This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.39 199.90 199.87 299.93 199.97 299.82 799.91 399.92 3299.75 599.93 599.89 31100.00 199.87 299.93 399.82 899.96 399.90 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.89 299.86 499.93 199.97 299.83 399.93 199.96 1199.77 499.89 1799.99 199.86 7599.84 599.89 899.81 999.97 199.88 7
SixPastTwentyTwo99.89 299.85 699.93 199.97 299.88 299.92 299.97 199.66 1399.94 499.94 1199.74 10399.81 799.97 199.89 199.96 399.89 5
test_part199.88 499.89 199.88 1299.96 799.90 199.83 1799.97 199.84 299.93 599.91 2399.83 8599.63 3999.89 899.88 299.96 399.95 1
pmmvs699.88 499.87 299.89 999.97 299.76 1699.89 599.96 1199.82 399.90 1599.92 1699.95 2599.68 2999.93 399.88 299.95 899.86 10
anonymousdsp99.87 699.86 499.88 1299.95 1099.75 2299.90 499.96 1199.69 899.83 5099.96 499.99 399.74 2199.95 299.83 599.91 2099.88 7
FC-MVSNet-test99.84 799.80 799.89 999.96 799.83 399.84 1499.95 2299.37 4499.77 6599.95 699.96 1399.85 399.93 399.83 599.95 899.72 35
UniMVSNet_ETH3D99.81 899.79 899.85 1999.98 199.76 1699.73 4499.96 1199.68 1099.87 2899.59 7999.91 5599.58 4799.90 799.85 499.96 399.81 17
TDRefinement99.81 899.76 1099.86 1699.83 8399.53 5599.89 599.91 3799.73 699.88 2299.83 4499.96 1399.76 1699.91 699.81 999.86 3699.59 62
WR-MVS99.79 1099.68 1499.91 599.95 1099.83 399.87 999.96 1199.39 4399.93 599.87 3599.29 14899.77 1499.83 1899.72 1699.97 199.82 14
MIMVSNet199.79 1099.75 1199.84 2099.89 3699.83 399.84 1499.89 4599.31 5099.93 599.92 1699.97 899.68 2999.89 899.64 2299.82 5099.66 46
pm-mvs199.77 1299.69 1399.86 1699.94 2099.68 3199.84 1499.93 2599.59 2299.87 2899.92 1699.21 15199.65 3599.88 1299.77 1299.93 1799.78 23
PEN-MVS99.77 1299.65 1799.91 599.95 1099.80 1299.86 1099.97 199.08 7899.89 1799.69 6399.68 11499.84 599.81 2299.64 2299.95 899.81 17
EU-MVSNet99.76 1499.74 1299.78 3799.82 8899.81 1099.88 799.87 5099.31 5099.75 7199.91 2399.76 10299.78 1299.84 1799.74 1599.56 12899.81 17
Vis-MVSNetpermissive99.76 1499.78 999.75 4599.92 2699.77 1599.83 1799.85 6199.43 3799.85 4199.84 41100.00 199.13 11099.83 1899.66 2099.90 2299.90 3
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DTE-MVSNet99.75 1699.61 2399.92 499.95 1099.81 1099.86 1099.96 1199.18 6699.92 1099.66 6699.45 13399.85 399.80 2399.56 2899.96 399.79 22
tfpnnormal99.74 1799.63 2099.86 1699.93 2399.75 2299.80 2699.89 4599.31 5099.88 2299.43 10099.66 11799.77 1499.80 2399.71 1799.92 1899.76 27
DeepC-MVS99.05 599.74 1799.64 1899.84 2099.90 3399.39 8699.79 2799.81 9199.69 899.90 1599.87 3599.98 499.81 799.62 4999.32 5599.83 4799.65 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thisisatest051599.73 1999.67 1599.81 2799.93 2399.74 2499.68 5299.91 3799.59 2299.88 2299.73 5399.81 9099.55 5199.59 5099.53 3399.89 2599.70 40
PS-CasMVS99.73 1999.59 2899.90 899.95 1099.80 1299.85 1399.97 198.95 9699.86 3499.73 5399.36 14099.81 799.83 1899.67 1999.95 899.83 13
WR-MVS_H99.73 1999.61 2399.88 1299.95 1099.82 799.83 1799.96 1199.01 8899.84 4599.71 6099.41 13999.74 2199.77 2899.70 1899.95 899.82 14
TransMVSNet (Re)99.72 2299.59 2899.88 1299.95 1099.76 1699.88 799.94 2399.58 2499.92 1099.90 2898.55 16699.65 3599.89 899.76 1399.95 899.70 40
ACMH99.11 499.72 2299.63 2099.84 2099.87 4899.59 4499.83 1799.88 4999.46 3699.87 2899.66 6699.95 2599.76 1699.73 3399.47 4199.84 4299.52 92
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train99.70 2499.67 1599.74 5199.94 2099.71 2799.82 2299.91 3799.14 7499.53 12899.70 6199.88 6799.33 8399.88 1299.61 2799.94 1599.77 24
COLMAP_ROBcopyleft99.18 299.70 2499.60 2699.81 2799.84 7799.37 9399.76 3299.84 7099.54 3099.82 5399.64 7099.95 2599.75 1899.79 2599.56 2899.83 4799.37 123
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+98.94 699.69 2699.59 2899.81 2799.88 4299.41 8399.75 3699.86 5499.43 3799.80 5799.54 8499.97 899.73 2499.82 2199.52 3599.85 3999.43 109
test20.0399.68 2799.60 2699.76 4199.91 3099.70 3099.68 5299.87 5099.05 8599.88 2299.92 1699.88 6799.50 6299.77 2899.42 4899.75 7099.49 95
CP-MVSNet99.68 2799.51 3899.89 999.95 1099.76 1699.83 1799.96 1198.83 11399.84 4599.65 6999.09 15399.80 1099.78 2699.62 2699.95 899.82 14
PVSNet_Blended_VisFu99.66 2999.64 1899.67 6399.91 3099.71 2799.61 6499.79 10199.41 3999.91 1399.85 3999.61 12099.00 12199.67 4099.42 4899.81 5399.81 17
