This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.39 199.90 199.87 299.93 199.97 399.82 899.91 399.92 3399.75 599.93 599.89 31100.00 199.87 299.93 399.82 899.96 399.90 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.89 299.86 499.93 199.97 399.83 499.93 199.96 1299.77 499.89 1799.99 199.86 7799.84 599.89 899.81 999.97 199.88 7
SixPastTwentyTwo99.89 299.85 699.93 199.97 399.88 399.92 299.97 199.66 1399.94 499.94 1199.74 10699.81 799.97 199.89 199.96 399.89 5
test_part199.88 499.89 199.88 1399.96 899.90 199.83 1899.97 199.84 299.93 599.91 2399.83 8799.63 4099.89 899.88 299.96 399.95 1
pmmvs699.88 499.87 299.89 999.97 399.76 1799.89 699.96 1299.82 399.90 1599.92 1699.95 2699.68 3099.93 399.88 299.95 899.86 10
anonymousdsp99.87 699.86 499.88 1399.95 1199.75 2399.90 499.96 1299.69 899.83 5199.96 499.99 399.74 2199.95 299.83 599.91 2199.88 7
FC-MVSNet-test99.84 799.80 799.89 999.96 899.83 499.84 1599.95 2399.37 4599.77 6799.95 699.96 1499.85 399.93 399.83 599.95 899.72 37
CS-MVS-test99.83 899.78 999.89 999.98 199.90 199.90 499.92 3399.38 4499.89 1799.74 5199.97 899.71 2999.82 2199.81 999.94 1599.86 10
UniMVSNet_ETH3D99.81 999.79 899.85 2099.98 199.76 1799.73 4699.96 1299.68 1099.87 2999.59 8199.91 5799.58 4899.90 799.85 499.96 399.81 18
TDRefinement99.81 999.76 1199.86 1799.83 8699.53 5799.89 699.91 3999.73 699.88 2399.83 4499.96 1499.76 1699.91 699.81 999.86 3699.59 64
WR-MVS99.79 1199.68 1599.91 599.95 1199.83 499.87 1099.96 1299.39 4399.93 599.87 3599.29 15199.77 1499.83 1899.72 1799.97 199.82 15
MIMVSNet199.79 1199.75 1299.84 2199.89 3999.83 499.84 1599.89 4899.31 5199.93 599.92 1699.97 899.68 3099.89 899.64 2399.82 5199.66 49
pm-mvs199.77 1399.69 1499.86 1799.94 2199.68 3399.84 1599.93 2699.59 2299.87 2999.92 1699.21 15499.65 3699.88 1299.77 1399.93 1899.78 24
PEN-MVS99.77 1399.65 1899.91 599.95 1199.80 1399.86 1199.97 199.08 8099.89 1799.69 6599.68 11699.84 599.81 2399.64 2399.95 899.81 18
EU-MVSNet99.76 1599.74 1399.78 3899.82 9199.81 1199.88 899.87 5399.31 5199.75 7399.91 2399.76 10599.78 1299.84 1799.74 1699.56 13199.81 18
Vis-MVSNetpermissive99.76 1599.78 999.75 4799.92 2799.77 1699.83 1899.85 6499.43 3799.85 4299.84 41100.00 199.13 11499.83 1899.66 2199.90 2399.90 3
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DTE-MVSNet99.75 1799.61 2499.92 499.95 1199.81 1199.86 1199.96 1299.18 6899.92 1099.66 6899.45 13699.85 399.80 2499.56 2999.96 399.79 23
tfpnnormal99.74 1899.63 2199.86 1799.93 2499.75 2399.80 2799.89 4899.31 5199.88 2399.43 10399.66 11999.77 1499.80 2499.71 1899.92 1999.76 28
DeepC-MVS99.05 599.74 1899.64 1999.84 2199.90 3599.39 8899.79 2899.81 9499.69 899.90 1599.87 3599.98 499.81 799.62 5099.32 5699.83 4899.65 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thisisatest051599.73 2099.67 1699.81 2899.93 2499.74 2599.68 5499.91 3999.59 2299.88 2399.73 5499.81 9299.55 5299.59 5199.53 3599.89 2699.70 43
PS-CasMVS99.73 2099.59 2999.90 899.95 1199.80 1399.85 1499.97 198.95 9899.86 3599.73 5499.36 14399.81 799.83 1899.67 2099.95 899.83 14
WR-MVS_H99.73 2099.61 2499.88 1399.95 1199.82 899.83 1899.96 1299.01 9099.84 4699.71 6299.41 14299.74 2199.77 2999.70 1999.95 899.82 15
TransMVSNet (Re)99.72 2399.59 2999.88 1399.95 1199.76 1799.88 899.94 2499.58 2499.92 1099.90 2898.55 16999.65 3699.89 899.76 1499.95 899.70 43
ACMH99.11 499.72 2399.63 2199.84 2199.87 5199.59 4599.83 1899.88 5299.46 3699.87 2999.66 6899.95 2699.76 1699.73 3499.47 4399.84 4399.52 95
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train99.70 2599.67 1699.74 5399.94 2199.71 2899.82 2399.91 3999.14 7699.53 13199.70 6399.88 6999.33 8699.88 1299.61 2899.94 1599.77 25
COLMAP_ROBcopyleft99.18 299.70 2599.60 2799.81 2899.84 8099.37 9599.76 3499.84 7399.54 3099.82 5499.64 7299.95 2699.75 1899.79 2699.56 2999.83 4899.37 126
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+98.94 699.69 2799.59 2999.81 2899.88 4599.41 8599.75 3899.86 5799.43 3799.80 5899.54 8699.97 899.73 2499.82 2199.52 3799.85 3999.43 112
test20.0399.68 2899.60 2799.76 4399.91 3199.70 3199.68 5499.87 5399.05 8799.88 2399.92 1699.88 6999.50 6399.77 2999.42 5099.75 7399.49 98
CP-MVSNet99.68 2899.51 3999.89 999.95 1199.76 1799.83 1899.96 1298.83 11699.84 4699.65 7199.09 15699.80 1099.78 2799.62 2799.95 899.82 15
