This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.82 199.76 199.75 299.77 799.87 1699.71 999.77 899.76 1799.52 399.80 399.79 2199.91 199.56 1399.83 499.75 599.86 1099.75 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.74 299.75 299.73 1199.92 699.67 1399.76 1099.84 1199.59 199.52 2499.87 1199.91 199.43 2799.87 199.81 399.89 699.52 10
test_part199.72 399.79 199.64 1299.95 299.88 199.71 1699.83 1299.58 299.48 2899.79 2199.78 998.98 6699.86 299.85 199.88 899.82 1
SixPastTwentyTwo99.70 499.59 599.82 299.93 499.80 299.86 299.87 698.87 1299.79 599.85 1499.33 6499.74 599.85 399.82 299.74 2399.63 5
v7n99.68 599.61 499.76 899.89 1399.74 899.87 199.82 1399.20 799.71 699.96 199.73 1399.76 399.58 1899.59 1499.52 4299.46 15
anonymousdsp99.64 699.55 799.74 1099.87 1699.56 2099.82 399.73 2098.54 1799.71 699.92 499.84 699.61 999.70 799.63 799.69 2899.64 3
UniMVSNet_ETH3D99.61 799.59 599.63 1499.96 199.70 1099.53 3399.86 899.28 699.48 2899.44 5199.86 499.01 6499.78 599.76 499.90 299.33 20
WR-MVS99.61 799.44 999.82 299.92 699.80 299.80 499.89 198.54 1799.66 1399.78 2399.16 8399.68 799.70 799.63 799.94 199.49 13
PEN-MVS99.54 999.30 1699.83 199.92 699.76 599.80 499.88 397.60 5799.71 699.59 3699.52 4499.75 499.64 1399.51 1799.90 299.46 15
TDRefinement99.54 999.50 899.60 1799.70 6299.35 3999.77 899.58 4499.40 599.28 4899.66 2799.41 5499.55 1599.74 699.65 699.70 2599.25 24
DTE-MVSNet99.52 1199.27 1799.82 299.93 499.77 499.79 699.87 697.89 3999.70 1199.55 4499.21 7599.77 299.65 1199.43 2099.90 299.36 18
PS-CasMVS99.50 1299.23 1999.82 299.92 699.75 799.78 799.89 197.30 6999.71 699.60 3499.23 7299.71 699.65 1199.55 1699.90 299.56 8
WR-MVS_H99.48 1399.23 1999.76 899.91 1099.76 599.75 1199.88 397.27 7299.58 1799.56 4099.24 7199.56 1399.60 1699.60 1399.88 899.58 7
pm-mvs199.47 1499.38 1099.57 2099.82 2499.49 2499.63 2299.65 3298.88 1199.31 4299.85 1499.02 10199.23 4499.60 1699.58 1599.80 1699.22 31
MIMVSNet199.46 1599.34 1199.60 1799.83 2299.68 1299.74 1499.71 2398.20 2599.41 3499.86 1399.66 2699.41 3099.50 2299.39 2299.50 4799.10 42
TransMVSNet (Re)99.45 1699.32 1499.61 1599.88 1599.60 1799.75 1199.63 3699.11 899.28 4899.83 1898.35 13799.27 4199.70 799.62 1199.84 1199.03 50
ACMH97.81 699.44 1799.33 1299.56 2199.81 2799.42 3299.73 1599.58 4499.02 999.10 7399.41 5599.69 1999.60 1099.45 2699.26 3299.55 3899.05 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.39 1899.04 2899.80 699.91 1099.70 1099.75 1199.88 396.82 9399.68 1299.32 5898.86 11099.68 799.57 1999.47 1899.89 699.52 10
COLMAP_ROBcopyleft98.29 299.37 1999.25 1899.51 2899.74 5299.12 6799.56 3099.39 8198.96 1099.17 6099.44 5199.63 3499.58 1199.48 2499.27 3199.60 3498.81 74
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS97.88 499.33 2099.15 2399.53 2799.73 5799.05 7599.49 3799.40 7998.42 2099.55 2199.71 2599.89 399.49 1999.14 3898.81 6099.54 3999.02 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FC-MVSNet-test99.32 2199.33 1299.31 5299.87 1699.65 1699.63 2299.75 1997.76 4197.29 18999.87 1199.63 3499.52 1699.66 1099.63 799.77 2099.12 37
UA-Net99.30 2299.22 2199.39 3999.94 399.66 1598.91 10399.86 897.74 4798.74 11099.00 8599.60 3999.17 5099.50 2299.39 2299.70 2599.64 3
ACMH+97.53 799.29 2399.20 2299.40 3899.81 2799.22 5599.59 2799.50 6298.64 1698.29 14399.21 7099.69 1999.57 1299.53 2199.33 2799.66 2998.81 74
Vis-MVSNetpermissive99.25 2499.32 1499.17 6299.65 7399.55 2299.63 2299.33 9798.16 2699.29 4599.65 3099.77 1097.56 13699.44 2899.14 3799.58 3599.51 12
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet99.23 2598.91 3599.61 1599.81 2799.45 2899.47 3999.68 2697.28 7199.39 3599.54 4599.08 9799.45 2299.09 4498.84 5799.83 1299.04 48