v1099.65 3099.51 3899.81 2799.83 8399.61 4099.75 3699.94 2399.56 2699.76 6899.94 1199.60 12299.73 2499.11 12499.01 9499.85 3999.74 30
CHOSEN 1792x268899.65 3099.55 3299.77 4099.93 2399.60 4199.79 2799.92 3299.73 699.74 7899.93 1499.98 499.80 1098.83 16599.01 9499.45 14799.76 27
UA-Net99.64 3299.62 2299.66 6599.97 299.82 799.14 15199.96 1198.95 9699.52 13499.38 10899.86 7599.55 5199.72 3499.66 2099.80 5799.94 2
Baseline_NR-MVSNet99.62 3399.48 4299.78 3799.85 7199.76 1699.59 6999.82 8398.84 11199.88 2299.91 2399.04 15499.61 4199.46 6299.78 1199.94 1599.60 60
pmmvs-eth3d99.61 3499.48 4299.75 4599.87 4899.30 10999.75 3699.89 4599.23 5899.85 4199.88 3499.97 899.49 6699.46 6299.01 9499.68 8999.52 92
v114499.61 3499.43 5099.82 2399.88 4299.41 8399.76 3299.86 5499.64 1699.84 4599.95 699.49 13199.74 2199.00 13598.93 10699.84 4299.58 70
v899.61 3499.45 4899.79 3699.80 9499.59 4499.73 4499.93 2599.48 3499.77 6599.90 2899.48 13299.67 3299.11 12498.89 11099.84 4299.73 32
casdiffmvs99.61 3499.55 3299.68 6199.89 3699.53 5599.64 5899.68 14199.51 3199.62 11199.90 2899.96 1399.37 7799.28 9499.25 5899.88 2799.44 106
CSCG99.61 3499.52 3799.71 5599.89 3699.62 3899.52 8699.76 12299.61 2099.69 9599.73 5399.96 1399.57 4999.27 9798.62 14199.81 5399.85 12
v119299.60 3999.41 5499.82 2399.89 3699.43 7899.81 2499.84 7099.63 1899.85 4199.95 699.35 14399.72 2699.01 13398.90 10999.82 5099.58 70
APDe-MVS99.60 3999.48 4299.73 5399.85 7199.51 6699.75 3699.85 6199.17 6799.81 5699.56 8299.94 3599.44 7399.42 7199.22 5999.67 9199.54 84
v192192099.59 4199.40 5799.82 2399.88 4299.45 7399.81 2499.83 7699.65 1499.86 3499.95 699.29 14899.75 1898.98 13998.86 11499.78 6199.59 62
TranMVSNet+NR-MVSNet99.59 4199.42 5399.80 3299.87 4899.55 4999.64 5899.86 5499.05 8599.88 2299.72 5799.33 14699.64 3799.47 6199.14 6999.91 2099.67 45
EG-PatchMatch MVS99.59 4199.49 4199.70 5899.82 8899.26 11699.39 11499.83 7698.99 9099.93 599.54 8499.92 4999.51 5899.78 2699.50 3699.73 7999.41 113
pmmvs599.58 4499.47 4599.70 5899.84 7799.50 6799.58 7399.80 9898.98 9399.73 8499.92 1699.81 9099.49 6699.28 9499.05 8899.77 6599.73 32
v14419299.58 4499.39 5899.80 3299.87 4899.44 7599.77 2999.84 7099.64 1699.86 3499.93 1499.35 14399.72 2698.92 14598.82 11899.74 7599.66 46
v14899.58 4499.43 5099.76 4199.87 4899.40 8599.76 3299.85 6199.48 3499.83 5099.82 4699.83 8599.51 5899.20 11098.82 11899.75 7099.45 103
v124099.58 4499.38 6199.82 2399.89 3699.49 6899.82 2299.83 7699.63 1899.86 3499.96 498.92 16099.75 1899.15 12098.96 10399.76 6799.56 77
V4299.57 4899.41 5499.75 4599.84 7799.37 9399.73 4499.83 7699.41 3999.75 7199.89 3199.42 13799.60 4399.15 12098.96 10399.76 6799.65 49
TSAR-MVS + MP.99.56 4999.54 3599.58 8299.69 13799.14 13799.73 4499.45 17899.50 3299.35 16599.60 7799.93 4199.50 6299.56 5399.37 5399.77 6599.64 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v2v48299.56 4999.35 6499.81 2799.87 4899.35 9999.75 3699.85 6199.56 2699.87 2899.95 699.44 13599.66 3398.91 14898.76 12499.86 3699.45 103
Gipumacopyleft99.55 5199.23 8399.91 599.87 4899.52 6299.86 1099.93 2599.87 199.96 296.72 20199.55 12799.97 199.77 2899.46 4399.87 3399.74 30
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DVP-MVS99.53 5299.51 3899.55 9099.82 8899.58 4699.54 8199.78 10699.28 5699.21 17599.70 6199.97 899.32 8699.32 8299.14 6999.64 10499.58 70
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NR-MVSNet99.52 5399.29 7399.80 3299.96 799.38 8999.55 7799.81 9198.86 10899.87 2899.51 9498.81 16299.72 2699.86 1599.04 9099.89 2599.54 84
zzz-MVS99.51 5499.36 6299.68 6199.88 4299.38 8999.53 8299.84 7099.11 7799.59 11998.93 14599.95 2599.58 4799.44 6999.21 6199.65 9599.52 92
ACMMPR99.51 5499.32 6899.72 5499.87 4899.33 10299.61 6499.85 6199.19 6499.73 8498.73 15699.95 2599.61 4199.35 7799.14 6999.66 9399.58 70
UniMVSNet (Re)99.50 5699.29 7399.75 4599.86 6299.47 7199.51 8999.82 8398.90 10499.89 1799.64 7099.00 15599.55 5199.32 8299.08 8399.90 2299.59 62
FMVSNet199.50 5699.57 3199.42 11199.67 14499.65 3499.60 6899.91 3799.40 4199.39 15899.83 4499.27 15098.14 15999.68 3799.50 3699.81 5399.68 42
HyFIR lowres test99.50 5699.26 7799.80 3299.95 1099.62 3899.76 3299.97 199.67 1199.56 12599.94 1198.40 16999.78 1298.84 16498.59 14499.76 6799.72 35
