LTVRE_ROB | | 98.82 1 | 99.76 1 | 99.75 2 | 99.77 7 | 99.87 17 | 99.71 10 | 99.77 9 | 99.76 18 | 99.52 3 | 99.80 3 | 99.79 21 | 99.91 1 | 99.56 13 | 99.83 4 | 99.75 5 | 99.86 10 | 99.75 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 99.74 2 | 99.75 2 | 99.73 11 | 99.92 7 | 99.67 14 | 99.76 11 | 99.84 11 | 99.59 1 | 99.52 24 | 99.87 11 | 99.91 1 | 99.43 27 | 99.87 1 | 99.81 3 | 99.89 6 | 99.52 10 |
|
test_part1 | | | 99.72 3 | 99.79 1 | 99.64 13 | 99.95 2 | 99.88 1 | 99.71 17 | 99.83 12 | 99.58 2 | 99.48 28 | 99.79 21 | 99.78 9 | 98.98 67 | 99.86 2 | 99.85 1 | 99.88 8 | 99.82 1 |
|
SixPastTwentyTwo | | | 99.70 4 | 99.59 5 | 99.82 2 | 99.93 5 | 99.80 3 | 99.86 2 | 99.87 6 | 98.87 12 | 99.79 5 | 99.85 14 | 99.33 65 | 99.74 5 | 99.85 3 | 99.82 2 | 99.74 24 | 99.63 5 |
|
v7n | | | 99.68 5 | 99.61 4 | 99.76 8 | 99.89 14 | 99.74 9 | 99.87 1 | 99.82 13 | 99.20 7 | 99.71 6 | 99.96 1 | 99.73 13 | 99.76 3 | 99.58 18 | 99.59 14 | 99.52 43 | 99.46 15 |
|
anonymousdsp | | | 99.64 6 | 99.55 7 | 99.74 10 | 99.87 17 | 99.56 21 | 99.82 3 | 99.73 21 | 98.54 17 | 99.71 6 | 99.92 4 | 99.84 6 | 99.61 9 | 99.70 7 | 99.63 7 | 99.69 29 | 99.64 3 |
|
UniMVSNet_ETH3D | | | 99.61 7 | 99.59 5 | 99.63 15 | 99.96 1 | 99.70 11 | 99.53 34 | 99.86 8 | 99.28 6 | 99.48 28 | 99.44 52 | 99.86 4 | 99.01 65 | 99.78 5 | 99.76 4 | 99.90 2 | 99.33 21 |
|
WR-MVS | | | 99.61 7 | 99.44 9 | 99.82 2 | 99.92 7 | 99.80 3 | 99.80 5 | 99.89 1 | 98.54 17 | 99.66 13 | 99.78 23 | 99.16 86 | 99.68 7 | 99.70 7 | 99.63 7 | 99.94 1 | 99.49 13 |
|
PEN-MVS | | | 99.54 9 | 99.30 16 | 99.83 1 | 99.92 7 | 99.76 6 | 99.80 5 | 99.88 3 | 97.60 58 | 99.71 6 | 99.59 36 | 99.52 45 | 99.75 4 | 99.64 13 | 99.51 17 | 99.90 2 | 99.46 15 |
|
TDRefinement | | | 99.54 9 | 99.50 8 | 99.60 18 | 99.70 64 | 99.35 40 | 99.77 9 | 99.58 47 | 99.40 5 | 99.28 49 | 99.66 27 | 99.41 55 | 99.55 15 | 99.74 6 | 99.65 6 | 99.70 26 | 99.25 25 |
|
DTE-MVSNet | | | 99.52 11 | 99.27 17 | 99.82 2 | 99.93 5 | 99.77 5 | 99.79 7 | 99.87 6 | 97.89 40 | 99.70 11 | 99.55 44 | 99.21 78 | 99.77 2 | 99.65 11 | 99.43 21 | 99.90 2 | 99.36 19 |
|
PS-CasMVS | | | 99.50 12 | 99.23 19 | 99.82 2 | 99.92 7 | 99.75 8 | 99.78 8 | 99.89 1 | 97.30 71 | 99.71 6 | 99.60 34 | 99.23 74 | 99.71 6 | 99.65 11 | 99.55 16 | 99.90 2 | 99.56 8 |
|
WR-MVS_H | | | 99.48 13 | 99.23 19 | 99.76 8 | 99.91 11 | 99.76 6 | 99.75 12 | 99.88 3 | 97.27 74 | 99.58 17 | 99.56 40 | 99.24 73 | 99.56 13 | 99.60 16 | 99.60 13 | 99.88 8 | 99.58 7 |
|
pm-mvs1 | | | 99.47 14 | 99.38 10 | 99.57 21 | 99.82 26 | 99.49 25 | 99.63 23 | 99.65 35 | 98.88 11 | 99.31 43 | 99.85 14 | 99.02 105 | 99.23 45 | 99.60 16 | 99.58 15 | 99.80 16 | 99.22 32 |
|
MIMVSNet1 | | | 99.46 15 | 99.34 11 | 99.60 18 | 99.83 23 | 99.68 13 | 99.74 15 | 99.71 24 | 98.20 25 | 99.41 35 | 99.86 13 | 99.66 27 | 99.41 30 | 99.50 22 | 99.39 23 | 99.50 48 | 99.10 43 |
|
TransMVSNet (Re) | | | 99.45 16 | 99.32 14 | 99.61 16 | 99.88 16 | 99.60 18 | 99.75 12 | 99.63 39 | 99.11 8 | 99.28 49 | 99.83 18 | 98.35 141 | 99.27 42 | 99.70 7 | 99.62 11 | 99.84 11 | 99.03 51 |
|
ACMH | | 97.81 6 | 99.44 17 | 99.33 12 | 99.56 22 | 99.81 29 | 99.42 33 | 99.73 16 | 99.58 47 | 99.02 9 | 99.10 74 | 99.41 56 | 99.69 20 | 99.60 10 | 99.45 26 | 99.26 33 | 99.55 39 | 99.05 48 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CS-MVS-test | | | 99.39 18 | 99.14 25 | 99.68 12 | 99.94 3 | 99.81 2 | 99.81 4 | 99.67 31 | 97.33 70 | 99.46 31 | 99.08 77 | 99.70 18 | 99.39 33 | 99.18 37 | 99.50 18 | 99.80 16 | 99.38 18 |
|
CP-MVSNet | | | 99.39 18 | 99.04 29 | 99.80 6 | 99.91 11 | 99.70 11 | 99.75 12 | 99.88 3 | 96.82 95 | 99.68 12 | 99.32 59 | 98.86 114 | 99.68 7 | 99.57 19 | 99.47 19 | 99.89 6 | 99.52 10 |
|
COLMAP_ROB |  | 98.29 2 | 99.37 20 | 99.25 18 | 99.51 29 | 99.74 55 | 99.12 69 | 99.56 31 | 99.39 83 | 98.96 10 | 99.17 61 | 99.44 52 | 99.63 35 | 99.58 11 | 99.48 24 | 99.27 32 | 99.60 35 | 98.81 76 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepC-MVS | | 97.88 4 | 99.33 21 | 99.15 23 | 99.53 28 | 99.73 60 | 99.05 77 | 99.49 39 | 99.40 81 | 98.42 20 | 99.55 21 | 99.71 25 | 99.89 3 | 99.49 19 | 99.14 39 | 98.81 62 | 99.54 40 | 99.02 53 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FC-MVSNet-test | | | 99.32 22 | 99.33 12 | 99.31 54 | 99.87 17 | 99.65 17 | 99.63 23 | 99.75 20 | 97.76 42 | 97.29 193 | 99.87 11 | 99.63 35 | 99.52 16 | 99.66 10 | 99.63 7 | 99.77 21 | 99.12 38 |
|
UA-Net | | | 99.30 23 | 99.22 21 | 99.39 41 | 99.94 3 | 99.66 16 | 98.91 108 | 99.86 8 | 97.74 48 | 98.74 114 | 99.00 87 | 99.60 40 | 99.17 51 | 99.50 22 | 99.39 23 | 99.70 26 | 99.64 3 |
|
ACMH+ | | 97.53 7 | 99.29 24 | 99.20 22 | 99.40 40 | 99.81 29 | 99.22 57 | 99.59 28 | 99.50 65 | 98.64 16 | 98.29 147 | 99.21 71 | 99.69 20 | 99.57 12 | 99.53 21 | 99.33 28 | 99.66 30 | 98.81 76 |
|
Vis-MVSNet |  | | 99.25 25 | 99.32 14 | 99.17 65 | 99.65 76 | 99.55 23 | 99.63 23 | 99.33 99 | 98.16 26 | 99.29 46 | 99.65 30 | 99.77 10 | 97.56 140 | 99.44 28 | 99.14 38 | 99.58 36 | 99.51 12 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TranMVSNet+NR-MVSNet | | | 99.23 26 | 98.91 36 | 99.61 16 | 99.81 29 | 99.45 30 | 99.47 41 | 99.68 27 | 97.28 73 | 99.39 36 | 99.54 45 | 99.08 101 | 99.45 22 | 99.09 45 | 98.84 59 | 99.83 12 | 99.04 49 |
|
CSCG | | | 99.23 26 | 99.15 23 | 99.32 53 | 99.83 23 | 99.45 30 | 98.97 99 | 99.21 120 | 98.83 13 | 99.04 85 | 99.43 54 | 99.64 33 | 99.26 43 | 98.85 71 | 98.20 99 | 99.62 33 | 99.62 6 |
|
Gipuma |  | | 99.22 28 | 98.86 39 | 99.64 13 | 99.70 64 | 99.24 51 | 99.17 82 | 99.63 39 | 99.52 3 | 99.89 1 | 96.54 172 | 99.14 90 | 99.93 1 | 99.42 29 | 99.15 37 | 99.52 43 | 99.04 49 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tfpnnormal | | | 99.19 29 | 98.90 37 | 99.54 25 | 99.81 29 | 99.55 23 | 99.60 27 | 99.54 56 | 98.53 19 | 99.23 53 | 98.40 106 | 98.23 144 | 99.40 31 | 99.29 33 | 99.36 26 | 99.63 32 | 98.95 63 |
|