CSCG99.23 2599.15 2399.32 5199.83 2299.45 2898.97 9599.21 11798.83 1399.04 8299.43 5399.64 3299.26 4298.85 7098.20 9899.62 3299.62 6
Gipumacopyleft99.22 2798.86 3899.64 1299.70 6299.24 5099.17 7999.63 3699.52 399.89 196.54 16799.14 8799.93 199.42 2999.15 3699.52 4299.04 48
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tfpnnormal99.19 2898.90 3699.54 2499.81 2799.55 2299.60 2699.54 5398.53 1999.23 5298.40 10398.23 14099.40 3199.29 3399.36 2599.63 3198.95 62
Baseline_NR-MVSNet99.18 2998.87 3799.54 2499.74 5299.56 2099.36 5199.62 4196.53 11399.29 4599.85 1498.64 12799.40 3199.03 5599.63 799.83 1298.86 70
thisisatest051599.16 3098.94 3399.41 3499.75 4699.43 3199.36 5199.63 3697.68 5399.35 3799.31 5998.90 10799.09 5898.95 6099.20 3399.27 7999.11 38
APDe-MVS99.15 3198.95 3099.39 3999.77 3799.28 4799.52 3499.54 5397.22 7699.06 7799.20 7199.64 3299.05 6299.14 3899.02 4699.39 6099.17 35
FC-MVSNet-train99.13 3299.05 2799.21 5799.87 1699.57 1999.67 1799.60 4396.75 9998.28 14499.48 4899.52 4498.10 11599.47 2599.37 2499.76 2299.21 32
NR-MVSNet99.10 3398.68 5399.58 1999.89 1399.23 5299.35 5499.63 3696.58 10799.36 3699.05 7998.67 12599.46 2099.63 1498.73 7199.80 1698.88 69
DVP-MVS99.09 3499.07 2699.12 7099.55 9599.40 3499.36 5199.44 7897.75 4498.23 14799.23 6799.80 798.97 6799.08 4698.96 4799.19 8799.25 24
UniMVSNet (Re)99.08 3598.69 5199.54 2499.75 4699.33 4299.29 6299.64 3596.75 9999.48 2899.30 6198.69 12199.26 4298.94 6298.76 6799.78 1999.02 52
ACMMPR99.05 3698.72 4799.44 2999.79 3299.12 6799.35 5499.56 4797.74 4799.21 5397.72 12999.55 4299.29 3998.90 6898.81 6099.41 5999.19 33
DU-MVS99.04 3798.59 5799.56 2199.74 5299.23 5299.29 6299.63 3696.58 10799.55 2199.05 7998.68 12399.36 3599.03 5598.60 7899.77 2098.97 57
TSAR-MVS + MP.99.02 3898.95 3099.11 7399.23 15098.79 11199.51 3598.73 15897.50 6198.56 12099.03 8299.59 4099.16 5299.29 3399.17 3599.50 4799.24 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v1099.01 3998.66 5499.41 3499.52 10699.39 3599.57 2999.66 3097.59 5899.32 4199.88 999.23 7299.50 1897.77 13397.98 10798.92 12098.78 79
EG-PatchMatch MVS99.01 3998.77 4399.28 5699.64 7698.90 10498.81 11599.27 10896.55 11199.71 699.31 5999.66 2699.17 5099.28 3599.11 3899.10 9498.57 95
PVSNet_Blended_VisFu98.98 4198.79 4199.21 5799.76 4399.34 4099.35 5499.35 9397.12 8299.46 3199.56 4098.89 10898.08 11899.05 4998.58 8099.27 7998.98 56
HFP-MVS98.97 4298.70 4999.29 5499.67 6798.98 8799.13 8499.53 5697.76 4198.90 9698.07 11799.50 5099.14 5698.64 8198.78 6499.37 6299.18 34
UniMVSNet_NR-MVSNet98.97 4298.46 6899.56 2199.76 4399.34 4099.29 6299.61 4296.55 11199.55 2199.05 7997.96 14899.36 3598.84 7198.50 8699.81 1598.97 57
SED-MVS98.94 4498.95 3098.91 9599.43 12299.38 3799.12 8699.46 7297.05 8598.43 13599.23 6799.79 897.99 12199.05 4998.94 4999.05 10699.23 29
ACMMP_NAP98.94 4498.72 4799.21 5799.67 6799.08 7099.26 6799.39 8196.84 9098.88 10098.22 11099.68 2298.82 7599.06 4898.90 5299.25 8299.25 24
zzz-MVS98.94 4498.57 6099.37 4699.77 3799.15 6499.24 7099.55 4997.38 6799.16 6396.64 16399.69 1999.15 5499.09 4498.92 5199.37 6299.11 38
v114498.94 4498.53 6399.42 3399.62 8099.03 8199.58 2899.36 9097.99 3099.49 2799.91 899.20 7799.51 1797.61 13897.85 11498.95 11598.10 134
v898.94 4498.60 5599.35 4999.54 9999.39 3599.55 3199.67 2997.48 6299.13 6999.81 1999.10 9399.39 3397.86 12897.89 11298.81 12998.66 86
SteuartSystems-ACMMP98.94 4498.52 6499.43 3299.79 3299.13 6699.33 5899.55 4996.17 12999.04 8297.53 13599.65 3099.46 2099.04 5498.76 6799.44 5499.35 19
Skip Steuart: Steuart Systems R&D Blog.