PM-MVS99.49 5999.43 5099.57 8599.76 11699.34 10199.53 8299.77 11398.93 10099.75 7199.46 9899.83 8599.11 11299.72 3499.29 5799.49 14299.46 102
Anonymous2023120699.48 6099.31 7099.69 6099.79 9899.57 4799.63 6299.79 10198.88 10699.91 1399.72 5799.93 4199.59 4499.24 10098.63 14099.43 15299.18 140
DU-MVS99.48 6099.26 7799.75 4599.85 7199.38 8999.50 9399.81 9198.86 10899.89 1799.51 9498.98 15699.59 4499.46 6298.97 10199.87 3399.63 53
RPSCF99.48 6099.45 4899.52 9799.73 13099.33 10299.13 15299.77 11399.33 4899.47 14599.39 10799.92 4999.36 7899.63 4699.13 7799.63 10799.41 113
ACMMP_NAP99.47 6399.33 6699.63 7399.85 7199.28 11499.56 7699.83 7698.75 11999.48 14299.03 14299.95 2599.47 7299.48 5899.19 6299.57 12599.59 62
Anonymous2023121199.47 6399.39 5899.57 8599.89 3699.60 4199.50 9399.69 13598.91 10399.62 11199.17 12899.35 14398.86 13499.63 4699.46 4399.84 4299.62 56
SteuartSystems-ACMMP99.47 6399.22 8699.76 4199.88 4299.36 9599.65 5799.84 7098.47 14399.80 5798.68 15999.96 1399.68 2999.37 7499.06 8599.72 8299.66 46
Skip Steuart: Steuart Systems R&D Blog.
ACMM98.37 1299.47 6399.23 8399.74 5199.86 6299.19 13199.68 5299.86 5499.16 7199.71 9298.52 17099.95 2599.62 4099.35 7799.02 9299.74 7599.42 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HFP-MVS99.46 6799.30 7199.65 6799.82 8899.25 11999.50 9399.82 8399.23 5899.58 12398.86 14799.94 3599.56 5099.14 12299.12 8099.63 10799.56 77
LGP-MVS_train99.46 6799.18 9699.78 3799.87 4899.25 11999.71 5099.87 5098.02 17599.79 6098.90 14699.96 1399.66 3399.49 5799.17 6599.79 6099.49 95
SED-MVS99.45 6999.46 4799.42 11199.77 11199.57 4799.42 10899.80 9899.06 8299.38 15999.66 6699.96 1398.65 14599.31 8499.14 6999.53 13399.55 82
ETV-MVS99.45 6999.32 6899.60 7899.79 9899.60 4199.40 11399.78 10697.88 18299.83 5099.33 11199.70 11198.97 12499.74 3199.43 4799.84 4299.58 70
ACMP98.32 1399.44 7199.18 9699.75 4599.83 8399.18 13299.64 5899.83 7698.81 11599.79 6098.42 17799.96 1399.64 3799.46 6298.98 10099.74 7599.44 106
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet99.43 7299.23 8399.67 6399.92 2699.76 1699.64 5899.93 2599.06 8299.68 10297.77 18998.97 15798.97 12499.72 3499.54 3299.88 2799.81 17
SMA-MVScopyleft99.43 7299.41 5499.45 10899.82 8899.31 10799.02 16699.59 15699.06 8299.34 16899.53 9099.96 1399.38 7699.29 8999.13 7799.53 13399.59 62
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testgi99.43 7299.47 4599.38 12099.90 3399.67 3399.30 13299.73 13098.64 13199.53 12899.52 9299.90 5898.08 16299.65 4499.40 5299.75 7099.55 82
DELS-MVS99.42 7599.53 3699.29 13499.52 17299.43 7899.42 10899.28 19499.16 7199.72 8799.82 4699.97 898.17 15699.56 5399.16 6699.65 9599.59 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator99.16 399.42 7599.22 8699.65 6799.78 10399.13 14199.50 9399.85 6199.40 4199.80 5798.59 16699.79 9899.30 9099.20 11099.06 8599.71 8599.35 126
DPE-MVS99.41 7799.36 6299.47 10499.66 14599.48 6999.46 10499.75 12798.65 12799.41 15599.67 6499.95 2598.82 13599.21 10799.14 6999.72 8299.40 118
UniMVSNet_NR-MVSNet99.41 7799.12 10899.76 4199.86 6299.48 6999.50 9399.81 9198.84 11199.89 1799.45 9998.32 17299.59 4499.22 10498.89 11099.90 2299.63 53
CP-MVS99.41 7799.20 9199.65 6799.80 9499.23 12699.44 10699.75 12798.60 13699.74 7898.66 16099.93 4199.48 6999.33 8199.16 6699.73 7999.48 98
QAPM99.41 7799.21 9099.64 7299.78 10399.16 13499.51 8999.85 6199.20 6199.72 8799.43 10099.81 9099.25 9498.87 15498.71 13299.71 8599.30 131
UGNet99.40 8199.61 2399.16 15499.88 4299.64 3699.61 6499.77 11399.31 5099.63 11099.33 11199.93 4196.46 19799.63 4699.53 3399.63 10799.89 5
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)99.40 8199.28 7599.55 9099.92 2699.68 3199.31 12799.87 5098.69 12499.16 17799.08 13798.64 16599.20 9899.65 4499.46 4399.83 4799.72 35
OPM-MVS99.39 8399.22 8699.59 7999.76 11698.82 16699.51 8999.79 10199.17 6799.53 12899.31 11699.95 2599.35 7999.22 10498.79 12399.60 11799.27 134
Fast-Effi-MVS+99.39 8399.18 9699.63 7399.86 6299.28 11499.45 10599.91 3798.47 14399.61 11499.50 9699.57 12499.17 9999.24 10098.66 13799.78 6199.59 62
LS3D99.39 8399.28 7599.52 9799.77 11199.39 8699.55 7799.82 8398.93 10099.64 10898.52 17099.67 11698.58 14999.74 3199.63 2499.75 7099.06 156
