This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.39 199.90 199.87 199.93 199.97 299.82 699.91 399.92 3199.75 499.93 499.89 30100.00 199.87 299.93 399.82 799.96 399.90 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.89 299.86 399.93 199.97 299.83 299.93 199.96 1099.77 399.89 1599.99 199.86 7399.84 599.89 899.81 899.97 199.88 6
SixPastTwentyTwo99.89 299.85 599.93 199.97 299.88 199.92 299.97 199.66 1299.94 399.94 1199.74 10099.81 799.97 199.89 199.96 399.89 4
pmmvs699.88 499.87 199.89 999.97 299.76 1599.89 599.96 1099.82 299.90 1399.92 1699.95 2499.68 2999.93 399.88 299.95 799.86 9
anonymousdsp99.87 599.86 399.88 1299.95 999.75 2199.90 499.96 1099.69 799.83 4799.96 499.99 399.74 2199.95 299.83 499.91 1999.88 6
FC-MVSNet-test99.84 699.80 699.89 999.96 799.83 299.84 1499.95 2199.37 4299.77 6299.95 699.96 1399.85 399.93 399.83 499.95 799.72 34
UniMVSNet_ETH3D99.81 799.79 799.85 1899.98 199.76 1599.73 4399.96 1099.68 999.87 2699.59 7699.91 5499.58 4699.90 799.85 399.96 399.81 16
TDRefinement99.81 799.76 999.86 1599.83 8299.53 5399.89 599.91 3699.73 599.88 2099.83 4399.96 1399.76 1699.91 699.81 899.86 3599.59 61
WR-MVS99.79 999.68 1399.91 599.95 999.83 299.87 999.96 1099.39 4199.93 499.87 3499.29 14599.77 1499.83 1799.72 1599.97 199.82 13
MIMVSNet199.79 999.75 1099.84 1999.89 3599.83 299.84 1499.89 4499.31 4899.93 499.92 1699.97 899.68 2999.89 899.64 2199.82 4999.66 45
pm-mvs199.77 1199.69 1299.86 1599.94 1999.68 3099.84 1499.93 2499.59 2199.87 2699.92 1699.21 14899.65 3599.88 1199.77 1199.93 1699.78 22
PEN-MVS99.77 1199.65 1699.91 599.95 999.80 1199.86 1099.97 199.08 7699.89 1599.69 6199.68 11199.84 599.81 2199.64 2199.95 799.81 16
EU-MVSNet99.76 1399.74 1199.78 3699.82 8799.81 999.88 799.87 4999.31 4899.75 6899.91 2399.76 9999.78 1299.84 1699.74 1499.56 12799.81 16
Vis-MVSNetpermissive99.76 1399.78 899.75 4499.92 2599.77 1499.83 1799.85 6099.43 3599.85 3899.84 40100.00 199.13 10899.83 1799.66 1999.90 2199.90 2
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DTE-MVSNet99.75 1599.61 2299.92 499.95 999.81 999.86 1099.96 1099.18 6499.92 899.66 6499.45 13099.85 399.80 2299.56 2799.96 399.79 21
tfpnnormal99.74 1699.63 1999.86 1599.93 2299.75 2199.80 2599.89 4499.31 4899.88 2099.43 9799.66 11499.77 1499.80 2299.71 1699.92 1799.76 26
DeepC-MVS99.05 599.74 1699.64 1799.84 1999.90 3299.39 8499.79 2699.81 9099.69 799.90 1399.87 3499.98 499.81 799.62 4899.32 5499.83 4699.65 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thisisatest051599.73 1899.67 1499.81 2699.93 2299.74 2399.68 5199.91 3699.59 2199.88 2099.73 5199.81 8799.55 5099.59 4999.53 3299.89 2499.70 39
PS-CasMVS99.73 1899.59 2799.90 899.95 999.80 1199.85 1399.97 198.95 9399.86 3299.73 5199.36 13799.81 799.83 1799.67 1899.95 799.83 12
WR-MVS_H99.73 1899.61 2299.88 1299.95 999.82 699.83 1799.96 1099.01 8599.84 4299.71 5899.41 13699.74 2199.77 2799.70 1799.95 799.82 13
TransMVSNet (Re)99.72 2199.59 2799.88 1299.95 999.76 1599.88 799.94 2299.58 2399.92 899.90 2798.55 16399.65 3599.89 899.76 1299.95 799.70 39
ACMH99.11 499.72 2199.63 1999.84 1999.87 4799.59 4399.83 1799.88 4899.46 3499.87 2699.66 6499.95 2499.76 1699.73 3299.47 4099.84 4199.52 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train99.70 2399.67 1499.74 5099.94 1999.71 2699.82 2199.91 3699.14 7299.53 12599.70 5999.88 6599.33 8299.88 1199.61 2699.94 1499.77 23
COLMAP_ROBcopyleft99.18 299.70 2399.60 2599.81 2699.84 7699.37 9199.76 3199.84 6999.54 2999.82 5099.64 6799.95 2499.75 1899.79 2499.56 2799.83 4699.37 121
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+98.94 699.69 2599.59 2799.81 2699.88 4199.41 8199.75 3599.86 5399.43 3599.80 5499.54 8199.97 899.73 2499.82 2099.52 3499.85 3899.43 107
test20.0399.68 2699.60 2599.76 4099.91 2999.70 2999.68 5199.87 4999.05 8299.88 2099.92 1699.88 6599.50 6199.77 2799.42 4799.75 6999.49 93
CP-MVSNet99.68 2699.51 3799.89 999.95 999.76 1599.83 1799.96 1098.83 11099.84 4299.65 6699.09 15099.80 1099.78 2599.62 2599.95 799.82 13
PVSNet_Blended_VisFu99.66 2899.64 1799.67 6299.91 2999.71 2699.61 6299.79 9999.41 3799.91 1199.85 3899.61 11799.00 11999.67 3999.42 4799.81 5299.81 16
