This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.82 199.76 199.75 299.77 799.87 1799.71 1099.77 999.76 1899.52 399.80 399.79 2199.91 199.56 1399.83 499.75 599.86 1099.75 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.74 299.75 299.73 1199.92 799.67 1499.76 1199.84 1199.59 199.52 2499.87 1199.91 199.43 2799.87 199.81 399.89 699.52 10
test_part199.72 399.79 199.64 1399.95 299.88 199.71 1799.83 1299.58 299.48 2899.79 2199.78 998.98 6799.86 299.85 199.88 899.82 1
SixPastTwentyTwo99.70 499.59 599.82 299.93 599.80 399.86 299.87 698.87 1299.79 599.85 1499.33 6599.74 599.85 399.82 299.74 2499.63 5
v7n99.68 599.61 499.76 899.89 1499.74 999.87 199.82 1399.20 799.71 699.96 199.73 1399.76 399.58 1899.59 1499.52 4399.46 15
anonymousdsp99.64 699.55 799.74 1099.87 1799.56 2199.82 399.73 2198.54 1799.71 699.92 499.84 699.61 999.70 799.63 799.69 2999.64 3
UniMVSNet_ETH3D99.61 799.59 599.63 1599.96 199.70 1199.53 3499.86 899.28 699.48 2899.44 5299.86 499.01 6599.78 599.76 499.90 299.33 21
WR-MVS99.61 799.44 999.82 299.92 799.80 399.80 599.89 198.54 1799.66 1399.78 2399.16 8699.68 799.70 799.63 799.94 199.49 13
PEN-MVS99.54 999.30 1699.83 199.92 799.76 699.80 599.88 397.60 5899.71 699.59 3699.52 4599.75 499.64 1399.51 1799.90 299.46 15
TDRefinement99.54 999.50 899.60 1899.70 6499.35 4099.77 999.58 4799.40 599.28 4999.66 2799.41 5599.55 1599.74 699.65 699.70 2699.25 25
DTE-MVSNet99.52 1199.27 1799.82 299.93 599.77 599.79 799.87 697.89 4099.70 1199.55 4499.21 7899.77 299.65 1199.43 2199.90 299.36 19
PS-CasMVS99.50 1299.23 1999.82 299.92 799.75 899.78 899.89 197.30 7199.71 699.60 3499.23 7499.71 699.65 1199.55 1699.90 299.56 8
WR-MVS_H99.48 1399.23 1999.76 899.91 1199.76 699.75 1299.88 397.27 7499.58 1799.56 4099.24 7399.56 1399.60 1699.60 1399.88 899.58 7
pm-mvs199.47 1499.38 1099.57 2199.82 2699.49 2599.63 2399.65 3598.88 1199.31 4399.85 1499.02 10599.23 4599.60 1699.58 1599.80 1699.22 32
MIMVSNet199.46 1599.34 1199.60 1899.83 2399.68 1399.74 1599.71 2498.20 2599.41 3599.86 1399.66 2799.41 3099.50 2299.39 2399.50 4899.10 43
TransMVSNet (Re)99.45 1699.32 1499.61 1699.88 1699.60 1899.75 1299.63 3999.11 899.28 4999.83 1898.35 14199.27 4299.70 799.62 1199.84 1199.03 51
ACMH97.81 699.44 1799.33 1299.56 2299.81 2999.42 3399.73 1699.58 4799.02 999.10 7499.41 5699.69 2099.60 1099.45 2699.26 3399.55 3999.05 48
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS-test99.39 1899.14 2599.68 1299.94 399.81 299.81 499.67 3197.33 7099.46 3199.08 7799.70 1899.39 3399.18 3799.50 1899.80 1699.38 18
CP-MVSNet99.39 1899.04 2999.80 699.91 1199.70 1199.75 1299.88 396.82 9599.68 1299.32 5998.86 11499.68 799.57 1999.47 1999.89 699.52 10
COLMAP_ROBcopyleft98.29 299.37 2099.25 1899.51 2999.74 5599.12 6999.56 3199.39 8398.96 1099.17 6199.44 5299.63 3599.58 1199.48 2499.27 3299.60 3598.81 76
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS97.88 499.33 2199.15 2399.53 2899.73 6099.05 7799.49 3999.40 8198.42 2099.55 2199.71 2599.89 399.49 1999.14 3998.81 6299.54 4099.02 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test99.32 2299.33 1299.31 5499.87 1799.65 1799.63 2399.75 2097.76 4297.29 19399.87 1199.63 3599.52 1699.66 1099.63 799.77 2199.12 38
UA-Net99.30 2399.22 2199.39 4199.94 399.66 1698.91 10899.86 897.74 4898.74 11499.00 8799.60 4099.17 5199.50 2299.39 2399.70 2699.64 3
ACMH+97.53 799.29 2499.20 2299.40 4099.81 2999.22 5799.59 2899.50 6598.64 1698.29 14799.21 7199.69 2099.57 1299.53 2199.33 2899.66 3098.81 76
Vis-MVSNetpermissive99.25 2599.32 1499.17 6599.65 7699.55 2399.63 2399.33 9998.16 2699.29 4699.65 3099.77 1097.56 14099.44 2899.14 3899.58 3699.51 12