CS-MVS99.38 8699.19 9399.59 7999.86 6299.65 3499.28 13599.77 11397.97 17899.75 7198.42 17799.70 11199.03 11999.57 5299.42 4899.87 3399.61 58
diffmvs99.38 8699.33 6699.45 10899.87 4899.39 8699.28 13599.58 15999.55 2899.50 13899.85 3999.85 8198.94 12998.58 17798.68 13599.51 13999.39 120
CANet99.36 8899.39 5899.34 13199.80 9499.35 9999.41 11299.47 17699.20 6199.74 7899.54 8499.68 11498.05 16499.23 10298.97 10199.57 12599.73 32
MVS_030499.36 8899.35 6499.37 12699.85 7199.36 9599.39 11499.56 16299.36 4699.75 7199.23 12299.90 5897.97 17199.00 13598.83 11799.69 8899.77 24
ACMMPcopyleft99.36 8899.06 11599.71 5599.86 6299.36 9599.63 6299.85 6198.33 15899.72 8797.73 19199.94 3599.53 5499.37 7499.13 7799.65 9599.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS99.35 9199.26 7799.46 10699.66 14599.15 13698.92 17599.67 14499.55 2899.35 16598.83 14999.91 5599.35 7999.19 11398.53 14699.78 6199.68 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft99.35 9199.09 11399.65 6799.84 7799.22 12799.59 6999.78 10698.13 16799.67 10398.44 17499.93 4199.43 7599.31 8499.09 8299.60 11799.49 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pmmvs499.34 9399.15 10399.57 8599.77 11198.90 15899.51 8999.77 11399.07 8099.73 8499.72 5799.84 8399.07 11498.85 15998.39 15599.55 13199.27 134
EPP-MVSNet99.34 9399.10 11199.62 7799.94 2099.74 2499.66 5699.80 9899.07 8098.93 18899.61 7496.13 18699.49 6699.67 4099.63 2499.92 1899.86 10
TSAR-MVS + GP.99.33 9599.17 10099.51 9999.71 13599.00 15398.84 18499.71 13298.23 16499.74 7899.53 9099.90 5899.35 7999.38 7398.85 11599.72 8299.31 129
PHI-MVS99.33 9599.19 9399.49 10299.69 13799.25 11999.27 13799.59 15698.44 14799.78 6499.15 12999.92 4998.95 12899.39 7299.04 9099.64 10499.18 140
MSP-MVS99.32 9799.26 7799.38 12099.76 11699.54 5299.42 10899.72 13198.92 10298.84 19598.96 14499.96 1398.91 13098.72 17299.14 6999.63 10799.58 70
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS99.32 9798.99 12499.71 5599.86 6299.31 10799.59 6999.86 5497.51 19199.75 7198.23 18199.94 3599.53 5499.29 8999.08 8399.65 9599.54 84
DeepC-MVS_fast98.69 999.32 9799.13 10699.53 9399.63 15298.78 16999.53 8299.33 19299.08 7899.77 6599.18 12799.89 6199.29 9199.00 13598.70 13399.65 9599.30 131
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG99.32 9799.09 11399.58 8299.75 12098.74 17399.36 11999.54 16599.14 7499.72 8799.24 12099.89 6199.51 5899.30 8698.76 12499.62 11398.54 175
TSAR-MVS + ACMM99.31 10199.26 7799.37 12699.66 14598.97 15699.20 14499.56 16299.33 4899.19 17699.54 8499.91 5599.32 8699.12 12398.34 15899.29 16699.65 49
3Dnovator+98.92 799.31 10199.03 11999.63 7399.77 11198.90 15899.52 8699.81 9199.37 4499.72 8798.03 18699.73 10699.32 8698.99 13898.81 12199.67 9199.36 124
X-MVS99.30 10398.99 12499.66 6599.85 7199.30 10999.49 10099.82 8398.32 15999.69 9597.31 19899.93 4199.50 6299.37 7499.16 6699.60 11799.53 87
MVS_111021_HR99.30 10399.14 10499.48 10399.58 16899.25 11999.27 13799.61 15198.74 12099.66 10599.02 14399.84 8399.33 8399.20 11098.76 12499.44 14999.18 140
TAPA-MVS98.54 1099.30 10399.24 8299.36 13099.44 18798.77 17199.00 16899.41 18399.23 5899.60 11799.50 9699.86 7599.15 10699.29 8998.95 10599.56 12899.08 153
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS99.30 10399.01 12399.63 7399.75 12098.89 16199.35 12299.60 15398.53 14199.86 3499.57 8199.94 3599.52 5798.96 14098.10 17199.70 8799.08 153
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
USDC99.29 10798.98 12699.65 6799.72 13298.87 16499.47 10299.66 14799.35 4799.87 2899.58 8099.87 7499.51 5898.85 15997.93 17799.65 9598.38 179
PMVScopyleft94.32 1799.27 10899.55 3298.94 17299.60 16199.43 7899.39 11499.54 16598.99 9099.69 9599.60 7799.81 9095.68 20299.88 1299.83 599.73 7999.31 129
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS_111021_LR99.25 10999.13 10699.39 11699.50 18099.14 13799.23 14299.50 17398.67 12599.61 11499.12 13399.81 9099.16 10299.28 9498.67 13699.35 16299.21 139
baseline99.24 11099.30 7199.17 15399.78 10399.14 13799.10 15699.69 13598.97 9499.49 14099.84 4199.88 6797.99 17098.85 15998.73 13098.98 18199.72 35
EIA-MVS99.23 11199.03 11999.47 10499.83 8399.64 3699.16 14899.81 9197.11 19899.65 10798.44 17499.78 10198.61 14899.46 6299.22 5999.75 7099.59 62