PVSNet_Blended_VisFu99.66 3099.64 1999.67 6699.91 3199.71 2899.61 6699.79 10499.41 3999.91 1399.85 3999.61 12299.00 12499.67 4199.42 5099.81 5499.81 18
v1099.65 3199.51 3999.81 2899.83 8699.61 4199.75 3899.94 2499.56 2699.76 7099.94 1199.60 12499.73 2499.11 12799.01 9699.85 3999.74 31
CHOSEN 1792x268899.65 3199.55 3399.77 4299.93 2499.60 4299.79 2899.92 3399.73 699.74 7999.93 1499.98 499.80 1098.83 16899.01 9699.45 15099.76 28
UA-Net99.64 3399.62 2399.66 6899.97 399.82 899.14 15499.96 1298.95 9899.52 13799.38 11199.86 7799.55 5299.72 3599.66 2199.80 5899.94 2
GeoE99.63 3499.51 3999.78 3899.91 3199.57 4899.78 3099.97 199.23 5999.72 8899.72 5899.80 9899.50 6399.45 7099.10 8399.79 6199.71 42
Baseline_NR-MVSNet99.62 3599.48 4499.78 3899.85 7499.76 1799.59 7199.82 8698.84 11499.88 2399.91 2399.04 15799.61 4299.46 6399.78 1299.94 1599.60 62
pmmvs-eth3d99.61 3699.48 4499.75 4799.87 5199.30 11199.75 3899.89 4899.23 5999.85 4299.88 3499.97 899.49 6899.46 6399.01 9699.68 9299.52 95
v114499.61 3699.43 5299.82 2499.88 4599.41 8599.76 3499.86 5799.64 1699.84 4699.95 699.49 13499.74 2199.00 13898.93 10899.84 4399.58 73
v899.61 3699.45 5099.79 3799.80 9799.59 4599.73 4699.93 2699.48 3499.77 6799.90 2899.48 13599.67 3399.11 12798.89 11299.84 4399.73 33
casdiffmvs99.61 3699.55 3399.68 6499.89 3999.53 5799.64 6099.68 14499.51 3199.62 11399.90 2899.96 1499.37 8099.28 9699.25 5999.88 2899.44 109
CSCG99.61 3699.52 3899.71 5799.89 3999.62 3999.52 8999.76 12499.61 2099.69 9799.73 5499.96 1499.57 5099.27 9998.62 14499.81 5499.85 13
v119299.60 4199.41 5699.82 2499.89 3999.43 8099.81 2599.84 7399.63 1899.85 4299.95 699.35 14699.72 2699.01 13698.90 11199.82 5199.58 73
APDe-MVS99.60 4199.48 4499.73 5599.85 7499.51 6899.75 3899.85 6499.17 6999.81 5799.56 8499.94 3699.44 7599.42 7399.22 6099.67 9499.54 87
v192192099.59 4399.40 5999.82 2499.88 4599.45 7599.81 2599.83 7999.65 1499.86 3599.95 699.29 15199.75 1898.98 14298.86 11699.78 6399.59 64
TranMVSNet+NR-MVSNet99.59 4399.42 5599.80 3399.87 5199.55 5199.64 6099.86 5799.05 8799.88 2399.72 5899.33 14999.64 3899.47 6299.14 7099.91 2199.67 48
EG-PatchMatch MVS99.59 4399.49 4399.70 6099.82 9199.26 11999.39 11899.83 7998.99 9299.93 599.54 8699.92 5199.51 5999.78 2799.50 3899.73 8299.41 116
pmmvs599.58 4699.47 4799.70 6099.84 8099.50 6999.58 7599.80 10198.98 9599.73 8599.92 1699.81 9299.49 6899.28 9699.05 9099.77 6899.73 33
v14419299.58 4699.39 6199.80 3399.87 5199.44 7799.77 3199.84 7399.64 1699.86 3599.93 1499.35 14699.72 2698.92 14898.82 12099.74 7899.66 49
v14899.58 4699.43 5299.76 4399.87 5199.40 8799.76 3499.85 6499.48 3499.83 5199.82 4699.83 8799.51 5999.20 11398.82 12099.75 7399.45 106
v124099.58 4699.38 6499.82 2499.89 3999.49 7099.82 2399.83 7999.63 1899.86 3599.96 498.92 16399.75 1899.15 12398.96 10599.76 7099.56 80
V4299.57 5099.41 5699.75 4799.84 8099.37 9599.73 4699.83 7999.41 3999.75 7399.89 3199.42 14099.60 4499.15 12398.96 10599.76 7099.65 52
TSAR-MVS + MP.99.56 5199.54 3699.58 8599.69 14099.14 14099.73 4699.45 18199.50 3299.35 16899.60 7999.93 4399.50 6399.56 5399.37 5499.77 6899.64 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v2v48299.56 5199.35 6799.81 2899.87 5199.35 10199.75 3899.85 6499.56 2699.87 2999.95 699.44 13899.66 3498.91 15198.76 12699.86 3699.45 106
Gipumacopyleft99.55 5399.23 8699.91 599.87 5199.52 6499.86 1199.93 2699.87 199.96 296.72 20599.55 13099.97 199.77 2999.46 4599.87 3499.74 31
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CS-MVS99.54 5499.40 5999.70 6099.90 3599.69 3299.54 8399.73 13298.16 17199.79 6199.21 12899.94 3699.38 7899.53 5699.54 3399.85 3999.73 33
DVP-MVS99.53 5599.51 3999.55 9399.82 9199.58 4799.54 8399.78 10999.28 5799.21 17899.70 6399.97 899.32 8999.32 8499.14 7099.64 10799.58 73
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NR-MVSNet99.52 5699.29 7699.80 3399.96 899.38 9199.55 7999.81 9498.86 11199.87 2999.51 9698.81 16599.72 2699.86 1599.04 9299.89 2699.54 87
zzz-MVS99.51 5799.36 6599.68 6499.88 4599.38 9199.53 8599.84 7399.11 7999.59 12298.93 15099.95 2699.58 4899.44 7199.21 6299.65 9899.52 95
ACMMPR99.51 5799.32 7199.72 5699.87 5199.33 10499.61 6699.85 6499.19 6699.73 8598.73 16199.95 2699.61 4299.35 7999.14 7099.66 9699.58 73
UniMVSNet (Re)99.50 5999.29 7699.75 4799.86 6599.47 7399.51 9299.82 8698.90 10699.89 1799.64 7299.00 15899.55 5299.32 8499.08 8599.90 2399.59 64