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet99.23 2698.91 3699.61 1699.81 2999.45 3099.47 4199.68 2797.28 7399.39 3699.54 4599.08 10199.45 2299.09 4598.84 5999.83 1299.04 49
CSCG99.23 2699.15 2399.32 5399.83 2399.45 3098.97 9999.21 12098.83 1399.04 8599.43 5499.64 3399.26 4398.85 7198.20 9999.62 3399.62 6
Gipumacopyleft99.22 2898.86 3999.64 1399.70 6499.24 5199.17 8299.63 3999.52 399.89 196.54 17299.14 9099.93 199.42 2999.15 3799.52 4399.04 49
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tfpnnormal99.19 2998.90 3799.54 2599.81 2999.55 2399.60 2799.54 5698.53 1999.23 5398.40 10698.23 14499.40 3199.29 3399.36 2699.63 3298.95 63
Baseline_NR-MVSNet99.18 3098.87 3899.54 2599.74 5599.56 2199.36 5399.62 4496.53 11699.29 4699.85 1498.64 13299.40 3199.03 5699.63 799.83 1298.86 71
thisisatest051599.16 3198.94 3499.41 3599.75 4999.43 3299.36 5399.63 3997.68 5499.35 3899.31 6098.90 11199.09 5998.95 6199.20 3499.27 8099.11 39
APDe-MVS99.15 3298.95 3199.39 4199.77 3999.28 4899.52 3599.54 5697.22 7899.06 7899.20 7299.64 3399.05 6399.14 3999.02 4799.39 6199.17 36
FC-MVSNet-train99.13 3399.05 2899.21 6099.87 1799.57 2099.67 1899.60 4696.75 10198.28 14899.48 4899.52 4598.10 11999.47 2599.37 2599.76 2399.21 33
NR-MVSNet99.10 3498.68 5499.58 2099.89 1499.23 5499.35 5699.63 3996.58 10999.36 3799.05 8198.67 13099.46 2099.63 1498.73 7299.80 1698.88 70
DVP-MVS99.09 3599.07 2799.12 7399.55 9899.40 3599.36 5399.44 8097.75 4598.23 15199.23 6899.80 798.97 6899.08 4798.96 4899.19 8899.25 25
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet (Re)99.08 3698.69 5299.54 2599.75 4999.33 4399.29 6499.64 3896.75 10199.48 2899.30 6298.69 12699.26 4398.94 6398.76 6899.78 2099.02 53
ACMMPR99.05 3798.72 4899.44 3099.79 3499.12 6999.35 5699.56 5097.74 4899.21 5597.72 13399.55 4399.29 4098.90 6998.81 6299.41 6099.19 34
DU-MVS99.04 3898.59 5899.56 2299.74 5599.23 5499.29 6499.63 3996.58 10999.55 2199.05 8198.68 12899.36 3699.03 5698.60 7999.77 2198.97 58
TSAR-MVS + MP.99.02 3998.95 3199.11 7699.23 15498.79 11399.51 3698.73 16197.50 6298.56 12499.03 8499.59 4199.16 5399.29 3399.17 3699.50 4899.24 29
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v1099.01 4098.66 5599.41 3599.52 10999.39 3699.57 3099.66 3397.59 5999.32 4299.88 999.23 7499.50 1897.77 13697.98 10998.92 12398.78 81
EG-PatchMatch MVS99.01 4098.77 4499.28 5899.64 7998.90 10698.81 12099.27 11196.55 11399.71 699.31 6099.66 2799.17 5199.28 3599.11 3999.10 9598.57 96
PVSNet_Blended_VisFu98.98 4298.79 4299.21 6099.76 4599.34 4199.35 5699.35 9597.12 8499.46 3199.56 4098.89 11298.08 12299.05 5098.58 8199.27 8098.98 57
HFP-MVS98.97 4398.70 5099.29 5699.67 7098.98 8999.13 8799.53 5997.76 4298.90 10098.07 12099.50 5199.14 5798.64 8298.78 6699.37 6399.18 35
UniMVSNet_NR-MVSNet98.97 4398.46 6999.56 2299.76 4599.34 4199.29 6499.61 4596.55 11399.55 2199.05 8197.96 15299.36 3698.84 7298.50 8799.81 1598.97 58
SED-MVS98.94 4598.95 3198.91 9899.43 12599.38 3899.12 8999.46 7497.05 8798.43 13999.23 6899.79 897.99 12599.05 5098.94 5099.05 10899.23 30
ACMMP_NAP98.94 4598.72 4899.21 6099.67 7099.08 7299.26 6999.39 8396.84 9298.88 10498.22 11399.68 2398.82 7799.06 4998.90 5399.25 8399.25 25
zzz-MVS98.94 4598.57 6199.37 4899.77 3999.15 6699.24 7299.55 5297.38 6899.16 6496.64 16899.69 2099.15 5599.09 4598.92 5299.37 6399.11 39
v114498.94 4598.53 6499.42 3499.62 8399.03 8399.58 2999.36 9297.99 3199.49 2799.91 899.20 8099.51 1797.61 14197.85 11698.95 11898.10 137
v898.94 4598.60 5699.35 5199.54 10299.39 3699.55 3299.67 3197.48 6399.13 7099.81 1999.10 9799.39 3397.86 13197.89 11498.81 13298.66 88
SteuartSystems-ACMMP98.94 4598.52 6599.43 3399.79 3499.13 6899.33 6099.55 5296.17 13299.04 8597.53 13999.65 3199.46 2099.04 5598.76 6899.44 5599.35 20
Skip Steuart: Steuart Systems R&D Blog.