HPM-MVS++copyleft99.23 11198.98 12699.53 9399.75 12099.02 15199.44 10699.77 11398.65 12799.52 13498.72 15799.92 4999.33 8398.77 17098.40 15499.40 15699.36 124
PMMVS299.23 11199.22 8699.24 14199.80 9499.14 13799.50 9399.82 8399.12 7698.41 20999.91 2399.98 498.51 15099.48 5898.76 12499.38 15898.14 187
CPTT-MVS99.21 11498.89 13799.58 8299.72 13299.12 14499.30 13299.76 12298.62 13299.66 10597.51 19499.89 6199.48 6999.01 13398.64 13999.58 12499.40 118
TinyColmap99.21 11498.89 13799.59 7999.61 15798.61 18299.47 10299.67 14499.02 8799.82 5399.15 12999.74 10399.35 7999.17 11898.33 15999.63 10798.22 185
Effi-MVS+99.20 11698.93 13299.50 10199.79 9899.26 11698.82 18799.96 1198.37 15799.60 11799.12 13398.36 17099.05 11798.93 14398.82 11899.78 6199.68 42
PVSNet_BlendedMVS99.20 11699.17 10099.23 14299.69 13799.33 10299.04 16199.13 19798.41 15399.79 6099.33 11199.36 14098.10 16099.29 8998.87 11299.65 9599.56 77
PVSNet_Blended99.20 11699.17 10099.23 14299.69 13799.33 10299.04 16199.13 19798.41 15399.79 6099.33 11199.36 14098.10 16099.29 8998.87 11299.65 9599.56 77
MCST-MVS99.17 11998.82 14599.57 8599.75 12098.70 17799.25 14199.69 13598.62 13299.59 11998.54 16899.79 9899.53 5498.48 18198.15 16799.64 10499.43 109
APD-MVScopyleft99.17 11998.92 13399.46 10699.78 10399.24 12499.34 12399.78 10697.79 18599.48 14298.25 18099.88 6798.77 13899.18 11698.92 10799.63 10799.18 140
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.82 899.17 11998.85 14199.53 9399.75 12099.06 14999.36 11999.82 8398.28 16199.76 6898.47 17299.61 12098.91 13098.80 16798.70 13399.60 11799.04 160
IterMVS-LS99.16 12298.82 14599.57 8599.87 4899.71 2799.58 7399.92 3299.24 5799.71 9299.73 5395.79 18798.91 13098.82 16698.66 13799.43 15299.77 24
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS98.38 1199.16 12299.20 9199.12 15899.20 20498.71 17698.85 18399.06 20099.17 6798.96 18799.61 7499.86 7599.29 9199.17 11898.72 13199.36 16099.15 148
IterMVS-SCA-FT99.15 12498.96 12999.38 12099.87 4899.54 5299.53 8299.79 10198.94 9899.82 5399.92 1697.65 17898.82 13598.95 14298.26 16198.45 19099.47 101
CDS-MVSNet99.15 12499.10 11199.21 14899.59 16599.22 12799.48 10199.47 17698.89 10599.41 15599.84 4198.11 17597.76 17499.26 9999.01 9499.57 12599.38 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS_MVSNet99.15 12499.12 10899.19 15199.92 2699.73 2699.55 7799.86 5498.45 14696.91 21598.74 15598.33 17199.02 12099.54 5599.47 4199.88 2799.61 58
MDA-MVSNet-bldmvs99.11 12799.11 11099.12 15899.91 3099.38 8999.77 2998.72 20499.31 5099.85 4199.43 10098.26 17399.48 6999.85 1698.47 14996.99 20199.08 153
OMC-MVS99.11 12798.95 13099.29 13499.37 19398.57 18499.19 14599.20 19698.87 10799.58 12399.13 13199.88 6799.00 12199.19 11398.46 15099.43 15298.57 174
MVS_Test99.09 12998.92 13399.29 13499.61 15799.07 14899.04 16199.81 9198.58 13899.37 16299.74 5198.87 16198.41 15398.61 17698.01 17599.50 14199.57 76
CNVR-MVS99.08 13098.83 14299.37 12699.61 15798.74 17399.15 14999.54 16598.59 13799.37 16298.15 18399.88 6799.08 11398.91 14898.46 15099.48 14399.06 156
IterMVS99.08 13098.90 13699.29 13499.87 4899.53 5599.52 8699.77 11398.94 9899.75 7199.91 2397.52 18298.72 14298.86 15798.14 16898.09 19399.43 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet299.07 13299.19 9398.93 17499.02 20999.53 5599.31 12799.84 7098.86 10898.88 19199.64 7098.44 16896.92 19199.35 7799.00 9899.61 11499.53 87
CVMVSNet99.06 13398.88 14099.28 13899.52 17299.53 5599.42 10899.69 13598.74 12098.27 21199.89 3195.48 19099.44 7399.46 6299.33 5499.32 16599.75 29
CDPH-MVS99.05 13498.63 15299.54 9299.75 12098.78 16999.59 6999.68 14197.79 18599.37 16298.20 18299.86 7599.14 10898.58 17798.01 17599.68 8999.16 146
TAMVS99.05 13499.02 12299.08 16399.69 13799.22 12799.33 12499.32 19399.16 7198.97 18699.87 3597.36 18397.76 17499.21 10799.00 9899.44 14999.33 127
CANet_DTU99.03 13699.18 9698.87 17799.58 16899.03 15099.18 14699.41 18398.65 12799.74 7899.55 8399.71 10896.13 20099.19 11398.92 10799.17 17599.18 140
Effi-MVS+-dtu99.01 13799.05 11698.98 16799.60 16199.13 14199.03 16599.61 15198.52 14299.01 18398.53 16999.83 8596.95 19099.48 5898.59 14499.66 9399.25 138
canonicalmvs99.00 13898.68 15199.37 12699.68 14399.42 8298.94 17499.89 4599.00 8998.99 18498.43 17695.69 18898.96 12799.18 11699.18 6399.74 7599.88 7