FMVSNet199.50 5999.57 3299.42 11499.67 14799.65 3699.60 7099.91 3999.40 4199.39 16199.83 4499.27 15398.14 16299.68 3899.50 3899.81 5499.68 45
HyFIR lowres test99.50 5999.26 8099.80 3399.95 1199.62 3999.76 3499.97 199.67 1199.56 12899.94 1198.40 17299.78 1298.84 16798.59 14799.76 7099.72 37
PM-MVS99.49 6299.43 5299.57 8899.76 11999.34 10399.53 8599.77 11698.93 10299.75 7399.46 10199.83 8799.11 11699.72 3599.29 5899.49 14599.46 105
Anonymous2023120699.48 6399.31 7399.69 6399.79 10199.57 4899.63 6499.79 10498.88 10899.91 1399.72 5899.93 4399.59 4599.24 10298.63 14399.43 15599.18 143
DU-MVS99.48 6399.26 8099.75 4799.85 7499.38 9199.50 9699.81 9498.86 11199.89 1799.51 9698.98 15999.59 4599.46 6398.97 10399.87 3499.63 56
RPSCF99.48 6399.45 5099.52 10099.73 13399.33 10499.13 15599.77 11699.33 4999.47 14899.39 11099.92 5199.36 8199.63 4799.13 7899.63 11099.41 116
ACMMP_NAP99.47 6699.33 6999.63 7699.85 7499.28 11699.56 7899.83 7998.75 12299.48 14599.03 14799.95 2699.47 7499.48 5999.19 6399.57 12899.59 64
Anonymous2023121199.47 6699.39 6199.57 8899.89 3999.60 4299.50 9699.69 13898.91 10599.62 11399.17 13399.35 14698.86 13799.63 4799.46 4599.84 4399.62 59
SteuartSystems-ACMMP99.47 6699.22 8999.76 4399.88 4599.36 9799.65 5999.84 7398.47 14699.80 5898.68 16499.96 1499.68 3099.37 7699.06 8799.72 8599.66 49
Skip Steuart: Steuart Systems R&D Blog.
ACMM98.37 1299.47 6699.23 8699.74 5399.86 6599.19 13499.68 5499.86 5799.16 7399.71 9498.52 17599.95 2699.62 4199.35 7999.02 9499.74 7899.42 115
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HFP-MVS99.46 7099.30 7499.65 7099.82 9199.25 12299.50 9699.82 8699.23 5999.58 12698.86 15299.94 3699.56 5199.14 12599.12 8199.63 11099.56 80
LGP-MVS_train99.46 7099.18 9899.78 3899.87 5199.25 12299.71 5299.87 5398.02 18099.79 6198.90 15199.96 1499.66 3499.49 5899.17 6699.79 6199.49 98
SED-MVS99.45 7299.46 4999.42 11499.77 11499.57 4899.42 11299.80 10199.06 8499.38 16299.66 6899.96 1498.65 14899.31 8699.14 7099.53 13699.55 85
ETV-MVS99.45 7299.32 7199.60 8299.79 10199.60 4299.40 11799.78 10997.88 18699.83 5199.33 11499.70 11498.97 12799.74 3299.43 4999.84 4399.58 73
ACMP98.32 1399.44 7499.18 9899.75 4799.83 8699.18 13599.64 6099.83 7998.81 11899.79 6198.42 18299.96 1499.64 3899.46 6398.98 10299.74 7899.44 109
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet99.43 7599.23 8699.67 6699.92 2799.76 1799.64 6099.93 2699.06 8499.68 10497.77 19398.97 16098.97 12799.72 3599.54 3399.88 2899.81 18
SMA-MVScopyleft99.43 7599.41 5699.45 11199.82 9199.31 10999.02 16999.59 15999.06 8499.34 17199.53 9299.96 1499.38 7899.29 9199.13 7899.53 13699.59 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testgi99.43 7599.47 4799.38 12399.90 3599.67 3599.30 13699.73 13298.64 13499.53 13199.52 9499.90 6098.08 16599.65 4599.40 5399.75 7399.55 85
DELS-MVS99.42 7899.53 3799.29 13799.52 17599.43 8099.42 11299.28 19799.16 7399.72 8899.82 4699.97 898.17 15999.56 5399.16 6799.65 9899.59 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator99.16 399.42 7899.22 8999.65 7099.78 10699.13 14499.50 9699.85 6499.40 4199.80 5898.59 17199.79 10199.30 9399.20 11399.06 8799.71 8899.35 129
DPE-MVScopyleft99.41 8099.36 6599.47 10799.66 14899.48 7199.46 10799.75 12998.65 13099.41 15899.67 6699.95 2698.82 13899.21 11099.14 7099.72 8599.40 121
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UniMVSNet_NR-MVSNet99.41 8099.12 11199.76 4399.86 6599.48 7199.50 9699.81 9498.84 11499.89 1799.45 10298.32 17599.59 4599.22 10798.89 11299.90 2399.63 56
CP-MVS99.41 8099.20 9499.65 7099.80 9799.23 12999.44 11099.75 12998.60 13999.74 7998.66 16599.93 4399.48 7199.33 8399.16 6799.73 8299.48 101
QAPM99.41 8099.21 9399.64 7599.78 10699.16 13799.51 9299.85 6499.20 6399.72 8899.43 10399.81 9299.25 9798.87 15798.71 13499.71 8899.30 134
UGNet99.40 8499.61 2499.16 15799.88 4599.64 3799.61 6699.77 11699.31 5199.63 11299.33 11499.93 4396.46 20099.63 4799.53 3599.63 11099.89 5
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)99.40 8499.28 7899.55 9399.92 2799.68 3399.31 13199.87 5398.69 12799.16 18099.08 14298.64 16899.20 10199.65 4599.46 4599.83 4899.72 37
OPM-MVS99.39 8699.22 8999.59 8399.76 11998.82 16999.51 9299.79 10499.17 6999.53 13199.31 11999.95 2699.35 8299.22 10798.79 12599.60 12099.27 137