v119298.91 5198.48 6899.41 3599.61 8799.03 8399.64 2099.25 11597.91 3799.58 1799.92 499.07 10399.45 2297.55 14597.68 13198.93 12098.23 127
FMVSNet198.90 5299.10 2698.67 12299.54 10299.48 2799.22 7599.66 3398.39 2397.50 18199.66 2799.04 10496.58 16299.05 5099.03 4499.52 4399.08 45
ACMM96.66 1198.90 5298.44 7399.44 3099.74 5598.95 9599.47 4199.55 5297.66 5699.09 7596.43 17499.41 5599.35 3898.95 6198.67 7599.45 5399.03 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121198.89 5498.79 4298.99 9199.82 2699.41 3499.18 8099.31 10596.92 8998.54 12798.58 10398.84 11897.46 14299.45 2699.29 3099.65 3199.08 45
v192192098.89 5498.46 6999.39 4199.58 9199.04 8199.64 2099.17 12697.91 3799.64 1599.92 498.99 10999.44 2597.44 15297.57 14098.84 13098.35 117
GeoE98.88 5698.43 7699.41 3599.83 2399.24 5199.51 3699.82 1396.55 11399.22 5498.76 9599.22 7798.96 6998.55 8598.15 10199.10 9598.56 99
v14419298.88 5698.46 6999.37 4899.56 9799.03 8399.61 2699.26 11297.79 4199.58 1799.88 999.11 9599.43 2797.38 15797.61 13698.80 13498.43 112
SMA-MVScopyleft98.87 5898.73 4799.04 8499.72 6199.05 7798.64 13099.17 12696.31 12798.80 10999.07 7999.70 1898.67 8698.93 6698.82 6099.23 8699.23 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP96.54 1398.87 5898.40 7999.41 3599.74 5598.88 10799.29 6499.50 6596.85 9198.96 9297.05 15599.66 2799.43 2798.98 6098.60 7999.52 4398.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet98.86 6098.57 6199.19 6399.86 2199.67 1499.39 4999.71 2497.53 6198.69 11795.85 18598.48 13697.75 13499.57 1999.41 2299.72 2599.48 14
v124098.86 6098.41 7899.38 4699.59 8999.05 7799.65 1999.14 13197.68 5499.66 1399.93 398.72 12599.45 2297.38 15797.72 12998.79 13598.35 117
CP-MVS98.86 6098.43 7699.36 5099.68 6898.97 9399.19 7899.46 7496.60 10799.20 5697.11 15499.51 4999.15 5598.92 6798.82 6099.45 5399.08 45
v2v48298.85 6398.40 7999.38 4699.65 7698.98 8999.55 3299.39 8397.92 3699.35 3899.85 1499.14 9099.39 3397.50 14797.78 11998.98 11597.60 151
DPE-MVScopyleft98.84 6498.69 5299.00 8899.05 17299.26 4999.19 7899.35 9595.85 14098.74 11499.27 6499.66 2798.30 11298.90 6998.93 5199.37 6399.00 55
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS98.84 6498.59 5899.12 7399.52 10998.50 13899.13 8799.22 11897.76 4298.76 11198.70 9799.61 3898.90 7298.67 8098.37 9399.19 8898.57 96
test20.0398.84 6498.74 4698.95 9499.77 3999.33 4399.21 7799.46 7497.29 7298.88 10499.65 3099.10 9797.07 15499.11 4298.76 6899.32 7397.98 141
casdiffmvs98.84 6498.75 4598.94 9799.75 4999.21 5899.33 6099.04 14298.04 2997.46 18499.72 2499.72 1598.60 9098.30 10598.37 9399.48 5097.92 143
LGP-MVS_train98.84 6498.33 8599.44 3099.78 3798.98 8999.39 4999.55 5295.41 14898.90 10097.51 14099.68 2399.44 2599.03 5698.81 6299.57 3798.91 66
RPSCF98.84 6498.81 4198.89 10099.37 13398.95 9598.51 14298.85 15497.73 5098.33 14498.97 8999.14 9098.95 7099.18 3798.68 7499.31 7498.99 56
ACMMPcopyleft98.82 7098.33 8599.39 4199.77 3999.14 6799.37 5299.54 5696.47 12099.03 8796.26 17899.52 4599.28 4198.92 6798.80 6599.37 6399.16 37
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
V4298.81 7198.49 6799.18 6499.52 10998.92 10199.50 3899.29 10797.43 6698.97 8999.81 1999.00 10899.30 3997.93 12798.01 10798.51 15898.34 121
LS3D98.79 7298.52 6599.12 7399.64 7999.09 7199.24 7299.46 7497.75 4598.93 9897.47 14198.23 14497.98 12699.36 3099.30 2999.46 5198.42 113
MP-MVScopyleft98.78 7398.30 8799.34 5299.75 4998.95 9599.26 6999.46 7495.78 14399.17 6196.98 15999.72 1599.06 6298.84 7298.74 7199.33 7099.11 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.77 7498.45 7299.15 6899.68 6898.94 9999.49 3999.31 10597.95 3398.91 9999.65 3099.62 3799.18 4897.99 12597.64 13598.33 16397.38 157
SD-MVS98.73 7598.54 6398.95 9499.14 16398.76 11698.46 14699.14 13197.71 5298.56 12498.06 12299.61 3898.85 7698.56 8497.74 12699.54 4099.32 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS98.72 7698.60 5698.87 10299.67 7099.33 4399.15 8499.26 11296.99 8897.90 17198.19 11599.74 1298.29 11397.69 13998.96 4898.96 11699.27 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS98.69 7798.09 10499.39 4199.76 4599.07 7399.30 6399.51 6394.76 15999.18 6096.70 16699.51 4999.20 4698.79 7698.71 7399.39 6199.11 39
pmmvs-eth3d98.68 7898.14 10099.29 5699.49 11498.45 14199.45 4599.38 8897.21 7999.50 2699.65 3099.21 7899.16 5397.11 16497.56 14198.79 13597.82 147
EU-MVSNet98.68 7898.94 3498.37 14299.14 16398.74 11899.64 2098.20 18798.21 2499.17 6199.66 2799.18 8399.08 6099.11 4298.86 5495.00 19998.83 73
