113 | 98.92 107 | 99.17 175 | 99.18 140 |
|
Effi-MVS+-dtu | | | 99.01 137 | 99.05 116 | 98.98 167 | 99.60 161 | 99.13 141 | 99.03 165 | 99.61 151 | 98.52 142 | 99.01 183 | 98.53 169 | 99.83 85 | 96.95 190 | 99.48 58 | 98.59 144 | 99.66 93 | 99.25 138 |
|
canonicalmvs | | | 99.00 138 | 98.68 151 | 99.37 126 | 99.68 143 | 99.42 82 | 98.94 174 | 99.89 45 | 99.00 89 | 98.99 184 | 98.43 176 | 95.69 188 | 98.96 127 | 99.18 116 | 99.18 63 | 99.74 75 | 99.88 7 |
|
MIMVSNet | | | 99.00 138 | 99.03 119 | 98.97 171 | 99.32 199 | 99.32 106 | 99.39 114 | 99.91 37 | 98.41 153 | 98.76 198 | 99.24 120 | 99.17 152 | 97.13 184 | 99.30 86 | 98.80 122 | 99.29 166 | 99.01 161 |
|
CHOSEN 280x420 | | | 98.99 140 | 98.91 135 | 99.07 164 | 99.77 111 | 99.26 116 | 99.55 77 | 99.92 32 | 98.62 132 | 98.67 202 | 99.62 73 | 97.20 184 | 98.44 152 | 99.50 56 | 99.18 63 | 98.08 194 | 98.99 164 |
|
xxxxxxxxxxxxxcwj | | | 98.97 141 | 98.97 128 | 98.98 167 | 99.64 150 | 98.89 161 | 98.00 213 | 99.58 159 | 98.42 150 | 99.08 181 | 98.63 162 | 99.96 13 | 98.04 166 | 99.02 131 | 98.76 124 | 99.52 135 | 99.13 149 |
|
SF-MVS | | | 98.96 142 | 98.95 130 | 98.98 167 | 99.64 150 | 98.89 161 | 98.00 213 | 99.58 159 | 98.42 150 | 99.08 181 | 98.63 162 | 99.83 85 | 98.04 166 | 99.02 131 | 98.76 124 | 99.52 135 | 99.13 149 |
|
GBi-Net | | | 98.96 142 | 99.05 116 | 98.85 178 | 99.02 209 | 99.53 55 | 99.31 127 | 99.78 106 | 98.13 167 | 98.48 205 | 99.43 100 | 97.58 179 | 96.92 191 | 99.68 37 | 99.50 36 | 99.61 114 | 99.53 87 |
|
test1 | | | 98.96 142 | 99.05 116 | 98.85 178 | 99.02 209 | 99.53 55 | 99.31 127 | 99.78 106 | 98.13 167 | 98.48 205 | 99.43 100 | 97.58 179 | 96.92 191 | 99.68 37 | 99.50 36 | 99.61 114 | 99.53 87 |
|
PCF-MVS | | 97.86 15 | 98.95 145 | 98.53 157 | 99.44 110 | 99.70 136 | 98.80 168 | 98.96 170 | 99.69 135 | 98.65 127 | 99.59 119 | 99.33 111 | 99.94 35 | 99.12 111 | 98.01 191 | 97.11 188 | 99.59 123 | 97.83 191 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MS-PatchMatch | | | 98.94 146 | 98.71 150 | 99.21 148 | 99.52 172 | 98.22 200 | 98.97 169 | 99.53 170 | 98.76 117 | 99.50 138 | 98.59 166 | 99.56 126 | 98.68 143 | 98.63 175 | 98.45 152 | 99.05 178 | 98.73 171 |
|
AdaColmap |  | | 98.93 147 | 98.53 157 | 99.39 116 | 99.52 172 | 98.65 180 | 99.11 155 | 99.59 156 | 98.08 171 | 99.44 148 | 97.46 196 | 99.45 133 | 99.24 95 | 98.92 145 | 98.44 153 | 99.44 149 | 98.73 171 |
|
MSLP-MVS++ | | | 98.92 148 | 98.73 149 | 99.14 155 | 99.44 187 | 99.00 153 | 98.36 203 | 99.35 189 | 98.82 114 | 99.38 159 | 96.06 203 | 99.79 98 | 99.07 114 | 98.88 153 | 99.05 88 | 99.27 168 | 99.53 87 |
|