Fast-Effi-MVS+99.39 8699.18 9899.63 7699.86 6599.28 11699.45 10899.91 3998.47 14699.61 11699.50 9899.57 12699.17 10299.24 10298.66 13999.78 6399.59 64
DROMVSNet99.39 8699.18 9899.63 7699.86 6599.28 11699.45 10899.91 3998.47 14699.61 11699.50 9899.57 12699.17 10299.24 10298.66 13999.78 6399.59 64
LS3D99.39 8699.28 7899.52 10099.77 11499.39 8899.55 7999.82 8698.93 10299.64 11098.52 17599.67 11898.58 15299.74 3299.63 2599.75 7399.06 159
diffmvs99.38 9099.33 6999.45 11199.87 5199.39 8899.28 13999.58 16299.55 2899.50 14199.85 3999.85 8398.94 13298.58 18098.68 13799.51 14299.39 123
CANet99.36 9199.39 6199.34 13499.80 9799.35 10199.41 11699.47 17999.20 6399.74 7999.54 8699.68 11698.05 16799.23 10598.97 10399.57 12899.73 33
MVS_030499.36 9199.35 6799.37 12999.85 7499.36 9799.39 11899.56 16599.36 4799.75 7399.23 12599.90 6097.97 17499.00 13898.83 11999.69 9199.77 25
ACMMPcopyleft99.36 9199.06 11899.71 5799.86 6599.36 9799.63 6499.85 6498.33 16299.72 8897.73 19599.94 3699.53 5599.37 7699.13 7899.65 9899.56 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS99.35 9499.26 8099.46 10999.66 14899.15 13998.92 17899.67 14799.55 2899.35 16898.83 15499.91 5799.35 8299.19 11698.53 14999.78 6399.68 45
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft99.35 9499.09 11699.65 7099.84 8099.22 13099.59 7199.78 10998.13 17299.67 10598.44 17999.93 4399.43 7799.31 8699.09 8499.60 12099.49 98
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pmmvs499.34 9699.15 10699.57 8899.77 11498.90 16199.51 9299.77 11699.07 8299.73 8599.72 5899.84 8599.07 11898.85 16298.39 15899.55 13499.27 137
EPP-MVSNet99.34 9699.10 11499.62 8199.94 2199.74 2599.66 5899.80 10199.07 8298.93 19199.61 7696.13 19099.49 6899.67 4199.63 2599.92 1999.86 10
TSAR-MVS + GP.99.33 9899.17 10399.51 10299.71 13899.00 15698.84 18799.71 13598.23 16899.74 7999.53 9299.90 6099.35 8299.38 7598.85 11799.72 8599.31 132
PHI-MVS99.33 9899.19 9699.49 10599.69 14099.25 12299.27 14099.59 15998.44 15199.78 6699.15 13499.92 5198.95 13199.39 7499.04 9299.64 10799.18 143
MSP-MVS99.32 10099.26 8099.38 12399.76 11999.54 5499.42 11299.72 13498.92 10498.84 19898.96 14999.96 1498.91 13398.72 17599.14 7099.63 11099.58 73
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS99.32 10098.99 12799.71 5799.86 6599.31 10999.59 7199.86 5797.51 19599.75 7398.23 18599.94 3699.53 5599.29 9199.08 8599.65 9899.54 87
DeepC-MVS_fast98.69 999.32 10099.13 10999.53 9699.63 15598.78 17299.53 8599.33 19599.08 8099.77 6799.18 13299.89 6399.29 9499.00 13898.70 13599.65 9899.30 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG99.32 10099.09 11699.58 8599.75 12398.74 17699.36 12399.54 16899.14 7699.72 8899.24 12399.89 6399.51 5999.30 8898.76 12699.62 11698.54 178
TSAR-MVS + ACMM99.31 10499.26 8099.37 12999.66 14898.97 15999.20 14799.56 16599.33 4999.19 17999.54 8699.91 5799.32 8999.12 12698.34 16199.29 16999.65 52
3Dnovator+98.92 799.31 10499.03 12299.63 7699.77 11498.90 16199.52 8999.81 9499.37 4599.72 8898.03 19099.73 10999.32 8998.99 14198.81 12399.67 9499.36 127
X-MVS99.30 10698.99 12799.66 6899.85 7499.30 11199.49 10399.82 8698.32 16399.69 9797.31 20299.93 4399.50 6399.37 7699.16 6799.60 12099.53 90
MVS_111021_HR99.30 10699.14 10799.48 10699.58 17199.25 12299.27 14099.61 15498.74 12399.66 10799.02 14899.84 8599.33 8699.20 11398.76 12699.44 15299.18 143
TAPA-MVS98.54 1099.30 10699.24 8599.36 13399.44 19098.77 17499.00 17199.41 18699.23 5999.60 12099.50 9899.86 7799.15 11099.29 9198.95 10799.56 13199.08 156
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS99.30 10699.01 12699.63 7699.75 12398.89 16499.35 12699.60 15698.53 14499.86 3599.57 8399.94 3699.52 5898.96 14398.10 17499.70 9099.08 156
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
USDC99.29 11098.98 12999.65 7099.72 13598.87 16799.47 10599.66 15099.35 4899.87 2999.58 8299.87 7699.51 5998.85 16297.93 18099.65 9898.38 182
PMVScopyleft94.32 1799.27 11199.55 3398.94 17599.60 16499.43 8099.39 11899.54 16898.99 9299.69 9799.60 7999.81 9295.68 20599.88 1299.83 599.73 8299.31 132
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS_111021_LR99.25 11299.13 10999.39 11999.50 18399.14 14099.23 14599.50 17698.67 12899.61 11699.12 13899.81 9299.16 10699.28 9698.67 13899.35 16599.21 142
baseline99.24 11399.30 7499.17 15699.78 10699.14 14099.10 15999.69 13898.97 9699.49 14399.84 4199.88 6997.99 17398.85 16298.73 13298.98 18499.72 37
