LTVRE_ROB | | 99.39 1 | 99.90 1 | 99.87 2 | 99.93 1 | 99.97 3 | 99.82 8 | 99.91 3 | 99.92 33 | 99.75 5 | 99.93 5 | 99.89 31 | 100.00 1 | 99.87 2 | 99.93 3 | 99.82 8 | 99.96 3 | 99.90 3 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v7n | | | 99.89 2 | 99.86 4 | 99.93 1 | 99.97 3 | 99.83 4 | 99.93 1 | 99.96 12 | 99.77 4 | 99.89 17 | 99.99 1 | 99.86 77 | 99.84 5 | 99.89 8 | 99.81 9 | 99.97 1 | 99.88 7 |
|
SixPastTwentyTwo | | | 99.89 2 | 99.85 6 | 99.93 1 | 99.97 3 | 99.88 3 | 99.92 2 | 99.97 1 | 99.66 13 | 99.94 4 | 99.94 11 | 99.74 106 | 99.81 7 | 99.97 1 | 99.89 1 | 99.96 3 | 99.89 5 |
|
test_part1 | | | 99.88 4 | 99.89 1 | 99.88 13 | 99.96 8 | 99.90 1 | 99.83 18 | 99.97 1 | 99.84 2 | 99.93 5 | 99.91 23 | 99.83 87 | 99.63 40 | 99.89 8 | 99.88 2 | 99.96 3 | 99.95 1 |
|
pmmvs6 | | | 99.88 4 | 99.87 2 | 99.89 9 | 99.97 3 | 99.76 17 | 99.89 6 | 99.96 12 | 99.82 3 | 99.90 15 | 99.92 16 | 99.95 26 | 99.68 30 | 99.93 3 | 99.88 2 | 99.95 8 | 99.86 10 |
|
anonymousdsp | | | 99.87 6 | 99.86 4 | 99.88 13 | 99.95 11 | 99.75 23 | 99.90 4 | 99.96 12 | 99.69 8 | 99.83 51 | 99.96 4 | 99.99 3 | 99.74 21 | 99.95 2 | 99.83 5 | 99.91 21 | 99.88 7 |
|
FC-MVSNet-test | | | 99.84 7 | 99.80 7 | 99.89 9 | 99.96 8 | 99.83 4 | 99.84 15 | 99.95 23 | 99.37 45 | 99.77 67 | 99.95 6 | 99.96 14 | 99.85 3 | 99.93 3 | 99.83 5 | 99.95 8 | 99.72 37 |
|
CS-MVS-test | | | 99.83 8 | 99.78 9 | 99.89 9 | 99.98 1 | 99.90 1 | 99.90 4 | 99.92 33 | 99.38 44 | 99.89 17 | 99.74 51 | 99.97 8 | 99.71 29 | 99.82 21 | 99.81 9 | 99.94 15 | 99.86 10 |
|
UniMVSNet_ETH3D | | | 99.81 9 | 99.79 8 | 99.85 20 | 99.98 1 | 99.76 17 | 99.73 46 | 99.96 12 | 99.68 10 | 99.87 29 | 99.59 81 | 99.91 57 | 99.58 48 | 99.90 7 | 99.85 4 | 99.96 3 | 99.81 18 |
|
TDRefinement | | | 99.81 9 | 99.76 11 | 99.86 17 | 99.83 86 | 99.53 57 | 99.89 6 | 99.91 39 | 99.73 6 | 99.88 23 | 99.83 44 | 99.96 14 | 99.76 16 | 99.91 6 | 99.81 9 | 99.86 36 | 99.59 64 |
|
WR-MVS | | | 99.79 11 | 99.68 15 | 99.91 5 | 99.95 11 | 99.83 4 | 99.87 10 | 99.96 12 | 99.39 43 | 99.93 5 | 99.87 35 | 99.29 151 | 99.77 14 | 99.83 18 | 99.72 17 | 99.97 1 | 99.82 15 |
|
MIMVSNet1 | | | 99.79 11 | 99.75 12 | 99.84 21 | 99.89 39 | 99.83 4 | 99.84 15 | 99.89 48 | 99.31 51 | 99.93 5 | 99.92 16 | 99.97 8 | 99.68 30 | 99.89 8 | 99.64 23 | 99.82 51 | 99.66 49 |
|
pm-mvs1 | | | 99.77 13 | 99.69 14 | 99.86 17 | 99.94 21 | 99.68 33 | 99.84 15 | 99.93 26 | 99.59 22 | 99.87 29 | 99.92 16 | 99.21 154 | 99.65 36 | 99.88 12 | 99.77 13 | 99.93 18 | 99.78 24 |
|
PEN-MVS | | | 99.77 13 | 99.65 18 | 99.91 5 | 99.95 11 | 99.80 13 | 99.86 11 | 99.97 1 | 99.08 80 | 99.89 17 | 99.69 65 | 99.68 116 | 99.84 5 | 99.81 23 | 99.64 23 | 99.95 8 | 99.81 18 |
|
EU-MVSNet | | | 99.76 15 | 99.74 13 | 99.78 38 | 99.82 91 | 99.81 11 | 99.88 8 | 99.87 53 | 99.31 51 | 99.75 73 | 99.91 23 | 99.76 105 | 99.78 12 | 99.84 17 | 99.74 16 | 99.56 131 | 99.81 18 |
|
Vis-MVSNet |  | | 99.76 15 | 99.78 9 | 99.75 47 | 99.92 27 | 99.77 16 | 99.83 18 | 99.85 64 | 99.43 37 | 99.85 42 | 99.84 41 | 100.00 1 | 99.13 114 | 99.83 18 | 99.66 21 | 99.90 23 | 99.90 3 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DTE-MVSNet | | | 99.75 17 | 99.61 24 | 99.92 4 | 99.95 11 | 99.81 11 | 99.86 11 | 99.96 12 | 99.18 68 | 99.92 10 | 99.66 68 | 99.45 136 | 99.85 3 | 99.80 24 | 99.56 29 | 99.96 3 | 99.79 23 |
|
tfpnnormal | | | 99.74 18 | 99.63 21 | 99.86 17 | 99.93 24 | 99.75 23 | 99.80 27 | 99.89 48 | 99.31 51 | 99.88 23 | 99.43 103 | 99.66 119 | 99.77 14 | 99.80 24 | 99.71 18 | 99.92 19 | 99.76 28 |
|
DeepC-MVS | | 99.05 5 | 99.74 18 | 99.64 19 | 99.84 21 | 99.90 35 | 99.39 88 | 99.79 28 | 99.81 94 | 99.69 8 | 99.90 15 | 99.87 35 | 99.98 4 | 99.81 7 | 99.62 50 | 99.32 56 | 99.83 48 | 99.65 52 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
thisisatest0515 | | | 99.73 20 | 99.67 16 | 99.81 28 | 99.93 24 | 99.74 25 | 99.68 54 | 99.91 39 | 99.59 22 | 99.88 23 | 99.73 54 | 99.81 92 | 99.55 52 | 99.59 51 | 99.53 35 | 99.89 26 | 99.70 43 |
|
PS-CasMVS | | | 99.73 20 | 99.59 29 | 99.90 8 | 99.95 11 | 99.80 13 | 99.85 14 | 99.97 1 | 98.95 98 | 99.86 35 | 99.73 54 | 99.36 143 | 99.81 7 | 99.83 18 | 99.67 20 | 99.95 8 | 99.83 14 |
|
WR-MVS_H | | | 99.73 20 | 99.61 24 | 99.88 13 | 99.95 11 | 99.82 8 | 99.83 18 | 99.96 12 | 99.01 90 | 99.84 46 | 99.71 62 | 99.41 142 | 99.74 21 | 99.77 29 | 99.70 19 | 99.95 8 | 99.82 15 |
|
TransMVSNet (Re) | | | 99.72 23 | 99.59 29 | 99.88 13 | 99.95 11 | 99.76 17 | 99.88 8 | 99.94 24 | 99.58 24 | 99.92 10 | 99.90 28 | 98.55 169 | 99.65 36 | 99.89 8 | 99.76 14 | 99.95 8 | 99.70 43 |
|
ACMH | | 99.11 4 | 99.72 23 | 99.63 21 | 99.84 21 | 99.87 51 | 99.59 45 | 99.83 18 | 99.88 52 | 99.46 36 | 99.87 29 | 99.66 68 | 99.95 26 | 99.76 16 | 99.73 34 | 99.47 43 | 99.84 43 | 99.52 95 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FC-MVSNet-train | | | 99.70 25 | 99.67 16 | 99.74 53 | 99.94 21 | 99.71 28 | 99.82 23 | 99.91 39 | 99.14 76 | 99.53 131 | 99.70 63 | 99.88 69 | 99.33 86 | 99.88 12 | 99.61 28 | 99.94 15 | 99.77 25 |
|
COLMAP_ROB |  | 99.18 2 | 99.70 25 | 99.60 27 | 99.81 28 | 99.84 80 | 99.37 95 | 99.76 34 | 99.84 73 | 99.54 30 | 99.82 54 | 99.64 72 | 99.95 26 | 99.75 18 | 99.79 26 | 99.56 29 | 99.83 48 | 99.37 126 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 98.94 6 | 99.69 27 | 99.59 29 | 99.81 28 | 99.88 45 | 99.41 85 | 99.75 38 | 99.86 57 | 99.43 37 | 99.80 58 | 99.54 86 | 99.97 8 | 99.73 24 | 99.82 21 | 99.52 37 | 99.85 39 | 99.43 112 |
|
test20.03 | | | 99.68 28 | 99.60 27 | 99.76 43 | 99.91 31 | 99.70 31 | 99.68 54 | 99.87 53 | 99.05 87 | 99.88 23 | 99.92 16 | 99.88 69 | 99.50 63 | 99.77 29 | 99.42 50 | 99.75 73 | 99.49 98 |
|
CP-MVSNet | | | 99.68 28 | 99.51 39 | 99.89 9 | 99.95 11 | 99.76 17 | 99.83 18 | 99.96 12 | 98.83 116 | 99.84 46 | 99.65 71 | 99.09 156 | 99.80 10 | 99.78 27 | 99.62 27 | 99.95 8 | 99.82 15 |
|