new_pmnet | | | 98.91 149 | 98.89 137 | 98.94 172 | 99.51 178 | 98.27 196 | 99.15 149 | 98.66 205 | 99.17 67 | 99.48 142 | 99.79 49 | 99.80 96 | 98.49 151 | 99.23 102 | 98.20 165 | 98.34 191 | 97.74 195 |
|
train_agg | | | 98.89 150 | 98.48 162 | 99.38 120 | 99.69 137 | 98.76 172 | 99.31 127 | 99.60 153 | 97.71 187 | 98.98 185 | 97.89 187 | 99.89 61 | 99.29 91 | 98.32 182 | 97.59 184 | 99.42 155 | 99.16 146 |
|
NCCC | | | 98.88 151 | 98.42 163 | 99.42 111 | 99.62 153 | 98.81 167 | 99.10 156 | 99.54 165 | 98.76 117 | 99.53 128 | 95.97 204 | 99.80 96 | 99.16 102 | 98.49 180 | 98.06 174 | 99.55 131 | 99.05 158 |
|
PLC |  | 97.83 16 | 98.88 151 | 98.52 159 | 99.30 133 | 99.45 185 | 98.60 183 | 98.65 193 | 99.49 174 | 98.66 126 | 99.59 119 | 96.33 202 | 99.59 123 | 99.17 99 | 98.87 154 | 98.53 146 | 99.46 145 | 99.05 158 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
pmmvs3 | | | 98.85 153 | 98.60 153 | 99.13 156 | 99.66 145 | 98.72 175 | 99.37 118 | 99.06 200 | 98.44 147 | 99.76 68 | 99.74 51 | 99.55 127 | 99.15 106 | 99.04 129 | 96.00 196 | 97.80 195 | 98.72 173 |
|
Fast-Effi-MVS+-dtu | | | 98.82 154 | 98.80 147 | 98.84 180 | 99.51 178 | 98.90 158 | 98.96 170 | 99.91 37 | 98.29 160 | 99.11 180 | 98.47 172 | 99.63 119 | 96.03 201 | 99.21 107 | 98.12 169 | 99.52 135 | 99.01 161 |
|
CNLPA | | | 98.82 154 | 98.52 159 | 99.18 152 | 99.21 203 | 98.50 188 | 98.73 191 | 99.34 191 | 98.73 122 | 99.56 125 | 97.55 193 | 99.42 137 | 99.06 116 | 98.93 143 | 98.10 171 | 99.21 174 | 98.38 179 |
|
PatchMatch-RL | | | 98.80 156 | 98.52 159 | 99.12 158 | 99.38 192 | 98.70 177 | 98.56 196 | 99.55 164 | 97.81 184 | 99.34 168 | 97.57 192 | 99.31 147 | 98.67 144 | 99.27 97 | 98.62 141 | 99.22 173 | 98.35 181 |
|
thisisatest0530 | | | 98.78 157 | 98.26 166 | 99.39 116 | 99.78 103 | 99.43 78 | 99.07 158 | 99.64 149 | 98.44 147 | 99.42 153 | 99.22 123 | 92.68 201 | 98.63 146 | 99.30 86 | 99.14 69 | 99.80 57 | 99.60 60 |
|
tttt0517 | | | 98.77 158 | 98.25 168 | 99.38 120 | 99.79 98 | 99.46 72 | 99.07 158 | 99.64 149 | 98.40 156 | 99.38 159 | 99.21 125 | 92.54 202 | 98.63 146 | 99.34 80 | 99.14 69 | 99.80 57 | 99.62 56 |
|
DI_MVS_plusplus_trai | | | 98.74 159 | 98.08 176 | 99.51 99 | 99.79 98 | 99.29 113 | 99.61 64 | 99.60 153 | 99.20 61 | 99.46 146 | 99.09 136 | 92.93 195 | 98.97 124 | 98.27 185 | 98.35 157 | 99.65 95 | 99.45 103 |
|
TSAR-MVS + COLMAP | | | 98.74 159 | 98.58 155 | 98.93 174 | 99.29 200 | 98.23 197 | 99.04 161 | 99.24 195 | 98.79 116 | 98.80 197 | 99.37 109 | 99.71 108 | 98.06 163 | 98.02 190 | 97.46 186 | 99.16 176 | 98.48 177 |
|