Baseline_NR-MVSNet | | | 99.18 30 | 98.87 38 | 99.54 25 | 99.74 55 | 99.56 21 | 99.36 53 | 99.62 44 | 96.53 116 | 99.29 46 | 99.85 14 | 98.64 132 | 99.40 31 | 99.03 56 | 99.63 7 | 99.83 12 | 98.86 71 |
|
thisisatest0515 | | | 99.16 31 | 98.94 34 | 99.41 35 | 99.75 49 | 99.43 32 | 99.36 53 | 99.63 39 | 97.68 54 | 99.35 38 | 99.31 60 | 98.90 111 | 99.09 59 | 98.95 61 | 99.20 34 | 99.27 80 | 99.11 39 |
|
APDe-MVS | | | 99.15 32 | 98.95 31 | 99.39 41 | 99.77 39 | 99.28 48 | 99.52 35 | 99.54 56 | 97.22 78 | 99.06 78 | 99.20 72 | 99.64 33 | 99.05 63 | 99.14 39 | 99.02 47 | 99.39 61 | 99.17 36 |
|
FC-MVSNet-train | | | 99.13 33 | 99.05 28 | 99.21 60 | 99.87 17 | 99.57 20 | 99.67 18 | 99.60 46 | 96.75 101 | 98.28 148 | 99.48 48 | 99.52 45 | 98.10 119 | 99.47 25 | 99.37 25 | 99.76 23 | 99.21 33 |
|
NR-MVSNet | | | 99.10 34 | 98.68 54 | 99.58 20 | 99.89 14 | 99.23 54 | 99.35 56 | 99.63 39 | 96.58 109 | 99.36 37 | 99.05 81 | 98.67 130 | 99.46 20 | 99.63 14 | 98.73 72 | 99.80 16 | 98.88 70 |
|
DVP-MVS | | | 99.09 35 | 99.07 27 | 99.12 73 | 99.55 98 | 99.40 35 | 99.36 53 | 99.44 80 | 97.75 45 | 98.23 151 | 99.23 68 | 99.80 7 | 98.97 68 | 99.08 47 | 98.96 48 | 99.19 88 | 99.25 25 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
UniMVSNet (Re) | | | 99.08 36 | 98.69 52 | 99.54 25 | 99.75 49 | 99.33 43 | 99.29 64 | 99.64 38 | 96.75 101 | 99.48 28 | 99.30 62 | 98.69 126 | 99.26 43 | 98.94 63 | 98.76 68 | 99.78 20 | 99.02 53 |
|
ACMMPR | | | 99.05 37 | 98.72 48 | 99.44 30 | 99.79 34 | 99.12 69 | 99.35 56 | 99.56 50 | 97.74 48 | 99.21 55 | 97.72 133 | 99.55 43 | 99.29 40 | 98.90 69 | 98.81 62 | 99.41 60 | 99.19 34 |
|
DU-MVS | | | 99.04 38 | 98.59 58 | 99.56 22 | 99.74 55 | 99.23 54 | 99.29 64 | 99.63 39 | 96.58 109 | 99.55 21 | 99.05 81 | 98.68 128 | 99.36 36 | 99.03 56 | 98.60 79 | 99.77 21 | 98.97 58 |
|
TSAR-MVS + MP. | | | 99.02 39 | 98.95 31 | 99.11 76 | 99.23 154 | 98.79 113 | 99.51 36 | 98.73 161 | 97.50 62 | 98.56 124 | 99.03 84 | 99.59 41 | 99.16 53 | 99.29 33 | 99.17 36 | 99.50 48 | 99.24 29 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v10 | | | 99.01 40 | 98.66 55 | 99.41 35 | 99.52 109 | 99.39 36 | 99.57 30 | 99.66 33 | 97.59 59 | 99.32 42 | 99.88 9 | 99.23 74 | 99.50 18 | 97.77 136 | 97.98 109 | 98.92 123 | 98.78 81 |
|
EG-PatchMatch MVS | | | 99.01 40 | 98.77 44 | 99.28 58 | 99.64 79 | 98.90 106 | 98.81 120 | 99.27 111 | 96.55 113 | 99.71 6 | 99.31 60 | 99.66 27 | 99.17 51 | 99.28 35 | 99.11 39 | 99.10 95 | 98.57 96 |
|
PVSNet_Blended_VisFu | | | 98.98 42 | 98.79 42 | 99.21 60 | 99.76 45 | 99.34 41 | 99.35 56 | 99.35 95 | 97.12 84 | 99.46 31 | 99.56 40 | 98.89 112 | 98.08 122 | 99.05 50 | 98.58 81 | 99.27 80 | 98.98 57 |
|
HFP-MVS | | | 98.97 43 | 98.70 50 | 99.29 56 | 99.67 70 | 98.98 89 | 99.13 87 | 99.53 59 | 97.76 42 | 98.90 100 | 98.07 120 | 99.50 51 | 99.14 57 | 98.64 82 | 98.78 66 | 99.37 63 | 99.18 35 |
|
UniMVSNet_NR-MVSNet | | | 98.97 43 | 98.46 69 | 99.56 22 | 99.76 45 | 99.34 41 | 99.29 64 | 99.61 45 | 96.55 113 | 99.55 21 | 99.05 81 | 97.96 152 | 99.36 36 | 98.84 72 | 98.50 87 | 99.81 15 | 98.97 58 |
|
SED-MVS | | | 98.94 45 | 98.95 31 | 98.91 98 | 99.43 125 | 99.38 38 | 99.12 89 | 99.46 74 | 97.05 87 | 98.43 139 | 99.23 68 | 99.79 8 | 97.99 125 | 99.05 50 | 98.94 50 | 99.05 108 | 99.23 30 |
|
ACMMP_NAP | | | 98.94 45 | 98.72 48 | 99.21 60 | 99.67 70 | 99.08 72 | 99.26 69 | 99.39 83 | 96.84 92 | 98.88 104 | 98.22 113 | 99.68 23 | 98.82 77 | 99.06 49 | 98.90 53 | 99.25 83 | 99.25 25 |
|
zzz-MVS | | | 98.94 45 | 98.57 61 | 99.37 48 | 99.77 39 | 99.15 66 | 99.24 72 | 99.55 52 | 97.38 68 | 99.16 64 | 96.64 168 | 99.69 20 | 99.15 55 | 99.09 45 | 98.92 52 | 99.37 63 | 99.11 39 |
|
v1144 | | | 98.94 45 | 98.53 64 | 99.42 34 | 99.62 83 | 99.03 83 | 99.58 29 | 99.36 92 | 97.99 31 | 99.49 27 | 99.91 8 | 99.20 80 | 99.51 17 | 97.61 141 | 97.85 116 | 98.95 118 | 98.10 137 |
|
v8 | | | 98.94 45 | 98.60 56 | 99.35 51 | 99.54 102 | 99.39 36 | 99.55 32 | 99.67 31 | 97.48 63 | 99.13 70 | 99.81 19 | 99.10 97 | 99.39 33 | 97.86 131 | 97.89 114 | 98.81 132 | 98.66 88 |
|
SteuartSystems-ACMMP | | | 98.94 45 | 98.52 65 | 99.43 33 | 99.79 34 | 99.13 68 | 99.33 60 | 99.55 52 | 96.17 132 | 99.04 85 | 97.53 139 | 99.65 31 | 99.46 20 | 99.04 55 | 98.76 68 | 99.44 55 | 99.35 20 |
Skip Steuart: Steuart Systems R&D Blog. |
v1192 | | | 98.91 51 | 98.48 68 | 99.41 35 | 99.61 87 | 99.03 83 | 99.64 20 | 99.25 115 | 97.91 37 | 99.58 17 | 99.92 4 | 99.07 103 | 99.45 22 | 97.55 145 | 97.68 131 | 98.93 120 | 98.23 127 |
|
FMVSNet1 | | | 98.90 52 | 99.10 26 | 98.67 122 | 99.54 102 | 99.48 27 | 99.22 75 | 99.66 33 | 98.39 23 | 97.50 181 | 99.66 27 | 99.04 104 | 96.58 162 | 99.05 50 | 99.03 44 | 99.52 43 | 99.08 45 |
|
ACMM | | 96.66 11 | 98.90 52 | 98.44 73 | 99.44 30 | 99.74 55 | 98.95 95 | 99.47 41 | 99.55 52 | 97.66 56 | 99.09 75 | 96.43 174 | 99.41 55 | 99.35 38 | 98.95 61 | 98.67 75 | 99.45 53 | 99.03 51 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20231211 | | | 98.89 54 | 98.79 42 | 98.99 91 | 99.82 26 | 99.41 34 | 99.18 80 | 99.31 105 | 96.92 89 | 98.54 127 | 98.58 103 | 98.84 118 | 97.46 142 | 99.45 26 | 99.29 30 | 99.65 31 | 99.08 45 |
|
v1921920 | | | 98.89 54 | 98.46 69 | 99.39 41 | 99.58 91 | 99.04 81 | 99.64 20 | 99.17 126 | 97.91 37 | 99.64 15 | 99.92 4 | 98.99 109 | 99.44 25 | 97.44 152 | 97.57 140 | 98.84 130 | 98.35 117 |
|
GeoE | | | 98.88 56 | 98.43 76 | 99.41 35 | 99.83 23 | 99.24 51 | 99.51 36 | 99.82 13 | 96.55 113 | 99.22 54 | 98.76 95 | 99.22 77 | 98.96 69 | 98.55 85 | 98.15 101 | 99.10 95 | 98.56 99 |
|
v144192 | | | 98.88 56 | 98.46 69 | 99.37 48 | 99.56 97 | 99.03 83 | 99.61 26 | 99.26 112 | 97.79 41 | 99.58 17 | 99.88 9 | 99.11 95 | 99.43 27 | 97.38 157 | 97.61 136 | 98.80 134 | 98.43 112 |
|