MIMVSNet99.00 13899.03 11998.97 17199.32 19999.32 10699.39 11499.91 3798.41 15398.76 19899.24 12099.17 15297.13 18499.30 8698.80 12299.29 16699.01 161
CHOSEN 280x42098.99 14098.91 13599.07 16499.77 11199.26 11699.55 7799.92 3298.62 13298.67 20299.62 7397.20 18498.44 15299.50 5699.18 6398.08 19498.99 164
xxxxxxxxxxxxxcwj98.97 14198.97 12898.98 16799.64 15098.89 16198.00 21399.58 15998.42 15099.08 18198.63 16299.96 1398.04 16699.02 13198.76 12499.52 13599.13 149
SF-MVS98.96 14298.95 13098.98 16799.64 15098.89 16198.00 21399.58 15998.42 15099.08 18198.63 16299.83 8598.04 16699.02 13198.76 12499.52 13599.13 149
GBi-Net98.96 14299.05 11698.85 17899.02 20999.53 5599.31 12799.78 10698.13 16798.48 20599.43 10097.58 17996.92 19199.68 3799.50 3699.61 11499.53 87
test198.96 14299.05 11698.85 17899.02 20999.53 5599.31 12799.78 10698.13 16798.48 20599.43 10097.58 17996.92 19199.68 3799.50 3699.61 11499.53 87
PCF-MVS97.86 1598.95 14598.53 15799.44 11099.70 13698.80 16898.96 17099.69 13598.65 12799.59 11999.33 11199.94 3599.12 11198.01 19197.11 18899.59 12397.83 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch98.94 14698.71 15099.21 14899.52 17298.22 20098.97 16999.53 17098.76 11799.50 13898.59 16699.56 12698.68 14398.63 17598.45 15299.05 17898.73 171
AdaColmapbinary98.93 14798.53 15799.39 11699.52 17298.65 18099.11 15599.59 15698.08 17199.44 14897.46 19699.45 13399.24 9598.92 14598.44 15399.44 14998.73 171
MSLP-MVS++98.92 14898.73 14999.14 15599.44 18799.00 15398.36 20399.35 18998.82 11499.38 15996.06 20399.79 9899.07 11498.88 15399.05 8899.27 16899.53 87
new_pmnet98.91 14998.89 13798.94 17299.51 17898.27 19699.15 14998.66 20599.17 6799.48 14299.79 4999.80 9698.49 15199.23 10298.20 16598.34 19197.74 195
train_agg98.89 15098.48 16299.38 12099.69 13798.76 17299.31 12799.60 15397.71 18798.98 18597.89 18799.89 6199.29 9198.32 18297.59 18499.42 15599.16 146
NCCC98.88 15198.42 16399.42 11199.62 15398.81 16799.10 15699.54 16598.76 11799.53 12895.97 20499.80 9699.16 10298.49 18098.06 17499.55 13199.05 158
PLCcopyleft97.83 1698.88 15198.52 15999.30 13399.45 18598.60 18398.65 19399.49 17498.66 12699.59 11996.33 20299.59 12399.17 9998.87 15498.53 14699.46 14599.05 158
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs398.85 15398.60 15399.13 15699.66 14598.72 17599.37 11899.06 20098.44 14799.76 6899.74 5199.55 12799.15 10699.04 12996.00 19697.80 19598.72 173
Fast-Effi-MVS+-dtu98.82 15498.80 14798.84 18099.51 17898.90 15898.96 17099.91 3798.29 16099.11 18098.47 17299.63 11996.03 20199.21 10798.12 16999.52 13599.01 161
CNLPA98.82 15498.52 15999.18 15299.21 20398.50 18898.73 19199.34 19198.73 12299.56 12597.55 19399.42 13799.06 11698.93 14398.10 17199.21 17498.38 179
PatchMatch-RL98.80 15698.52 15999.12 15899.38 19298.70 17798.56 19699.55 16497.81 18499.34 16897.57 19299.31 14798.67 14499.27 9798.62 14199.22 17398.35 181
thisisatest053098.78 15798.26 16699.39 11699.78 10399.43 7899.07 15899.64 14998.44 14799.42 15399.22 12392.68 20198.63 14699.30 8699.14 6999.80 5799.60 60
tttt051798.77 15898.25 16899.38 12099.79 9899.46 7299.07 15899.64 14998.40 15699.38 15999.21 12592.54 20298.63 14699.34 8099.14 6999.80 5799.62 56
DI_MVS_plusplus_trai98.74 15998.08 17699.51 9999.79 9899.29 11399.61 6499.60 15399.20 6199.46 14699.09 13692.93 19598.97 12498.27 18598.35 15799.65 9599.45 103
TSAR-MVS + COLMAP98.74 15998.58 15598.93 17499.29 20098.23 19799.04 16199.24 19598.79 11698.80 19799.37 10999.71 10898.06 16398.02 19097.46 18699.16 17698.48 177
MDTV_nov1_ep13_2view98.73 16198.31 16599.22 14599.75 12099.24 12499.75 3699.93 2599.31 5099.84 4599.86 3899.81 9099.31 8997.40 19894.77 19796.73 20397.81 192
PMMVS98.71 16298.55 15698.90 17699.28 20198.45 19098.53 19999.45 17897.67 18999.15 17998.76 15399.54 12997.79 17398.77 17098.23 16399.16 17698.46 178
HQP-MVS98.70 16398.19 17299.28 13899.61 15798.52 18698.71 19299.35 18997.97 17899.53 12897.38 19799.85 8199.14 10897.53 19496.85 19299.36 16099.26 137
N_pmnet98.64 16498.23 17199.11 16199.78 10399.25 11999.75 3699.39 18799.65 1499.70 9499.78 5099.89 6198.81 13797.60 19394.28 19897.24 20097.15 199
CMPMVSbinary76.62 1998.64 16498.60 15398.68 18599.33 19797.07 21298.11 21198.50 20697.69 18899.26 17198.35 17999.66 11797.62 17799.43 7099.02 9299.24 17199.01 161