v1099.65 2999.51 3799.81 2699.83 8299.61 3999.75 3599.94 2299.56 2599.76 6599.94 1199.60 11999.73 2499.11 12299.01 9299.85 3899.74 29
CHOSEN 1792x268899.65 2999.55 3199.77 3999.93 2299.60 4099.79 2699.92 3199.73 599.74 7599.93 1499.98 499.80 1098.83 16399.01 9299.45 14599.76 26
UA-Net99.64 3199.62 2199.66 6499.97 299.82 699.14 14899.96 1098.95 9399.52 13199.38 10599.86 7399.55 5099.72 3399.66 1999.80 5699.94 1
Baseline_NR-MVSNet99.62 3299.48 4199.78 3699.85 7099.76 1599.59 6799.82 8298.84 10899.88 2099.91 2399.04 15199.61 4099.46 6199.78 1099.94 1499.60 59
pmmvs-eth3d99.61 3399.48 4199.75 4499.87 4799.30 10799.75 3599.89 4499.23 5699.85 3899.88 3399.97 899.49 6599.46 6199.01 9299.68 8899.52 90
v114499.61 3399.43 4899.82 2299.88 4199.41 8199.76 3199.86 5399.64 1599.84 4299.95 699.49 12899.74 2199.00 13398.93 10499.84 4199.58 69
v899.61 3399.45 4699.79 3599.80 9399.59 4399.73 4399.93 2499.48 3299.77 6299.90 2799.48 12999.67 3299.11 12298.89 10899.84 4199.73 31
casdiffmvs99.61 3399.55 3199.68 6099.89 3599.53 5399.64 5699.68 13999.51 3099.62 10899.90 2799.96 1399.37 7699.28 9299.25 5799.88 2699.44 104
CSCG99.61 3399.52 3699.71 5499.89 3599.62 3799.52 8499.76 12099.61 1999.69 9299.73 5199.96 1399.57 4899.27 9598.62 13999.81 5299.85 11
v119299.60 3899.41 5299.82 2299.89 3599.43 7699.81 2399.84 6999.63 1799.85 3899.95 699.35 14099.72 2699.01 13198.90 10799.82 4999.58 69
APDe-MVS99.60 3899.48 4199.73 5299.85 7099.51 6499.75 3599.85 6099.17 6599.81 5399.56 7999.94 3499.44 7299.42 7099.22 5899.67 9099.54 82
v192192099.59 4099.40 5599.82 2299.88 4199.45 7199.81 2399.83 7599.65 1399.86 3299.95 699.29 14599.75 1898.98 13798.86 11299.78 6099.59 61
TranMVSNet+NR-MVSNet99.59 4099.42 5199.80 3199.87 4799.55 4799.64 5699.86 5399.05 8299.88 2099.72 5599.33 14399.64 3799.47 6099.14 6899.91 1999.67 44
EG-PatchMatch MVS99.59 4099.49 4099.70 5799.82 8799.26 11499.39 11199.83 7598.99 8799.93 499.54 8199.92 4899.51 5799.78 2599.50 3599.73 7899.41 111
pmmvs599.58 4399.47 4499.70 5799.84 7699.50 6599.58 7199.80 9798.98 9099.73 8199.92 1699.81 8799.49 6599.28 9299.05 8699.77 6499.73 31
v14419299.58 4399.39 5699.80 3199.87 4799.44 7399.77 2899.84 6999.64 1599.86 3299.93 1499.35 14099.72 2698.92 14398.82 11699.74 7499.66 45
v14899.58 4399.43 4899.76 4099.87 4799.40 8399.76 3199.85 6099.48 3299.83 4799.82 4599.83 8399.51 5799.20 10898.82 11699.75 6999.45 101
v124099.58 4399.38 5999.82 2299.89 3599.49 6699.82 2199.83 7599.63 1799.86 3299.96 498.92 15799.75 1899.15 11898.96 10199.76 6699.56 76
V4299.57 4799.41 5299.75 4499.84 7699.37 9199.73 4399.83 7599.41 3799.75 6899.89 3099.42 13499.60 4299.15 11898.96 10199.76 6699.65 48
TSAR-MVS + MP.99.56 4899.54 3499.58 8199.69 13499.14 13599.73 4399.45 17699.50 3199.35 16199.60 7499.93 4099.50 6199.56 5299.37 5299.77 6499.64 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v2v48299.56 4899.35 6299.81 2699.87 4799.35 9799.75 3599.85 6099.56 2599.87 2699.95 699.44 13299.66 3398.91 14698.76 12299.86 3599.45 101
Gipumacopyleft99.55 5099.23 8199.91 599.87 4799.52 6099.86 1099.93 2499.87 199.96 296.72 19899.55 12499.97 199.77 2799.46 4299.87 3299.74 29
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSP-MVS99.53 5199.51 3799.55 8999.82 8799.58 4599.54 7999.78 10499.28 5499.21 17199.70 5999.97 899.32 8599.32 8199.14 6899.64 10399.58 69
NR-MVSNet99.52 5299.29 7199.80 3199.96 799.38 8799.55 7599.81 9098.86 10599.87 2699.51 9198.81 15999.72 2699.86 1499.04 8899.89 2499.54 82
zzz-MVS99.51 5399.36 6099.68 6099.88 4199.38 8799.53 8099.84 6999.11 7599.59 11698.93 14299.95 2499.58 4699.44 6899.21 6099.65 9499.52 90
ACMMPR99.51 5399.32 6699.72 5399.87 4799.33 10099.61 6299.85 6099.19 6299.73 8198.73 15399.95 2499.61 4099.35 7699.14 6899.66 9299.58 69
UniMVSNet (Re)99.50 5599.29 7199.75 4499.86 6199.47 6999.51 8799.82 8298.90 10199.89 1599.64 6799.00 15299.55 5099.32 8199.08 8199.90 2199.59 61
FMVSNet199.50 5599.57 3099.42 11099.67 14199.65 3399.60 6699.91 3699.40 3999.39 15599.83 4399.27 14798.14 15699.68 3699.50 3599.81 5299.68 41
HyFIR lowres test99.50 5599.26 7599.80 3199.95 999.62 3799.76 3199.97 199.67 1099.56 12299.94 1198.40 16699.78 1298.84 16298.59 14299.76 6699.72 34