SMA-MVS |  | | 98.87 58 | 98.73 47 | 99.04 84 | 99.72 61 | 99.05 77 | 98.64 130 | 99.17 126 | 96.31 127 | 98.80 109 | 99.07 79 | 99.70 18 | 98.67 86 | 98.93 66 | 98.82 60 | 99.23 86 | 99.23 30 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMP | | 96.54 13 | 98.87 58 | 98.40 79 | 99.41 35 | 99.74 55 | 98.88 107 | 99.29 64 | 99.50 65 | 96.85 91 | 98.96 92 | 97.05 155 | 99.66 27 | 99.43 27 | 98.98 60 | 98.60 79 | 99.52 43 | 98.81 76 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DCV-MVSNet | | | 98.86 60 | 98.57 61 | 99.19 63 | 99.86 21 | 99.67 14 | 99.39 49 | 99.71 24 | 97.53 61 | 98.69 117 | 95.85 185 | 98.48 136 | 97.75 134 | 99.57 19 | 99.41 22 | 99.72 25 | 99.48 14 |
|
v1240 | | | 98.86 60 | 98.41 78 | 99.38 46 | 99.59 89 | 99.05 77 | 99.65 19 | 99.14 131 | 97.68 54 | 99.66 13 | 99.93 3 | 98.72 125 | 99.45 22 | 97.38 157 | 97.72 129 | 98.79 135 | 98.35 117 |
|
CP-MVS | | | 98.86 60 | 98.43 76 | 99.36 50 | 99.68 68 | 98.97 93 | 99.19 78 | 99.46 74 | 96.60 107 | 99.20 56 | 97.11 154 | 99.51 49 | 99.15 55 | 98.92 67 | 98.82 60 | 99.45 53 | 99.08 45 |
|
v2v482 | | | 98.85 63 | 98.40 79 | 99.38 46 | 99.65 76 | 98.98 89 | 99.55 32 | 99.39 83 | 97.92 36 | 99.35 38 | 99.85 14 | 99.14 90 | 99.39 33 | 97.50 147 | 97.78 119 | 98.98 115 | 97.60 151 |
|
DPE-MVS |  | | 98.84 64 | 98.69 52 | 99.00 88 | 99.05 172 | 99.26 49 | 99.19 78 | 99.35 95 | 95.85 140 | 98.74 114 | 99.27 64 | 99.66 27 | 98.30 112 | 98.90 69 | 98.93 51 | 99.37 63 | 99.00 55 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
OPM-MVS | | | 98.84 64 | 98.59 58 | 99.12 73 | 99.52 109 | 98.50 138 | 99.13 87 | 99.22 118 | 97.76 42 | 98.76 111 | 98.70 97 | 99.61 38 | 98.90 72 | 98.67 80 | 98.37 93 | 99.19 88 | 98.57 96 |
|
test20.03 | | | 98.84 64 | 98.74 46 | 98.95 94 | 99.77 39 | 99.33 43 | 99.21 77 | 99.46 74 | 97.29 72 | 98.88 104 | 99.65 30 | 99.10 97 | 97.07 154 | 99.11 42 | 98.76 68 | 99.32 73 | 97.98 141 |
|
casdiffmvs | | | 98.84 64 | 98.75 45 | 98.94 97 | 99.75 49 | 99.21 58 | 99.33 60 | 99.04 142 | 98.04 29 | 97.46 184 | 99.72 24 | 99.72 15 | 98.60 90 | 98.30 105 | 98.37 93 | 99.48 50 | 97.92 143 |
|
LGP-MVS_train | | | 98.84 64 | 98.33 85 | 99.44 30 | 99.78 37 | 98.98 89 | 99.39 49 | 99.55 52 | 95.41 148 | 98.90 100 | 97.51 140 | 99.68 23 | 99.44 25 | 99.03 56 | 98.81 62 | 99.57 37 | 98.91 66 |
|
RPSCF | | | 98.84 64 | 98.81 41 | 98.89 100 | 99.37 133 | 98.95 95 | 98.51 142 | 98.85 154 | 97.73 50 | 98.33 144 | 98.97 89 | 99.14 90 | 98.95 70 | 99.18 37 | 98.68 74 | 99.31 74 | 98.99 56 |
|
ACMMP |  | | 98.82 70 | 98.33 85 | 99.39 41 | 99.77 39 | 99.14 67 | 99.37 52 | 99.54 56 | 96.47 120 | 99.03 87 | 96.26 178 | 99.52 45 | 99.28 41 | 98.92 67 | 98.80 65 | 99.37 63 | 99.16 37 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
V42 | | | 98.81 71 | 98.49 67 | 99.18 64 | 99.52 109 | 98.92 101 | 99.50 38 | 99.29 107 | 97.43 66 | 98.97 89 | 99.81 19 | 99.00 108 | 99.30 39 | 97.93 127 | 98.01 107 | 98.51 158 | 98.34 121 |
|
LS3D | | | 98.79 72 | 98.52 65 | 99.12 73 | 99.64 79 | 99.09 71 | 99.24 72 | 99.46 74 | 97.75 45 | 98.93 98 | 97.47 141 | 98.23 144 | 97.98 126 | 99.36 30 | 99.30 29 | 99.46 51 | 98.42 113 |
|
MP-MVS |  | | 98.78 73 | 98.30 87 | 99.34 52 | 99.75 49 | 98.95 95 | 99.26 69 | 99.46 74 | 95.78 143 | 99.17 61 | 96.98 159 | 99.72 15 | 99.06 62 | 98.84 72 | 98.74 71 | 99.33 70 | 99.11 39 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v148 | | | 98.77 74 | 98.45 72 | 99.15 68 | 99.68 68 | 98.94 99 | 99.49 39 | 99.31 105 | 97.95 33 | 98.91 99 | 99.65 30 | 99.62 37 | 99.18 48 | 97.99 125 | 97.64 135 | 98.33 163 | 97.38 157 |
|
SD-MVS | | | 98.73 75 | 98.54 63 | 98.95 94 | 99.14 163 | 98.76 116 | 98.46 146 | 99.14 131 | 97.71 52 | 98.56 124 | 98.06 122 | 99.61 38 | 98.85 76 | 98.56 84 | 97.74 126 | 99.54 40 | 99.32 22 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSP-MVS | | | 98.72 76 | 98.60 56 | 98.87 102 | 99.67 70 | 99.33 43 | 99.15 84 | 99.26 112 | 96.99 88 | 97.90 171 | 98.19 115 | 99.74 12 | 98.29 113 | 97.69 139 | 98.96 48 | 98.96 116 | 99.27 24 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 98.69 77 | 98.09 104 | 99.39 41 | 99.76 45 | 99.07 73 | 99.30 63 | 99.51 63 | 94.76 159 | 99.18 60 | 96.70 166 | 99.51 49 | 99.20 46 | 98.79 76 | 98.71 73 | 99.39 61 | 99.11 39 |
|
pmmvs-eth3d | | | 98.68 78 | 98.14 100 | 99.29 56 | 99.49 114 | 98.45 141 | 99.45 45 | 99.38 88 | 97.21 79 | 99.50 26 | 99.65 30 | 99.21 78 | 99.16 53 | 97.11 164 | 97.56 141 | 98.79 135 | 97.82 147 |
|
EU-MVSNet | | | 98.68 78 | 98.94 34 | 98.37 142 | 99.14 163 | 98.74 118 | 99.64 20 | 98.20 187 | 98.21 24 | 99.17 61 | 99.66 27 | 99.18 83 | 99.08 60 | 99.11 42 | 98.86 54 | 95.00 199 | 98.83 73 |
|
PMVS |  | 92.51 17 | 98.66 80 | 98.86 39 | 98.43 137 | 99.26 149 | 98.98 89 | 98.60 136 | 98.59 171 | 97.73 50 | 99.45 33 | 99.38 57 | 98.54 135 | 95.24 180 | 99.62 15 | 99.61 12 | 99.42 57 | 98.17 134 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepC-MVS_fast | | 97.38 8 | 98.65 81 | 98.34 84 | 99.02 87 | 99.33 137 | 98.29 148 | 98.99 97 | 98.71 163 | 97.40 67 | 99.31 43 | 98.20 114 | 99.40 58 | 98.54 98 | 98.33 102 | 98.18 100 | 99.23 86 | 98.58 94 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator | | 98.16 3 | 98.65 81 | 98.35 83 | 99.00 88 | 99.59 89 | 98.70 121 | 98.90 112 | 99.36 92 | 97.97 32 | 99.09 75 | 96.55 171 | 99.09 99 | 97.97 127 | 98.70 79 | 98.65 77 | 99.12 94 | 98.81 76 |
|
TSAR-MVS + ACMM | | | 98.64 83 | 98.58 60 | 98.72 116 | 99.17 161 | 98.63 127 | 98.69 126 | 99.10 138 | 97.69 53 | 98.30 146 | 99.12 76 | 99.38 60 | 98.70 85 | 98.45 88 | 97.51 143 | 98.35 162 | 99.25 25 |
|
DELS-MVS | | | 98.63 84 | 98.70 50 | 98.55 133 | 99.24 153 | 99.04 81 | 98.96 100 | 98.52 174 | 96.83 94 | 98.38 141 | 99.58 38 | 99.68 23 | 97.06 155 | 98.74 78 | 98.44 89 | 99.10 95 | 98.59 93 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
QAPM | | | 98.62 85 | 98.40 79 | 98.89 100 | 99.57 96 | 98.80 112 | 98.63 131 | 99.35 95 | 96.82 95 | 98.60 121 | 98.85 94 | 99.08 101 | 98.09 121 | 98.31 103 | 98.21 97 | 99.08 101 | 98.72 83 |
|