v119298.91 5098.48 6799.41 3499.61 8499.03 8199.64 1999.25 11297.91 3699.58 1799.92 499.07 9999.45 2297.55 14297.68 12898.93 11798.23 124
FMVSNet198.90 5199.10 2598.67 11999.54 9999.48 2599.22 7399.66 3098.39 2397.50 17799.66 2799.04 10096.58 15899.05 4999.03 4399.52 4299.08 44
ACMM96.66 1198.90 5198.44 7299.44 2999.74 5298.95 9399.47 3999.55 4997.66 5599.09 7496.43 16999.41 5499.35 3798.95 6098.67 7499.45 5299.03 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121198.89 5398.79 4198.99 8899.82 2499.41 3399.18 7899.31 10396.92 8798.54 12398.58 10098.84 11397.46 13899.45 2699.29 2999.65 3099.08 44
v192192098.89 5398.46 6899.39 3999.58 8899.04 7999.64 1999.17 12397.91 3699.64 1599.92 498.99 10599.44 2597.44 14997.57 13798.84 12798.35 114
v14419298.88 5598.46 6899.37 4699.56 9499.03 8199.61 2599.26 10997.79 4099.58 1799.88 999.11 9299.43 2797.38 15497.61 13398.80 13198.43 109
SMA-MVScopyleft98.87 5698.73 4699.04 8199.72 5899.05 7598.64 12699.17 12396.31 12498.80 10599.07 7799.70 1898.67 8398.93 6598.82 5899.23 8599.23 29
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP96.54 1398.87 5698.40 7799.41 3499.74 5298.88 10599.29 6299.50 6296.85 8998.96 8897.05 15099.66 2699.43 2798.98 5998.60 7899.52 4298.81 74
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DCV-MVSNet98.86 5898.57 6099.19 6099.86 2099.67 1399.39 4799.71 2397.53 6098.69 11395.85 18098.48 13197.75 13099.57 1999.41 2199.72 2499.48 14
v124098.86 5898.41 7699.38 4499.59 8699.05 7599.65 1899.14 12897.68 5399.66 1399.93 398.72 12099.45 2297.38 15497.72 12698.79 13298.35 114
CP-MVS98.86 5898.43 7599.36 4899.68 6598.97 9199.19 7699.46 7296.60 10599.20 5497.11 14999.51 4899.15 5498.92 6698.82 5899.45 5299.08 44
v2v48298.85 6198.40 7799.38 4499.65 7398.98 8799.55 3199.39 8197.92 3599.35 3799.85 1499.14 8799.39 3397.50 14497.78 11798.98 11297.60 148
DPE-MVS98.84 6298.69 5199.00 8599.05 16899.26 4899.19 7699.35 9395.85 13798.74 11099.27 6399.66 2698.30 10798.90 6898.93 5099.37 6299.00 54
OPM-MVS98.84 6298.59 5799.12 7099.52 10698.50 13599.13 8499.22 11597.76 4198.76 10798.70 9499.61 3798.90 7098.67 7998.37 9299.19 8798.57 95
test20.0398.84 6298.74 4598.95 9199.77 3799.33 4299.21 7599.46 7297.29 7098.88 10099.65 3099.10 9397.07 15099.11 4198.76 6799.32 7297.98 138
casdiffmvs98.84 6298.75 4498.94 9499.75 4699.21 5699.33 5899.04 13998.04 2897.46 18099.72 2499.72 1598.60 8798.30 10398.37 9299.48 4997.92 140
LGP-MVS_train98.84 6298.33 8399.44 2999.78 3598.98 8799.39 4799.55 4995.41 14598.90 9697.51 13699.68 2299.44 2599.03 5598.81 6099.57 3698.91 65
RPSCF98.84 6298.81 4098.89 9799.37 12998.95 9398.51 13898.85 15197.73 4998.33 14098.97 8799.14 8798.95 6899.18 3798.68 7399.31 7398.99 55
ACMMPcopyleft98.82 6898.33 8399.39 3999.77 3799.14 6599.37 5099.54 5396.47 11799.03 8496.26 17399.52 4499.28 4098.92 6698.80 6399.37 6299.16 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
V4298.81 6998.49 6699.18 6199.52 10698.92 9999.50 3699.29 10597.43 6598.97 8699.81 1999.00 10499.30 3897.93 12498.01 10598.51 15598.34 118
LS3D98.79 7098.52 6499.12 7099.64 7699.09 6999.24 7099.46 7297.75 4498.93 9497.47 13798.23 14097.98 12299.36 3099.30 2899.46 5098.42 110
MP-MVScopyleft98.78 7198.30 8599.34 5099.75 4698.95 9399.26 6799.46 7295.78 14099.17 6096.98 15499.72 1599.06 6198.84 7198.74 7099.33 6999.11 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.77 7298.45 7199.15 6699.68 6598.94 9799.49 3799.31 10397.95 3298.91 9599.65 3099.62 3699.18 4797.99 12297.64 13298.33 16097.38 154
SD-MVS98.73 7398.54 6298.95 9199.14 15998.76 11498.46 14299.14 12897.71 5198.56 12098.06 11999.61 3798.85 7498.56 8397.74 12399.54 3999.32 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS98.72 7498.60 5598.87 9999.67 6799.33 4299.15 8199.26 10996.99 8697.90 16798.19 11299.74 1298.29 10897.69 13698.96 4798.96 11399.27 23
PGM-MVS98.69 7598.09 10299.39 3999.76 4399.07 7199.30 6199.51 6094.76 15699.18 5996.70 16199.51 4899.20 4598.79 7598.71 7299.39 6099.11 38
pmmvs-eth3d98.68 7698.14 9899.29 5499.49 11198.45 13899.45 4399.38 8697.21 7799.50 2699.65 3099.21 7599.16 5297.11 16197.56 13898.79 13297.82 144
EU-MVSNet98.68 7698.94 3398.37 13999.14 15998.74 11699.64 1998.20 18498.21 2499.17 6099.66 2799.18 8099.08 5999.11 4198.86 5395.00 19598.83 71
PMVScopyleft92.51 1798.66 7898.86 3898.43 13499.26 14598.98 8798.60 13298.59 16897.73 4999.45 3299.38 5698.54 13095.24 17699.62 1599.61 1299.42 5698.17 131