PMVScopyleft92.51 1798.66 8098.86 3998.43 13799.26 14998.98 8998.60 13698.59 17197.73 5099.45 3399.38 5798.54 13595.24 18099.62 1599.61 1299.42 5798.17 134
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS_fast97.38 898.65 8198.34 8499.02 8799.33 13798.29 14898.99 9798.71 16397.40 6799.31 4398.20 11499.40 5898.54 9898.33 10298.18 10099.23 8698.58 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator98.16 398.65 8198.35 8399.00 8899.59 8998.70 12198.90 11299.36 9297.97 3299.09 7596.55 17199.09 9997.97 12798.70 7998.65 7799.12 9498.81 76
TSAR-MVS + ACMM98.64 8398.58 6098.72 11699.17 16198.63 12798.69 12699.10 13897.69 5398.30 14699.12 7699.38 6098.70 8598.45 8897.51 14398.35 16299.25 25
DELS-MVS98.63 8498.70 5098.55 13399.24 15399.04 8198.96 10098.52 17496.83 9498.38 14199.58 3899.68 2397.06 15598.74 7898.44 8999.10 9598.59 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM98.62 8598.40 7998.89 10099.57 9698.80 11298.63 13199.35 9596.82 9598.60 12198.85 9499.08 10198.09 12198.31 10398.21 9799.08 10198.72 83
EPP-MVSNet98.61 8698.19 9699.11 7699.86 2199.60 1899.44 4699.53 5997.37 6996.85 19798.69 9893.75 18599.18 4899.22 3699.35 2799.82 1499.32 22
3Dnovator+97.85 598.61 8698.14 10099.15 6899.62 8398.37 14699.10 9099.51 6398.04 2998.98 8896.07 18298.75 12498.55 9698.51 8798.40 9099.17 9098.82 74
X-MVS98.59 8897.99 11099.30 5599.75 4999.07 7399.17 8299.50 6596.62 10598.95 9493.95 20199.37 6199.11 5898.94 6398.86 5499.35 6899.09 44
MVS_111021_HR98.58 8998.26 9098.96 9399.32 14098.81 11098.48 14498.99 14796.81 9799.16 6498.07 12099.23 7498.89 7498.43 9098.27 9698.90 12598.24 126
MVS_030498.57 9098.36 8298.82 10999.72 6198.94 9998.92 10699.14 13196.76 10099.33 4198.30 11099.73 1396.74 15898.05 12297.79 11899.08 10198.97 58
PM-MVS98.57 9098.24 9298.95 9499.26 14998.59 13099.03 9498.74 16096.84 9299.44 3499.13 7598.31 14398.75 8298.03 12398.21 9798.48 15998.58 94
PHI-MVS98.57 9098.20 9599.00 8899.48 11698.91 10398.68 12799.17 12694.97 15599.27 5198.33 10899.33 6598.05 12398.82 7498.62 7899.34 6998.38 115
HPM-MVS++copyleft98.56 9398.08 10599.11 7699.53 10598.61 12999.02 9699.32 10396.29 12999.06 7897.23 14899.50 5198.77 8098.15 11897.90 11298.96 11698.90 67
TSAR-MVS + GP.98.54 9498.29 8998.82 10999.28 14798.59 13097.73 18599.24 11795.93 13898.59 12299.07 7999.17 8498.86 7598.44 8998.10 10399.26 8298.72 83
CS-MVS98.52 9597.90 11499.25 5999.76 4599.49 2599.18 8099.28 11093.34 19098.97 8997.21 15199.30 6898.75 8298.24 11198.86 5499.57 3798.84 72
UGNet98.52 9599.00 3097.96 16499.58 9199.26 4999.27 6899.40 8198.07 2898.28 14898.76 9599.71 1792.24 20798.94 6398.85 5799.00 11499.43 17
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023120698.50 9798.03 10799.05 8299.50 11299.01 8699.15 8499.26 11296.38 12599.12 7299.50 4799.12 9398.60 9097.68 14097.24 15498.66 14397.30 161
CLD-MVS98.48 9898.15 9998.86 10599.53 10598.35 14798.55 13997.83 19696.02 13798.97 8999.08 7799.75 1199.03 6498.10 12197.33 15099.28 7898.44 111
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet98.47 9998.30 8798.67 12299.65 7698.87 10898.82 11999.01 14596.14 13399.29 4698.86 9299.01 10696.54 16398.36 9698.08 10498.72 13998.80 80
APD-MVScopyleft98.47 9997.97 11199.05 8299.64 7998.91 10398.94 10299.45 7994.40 17198.77 11097.26 14799.41 5598.21 11698.67 8098.57 8499.31 7498.57 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Vis-MVSNet (Re-imp)98.46 10198.23 9398.73 11599.81 2999.29 4798.79 12199.50 6596.20 13196.03 20398.29 11196.98 16798.54 9899.11 4299.08 4099.70 2698.62 90
Fast-Effi-MVS+98.42 10297.79 11899.15 6899.69 6698.66 12498.94 10299.68 2794.49 16499.05 8098.06 12298.86 11498.48 10198.18 11497.78 11999.05 10898.54 102
DROMVSNet98.42 10297.79 11899.15 6899.69 6698.66 12498.94 10299.68 2794.49 16499.05 8098.06 12298.86 11498.48 10198.18 11497.78 11999.05 10898.54 102
ETV-MVS98.41 10497.76 12099.17 6599.58 9199.01 8698.91 10899.50 6593.33 19199.31 4396.82 16398.42 13998.17 11899.13 4199.08 4099.54 4098.56 99
MVS_111021_LR98.39 10598.11 10298.71 11899.08 16998.54 13698.23 16698.56 17396.57 11199.13 7098.41 10598.86 11498.65 8898.23 11297.87 11598.65 14598.28 123
pmmvs598.37 10697.81 11799.03 8599.46 11898.97 9399.03 9498.96 14995.85 14099.05 8099.45 5198.66 13198.79 7996.02 18197.52 14298.87 12798.21 130
OMC-MVS98.35 10798.10 10398.64 12898.85 18097.99 16898.56 13898.21 18597.26 7698.87 10698.54 10499.27 7298.43 10498.34 10097.66 13298.92 12397.65 150
canonicalmvs98.34 10897.92 11398.83 10799.45 12099.21 5898.37 15399.53 5997.06 8697.74 17596.95 16195.05 18298.36 10798.77 7798.85 5799.51 4799.53 9