EPP-MVSNet | | | 98.61 86 | 98.19 96 | 99.11 76 | 99.86 21 | 99.60 18 | 99.44 46 | 99.53 59 | 97.37 69 | 96.85 197 | 98.69 98 | 93.75 185 | 99.18 48 | 99.22 36 | 99.35 27 | 99.82 14 | 99.32 22 |
|
3Dnovator+ | | 97.85 5 | 98.61 86 | 98.14 100 | 99.15 68 | 99.62 83 | 98.37 146 | 99.10 90 | 99.51 63 | 98.04 29 | 98.98 88 | 96.07 182 | 98.75 124 | 98.55 96 | 98.51 87 | 98.40 90 | 99.17 90 | 98.82 74 |
|
X-MVS | | | 98.59 88 | 97.99 110 | 99.30 55 | 99.75 49 | 99.07 73 | 99.17 82 | 99.50 65 | 96.62 105 | 98.95 94 | 93.95 201 | 99.37 61 | 99.11 58 | 98.94 63 | 98.86 54 | 99.35 68 | 99.09 44 |
|
MVS_111021_HR | | | 98.58 89 | 98.26 90 | 98.96 93 | 99.32 140 | 98.81 110 | 98.48 144 | 98.99 147 | 96.81 97 | 99.16 64 | 98.07 120 | 99.23 74 | 98.89 74 | 98.43 90 | 98.27 96 | 98.90 125 | 98.24 126 |
|
MVS_0304 | | | 98.57 90 | 98.36 82 | 98.82 109 | 99.72 61 | 98.94 99 | 98.92 106 | 99.14 131 | 96.76 100 | 99.33 41 | 98.30 110 | 99.73 13 | 96.74 158 | 98.05 122 | 97.79 118 | 99.08 101 | 98.97 58 |
|
PM-MVS | | | 98.57 90 | 98.24 92 | 98.95 94 | 99.26 149 | 98.59 130 | 99.03 94 | 98.74 160 | 96.84 92 | 99.44 34 | 99.13 75 | 98.31 143 | 98.75 82 | 98.03 123 | 98.21 97 | 98.48 159 | 98.58 94 |
|
PHI-MVS | | | 98.57 90 | 98.20 95 | 99.00 88 | 99.48 116 | 98.91 103 | 98.68 127 | 99.17 126 | 94.97 155 | 99.27 51 | 98.33 108 | 99.33 65 | 98.05 123 | 98.82 74 | 98.62 78 | 99.34 69 | 98.38 115 |
|
HPM-MVS++ |  | | 98.56 93 | 98.08 105 | 99.11 76 | 99.53 105 | 98.61 129 | 99.02 96 | 99.32 103 | 96.29 129 | 99.06 78 | 97.23 148 | 99.50 51 | 98.77 80 | 98.15 118 | 97.90 112 | 98.96 116 | 98.90 67 |
|
TSAR-MVS + GP. | | | 98.54 94 | 98.29 89 | 98.82 109 | 99.28 147 | 98.59 130 | 97.73 185 | 99.24 117 | 95.93 138 | 98.59 122 | 99.07 79 | 99.17 84 | 98.86 75 | 98.44 89 | 98.10 103 | 99.26 82 | 98.72 83 |
|
CS-MVS | | | 98.52 95 | 97.90 114 | 99.25 59 | 99.76 45 | 99.49 25 | 99.18 80 | 99.28 110 | 93.34 190 | 98.97 89 | 97.21 151 | 99.30 68 | 98.75 82 | 98.24 111 | 98.86 54 | 99.57 37 | 98.84 72 |
|
UGNet | | | 98.52 95 | 99.00 30 | 97.96 164 | 99.58 91 | 99.26 49 | 99.27 68 | 99.40 81 | 98.07 28 | 98.28 148 | 98.76 95 | 99.71 17 | 92.24 207 | 98.94 63 | 98.85 57 | 99.00 114 | 99.43 17 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231206 | | | 98.50 97 | 98.03 107 | 99.05 82 | 99.50 112 | 99.01 86 | 99.15 84 | 99.26 112 | 96.38 125 | 99.12 72 | 99.50 47 | 99.12 93 | 98.60 90 | 97.68 140 | 97.24 154 | 98.66 143 | 97.30 161 |
|
CLD-MVS | | | 98.48 98 | 98.15 99 | 98.86 105 | 99.53 105 | 98.35 147 | 98.55 139 | 97.83 196 | 96.02 137 | 98.97 89 | 99.08 77 | 99.75 11 | 99.03 64 | 98.10 121 | 97.33 150 | 99.28 78 | 98.44 111 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 98.47 99 | 98.30 87 | 98.67 122 | 99.65 76 | 98.87 108 | 98.82 119 | 99.01 145 | 96.14 133 | 99.29 46 | 98.86 92 | 99.01 106 | 96.54 163 | 98.36 96 | 98.08 104 | 98.72 139 | 98.80 80 |
|
APD-MVS |  | | 98.47 99 | 97.97 111 | 99.05 82 | 99.64 79 | 98.91 103 | 98.94 102 | 99.45 79 | 94.40 171 | 98.77 110 | 97.26 147 | 99.41 55 | 98.21 116 | 98.67 80 | 98.57 84 | 99.31 74 | 98.57 96 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Vis-MVSNet (Re-imp) | | | 98.46 101 | 98.23 93 | 98.73 115 | 99.81 29 | 99.29 47 | 98.79 121 | 99.50 65 | 96.20 131 | 96.03 203 | 98.29 111 | 96.98 167 | 98.54 98 | 99.11 42 | 99.08 40 | 99.70 26 | 98.62 90 |
|
Fast-Effi-MVS+ | | | 98.42 102 | 97.79 118 | 99.15 68 | 99.69 66 | 98.66 124 | 98.94 102 | 99.68 27 | 94.49 164 | 99.05 80 | 98.06 122 | 98.86 114 | 98.48 101 | 98.18 114 | 97.78 119 | 99.05 108 | 98.54 102 |
|
DROMVSNet | | | 98.42 102 | 97.79 118 | 99.15 68 | 99.69 66 | 98.66 124 | 98.94 102 | 99.68 27 | 94.49 164 | 99.05 80 | 98.06 122 | 98.86 114 | 98.48 101 | 98.18 114 | 97.78 119 | 99.05 108 | 98.54 102 |
|
ETV-MVS | | | 98.41 104 | 97.76 120 | 99.17 65 | 99.58 91 | 99.01 86 | 98.91 108 | 99.50 65 | 93.33 191 | 99.31 43 | 96.82 163 | 98.42 139 | 98.17 118 | 99.13 41 | 99.08 40 | 99.54 40 | 98.56 99 |
|
MVS_111021_LR | | | 98.39 105 | 98.11 102 | 98.71 118 | 99.08 169 | 98.54 136 | 98.23 166 | 98.56 173 | 96.57 111 | 99.13 70 | 98.41 105 | 98.86 114 | 98.65 88 | 98.23 112 | 97.87 115 | 98.65 145 | 98.28 123 |
|
pmmvs5 | | | 98.37 106 | 97.81 117 | 99.03 85 | 99.46 118 | 98.97 93 | 99.03 94 | 98.96 149 | 95.85 140 | 99.05 80 | 99.45 51 | 98.66 131 | 98.79 79 | 96.02 181 | 97.52 142 | 98.87 127 | 98.21 130 |
|
OMC-MVS | | | 98.35 107 | 98.10 103 | 98.64 128 | 98.85 180 | 97.99 168 | 98.56 138 | 98.21 185 | 97.26 76 | 98.87 106 | 98.54 104 | 99.27 72 | 98.43 104 | 98.34 100 | 97.66 132 | 98.92 123 | 97.65 150 |
|
canonicalmvs | | | 98.34 108 | 97.92 113 | 98.83 107 | 99.45 120 | 99.21 58 | 98.37 153 | 99.53 59 | 97.06 86 | 97.74 175 | 96.95 161 | 95.05 182 | 98.36 107 | 98.77 77 | 98.85 57 | 99.51 47 | 99.53 9 |
|
CHOSEN 1792x2688 | | | 98.31 109 | 98.02 108 | 98.66 124 | 99.55 98 | 98.57 133 | 99.38 51 | 99.25 115 | 98.42 20 | 98.48 135 | 99.58 38 | 99.85 5 | 98.31 111 | 95.75 184 | 95.71 179 | 96.96 186 | 98.27 125 |
|
xxxxxxxxxxxxxcwj | | | 98.28 110 | 98.23 93 | 98.35 143 | 99.43 125 | 98.42 144 | 97.05 207 | 99.09 139 | 96.42 122 | 98.13 157 | 97.73 131 | 99.65 31 | 97.22 148 | 98.36 96 | 98.38 91 | 99.16 92 | 98.62 90 |
|
CPTT-MVS | | | 98.28 110 | 97.51 132 | 99.16 67 | 99.54 102 | 98.78 114 | 98.96 100 | 99.36 92 | 96.30 128 | 98.89 103 | 93.10 205 | 99.30 68 | 99.20 46 | 98.35 99 | 97.96 110 | 99.03 112 | 98.82 74 |
|
TinyColmap | | | 98.27 112 | 97.62 129 | 99.03 85 | 99.29 145 | 97.79 177 | 98.92 106 | 98.95 150 | 97.48 63 | 99.52 24 | 98.65 100 | 97.86 154 | 98.90 72 | 98.34 100 | 97.27 152 | 98.64 146 | 95.97 181 |
|
diffmvs | | | 98.26 113 | 98.16 97 | 98.39 139 | 99.61 87 | 98.78 114 | 98.79 121 | 98.61 169 | 97.94 34 | 97.11 196 | 99.51 46 | 99.52 45 | 97.61 138 | 96.55 173 | 96.93 160 | 98.61 148 | 97.87 145 |
|
USDC | | | 98.26 113 | 97.57 130 | 99.06 79 | 99.42 129 | 97.98 170 | 98.83 116 | 98.85 154 | 97.57 60 | 99.59 16 | 99.15 74 | 98.59 133 | 98.99 66 | 97.42 153 | 96.08 178 | 98.69 142 | 96.23 179 |