PM-MVS99.49 5899.43 4899.57 8499.76 11399.34 9999.53 8099.77 11198.93 9799.75 6899.46 9599.83 8399.11 11099.72 3399.29 5699.49 14099.46 100
Anonymous2023120699.48 5999.31 6899.69 5999.79 9799.57 4699.63 6099.79 9998.88 10399.91 1199.72 5599.93 4099.59 4399.24 9898.63 13899.43 15099.18 139
DU-MVS99.48 5999.26 7599.75 4499.85 7099.38 8799.50 9199.81 9098.86 10599.89 1599.51 9198.98 15399.59 4399.46 6198.97 9999.87 3299.63 52
RPSCF99.48 5999.45 4699.52 9699.73 12799.33 10099.13 14999.77 11199.33 4699.47 14299.39 10499.92 4899.36 7799.63 4599.13 7599.63 10699.41 111
ACMMP_NAP99.47 6299.33 6499.63 7299.85 7099.28 11299.56 7499.83 7598.75 11699.48 13999.03 13999.95 2499.47 7199.48 5799.19 6199.57 12499.59 61
Anonymous2023121199.47 6299.39 5699.57 8499.89 3599.60 4099.50 9199.69 13398.91 10099.62 10899.17 12599.35 14098.86 13299.63 4599.46 4299.84 4199.62 55
SteuartSystems-ACMMP99.47 6299.22 8499.76 4099.88 4199.36 9399.65 5599.84 6998.47 14099.80 5498.68 15699.96 1399.68 2999.37 7399.06 8399.72 8199.66 45
Skip Steuart: Steuart Systems R&D Blog.
ACMM98.37 1299.47 6299.23 8199.74 5099.86 6199.19 12999.68 5199.86 5399.16 6999.71 8998.52 16799.95 2499.62 3999.35 7699.02 9099.74 7499.42 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HFP-MVS99.46 6699.30 6999.65 6699.82 8799.25 11799.50 9199.82 8299.23 5699.58 12098.86 14499.94 3499.56 4999.14 12099.12 7899.63 10699.56 76
LGP-MVS_train99.46 6699.18 9499.78 3699.87 4799.25 11799.71 4999.87 4998.02 17299.79 5798.90 14399.96 1399.66 3399.49 5699.17 6499.79 5999.49 93
ETV-MVS99.45 6899.32 6699.60 7799.79 9799.60 4099.40 11099.78 10497.88 17999.83 4799.33 10899.70 10898.97 12299.74 3099.43 4699.84 4199.58 69
ACMP98.32 1399.44 6999.18 9499.75 4499.83 8299.18 13099.64 5699.83 7598.81 11299.79 5798.42 17499.96 1399.64 3799.46 6198.98 9899.74 7499.44 104
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet99.43 7099.23 8199.67 6299.92 2599.76 1599.64 5699.93 2499.06 8099.68 9997.77 18698.97 15498.97 12299.72 3399.54 3199.88 2699.81 16
SMA-MVS99.43 7099.41 5299.45 10799.82 8799.31 10599.02 16399.59 15499.06 8099.34 16499.53 8799.96 1399.38 7599.29 8799.13 7599.53 13299.59 61
testgi99.43 7099.47 4499.38 11899.90 3299.67 3299.30 12999.73 12898.64 12899.53 12599.52 8999.90 5798.08 15999.65 4399.40 5199.75 6999.55 81
DELS-MVS99.42 7399.53 3599.29 13299.52 16999.43 7699.42 10699.28 19199.16 6999.72 8499.82 4599.97 898.17 15399.56 5299.16 6599.65 9499.59 61
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator99.16 399.42 7399.22 8499.65 6699.78 10299.13 13999.50 9199.85 6099.40 3999.80 5498.59 16399.79 9599.30 8999.20 10899.06 8399.71 8499.35 124
DPE-MVS99.41 7599.36 6099.47 10399.66 14299.48 6799.46 10299.75 12598.65 12499.41 15299.67 6299.95 2498.82 13399.21 10599.14 6899.72 8199.40 116
UniMVSNet_NR-MVSNet99.41 7599.12 10699.76 4099.86 6199.48 6799.50 9199.81 9098.84 10899.89 1599.45 9698.32 16999.59 4399.22 10298.89 10899.90 2199.63 52
CP-MVS99.41 7599.20 8999.65 6699.80 9399.23 12499.44 10499.75 12598.60 13399.74 7598.66 15799.93 4099.48 6899.33 8099.16 6599.73 7899.48 96
QAPM99.41 7599.21 8899.64 7199.78 10299.16 13299.51 8799.85 6099.20 5999.72 8499.43 9799.81 8799.25 9398.87 15298.71 13099.71 8499.30 129
UGNet99.40 7999.61 2299.16 15199.88 4199.64 3599.61 6299.77 11199.31 4899.63 10799.33 10899.93 4096.46 19499.63 4599.53 3299.63 10699.89 4
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)99.40 7999.28 7399.55 8999.92 2599.68 3099.31 12499.87 4998.69 12199.16 17399.08 13498.64 16299.20 9699.65 4399.46 4299.83 4699.72 34
OPM-MVS99.39 8199.22 8499.59 7899.76 11398.82 16399.51 8799.79 9999.17 6599.53 12599.31 11399.95 2499.35 7899.22 10298.79 12199.60 11699.27 132
Fast-Effi-MVS+99.39 8199.18 9499.63 7299.86 6199.28 11299.45 10399.91 3698.47 14099.61 11199.50 9399.57 12199.17 9799.24 9898.66 13599.78 6099.59 61
LS3D99.39 8199.28 7399.52 9699.77 10999.39 8499.55 7599.82 8298.93 9799.64 10598.52 16799.67 11398.58 14699.74 3099.63 2399.75 6999.06 155
CS-MVS99.38 8499.19 9199.59 7899.86 6199.65 3399.28 13299.77 11197.97 17599.75 6898.42 17499.70 10899.03 11799.57 5199.42 4799.87 3299.61 57