EIA-MVS99.23 11499.03 12299.47 10799.83 8699.64 3799.16 15199.81 9497.11 20299.65 10998.44 17999.78 10498.61 15199.46 6399.22 6099.75 7399.59 64
HPM-MVS++copyleft99.23 11498.98 12999.53 9699.75 12399.02 15499.44 11099.77 11698.65 13099.52 13798.72 16299.92 5199.33 8698.77 17398.40 15799.40 15999.36 127
PMMVS299.23 11499.22 8999.24 14499.80 9799.14 14099.50 9699.82 8699.12 7898.41 21299.91 2399.98 498.51 15399.48 5998.76 12699.38 16198.14 190
CPTT-MVS99.21 11798.89 14099.58 8599.72 13599.12 14799.30 13699.76 12498.62 13599.66 10797.51 19899.89 6399.48 7199.01 13698.64 14299.58 12799.40 121
TinyColmap99.21 11798.89 14099.59 8399.61 16098.61 18599.47 10599.67 14799.02 8999.82 5499.15 13499.74 10699.35 8299.17 12198.33 16299.63 11098.22 188
Effi-MVS+99.20 11998.93 13599.50 10499.79 10199.26 11998.82 19099.96 1298.37 16199.60 12099.12 13898.36 17399.05 12198.93 14698.82 12099.78 6399.68 45
PVSNet_BlendedMVS99.20 11999.17 10399.23 14599.69 14099.33 10499.04 16499.13 20098.41 15799.79 6199.33 11499.36 14398.10 16399.29 9198.87 11499.65 9899.56 80
PVSNet_Blended99.20 11999.17 10399.23 14599.69 14099.33 10499.04 16499.13 20098.41 15799.79 6199.33 11499.36 14398.10 16399.29 9198.87 11499.65 9899.56 80
MCST-MVS99.17 12298.82 14899.57 8899.75 12398.70 18099.25 14499.69 13898.62 13599.59 12298.54 17399.79 10199.53 5598.48 18498.15 17099.64 10799.43 112
APD-MVScopyleft99.17 12298.92 13699.46 10999.78 10699.24 12799.34 12799.78 10997.79 18999.48 14598.25 18499.88 6998.77 14199.18 11998.92 10999.63 11099.18 143
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.82 899.17 12298.85 14499.53 9699.75 12399.06 15299.36 12399.82 8698.28 16599.76 7098.47 17799.61 12298.91 13398.80 17098.70 13599.60 12099.04 163
IterMVS-LS99.16 12598.82 14899.57 8899.87 5199.71 2899.58 7599.92 3399.24 5899.71 9499.73 5495.79 19198.91 13398.82 16998.66 13999.43 15599.77 25
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS98.38 1199.16 12599.20 9499.12 16199.20 20798.71 17998.85 18699.06 20399.17 6998.96 19099.61 7699.86 7799.29 9499.17 12198.72 13399.36 16399.15 151
IterMVS-SCA-FT99.15 12798.96 13299.38 12399.87 5199.54 5499.53 8599.79 10498.94 10099.82 5499.92 1697.65 18298.82 13898.95 14598.26 16498.45 19399.47 104
CDS-MVSNet99.15 12799.10 11499.21 15199.59 16899.22 13099.48 10499.47 17998.89 10799.41 15899.84 4198.11 17897.76 17799.26 10199.01 9699.57 12899.38 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS_MVSNet99.15 12799.12 11199.19 15499.92 2799.73 2799.55 7999.86 5798.45 15096.91 21898.74 16098.33 17499.02 12399.54 5599.47 4399.88 2899.61 61
MDA-MVSNet-bldmvs99.11 13099.11 11399.12 16199.91 3199.38 9199.77 3198.72 20799.31 5199.85 4299.43 10398.26 17699.48 7199.85 1698.47 15296.99 20499.08 156
OMC-MVS99.11 13098.95 13399.29 13799.37 19698.57 18799.19 14899.20 19998.87 11099.58 12699.13 13699.88 6999.00 12499.19 11698.46 15399.43 15598.57 177
MVS_Test99.09 13298.92 13699.29 13799.61 16099.07 15199.04 16499.81 9498.58 14199.37 16599.74 5198.87 16498.41 15698.61 17998.01 17899.50 14499.57 79
CNVR-MVS99.08 13398.83 14599.37 12999.61 16098.74 17699.15 15299.54 16898.59 14099.37 16598.15 18799.88 6999.08 11798.91 15198.46 15399.48 14699.06 159
IterMVS99.08 13398.90 13999.29 13799.87 5199.53 5799.52 8999.77 11698.94 10099.75 7399.91 2397.52 18698.72 14598.86 16098.14 17198.09 19699.43 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet299.07 13599.19 9698.93 17799.02 21299.53 5799.31 13199.84 7398.86 11198.88 19499.64 7298.44 17196.92 19499.35 7999.00 10099.61 11799.53 90
CVMVSNet99.06 13698.88 14399.28 14199.52 17599.53 5799.42 11299.69 13898.74 12398.27 21499.89 3195.48 19499.44 7599.46 6399.33 5599.32 16899.75 30
CDPH-MVS99.05 13798.63 15599.54 9599.75 12398.78 17299.59 7199.68 14497.79 18999.37 16598.20 18699.86 7799.14 11298.58 18098.01 17899.68 9299.16 149
TAMVS99.05 13799.02 12599.08 16699.69 14099.22 13099.33 12899.32 19699.16 7398.97 18999.87 3597.36 18797.76 17799.21 11099.00 10099.44 15299.33 130
CANet_DTU99.03 13999.18 9898.87 18099.58 17199.03 15399.18 14999.41 18698.65 13099.74 7999.55 8599.71 11196.13 20399.19 11698.92 10999.17 17899.18 143
Effi-MVS+-dtu99.01 14099.05 11998.98 17099.60 16499.13 14499.03 16899.61 15498.52 14599.01 18698.53 17499.83 8796.95 19399.48 5998.59 14799.66 9699.25 141