|
SF-MVS | | | 98.25 115 | 98.16 97 | 98.35 143 | 99.43 125 | 98.42 144 | 97.05 207 | 99.09 139 | 96.42 122 | 98.13 157 | 97.73 131 | 99.20 80 | 97.22 148 | 98.36 96 | 98.38 91 | 99.16 92 | 98.62 90 |
|
MCST-MVS | | | 98.25 115 | 97.57 130 | 99.06 79 | 99.53 105 | 98.24 154 | 98.63 131 | 99.17 126 | 95.88 139 | 98.58 123 | 96.11 180 | 99.09 99 | 99.18 48 | 97.58 144 | 97.31 151 | 99.25 83 | 98.75 82 |
|
IterMVS-LS | | | 98.23 117 | 97.66 125 | 98.90 99 | 99.63 82 | 99.38 38 | 99.07 91 | 99.48 70 | 97.75 45 | 98.81 108 | 99.37 58 | 94.57 184 | 97.88 131 | 96.54 174 | 97.04 157 | 98.53 155 | 98.97 58 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TAPA-MVS | | 96.65 12 | 98.23 117 | 97.96 112 | 98.55 133 | 98.81 182 | 98.16 158 | 98.40 150 | 97.94 194 | 96.68 103 | 98.49 133 | 98.61 101 | 98.89 112 | 98.57 94 | 97.45 150 | 97.59 138 | 99.09 100 | 98.35 117 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CNVR-MVS | | | 98.22 119 | 97.76 120 | 98.76 113 | 99.33 137 | 98.26 152 | 98.48 144 | 98.88 153 | 96.22 130 | 98.47 137 | 95.79 186 | 99.33 65 | 98.35 108 | 98.37 95 | 97.99 108 | 99.03 112 | 98.38 115 |
|
IS_MVSNet | | | 98.20 120 | 98.00 109 | 98.44 136 | 99.82 26 | 99.48 27 | 99.25 71 | 99.56 50 | 95.58 145 | 93.93 215 | 97.56 138 | 96.52 171 | 98.27 114 | 99.08 47 | 99.20 34 | 99.80 16 | 98.56 99 |
|
DeepPCF-MVS | | 96.68 10 | 98.20 120 | 98.26 90 | 98.12 157 | 97.03 218 | 98.11 161 | 98.44 148 | 97.70 198 | 96.77 99 | 98.52 129 | 98.91 90 | 99.17 84 | 98.58 93 | 98.41 92 | 98.02 106 | 98.46 160 | 98.46 108 |
|
MSDG | | | 98.20 120 | 97.88 116 | 98.56 132 | 99.33 137 | 97.74 178 | 98.27 163 | 98.10 188 | 97.20 81 | 98.06 162 | 98.59 102 | 99.16 86 | 98.76 81 | 98.39 93 | 97.71 130 | 98.86 129 | 96.38 176 |
|
testgi | | | 98.18 123 | 98.44 73 | 97.89 166 | 99.78 37 | 99.23 54 | 98.78 123 | 99.21 120 | 97.26 76 | 97.41 186 | 97.39 144 | 99.36 64 | 92.85 204 | 98.82 74 | 98.66 76 | 99.31 74 | 98.35 117 |
|
Effi-MVS+ | | | 98.11 124 | 97.29 138 | 99.06 79 | 99.62 83 | 98.55 134 | 98.16 169 | 99.80 15 | 94.64 160 | 99.15 68 | 96.59 169 | 97.43 160 | 98.44 103 | 97.46 149 | 97.90 112 | 99.17 90 | 98.45 110 |
|
HyFIR lowres test | | | 98.08 125 | 97.16 147 | 99.14 72 | 99.72 61 | 98.91 103 | 99.41 47 | 99.58 47 | 97.93 35 | 98.82 107 | 99.24 66 | 95.81 177 | 98.73 84 | 95.16 195 | 95.13 188 | 98.60 150 | 97.94 142 |
|
EIA-MVS | | | 98.03 126 | 97.20 144 | 98.99 91 | 99.66 73 | 99.24 51 | 98.53 141 | 99.52 62 | 91.56 208 | 99.25 52 | 95.34 190 | 98.78 121 | 97.72 135 | 98.38 94 | 98.58 81 | 99.28 78 | 98.54 102 |
|
train_agg | | | 97.99 127 | 97.26 139 | 98.83 107 | 99.43 125 | 98.22 156 | 98.91 108 | 99.07 141 | 94.43 169 | 97.96 168 | 96.42 175 | 99.30 68 | 98.81 78 | 97.39 155 | 96.62 166 | 98.82 131 | 98.47 106 |
|
MSLP-MVS++ | | | 97.99 127 | 97.64 128 | 98.40 138 | 98.91 178 | 98.47 140 | 97.12 205 | 98.78 158 | 96.49 118 | 98.48 135 | 93.57 203 | 99.12 93 | 98.51 100 | 98.31 103 | 98.58 81 | 98.58 152 | 98.95 63 |
|
CDPH-MVS | | | 97.99 127 | 97.23 142 | 98.87 102 | 99.58 91 | 98.29 148 | 98.83 116 | 99.20 122 | 93.76 184 | 98.11 160 | 96.11 180 | 99.16 86 | 98.23 115 | 97.80 134 | 97.22 155 | 99.29 77 | 98.28 123 |
|
FMVSNet2 | | | 97.94 130 | 98.08 105 | 97.77 172 | 98.71 186 | 99.21 58 | 98.62 133 | 99.47 71 | 96.62 105 | 96.37 202 | 99.20 72 | 97.70 156 | 94.39 191 | 97.39 155 | 97.75 125 | 99.08 101 | 98.70 85 |
|
PVSNet_BlendedMVS | | | 97.93 131 | 97.66 125 | 98.25 150 | 99.30 142 | 98.67 122 | 98.31 158 | 97.95 192 | 94.30 175 | 98.75 112 | 97.63 135 | 98.76 122 | 96.30 170 | 98.29 106 | 97.78 119 | 98.93 120 | 98.18 132 |
|
PVSNet_Blended | | | 97.93 131 | 97.66 125 | 98.25 150 | 99.30 142 | 98.67 122 | 98.31 158 | 97.95 192 | 94.30 175 | 98.75 112 | 97.63 135 | 98.76 122 | 96.30 170 | 98.29 106 | 97.78 119 | 98.93 120 | 98.18 132 |
|
OpenMVS |  | 97.26 9 | 97.88 133 | 97.17 146 | 98.70 119 | 99.50 112 | 98.55 134 | 98.34 156 | 99.11 136 | 93.92 182 | 98.90 100 | 95.04 194 | 98.23 144 | 97.38 145 | 98.11 120 | 98.12 102 | 98.95 118 | 98.23 127 |
|
pmmvs4 | | | 97.87 134 | 97.02 151 | 98.86 105 | 99.20 155 | 97.68 181 | 98.89 113 | 99.03 143 | 96.57 111 | 99.12 72 | 99.03 84 | 97.26 164 | 98.42 105 | 95.16 195 | 96.34 170 | 98.53 155 | 97.10 168 |
|
NCCC | | | 97.84 135 | 96.96 153 | 98.87 102 | 99.39 132 | 98.27 151 | 98.46 146 | 99.02 144 | 96.78 98 | 98.73 116 | 91.12 208 | 98.91 110 | 98.57 94 | 97.83 133 | 97.49 144 | 99.04 111 | 98.33 122 |
|
Effi-MVS+-dtu | | | 97.78 136 | 97.37 136 | 98.26 148 | 99.25 151 | 98.50 138 | 97.89 179 | 99.19 125 | 94.51 162 | 98.16 155 | 95.93 183 | 98.80 120 | 95.97 173 | 98.27 110 | 97.38 147 | 99.10 95 | 98.23 127 |
|
MDA-MVSNet-bldmvs | | | 97.75 137 | 97.26 139 | 98.33 145 | 99.35 136 | 98.45 141 | 99.32 62 | 97.21 203 | 97.90 39 | 99.05 80 | 99.01 86 | 96.86 169 | 99.08 60 | 99.36 30 | 92.97 198 | 95.97 195 | 96.25 178 |
|
CDS-MVSNet | | | 97.75 137 | 97.68 124 | 97.83 170 | 99.08 169 | 98.20 157 | 98.68 127 | 98.61 169 | 95.63 144 | 97.80 173 | 99.24 66 | 96.93 168 | 94.09 196 | 97.96 126 | 97.82 117 | 98.71 140 | 97.99 139 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CNLPA | | | 97.75 137 | 97.26 139 | 98.32 147 | 98.58 194 | 97.86 173 | 97.80 181 | 98.09 189 | 96.49 118 | 98.49 133 | 96.15 179 | 98.08 147 | 98.35 108 | 98.00 124 | 97.03 158 | 98.61 148 | 97.21 165 |
|
PLC |  | 95.63 15 | 97.73 140 | 97.01 152 | 98.57 131 | 99.10 166 | 97.80 176 | 97.72 186 | 98.77 159 | 96.34 126 | 98.38 141 | 93.46 204 | 98.06 148 | 98.66 87 | 97.90 129 | 97.65 134 | 98.77 137 | 97.90 144 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_Test | | | 97.69 141 | 97.15 148 | 98.33 145 | 99.27 148 | 98.43 143 | 98.25 164 | 99.29 107 | 95.00 154 | 97.39 188 | 98.86 92 | 98.00 151 | 97.14 152 | 95.38 190 | 96.22 172 | 98.62 147 | 98.15 136 |
|