CHOSEN 1792x268898.31 10998.02 10898.66 12499.55 9898.57 13399.38 5199.25 11598.42 2098.48 13599.58 3899.85 598.31 11195.75 18495.71 17996.96 18698.27 125
xxxxxxxxxxxxxcwj98.28 11098.23 9398.35 14399.43 12598.42 14497.05 20799.09 13996.42 12298.13 15797.73 13199.65 3197.22 14898.36 9698.38 9199.16 9298.62 90
CPTT-MVS98.28 11097.51 13299.16 6799.54 10298.78 11498.96 10099.36 9296.30 12898.89 10393.10 20599.30 6899.20 4698.35 9997.96 11099.03 11298.82 74
TinyColmap98.27 11297.62 12999.03 8599.29 14597.79 17798.92 10698.95 15097.48 6399.52 2498.65 10097.86 15498.90 7298.34 10097.27 15298.64 14695.97 181
diffmvs98.26 11398.16 9798.39 13999.61 8798.78 11498.79 12198.61 16997.94 3497.11 19699.51 4699.52 4597.61 13896.55 17396.93 16098.61 14897.87 145
USDC98.26 11397.57 13099.06 7999.42 12997.98 17098.83 11698.85 15497.57 6099.59 1699.15 7498.59 13398.99 6697.42 15396.08 17898.69 14296.23 179
SF-MVS98.25 11598.16 9798.35 14399.43 12598.42 14497.05 20799.09 13996.42 12298.13 15797.73 13199.20 8097.22 14898.36 9698.38 9199.16 9298.62 90
MCST-MVS98.25 11597.57 13099.06 7999.53 10598.24 15498.63 13199.17 12695.88 13998.58 12396.11 18099.09 9999.18 4897.58 14497.31 15199.25 8398.75 82
IterMVS-LS98.23 11797.66 12598.90 9999.63 8299.38 3899.07 9199.48 7097.75 4598.81 10899.37 5894.57 18497.88 13196.54 17497.04 15798.53 15598.97 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAPA-MVS96.65 1298.23 11797.96 11298.55 13398.81 18298.16 15898.40 15097.94 19496.68 10398.49 13398.61 10198.89 11298.57 9497.45 15097.59 13899.09 10098.35 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.22 11997.76 12098.76 11399.33 13798.26 15298.48 14498.88 15396.22 13098.47 13795.79 18699.33 6598.35 10898.37 9597.99 10899.03 11298.38 115
IS_MVSNet98.20 12098.00 10998.44 13699.82 2699.48 2799.25 7199.56 5095.58 14593.93 21597.56 13896.52 17198.27 11499.08 4799.20 3499.80 1698.56 99
DeepPCF-MVS96.68 1098.20 12098.26 9098.12 15797.03 21898.11 16198.44 14897.70 19896.77 9998.52 12998.91 9099.17 8498.58 9398.41 9298.02 10698.46 16098.46 108
MSDG98.20 12097.88 11698.56 13299.33 13797.74 17898.27 16398.10 18897.20 8198.06 16298.59 10299.16 8698.76 8198.39 9397.71 13098.86 12996.38 176
testgi98.18 12398.44 7397.89 16699.78 3799.23 5498.78 12399.21 12097.26 7697.41 18697.39 14499.36 6492.85 20498.82 7498.66 7699.31 7498.35 117
Effi-MVS+98.11 12497.29 13899.06 7999.62 8398.55 13498.16 16999.80 1594.64 16099.15 6896.59 16997.43 16098.44 10397.46 14997.90 11299.17 9098.45 110
HyFIR lowres test98.08 12597.16 14799.14 7299.72 6198.91 10399.41 4799.58 4797.93 3598.82 10799.24 6695.81 17798.73 8495.16 19595.13 18898.60 15097.94 142
EIA-MVS98.03 12697.20 14498.99 9199.66 7399.24 5198.53 14199.52 6291.56 20899.25 5295.34 19098.78 12197.72 13598.38 9498.58 8199.28 7898.54 102
train_agg97.99 12797.26 13998.83 10799.43 12598.22 15698.91 10899.07 14194.43 16997.96 16896.42 17599.30 6898.81 7897.39 15596.62 16698.82 13198.47 106
MSLP-MVS++97.99 12797.64 12898.40 13898.91 17898.47 14097.12 20598.78 15896.49 11898.48 13593.57 20399.12 9398.51 10098.31 10398.58 8198.58 15298.95 63
CDPH-MVS97.99 12797.23 14298.87 10299.58 9198.29 14898.83 11699.20 12293.76 18498.11 16096.11 18099.16 8698.23 11597.80 13497.22 15599.29 7798.28 123
FMVSNet297.94 13098.08 10597.77 17298.71 18699.21 5898.62 13399.47 7196.62 10596.37 20299.20 7297.70 15694.39 19197.39 15597.75 12599.08 10198.70 85
PVSNet_BlendedMVS97.93 13197.66 12598.25 15099.30 14298.67 12298.31 15897.95 19294.30 17598.75 11297.63 13598.76 12296.30 17098.29 10697.78 11998.93 12098.18 132
PVSNet_Blended97.93 13197.66 12598.25 15099.30 14298.67 12298.31 15897.95 19294.30 17598.75 11297.63 13598.76 12296.30 17098.29 10697.78 11998.93 12098.18 132
OpenMVScopyleft97.26 997.88 13397.17 14698.70 11999.50 11298.55 13498.34 15699.11 13693.92 18298.90 10095.04 19498.23 14497.38 14598.11 12098.12 10298.95 11898.23 127
pmmvs497.87 13497.02 15198.86 10599.20 15597.68 18198.89 11399.03 14396.57 11199.12 7299.03 8497.26 16498.42 10595.16 19596.34 17098.53 15597.10 168
NCCC97.84 13596.96 15398.87 10299.39 13298.27 15198.46 14699.02 14496.78 9898.73 11691.12 20898.91 11098.57 9497.83 13397.49 14499.04 11198.33 122
Effi-MVS+-dtu97.78 13697.37 13698.26 14899.25 15198.50 13897.89 17999.19 12594.51 16298.16 15595.93 18398.80 12095.97 17398.27 11097.38 14799.10 9598.23 127
MDA-MVSNet-bldmvs97.75 13797.26 13998.33 14599.35 13698.45 14199.32 6297.21 20397.90 3999.05 8099.01 8696.86 16999.08 6099.36 3092.97 19895.97 19596.25 178