MDTV_nov1_ep13_2view | | | 98.73 161 | 98.31 165 | 99.22 145 | 99.75 120 | 99.24 124 | 99.75 36 | 99.93 25 | 99.31 50 | 99.84 45 | 99.86 38 | 99.81 90 | 99.31 89 | 97.40 198 | 94.77 197 | 96.73 203 | 97.81 192 |
|
PMMVS | | | 98.71 162 | 98.55 156 | 98.90 176 | 99.28 201 | 98.45 190 | 98.53 199 | 99.45 178 | 97.67 189 | 99.15 179 | 98.76 153 | 99.54 129 | 97.79 173 | 98.77 170 | 98.23 163 | 99.16 176 | 98.46 178 |
|
HQP-MVS | | | 98.70 163 | 98.19 172 | 99.28 138 | 99.61 157 | 98.52 186 | 98.71 192 | 99.35 189 | 97.97 178 | 99.53 128 | 97.38 197 | 99.85 81 | 99.14 108 | 97.53 194 | 96.85 192 | 99.36 160 | 99.26 137 |
|
N_pmnet | | | 98.64 164 | 98.23 171 | 99.11 161 | 99.78 103 | 99.25 119 | 99.75 36 | 99.39 187 | 99.65 14 | 99.70 94 | 99.78 50 | 99.89 61 | 98.81 137 | 97.60 193 | 94.28 198 | 97.24 200 | 97.15 199 |
|
CMPMVS |  | 76.62 19 | 98.64 164 | 98.60 153 | 98.68 185 | 99.33 197 | 97.07 212 | 98.11 211 | 98.50 206 | 97.69 188 | 99.26 171 | 98.35 179 | 99.66 117 | 97.62 177 | 99.43 70 | 99.02 92 | 99.24 171 | 99.01 161 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet3 | | | 98.63 166 | 98.75 148 | 98.49 191 | 98.10 215 | 99.44 75 | 99.02 166 | 99.78 106 | 98.13 167 | 98.48 205 | 99.43 100 | 97.58 179 | 96.16 199 | 98.85 159 | 98.39 155 | 99.40 156 | 99.41 113 |
|
GA-MVS | | | 98.59 167 | 98.15 173 | 99.09 162 | 99.59 165 | 99.13 141 | 98.84 184 | 99.52 172 | 98.61 135 | 99.35 165 | 99.67 64 | 93.03 194 | 97.73 176 | 98.90 152 | 98.26 161 | 99.51 139 | 99.48 98 |
|
MAR-MVS | | | 98.54 168 | 98.15 173 | 98.98 167 | 99.37 193 | 98.09 203 | 98.56 196 | 99.65 148 | 96.11 213 | 99.27 170 | 97.16 200 | 99.50 130 | 98.03 168 | 98.87 154 | 98.23 163 | 99.01 179 | 99.13 149 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
new-patchmatchnet | | | 98.49 169 | 97.60 178 | 99.53 93 | 99.90 33 | 99.55 49 | 99.77 29 | 99.48 175 | 99.67 11 | 99.86 34 | 99.98 3 | 99.98 4 | 99.50 62 | 96.90 200 | 91.52 204 | 98.67 187 | 95.62 204 |
|
FPMVS | | | 98.48 170 | 98.83 142 | 98.07 201 | 99.09 207 | 97.98 206 | 99.07 158 | 98.04 212 | 98.99 90 | 99.22 174 | 98.85 148 | 99.43 136 | 93.79 209 | 99.66 42 | 99.11 81 | 99.24 171 | 97.76 193 |
|
MVS-HIRNet | | | 98.45 171 | 98.25 168 | 98.69 184 | 99.12 205 | 97.81 211 | 98.55 198 | 99.85 61 | 98.58 138 | 99.67 103 | 99.61 74 | 99.86 75 | 97.46 180 | 97.95 192 | 96.37 194 | 97.49 197 | 97.56 196 |
|
test0.0.03 1 | | | 98.41 172 | 98.41 164 | 98.40 195 | 99.62 153 | 99.16 134 | 98.87 181 | 99.41 183 | 97.15 196 | 96.60 217 | 99.31 116 | 97.00 185 | 96.55 196 | 98.91 148 | 98.51 148 | 99.37 159 | 98.82 169 |
|
gg-mvs-nofinetune | | | 98.40 173 | 98.26 166 | 98.57 189 | 99.83 83 | 98.86 165 | 98.77 190 | 99.97 1 | 99.57 25 | 99.99 1 | 99.99 1 | 93.81 192 | 93.50 210 | 98.91 148 | 98.20 165 | 99.33 164 | 98.52 176 |