GBi-Net | | | 97.69 141 | 97.75 122 | 97.62 173 | 98.71 186 | 99.21 58 | 98.62 133 | 99.33 99 | 94.09 178 | 95.60 205 | 98.17 117 | 95.97 174 | 94.39 191 | 99.05 50 | 99.03 44 | 99.08 101 | 98.70 85 |
|
test1 | | | 97.69 141 | 97.75 122 | 97.62 173 | 98.71 186 | 99.21 58 | 98.62 133 | 99.33 99 | 94.09 178 | 95.60 205 | 98.17 117 | 95.97 174 | 94.39 191 | 99.05 50 | 99.03 44 | 99.08 101 | 98.70 85 |
|
CANet_DTU | | | 97.65 144 | 97.50 134 | 97.82 171 | 99.19 158 | 98.08 163 | 98.41 149 | 98.67 165 | 94.40 171 | 99.16 64 | 98.32 109 | 98.69 126 | 93.96 198 | 97.87 130 | 97.61 136 | 97.51 182 | 97.56 153 |
|
IterMVS-SCA-FT | | | 97.63 145 | 96.86 155 | 98.52 135 | 99.48 116 | 98.71 120 | 98.84 115 | 98.91 151 | 96.44 121 | 99.16 64 | 99.56 40 | 95.54 179 | 97.95 128 | 95.68 187 | 95.07 191 | 96.76 187 | 97.03 171 |
|
TSAR-MVS + COLMAP | | | 97.62 146 | 97.31 137 | 97.98 162 | 98.47 200 | 97.39 185 | 98.29 160 | 98.25 184 | 96.68 103 | 97.54 180 | 98.87 91 | 98.04 150 | 97.08 153 | 96.78 168 | 96.26 171 | 98.26 166 | 97.12 167 |
|
MS-PatchMatch | | | 97.60 147 | 97.22 143 | 98.04 161 | 98.67 190 | 97.18 189 | 97.91 177 | 98.28 183 | 95.82 142 | 98.34 143 | 97.66 134 | 98.38 140 | 97.77 133 | 97.10 165 | 97.25 153 | 97.27 184 | 97.18 166 |
|
PCF-MVS | | 95.58 16 | 97.60 147 | 96.67 156 | 98.69 120 | 99.44 123 | 98.23 155 | 98.37 153 | 98.81 156 | 93.01 196 | 98.22 152 | 97.97 127 | 99.59 41 | 98.20 117 | 95.72 186 | 95.08 189 | 99.08 101 | 97.09 170 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP-MVS | | | 97.58 149 | 96.65 159 | 98.66 124 | 99.30 142 | 97.99 168 | 97.88 180 | 98.65 166 | 94.58 161 | 98.66 118 | 94.65 198 | 99.15 89 | 98.59 92 | 96.10 179 | 95.59 180 | 98.90 125 | 98.50 105 |
|
DI_MVS_plusplus_trai | | | 97.57 150 | 96.55 161 | 98.77 112 | 99.55 98 | 98.76 116 | 99.22 75 | 99.00 146 | 97.08 85 | 97.95 169 | 97.78 130 | 91.35 192 | 98.02 124 | 96.20 177 | 96.81 162 | 98.87 127 | 97.87 145 |
|
AdaColmap |  | | 97.57 150 | 96.57 160 | 98.74 114 | 99.25 151 | 98.01 166 | 98.36 155 | 98.98 148 | 94.44 168 | 98.47 137 | 92.44 206 | 97.91 153 | 98.62 89 | 98.19 113 | 97.74 126 | 98.73 138 | 97.28 162 |
|
baseline | | | 97.50 152 | 97.51 132 | 97.50 177 | 99.18 159 | 97.38 186 | 98.00 173 | 98.00 191 | 96.52 117 | 97.49 182 | 99.28 63 | 99.43 54 | 95.31 179 | 95.27 192 | 96.22 172 | 96.99 185 | 98.47 106 |
|
IterMVS | | | 97.40 153 | 96.67 156 | 98.25 150 | 99.45 120 | 98.66 124 | 98.87 114 | 98.73 161 | 96.40 124 | 98.94 97 | 99.56 40 | 95.26 181 | 97.58 139 | 95.38 190 | 94.70 193 | 95.90 196 | 96.72 174 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CVMVSNet | | | 97.38 154 | 97.39 135 | 97.37 180 | 98.58 194 | 97.72 179 | 98.70 125 | 97.42 201 | 97.21 79 | 95.95 204 | 99.46 50 | 93.31 188 | 97.38 145 | 97.60 142 | 97.78 119 | 96.18 192 | 98.66 88 |
|
new-patchmatchnet | | | 97.26 155 | 96.12 169 | 98.58 130 | 99.55 98 | 98.63 127 | 99.14 86 | 97.04 205 | 98.80 14 | 99.19 58 | 99.92 4 | 99.19 82 | 98.92 71 | 95.51 189 | 87.04 207 | 97.66 179 | 93.73 197 |
|
MIMVSNet | | | 97.24 156 | 97.15 148 | 97.36 181 | 99.03 173 | 98.52 137 | 98.55 139 | 99.73 21 | 94.94 158 | 94.94 212 | 97.98 126 | 97.37 162 | 93.66 199 | 97.60 142 | 97.34 149 | 98.23 169 | 96.29 177 |
|
PatchMatch-RL | | | 97.24 156 | 96.45 164 | 98.17 154 | 98.70 189 | 97.57 184 | 97.31 200 | 98.48 177 | 94.42 170 | 98.39 140 | 95.74 187 | 96.35 173 | 97.88 131 | 97.75 137 | 97.48 145 | 98.24 168 | 95.87 182 |
|
thisisatest0530 | | | 97.20 158 | 95.95 173 | 98.66 124 | 99.46 118 | 98.84 109 | 98.29 160 | 99.20 122 | 94.51 162 | 98.25 150 | 97.42 142 | 85.03 207 | 97.68 136 | 98.43 90 | 98.56 85 | 99.08 101 | 98.89 69 |
|
tttt0517 | | | 97.18 159 | 95.92 174 | 98.65 127 | 99.49 114 | 98.92 101 | 98.29 160 | 99.20 122 | 94.37 173 | 98.17 153 | 97.37 145 | 84.72 210 | 97.68 136 | 98.55 85 | 98.56 85 | 99.10 95 | 98.95 63 |
|
MDTV_nov1_ep13_2view | | | 97.12 160 | 96.19 168 | 98.22 153 | 99.13 165 | 98.05 164 | 99.24 72 | 99.47 71 | 97.61 57 | 99.15 68 | 99.59 36 | 99.01 106 | 98.40 106 | 94.87 198 | 90.14 201 | 93.91 202 | 94.04 196 |
|
MAR-MVS | | | 97.12 160 | 96.28 167 | 98.11 158 | 98.94 176 | 97.22 188 | 97.65 190 | 99.38 88 | 90.93 214 | 98.15 156 | 95.17 192 | 97.13 165 | 96.48 166 | 97.71 138 | 97.40 146 | 98.06 172 | 98.40 114 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Fast-Effi-MVS+-dtu | | | 96.99 162 | 96.46 163 | 97.61 175 | 98.98 175 | 97.89 171 | 97.54 194 | 99.76 18 | 93.43 188 | 96.55 201 | 94.93 195 | 98.06 148 | 94.32 194 | 96.93 166 | 96.50 168 | 98.53 155 | 97.47 154 |
|
FPMVS | | | 96.97 163 | 97.20 144 | 96.70 197 | 97.75 210 | 96.11 201 | 97.72 186 | 95.47 209 | 97.13 83 | 98.02 164 | 97.57 137 | 96.67 170 | 92.97 203 | 99.00 59 | 98.34 95 | 98.28 165 | 95.58 184 |
|
TAMVS | | | 96.95 164 | 96.94 154 | 96.97 192 | 99.07 171 | 97.67 183 | 97.98 175 | 97.12 204 | 95.04 153 | 95.41 208 | 99.27 64 | 95.57 178 | 94.09 196 | 97.32 159 | 97.11 156 | 98.16 171 | 96.59 175 |
|
FMVSNet3 | | | 96.85 165 | 96.67 156 | 97.06 186 | 97.56 213 | 99.01 86 | 97.99 174 | 99.33 99 | 94.09 178 | 95.60 205 | 98.17 117 | 95.97 174 | 93.26 202 | 94.76 200 | 96.22 172 | 98.59 151 | 98.46 108 |
|
GA-MVS | | | 96.84 166 | 95.86 176 | 97.98 162 | 99.16 162 | 98.29 148 | 97.91 177 | 98.64 168 | 95.14 151 | 97.71 176 | 98.04 125 | 88.90 195 | 96.50 165 | 96.41 176 | 96.61 167 | 97.97 176 | 97.60 151 |
|
CHOSEN 280x420 | | | 96.80 167 | 96.30 166 | 97.39 178 | 99.09 167 | 96.52 193 | 98.76 124 | 99.29 107 | 93.88 183 | 97.65 177 | 98.34 107 | 93.66 186 | 96.29 172 | 98.28 108 | 97.73 128 | 93.27 205 | 95.70 183 |
|
gg-mvs-nofinetune | | | 96.77 168 | 96.52 162 | 97.06 186 | 99.66 73 | 97.82 175 | 97.54 194 | 99.86 8 | 98.69 15 | 98.61 120 | 99.94 2 | 89.62 193 | 88.37 215 | 97.55 145 | 96.67 164 | 98.30 164 | 95.35 185 |
|