PVSNet_Blended_VisFu | | | 99.66 30 | 99.64 19 | 99.67 66 | 99.91 31 | 99.71 28 | 99.61 66 | 99.79 104 | 99.41 39 | 99.91 13 | 99.85 39 | 99.61 122 | 99.00 124 | 99.67 41 | 99.42 50 | 99.81 54 | 99.81 18 |
|
v10 | | | 99.65 31 | 99.51 39 | 99.81 28 | 99.83 86 | 99.61 41 | 99.75 38 | 99.94 24 | 99.56 26 | 99.76 70 | 99.94 11 | 99.60 124 | 99.73 24 | 99.11 127 | 99.01 96 | 99.85 39 | 99.74 31 |
|
CHOSEN 1792x2688 | | | 99.65 31 | 99.55 33 | 99.77 42 | 99.93 24 | 99.60 42 | 99.79 28 | 99.92 33 | 99.73 6 | 99.74 79 | 99.93 14 | 99.98 4 | 99.80 10 | 98.83 168 | 99.01 96 | 99.45 150 | 99.76 28 |
|
UA-Net | | | 99.64 33 | 99.62 23 | 99.66 68 | 99.97 3 | 99.82 8 | 99.14 154 | 99.96 12 | 98.95 98 | 99.52 137 | 99.38 111 | 99.86 77 | 99.55 52 | 99.72 35 | 99.66 21 | 99.80 58 | 99.94 2 |
|
GeoE | | | 99.63 34 | 99.51 39 | 99.78 38 | 99.91 31 | 99.57 48 | 99.78 30 | 99.97 1 | 99.23 59 | 99.72 88 | 99.72 58 | 99.80 98 | 99.50 63 | 99.45 70 | 99.10 83 | 99.79 61 | 99.71 42 |
|
Baseline_NR-MVSNet | | | 99.62 35 | 99.48 44 | 99.78 38 | 99.85 74 | 99.76 17 | 99.59 71 | 99.82 86 | 98.84 114 | 99.88 23 | 99.91 23 | 99.04 157 | 99.61 42 | 99.46 63 | 99.78 12 | 99.94 15 | 99.60 62 |
|
pmmvs-eth3d | | | 99.61 36 | 99.48 44 | 99.75 47 | 99.87 51 | 99.30 111 | 99.75 38 | 99.89 48 | 99.23 59 | 99.85 42 | 99.88 34 | 99.97 8 | 99.49 68 | 99.46 63 | 99.01 96 | 99.68 92 | 99.52 95 |
|
v1144 | | | 99.61 36 | 99.43 52 | 99.82 24 | 99.88 45 | 99.41 85 | 99.76 34 | 99.86 57 | 99.64 16 | 99.84 46 | 99.95 6 | 99.49 134 | 99.74 21 | 99.00 138 | 98.93 108 | 99.84 43 | 99.58 73 |
|
v8 | | | 99.61 36 | 99.45 50 | 99.79 37 | 99.80 97 | 99.59 45 | 99.73 46 | 99.93 26 | 99.48 34 | 99.77 67 | 99.90 28 | 99.48 135 | 99.67 33 | 99.11 127 | 98.89 112 | 99.84 43 | 99.73 33 |
|
casdiffmvs | | | 99.61 36 | 99.55 33 | 99.68 64 | 99.89 39 | 99.53 57 | 99.64 60 | 99.68 144 | 99.51 31 | 99.62 113 | 99.90 28 | 99.96 14 | 99.37 80 | 99.28 96 | 99.25 59 | 99.88 28 | 99.44 109 |
|
CSCG | | | 99.61 36 | 99.52 38 | 99.71 57 | 99.89 39 | 99.62 39 | 99.52 89 | 99.76 124 | 99.61 20 | 99.69 97 | 99.73 54 | 99.96 14 | 99.57 50 | 99.27 99 | 98.62 144 | 99.81 54 | 99.85 13 |
|
v1192 | | | 99.60 41 | 99.41 56 | 99.82 24 | 99.89 39 | 99.43 80 | 99.81 25 | 99.84 73 | 99.63 18 | 99.85 42 | 99.95 6 | 99.35 146 | 99.72 26 | 99.01 136 | 98.90 111 | 99.82 51 | 99.58 73 |
|
APDe-MVS | | | 99.60 41 | 99.48 44 | 99.73 55 | 99.85 74 | 99.51 68 | 99.75 38 | 99.85 64 | 99.17 69 | 99.81 57 | 99.56 84 | 99.94 36 | 99.44 75 | 99.42 73 | 99.22 60 | 99.67 94 | 99.54 87 |
|
v1921920 | | | 99.59 43 | 99.40 59 | 99.82 24 | 99.88 45 | 99.45 75 | 99.81 25 | 99.83 79 | 99.65 14 | 99.86 35 | 99.95 6 | 99.29 151 | 99.75 18 | 98.98 142 | 98.86 116 | 99.78 63 | 99.59 64 |
|
TranMVSNet+NR-MVSNet | | | 99.59 43 | 99.42 55 | 99.80 33 | 99.87 51 | 99.55 51 | 99.64 60 | 99.86 57 | 99.05 87 | 99.88 23 | 99.72 58 | 99.33 149 | 99.64 38 | 99.47 62 | 99.14 70 | 99.91 21 | 99.67 48 |
|
EG-PatchMatch MVS | | | 99.59 43 | 99.49 43 | 99.70 60 | 99.82 91 | 99.26 119 | 99.39 118 | 99.83 79 | 98.99 92 | 99.93 5 | 99.54 86 | 99.92 51 | 99.51 59 | 99.78 27 | 99.50 38 | 99.73 82 | 99.41 116 |
|
pmmvs5 | | | 99.58 46 | 99.47 47 | 99.70 60 | 99.84 80 | 99.50 69 | 99.58 75 | 99.80 101 | 98.98 95 | 99.73 85 | 99.92 16 | 99.81 92 | 99.49 68 | 99.28 96 | 99.05 90 | 99.77 68 | 99.73 33 |
|
v144192 | | | 99.58 46 | 99.39 61 | 99.80 33 | 99.87 51 | 99.44 77 | 99.77 31 | 99.84 73 | 99.64 16 | 99.86 35 | 99.93 14 | 99.35 146 | 99.72 26 | 98.92 148 | 98.82 120 | 99.74 78 | 99.66 49 |
|
v148 | | | 99.58 46 | 99.43 52 | 99.76 43 | 99.87 51 | 99.40 87 | 99.76 34 | 99.85 64 | 99.48 34 | 99.83 51 | 99.82 46 | 99.83 87 | 99.51 59 | 99.20 113 | 98.82 120 | 99.75 73 | 99.45 106 |
|
v1240 | | | 99.58 46 | 99.38 64 | 99.82 24 | 99.89 39 | 99.49 70 | 99.82 23 | 99.83 79 | 99.63 18 | 99.86 35 | 99.96 4 | 98.92 163 | 99.75 18 | 99.15 123 | 98.96 105 | 99.76 70 | 99.56 80 |
|
V42 | | | 99.57 50 | 99.41 56 | 99.75 47 | 99.84 80 | 99.37 95 | 99.73 46 | 99.83 79 | 99.41 39 | 99.75 73 | 99.89 31 | 99.42 140 | 99.60 44 | 99.15 123 | 98.96 105 | 99.76 70 | 99.65 52 |
|
TSAR-MVS + MP. | | | 99.56 51 | 99.54 36 | 99.58 85 | 99.69 140 | 99.14 140 | 99.73 46 | 99.45 181 | 99.50 32 | 99.35 168 | 99.60 79 | 99.93 43 | 99.50 63 | 99.56 53 | 99.37 54 | 99.77 68 | 99.64 55 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v2v482 | | | 99.56 51 | 99.35 67 | 99.81 28 | 99.87 51 | 99.35 101 | 99.75 38 | 99.85 64 | 99.56 26 | 99.87 29 | 99.95 6 | 99.44 138 | 99.66 34 | 98.91 151 | 98.76 126 | 99.86 36 | 99.45 106 |
|
Gipuma |  | | 99.55 53 | 99.23 86 | 99.91 5 | 99.87 51 | 99.52 64 | 99.86 11 | 99.93 26 | 99.87 1 | 99.96 2 | 96.72 205 | 99.55 130 | 99.97 1 | 99.77 29 | 99.46 45 | 99.87 34 | 99.74 31 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
CS-MVS | | | 99.54 54 | 99.40 59 | 99.70 60 | 99.90 35 | 99.69 32 | 99.54 83 | 99.73 132 | 98.16 171 | 99.79 61 | 99.21 128 | 99.94 36 | 99.38 78 | 99.53 56 | 99.54 33 | 99.85 39 | 99.73 33 |
|
DVP-MVS | | | 99.53 55 | 99.51 39 | 99.55 93 | 99.82 91 | 99.58 47 | 99.54 83 | 99.78 109 | 99.28 57 | 99.21 178 | 99.70 63 | 99.97 8 | 99.32 89 | 99.32 84 | 99.14 70 | 99.64 107 | 99.58 73 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
NR-MVSNet | | | 99.52 56 | 99.29 76 | 99.80 33 | 99.96 8 | 99.38 91 | 99.55 79 | 99.81 94 | 98.86 111 | 99.87 29 | 99.51 96 | 98.81 165 | 99.72 26 | 99.86 15 | 99.04 92 | 99.89 26 | 99.54 87 |
|
zzz-MVS | | | 99.51 57 | 99.36 65 | 99.68 64 | 99.88 45 | 99.38 91 | 99.53 85 | 99.84 73 | 99.11 79 | 99.59 122 | 98.93 150 | 99.95 26 | 99.58 48 | 99.44 71 | 99.21 62 | 99.65 98 | 99.52 95 |
|
ACMMPR | | | 99.51 57 | 99.32 71 | 99.72 56 | 99.87 51 | 99.33 104 | 99.61 66 | 99.85 64 | 99.19 66 | 99.73 85 | 98.73 161 | 99.95 26 | 99.61 42 | 99.35 79 | 99.14 70 | 99.66 96 | 99.58 73 |
|
UniMVSNet (Re) | | | 99.50 59 | 99.29 76 | 99.75 47 | 99.86 65 | 99.47 73 | 99.51 92 | 99.82 86 | 98.90 106 | 99.89 17 | 99.64 72 | 99.00 158 | 99.55 52 | 99.32 84 | 99.08 85 | 99.90 23 | 99.59 64 |