|
baseline1 | | | 98.39 174 | 97.59 179 | 99.31 132 | 99.78 103 | 99.45 73 | 99.13 152 | 99.53 170 | 98.06 173 | 98.87 192 | 98.63 162 | 90.04 207 | 98.76 139 | 98.85 159 | 98.84 116 | 99.81 53 | 99.28 133 |
|
pmnet_mix02 | | | 98.28 175 | 97.48 181 | 99.22 145 | 99.78 103 | 99.12 144 | 99.68 52 | 99.39 187 | 99.49 33 | 99.86 34 | 99.82 46 | 99.89 61 | 99.23 96 | 95.54 203 | 92.36 201 | 97.38 198 | 96.14 202 |
|
PatchT | | | 98.11 176 | 97.12 187 | 99.26 140 | 99.65 149 | 98.34 194 | 99.57 75 | 99.97 1 | 97.48 192 | 99.43 150 | 99.04 141 | 90.84 205 | 98.15 157 | 98.04 188 | 97.78 178 | 98.82 184 | 98.30 182 |
|
DPM-MVS | | | 98.10 177 | 97.32 185 | 99.01 166 | 99.52 172 | 97.92 207 | 98.47 201 | 99.45 178 | 98.25 162 | 98.91 189 | 93.99 208 | 99.69 113 | 98.73 141 | 96.29 202 | 96.32 195 | 99.00 180 | 98.77 170 |
|
EPNet_dtu | | | 98.09 178 | 98.25 168 | 97.91 203 | 99.58 168 | 98.02 205 | 98.19 208 | 99.67 144 | 97.94 180 | 99.74 78 | 99.07 139 | 98.71 164 | 93.40 211 | 97.50 195 | 97.09 189 | 96.89 202 | 99.44 106 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPNet | | | 98.06 179 | 98.11 175 | 98.00 202 | 99.60 161 | 98.99 155 | 98.38 202 | 99.68 141 | 98.18 166 | 98.85 194 | 97.89 187 | 95.60 189 | 92.72 212 | 98.30 183 | 98.10 171 | 98.76 185 | 99.72 35 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CR-MVSNet | | | 97.91 180 | 96.80 190 | 99.22 145 | 99.60 161 | 98.23 197 | 98.91 176 | 99.97 1 | 96.89 206 | 99.43 150 | 99.10 135 | 89.24 210 | 98.15 157 | 98.04 188 | 97.78 178 | 99.26 169 | 98.30 182 |
|
thres200 | | | 97.87 181 | 96.56 192 | 99.39 116 | 99.76 116 | 99.52 62 | 99.13 152 | 99.76 122 | 96.88 208 | 98.66 203 | 92.87 212 | 88.77 213 | 99.16 102 | 99.11 124 | 99.42 48 | 99.88 27 | 99.33 127 |
|
baseline2 | | | 97.87 181 | 97.18 186 | 98.67 186 | 99.34 196 | 99.17 133 | 98.48 200 | 98.82 203 | 97.08 199 | 98.83 196 | 98.75 154 | 89.47 209 | 97.03 189 | 98.67 174 | 98.27 160 | 99.52 135 | 98.83 168 |
|
thres600view7 | | | 97.86 183 | 96.53 195 | 99.41 114 | 99.84 77 | 99.52 62 | 99.36 119 | 99.76 122 | 97.32 194 | 98.38 210 | 93.24 209 | 87.25 215 | 99.23 96 | 99.11 124 | 99.75 14 | 99.88 27 | 99.48 98 |
|
tfpn200view9 | | | 97.85 184 | 96.54 193 | 99.38 120 | 99.74 128 | 99.52 62 | 99.17 147 | 99.76 122 | 96.10 214 | 98.70 200 | 92.99 210 | 89.10 211 | 99.00 121 | 99.11 124 | 99.56 28 | 99.88 27 | 99.41 113 |
|
thres400 | | | 97.82 185 | 96.47 196 | 99.40 115 | 99.81 93 | 99.44 75 | 99.29 134 | 99.69 135 | 97.15 196 | 98.57 204 | 92.82 213 | 87.96 214 | 99.16 102 | 98.96 140 | 99.55 31 | 99.86 36 | 99.41 113 |