DPM-MVS | | | 96.73 169 | 95.70 179 | 97.95 165 | 98.93 177 | 97.26 187 | 97.39 199 | 98.44 179 | 95.47 147 | 97.62 178 | 90.71 209 | 98.47 138 | 97.03 156 | 95.02 197 | 95.27 185 | 98.26 166 | 97.67 149 |
|
baseline1 | | | 96.72 170 | 95.40 181 | 98.26 148 | 99.53 105 | 98.81 110 | 98.32 157 | 98.80 157 | 94.96 156 | 96.78 200 | 96.50 173 | 84.87 209 | 96.68 161 | 97.42 153 | 97.91 111 | 99.46 51 | 97.33 160 |
|
N_pmnet | | | 96.68 171 | 95.70 179 | 97.84 169 | 99.42 129 | 98.00 167 | 99.35 56 | 98.21 185 | 98.40 22 | 98.13 157 | 99.42 55 | 99.30 68 | 97.44 144 | 94.00 204 | 88.79 202 | 94.47 201 | 91.96 203 |
|
pmnet_mix02 | | | 96.61 172 | 95.32 182 | 98.11 158 | 99.41 131 | 97.68 181 | 99.05 92 | 97.59 199 | 98.16 26 | 99.05 80 | 99.48 48 | 99.11 95 | 98.32 110 | 92.36 208 | 87.67 204 | 95.26 198 | 92.80 201 |
|
new_pmnet | | | 96.59 173 | 96.40 165 | 96.81 194 | 98.24 206 | 95.46 210 | 97.71 188 | 94.75 212 | 96.92 89 | 96.80 199 | 99.23 68 | 97.81 155 | 96.69 159 | 96.58 172 | 95.16 187 | 96.69 188 | 93.64 198 |
|
PMMVS | | | 96.47 174 | 95.81 177 | 97.23 182 | 97.38 215 | 95.96 205 | 97.31 200 | 96.91 206 | 93.21 193 | 97.93 170 | 97.14 152 | 97.64 158 | 95.70 175 | 95.24 193 | 96.18 175 | 98.17 170 | 95.33 186 |
|
EPNet | | | 96.44 175 | 96.08 170 | 96.86 193 | 99.32 140 | 97.15 190 | 97.69 189 | 99.32 103 | 93.67 185 | 98.11 160 | 95.64 188 | 93.44 187 | 89.07 213 | 96.86 167 | 96.83 161 | 97.67 178 | 98.97 58 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres600view7 | | | 96.35 176 | 94.27 184 | 98.79 111 | 99.66 73 | 99.18 63 | 98.94 102 | 99.38 88 | 94.37 173 | 97.21 195 | 87.19 211 | 84.10 211 | 98.10 119 | 98.16 116 | 99.47 19 | 99.42 57 | 97.43 155 |
|
EPNet_dtu | | | 96.31 177 | 95.96 172 | 96.72 196 | 99.18 159 | 95.39 211 | 97.03 209 | 99.13 135 | 93.02 195 | 99.35 38 | 97.23 148 | 97.07 166 | 90.70 212 | 95.74 185 | 95.08 189 | 94.94 200 | 98.16 135 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pmmvs3 | | | 96.30 178 | 95.87 175 | 96.80 195 | 97.66 212 | 96.48 194 | 97.93 176 | 93.80 213 | 93.40 189 | 98.54 127 | 98.27 112 | 97.50 159 | 97.37 147 | 97.49 148 | 93.11 197 | 95.52 197 | 94.85 190 |
|
PMMVS2 | | | 96.29 179 | 97.05 150 | 95.40 207 | 98.32 205 | 96.16 198 | 98.18 168 | 97.46 200 | 97.20 81 | 84.51 221 | 99.60 34 | 98.68 128 | 96.37 167 | 98.59 83 | 97.38 147 | 97.58 181 | 91.76 204 |
|
thres200 | | | 96.23 180 | 94.13 185 | 98.69 120 | 99.44 123 | 99.18 63 | 98.58 137 | 99.38 88 | 93.52 187 | 97.35 189 | 86.33 216 | 85.83 205 | 97.93 129 | 98.16 116 | 98.78 66 | 99.42 57 | 97.10 168 |
|
thres400 | | | 96.22 181 | 94.08 187 | 98.72 116 | 99.58 91 | 99.05 77 | 98.83 116 | 99.22 118 | 94.01 181 | 97.40 187 | 86.34 215 | 84.91 208 | 97.93 129 | 97.85 132 | 99.08 40 | 99.37 63 | 97.28 162 |
|
tfpn200view9 | | | 96.17 182 | 94.08 187 | 98.60 129 | 99.37 133 | 99.18 63 | 98.68 127 | 99.39 83 | 92.02 202 | 97.30 191 | 86.53 213 | 86.34 202 | 97.45 143 | 98.15 118 | 99.08 40 | 99.43 56 | 97.28 162 |
|
CMPMVS |  | 74.71 19 | 96.17 182 | 96.06 171 | 96.30 201 | 97.41 214 | 94.52 214 | 94.83 216 | 95.46 210 | 91.57 207 | 97.26 194 | 94.45 200 | 98.33 142 | 94.98 182 | 98.28 108 | 97.59 138 | 97.86 177 | 97.68 148 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
IB-MVS | | 95.85 14 | 95.87 184 | 94.88 183 | 97.02 189 | 99.09 167 | 98.25 153 | 97.16 202 | 97.38 202 | 91.97 205 | 97.77 174 | 83.61 218 | 97.29 163 | 92.03 210 | 97.16 163 | 97.66 132 | 98.66 143 | 98.20 131 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test0.0.03 1 | | | 95.81 185 | 95.77 178 | 95.85 206 | 99.20 155 | 98.15 160 | 97.49 198 | 98.50 175 | 92.24 198 | 92.74 218 | 96.82 163 | 92.70 189 | 88.60 214 | 97.31 161 | 97.01 159 | 98.57 153 | 96.19 180 |
|
thres100view900 | | | 95.74 186 | 93.66 196 | 98.17 154 | 99.37 133 | 98.59 130 | 98.10 170 | 98.33 182 | 92.02 202 | 97.30 191 | 86.53 213 | 86.34 202 | 96.69 159 | 96.77 169 | 98.47 88 | 99.24 85 | 96.89 172 |
|
ET-MVSNet_ETH3D | | | 95.72 187 | 93.85 192 | 97.89 166 | 97.30 216 | 98.09 162 | 98.19 167 | 98.40 180 | 94.46 167 | 98.01 167 | 96.71 165 | 77.85 221 | 96.76 157 | 96.08 180 | 96.39 169 | 98.70 141 | 97.36 158 |
|
baseline2 | | | 95.58 188 | 94.04 189 | 97.38 179 | 98.80 183 | 98.16 158 | 97.14 203 | 97.80 197 | 91.45 209 | 97.49 182 | 95.22 191 | 83.63 212 | 94.98 182 | 96.42 175 | 96.66 165 | 98.06 172 | 96.76 173 |
|
PatchT | | | 95.49 189 | 93.29 197 | 98.06 160 | 98.65 191 | 96.20 197 | 98.91 108 | 99.73 21 | 92.00 204 | 98.50 130 | 96.67 167 | 83.25 213 | 96.34 168 | 94.40 201 | 95.50 181 | 96.21 191 | 95.04 188 |
|
CR-MVSNet | | | 95.38 190 | 93.01 198 | 98.16 156 | 98.63 192 | 95.85 207 | 97.64 191 | 99.78 16 | 91.27 211 | 98.50 130 | 96.84 162 | 82.16 214 | 96.34 168 | 94.40 201 | 95.50 181 | 98.05 174 | 95.04 188 |
|
MVSTER | | | 95.38 190 | 93.99 191 | 97.01 190 | 98.83 181 | 98.95 95 | 96.62 210 | 99.14 131 | 92.17 200 | 97.44 185 | 97.29 146 | 77.88 220 | 91.63 211 | 97.45 150 | 96.18 175 | 98.41 161 | 97.99 139 |
|
MVS-HIRNet | | | 94.86 192 | 93.83 193 | 96.07 202 | 97.07 217 | 94.00 215 | 94.31 217 | 99.17 126 | 91.23 213 | 98.17 153 | 98.69 98 | 97.43 160 | 95.66 176 | 94.05 203 | 91.92 199 | 92.04 212 | 89.46 212 |
|
test-LLR | | | 94.79 193 | 93.71 194 | 96.06 203 | 99.20 155 | 96.16 198 | 96.31 211 | 98.50 175 | 89.98 215 | 94.08 213 | 97.01 156 | 86.43 200 | 92.20 208 | 96.76 170 | 95.31 183 | 96.05 193 | 94.31 193 |
|
RPMNet | | | 94.72 194 | 92.01 203 | 97.88 168 | 98.56 197 | 95.85 207 | 97.78 182 | 99.70 26 | 91.27 211 | 98.33 144 | 93.69 202 | 81.88 215 | 94.91 185 | 92.60 206 | 94.34 195 | 98.01 175 | 94.46 192 |
|
gm-plane-assit | | | 94.62 195 | 91.39 205 | 98.39 139 | 99.90 13 | 99.47 29 | 99.40 48 | 99.65 35 | 97.44 65 | 99.56 20 | 99.68 26 | 59.40 225 | 94.23 195 | 96.17 178 | 94.77 192 | 97.61 180 | 92.79 202 |
|
test-mter | | | 94.62 195 | 94.02 190 | 95.32 208 | 97.72 211 | 96.75 191 | 96.23 213 | 95.67 208 | 89.83 218 | 93.23 217 | 96.99 158 | 85.94 204 | 92.66 206 | 97.32 159 | 96.11 177 | 96.44 189 | 95.22 187 |