canonicalmvs99.00 14198.68 15499.37 12999.68 14699.42 8498.94 17799.89 4899.00 9198.99 18798.43 18195.69 19298.96 13099.18 11999.18 6499.74 7899.88 7
MIMVSNet99.00 14199.03 12298.97 17499.32 20299.32 10899.39 11899.91 3998.41 15798.76 20199.24 12399.17 15597.13 18799.30 8898.80 12499.29 16999.01 164
CHOSEN 280x42098.99 14398.91 13899.07 16799.77 11499.26 11999.55 7999.92 3398.62 13598.67 20599.62 7597.20 18898.44 15599.50 5799.18 6498.08 19798.99 167
xxxxxxxxxxxxxcwj98.97 14498.97 13198.98 17099.64 15398.89 16498.00 21699.58 16298.42 15499.08 18498.63 16799.96 1498.04 16999.02 13498.76 12699.52 13899.13 152
SF-MVS98.96 14598.95 13398.98 17099.64 15398.89 16498.00 21699.58 16298.42 15499.08 18498.63 16799.83 8798.04 16999.02 13498.76 12699.52 13899.13 152
GBi-Net98.96 14599.05 11998.85 18199.02 21299.53 5799.31 13199.78 10998.13 17298.48 20899.43 10397.58 18396.92 19499.68 3899.50 3899.61 11799.53 90
test198.96 14599.05 11998.85 18199.02 21299.53 5799.31 13199.78 10998.13 17298.48 20899.43 10397.58 18396.92 19499.68 3899.50 3899.61 11799.53 90
PCF-MVS97.86 1598.95 14898.53 16099.44 11399.70 13998.80 17198.96 17399.69 13898.65 13099.59 12299.33 11499.94 3699.12 11598.01 19497.11 19199.59 12697.83 194
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch98.94 14998.71 15399.21 15199.52 17598.22 20398.97 17299.53 17398.76 12099.50 14198.59 17199.56 12998.68 14698.63 17898.45 15599.05 18198.73 174
AdaColmapbinary98.93 15098.53 16099.39 11999.52 17598.65 18399.11 15899.59 15998.08 17699.44 15197.46 20099.45 13699.24 9898.92 14898.44 15699.44 15298.73 174
MSLP-MVS++98.92 15198.73 15299.14 15899.44 19099.00 15698.36 20699.35 19298.82 11799.38 16296.06 20799.79 10199.07 11898.88 15699.05 9099.27 17199.53 90
new_pmnet98.91 15298.89 14098.94 17599.51 18198.27 19999.15 15298.66 20899.17 6999.48 14599.79 4999.80 9898.49 15499.23 10598.20 16898.34 19497.74 198
train_agg98.89 15398.48 16599.38 12399.69 14098.76 17599.31 13199.60 15697.71 19198.98 18897.89 19199.89 6399.29 9498.32 18597.59 18799.42 15899.16 149
NCCC98.88 15498.42 16699.42 11499.62 15698.81 17099.10 15999.54 16898.76 12099.53 13195.97 20899.80 9899.16 10698.49 18398.06 17799.55 13499.05 161
PLCcopyleft97.83 1698.88 15498.52 16299.30 13699.45 18898.60 18698.65 19699.49 17798.66 12999.59 12296.33 20699.59 12599.17 10298.87 15798.53 14999.46 14899.05 161
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs398.85 15698.60 15699.13 15999.66 14898.72 17899.37 12299.06 20398.44 15199.76 7099.74 5199.55 13099.15 11099.04 13296.00 19997.80 19898.72 176
Fast-Effi-MVS+-dtu98.82 15798.80 15098.84 18399.51 18198.90 16198.96 17399.91 3998.29 16499.11 18398.47 17799.63 12196.03 20499.21 11098.12 17299.52 13899.01 164
CNLPA98.82 15798.52 16299.18 15599.21 20698.50 19198.73 19499.34 19498.73 12599.56 12897.55 19799.42 14099.06 12098.93 14698.10 17499.21 17798.38 182
PatchMatch-RL98.80 15998.52 16299.12 16199.38 19598.70 18098.56 19999.55 16797.81 18899.34 17197.57 19699.31 15098.67 14799.27 9998.62 14499.22 17698.35 184
thisisatest053098.78 16098.26 16999.39 11999.78 10699.43 8099.07 16199.64 15298.44 15199.42 15699.22 12692.68 20598.63 14999.30 8899.14 7099.80 5899.60 62
tttt051798.77 16198.25 17199.38 12399.79 10199.46 7499.07 16199.64 15298.40 16099.38 16299.21 12892.54 20698.63 14999.34 8299.14 7099.80 5899.62 59
DI_MVS_plusplus_trai98.74 16298.08 17999.51 10299.79 10199.29 11599.61 6699.60 15699.20 6399.46 14999.09 14192.93 19998.97 12798.27 18898.35 16099.65 9899.45 106
TSAR-MVS + COLMAP98.74 16298.58 15898.93 17799.29 20398.23 20099.04 16499.24 19898.79 11998.80 20099.37 11299.71 11198.06 16698.02 19397.46 18999.16 17998.48 180
MDTV_nov1_ep13_2view98.73 16498.31 16899.22 14899.75 12399.24 12799.75 3899.93 2699.31 5199.84 4699.86 3899.81 9299.31 9297.40 20294.77 20196.73 20697.81 195
PMMVS98.71 16598.55 15998.90 17999.28 20498.45 19398.53 20299.45 18197.67 19399.15 18298.76 15899.54 13297.79 17698.77 17398.23 16699.16 17998.46 181
HQP-MVS98.70 16698.19 17599.28 14199.61 16098.52 18998.71 19599.35 19297.97 18399.53 13197.38 20199.85 8399.14 11297.53 19896.85 19599.36 16399.26 140
N_pmnet98.64 16798.23 17499.11 16499.78 10699.25 12299.75 3899.39 19099.65 1499.70 9699.78 5099.89 6398.81 14097.60 19794.28 20297.24 20397.15 202
CMPMVSbinary76.62 1998.64 16798.60 15698.68 18899.33 20097.07 21598.11 21498.50 20997.69 19299.26 17498.35 18399.66 11997.62 18099.43 7299.02 9499.24 17499.01 164