|
IB-MVS | | 98.10 14 | 97.76 186 | 97.40 184 | 98.18 197 | 99.62 153 | 99.11 146 | 98.24 206 | 98.35 208 | 96.56 210 | 99.44 148 | 91.28 214 | 98.96 159 | 93.84 208 | 98.09 187 | 98.62 141 | 99.56 128 | 99.18 140 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-LLR | | | 97.74 187 | 97.46 182 | 98.08 199 | 99.62 153 | 98.37 192 | 98.26 204 | 99.41 183 | 97.03 201 | 97.38 213 | 99.54 84 | 92.89 196 | 95.12 205 | 98.78 168 | 97.68 182 | 98.65 188 | 97.90 189 |
|
RPMNet | | | 97.70 188 | 96.54 193 | 99.06 165 | 99.57 171 | 98.23 197 | 98.95 173 | 99.97 1 | 96.89 206 | 99.49 140 | 99.13 131 | 89.63 208 | 97.09 186 | 96.68 201 | 97.02 190 | 99.26 169 | 98.19 186 |
|
thres100view900 | | | 97.69 189 | 96.37 197 | 99.23 142 | 99.74 128 | 99.21 130 | 98.81 188 | 99.43 182 | 96.10 214 | 98.70 200 | 92.99 210 | 89.10 211 | 98.88 133 | 98.58 177 | 99.31 56 | 99.82 50 | 99.27 134 |
|
FMVSNet5 | | | 97.69 189 | 96.98 188 | 98.53 190 | 98.53 213 | 99.36 95 | 98.90 179 | 99.54 165 | 96.38 211 | 98.44 208 | 95.38 206 | 90.08 206 | 97.05 188 | 99.46 62 | 99.06 85 | 98.73 186 | 99.12 152 |
|
MVE |  | 91.08 18 | 97.68 191 | 97.65 177 | 97.71 209 | 98.46 214 | 91.62 218 | 97.92 215 | 98.86 202 | 98.73 122 | 97.99 212 | 98.64 161 | 99.96 13 | 99.17 99 | 99.59 50 | 97.75 180 | 93.87 216 | 97.27 197 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test-mter | | | 97.65 192 | 97.57 180 | 97.75 207 | 98.90 212 | 98.56 185 | 98.15 209 | 98.45 207 | 96.92 205 | 96.84 216 | 99.52 92 | 92.53 203 | 95.24 204 | 99.04 129 | 98.12 169 | 98.90 183 | 98.29 184 |
|
TESTMET0.1,1 | | | 97.62 193 | 97.46 182 | 97.81 205 | 99.07 208 | 98.37 192 | 98.26 204 | 98.35 208 | 97.03 201 | 97.38 213 | 99.54 84 | 92.89 196 | 95.12 205 | 98.78 168 | 97.68 182 | 98.65 188 | 97.90 189 |
|
MVSTER | | | 97.55 194 | 96.75 191 | 98.48 192 | 99.46 184 | 99.54 52 | 98.24 206 | 99.77 113 | 97.56 190 | 99.41 155 | 99.31 116 | 84.86 217 | 94.66 207 | 98.86 157 | 97.75 180 | 99.34 163 | 99.38 121 |
|
ET-MVSNet_ETH3D | | | 97.44 195 | 96.29 198 | 98.78 181 | 97.93 216 | 98.95 157 | 98.91 176 | 99.09 199 | 98.00 176 | 99.24 172 | 98.83 149 | 84.62 218 | 98.02 169 | 97.43 197 | 97.38 187 | 99.48 143 | 98.84 166 |
|
MDTV_nov1_ep13 | | | 97.41 196 | 96.26 199 | 98.76 182 | 99.47 183 | 98.43 191 | 99.26 140 | 99.82 83 | 98.06 173 | 99.23 173 | 99.22 123 | 92.86 198 | 98.05 164 | 95.33 205 | 93.66 200 | 96.73 203 | 96.26 201 |
|
ADS-MVSNet | | | 97.29 197 | 96.17 200 | 98.59 188 | 99.59 165 | 98.70 177 | 99.32 125 | 99.86 54 | 98.47 143 | 99.56 125 | 99.08 137 | 98.16 174 | 97.34 182 | 92.92 207 | 91.17 205 | 95.91 206 | 94.72 207 |