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS_fast97.38 898.65 7998.34 8299.02 8499.33 13398.29 14598.99 9398.71 16097.40 6699.31 4298.20 11199.40 5798.54 9598.33 10098.18 9999.23 8598.58 93
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator98.16 398.65 7998.35 8199.00 8599.59 8698.70 11998.90 10799.36 9097.97 3199.09 7496.55 16699.09 9597.97 12398.70 7898.65 7699.12 9398.81 74
TSAR-MVS + ACMM98.64 8198.58 5998.72 11399.17 15798.63 12498.69 12299.10 13597.69 5298.30 14299.12 7599.38 5998.70 8298.45 8697.51 14098.35 15999.25 24
DELS-MVS98.63 8298.70 4998.55 13099.24 14999.04 7998.96 9698.52 17196.83 9298.38 13799.58 3899.68 2297.06 15198.74 7798.44 8899.10 9498.59 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM98.62 8398.40 7798.89 9799.57 9398.80 11098.63 12799.35 9396.82 9398.60 11798.85 9299.08 9798.09 11798.31 10198.21 9699.08 9998.72 81
EPP-MVSNet98.61 8498.19 9499.11 7399.86 2099.60 1799.44 4499.53 5697.37 6896.85 19398.69 9593.75 18099.18 4799.22 3699.35 2699.82 1499.32 21
3Dnovator+97.85 598.61 8498.14 9899.15 6699.62 8098.37 14399.10 8799.51 6098.04 2898.98 8596.07 17798.75 11998.55 9398.51 8598.40 8999.17 8998.82 72
X-MVS98.59 8697.99 10899.30 5399.75 4699.07 7199.17 7999.50 6296.62 10398.95 9093.95 19599.37 6099.11 5798.94 6298.86 5399.35 6799.09 43
MVS_111021_HR98.58 8798.26 8898.96 9099.32 13698.81 10898.48 14098.99 14496.81 9599.16 6398.07 11799.23 7298.89 7298.43 8898.27 9598.90 12298.24 123
MVS_030498.57 8898.36 8098.82 10699.72 5898.94 9798.92 10199.14 12896.76 9899.33 4098.30 10799.73 1396.74 15498.05 11997.79 11699.08 9998.97 57
PM-MVS98.57 8898.24 9098.95 9199.26 14598.59 12799.03 9098.74 15796.84 9099.44 3399.13 7498.31 13998.75 8098.03 12098.21 9698.48 15698.58 93
PHI-MVS98.57 8898.20 9399.00 8599.48 11398.91 10198.68 12399.17 12394.97 15299.27 5098.33 10599.33 6498.05 11998.82 7398.62 7799.34 6898.38 112
HPM-MVS++copyleft98.56 9198.08 10399.11 7399.53 10298.61 12699.02 9299.32 10196.29 12699.06 7797.23 14499.50 5098.77 7898.15 11597.90 11098.96 11398.90 66
TSAR-MVS + GP.98.54 9298.29 8798.82 10699.28 14398.59 12797.73 18199.24 11495.93 13598.59 11899.07 7799.17 8198.86 7398.44 8798.10 10199.26 8198.72 81
UGNet98.52 9399.00 2997.96 16099.58 8899.26 4899.27 6699.40 7998.07 2798.28 14498.76 9399.71 1792.24 20398.94 6298.85 5599.00 11199.43 17
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023120698.50 9498.03 10599.05 7999.50 10999.01 8499.15 8199.26 10996.38 12299.12 7199.50 4799.12 9098.60 8797.68 13797.24 15198.66 14097.30 158
CLD-MVS98.48 9598.15 9798.86 10299.53 10298.35 14498.55 13597.83 19396.02 13498.97 8699.08 7699.75 1199.03 6398.10 11897.33 14799.28 7798.44 108
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet98.47 9698.30 8598.67 11999.65 7398.87 10698.82 11499.01 14296.14 13099.29 4598.86 9099.01 10296.54 15998.36 9498.08 10298.72 13698.80 78
APD-MVScopyleft98.47 9697.97 10999.05 7999.64 7698.91 10198.94 9899.45 7794.40 16798.77 10697.26 14399.41 5498.21 11198.67 7998.57 8399.31 7398.57 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Vis-MVSNet (Re-imp)98.46 9898.23 9198.73 11299.81 2799.29 4698.79 11799.50 6296.20 12896.03 19998.29 10896.98 16398.54 9599.11 4199.08 3999.70 2598.62 89
Fast-Effi-MVS+98.42 9997.79 11599.15 6699.69 6498.66 12298.94 9899.68 2694.49 16199.05 7998.06 11998.86 11098.48 9898.18 11297.78 11799.05 10698.54 100
ETV-MVS98.41 10097.76 11699.17 6299.58 8899.01 8498.91 10399.50 6293.33 18699.31 4296.82 15898.42 13598.17 11499.13 4099.08 3999.54 3998.56 98
MVS_111021_LR98.39 10198.11 10098.71 11599.08 16598.54 13398.23 16298.56 17096.57 10999.13 6998.41 10298.86 11098.65 8598.23 11097.87 11398.65 14298.28 120
pmmvs598.37 10297.81 11499.03 8299.46 11598.97 9199.03 9098.96 14695.85 13799.05 7999.45 5098.66 12698.79 7796.02 17897.52 13998.87 12498.21 127
OMC-MVS98.35 10398.10 10198.64 12598.85 17697.99 16598.56 13498.21 18297.26 7498.87 10298.54 10199.27 7098.43 10098.34 9897.66 12998.92 12097.65 147
canonicalmvs98.34 10497.92 11198.83 10499.45 11799.21 5698.37 14999.53 5697.06 8497.74 17196.95 15695.05 17798.36 10398.77 7698.85 5599.51 4699.53 9
CHOSEN 1792x268898.31 10598.02 10698.66 12199.55 9598.57 13099.38 4999.25 11298.42 2098.48 13199.58 3899.85 598.31 10695.75 18195.71 17696.96 18398.27 122
xxxxxxxxxxxxxcwj98.28 10698.23 9198.35 14099.43 12298.42 14197.05 20399.09 13696.42 11998.13 15397.73 12799.65 3097.22 14498.36 9498.38 9099.16 9198.62 89