|
FMVSNet1 | | | 99.50 59 | 99.57 32 | 99.42 114 | 99.67 147 | 99.65 36 | 99.60 70 | 99.91 39 | 99.40 41 | 99.39 161 | 99.83 44 | 99.27 153 | 98.14 162 | 99.68 38 | 99.50 38 | 99.81 54 | 99.68 45 |
|
HyFIR lowres test | | | 99.50 59 | 99.26 80 | 99.80 33 | 99.95 11 | 99.62 39 | 99.76 34 | 99.97 1 | 99.67 11 | 99.56 128 | 99.94 11 | 98.40 172 | 99.78 12 | 98.84 167 | 98.59 147 | 99.76 70 | 99.72 37 |
|
PM-MVS | | | 99.49 62 | 99.43 52 | 99.57 88 | 99.76 119 | 99.34 103 | 99.53 85 | 99.77 116 | 98.93 102 | 99.75 73 | 99.46 101 | 99.83 87 | 99.11 116 | 99.72 35 | 99.29 58 | 99.49 145 | 99.46 105 |
|
Anonymous20231206 | | | 99.48 63 | 99.31 73 | 99.69 63 | 99.79 101 | 99.57 48 | 99.63 64 | 99.79 104 | 98.88 108 | 99.91 13 | 99.72 58 | 99.93 43 | 99.59 45 | 99.24 102 | 98.63 143 | 99.43 155 | 99.18 143 |
|
DU-MVS | | | 99.48 63 | 99.26 80 | 99.75 47 | 99.85 74 | 99.38 91 | 99.50 96 | 99.81 94 | 98.86 111 | 99.89 17 | 99.51 96 | 98.98 159 | 99.59 45 | 99.46 63 | 98.97 103 | 99.87 34 | 99.63 56 |
|
RPSCF | | | 99.48 63 | 99.45 50 | 99.52 100 | 99.73 133 | 99.33 104 | 99.13 155 | 99.77 116 | 99.33 49 | 99.47 148 | 99.39 110 | 99.92 51 | 99.36 81 | 99.63 47 | 99.13 78 | 99.63 110 | 99.41 116 |
|
ACMMP_NAP | | | 99.47 66 | 99.33 69 | 99.63 76 | 99.85 74 | 99.28 116 | 99.56 78 | 99.83 79 | 98.75 122 | 99.48 145 | 99.03 147 | 99.95 26 | 99.47 74 | 99.48 59 | 99.19 63 | 99.57 128 | 99.59 64 |
|
Anonymous20231211 | | | 99.47 66 | 99.39 61 | 99.57 88 | 99.89 39 | 99.60 42 | 99.50 96 | 99.69 138 | 98.91 105 | 99.62 113 | 99.17 133 | 99.35 146 | 98.86 137 | 99.63 47 | 99.46 45 | 99.84 43 | 99.62 59 |
|
SteuartSystems-ACMMP | | | 99.47 66 | 99.22 89 | 99.76 43 | 99.88 45 | 99.36 97 | 99.65 59 | 99.84 73 | 98.47 146 | 99.80 58 | 98.68 164 | 99.96 14 | 99.68 30 | 99.37 76 | 99.06 87 | 99.72 85 | 99.66 49 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMM | | 98.37 12 | 99.47 66 | 99.23 86 | 99.74 53 | 99.86 65 | 99.19 134 | 99.68 54 | 99.86 57 | 99.16 73 | 99.71 94 | 98.52 175 | 99.95 26 | 99.62 41 | 99.35 79 | 99.02 94 | 99.74 78 | 99.42 115 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HFP-MVS | | | 99.46 70 | 99.30 74 | 99.65 70 | 99.82 91 | 99.25 122 | 99.50 96 | 99.82 86 | 99.23 59 | 99.58 126 | 98.86 152 | 99.94 36 | 99.56 51 | 99.14 125 | 99.12 81 | 99.63 110 | 99.56 80 |
|
LGP-MVS_train | | | 99.46 70 | 99.18 98 | 99.78 38 | 99.87 51 | 99.25 122 | 99.71 52 | 99.87 53 | 98.02 180 | 99.79 61 | 98.90 151 | 99.96 14 | 99.66 34 | 99.49 58 | 99.17 66 | 99.79 61 | 99.49 98 |
|
SED-MVS | | | 99.45 72 | 99.46 49 | 99.42 114 | 99.77 114 | 99.57 48 | 99.42 112 | 99.80 101 | 99.06 84 | 99.38 162 | 99.66 68 | 99.96 14 | 98.65 148 | 99.31 86 | 99.14 70 | 99.53 136 | 99.55 85 |
|
ETV-MVS | | | 99.45 72 | 99.32 71 | 99.60 82 | 99.79 101 | 99.60 42 | 99.40 117 | 99.78 109 | 97.88 186 | 99.83 51 | 99.33 114 | 99.70 114 | 98.97 127 | 99.74 32 | 99.43 49 | 99.84 43 | 99.58 73 |
|
ACMP | | 98.32 13 | 99.44 74 | 99.18 98 | 99.75 47 | 99.83 86 | 99.18 135 | 99.64 60 | 99.83 79 | 98.81 118 | 99.79 61 | 98.42 182 | 99.96 14 | 99.64 38 | 99.46 63 | 98.98 102 | 99.74 78 | 99.44 109 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DCV-MVSNet | | | 99.43 75 | 99.23 86 | 99.67 66 | 99.92 27 | 99.76 17 | 99.64 60 | 99.93 26 | 99.06 84 | 99.68 104 | 97.77 193 | 98.97 160 | 98.97 127 | 99.72 35 | 99.54 33 | 99.88 28 | 99.81 18 |
|
SMA-MVS |  | | 99.43 75 | 99.41 56 | 99.45 111 | 99.82 91 | 99.31 109 | 99.02 169 | 99.59 159 | 99.06 84 | 99.34 171 | 99.53 92 | 99.96 14 | 99.38 78 | 99.29 91 | 99.13 78 | 99.53 136 | 99.59 64 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
testgi | | | 99.43 75 | 99.47 47 | 99.38 123 | 99.90 35 | 99.67 35 | 99.30 136 | 99.73 132 | 98.64 134 | 99.53 131 | 99.52 94 | 99.90 60 | 98.08 165 | 99.65 45 | 99.40 53 | 99.75 73 | 99.55 85 |
|
DELS-MVS | | | 99.42 78 | 99.53 37 | 99.29 137 | 99.52 175 | 99.43 80 | 99.42 112 | 99.28 197 | 99.16 73 | 99.72 88 | 99.82 46 | 99.97 8 | 98.17 159 | 99.56 53 | 99.16 67 | 99.65 98 | 99.59 64 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator | | 99.16 3 | 99.42 78 | 99.22 89 | 99.65 70 | 99.78 106 | 99.13 144 | 99.50 96 | 99.85 64 | 99.40 41 | 99.80 58 | 98.59 171 | 99.79 101 | 99.30 93 | 99.20 113 | 99.06 87 | 99.71 88 | 99.35 129 |
|
DPE-MVS |  | | 99.41 80 | 99.36 65 | 99.47 107 | 99.66 148 | 99.48 71 | 99.46 107 | 99.75 129 | 98.65 130 | 99.41 158 | 99.67 66 | 99.95 26 | 98.82 138 | 99.21 110 | 99.14 70 | 99.72 85 | 99.40 121 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
UniMVSNet_NR-MVSNet | | | 99.41 80 | 99.12 111 | 99.76 43 | 99.86 65 | 99.48 71 | 99.50 96 | 99.81 94 | 98.84 114 | 99.89 17 | 99.45 102 | 98.32 175 | 99.59 45 | 99.22 107 | 98.89 112 | 99.90 23 | 99.63 56 |
|
CP-MVS | | | 99.41 80 | 99.20 94 | 99.65 70 | 99.80 97 | 99.23 129 | 99.44 110 | 99.75 129 | 98.60 139 | 99.74 79 | 98.66 165 | 99.93 43 | 99.48 71 | 99.33 83 | 99.16 67 | 99.73 82 | 99.48 101 |
|
QAPM | | | 99.41 80 | 99.21 93 | 99.64 75 | 99.78 106 | 99.16 137 | 99.51 92 | 99.85 64 | 99.20 63 | 99.72 88 | 99.43 103 | 99.81 92 | 99.25 97 | 98.87 157 | 98.71 134 | 99.71 88 | 99.30 134 |
|
UGNet | | | 99.40 84 | 99.61 24 | 99.16 157 | 99.88 45 | 99.64 37 | 99.61 66 | 99.77 116 | 99.31 51 | 99.63 112 | 99.33 114 | 99.93 43 | 96.46 200 | 99.63 47 | 99.53 35 | 99.63 110 | 99.89 5 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet (Re-imp) | | | 99.40 84 | 99.28 78 | 99.55 93 | 99.92 27 | 99.68 33 | 99.31 131 | 99.87 53 | 98.69 127 | 99.16 180 | 99.08 142 | 98.64 168 | 99.20 101 | 99.65 45 | 99.46 45 | 99.83 48 | 99.72 37 |
|
OPM-MVS | | | 99.39 86 | 99.22 89 | 99.59 83 | 99.76 119 | 98.82 169 | 99.51 92 | 99.79 104 | 99.17 69 | 99.53 131 | 99.31 119 | 99.95 26 | 99.35 82 | 99.22 107 | 98.79 125 | 99.60 120 | 99.27 137 |
|