|
SCA | | | 97.25 198 | 96.05 201 | 98.64 187 | 99.36 195 | 99.02 151 | 99.27 137 | 99.96 11 | 98.25 162 | 99.69 95 | 98.71 158 | 94.66 191 | 97.95 172 | 93.95 206 | 92.35 202 | 95.64 207 | 95.40 206 |
|
gm-plane-assit | | | 96.82 199 | 94.84 206 | 99.13 156 | 99.95 10 | 99.78 14 | 99.69 51 | 99.92 32 | 99.19 64 | 99.84 45 | 99.92 16 | 72.93 221 | 96.44 198 | 98.21 186 | 97.01 191 | 98.92 182 | 96.87 200 |
|
PatchmatchNet |  | | 96.81 200 | 95.41 203 | 98.43 194 | 99.43 189 | 98.30 195 | 99.23 142 | 99.93 25 | 98.19 165 | 99.64 108 | 98.81 152 | 93.50 193 | 97.43 181 | 92.89 208 | 90.78 207 | 94.94 211 | 95.41 205 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 96.76 201 | 95.30 205 | 98.46 193 | 99.42 190 | 98.47 189 | 99.32 125 | 99.91 37 | 98.42 150 | 99.51 136 | 99.07 139 | 92.81 199 | 97.12 185 | 92.39 209 | 91.71 203 | 95.51 208 | 94.20 209 |
|
E-PMN | | | 96.72 202 | 95.78 202 | 97.81 205 | 99.45 185 | 95.46 215 | 98.14 210 | 98.33 210 | 97.99 177 | 98.73 199 | 98.09 184 | 98.97 157 | 97.54 179 | 97.45 196 | 91.09 206 | 94.70 213 | 91.40 212 |
|
tpm | | | 96.56 203 | 94.68 207 | 98.74 183 | 99.12 205 | 97.90 208 | 98.79 189 | 99.93 25 | 96.79 209 | 99.69 95 | 99.19 126 | 81.48 220 | 97.56 178 | 95.46 204 | 93.97 199 | 97.37 199 | 97.99 188 |
|
EMVS | | | 96.47 204 | 95.38 204 | 97.74 208 | 99.42 190 | 95.37 216 | 98.07 212 | 98.27 211 | 97.85 183 | 98.90 190 | 97.48 195 | 98.73 163 | 97.20 183 | 97.21 199 | 90.39 208 | 94.59 215 | 90.65 213 |
|
tpmrst | | | 96.18 205 | 94.47 208 | 98.18 197 | 99.52 172 | 97.89 209 | 98.96 170 | 99.79 101 | 98.07 172 | 99.16 177 | 99.30 119 | 92.69 200 | 96.69 194 | 90.76 211 | 88.85 211 | 94.96 210 | 93.69 210 |
|
CostFormer | | | 95.61 206 | 93.35 211 | 98.24 196 | 99.48 182 | 98.03 204 | 98.65 193 | 99.83 76 | 96.93 204 | 99.42 153 | 98.83 149 | 83.65 219 | 97.08 187 | 90.39 212 | 89.54 210 | 94.94 211 | 96.11 203 |
|
dps | | | 95.59 207 | 93.46 210 | 98.08 199 | 99.33 197 | 98.22 200 | 98.87 181 | 99.70 133 | 96.17 212 | 98.87 192 | 97.75 190 | 86.85 216 | 96.60 195 | 91.24 210 | 89.62 209 | 95.10 209 | 94.34 208 |
|
tpm cat1 | | | 95.52 208 | 93.49 209 | 97.88 204 | 99.28 201 | 97.87 210 | 98.65 193 | 99.77 113 | 97.27 195 | 99.46 146 | 98.04 185 | 90.99 204 | 95.46 203 | 88.57 213 | 88.14 212 | 94.64 214 | 93.54 211 |
|
GG-mvs-BLEND | | | 70.44 209 | 96.91 189 | 39.57 211 | 3.32 220 | 96.51 213 | 91.01 218 | 4.05 217 | 97.03 201 | 33.20 219 | 94.67 207 | 97.75 177 | 7.59 216 | 98.28 184 | 96.85 192 | 98.24 192 | 97.26 198 |
|
testmvs | | | 22.33 210 | 29.66 212 | 13.79 212 | 8.97 218 | 10.35 219 | 15.53 221 | 8.09 216 | 32.51 216 | 19.87 220 | 45.18 215 | 30.56 223 | 17.05 215 | 29.96 214 | 24.74 213 | 13.21 217 | 34.30 214 |