diffmvs99.38 8499.33 6499.45 10799.87 4799.39 8499.28 13299.58 15799.55 2799.50 13599.85 3899.85 7998.94 12798.58 17598.68 13399.51 13799.39 118
CANet99.36 8699.39 5699.34 12999.80 9399.35 9799.41 10999.47 17499.20 5999.74 7599.54 8199.68 11198.05 16199.23 10098.97 9999.57 12499.73 31
MVS_030499.36 8699.35 6299.37 12499.85 7099.36 9399.39 11199.56 16099.36 4499.75 6899.23 11999.90 5797.97 16899.00 13398.83 11599.69 8799.77 23
ACMMPcopyleft99.36 8699.06 11399.71 5499.86 6199.36 9399.63 6099.85 6098.33 15599.72 8497.73 18899.94 3499.53 5399.37 7399.13 7599.65 9499.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS99.35 8999.26 7599.46 10599.66 14299.15 13498.92 17299.67 14299.55 2799.35 16198.83 14699.91 5499.35 7899.19 11198.53 14499.78 6099.68 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft99.35 8999.09 11199.65 6699.84 7699.22 12599.59 6799.78 10498.13 16499.67 10098.44 17199.93 4099.43 7499.31 8399.09 8099.60 11699.49 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pmmvs499.34 9199.15 10199.57 8499.77 10998.90 15599.51 8799.77 11199.07 7899.73 8199.72 5599.84 8199.07 11298.85 15798.39 15399.55 13099.27 132
EPP-MVSNet99.34 9199.10 10999.62 7699.94 1999.74 2399.66 5499.80 9799.07 7898.93 18499.61 7196.13 18399.49 6599.67 3999.63 2399.92 1799.86 9
TSAR-MVS + GP.99.33 9399.17 9899.51 9899.71 13299.00 15098.84 18199.71 13098.23 16199.74 7599.53 8799.90 5799.35 7899.38 7298.85 11399.72 8199.31 127
PHI-MVS99.33 9399.19 9199.49 10199.69 13499.25 11799.27 13499.59 15498.44 14499.78 6199.15 12699.92 4898.95 12699.39 7199.04 8899.64 10399.18 139
DVP-MVS99.32 9599.26 7599.38 11899.76 11399.54 5099.42 10699.72 12998.92 9998.84 19198.96 14199.96 1398.91 12898.72 17099.14 6899.63 10699.58 69
PGM-MVS99.32 9598.99 12299.71 5499.86 6199.31 10599.59 6799.86 5397.51 18899.75 6898.23 17899.94 3499.53 5399.29 8799.08 8199.65 9499.54 82
DeepC-MVS_fast98.69 999.32 9599.13 10499.53 9299.63 14998.78 16699.53 8099.33 18999.08 7699.77 6299.18 12499.89 6099.29 9099.00 13398.70 13199.65 9499.30 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG99.32 9599.09 11199.58 8199.75 11798.74 17099.36 11699.54 16399.14 7299.72 8499.24 11799.89 6099.51 5799.30 8498.76 12299.62 11298.54 174
TSAR-MVS + ACMM99.31 9999.26 7599.37 12499.66 14298.97 15399.20 14199.56 16099.33 4699.19 17299.54 8199.91 5499.32 8599.12 12198.34 15699.29 16499.65 48
3Dnovator+98.92 799.31 9999.03 11799.63 7299.77 10998.90 15599.52 8499.81 9099.37 4299.72 8498.03 18399.73 10399.32 8598.99 13698.81 11999.67 9099.36 122
X-MVS99.30 10198.99 12299.66 6499.85 7099.30 10799.49 9899.82 8298.32 15699.69 9297.31 19599.93 4099.50 6199.37 7399.16 6599.60 11699.53 85
MVS_111021_HR99.30 10199.14 10299.48 10299.58 16599.25 11799.27 13499.61 14998.74 11799.66 10299.02 14099.84 8199.33 8299.20 10898.76 12299.44 14799.18 139
TAPA-MVS98.54 1099.30 10199.24 8099.36 12899.44 18498.77 16899.00 16599.41 18199.23 5699.60 11499.50 9399.86 7399.15 10499.29 8798.95 10399.56 12799.08 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS99.30 10199.01 12199.63 7299.75 11798.89 15899.35 11999.60 15198.53 13899.86 3299.57 7899.94 3499.52 5698.96 13898.10 16999.70 8699.08 152
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
USDC99.29 10598.98 12499.65 6699.72 12998.87 16199.47 10099.66 14599.35 4599.87 2699.58 7799.87 7299.51 5798.85 15797.93 17599.65 9498.38 178
PMVScopyleft94.32 1799.27 10699.55 3198.94 16999.60 15899.43 7699.39 11199.54 16398.99 8799.69 9299.60 7499.81 8795.68 19999.88 1199.83 499.73 7899.31 127
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS_111021_LR99.25 10799.13 10499.39 11499.50 17799.14 13599.23 13999.50 17198.67 12299.61 11199.12 13099.81 8799.16 10099.28 9298.67 13499.35 16099.21 138
baseline99.24 10899.30 6999.17 15099.78 10299.14 13599.10 15399.69 13398.97 9199.49 13799.84 4099.88 6597.99 16798.85 15798.73 12898.98 17999.72 34
EIA-MVS99.23 10999.03 11799.47 10399.83 8299.64 3599.16 14599.81 9097.11 19599.65 10498.44 17199.78 9898.61 14599.46 6199.22 5899.75 6999.59 61
HPM-MVS++copyleft99.23 10998.98 12499.53 9299.75 11799.02 14899.44 10499.77 11198.65 12499.52 13198.72 15499.92 4899.33 8298.77 16898.40 15299.40 15499.36 122