Fast-Effi-MVS+ | | | 99.39 86 | 99.18 98 | 99.63 76 | 99.86 65 | 99.28 116 | 99.45 108 | 99.91 39 | 98.47 146 | 99.61 116 | 99.50 98 | 99.57 126 | 99.17 102 | 99.24 102 | 98.66 139 | 99.78 63 | 99.59 64 |
|
DROMVSNet | | | 99.39 86 | 99.18 98 | 99.63 76 | 99.86 65 | 99.28 116 | 99.45 108 | 99.91 39 | 98.47 146 | 99.61 116 | 99.50 98 | 99.57 126 | 99.17 102 | 99.24 102 | 98.66 139 | 99.78 63 | 99.59 64 |
|
LS3D | | | 99.39 86 | 99.28 78 | 99.52 100 | 99.77 114 | 99.39 88 | 99.55 79 | 99.82 86 | 98.93 102 | 99.64 110 | 98.52 175 | 99.67 118 | 98.58 152 | 99.74 32 | 99.63 25 | 99.75 73 | 99.06 159 |
|
diffmvs | | | 99.38 90 | 99.33 69 | 99.45 111 | 99.87 51 | 99.39 88 | 99.28 139 | 99.58 162 | 99.55 28 | 99.50 141 | 99.85 39 | 99.85 83 | 98.94 132 | 98.58 180 | 98.68 137 | 99.51 142 | 99.39 123 |
|
CANet | | | 99.36 91 | 99.39 61 | 99.34 134 | 99.80 97 | 99.35 101 | 99.41 116 | 99.47 179 | 99.20 63 | 99.74 79 | 99.54 86 | 99.68 116 | 98.05 167 | 99.23 105 | 98.97 103 | 99.57 128 | 99.73 33 |
|
MVS_0304 | | | 99.36 91 | 99.35 67 | 99.37 129 | 99.85 74 | 99.36 97 | 99.39 118 | 99.56 165 | 99.36 47 | 99.75 73 | 99.23 125 | 99.90 60 | 97.97 174 | 99.00 138 | 98.83 119 | 99.69 91 | 99.77 25 |
|
ACMMP |  | | 99.36 91 | 99.06 118 | 99.71 57 | 99.86 65 | 99.36 97 | 99.63 64 | 99.85 64 | 98.33 162 | 99.72 88 | 97.73 195 | 99.94 36 | 99.53 55 | 99.37 76 | 99.13 78 | 99.65 98 | 99.56 80 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SD-MVS | | | 99.35 94 | 99.26 80 | 99.46 109 | 99.66 148 | 99.15 139 | 98.92 178 | 99.67 147 | 99.55 28 | 99.35 168 | 98.83 154 | 99.91 57 | 99.35 82 | 99.19 116 | 98.53 149 | 99.78 63 | 99.68 45 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS |  | | 99.35 94 | 99.09 116 | 99.65 70 | 99.84 80 | 99.22 130 | 99.59 71 | 99.78 109 | 98.13 172 | 99.67 105 | 98.44 179 | 99.93 43 | 99.43 77 | 99.31 86 | 99.09 84 | 99.60 120 | 99.49 98 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
pmmvs4 | | | 99.34 96 | 99.15 106 | 99.57 88 | 99.77 114 | 98.90 161 | 99.51 92 | 99.77 116 | 99.07 82 | 99.73 85 | 99.72 58 | 99.84 85 | 99.07 118 | 98.85 162 | 98.39 158 | 99.55 134 | 99.27 137 |
|
EPP-MVSNet | | | 99.34 96 | 99.10 114 | 99.62 81 | 99.94 21 | 99.74 25 | 99.66 58 | 99.80 101 | 99.07 82 | 98.93 191 | 99.61 76 | 96.13 190 | 99.49 68 | 99.67 41 | 99.63 25 | 99.92 19 | 99.86 10 |
|
TSAR-MVS + GP. | | | 99.33 98 | 99.17 103 | 99.51 102 | 99.71 138 | 99.00 156 | 98.84 187 | 99.71 135 | 98.23 168 | 99.74 79 | 99.53 92 | 99.90 60 | 99.35 82 | 99.38 75 | 98.85 117 | 99.72 85 | 99.31 132 |
|
PHI-MVS | | | 99.33 98 | 99.19 96 | 99.49 105 | 99.69 140 | 99.25 122 | 99.27 140 | 99.59 159 | 98.44 151 | 99.78 66 | 99.15 134 | 99.92 51 | 98.95 131 | 99.39 74 | 99.04 92 | 99.64 107 | 99.18 143 |
|
MSP-MVS | | | 99.32 100 | 99.26 80 | 99.38 123 | 99.76 119 | 99.54 54 | 99.42 112 | 99.72 134 | 98.92 104 | 98.84 198 | 98.96 149 | 99.96 14 | 98.91 133 | 98.72 175 | 99.14 70 | 99.63 110 | 99.58 73 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 99.32 100 | 98.99 127 | 99.71 57 | 99.86 65 | 99.31 109 | 99.59 71 | 99.86 57 | 97.51 195 | 99.75 73 | 98.23 185 | 99.94 36 | 99.53 55 | 99.29 91 | 99.08 85 | 99.65 98 | 99.54 87 |
|
DeepC-MVS_fast | | 98.69 9 | 99.32 100 | 99.13 109 | 99.53 96 | 99.63 155 | 98.78 172 | 99.53 85 | 99.33 195 | 99.08 80 | 99.77 67 | 99.18 132 | 99.89 63 | 99.29 94 | 99.00 138 | 98.70 135 | 99.65 98 | 99.30 134 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSDG | | | 99.32 100 | 99.09 116 | 99.58 85 | 99.75 123 | 98.74 176 | 99.36 123 | 99.54 168 | 99.14 76 | 99.72 88 | 99.24 123 | 99.89 63 | 99.51 59 | 99.30 88 | 98.76 126 | 99.62 116 | 98.54 178 |
|
TSAR-MVS + ACMM | | | 99.31 104 | 99.26 80 | 99.37 129 | 99.66 148 | 98.97 159 | 99.20 147 | 99.56 165 | 99.33 49 | 99.19 179 | 99.54 86 | 99.91 57 | 99.32 89 | 99.12 126 | 98.34 161 | 99.29 169 | 99.65 52 |
|
3Dnovator+ | | 98.92 7 | 99.31 104 | 99.03 122 | 99.63 76 | 99.77 114 | 98.90 161 | 99.52 89 | 99.81 94 | 99.37 45 | 99.72 88 | 98.03 190 | 99.73 109 | 99.32 89 | 98.99 141 | 98.81 123 | 99.67 94 | 99.36 127 |
|
X-MVS | | | 99.30 106 | 98.99 127 | 99.66 68 | 99.85 74 | 99.30 111 | 99.49 103 | 99.82 86 | 98.32 163 | 99.69 97 | 97.31 202 | 99.93 43 | 99.50 63 | 99.37 76 | 99.16 67 | 99.60 120 | 99.53 90 |
|
MVS_111021_HR | | | 99.30 106 | 99.14 107 | 99.48 106 | 99.58 171 | 99.25 122 | 99.27 140 | 99.61 154 | 98.74 123 | 99.66 107 | 99.02 148 | 99.84 85 | 99.33 86 | 99.20 113 | 98.76 126 | 99.44 152 | 99.18 143 |
|
TAPA-MVS | | 98.54 10 | 99.30 106 | 99.24 85 | 99.36 133 | 99.44 190 | 98.77 174 | 99.00 171 | 99.41 186 | 99.23 59 | 99.60 120 | 99.50 98 | 99.86 77 | 99.15 110 | 99.29 91 | 98.95 107 | 99.56 131 | 99.08 156 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 99.30 106 | 99.01 126 | 99.63 76 | 99.75 123 | 98.89 164 | 99.35 126 | 99.60 156 | 98.53 144 | 99.86 35 | 99.57 83 | 99.94 36 | 99.52 58 | 98.96 143 | 98.10 174 | 99.70 90 | 99.08 156 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
USDC | | | 99.29 110 | 98.98 129 | 99.65 70 | 99.72 135 | 98.87 167 | 99.47 105 | 99.66 150 | 99.35 48 | 99.87 29 | 99.58 82 | 99.87 76 | 99.51 59 | 98.85 162 | 97.93 180 | 99.65 98 | 98.38 182 |
|
PMVS |  | 94.32 17 | 99.27 111 | 99.55 33 | 98.94 175 | 99.60 164 | 99.43 80 | 99.39 118 | 99.54 168 | 98.99 92 | 99.69 97 | 99.60 79 | 99.81 92 | 95.68 205 | 99.88 12 | 99.83 5 | 99.73 82 | 99.31 132 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVS_111021_LR | | | 99.25 112 | 99.13 109 | 99.39 119 | 99.50 183 | 99.14 140 | 99.23 145 | 99.50 176 | 98.67 128 | 99.61 116 | 99.12 138 | 99.81 92 | 99.16 106 | 99.28 96 | 98.67 138 | 99.35 165 | 99.21 142 |
|
baseline | | | 99.24 113 | 99.30 74 | 99.17 156 | 99.78 106 | 99.14 140 | 99.10 159 | 99.69 138 | 98.97 96 | 99.49 143 | 99.84 41 | 99.88 69 | 97.99 173 | 98.85 162 | 98.73 132 | 98.98 184 | 99.72 37 |
|