CDS-MVSNet97.75 13797.68 12497.83 17099.08 16998.20 15798.68 12798.61 16995.63 14497.80 17399.24 6696.93 16894.09 19697.96 12697.82 11798.71 14097.99 139
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CNLPA97.75 13797.26 13998.32 14798.58 19497.86 17397.80 18198.09 18996.49 11898.49 13396.15 17998.08 14798.35 10898.00 12497.03 15898.61 14897.21 165
PLCcopyleft95.63 1597.73 14097.01 15298.57 13199.10 16697.80 17697.72 18698.77 15996.34 12698.38 14193.46 20498.06 14898.66 8797.90 12997.65 13498.77 13797.90 144
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_Test97.69 14197.15 14898.33 14599.27 14898.43 14398.25 16499.29 10795.00 15497.39 18898.86 9298.00 15197.14 15295.38 19096.22 17298.62 14798.15 136
GBi-Net97.69 14197.75 12297.62 17398.71 18699.21 5898.62 13399.33 9994.09 17895.60 20598.17 11795.97 17494.39 19199.05 5099.03 4499.08 10198.70 85
test197.69 14197.75 12297.62 17398.71 18699.21 5898.62 13399.33 9994.09 17895.60 20598.17 11795.97 17494.39 19199.05 5099.03 4499.08 10198.70 85
CANet_DTU97.65 14497.50 13497.82 17199.19 15898.08 16398.41 14998.67 16594.40 17199.16 6498.32 10998.69 12693.96 19897.87 13097.61 13697.51 18297.56 153
IterMVS-SCA-FT97.63 14596.86 15598.52 13599.48 11698.71 12098.84 11598.91 15196.44 12199.16 6499.56 4095.54 17997.95 12895.68 18795.07 19196.76 18797.03 171
TSAR-MVS + COLMAP97.62 14697.31 13797.98 16298.47 20097.39 18598.29 16098.25 18496.68 10397.54 18098.87 9198.04 15097.08 15396.78 16896.26 17198.26 16697.12 167
MS-PatchMatch97.60 14797.22 14398.04 16198.67 19097.18 18997.91 17798.28 18395.82 14298.34 14397.66 13498.38 14097.77 13397.10 16597.25 15397.27 18497.18 166
PCF-MVS95.58 1697.60 14796.67 15698.69 12099.44 12398.23 15598.37 15398.81 15693.01 19698.22 15297.97 12799.59 4198.20 11795.72 18695.08 18999.08 10197.09 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS97.58 14996.65 15998.66 12499.30 14297.99 16897.88 18098.65 16694.58 16198.66 11894.65 19899.15 8998.59 9296.10 17995.59 18098.90 12598.50 105
DI_MVS_plusplus_trai97.57 15096.55 16198.77 11299.55 9898.76 11699.22 7599.00 14697.08 8597.95 16997.78 13091.35 19298.02 12496.20 17796.81 16298.87 12797.87 145
AdaColmapbinary97.57 15096.57 16098.74 11499.25 15198.01 16698.36 15598.98 14894.44 16898.47 13792.44 20697.91 15398.62 8998.19 11397.74 12698.73 13897.28 162
baseline97.50 15297.51 13297.50 17799.18 15997.38 18698.00 17398.00 19196.52 11797.49 18299.28 6399.43 5495.31 17995.27 19296.22 17296.99 18598.47 106
IterMVS97.40 15396.67 15698.25 15099.45 12098.66 12498.87 11498.73 16196.40 12498.94 9799.56 4095.26 18197.58 13995.38 19094.70 19395.90 19696.72 174
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet97.38 15497.39 13597.37 18098.58 19497.72 17998.70 12597.42 20197.21 7995.95 20499.46 5093.31 18897.38 14597.60 14297.78 11996.18 19298.66 88
new-patchmatchnet97.26 15596.12 16998.58 13099.55 9898.63 12799.14 8697.04 20598.80 1499.19 5899.92 499.19 8298.92 7195.51 18987.04 20797.66 17993.73 197
MIMVSNet97.24 15697.15 14897.36 18199.03 17398.52 13798.55 13999.73 2194.94 15894.94 21297.98 12697.37 16293.66 19997.60 14297.34 14998.23 16996.29 177
PatchMatch-RL97.24 15696.45 16498.17 15498.70 18997.57 18497.31 20098.48 17794.42 17098.39 14095.74 18796.35 17397.88 13197.75 13797.48 14598.24 16895.87 182
thisisatest053097.20 15895.95 17398.66 12499.46 11898.84 10998.29 16099.20 12294.51 16298.25 15097.42 14285.03 20797.68 13698.43 9098.56 8599.08 10198.89 69
tttt051797.18 15995.92 17498.65 12799.49 11498.92 10198.29 16099.20 12294.37 17398.17 15397.37 14584.72 21097.68 13698.55 8598.56 8599.10 9598.95 63
MDTV_nov1_ep13_2view97.12 16096.19 16898.22 15399.13 16598.05 16499.24 7299.47 7197.61 5799.15 6899.59 3699.01 10698.40 10694.87 19890.14 20193.91 20294.04 196
MAR-MVS97.12 16096.28 16798.11 15898.94 17697.22 18897.65 19099.38 8890.93 21498.15 15695.17 19297.13 16596.48 16697.71 13897.40 14698.06 17298.40 114
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+-dtu96.99 16296.46 16397.61 17598.98 17597.89 17197.54 19499.76 1893.43 18896.55 20194.93 19598.06 14894.32 19496.93 16696.50 16898.53 15597.47 154
FPMVS96.97 16397.20 14496.70 19797.75 21096.11 20197.72 18695.47 20997.13 8398.02 16497.57 13796.67 17092.97 20399.00 5998.34 9598.28 16595.58 184
TAMVS96.95 16496.94 15496.97 19299.07 17197.67 18397.98 17597.12 20495.04 15395.41 20899.27 6495.57 17894.09 19697.32 15997.11 15698.16 17196.59 175
FMVSNet396.85 16596.67 15697.06 18697.56 21399.01 8697.99 17499.33 9994.09 17895.60 20598.17 11795.97 17493.26 20294.76 20096.22 17298.59 15198.46 108