PMMVS299.23 10999.22 8499.24 13999.80 9399.14 13599.50 9199.82 8299.12 7498.41 20599.91 2399.98 498.51 14799.48 5798.76 12299.38 15698.14 186
CPTT-MVS99.21 11298.89 13599.58 8199.72 12999.12 14299.30 12999.76 12098.62 12999.66 10297.51 19199.89 6099.48 6899.01 13198.64 13799.58 12399.40 116
TinyColmap99.21 11298.89 13599.59 7899.61 15498.61 17999.47 10099.67 14299.02 8499.82 5099.15 12699.74 10099.35 7899.17 11698.33 15799.63 10698.22 184
Effi-MVS+99.20 11498.93 13099.50 10099.79 9799.26 11498.82 18499.96 1098.37 15499.60 11499.12 13098.36 16799.05 11598.93 14198.82 11699.78 6099.68 41
PVSNet_BlendedMVS99.20 11499.17 9899.23 14099.69 13499.33 10099.04 15899.13 19498.41 15099.79 5799.33 10899.36 13798.10 15799.29 8798.87 11099.65 9499.56 76
PVSNet_Blended99.20 11499.17 9899.23 14099.69 13499.33 10099.04 15899.13 19498.41 15099.79 5799.33 10899.36 13798.10 15799.29 8798.87 11099.65 9499.56 76
MCST-MVS99.17 11798.82 14399.57 8499.75 11798.70 17499.25 13899.69 13398.62 12999.59 11698.54 16599.79 9599.53 5398.48 17998.15 16599.64 10399.43 107
APD-MVScopyleft99.17 11798.92 13199.46 10599.78 10299.24 12299.34 12099.78 10497.79 18299.48 13998.25 17799.88 6598.77 13699.18 11498.92 10599.63 10699.18 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.82 899.17 11798.85 13999.53 9299.75 11799.06 14699.36 11699.82 8298.28 15899.76 6598.47 16999.61 11798.91 12898.80 16598.70 13199.60 11699.04 159
IterMVS-LS99.16 12098.82 14399.57 8499.87 4799.71 2699.58 7199.92 3199.24 5599.71 8999.73 5195.79 18498.91 12898.82 16498.66 13599.43 15099.77 23
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS98.38 1199.16 12099.20 8999.12 15599.20 20198.71 17398.85 18099.06 19799.17 6598.96 18399.61 7199.86 7399.29 9099.17 11698.72 12999.36 15899.15 147
IterMVS-SCA-FT99.15 12298.96 12799.38 11899.87 4799.54 5099.53 8099.79 9998.94 9599.82 5099.92 1697.65 17598.82 13398.95 14098.26 15998.45 18899.47 99
CDS-MVSNet99.15 12299.10 10999.21 14599.59 16299.22 12599.48 9999.47 17498.89 10299.41 15299.84 4098.11 17297.76 17199.26 9799.01 9299.57 12499.38 119
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS_MVSNet99.15 12299.12 10699.19 14899.92 2599.73 2599.55 7599.86 5398.45 14396.91 21198.74 15298.33 16899.02 11899.54 5499.47 4099.88 2699.61 57
MDA-MVSNet-bldmvs99.11 12599.11 10899.12 15599.91 2999.38 8799.77 2898.72 20199.31 4899.85 3899.43 9798.26 17099.48 6899.85 1598.47 14796.99 19899.08 152
OMC-MVS99.11 12598.95 12899.29 13299.37 19098.57 18199.19 14299.20 19398.87 10499.58 12099.13 12899.88 6599.00 11999.19 11198.46 14899.43 15098.57 173
MVS_Test99.09 12798.92 13199.29 13299.61 15499.07 14599.04 15899.81 9098.58 13599.37 15899.74 4998.87 15898.41 15098.61 17498.01 17399.50 13999.57 75
CNVR-MVS99.08 12898.83 14099.37 12499.61 15498.74 17099.15 14699.54 16398.59 13499.37 15898.15 18099.88 6599.08 11198.91 14698.46 14899.48 14199.06 155
IterMVS99.08 12898.90 13499.29 13299.87 4799.53 5399.52 8499.77 11198.94 9599.75 6899.91 2397.52 17998.72 14098.86 15598.14 16698.09 19199.43 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet299.07 13099.19 9198.93 17199.02 20699.53 5399.31 12499.84 6998.86 10598.88 18799.64 6798.44 16596.92 18899.35 7699.00 9699.61 11399.53 85
CVMVSNet99.06 13198.88 13899.28 13699.52 16999.53 5399.42 10699.69 13398.74 11798.27 20799.89 3095.48 18799.44 7299.46 6199.33 5399.32 16399.75 28
CDPH-MVS99.05 13298.63 15099.54 9199.75 11798.78 16699.59 6799.68 13997.79 18299.37 15898.20 17999.86 7399.14 10698.58 17598.01 17399.68 8899.16 145
TAMVS99.05 13299.02 12099.08 16099.69 13499.22 12599.33 12199.32 19099.16 6998.97 18299.87 3497.36 18097.76 17199.21 10599.00 9699.44 14799.33 125
CANet_DTU99.03 13499.18 9498.87 17499.58 16599.03 14799.18 14399.41 18198.65 12499.74 7599.55 8099.71 10596.13 19799.19 11198.92 10599.17 17399.18 139
Effi-MVS+-dtu99.01 13599.05 11498.98 16499.60 15899.13 13999.03 16299.61 14998.52 13999.01 17998.53 16699.83 8396.95 18799.48 5798.59 14299.66 9299.25 136
canonicalmvs99.00 13698.68 14999.37 12499.68 14099.42 8098.94 17199.89 4499.00 8698.99 18098.43 17395.69 18598.96 12599.18 11499.18 6299.74 7499.88 6