EIA-MVS | | | 99.23 114 | 99.03 122 | 99.47 107 | 99.83 86 | 99.64 37 | 99.16 151 | 99.81 94 | 97.11 202 | 99.65 109 | 98.44 179 | 99.78 104 | 98.61 151 | 99.46 63 | 99.22 60 | 99.75 73 | 99.59 64 |
|
HPM-MVS++ |  | | 99.23 114 | 98.98 129 | 99.53 96 | 99.75 123 | 99.02 154 | 99.44 110 | 99.77 116 | 98.65 130 | 99.52 137 | 98.72 162 | 99.92 51 | 99.33 86 | 98.77 173 | 98.40 157 | 99.40 159 | 99.36 127 |
|
PMMVS2 | | | 99.23 114 | 99.22 89 | 99.24 144 | 99.80 97 | 99.14 140 | 99.50 96 | 99.82 86 | 99.12 78 | 98.41 212 | 99.91 23 | 99.98 4 | 98.51 153 | 99.48 59 | 98.76 126 | 99.38 161 | 98.14 190 |
|
CPTT-MVS | | | 99.21 117 | 98.89 140 | 99.58 85 | 99.72 135 | 99.12 147 | 99.30 136 | 99.76 124 | 98.62 135 | 99.66 107 | 97.51 198 | 99.89 63 | 99.48 71 | 99.01 136 | 98.64 142 | 99.58 127 | 99.40 121 |
|
TinyColmap | | | 99.21 117 | 98.89 140 | 99.59 83 | 99.61 160 | 98.61 185 | 99.47 105 | 99.67 147 | 99.02 89 | 99.82 54 | 99.15 134 | 99.74 106 | 99.35 82 | 99.17 121 | 98.33 162 | 99.63 110 | 98.22 188 |
|
Effi-MVS+ | | | 99.20 119 | 98.93 135 | 99.50 104 | 99.79 101 | 99.26 119 | 98.82 190 | 99.96 12 | 98.37 161 | 99.60 120 | 99.12 138 | 98.36 173 | 99.05 121 | 98.93 146 | 98.82 120 | 99.78 63 | 99.68 45 |
|
PVSNet_BlendedMVS | | | 99.20 119 | 99.17 103 | 99.23 145 | 99.69 140 | 99.33 104 | 99.04 164 | 99.13 200 | 98.41 157 | 99.79 61 | 99.33 114 | 99.36 143 | 98.10 163 | 99.29 91 | 98.87 114 | 99.65 98 | 99.56 80 |
|
PVSNet_Blended | | | 99.20 119 | 99.17 103 | 99.23 145 | 99.69 140 | 99.33 104 | 99.04 164 | 99.13 200 | 98.41 157 | 99.79 61 | 99.33 114 | 99.36 143 | 98.10 163 | 99.29 91 | 98.87 114 | 99.65 98 | 99.56 80 |
|
MCST-MVS | | | 99.17 122 | 98.82 148 | 99.57 88 | 99.75 123 | 98.70 180 | 99.25 144 | 99.69 138 | 98.62 135 | 99.59 122 | 98.54 173 | 99.79 101 | 99.53 55 | 98.48 184 | 98.15 170 | 99.64 107 | 99.43 112 |
|
APD-MVS |  | | 99.17 122 | 98.92 136 | 99.46 109 | 99.78 106 | 99.24 127 | 99.34 127 | 99.78 109 | 97.79 189 | 99.48 145 | 98.25 184 | 99.88 69 | 98.77 141 | 99.18 119 | 98.92 109 | 99.63 110 | 99.18 143 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
OpenMVS |  | 98.82 8 | 99.17 122 | 98.85 144 | 99.53 96 | 99.75 123 | 99.06 152 | 99.36 123 | 99.82 86 | 98.28 165 | 99.76 70 | 98.47 177 | 99.61 122 | 98.91 133 | 98.80 170 | 98.70 135 | 99.60 120 | 99.04 163 |
|
IterMVS-LS | | | 99.16 125 | 98.82 148 | 99.57 88 | 99.87 51 | 99.71 28 | 99.58 75 | 99.92 33 | 99.24 58 | 99.71 94 | 99.73 54 | 95.79 191 | 98.91 133 | 98.82 169 | 98.66 139 | 99.43 155 | 99.77 25 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DeepPCF-MVS | | 98.38 11 | 99.16 125 | 99.20 94 | 99.12 161 | 99.20 207 | 98.71 179 | 98.85 186 | 99.06 203 | 99.17 69 | 98.96 190 | 99.61 76 | 99.86 77 | 99.29 94 | 99.17 121 | 98.72 133 | 99.36 163 | 99.15 151 |
|
IterMVS-SCA-FT | | | 99.15 127 | 98.96 132 | 99.38 123 | 99.87 51 | 99.54 54 | 99.53 85 | 99.79 104 | 98.94 100 | 99.82 54 | 99.92 16 | 97.65 182 | 98.82 138 | 98.95 145 | 98.26 164 | 98.45 193 | 99.47 104 |
|
CDS-MVSNet | | | 99.15 127 | 99.10 114 | 99.21 151 | 99.59 168 | 99.22 130 | 99.48 104 | 99.47 179 | 98.89 107 | 99.41 158 | 99.84 41 | 98.11 178 | 97.76 177 | 99.26 101 | 99.01 96 | 99.57 128 | 99.38 124 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IS_MVSNet | | | 99.15 127 | 99.12 111 | 99.19 154 | 99.92 27 | 99.73 27 | 99.55 79 | 99.86 57 | 98.45 150 | 96.91 218 | 98.74 160 | 98.33 174 | 99.02 123 | 99.54 55 | 99.47 43 | 99.88 28 | 99.61 61 |
|
MDA-MVSNet-bldmvs | | | 99.11 130 | 99.11 113 | 99.12 161 | 99.91 31 | 99.38 91 | 99.77 31 | 98.72 207 | 99.31 51 | 99.85 42 | 99.43 103 | 98.26 176 | 99.48 71 | 99.85 16 | 98.47 152 | 96.99 204 | 99.08 156 |
|
OMC-MVS | | | 99.11 130 | 98.95 133 | 99.29 137 | 99.37 196 | 98.57 187 | 99.19 148 | 99.20 199 | 98.87 110 | 99.58 126 | 99.13 136 | 99.88 69 | 99.00 124 | 99.19 116 | 98.46 153 | 99.43 155 | 98.57 177 |
|
MVS_Test | | | 99.09 132 | 98.92 136 | 99.29 137 | 99.61 160 | 99.07 151 | 99.04 164 | 99.81 94 | 98.58 141 | 99.37 165 | 99.74 51 | 98.87 164 | 98.41 156 | 98.61 179 | 98.01 178 | 99.50 144 | 99.57 79 |
|
CNVR-MVS | | | 99.08 133 | 98.83 145 | 99.37 129 | 99.61 160 | 98.74 176 | 99.15 152 | 99.54 168 | 98.59 140 | 99.37 165 | 98.15 187 | 99.88 69 | 99.08 117 | 98.91 151 | 98.46 153 | 99.48 146 | 99.06 159 |
|
IterMVS | | | 99.08 133 | 98.90 139 | 99.29 137 | 99.87 51 | 99.53 57 | 99.52 89 | 99.77 116 | 98.94 100 | 99.75 73 | 99.91 23 | 97.52 186 | 98.72 145 | 98.86 160 | 98.14 171 | 98.09 196 | 99.43 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet2 | | | 99.07 135 | 99.19 96 | 98.93 177 | 99.02 212 | 99.53 57 | 99.31 131 | 99.84 73 | 98.86 111 | 98.88 194 | 99.64 72 | 98.44 171 | 96.92 194 | 99.35 79 | 99.00 100 | 99.61 117 | 99.53 90 |
|
CVMVSNet | | | 99.06 136 | 98.88 143 | 99.28 141 | 99.52 175 | 99.53 57 | 99.42 112 | 99.69 138 | 98.74 123 | 98.27 214 | 99.89 31 | 95.48 194 | 99.44 75 | 99.46 63 | 99.33 55 | 99.32 168 | 99.75 30 |
|
CDPH-MVS | | | 99.05 137 | 98.63 155 | 99.54 95 | 99.75 123 | 98.78 172 | 99.59 71 | 99.68 144 | 97.79 189 | 99.37 165 | 98.20 186 | 99.86 77 | 99.14 112 | 98.58 180 | 98.01 178 | 99.68 92 | 99.16 149 |
|
TAMVS | | | 99.05 137 | 99.02 125 | 99.08 166 | 99.69 140 | 99.22 130 | 99.33 128 | 99.32 196 | 99.16 73 | 98.97 189 | 99.87 35 | 97.36 187 | 97.76 177 | 99.21 110 | 99.00 100 | 99.44 152 | 99.33 130 |
|
CANet_DTU | | | 99.03 139 | 99.18 98 | 98.87 180 | 99.58 171 | 99.03 153 | 99.18 149 | 99.41 186 | 98.65 130 | 99.74 79 | 99.55 85 | 99.71 111 | 96.13 203 | 99.19 116 | 98.92 109 | 99.17 178 | 99.18 143 |
|
Effi-MVS+-dtu | | | 99.01 140 | 99.05 119 | 98.98 170 | 99.60 164 | 99.13 144 | 99.03 168 | 99.61 154 | 98.52 145 | 99.01 186 | 98.53 174 | 99.83 87 | 96.95 193 | 99.48 59 | 98.59 147 | 99.66 96 | 99.25 141 |
|
canonicalmvs | | | 99.00 141 | 98.68 154 | 99.37 129 | 99.68 146 | 99.42 84 | 98.94 177 | 99.89 48 | 99.00 91 | 98.99 187 | 98.43 181 | 95.69 192 | 98.96 130 | 99.18 119 | 99.18 64 | 99.74 78 | 99.88 7 |
|