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet398.63 16698.75 14898.49 19198.10 21599.44 7599.02 16699.78 10698.13 16798.48 20599.43 10097.58 17996.16 19998.85 15998.39 15599.40 15699.41 113
GA-MVS98.59 16798.15 17399.09 16299.59 16599.13 14198.84 18499.52 17298.61 13599.35 16599.67 6493.03 19497.73 17698.90 15298.26 16199.51 13999.48 98
MAR-MVS98.54 16898.15 17398.98 16799.37 19398.09 20398.56 19699.65 14896.11 21399.27 17097.16 20099.50 13098.03 16898.87 15498.23 16399.01 17999.13 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
new-patchmatchnet98.49 16997.60 17899.53 9399.90 3399.55 4999.77 2999.48 17599.67 1199.86 3499.98 399.98 499.50 6296.90 20091.52 20498.67 18795.62 204
FPMVS98.48 17098.83 14298.07 20199.09 20797.98 20699.07 15898.04 21298.99 9099.22 17498.85 14899.43 13693.79 20999.66 4299.11 8199.24 17197.76 193
MVS-HIRNet98.45 17198.25 16898.69 18499.12 20597.81 21198.55 19899.85 6198.58 13899.67 10399.61 7499.86 7597.46 18097.95 19296.37 19497.49 19797.56 196
test0.0.03 198.41 17298.41 16498.40 19599.62 15399.16 13498.87 18199.41 18397.15 19696.60 21799.31 11697.00 18596.55 19698.91 14898.51 14899.37 15998.82 169
gg-mvs-nofinetune98.40 17398.26 16698.57 18999.83 8398.86 16598.77 19099.97 199.57 2599.99 199.99 193.81 19293.50 21098.91 14898.20 16599.33 16498.52 176
baseline198.39 17497.59 17999.31 13299.78 10399.45 7399.13 15299.53 17098.06 17398.87 19298.63 16290.04 20798.76 13998.85 15998.84 11699.81 5399.28 133
pmnet_mix0298.28 17597.48 18199.22 14599.78 10399.12 14499.68 5299.39 18799.49 3399.86 3499.82 4699.89 6199.23 9695.54 20392.36 20197.38 19896.14 202
PatchT98.11 17697.12 18799.26 14099.65 14998.34 19499.57 7599.97 197.48 19299.43 15099.04 14190.84 20598.15 15798.04 18897.78 17898.82 18498.30 182
DPM-MVS98.10 17797.32 18599.01 16699.52 17297.92 20798.47 20199.45 17898.25 16298.91 18993.99 20899.69 11398.73 14196.29 20296.32 19599.00 18098.77 170
EPNet_dtu98.09 17898.25 16897.91 20399.58 16898.02 20598.19 20899.67 14497.94 18099.74 7899.07 13998.71 16493.40 21197.50 19597.09 18996.89 20299.44 106
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.06 17998.11 17598.00 20299.60 16198.99 15598.38 20299.68 14198.18 16698.85 19497.89 18795.60 18992.72 21298.30 18398.10 17198.76 18599.72 35
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet97.91 18096.80 19099.22 14599.60 16198.23 19798.91 17699.97 196.89 20699.43 15099.10 13589.24 21098.15 15798.04 18897.78 17899.26 16998.30 182
thres20097.87 18196.56 19299.39 11699.76 11699.52 6299.13 15299.76 12296.88 20898.66 20392.87 21288.77 21399.16 10299.11 12499.42 4899.88 2799.33 127
baseline297.87 18197.18 18698.67 18699.34 19699.17 13398.48 20098.82 20397.08 19998.83 19698.75 15489.47 20997.03 18998.67 17498.27 16099.52 13598.83 168
thres600view797.86 18396.53 19599.41 11499.84 7799.52 6299.36 11999.76 12297.32 19498.38 21093.24 20987.25 21599.23 9699.11 12499.75 1499.88 2799.48 98
tfpn200view997.85 18496.54 19399.38 12099.74 12899.52 6299.17 14799.76 12296.10 21498.70 20092.99 21089.10 21199.00 12199.11 12499.56 2899.88 2799.41 113
thres40097.82 18596.47 19699.40 11599.81 9399.44 7599.29 13499.69 13597.15 19698.57 20492.82 21387.96 21499.16 10298.96 14099.55 3199.86 3699.41 113
IB-MVS98.10 1497.76 18697.40 18498.18 19799.62 15399.11 14698.24 20698.35 20896.56 21099.44 14891.28 21498.96 15993.84 20898.09 18798.62 14199.56 12899.18 140
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR97.74 18797.46 18298.08 19999.62 15398.37 19298.26 20499.41 18397.03 20197.38 21399.54 8492.89 19695.12 20598.78 16897.68 18298.65 18897.90 189
RPMNet97.70 18896.54 19399.06 16599.57 17198.23 19798.95 17399.97 196.89 20699.49 14099.13 13189.63 20897.09 18696.68 20197.02 19099.26 16998.19 186
thres100view90097.69 18996.37 19799.23 14299.74 12899.21 13098.81 18899.43 18296.10 21498.70 20092.99 21089.10 21198.88 13398.58 17799.31 5699.82 5099.27 134
FMVSNet597.69 18996.98 18898.53 19098.53 21399.36 9598.90 17999.54 16596.38 21198.44 20895.38 20690.08 20697.05 18899.46 6299.06 8598.73 18699.12 152
MVEpermissive91.08 1897.68 19197.65 17797.71 20998.46 21491.62 21897.92 21598.86 20298.73 12297.99 21298.64 16199.96 1399.17 9999.59 5097.75 18093.87 21697.27 197