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet398.63 16998.75 15198.49 19498.10 21899.44 7799.02 16999.78 10998.13 17298.48 20899.43 10397.58 18396.16 20298.85 16298.39 15899.40 15999.41 116
GA-MVS98.59 17098.15 17699.09 16599.59 16899.13 14498.84 18799.52 17598.61 13899.35 16899.67 6693.03 19897.73 17998.90 15598.26 16499.51 14299.48 101
MAR-MVS98.54 17198.15 17698.98 17099.37 19698.09 20698.56 19999.65 15196.11 21799.27 17397.16 20499.50 13398.03 17198.87 15798.23 16699.01 18299.13 152
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
new-patchmatchnet98.49 17297.60 18199.53 9699.90 3599.55 5199.77 3199.48 17899.67 1199.86 3599.98 399.98 499.50 6396.90 20491.52 20898.67 19095.62 208
FPMVS98.48 17398.83 14598.07 20499.09 21097.98 20999.07 16198.04 21598.99 9299.22 17798.85 15399.43 13993.79 21299.66 4399.11 8299.24 17497.76 196
MVS-HIRNet98.45 17498.25 17198.69 18799.12 20897.81 21498.55 20199.85 6498.58 14199.67 10599.61 7699.86 7797.46 18397.95 19596.37 19797.49 20097.56 199
test0.0.03 198.41 17598.41 16798.40 19899.62 15699.16 13798.87 18499.41 18697.15 20096.60 22099.31 11997.00 18996.55 19998.91 15198.51 15199.37 16298.82 172
gg-mvs-nofinetune98.40 17698.26 16998.57 19299.83 8698.86 16898.77 19399.97 199.57 2599.99 199.99 193.81 19693.50 21398.91 15198.20 16899.33 16798.52 179
baseline198.39 17797.59 18299.31 13599.78 10699.45 7599.13 15599.53 17398.06 17898.87 19598.63 16790.04 21198.76 14298.85 16298.84 11899.81 5499.28 136
pmnet_mix0298.28 17897.48 18499.22 14899.78 10699.12 14799.68 5499.39 19099.49 3399.86 3599.82 4699.89 6399.23 9995.54 20792.36 20597.38 20196.14 206
PatchT98.11 17997.12 19099.26 14399.65 15298.34 19799.57 7799.97 197.48 19699.43 15399.04 14690.84 20998.15 16098.04 19197.78 18198.82 18798.30 185
DPM-MVS98.10 18097.32 18899.01 16999.52 17597.92 21098.47 20499.45 18198.25 16698.91 19293.99 21299.69 11598.73 14496.29 20696.32 19899.00 18398.77 173
EPNet_dtu98.09 18198.25 17197.91 20699.58 17198.02 20898.19 21199.67 14797.94 18499.74 7999.07 14498.71 16793.40 21497.50 19997.09 19296.89 20599.44 109
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.06 18298.11 17898.00 20599.60 16498.99 15898.38 20599.68 14498.18 17098.85 19797.89 19195.60 19392.72 21598.30 18698.10 17498.76 18899.72 37
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet97.91 18396.80 19399.22 14899.60 16498.23 20098.91 17999.97 196.89 21099.43 15399.10 14089.24 21498.15 16098.04 19197.78 18199.26 17298.30 185
thres20097.87 18496.56 19599.39 11999.76 11999.52 6499.13 15599.76 12496.88 21298.66 20692.87 21688.77 21799.16 10699.11 12799.42 5099.88 2899.33 130
baseline297.87 18497.18 18998.67 18999.34 19999.17 13698.48 20398.82 20697.08 20398.83 19998.75 15989.47 21397.03 19298.67 17798.27 16399.52 13898.83 171
thres600view797.86 18696.53 19899.41 11799.84 8099.52 6499.36 12399.76 12497.32 19898.38 21393.24 21387.25 21999.23 9999.11 12799.75 1599.88 2899.48 101
tfpn200view997.85 18796.54 19699.38 12399.74 13199.52 6499.17 15099.76 12496.10 21898.70 20392.99 21489.10 21599.00 12499.11 12799.56 2999.88 2899.41 116
thres40097.82 18896.47 19999.40 11899.81 9699.44 7799.29 13899.69 13897.15 20098.57 20792.82 21787.96 21899.16 10698.96 14399.55 3299.86 3699.41 116
IB-MVS98.10 1497.76 18997.40 18798.18 20099.62 15699.11 14998.24 20998.35 21196.56 21499.44 15191.28 21898.96 16293.84 21198.09 19098.62 14499.56 13199.18 143
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR97.74 19097.46 18598.08 20299.62 15698.37 19598.26 20799.41 18697.03 20597.38 21699.54 8692.89 20095.12 20898.78 17197.68 18598.65 19197.90 192
RPMNet97.70 19196.54 19699.06 16899.57 17498.23 20098.95 17699.97 196.89 21099.49 14399.13 13689.63 21297.09 18996.68 20597.02 19399.26 17298.19 189
thres100view90097.69 19296.37 20099.23 14599.74 13199.21 13398.81 19199.43 18596.10 21898.70 20392.99 21489.10 21598.88 13698.58 18099.31 5799.82 5199.27 137
FMVSNet597.69 19296.98 19198.53 19398.53 21699.36 9798.90 18299.54 16896.38 21598.44 21195.38 21090.08 21097.05 19199.46 6399.06 8798.73 18999.12 155
MVEpermissive91.08 1897.68 19497.65 18097.71 21298.46 21791.62 22197.92 21898.86 20598.73 12597.99 21598.64 16699.96 1499.17 10299.59 5197.75 18393.87 22097.27 200