|
FMVSNet5 | | | 94.57 197 | 92.77 199 | 96.67 198 | 97.88 208 | 98.72 119 | 97.54 194 | 98.70 164 | 88.64 219 | 95.11 210 | 86.90 212 | 81.77 216 | 93.27 201 | 97.92 128 | 98.07 105 | 97.50 183 | 97.34 159 |
|
SCA | | | 94.53 198 | 91.95 204 | 97.55 176 | 98.58 194 | 97.86 173 | 98.49 143 | 99.68 27 | 95.11 152 | 99.07 77 | 95.87 184 | 87.24 198 | 96.53 164 | 89.77 211 | 87.08 206 | 92.96 207 | 90.69 207 |
|
MDTV_nov1_ep13 | | | 94.47 199 | 92.15 201 | 97.17 183 | 98.54 199 | 96.42 195 | 98.10 170 | 98.89 152 | 94.49 164 | 98.02 164 | 97.41 143 | 86.49 199 | 95.56 177 | 90.85 209 | 87.95 203 | 93.91 202 | 91.45 206 |
|
TESTMET0.1,1 | | | 94.44 200 | 93.71 194 | 95.30 209 | 97.84 209 | 96.16 198 | 96.31 211 | 95.32 211 | 89.98 215 | 94.08 213 | 97.01 156 | 86.43 200 | 92.20 208 | 96.76 170 | 95.31 183 | 96.05 193 | 94.31 193 |
|
ADS-MVSNet | | | 94.41 201 | 92.13 202 | 97.07 185 | 98.86 179 | 96.60 192 | 98.38 152 | 98.47 178 | 96.13 135 | 98.02 164 | 96.98 159 | 87.50 197 | 95.87 174 | 89.89 210 | 87.58 205 | 92.79 209 | 90.27 209 |
|
tpm | | | 93.89 202 | 91.21 206 | 97.03 188 | 98.36 203 | 96.07 202 | 97.53 197 | 99.65 35 | 92.24 198 | 98.64 119 | 97.23 148 | 74.67 224 | 94.64 189 | 92.68 205 | 90.73 200 | 93.37 204 | 94.82 191 |
|
PatchmatchNet |  | | 93.88 203 | 91.08 207 | 97.14 184 | 98.75 185 | 96.01 204 | 98.25 164 | 99.39 83 | 94.95 157 | 98.96 92 | 96.32 176 | 85.35 206 | 95.50 178 | 88.89 212 | 85.89 210 | 91.99 213 | 90.15 210 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 93.67 204 | 90.82 208 | 96.99 191 | 98.62 193 | 96.39 196 | 98.40 150 | 99.11 136 | 95.54 146 | 97.87 172 | 97.14 152 | 81.27 218 | 94.97 184 | 88.54 214 | 86.80 208 | 92.95 208 | 90.06 211 |
|
MVE |  | 82.47 18 | 93.12 205 | 94.09 186 | 91.99 212 | 90.79 219 | 82.50 220 | 93.93 218 | 96.30 207 | 96.06 136 | 88.81 219 | 98.19 115 | 96.38 172 | 97.56 140 | 97.24 162 | 95.18 186 | 84.58 219 | 93.07 199 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
CostFormer | | | 92.75 206 | 89.49 210 | 96.55 199 | 98.78 184 | 95.83 209 | 97.55 193 | 98.59 171 | 91.83 206 | 97.34 190 | 96.31 177 | 78.53 219 | 94.50 190 | 86.14 215 | 84.92 211 | 92.54 210 | 92.84 200 |
|
tpmrst | | | 92.45 207 | 89.48 211 | 95.92 205 | 98.43 202 | 95.03 212 | 97.14 203 | 97.92 195 | 94.16 177 | 97.56 179 | 97.86 129 | 81.63 217 | 93.56 200 | 85.89 216 | 82.86 212 | 90.91 217 | 88.95 214 |
|
dps | | | 92.35 208 | 88.78 213 | 96.52 200 | 98.21 207 | 95.94 206 | 97.78 182 | 98.38 181 | 89.88 217 | 96.81 198 | 95.07 193 | 75.31 223 | 94.70 188 | 88.62 213 | 86.21 209 | 93.21 206 | 90.41 208 |
|
E-PMN | | | 92.28 209 | 90.12 209 | 94.79 210 | 98.56 197 | 90.90 217 | 95.16 215 | 93.68 214 | 95.36 149 | 95.10 211 | 96.56 170 | 89.05 194 | 95.24 180 | 95.21 194 | 81.84 214 | 90.98 215 | 81.94 216 |
|
EMVS | | | 91.84 210 | 89.39 212 | 94.70 211 | 98.44 201 | 90.84 218 | 95.27 214 | 93.53 215 | 95.18 150 | 95.26 209 | 95.62 189 | 87.59 196 | 94.77 187 | 94.87 198 | 80.72 215 | 90.95 216 | 80.88 217 |
|
tpm cat1 | | | 91.52 211 | 87.70 214 | 95.97 204 | 98.33 204 | 94.98 213 | 97.06 206 | 98.03 190 | 92.11 201 | 98.03 163 | 94.77 197 | 77.19 222 | 92.71 205 | 83.56 217 | 82.24 213 | 91.67 214 | 89.04 213 |
|
test_method | | | 77.69 212 | 85.40 215 | 68.69 213 | 42.66 221 | 55.39 222 | 82.17 221 | 52.05 217 | 92.83 197 | 84.52 220 | 94.88 196 | 95.41 180 | 65.37 216 | 92.49 207 | 79.32 216 | 85.36 218 | 87.50 215 |
|
GG-mvs-BLEND | | | 65.66 213 | 92.62 200 | 34.20 215 | 1.45 224 | 93.75 216 | 85.40 220 | 1.64 221 | 91.37 210 | 17.21 223 | 87.25 210 | 94.78 183 | 3.25 220 | 95.64 188 | 93.80 196 | 96.27 190 | 91.74 205 |
|
testmvs | | | 9.73 214 | 13.38 216 | 5.48 217 | 3.62 222 | 4.12 223 | 6.40 224 | 3.19 220 | 14.92 220 | 7.68 225 | 22.10 219 | 13.89 227 | 6.83 218 | 13.47 218 | 10.38 218 | 5.14 222 | 14.81 218 |
|
test123 | | | 9.37 215 | 12.26 217 | 6.00 216 | 3.32 223 | 4.06 224 | 6.39 225 | 3.41 219 | 13.20 221 | 10.48 224 | 16.43 220 | 16.22 226 | 6.76 219 | 11.37 219 | 10.40 217 | 5.62 221 | 14.10 219 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 99.88 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 98.83 119 | | | | | |
|
SR-MVS | | | | | | 99.62 83 | | | 99.47 71 | | | | 99.40 58 | | | | | |
|
Anonymous202405211 | | | | 98.44 73 | | 99.79 34 | 99.32 46 | 99.05 92 | 99.34 98 | 96.59 108 | | 97.95 128 | 97.68 157 | 97.16 151 | 99.36 30 | 99.28 31 | 99.61 34 | 98.90 67 |
|
our_test_3 | | | | | | 99.29 145 | 97.72 179 | 98.98 98 | | | | | | | | | | |
|
ambc | | | | 97.89 115 | | 99.45 120 | 97.88 172 | 97.78 182 | | 97.27 74 | 99.80 3 | 98.99 88 | 98.48 136 | 98.55 96 | 97.80 134 | 96.68 163 | 98.54 154 | 98.10 137 |
|
MTAPA | | | | | | | | | | | 99.19 58 | | 99.68 23 | | | | | |
|
MTMP | | | | | | | | | | | 99.20 56 | | 99.54 44 | | | | | |
|
Patchmatch-RL test | | | | | | | | 32.47 223 | | | | | | | | | | |
|
tmp_tt | | | | | 65.28 214 | 82.24 220 | 71.50 221 | 70.81 222 | 23.21 218 | 96.14 133 | 81.70 222 | 85.98 217 | 92.44 190 | 49.84 217 | 95.81 183 | 94.36 194 | 83.86 220 | |
|
XVS | | | | | | 99.77 39 | 99.07 73 | 99.46 43 | | | 98.95 94 | | 99.37 61 | | | | 99.33 70 | |
|
X-MVStestdata | | | | | | 99.77 39 | 99.07 73 | 99.46 43 | | | 98.95 94 | | 99.37 61 | | | | 99.33 70 | |
|
abl_6 | | | | | 98.38 141 | 99.03 173 | 98.04 165 | 98.08 172 | 98.65 166 | 93.23 192 | 98.56 124 | 94.58 199 | 98.57 134 | 97.17 150 | | | 98.81 132 | 97.42 156 |
|
mPP-MVS | | | | | | 99.75 49 | | | | | | | 99.49 53 | | | | | |
|
NP-MVS | | | | | | | | | | 93.07 194 | | | | | | | | |
|
Patchmtry | | | | | | | 96.05 203 | 97.64 191 | 99.78 16 | | 98.50 130 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 87.86 219 | 92.27 219 | 61.98 216 | 93.64 186 | 93.62 216 | 91.17 207 | 91.67 191 | 94.90 186 | 95.99 182 | | 92.48 211 | 94.18 195 |
|