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-mter97.65 19297.57 18097.75 20798.90 21298.56 18598.15 20998.45 20796.92 20596.84 21699.52 9292.53 20395.24 20499.04 12998.12 16998.90 18398.29 184
TESTMET0.1,197.62 19397.46 18297.81 20599.07 20898.37 19298.26 20498.35 20897.03 20197.38 21399.54 8492.89 19695.12 20598.78 16897.68 18298.65 18897.90 189
MVSTER97.55 19496.75 19198.48 19299.46 18499.54 5298.24 20699.77 11397.56 19099.41 15599.31 11684.86 21794.66 20798.86 15797.75 18099.34 16399.38 121
ET-MVSNet_ETH3D97.44 19596.29 19898.78 18197.93 21698.95 15798.91 17699.09 19998.00 17699.24 17298.83 14984.62 21898.02 16997.43 19797.38 18799.48 14398.84 166
MDTV_nov1_ep1397.41 19696.26 19998.76 18299.47 18398.43 19199.26 14099.82 8398.06 17399.23 17399.22 12392.86 19898.05 16495.33 20593.66 20096.73 20396.26 201
ADS-MVSNet97.29 19796.17 20098.59 18899.59 16598.70 17799.32 12599.86 5498.47 14399.56 12599.08 13798.16 17497.34 18292.92 20791.17 20595.91 20694.72 207
SCA97.25 19896.05 20198.64 18799.36 19599.02 15199.27 13799.96 1198.25 16299.69 9598.71 15894.66 19197.95 17293.95 20692.35 20295.64 20795.40 206
gm-plane-assit96.82 19994.84 20699.13 15699.95 1099.78 1499.69 5199.92 3299.19 6499.84 4599.92 1672.93 22196.44 19898.21 18697.01 19198.92 18296.87 200
PatchmatchNetpermissive96.81 20095.41 20398.43 19499.43 18998.30 19599.23 14299.93 2598.19 16599.64 10898.81 15293.50 19397.43 18192.89 20890.78 20794.94 21195.41 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.76 20195.30 20598.46 19399.42 19098.47 18999.32 12599.91 3798.42 15099.51 13699.07 13992.81 19997.12 18592.39 20991.71 20395.51 20894.20 209
E-PMN96.72 20295.78 20297.81 20599.45 18595.46 21598.14 21098.33 21097.99 17798.73 19998.09 18498.97 15797.54 17997.45 19691.09 20694.70 21391.40 212
tpm96.56 20394.68 20798.74 18399.12 20597.90 20898.79 18999.93 2596.79 20999.69 9599.19 12681.48 22097.56 17895.46 20493.97 19997.37 19997.99 188
EMVS96.47 20495.38 20497.74 20899.42 19095.37 21698.07 21298.27 21197.85 18398.90 19097.48 19598.73 16397.20 18397.21 19990.39 20894.59 21590.65 213
tpmrst96.18 20594.47 20898.18 19799.52 17297.89 20998.96 17099.79 10198.07 17299.16 17799.30 11992.69 20096.69 19490.76 21188.85 21194.96 21093.69 210
CostFormer95.61 20693.35 21198.24 19699.48 18298.03 20498.65 19399.83 7696.93 20499.42 15398.83 14983.65 21997.08 18790.39 21289.54 21094.94 21196.11 203
dps95.59 20793.46 21098.08 19999.33 19798.22 20098.87 18199.70 13396.17 21298.87 19297.75 19086.85 21696.60 19591.24 21089.62 20995.10 20994.34 208
tpm cat195.52 20893.49 20997.88 20499.28 20197.87 21098.65 19399.77 11397.27 19599.46 14698.04 18590.99 20495.46 20388.57 21388.14 21294.64 21493.54 211
GG-mvs-BLEND70.44 20996.91 18939.57 2113.32 22096.51 21391.01 2184.05 21797.03 20133.20 21994.67 20797.75 1777.59 21698.28 18496.85 19298.24 19297.26 198
testmvs22.33 21029.66 21213.79 2128.97 21810.35 21915.53 2218.09 21632.51 21619.87 22045.18 21530.56 22317.05 21529.96 21424.74 21313.21 21734.30 214
test12321.52 21128.47 21313.42 2137.29 21910.12 22015.70 2208.31 21531.54 21719.34 22136.33 21637.40 22217.14 21427.45 21523.17 21412.73 21833.30 215
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def99.96 2
9.1499.57 124
SR-MVS99.73 13099.74 12999.88 67
Anonymous20240521199.14 10499.87 4899.55 4999.50 9399.70 13398.55 14098.61 16598.46 16798.76 13999.66 4299.50 3699.85 3999.63 53
our_test_399.75 12099.11 14699.74 43
ambc98.83 14299.72 13298.52 18698.84 18498.96 9599.92 1099.34 11099.74 10399.04 11898.68 17397.57 18599.46 14598.99 164
MTAPA99.62 11199.95 25
MTMP99.53 12899.92 49
Patchmatch-RL test65.75 219
tmp_tt88.14 21096.68 21791.91 21793.70 21761.38 21499.61 2090.51 21899.40 10699.71 10890.32 21399.22 10499.44 4696.25 205
XVS99.86 6299.30 10999.72 4899.69 9599.93 4199.60 117
X-MVStestdata99.86 6299.30 10999.72 4899.69 9599.93 4199.60 117
abl_699.21 14899.49 18198.62 18198.90 17999.44 18197.08 19999.61 11497.19 19999.73 10698.35 15499.45 14798.84 166
mPP-MVS99.84 7799.92 49
NP-MVS97.37 193
Patchmtry98.19 20298.91 17699.97 199.43 150
DeepMVS_CXcopyleft96.39 21497.15 21688.89 21397.94 18099.51 13695.71 20597.88 17698.19 15598.92 14597.73 19697.75 194