MIMVSNet | | | 99.00 141 | 99.03 122 | 98.97 174 | 99.32 202 | 99.32 108 | 99.39 118 | 99.91 39 | 98.41 157 | 98.76 201 | 99.24 123 | 99.17 155 | 97.13 187 | 99.30 88 | 98.80 124 | 99.29 169 | 99.01 164 |
|
CHOSEN 280x420 | | | 98.99 143 | 98.91 138 | 99.07 167 | 99.77 114 | 99.26 119 | 99.55 79 | 99.92 33 | 98.62 135 | 98.67 205 | 99.62 75 | 97.20 188 | 98.44 155 | 99.50 57 | 99.18 64 | 98.08 197 | 98.99 167 |
|
xxxxxxxxxxxxxcwj | | | 98.97 144 | 98.97 131 | 98.98 170 | 99.64 153 | 98.89 164 | 98.00 216 | 99.58 162 | 98.42 154 | 99.08 184 | 98.63 167 | 99.96 14 | 98.04 169 | 99.02 134 | 98.76 126 | 99.52 138 | 99.13 152 |
|
SF-MVS | | | 98.96 145 | 98.95 133 | 98.98 170 | 99.64 153 | 98.89 164 | 98.00 216 | 99.58 162 | 98.42 154 | 99.08 184 | 98.63 167 | 99.83 87 | 98.04 169 | 99.02 134 | 98.76 126 | 99.52 138 | 99.13 152 |
|
GBi-Net | | | 98.96 145 | 99.05 119 | 98.85 181 | 99.02 212 | 99.53 57 | 99.31 131 | 99.78 109 | 98.13 172 | 98.48 208 | 99.43 103 | 97.58 183 | 96.92 194 | 99.68 38 | 99.50 38 | 99.61 117 | 99.53 90 |
|
test1 | | | 98.96 145 | 99.05 119 | 98.85 181 | 99.02 212 | 99.53 57 | 99.31 131 | 99.78 109 | 98.13 172 | 98.48 208 | 99.43 103 | 97.58 183 | 96.92 194 | 99.68 38 | 99.50 38 | 99.61 117 | 99.53 90 |
|
PCF-MVS | | 97.86 15 | 98.95 148 | 98.53 160 | 99.44 113 | 99.70 139 | 98.80 171 | 98.96 173 | 99.69 138 | 98.65 130 | 99.59 122 | 99.33 114 | 99.94 36 | 99.12 115 | 98.01 194 | 97.11 191 | 99.59 126 | 97.83 194 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MS-PatchMatch | | | 98.94 149 | 98.71 153 | 99.21 151 | 99.52 175 | 98.22 203 | 98.97 172 | 99.53 173 | 98.76 120 | 99.50 141 | 98.59 171 | 99.56 129 | 98.68 146 | 98.63 178 | 98.45 155 | 99.05 181 | 98.73 174 |
|
AdaColmap |  | | 98.93 150 | 98.53 160 | 99.39 119 | 99.52 175 | 98.65 183 | 99.11 158 | 99.59 159 | 98.08 176 | 99.44 151 | 97.46 200 | 99.45 136 | 99.24 98 | 98.92 148 | 98.44 156 | 99.44 152 | 98.73 174 |
|
MSLP-MVS++ | | | 98.92 151 | 98.73 152 | 99.14 158 | 99.44 190 | 99.00 156 | 98.36 206 | 99.35 192 | 98.82 117 | 99.38 162 | 96.06 207 | 99.79 101 | 99.07 118 | 98.88 156 | 99.05 90 | 99.27 171 | 99.53 90 |
|
new_pmnet | | | 98.91 152 | 98.89 140 | 98.94 175 | 99.51 181 | 98.27 199 | 99.15 152 | 98.66 208 | 99.17 69 | 99.48 145 | 99.79 49 | 99.80 98 | 98.49 154 | 99.23 105 | 98.20 168 | 98.34 194 | 97.74 198 |
|
train_agg | | | 98.89 153 | 98.48 165 | 99.38 123 | 99.69 140 | 98.76 175 | 99.31 131 | 99.60 156 | 97.71 191 | 98.98 188 | 97.89 191 | 99.89 63 | 99.29 94 | 98.32 185 | 97.59 187 | 99.42 158 | 99.16 149 |
|
NCCC | | | 98.88 154 | 98.42 166 | 99.42 114 | 99.62 156 | 98.81 170 | 99.10 159 | 99.54 168 | 98.76 120 | 99.53 131 | 95.97 208 | 99.80 98 | 99.16 106 | 98.49 183 | 98.06 177 | 99.55 134 | 99.05 161 |
|
PLC |  | 97.83 16 | 98.88 154 | 98.52 162 | 99.30 136 | 99.45 188 | 98.60 186 | 98.65 196 | 99.49 177 | 98.66 129 | 99.59 122 | 96.33 206 | 99.59 125 | 99.17 102 | 98.87 157 | 98.53 149 | 99.46 148 | 99.05 161 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
pmmvs3 | | | 98.85 156 | 98.60 156 | 99.13 159 | 99.66 148 | 98.72 178 | 99.37 122 | 99.06 203 | 98.44 151 | 99.76 70 | 99.74 51 | 99.55 130 | 99.15 110 | 99.04 132 | 96.00 199 | 97.80 198 | 98.72 176 |
|
Fast-Effi-MVS+-dtu | | | 98.82 157 | 98.80 150 | 98.84 183 | 99.51 181 | 98.90 161 | 98.96 173 | 99.91 39 | 98.29 164 | 99.11 183 | 98.47 177 | 99.63 121 | 96.03 204 | 99.21 110 | 98.12 172 | 99.52 138 | 99.01 164 |
|
CNLPA | | | 98.82 157 | 98.52 162 | 99.18 155 | 99.21 206 | 98.50 191 | 98.73 194 | 99.34 194 | 98.73 125 | 99.56 128 | 97.55 197 | 99.42 140 | 99.06 120 | 98.93 146 | 98.10 174 | 99.21 177 | 98.38 182 |
|
PatchMatch-RL | | | 98.80 159 | 98.52 162 | 99.12 161 | 99.38 195 | 98.70 180 | 98.56 199 | 99.55 167 | 97.81 188 | 99.34 171 | 97.57 196 | 99.31 150 | 98.67 147 | 99.27 99 | 98.62 144 | 99.22 176 | 98.35 184 |
|
thisisatest0530 | | | 98.78 160 | 98.26 169 | 99.39 119 | 99.78 106 | 99.43 80 | 99.07 161 | 99.64 152 | 98.44 151 | 99.42 156 | 99.22 126 | 92.68 205 | 98.63 149 | 99.30 88 | 99.14 70 | 99.80 58 | 99.60 62 |
|
tttt0517 | | | 98.77 161 | 98.25 171 | 99.38 123 | 99.79 101 | 99.46 74 | 99.07 161 | 99.64 152 | 98.40 160 | 99.38 162 | 99.21 128 | 92.54 206 | 98.63 149 | 99.34 82 | 99.14 70 | 99.80 58 | 99.62 59 |
|
DI_MVS_plusplus_trai | | | 98.74 162 | 98.08 179 | 99.51 102 | 99.79 101 | 99.29 115 | 99.61 66 | 99.60 156 | 99.20 63 | 99.46 149 | 99.09 141 | 92.93 199 | 98.97 127 | 98.27 188 | 98.35 160 | 99.65 98 | 99.45 106 |
|
TSAR-MVS + COLMAP | | | 98.74 162 | 98.58 158 | 98.93 177 | 99.29 203 | 98.23 200 | 99.04 164 | 99.24 198 | 98.79 119 | 98.80 200 | 99.37 112 | 99.71 111 | 98.06 166 | 98.02 193 | 97.46 189 | 99.16 179 | 98.48 180 |
|
MDTV_nov1_ep13_2view | | | 98.73 164 | 98.31 168 | 99.22 148 | 99.75 123 | 99.24 127 | 99.75 38 | 99.93 26 | 99.31 51 | 99.84 46 | 99.86 38 | 99.81 92 | 99.31 92 | 97.40 202 | 94.77 201 | 96.73 206 | 97.81 195 |
|
PMMVS | | | 98.71 165 | 98.55 159 | 98.90 179 | 99.28 204 | 98.45 193 | 98.53 202 | 99.45 181 | 97.67 193 | 99.15 182 | 98.76 158 | 99.54 132 | 97.79 176 | 98.77 173 | 98.23 166 | 99.16 179 | 98.46 181 |
|
HQP-MVS | | | 98.70 166 | 98.19 175 | 99.28 141 | 99.61 160 | 98.52 189 | 98.71 195 | 99.35 192 | 97.97 183 | 99.53 131 | 97.38 201 | 99.85 83 | 99.14 112 | 97.53 198 | 96.85 195 | 99.36 163 | 99.26 140 |
|
N_pmnet | | | 98.64 167 | 98.23 174 | 99.11 164 | 99.78 106 | 99.25 122 | 99.75 38 | 99.39 190 | 99.65 14 | 99.70 96 | 99.78 50 | 99.89 63 | 98.81 140 | 97.60 197 | 94.28 202 | 97.24 203 | 97.15 202 |
|
CMPMVS |  | 76.62 19 | 98.64 167 | 98.60 156 | 98.68 188 | 99.33 200 | 97.07 215 | 98.11 214 | 98.50 209 | 97.69 192 | 99.26 174 | 98.35 183 | 99.66 119 | 97.62 180 | 99.43 72 | 99.02 94 | 99.24 174 | 99.01 164 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