CPTT-MVS98.28 10697.51 12899.16 6499.54 9998.78 11298.96 9699.36 9096.30 12598.89 9993.10 20099.30 6799.20 4598.35 9797.96 10899.03 10998.82 72
TinyColmap98.27 10897.62 12599.03 8299.29 14197.79 17498.92 10198.95 14797.48 6299.52 2498.65 9797.86 15098.90 7098.34 9897.27 14998.64 14395.97 178
diffmvs98.26 10998.16 9598.39 13699.61 8498.78 11298.79 11798.61 16697.94 3397.11 19299.51 4699.52 4497.61 13496.55 17096.93 15798.61 14597.87 142
USDC98.26 10997.57 12699.06 7699.42 12697.98 16798.83 11198.85 15197.57 5999.59 1699.15 7398.59 12898.99 6597.42 15096.08 17598.69 13996.23 176
SF-MVS98.25 11198.16 9598.35 14099.43 12298.42 14197.05 20399.09 13696.42 11998.13 15397.73 12799.20 7797.22 14498.36 9498.38 9099.16 9198.62 89
MCST-MVS98.25 11197.57 12699.06 7699.53 10298.24 15198.63 12799.17 12395.88 13698.58 11996.11 17599.09 9599.18 4797.58 14197.31 14899.25 8298.75 80
IterMVS-LS98.23 11397.66 12198.90 9699.63 7999.38 3799.07 8899.48 6897.75 4498.81 10499.37 5794.57 17997.88 12796.54 17197.04 15498.53 15298.97 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAPA-MVS96.65 1298.23 11397.96 11098.55 13098.81 17898.16 15598.40 14697.94 19196.68 10198.49 12998.61 9898.89 10898.57 9197.45 14797.59 13599.09 9898.35 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CNVR-MVS98.22 11597.76 11698.76 11099.33 13398.26 14998.48 14098.88 15096.22 12798.47 13395.79 18199.33 6498.35 10498.37 9397.99 10699.03 10998.38 112
IS_MVSNet98.20 11698.00 10798.44 13399.82 2499.48 2599.25 6999.56 4795.58 14293.93 21197.56 13496.52 16798.27 10999.08 4699.20 3399.80 1698.56 98
DeepPCF-MVS96.68 1098.20 11698.26 8898.12 15497.03 21498.11 15898.44 14497.70 19596.77 9798.52 12598.91 8899.17 8198.58 9098.41 9098.02 10498.46 15798.46 105
MSDG98.20 11697.88 11398.56 12999.33 13397.74 17598.27 15998.10 18597.20 7998.06 15898.59 9999.16 8398.76 7998.39 9197.71 12798.86 12696.38 173
testgi98.18 11998.44 7297.89 16299.78 3599.23 5298.78 11999.21 11797.26 7497.41 18297.39 14099.36 6392.85 20098.82 7398.66 7599.31 7398.35 114
CS-MVS98.13 12097.25 13899.16 6499.71 6199.44 3098.80 11699.49 6793.16 18999.19 5693.95 19598.47 13398.19 11398.30 10398.78 6499.56 3798.66 86
Effi-MVS+98.11 12197.29 13499.06 7699.62 8098.55 13198.16 16599.80 1494.64 15799.15 6796.59 16497.43 15698.44 9997.46 14697.90 11099.17 8998.45 107
HyFIR lowres test98.08 12297.16 14499.14 6999.72 5898.91 10199.41 4599.58 4497.93 3498.82 10399.24 6595.81 17398.73 8195.16 19295.13 18598.60 14797.94 139
EIA-MVS98.03 12397.20 14198.99 8899.66 7099.24 5098.53 13799.52 5991.56 20399.25 5195.34 18598.78 11697.72 13198.38 9298.58 8099.28 7798.54 100
train_agg97.99 12497.26 13598.83 10499.43 12298.22 15398.91 10399.07 13894.43 16597.96 16496.42 17099.30 6798.81 7697.39 15296.62 16398.82 12898.47 103
MSLP-MVS++97.99 12497.64 12498.40 13598.91 17498.47 13797.12 20198.78 15596.49 11598.48 13193.57 19899.12 9098.51 9798.31 10198.58 8098.58 14998.95 62
CDPH-MVS97.99 12497.23 13998.87 9999.58 8898.29 14598.83 11199.20 11993.76 18098.11 15696.11 17599.16 8398.23 11097.80 13197.22 15299.29 7698.28 120
FMVSNet297.94 12798.08 10397.77 16898.71 18299.21 5698.62 12999.47 6996.62 10396.37 19899.20 7197.70 15294.39 18797.39 15297.75 12299.08 9998.70 83
PVSNet_BlendedMVS97.93 12897.66 12198.25 14799.30 13898.67 12098.31 15497.95 18994.30 17198.75 10897.63 13198.76 11796.30 16698.29 10597.78 11798.93 11798.18 129
PVSNet_Blended97.93 12897.66 12198.25 14799.30 13898.67 12098.31 15497.95 18994.30 17198.75 10897.63 13198.76 11796.30 16698.29 10597.78 11798.93 11798.18 129
OpenMVScopyleft97.26 997.88 13097.17 14398.70 11699.50 10998.55 13198.34 15299.11 13393.92 17898.90 9695.04 18998.23 14097.38 14198.11 11798.12 10098.95 11598.23 124
pmmvs497.87 13197.02 14898.86 10299.20 15197.68 17898.89 10899.03 14096.57 10999.12 7199.03 8297.26 16098.42 10195.16 19296.34 16798.53 15297.10 165
NCCC97.84 13296.96 15098.87 9999.39 12898.27 14898.46 14299.02 14196.78 9698.73 11291.12 20398.91 10698.57 9197.83 13097.49 14199.04 10898.33 119
Effi-MVS+-dtu97.78 13397.37 13298.26 14599.25 14798.50 13597.89 17599.19 12294.51 15998.16 15195.93 17898.80 11595.97 16998.27 10997.38 14499.10 9498.23 124
MDA-MVSNet-bldmvs97.75 13497.26 13598.33 14299.35 13298.45 13899.32 6097.21 19997.90 3899.05 7999.01 8496.86 16599.08 5999.36 3092.97 19595.97 19296.25 175