MIMVSNet99.00 13699.03 11798.97 16899.32 19699.32 10499.39 11199.91 3698.41 15098.76 19499.24 11799.17 14997.13 18199.30 8498.80 12099.29 16499.01 160
CHOSEN 280x42098.99 13898.91 13399.07 16199.77 10999.26 11499.55 7599.92 3198.62 12998.67 19899.62 7097.20 18198.44 14999.50 5599.18 6298.08 19298.99 163
xxxxxxxxxxxxxcwj98.97 13998.97 12698.98 16499.64 14798.89 15898.00 21099.58 15798.42 14799.08 17798.63 15999.96 1398.04 16399.02 12998.76 12299.52 13399.13 148
SF-MVS98.96 14098.95 12898.98 16499.64 14798.89 15898.00 21099.58 15798.42 14799.08 17798.63 15999.83 8398.04 16399.02 12998.76 12299.52 13399.13 148
GBi-Net98.96 14099.05 11498.85 17599.02 20699.53 5399.31 12499.78 10498.13 16498.48 20199.43 9797.58 17696.92 18899.68 3699.50 3599.61 11399.53 85
test198.96 14099.05 11498.85 17599.02 20699.53 5399.31 12499.78 10498.13 16498.48 20199.43 9797.58 17696.92 18899.68 3699.50 3599.61 11399.53 85
PCF-MVS97.86 1598.95 14398.53 15599.44 10999.70 13398.80 16598.96 16799.69 13398.65 12499.59 11699.33 10899.94 3499.12 10998.01 18997.11 18699.59 12297.83 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch98.94 14498.71 14899.21 14599.52 16998.22 19798.97 16699.53 16898.76 11499.50 13598.59 16399.56 12398.68 14198.63 17398.45 15099.05 17698.73 170
AdaColmapbinary98.93 14598.53 15599.39 11499.52 16998.65 17799.11 15299.59 15498.08 16899.44 14597.46 19399.45 13099.24 9498.92 14398.44 15199.44 14798.73 170
MSLP-MVS++98.92 14698.73 14799.14 15299.44 18499.00 15098.36 20099.35 18698.82 11199.38 15696.06 20099.79 9599.07 11298.88 15199.05 8699.27 16699.53 85
new_pmnet98.91 14798.89 13598.94 16999.51 17598.27 19399.15 14698.66 20299.17 6599.48 13999.79 4799.80 9398.49 14899.23 10098.20 16398.34 18997.74 194
train_agg98.89 14898.48 16099.38 11899.69 13498.76 16999.31 12499.60 15197.71 18498.98 18197.89 18499.89 6099.29 9098.32 18097.59 18299.42 15399.16 145
NCCC98.88 14998.42 16199.42 11099.62 15098.81 16499.10 15399.54 16398.76 11499.53 12595.97 20199.80 9399.16 10098.49 17898.06 17299.55 13099.05 157
PLCcopyleft97.83 1698.88 14998.52 15799.30 13199.45 18298.60 18098.65 19099.49 17298.66 12399.59 11696.33 19999.59 12099.17 9798.87 15298.53 14499.46 14399.05 157
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs398.85 15198.60 15199.13 15399.66 14298.72 17299.37 11599.06 19798.44 14499.76 6599.74 4999.55 12499.15 10499.04 12796.00 19497.80 19398.72 172
Fast-Effi-MVS+-dtu98.82 15298.80 14598.84 17799.51 17598.90 15598.96 16799.91 3698.29 15799.11 17698.47 16999.63 11696.03 19899.21 10598.12 16799.52 13399.01 160
CNLPA98.82 15298.52 15799.18 14999.21 20098.50 18598.73 18899.34 18898.73 11999.56 12297.55 19099.42 13499.06 11498.93 14198.10 16999.21 17298.38 178
PatchMatch-RL98.80 15498.52 15799.12 15599.38 18998.70 17498.56 19399.55 16297.81 18199.34 16497.57 18999.31 14498.67 14299.27 9598.62 13999.22 17198.35 180
thisisatest053098.78 15598.26 16499.39 11499.78 10299.43 7699.07 15599.64 14798.44 14499.42 15099.22 12092.68 19898.63 14399.30 8499.14 6899.80 5699.60 59
tttt051798.77 15698.25 16699.38 11899.79 9799.46 7099.07 15599.64 14798.40 15399.38 15699.21 12292.54 19998.63 14399.34 7999.14 6899.80 5699.62 55
DI_MVS_plusplus_trai98.74 15798.08 17499.51 9899.79 9799.29 11199.61 6299.60 15199.20 5999.46 14399.09 13392.93 19298.97 12298.27 18398.35 15599.65 9499.45 101
TSAR-MVS + COLMAP98.74 15798.58 15398.93 17199.29 19798.23 19499.04 15899.24 19298.79 11398.80 19399.37 10699.71 10598.06 16098.02 18897.46 18499.16 17498.48 176
MDTV_nov1_ep13_2view98.73 15998.31 16399.22 14399.75 11799.24 12299.75 3599.93 2499.31 4899.84 4299.86 3799.81 8799.31 8897.40 19694.77 19596.73 20097.81 191
PMMVS98.71 16098.55 15498.90 17399.28 19898.45 18798.53 19699.45 17697.67 18699.15 17598.76 15099.54 12697.79 17098.77 16898.23 16199.16 17498.46 177
HQP-MVS98.70 16198.19 17099.28 13699.61 15498.52 18398.71 18999.35 18697.97 17599.53 12597.38 19499.85 7999.14 10697.53 19296.85 19099.36 15899.26 135
N_pmnet98.64 16298.23 16999.11 15899.78 10299.25 11799.75 3599.39 18599.65 1399.70 9199.78 4899.89 6098.81 13597.60 19194.28 19697.24 19797.15 198
CMPMVSbinary76.62 1998.64 16298.60 15198.68 18299.33 19497.07 20998.11 20898.50 20397.69 18599.26 16798.35 17699.66 11497.62 17499.43 6999.02 9099.24 16999.01 160