FMVSNet3 | | | 98.63 169 | 98.75 151 | 98.49 194 | 98.10 218 | 99.44 77 | 99.02 169 | 99.78 109 | 98.13 172 | 98.48 208 | 99.43 103 | 97.58 183 | 96.16 202 | 98.85 162 | 98.39 158 | 99.40 159 | 99.41 116 |
|
GA-MVS | | | 98.59 170 | 98.15 176 | 99.09 165 | 99.59 168 | 99.13 144 | 98.84 187 | 99.52 175 | 98.61 138 | 99.35 168 | 99.67 66 | 93.03 198 | 97.73 179 | 98.90 155 | 98.26 164 | 99.51 142 | 99.48 101 |
|
MAR-MVS | | | 98.54 171 | 98.15 176 | 98.98 170 | 99.37 196 | 98.09 206 | 98.56 199 | 99.65 151 | 96.11 217 | 99.27 173 | 97.16 204 | 99.50 133 | 98.03 171 | 98.87 157 | 98.23 166 | 99.01 182 | 99.13 152 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
new-patchmatchnet | | | 98.49 172 | 97.60 181 | 99.53 96 | 99.90 35 | 99.55 51 | 99.77 31 | 99.48 178 | 99.67 11 | 99.86 35 | 99.98 3 | 99.98 4 | 99.50 63 | 96.90 204 | 91.52 208 | 98.67 190 | 95.62 208 |
|
FPMVS | | | 98.48 173 | 98.83 145 | 98.07 204 | 99.09 210 | 97.98 209 | 99.07 161 | 98.04 215 | 98.99 92 | 99.22 177 | 98.85 153 | 99.43 139 | 93.79 212 | 99.66 43 | 99.11 82 | 99.24 174 | 97.76 196 |
|
MVS-HIRNet | | | 98.45 174 | 98.25 171 | 98.69 187 | 99.12 208 | 97.81 214 | 98.55 201 | 99.85 64 | 98.58 141 | 99.67 105 | 99.61 76 | 99.86 77 | 97.46 183 | 97.95 195 | 96.37 197 | 97.49 200 | 97.56 199 |
|
test0.0.03 1 | | | 98.41 175 | 98.41 167 | 98.40 198 | 99.62 156 | 99.16 137 | 98.87 184 | 99.41 186 | 97.15 200 | 96.60 220 | 99.31 119 | 97.00 189 | 96.55 199 | 98.91 151 | 98.51 151 | 99.37 162 | 98.82 172 |
|
gg-mvs-nofinetune | | | 98.40 176 | 98.26 169 | 98.57 192 | 99.83 86 | 98.86 168 | 98.77 193 | 99.97 1 | 99.57 25 | 99.99 1 | 99.99 1 | 93.81 196 | 93.50 213 | 98.91 151 | 98.20 168 | 99.33 167 | 98.52 179 |
|
baseline1 | | | 98.39 177 | 97.59 182 | 99.31 135 | 99.78 106 | 99.45 75 | 99.13 155 | 99.53 173 | 98.06 178 | 98.87 195 | 98.63 167 | 90.04 211 | 98.76 142 | 98.85 162 | 98.84 118 | 99.81 54 | 99.28 136 |
|
pmnet_mix02 | | | 98.28 178 | 97.48 184 | 99.22 148 | 99.78 106 | 99.12 147 | 99.68 54 | 99.39 190 | 99.49 33 | 99.86 35 | 99.82 46 | 99.89 63 | 99.23 99 | 95.54 207 | 92.36 205 | 97.38 201 | 96.14 206 |
|
PatchT | | | 98.11 179 | 97.12 190 | 99.26 143 | 99.65 152 | 98.34 197 | 99.57 77 | 99.97 1 | 97.48 196 | 99.43 153 | 99.04 146 | 90.84 209 | 98.15 160 | 98.04 191 | 97.78 181 | 98.82 187 | 98.30 185 |
|
DPM-MVS | | | 98.10 180 | 97.32 188 | 99.01 169 | 99.52 175 | 97.92 210 | 98.47 204 | 99.45 181 | 98.25 166 | 98.91 192 | 93.99 212 | 99.69 115 | 98.73 144 | 96.29 206 | 96.32 198 | 99.00 183 | 98.77 173 |
|
EPNet_dtu | | | 98.09 181 | 98.25 171 | 97.91 206 | 99.58 171 | 98.02 208 | 98.19 211 | 99.67 147 | 97.94 184 | 99.74 79 | 99.07 144 | 98.71 167 | 93.40 214 | 97.50 199 | 97.09 192 | 96.89 205 | 99.44 109 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPNet | | | 98.06 182 | 98.11 178 | 98.00 205 | 99.60 164 | 98.99 158 | 98.38 205 | 99.68 144 | 98.18 170 | 98.85 197 | 97.89 191 | 95.60 193 | 92.72 215 | 98.30 186 | 98.10 174 | 98.76 188 | 99.72 37 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CR-MVSNet | | | 97.91 183 | 96.80 193 | 99.22 148 | 99.60 164 | 98.23 200 | 98.91 179 | 99.97 1 | 96.89 210 | 99.43 153 | 99.10 140 | 89.24 214 | 98.15 160 | 98.04 191 | 97.78 181 | 99.26 172 | 98.30 185 |
|
thres200 | | | 97.87 184 | 96.56 195 | 99.39 119 | 99.76 119 | 99.52 64 | 99.13 155 | 99.76 124 | 96.88 212 | 98.66 206 | 92.87 216 | 88.77 217 | 99.16 106 | 99.11 127 | 99.42 50 | 99.88 28 | 99.33 130 |
|
baseline2 | | | 97.87 184 | 97.18 189 | 98.67 189 | 99.34 199 | 99.17 136 | 98.48 203 | 98.82 206 | 97.08 203 | 98.83 199 | 98.75 159 | 89.47 213 | 97.03 192 | 98.67 177 | 98.27 163 | 99.52 138 | 98.83 171 |
|
thres600view7 | | | 97.86 186 | 96.53 198 | 99.41 117 | 99.84 80 | 99.52 64 | 99.36 123 | 99.76 124 | 97.32 198 | 98.38 213 | 93.24 213 | 87.25 219 | 99.23 99 | 99.11 127 | 99.75 15 | 99.88 28 | 99.48 101 |
|
tfpn200view9 | | | 97.85 187 | 96.54 196 | 99.38 123 | 99.74 131 | 99.52 64 | 99.17 150 | 99.76 124 | 96.10 218 | 98.70 203 | 92.99 214 | 89.10 215 | 99.00 124 | 99.11 127 | 99.56 29 | 99.88 28 | 99.41 116 |
|
thres400 | | | 97.82 188 | 96.47 199 | 99.40 118 | 99.81 96 | 99.44 77 | 99.29 138 | 99.69 138 | 97.15 200 | 98.57 207 | 92.82 217 | 87.96 218 | 99.16 106 | 98.96 143 | 99.55 32 | 99.86 36 | 99.41 116 |
|
IB-MVS | | 98.10 14 | 97.76 189 | 97.40 187 | 98.18 200 | 99.62 156 | 99.11 149 | 98.24 209 | 98.35 211 | 96.56 214 | 99.44 151 | 91.28 218 | 98.96 162 | 93.84 211 | 98.09 190 | 98.62 144 | 99.56 131 | 99.18 143 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-LLR | | | 97.74 190 | 97.46 185 | 98.08 202 | 99.62 156 | 98.37 195 | 98.26 207 | 99.41 186 | 97.03 205 | 97.38 216 | 99.54 86 | 92.89 200 | 95.12 208 | 98.78 171 | 97.68 185 | 98.65 191 | 97.90 192 |
|
RPMNet | | | 97.70 191 | 96.54 196 | 99.06 168 | 99.57 174 | 98.23 200 | 98.95 176 | 99.97 1 | 96.89 210 | 99.49 143 | 99.13 136 | 89.63 212 | 97.09 189 | 96.68 205 | 97.02 193 | 99.26 172 | 98.19 189 |
|
thres100view900 | | | 97.69 192 | 96.37 200 | 99.23 145 | 99.74 131 | 99.21 133 | 98.81 191 | 99.43 185 | 96.10 218 | 98.70 203 | 92.99 214 | 89.10 215 | 98.88 136 | 98.58 180 | 99.31 57 | 99.82 51 | 99.27 137 |
|
FMVSNet5 | | | 97.69 192 | 96.98 191 | 98.53 193 | 98.53 216 | 99.36 97 | 98.90 182 | 99.54 168 | 96.38 215 | 98.44 211 | 95.38 210 | 90.08 210 | 97.05 191 | 99.46 63 | 99.06 87 | 98.73 189 | 99.12 155 |
|
MVE |  | 91.08 18 | 97.68 194 | 97.65 180 | 97.71 212 | 98.46 217 | 91.62 221 | 97.92 218 | 98.86 205 | 98.73 125 | 97.99 215 | 98.64 166 | 99.96 14 | 99.17 102 | 99.59 51 | 97.75 183 | 93.87 220 | 97.27 200 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test-mter | | | 97.65 195 | 97.57 183 | 97.75 210 | 98.90 215 | 98.56 188 | 98.15 212 | 98.45 210 | 96.92 209 | 96.84 219 | 99.52 94 | 92.53 207 | 95.24 207 | 99.04 132 | 98.12 172 | 98.90 186 | 98.29 187 |
|