CDS-MVSNet97.75 13497.68 12097.83 16699.08 16598.20 15498.68 12398.61 16695.63 14197.80 16999.24 6596.93 16494.09 19297.96 12397.82 11598.71 13797.99 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CNLPA97.75 13497.26 13598.32 14498.58 19097.86 17097.80 17798.09 18696.49 11598.49 12996.15 17498.08 14398.35 10498.00 12197.03 15598.61 14597.21 162
PLCcopyleft95.63 1597.73 13797.01 14998.57 12899.10 16297.80 17397.72 18298.77 15696.34 12398.38 13793.46 19998.06 14498.66 8497.90 12697.65 13198.77 13497.90 141
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_Test97.69 13897.15 14598.33 14299.27 14498.43 14098.25 16099.29 10595.00 15197.39 18498.86 9098.00 14797.14 14895.38 18796.22 16998.62 14498.15 133
GBi-Net97.69 13897.75 11897.62 16998.71 18299.21 5698.62 12999.33 9794.09 17495.60 20198.17 11495.97 17094.39 18799.05 4999.03 4399.08 9998.70 83
test197.69 13897.75 11897.62 16998.71 18299.21 5698.62 12999.33 9794.09 17495.60 20198.17 11495.97 17094.39 18799.05 4999.03 4399.08 9998.70 83
CANet_DTU97.65 14197.50 13097.82 16799.19 15498.08 16098.41 14598.67 16294.40 16799.16 6398.32 10698.69 12193.96 19497.87 12797.61 13397.51 17997.56 150
IterMVS-SCA-FT97.63 14296.86 15298.52 13299.48 11398.71 11898.84 11098.91 14896.44 11899.16 6399.56 4095.54 17597.95 12495.68 18495.07 18896.76 18497.03 168
TSAR-MVS + COLMAP97.62 14397.31 13397.98 15898.47 19697.39 18198.29 15698.25 18196.68 10197.54 17698.87 8998.04 14697.08 14996.78 16596.26 16898.26 16397.12 164
MS-PatchMatch97.60 14497.22 14098.04 15798.67 18697.18 18597.91 17398.28 18095.82 13998.34 13997.66 13098.38 13697.77 12997.10 16297.25 15097.27 18197.18 163
PCF-MVS95.58 1697.60 14496.67 15398.69 11799.44 12098.23 15298.37 14998.81 15393.01 19298.22 14897.97 12399.59 4098.20 11295.72 18395.08 18699.08 9997.09 167
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS97.58 14696.65 15698.66 12199.30 13897.99 16597.88 17698.65 16394.58 15898.66 11494.65 19299.15 8698.59 8996.10 17695.59 17798.90 12298.50 102
DI_MVS_plusplus_trai97.57 14796.55 15898.77 10999.55 9598.76 11499.22 7399.00 14397.08 8397.95 16597.78 12691.35 18798.02 12096.20 17496.81 15998.87 12497.87 142
AdaColmapbinary97.57 14796.57 15798.74 11199.25 14798.01 16398.36 15198.98 14594.44 16498.47 13392.44 20197.91 14998.62 8698.19 11197.74 12398.73 13597.28 159
baseline97.50 14997.51 12897.50 17399.18 15597.38 18298.00 16998.00 18896.52 11497.49 17899.28 6299.43 5395.31 17595.27 18996.22 16996.99 18298.47 103
IterMVS97.40 15096.67 15398.25 14799.45 11798.66 12298.87 10998.73 15896.40 12198.94 9399.56 4095.26 17697.58 13595.38 18794.70 19095.90 19396.72 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet97.38 15197.39 13197.37 17698.58 19097.72 17698.70 12197.42 19797.21 7795.95 20099.46 4993.31 18397.38 14197.60 13997.78 11796.18 18998.66 86
new-patchmatchnet97.26 15296.12 16698.58 12799.55 9598.63 12499.14 8397.04 20198.80 1499.19 5699.92 499.19 7998.92 6995.51 18687.04 20397.66 17693.73 194
MIMVSNet97.24 15397.15 14597.36 17799.03 16998.52 13498.55 13599.73 2094.94 15594.94 20897.98 12297.37 15893.66 19597.60 13997.34 14698.23 16696.29 174
PatchMatch-RL97.24 15396.45 16198.17 15198.70 18597.57 18097.31 19698.48 17494.42 16698.39 13695.74 18296.35 16997.88 12797.75 13497.48 14298.24 16595.87 179
thisisatest053097.20 15595.95 17098.66 12199.46 11598.84 10798.29 15699.20 11994.51 15998.25 14697.42 13885.03 20297.68 13298.43 8898.56 8499.08 9998.89 68
tttt051797.18 15695.92 17198.65 12499.49 11198.92 9998.29 15699.20 11994.37 16998.17 14997.37 14184.72 20597.68 13298.55 8498.56 8499.10 9498.95 62
MDTV_nov1_ep13_2view97.12 15796.19 16598.22 15099.13 16198.05 16199.24 7099.47 6997.61 5699.15 6799.59 3699.01 10298.40 10294.87 19590.14 19893.91 19894.04 193
MAR-MVS97.12 15796.28 16498.11 15598.94 17297.22 18497.65 18699.38 8690.93 20998.15 15295.17 18797.13 16196.48 16297.71 13597.40 14398.06 16998.40 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+-dtu96.99 15996.46 16097.61 17198.98 17197.89 16897.54 19099.76 1793.43 18496.55 19794.93 19098.06 14494.32 19096.93 16396.50 16598.53 15297.47 151
FPMVS96.97 16097.20 14196.70 19397.75 20696.11 19797.72 18295.47 20597.13 8198.02 16097.57 13396.67 16692.97 19999.00 5898.34 9498.28 16295.58 181
TAMVS96.95 16196.94 15196.97 18899.07 16797.67 17997.98 17197.12 20095.04 15095.41 20499.27 6395.57 17494.09 19297.32 15697.11 15398.16 16896.59 172