GA-MVS96.84 16695.86 17697.98 16299.16 16298.29 14897.91 17798.64 16895.14 15197.71 17698.04 12588.90 19596.50 16596.41 17696.61 16797.97 17697.60 151
CHOSEN 280x42096.80 16796.30 16697.39 17899.09 16796.52 19398.76 12499.29 10793.88 18397.65 17798.34 10793.66 18696.29 17298.28 10897.73 12893.27 20595.70 183
gg-mvs-nofinetune96.77 16896.52 16297.06 18699.66 7397.82 17597.54 19499.86 898.69 1598.61 12099.94 289.62 19388.37 21597.55 14596.67 16498.30 16495.35 185
DPM-MVS96.73 16995.70 17997.95 16598.93 17797.26 18797.39 19998.44 17995.47 14797.62 17890.71 20998.47 13897.03 15695.02 19795.27 18598.26 16697.67 149
baseline196.72 17095.40 18198.26 14899.53 10598.81 11098.32 15798.80 15794.96 15696.78 20096.50 17384.87 20996.68 16197.42 15397.91 11199.46 5197.33 160
N_pmnet96.68 17195.70 17997.84 16999.42 12998.00 16799.35 5698.21 18598.40 2298.13 15799.42 5599.30 6897.44 14494.00 20488.79 20294.47 20191.96 203
pmnet_mix0296.61 17295.32 18298.11 15899.41 13197.68 18199.05 9297.59 19998.16 2699.05 8099.48 4899.11 9598.32 11092.36 20887.67 20495.26 19892.80 201
new_pmnet96.59 17396.40 16596.81 19498.24 20695.46 21097.71 18894.75 21296.92 8996.80 19999.23 6897.81 15596.69 15996.58 17295.16 18796.69 18893.64 198
PMMVS96.47 17495.81 17797.23 18297.38 21595.96 20597.31 20096.91 20693.21 19397.93 17097.14 15297.64 15895.70 17595.24 19396.18 17598.17 17095.33 186
EPNet96.44 17596.08 17096.86 19399.32 14097.15 19097.69 18999.32 10393.67 18598.11 16095.64 18893.44 18789.07 21396.86 16796.83 16197.67 17898.97 58
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres600view796.35 17694.27 18498.79 11199.66 7399.18 6398.94 10299.38 8894.37 17397.21 19587.19 21184.10 21198.10 11998.16 11699.47 1999.42 5797.43 155
EPNet_dtu96.31 17795.96 17296.72 19699.18 15995.39 21197.03 20999.13 13593.02 19599.35 3897.23 14897.07 16690.70 21295.74 18595.08 18994.94 20098.16 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs396.30 17895.87 17596.80 19597.66 21296.48 19497.93 17693.80 21393.40 18998.54 12798.27 11297.50 15997.37 14797.49 14893.11 19795.52 19794.85 190
PMMVS296.29 17997.05 15095.40 20798.32 20596.16 19898.18 16897.46 20097.20 8184.51 22199.60 3498.68 12896.37 16798.59 8397.38 14797.58 18191.76 204
thres20096.23 18094.13 18598.69 12099.44 12399.18 6398.58 13799.38 8893.52 18797.35 18986.33 21685.83 20597.93 12998.16 11698.78 6699.42 5797.10 168
thres40096.22 18194.08 18798.72 11699.58 9199.05 7798.83 11699.22 11894.01 18197.40 18786.34 21584.91 20897.93 12997.85 13299.08 4099.37 6397.28 162
tfpn200view996.17 18294.08 18798.60 12999.37 13399.18 6398.68 12799.39 8392.02 20297.30 19186.53 21386.34 20297.45 14398.15 11899.08 4099.43 5697.28 162
CMPMVSbinary74.71 1996.17 18296.06 17196.30 20197.41 21494.52 21494.83 21695.46 21091.57 20797.26 19494.45 20098.33 14294.98 18298.28 10897.59 13897.86 17797.68 148
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IB-MVS95.85 1495.87 18494.88 18397.02 18999.09 16798.25 15397.16 20297.38 20291.97 20597.77 17483.61 21897.29 16392.03 21097.16 16397.66 13298.66 14398.20 131
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 195.81 18595.77 17895.85 20699.20 15598.15 16097.49 19898.50 17592.24 19892.74 21896.82 16392.70 18988.60 21497.31 16197.01 15998.57 15396.19 180
thres100view90095.74 18693.66 19698.17 15499.37 13398.59 13098.10 17098.33 18292.02 20297.30 19186.53 21386.34 20296.69 15996.77 16998.47 8899.24 8596.89 172
ET-MVSNet_ETH3D95.72 18793.85 19297.89 16697.30 21698.09 16298.19 16798.40 18094.46 16798.01 16796.71 16577.85 22196.76 15796.08 18096.39 16998.70 14197.36 158
baseline295.58 18894.04 18997.38 17998.80 18398.16 15897.14 20397.80 19791.45 20997.49 18295.22 19183.63 21294.98 18296.42 17596.66 16598.06 17296.76 173
PatchT95.49 18993.29 19798.06 16098.65 19196.20 19798.91 10899.73 2192.00 20498.50 13096.67 16783.25 21396.34 16894.40 20195.50 18196.21 19195.04 188
CR-MVSNet95.38 19093.01 19898.16 15698.63 19295.85 20797.64 19199.78 1691.27 21198.50 13096.84 16282.16 21496.34 16894.40 20195.50 18198.05 17495.04 188
MVSTER95.38 19093.99 19197.01 19098.83 18198.95 9596.62 21099.14 13192.17 20097.44 18597.29 14677.88 22091.63 21197.45 15096.18 17598.41 16197.99 139
MVS-HIRNet94.86 19293.83 19396.07 20297.07 21794.00 21594.31 21799.17 12691.23 21398.17 15398.69 9897.43 16095.66 17694.05 20391.92 19992.04 21289.46 212
test-LLR94.79 19393.71 19496.06 20399.20 15596.16 19896.31 21198.50 17589.98 21594.08 21397.01 15686.43 20092.20 20896.76 17095.31 18396.05 19394.31 193