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-mter97.65 19597.57 18397.75 21098.90 21598.56 18898.15 21298.45 21096.92 20996.84 21999.52 9492.53 20795.24 20799.04 13298.12 17298.90 18698.29 187
TESTMET0.1,197.62 19697.46 18597.81 20899.07 21198.37 19598.26 20798.35 21197.03 20597.38 21699.54 8692.89 20095.12 20898.78 17197.68 18598.65 19197.90 192
MVSTER97.55 19796.75 19498.48 19599.46 18799.54 5498.24 20999.77 11697.56 19499.41 15899.31 11984.86 22194.66 21098.86 16097.75 18399.34 16699.38 124
ET-MVSNet_ETH3D97.44 19896.29 20198.78 18497.93 21998.95 16098.91 17999.09 20298.00 18199.24 17598.83 15484.62 22298.02 17297.43 20197.38 19099.48 14698.84 169
MDTV_nov1_ep1397.41 19996.26 20298.76 18599.47 18698.43 19499.26 14399.82 8698.06 17899.23 17699.22 12692.86 20298.05 16795.33 20993.66 20496.73 20696.26 205
ADS-MVSNet97.29 20096.17 20398.59 19199.59 16898.70 18099.32 12999.86 5798.47 14699.56 12899.08 14298.16 17797.34 18592.92 21191.17 20995.91 20994.72 211
SCA97.25 20196.05 20498.64 19099.36 19899.02 15499.27 14099.96 1298.25 16699.69 9798.71 16394.66 19597.95 17593.95 21092.35 20695.64 21095.40 210
gm-plane-assit96.82 20294.84 21099.13 15999.95 1199.78 1599.69 5399.92 3399.19 6699.84 4699.92 1672.93 22596.44 20198.21 18997.01 19498.92 18596.87 204
PatchmatchNetpermissive96.81 20395.41 20798.43 19799.43 19298.30 19899.23 14599.93 2698.19 16999.64 11098.81 15793.50 19797.43 18492.89 21290.78 21194.94 21595.41 209
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.76 20495.30 20998.46 19699.42 19398.47 19299.32 12999.91 3998.42 15499.51 13999.07 14492.81 20397.12 18892.39 21391.71 20795.51 21194.20 213
E-PMN96.72 20595.78 20597.81 20899.45 18895.46 21898.14 21398.33 21397.99 18298.73 20298.09 18898.97 16097.54 18297.45 20091.09 21094.70 21791.40 216
tpm96.56 20694.68 21198.74 18699.12 20897.90 21198.79 19299.93 2696.79 21399.69 9799.19 13181.48 22497.56 18195.46 20893.97 20397.37 20297.99 191
EMVS96.47 20795.38 20897.74 21199.42 19395.37 21998.07 21598.27 21497.85 18798.90 19397.48 19998.73 16697.20 18697.21 20390.39 21294.59 21990.65 217
tpmrst96.18 20894.47 21298.18 20099.52 17597.89 21298.96 17399.79 10498.07 17799.16 18099.30 12292.69 20496.69 19790.76 21588.85 21594.96 21493.69 214
CostFormer95.61 20993.35 21598.24 19999.48 18598.03 20798.65 19699.83 7996.93 20899.42 15698.83 15483.65 22397.08 19090.39 21689.54 21494.94 21596.11 207
dps95.59 21093.46 21498.08 20299.33 20098.22 20398.87 18499.70 13696.17 21698.87 19597.75 19486.85 22096.60 19891.24 21489.62 21395.10 21394.34 212
tpm cat195.52 21193.49 21397.88 20799.28 20497.87 21398.65 19699.77 11697.27 19999.46 14998.04 18990.99 20895.46 20688.57 21788.14 21694.64 21893.54 215
test_method91.96 21295.51 20687.82 21470.84 22182.79 22292.13 22187.74 21798.88 10895.40 22199.20 13098.04 17985.65 21797.71 19694.95 20095.13 21297.00 203
GG-mvs-BLEND70.44 21396.91 19239.57 2153.32 22496.51 21691.01 2224.05 22197.03 20533.20 22394.67 21197.75 1817.59 22098.28 18796.85 19598.24 19597.26 201
testmvs22.33 21429.66 21613.79 2168.97 22210.35 22315.53 2258.09 22032.51 22019.87 22445.18 21930.56 22717.05 21929.96 21824.74 21713.21 22134.30 218
test12321.52 21528.47 21713.42 2177.29 22310.12 22415.70 2248.31 21931.54 22119.34 22536.33 22037.40 22617.14 21827.45 21923.17 21812.73 22233.30 219
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def99.96 2
9.1499.57 126
SR-MVS99.73 13399.74 13199.88 69
Anonymous20240521199.14 10799.87 5199.55 5199.50 9699.70 13698.55 14398.61 17098.46 17098.76 14299.66 4399.50 3899.85 3999.63 56
our_test_399.75 12399.11 14999.74 45
ambc98.83 14599.72 13598.52 18998.84 18798.96 9799.92 1099.34 11399.74 10699.04 12298.68 17697.57 18899.46 14898.99 167
MTAPA99.62 11399.95 26
MTMP99.53 13199.92 51
Patchmatch-RL test65.75 223
tmp_tt88.14 21396.68 22091.91 22093.70 22061.38 21899.61 2090.51 22299.40 10999.71 11190.32 21699.22 10799.44 4896.25 208
XVS99.86 6599.30 11199.72 5099.69 9799.93 4399.60 120
X-MVStestdata99.86 6599.30 11199.72 5099.69 9799.93 4399.60 120
abl_699.21 15199.49 18498.62 18498.90 18299.44 18497.08 20399.61 11697.19 20399.73 10998.35 15799.45 15098.84 169
mPP-MVS99.84 8099.92 51
NP-MVS97.37 197
Patchmtry98.19 20598.91 17999.97 199.43 153
DeepMVS_CXcopyleft96.39 21797.15 21988.89 21697.94 18499.51 13995.71 20997.88 18098.19 15898.92 14897.73 19997.75 197