FMVSNet396.85 16296.67 15397.06 18297.56 20999.01 8497.99 17099.33 9794.09 17495.60 20198.17 11495.97 17093.26 19894.76 19796.22 16998.59 14898.46 105
GA-MVS96.84 16395.86 17397.98 15899.16 15898.29 14597.91 17398.64 16595.14 14897.71 17298.04 12188.90 19096.50 16196.41 17396.61 16497.97 17397.60 148
CHOSEN 280x42096.80 16496.30 16397.39 17499.09 16396.52 18998.76 12099.29 10593.88 17997.65 17398.34 10493.66 18196.29 16898.28 10797.73 12593.27 20195.70 180
gg-mvs-nofinetune96.77 16596.52 15997.06 18299.66 7097.82 17297.54 19099.86 898.69 1598.61 11699.94 289.62 18888.37 21197.55 14296.67 16198.30 16195.35 182
DPM-MVS96.73 16695.70 17697.95 16198.93 17397.26 18397.39 19598.44 17695.47 14497.62 17490.71 20498.47 13397.03 15295.02 19495.27 18298.26 16397.67 146
baseline196.72 16795.40 17898.26 14599.53 10298.81 10898.32 15398.80 15494.96 15396.78 19696.50 16884.87 20496.68 15797.42 15097.91 10999.46 5097.33 157
N_pmnet96.68 16895.70 17697.84 16599.42 12698.00 16499.35 5498.21 18298.40 2298.13 15399.42 5499.30 6797.44 14094.00 20188.79 19994.47 19791.96 199
new_pmnet96.59 16996.40 16296.81 19098.24 20295.46 20697.71 18494.75 20896.92 8796.80 19599.23 6797.81 15196.69 15596.58 16995.16 18496.69 18593.64 195
PMMVS96.47 17095.81 17497.23 17897.38 21195.96 20197.31 19696.91 20293.21 18897.93 16697.14 14797.64 15495.70 17195.24 19096.18 17298.17 16795.33 183
EPNet96.44 17196.08 16796.86 18999.32 13697.15 18697.69 18599.32 10193.67 18198.11 15695.64 18393.44 18289.07 20996.86 16496.83 15897.67 17598.97 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres600view796.35 17294.27 18098.79 10899.66 7099.18 6198.94 9899.38 8694.37 16997.21 19187.19 20684.10 20698.10 11598.16 11399.47 1899.42 5697.43 152
EPNet_dtu96.31 17395.96 16996.72 19299.18 15595.39 20797.03 20599.13 13293.02 19199.35 3797.23 14497.07 16290.70 20895.74 18295.08 18694.94 19698.16 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs396.30 17495.87 17296.80 19197.66 20896.48 19097.93 17293.80 20993.40 18598.54 12398.27 10997.50 15597.37 14397.49 14593.11 19495.52 19494.85 187
PMMVS296.29 17597.05 14795.40 20398.32 20196.16 19498.18 16497.46 19697.20 7984.51 21699.60 3498.68 12396.37 16398.59 8297.38 14497.58 17891.76 200
thres20096.23 17694.13 18198.69 11799.44 12099.18 6198.58 13399.38 8693.52 18397.35 18586.33 21185.83 20097.93 12598.16 11398.78 6499.42 5697.10 165
thres40096.22 17794.08 18398.72 11399.58 8899.05 7598.83 11199.22 11594.01 17797.40 18386.34 21084.91 20397.93 12597.85 12999.08 3999.37 6297.28 159
tfpn200view996.17 17894.08 18398.60 12699.37 12999.18 6198.68 12399.39 8192.02 19797.30 18786.53 20886.34 19797.45 13998.15 11599.08 3999.43 5597.28 159
CMPMVSbinary74.71 1996.17 17896.06 16896.30 19797.41 21094.52 21094.83 21295.46 20691.57 20297.26 19094.45 19498.33 13894.98 17898.28 10797.59 13597.86 17497.68 145
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IB-MVS95.85 1495.87 18094.88 17997.02 18599.09 16398.25 15097.16 19897.38 19891.97 20097.77 17083.61 21397.29 15992.03 20697.16 16097.66 12998.66 14098.20 128
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 195.81 18195.77 17595.85 20299.20 15198.15 15797.49 19498.50 17292.24 19392.74 21496.82 15892.70 18488.60 21097.31 15897.01 15698.57 15096.19 177
thres100view90095.74 18293.66 19298.17 15199.37 12998.59 12798.10 16698.33 17992.02 19797.30 18786.53 20886.34 19796.69 15596.77 16698.47 8799.24 8496.89 169
ET-MVSNet_ETH3D95.72 18393.85 18897.89 16297.30 21298.09 15998.19 16398.40 17794.46 16398.01 16396.71 16077.85 21696.76 15396.08 17796.39 16698.70 13897.36 155
baseline295.58 18494.04 18597.38 17598.80 17998.16 15597.14 19997.80 19491.45 20497.49 17895.22 18683.63 20794.98 17896.42 17296.66 16298.06 16996.76 170
PatchT95.49 18593.29 19398.06 15698.65 18796.20 19398.91 10399.73 2092.00 19998.50 12696.67 16283.25 20896.34 16494.40 19895.50 17896.21 18895.04 185
CR-MVSNet95.38 18693.01 19498.16 15398.63 18895.85 20397.64 18799.78 1591.27 20698.50 12696.84 15782.16 20996.34 16494.40 19895.50 17898.05 17195.04 185
MVSTER95.38 18693.99 18797.01 18698.83 17798.95 9396.62 20699.14 12892.17 19597.44 18197.29 14277.88 21591.63 20797.45 14796.18 17298.41 15897.99 136
MVS-HIRNet94.86 18893.83 18996.07 19897.07 21394.00 21194.31 21399.17 12391.23 20898.17 14998.69 9597.43 15695.66 17294.05 20091.92 19692.04 20889.46 208
test-LLR94.79 18993.71 19096.06 19999.20 15196.16 19496.31 20798.50 17289.98 21094.08 20997.01 15186.43 19592.20 20496.76 16795.31 18096.05 19094.31 190