RPMNet94.72 19492.01 20397.88 16898.56 19795.85 20797.78 18299.70 2691.27 21198.33 14493.69 20281.88 21594.91 18592.60 20694.34 19598.01 17594.46 192
gm-plane-assit94.62 19591.39 20598.39 13999.90 1399.47 2999.40 4899.65 3597.44 6599.56 2099.68 2659.40 22594.23 19596.17 17894.77 19297.61 18092.79 202
test-mter94.62 19594.02 19095.32 20897.72 21196.75 19196.23 21395.67 20889.83 21893.23 21796.99 15885.94 20492.66 20697.32 15996.11 17796.44 18995.22 187
FMVSNet594.57 19792.77 19996.67 19897.88 20898.72 11997.54 19498.70 16488.64 21995.11 21086.90 21281.77 21693.27 20197.92 12898.07 10597.50 18397.34 159
SCA94.53 19891.95 20497.55 17698.58 19497.86 17398.49 14399.68 2795.11 15299.07 7795.87 18487.24 19896.53 16489.77 21187.08 20692.96 20790.69 207
MDTV_nov1_ep1394.47 19992.15 20197.17 18398.54 19996.42 19598.10 17098.89 15294.49 16498.02 16497.41 14386.49 19995.56 17790.85 20987.95 20393.91 20291.45 206
TESTMET0.1,194.44 20093.71 19495.30 20997.84 20996.16 19896.31 21195.32 21189.98 21594.08 21397.01 15686.43 20092.20 20896.76 17095.31 18396.05 19394.31 193
ADS-MVSNet94.41 20192.13 20297.07 18598.86 17996.60 19298.38 15298.47 17896.13 13598.02 16496.98 15987.50 19795.87 17489.89 21087.58 20592.79 20990.27 209
tpm93.89 20291.21 20697.03 18898.36 20396.07 20297.53 19799.65 3592.24 19898.64 11997.23 14874.67 22494.64 18992.68 20590.73 20093.37 20494.82 191
PatchmatchNetpermissive93.88 20391.08 20797.14 18498.75 18596.01 20498.25 16499.39 8394.95 15798.96 9296.32 17685.35 20695.50 17888.89 21285.89 21091.99 21390.15 210
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS93.67 20490.82 20896.99 19198.62 19396.39 19698.40 15099.11 13695.54 14697.87 17297.14 15281.27 21894.97 18488.54 21486.80 20892.95 20890.06 211
MVEpermissive82.47 1893.12 20594.09 18691.99 21290.79 21982.50 22093.93 21896.30 20796.06 13688.81 21998.19 11596.38 17297.56 14097.24 16295.18 18684.58 21993.07 199
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CostFormer92.75 20689.49 21096.55 19998.78 18495.83 20997.55 19398.59 17191.83 20697.34 19096.31 17778.53 21994.50 19086.14 21584.92 21192.54 21092.84 200
tpmrst92.45 20789.48 21195.92 20598.43 20295.03 21297.14 20397.92 19594.16 17797.56 17997.86 12981.63 21793.56 20085.89 21682.86 21290.91 21788.95 214
dps92.35 20888.78 21396.52 20098.21 20795.94 20697.78 18298.38 18189.88 21796.81 19895.07 19375.31 22394.70 18888.62 21386.21 20993.21 20690.41 208
E-PMN92.28 20990.12 20994.79 21098.56 19790.90 21795.16 21593.68 21495.36 14995.10 21196.56 17089.05 19495.24 18095.21 19481.84 21490.98 21581.94 216
EMVS91.84 21089.39 21294.70 21198.44 20190.84 21895.27 21493.53 21595.18 15095.26 20995.62 18987.59 19694.77 18794.87 19880.72 21590.95 21680.88 217
tpm cat191.52 21187.70 21495.97 20498.33 20494.98 21397.06 20698.03 19092.11 20198.03 16394.77 19777.19 22292.71 20583.56 21782.24 21391.67 21489.04 213
test_method77.69 21285.40 21568.69 21342.66 22155.39 22282.17 22152.05 21792.83 19784.52 22094.88 19695.41 18065.37 21692.49 20779.32 21685.36 21887.50 215
GG-mvs-BLEND65.66 21392.62 20034.20 2151.45 22493.75 21685.40 2201.64 22191.37 21017.21 22387.25 21094.78 1833.25 22095.64 18893.80 19696.27 19091.74 205
testmvs9.73 21413.38 2165.48 2173.62 2224.12 2236.40 2243.19 22014.92 2207.68 22522.10 21913.89 2276.83 21813.47 21810.38 2185.14 22214.81 218
test1239.37 21512.26 2176.00 2163.32 2234.06 2246.39 2253.41 21913.20 22110.48 22416.43 22016.22 2266.76 21911.37 21910.40 2175.62 22114.10 219
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def99.88 2
9.1498.83 119
SR-MVS99.62 8399.47 7199.40 58
Anonymous20240521198.44 7399.79 3499.32 4699.05 9299.34 9896.59 10897.95 12897.68 15797.16 15199.36 3099.28 3199.61 3498.90 67
our_test_399.29 14597.72 17998.98 98
ambc97.89 11599.45 12097.88 17297.78 18297.27 7499.80 398.99 8898.48 13698.55 9697.80 13496.68 16398.54 15498.10 137
MTAPA99.19 5899.68 23
MTMP99.20 5699.54 44
Patchmatch-RL test32.47 223
tmp_tt65.28 21482.24 22071.50 22170.81 22223.21 21896.14 13381.70 22285.98 21792.44 19049.84 21795.81 18394.36 19483.86 220
XVS99.77 3999.07 7399.46 4398.95 9499.37 6199.33 70
X-MVStestdata99.77 3999.07 7399.46 4398.95 9499.37 6199.33 70
abl_698.38 14199.03 17398.04 16598.08 17298.65 16693.23 19298.56 12494.58 19998.57 13497.17 15098.81 13297.42 156
mPP-MVS99.75 4999.49 53
NP-MVS93.07 194
Patchmtry96.05 20397.64 19199.78 1698.50 130
DeepMVS_CXcopyleft87.86 21992.27 21961.98 21693.64 18693.62 21691.17 20791.67 19194.90 18695.99 18292.48 21194.18 195