TESTMET0.1,1 | | | 97.62 196 | 97.46 185 | 97.81 208 | 99.07 211 | 98.37 195 | 98.26 207 | 98.35 211 | 97.03 205 | 97.38 216 | 99.54 86 | 92.89 200 | 95.12 208 | 98.78 171 | 97.68 185 | 98.65 191 | 97.90 192 |
|
MVSTER | | | 97.55 197 | 96.75 194 | 98.48 195 | 99.46 187 | 99.54 54 | 98.24 209 | 99.77 116 | 97.56 194 | 99.41 158 | 99.31 119 | 84.86 221 | 94.66 210 | 98.86 160 | 97.75 183 | 99.34 166 | 99.38 124 |
|
ET-MVSNet_ETH3D | | | 97.44 198 | 96.29 201 | 98.78 184 | 97.93 219 | 98.95 160 | 98.91 179 | 99.09 202 | 98.00 181 | 99.24 175 | 98.83 154 | 84.62 222 | 98.02 172 | 97.43 201 | 97.38 190 | 99.48 146 | 98.84 169 |
|
MDTV_nov1_ep13 | | | 97.41 199 | 96.26 202 | 98.76 185 | 99.47 186 | 98.43 194 | 99.26 143 | 99.82 86 | 98.06 178 | 99.23 176 | 99.22 126 | 92.86 202 | 98.05 167 | 95.33 209 | 93.66 204 | 96.73 206 | 96.26 205 |
|
ADS-MVSNet | | | 97.29 200 | 96.17 203 | 98.59 191 | 99.59 168 | 98.70 180 | 99.32 129 | 99.86 57 | 98.47 146 | 99.56 128 | 99.08 142 | 98.16 177 | 97.34 185 | 92.92 211 | 91.17 209 | 95.91 209 | 94.72 211 |
|
SCA | | | 97.25 201 | 96.05 204 | 98.64 190 | 99.36 198 | 99.02 154 | 99.27 140 | 99.96 12 | 98.25 166 | 99.69 97 | 98.71 163 | 94.66 195 | 97.95 175 | 93.95 210 | 92.35 206 | 95.64 210 | 95.40 210 |
|
gm-plane-assit | | | 96.82 202 | 94.84 210 | 99.13 159 | 99.95 11 | 99.78 15 | 99.69 53 | 99.92 33 | 99.19 66 | 99.84 46 | 99.92 16 | 72.93 225 | 96.44 201 | 98.21 189 | 97.01 194 | 98.92 185 | 96.87 204 |
|
PatchmatchNet |  | | 96.81 203 | 95.41 207 | 98.43 197 | 99.43 192 | 98.30 198 | 99.23 145 | 99.93 26 | 98.19 169 | 99.64 110 | 98.81 157 | 93.50 197 | 97.43 184 | 92.89 212 | 90.78 211 | 94.94 215 | 95.41 209 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 96.76 204 | 95.30 209 | 98.46 196 | 99.42 193 | 98.47 192 | 99.32 129 | 99.91 39 | 98.42 154 | 99.51 139 | 99.07 144 | 92.81 203 | 97.12 188 | 92.39 213 | 91.71 207 | 95.51 211 | 94.20 213 |
|
E-PMN | | | 96.72 205 | 95.78 205 | 97.81 208 | 99.45 188 | 95.46 218 | 98.14 213 | 98.33 213 | 97.99 182 | 98.73 202 | 98.09 188 | 98.97 160 | 97.54 182 | 97.45 200 | 91.09 210 | 94.70 217 | 91.40 216 |
|
tpm | | | 96.56 206 | 94.68 211 | 98.74 186 | 99.12 208 | 97.90 211 | 98.79 192 | 99.93 26 | 96.79 213 | 99.69 97 | 99.19 131 | 81.48 224 | 97.56 181 | 95.46 208 | 93.97 203 | 97.37 202 | 97.99 191 |
|
EMVS | | | 96.47 207 | 95.38 208 | 97.74 211 | 99.42 193 | 95.37 219 | 98.07 215 | 98.27 214 | 97.85 187 | 98.90 193 | 97.48 199 | 98.73 166 | 97.20 186 | 97.21 203 | 90.39 212 | 94.59 219 | 90.65 217 |
|
tpmrst | | | 96.18 208 | 94.47 212 | 98.18 200 | 99.52 175 | 97.89 212 | 98.96 173 | 99.79 104 | 98.07 177 | 99.16 180 | 99.30 122 | 92.69 204 | 96.69 197 | 90.76 215 | 88.85 215 | 94.96 214 | 93.69 214 |
|
CostFormer | | | 95.61 209 | 93.35 215 | 98.24 199 | 99.48 185 | 98.03 207 | 98.65 196 | 99.83 79 | 96.93 208 | 99.42 156 | 98.83 154 | 83.65 223 | 97.08 190 | 90.39 216 | 89.54 214 | 94.94 215 | 96.11 207 |
|
dps | | | 95.59 210 | 93.46 214 | 98.08 202 | 99.33 200 | 98.22 203 | 98.87 184 | 99.70 136 | 96.17 216 | 98.87 195 | 97.75 194 | 86.85 220 | 96.60 198 | 91.24 214 | 89.62 213 | 95.10 213 | 94.34 212 |
|
tpm cat1 | | | 95.52 211 | 93.49 213 | 97.88 207 | 99.28 204 | 97.87 213 | 98.65 196 | 99.77 116 | 97.27 199 | 99.46 149 | 98.04 189 | 90.99 208 | 95.46 206 | 88.57 217 | 88.14 216 | 94.64 218 | 93.54 215 |
|
test_method | | | 91.96 212 | 95.51 206 | 87.82 214 | 70.84 221 | 82.79 222 | 92.13 221 | 87.74 217 | 98.88 108 | 95.40 221 | 99.20 130 | 98.04 179 | 85.65 217 | 97.71 196 | 94.95 200 | 95.13 212 | 97.00 203 |
|
GG-mvs-BLEND | | | 70.44 213 | 96.91 192 | 39.57 215 | 3.32 224 | 96.51 216 | 91.01 222 | 4.05 221 | 97.03 205 | 33.20 223 | 94.67 211 | 97.75 181 | 7.59 220 | 98.28 187 | 96.85 195 | 98.24 195 | 97.26 201 |
|
testmvs | | | 22.33 214 | 29.66 216 | 13.79 216 | 8.97 222 | 10.35 223 | 15.53 225 | 8.09 220 | 32.51 220 | 19.87 224 | 45.18 219 | 30.56 227 | 17.05 219 | 29.96 218 | 24.74 217 | 13.21 221 | 34.30 218 |
|
test123 | | | 21.52 215 | 28.47 217 | 13.42 217 | 7.29 223 | 10.12 224 | 15.70 224 | 8.31 219 | 31.54 221 | 19.34 225 | 36.33 220 | 37.40 226 | 17.14 218 | 27.45 219 | 23.17 218 | 12.73 222 | 33.30 219 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 99.96 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.57 126 | | | | | |
|
SR-MVS | | | | | | 99.73 133 | | | 99.74 131 | | | | 99.88 69 | | | | | |
|
Anonymous202405211 | | | | 99.14 107 | | 99.87 51 | 99.55 51 | 99.50 96 | 99.70 136 | 98.55 143 | | 98.61 170 | 98.46 170 | 98.76 142 | 99.66 43 | 99.50 38 | 99.85 39 | 99.63 56 |
|
our_test_3 | | | | | | 99.75 123 | 99.11 149 | 99.74 45 | | | | | | | | | | |
|
ambc | | | | 98.83 145 | | 99.72 135 | 98.52 189 | 98.84 187 | | 98.96 97 | 99.92 10 | 99.34 113 | 99.74 106 | 99.04 122 | 98.68 176 | 97.57 188 | 99.46 148 | 98.99 167 |
|
MTAPA | | | | | | | | | | | 99.62 113 | | 99.95 26 | | | | | |
|
MTMP | | | | | | | | | | | 99.53 131 | | 99.92 51 | | | | | |
|
Patchmatch-RL test | | | | | | | | 65.75 223 | | | | | | | | | | |
|
tmp_tt | | | | | 88.14 213 | 96.68 220 | 91.91 220 | 93.70 220 | 61.38 218 | 99.61 20 | 90.51 222 | 99.40 109 | 99.71 111 | 90.32 216 | 99.22 107 | 99.44 48 | 96.25 208 | |
|
XVS | | | | | | 99.86 65 | 99.30 111 | 99.72 50 | | | 99.69 97 | | 99.93 43 | | | | 99.60 120 | |
|
X-MVStestdata | | | | | | 99.86 65 | 99.30 111 | 99.72 50 | | | 99.69 97 | | 99.93 43 | | | | 99.60 120 | |
|
abl_6 | | | | | 99.21 151 | 99.49 184 | 98.62 184 | 98.90 182 | 99.44 184 | 97.08 203 | 99.61 116 | 97.19 203 | 99.73 109 | 98.35 157 | | | 99.45 150 | 98.84 169 |
|
mPP-MVS | | | | | | 99.84 80 | | | | | | | 99.92 51 | | | | | |
|
NP-MVS | | | | | | | | | | 97.37 197 | | | | | | | | |
|
Patchmtry | | | | | | | 98.19 205 | 98.91 179 | 99.97 1 | | 99.43 153 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 96.39 217 | 97.15 219 | 88.89 216 | 97.94 184 | 99.51 139 | 95.71 209 | 97.88 180 | 98.19 158 | 98.92 148 | | 97.73 199 | 97.75 197 |
|