RPMNet94.72 19092.01 19997.88 16498.56 19395.85 20397.78 17899.70 2591.27 20698.33 14093.69 19781.88 21094.91 18192.60 20394.34 19298.01 17294.46 189
gm-plane-assit94.62 19191.39 20198.39 13699.90 1299.47 2799.40 4699.65 3297.44 6499.56 2099.68 2659.40 22094.23 19196.17 17594.77 18997.61 17792.79 198
test-mter94.62 19194.02 18695.32 20497.72 20796.75 18796.23 20995.67 20489.83 21393.23 21396.99 15385.94 19992.66 20297.32 15696.11 17496.44 18695.22 184
FMVSNet594.57 19392.77 19596.67 19497.88 20498.72 11797.54 19098.70 16188.64 21495.11 20686.90 20781.77 21193.27 19797.92 12598.07 10397.50 18097.34 156
SCA94.53 19491.95 20097.55 17298.58 19097.86 17098.49 13999.68 2695.11 14999.07 7695.87 17987.24 19396.53 16089.77 20687.08 20292.96 20390.69 203
MDTV_nov1_ep1394.47 19592.15 19797.17 17998.54 19596.42 19198.10 16698.89 14994.49 16198.02 16097.41 13986.49 19495.56 17390.85 20487.95 20093.91 19891.45 202
TESTMET0.1,194.44 19693.71 19095.30 20597.84 20596.16 19496.31 20795.32 20789.98 21094.08 20997.01 15186.43 19592.20 20496.76 16795.31 18096.05 19094.31 190
ADS-MVSNet94.41 19792.13 19897.07 18198.86 17596.60 18898.38 14898.47 17596.13 13298.02 16096.98 15487.50 19295.87 17089.89 20587.58 20192.79 20590.27 205
tpm93.89 19891.21 20297.03 18498.36 19996.07 19897.53 19399.65 3292.24 19398.64 11597.23 14474.67 21994.64 18592.68 20290.73 19793.37 20094.82 188
PatchmatchNetpermissive93.88 19991.08 20397.14 18098.75 18196.01 20098.25 16099.39 8194.95 15498.96 8896.32 17185.35 20195.50 17488.89 20785.89 20691.99 20990.15 206
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS93.67 20090.82 20496.99 18798.62 18996.39 19298.40 14699.11 13395.54 14397.87 16897.14 14781.27 21394.97 18088.54 20986.80 20492.95 20490.06 207
MVEpermissive82.47 1893.12 20194.09 18291.99 20890.79 21582.50 21693.93 21496.30 20396.06 13388.81 21598.19 11296.38 16897.56 13697.24 15995.18 18384.58 21493.07 196
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CostFormer92.75 20289.49 20696.55 19598.78 18095.83 20597.55 18998.59 16891.83 20197.34 18696.31 17278.53 21494.50 18686.14 21084.92 20792.54 20692.84 197
tpmrst92.45 20389.48 20795.92 20198.43 19895.03 20897.14 19997.92 19294.16 17397.56 17597.86 12581.63 21293.56 19685.89 21182.86 20890.91 21388.95 210
dps92.35 20488.78 20996.52 19698.21 20395.94 20297.78 17898.38 17889.88 21296.81 19495.07 18875.31 21894.70 18488.62 20886.21 20593.21 20290.41 204
E-PMN92.28 20590.12 20594.79 20698.56 19390.90 21395.16 21193.68 21095.36 14695.10 20796.56 16589.05 18995.24 17695.21 19181.84 21090.98 21181.94 211
EMVS91.84 20689.39 20894.70 20798.44 19790.84 21495.27 21093.53 21195.18 14795.26 20595.62 18487.59 19194.77 18394.87 19580.72 21190.95 21280.88 212
tpm cat191.52 20787.70 21095.97 20098.33 20094.98 20997.06 20298.03 18792.11 19698.03 15994.77 19177.19 21792.71 20183.56 21282.24 20991.67 21089.04 209
GG-mvs-BLEND65.66 20892.62 19634.20 2101.45 21993.75 21285.40 2161.64 21691.37 20517.21 21887.25 20594.78 1783.25 21595.64 18593.80 19396.27 18791.74 201
testmvs9.73 20913.38 2115.48 2123.62 2174.12 2186.40 2193.19 21514.92 2157.68 22022.10 21413.89 2226.83 21313.47 21310.38 2135.14 21714.81 213
test1239.37 21012.26 2126.00 2113.32 2184.06 2196.39 2203.41 21413.20 21610.48 21916.43 21516.22 2216.76 21411.37 21410.40 2125.62 21614.10 214
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def99.88 2
9.1498.83 114
SR-MVS99.62 8099.47 6999.40 57
Anonymous20240521198.44 7299.79 3299.32 4599.05 8999.34 9696.59 10697.95 12497.68 15397.16 14799.36 3099.28 3099.61 3398.90 66
our_test_399.29 14197.72 17698.98 94
ambc97.89 11299.45 11797.88 16997.78 17897.27 7299.80 398.99 8698.48 13198.55 9397.80 13196.68 16098.54 15198.10 134
MTAPA99.19 5699.68 22
MTMP99.20 5499.54 43
Patchmatch-RL test32.47 218
tmp_tt65.28 20982.24 21671.50 21770.81 21723.21 21396.14 13081.70 21785.98 21292.44 18549.84 21295.81 18094.36 19183.86 215
XVS99.77 3799.07 7199.46 4198.95 9099.37 6099.33 69
X-MVStestdata99.77 3799.07 7199.46 4198.95 9099.37 6099.33 69
abl_698.38 13899.03 16998.04 16298.08 16898.65 16393.23 18798.56 12094.58 19398.57 12997.17 14698.81 12997.42 153
mPP-MVS99.75 4699.49 52
NP-MVS93.07 190
Patchmtry96.05 19997.64 18799.78 1598.50 126
DeepMVS_CXcopyleft87.86 21592.27 21561.98 21293.64 18293.62 21291.17 20291.67 18694.90 18295.99 17992.48 20794.18 192