|
test123 | | | 21.52 211 | 28.47 213 | 13.42 213 | 7.29 219 | 10.12 220 | 15.70 220 | 8.31 215 | 31.54 217 | 19.34 221 | 36.33 216 | 37.40 222 | 17.14 214 | 27.45 215 | 23.17 214 | 12.73 218 | 33.30 215 |
|
uanet_test | | | 0.00 212 | 0.00 214 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.00 218 | 0.00 222 | 0.00 217 | 0.00 224 | 0.00 217 | 0.00 216 | 0.00 215 | 0.00 219 | 0.00 216 |
|
sosnet-low-res | | | 0.00 212 | 0.00 214 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.00 218 | 0.00 222 | 0.00 217 | 0.00 224 | 0.00 217 | 0.00 216 | 0.00 215 | 0.00 219 | 0.00 216 |
|
sosnet | | | 0.00 212 | 0.00 214 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.00 218 | 0.00 222 | 0.00 217 | 0.00 224 | 0.00 217 | 0.00 216 | 0.00 215 | 0.00 219 | 0.00 216 |
|
RE-MVS-def | | | | | | | | | | | 99.96 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.57 124 | | | | | |
|
SR-MVS | | | | | | 99.73 130 | | | 99.74 129 | | | | 99.88 67 | | | | | |
|
Anonymous202405211 | | | | 99.14 104 | | 99.87 48 | 99.55 49 | 99.50 93 | 99.70 133 | 98.55 140 | | 98.61 165 | 98.46 167 | 98.76 139 | 99.66 42 | 99.50 36 | 99.85 39 | 99.63 53 |
|
our_test_3 | | | | | | 99.75 120 | 99.11 146 | 99.74 43 | | | | | | | | | | |
|
ambc | | | | 98.83 142 | | 99.72 132 | 98.52 186 | 98.84 184 | | 98.96 95 | 99.92 10 | 99.34 110 | 99.74 103 | 99.04 118 | 98.68 173 | 97.57 185 | 99.46 145 | 98.99 164 |
|
MTAPA | | | | | | | | | | | 99.62 111 | | 99.95 25 | | | | | |
|
MTMP | | | | | | | | | | | 99.53 128 | | 99.92 49 | | | | | |
|
Patchmatch-RL test | | | | | | | | 65.75 219 | | | | | | | | | | |
|
tmp_tt | | | | | 88.14 210 | 96.68 217 | 91.91 217 | 93.70 217 | 61.38 214 | 99.61 20 | 90.51 218 | 99.40 106 | 99.71 108 | 90.32 213 | 99.22 104 | 99.44 46 | 96.25 205 | |
|
XVS | | | | | | 99.86 62 | 99.30 109 | 99.72 48 | | | 99.69 95 | | 99.93 41 | | | | 99.60 117 | |
|
X-MVStestdata | | | | | | 99.86 62 | 99.30 109 | 99.72 48 | | | 99.69 95 | | 99.93 41 | | | | 99.60 117 | |
|
abl_6 | | | | | 99.21 148 | 99.49 181 | 98.62 181 | 98.90 179 | 99.44 181 | 97.08 199 | 99.61 114 | 97.19 199 | 99.73 106 | 98.35 154 | | | 99.45 147 | 98.84 166 |
|
mPP-MVS | | | | | | 99.84 77 | | | | | | | 99.92 49 | | | | | |
|
NP-MVS | | | | | | | | | | 97.37 193 | | | | | | | | |
|
Patchmtry | | | | | | | 98.19 202 | 98.91 176 | 99.97 1 | | 99.43 150 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 96.39 214 | 97.15 216 | 88.89 213 | 97.94 180 | 99.51 136 | 95.71 205 | 97.88 176 | 98.19 155 | 98.92 145 | | 97.73 196 | 97.75 194 |
|