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet398.63 16498.75 14698.49 18898.10 21299.44 7399.02 16399.78 10498.13 16498.48 20199.43 9797.58 17696.16 19698.85 15798.39 15399.40 15499.41 111
GA-MVS98.59 16598.15 17199.09 15999.59 16299.13 13998.84 18199.52 17098.61 13299.35 16199.67 6293.03 19197.73 17398.90 15098.26 15999.51 13799.48 96
MAR-MVS98.54 16698.15 17198.98 16499.37 19098.09 20098.56 19399.65 14696.11 21099.27 16697.16 19799.50 12798.03 16598.87 15298.23 16199.01 17799.13 148
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
new-patchmatchnet98.49 16797.60 17699.53 9299.90 3299.55 4799.77 2899.48 17399.67 1099.86 3299.98 399.98 499.50 6196.90 19891.52 20198.67 18595.62 202
FPMVS98.48 16898.83 14098.07 19899.09 20497.98 20399.07 15598.04 20998.99 8799.22 17098.85 14599.43 13393.79 20699.66 4199.11 7999.24 16997.76 192
MVS-HIRNet98.45 16998.25 16698.69 18199.12 20297.81 20898.55 19599.85 6098.58 13599.67 10099.61 7199.86 7397.46 17797.95 19096.37 19297.49 19597.56 195
test0.0.03 198.41 17098.41 16298.40 19299.62 15099.16 13298.87 17899.41 18197.15 19396.60 21399.31 11397.00 18296.55 19398.91 14698.51 14699.37 15798.82 168
gg-mvs-nofinetune98.40 17198.26 16498.57 18699.83 8298.86 16298.77 18799.97 199.57 2499.99 199.99 193.81 18993.50 20798.91 14698.20 16399.33 16298.52 175
baseline198.39 17297.59 17799.31 13099.78 10299.45 7199.13 14999.53 16898.06 17098.87 18898.63 15990.04 20498.76 13798.85 15798.84 11499.81 5299.28 131
PatchT98.11 17397.12 18499.26 13899.65 14698.34 19199.57 7399.97 197.48 18999.43 14799.04 13890.84 20298.15 15498.04 18697.78 17698.82 18298.30 181
DPM-MVS98.10 17497.32 18299.01 16399.52 16997.92 20498.47 19899.45 17698.25 15998.91 18593.99 20599.69 11098.73 13996.29 20096.32 19399.00 17898.77 169
EPNet_dtu98.09 17598.25 16697.91 20099.58 16598.02 20298.19 20599.67 14297.94 17799.74 7599.07 13698.71 16193.40 20897.50 19397.09 18796.89 19999.44 104
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.06 17698.11 17398.00 19999.60 15898.99 15298.38 19999.68 13998.18 16398.85 19097.89 18495.60 18692.72 20998.30 18198.10 16998.76 18399.72 34
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet97.91 17796.80 18799.22 14399.60 15898.23 19498.91 17399.97 196.89 20399.43 14799.10 13289.24 20798.15 15498.04 18697.78 17699.26 16798.30 181
thres20097.87 17896.56 18999.39 11499.76 11399.52 6099.13 14999.76 12096.88 20598.66 19992.87 20988.77 21099.16 10099.11 12299.42 4799.88 2699.33 125
baseline297.87 17897.18 18398.67 18399.34 19399.17 13198.48 19798.82 20097.08 19698.83 19298.75 15189.47 20697.03 18698.67 17298.27 15899.52 13398.83 167
thres600view797.86 18096.53 19299.41 11299.84 7699.52 6099.36 11699.76 12097.32 19198.38 20693.24 20687.25 21299.23 9599.11 12299.75 1399.88 2699.48 96
tfpn200view997.85 18196.54 19099.38 11899.74 12599.52 6099.17 14499.76 12096.10 21198.70 19692.99 20789.10 20899.00 11999.11 12299.56 2799.88 2699.41 111
thres40097.82 18296.47 19399.40 11399.81 9299.44 7399.29 13199.69 13397.15 19398.57 20092.82 21087.96 21199.16 10098.96 13899.55 3099.86 3599.41 111
IB-MVS98.10 1497.76 18397.40 18198.18 19499.62 15099.11 14398.24 20398.35 20596.56 20799.44 14591.28 21198.96 15693.84 20598.09 18598.62 13999.56 12799.18 139
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR97.74 18497.46 17998.08 19699.62 15098.37 18998.26 20199.41 18197.03 19897.38 20999.54 8192.89 19395.12 20298.78 16697.68 18098.65 18697.90 188
RPMNet97.70 18596.54 19099.06 16299.57 16898.23 19498.95 17099.97 196.89 20399.49 13799.13 12889.63 20597.09 18396.68 19997.02 18899.26 16798.19 185
thres100view90097.69 18696.37 19499.23 14099.74 12599.21 12898.81 18599.43 18096.10 21198.70 19692.99 20789.10 20898.88 13198.58 17599.31 5599.82 4999.27 132
FMVSNet597.69 18696.98 18598.53 18798.53 21099.36 9398.90 17699.54 16396.38 20898.44 20495.38 20390.08 20397.05 18599.46 6199.06 8398.73 18499.12 151
MVEpermissive91.08 1897.68 18897.65 17597.71 20698.46 21191.62 21597.92 21298.86 19998.73 11997.99 20898.64 15899.96 1399.17 9799.59 4997.75 17893.87 21397.27 196
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-mter97.65 18997.57 17897.75 20498.90 20998.56 18298.15 20698.45 20496.92 20296.84 21299.52 8992.53 20095.24 20199.04 12798.12 16798.90 18198.29 183
TESTMET0.1,197.62 19097.46 17997.81 20299.07 20598.37 18998.26 20198.35 20597.03 19897.38 20999.54 8192.89 19395.12 20298.78 16697.68 18098.65 18697.90 188
MVSTER97.55 19196.75 18898.48 18999.46 18199.54 5098.24 20399.77 11197.56 18799.41 15299.31 11384.86 21494.66 20498.86 15597.75 17899.34 16199.38 119
ET-MVSNet_ETH3D97.44 19296.29 19598.78 17897.93 21398.95 15498.91 17399.09 19698.00 17399.24 16898.83 14684.62 21598.02 16697.43 19597.38 18599.48 14198.84 165
MDTV_nov1_ep1397.41 19396.26 19698.76 17999.47 18098.43 18899.26 13799.82 8298.06 17099.23 16999.22 12092.86 19598.05 16195.33 20293.66 19896.73 20096.26 200
ADS-MVSNet97.29 19496.17 19798.59 18599.59 16298.70 17499.32 12299.86 5398.47 14099.56 12299.08 13498.16 17197.34 17992.92 20491.17 20295.91 20394.72 205
SCA97.25 19596.05 19898.64 18499.36 19299.02 14899.27 13499.96 1098.25 15999.69 9298.71 15594.66 18897.95 16993.95 20392.35 19995.64 20495.40 204
gm-plane-assit96.82 19694.84 20399.13 15399.95 999.78 1399.69 5099.92 3199.19 6299.84 4299.92 1672.93 21896.44 19598.21 18497.01 18998.92 18096.87 199
PatchmatchNetpermissive96.81 19795.41 20098.43 19199.43 18698.30 19299.23 13999.93 2498.19 16299.64 10598.81 14993.50 19097.43 17892.89 20590.78 20494.94 20895.41 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.76 19895.30 20298.46 19099.42 18798.47 18699.32 12299.91 3698.42 14799.51 13399.07 13692.81 19697.12 18292.39 20691.71 20095.51 20594.20 207
E-PMN96.72 19995.78 19997.81 20299.45 18295.46 21298.14 20798.33 20797.99 17498.73 19598.09 18198.97 15497.54 17697.45 19491.09 20394.70 21091.40 210
tpm96.56 20094.68 20498.74 18099.12 20297.90 20598.79 18699.93 2496.79 20699.69 9299.19 12381.48 21797.56 17595.46 20193.97 19797.37 19697.99 187
EMVS96.47 20195.38 20197.74 20599.42 18795.37 21398.07 20998.27 20897.85 18098.90 18697.48 19298.73 16097.20 18097.21 19790.39 20594.59 21290.65 211
tpmrst96.18 20294.47 20598.18 19499.52 16997.89 20698.96 16799.79 9998.07 16999.16 17399.30 11692.69 19796.69 19190.76 20888.85 20894.96 20793.69 208
CostFormer95.61 20393.35 20898.24 19399.48 17998.03 20198.65 19099.83 7596.93 20199.42 15098.83 14683.65 21697.08 18490.39 20989.54 20794.94 20896.11 201
dps95.59 20493.46 20798.08 19699.33 19498.22 19798.87 17899.70 13196.17 20998.87 18897.75 18786.85 21396.60 19291.24 20789.62 20695.10 20694.34 206
tpm cat195.52 20593.49 20697.88 20199.28 19897.87 20798.65 19099.77 11197.27 19299.46 14398.04 18290.99 20195.46 20088.57 21088.14 20994.64 21193.54 209
GG-mvs-BLEND70.44 20696.91 18639.57 2083.32 21796.51 21091.01 2154.05 21497.03 19833.20 21594.67 20497.75 1747.59 21398.28 18296.85 19098.24 19097.26 197
testmvs22.33 20729.66 20913.79 2098.97 21510.35 21615.53 2188.09 21332.51 21319.87 21645.18 21230.56 22017.05 21229.96 21124.74 21013.21 21434.30 212
test12321.52 20828.47 21013.42 2107.29 21610.12 21715.70 2178.31 21231.54 21419.34 21736.33 21337.40 21917.14 21127.45 21223.17 21112.73 21533.30 213
uanet_test0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
9.1499.57 121
SR-MVS99.73 12799.74 12799.88 65
Anonymous20240521199.14 10299.87 4799.55 4799.50 9199.70 13198.55 13798.61 16298.46 16498.76 13799.66 4199.50 3599.85 3899.63 52
our_test_399.75 11799.11 14399.74 42
test_part199.23 137
ambc98.83 14099.72 12998.52 18398.84 18198.96 9299.92 899.34 10799.74 10099.04 11698.68 17197.57 18399.46 14398.99 163
MTAPA99.62 10899.95 24
MTMP99.53 12599.92 48
Patchmatch-RL test65.75 216
tmp_tt88.14 20796.68 21491.91 21493.70 21461.38 21199.61 1990.51 21499.40 10399.71 10590.32 21099.22 10299.44 4596.25 202
XVS99.86 6199.30 10799.72 4799.69 9299.93 4099.60 116
X-MVStestdata99.86 6199.30 10799.72 4799.69 9299.93 4099.60 116
abl_699.21 14599.49 17898.62 17898.90 17699.44 17997.08 19699.61 11197.19 19699.73 10398.35 15199.45 14598.84 165
mPP-MVS99.84 7699.92 48
NP-MVS97.37 190
Patchmtry98.19 19998.91 17399.97 199.43 147
DeepMVS_CXcopyleft96.39 21197.15 21388.89 21097.94 17799.51 13395.71 20297.88 17398.19 15298.92 14397.73 19497.75 193