LTVRE_ROB | | 98.82 1 | 99.76 1 | 99.75 2 | 99.77 7 | 99.87 16 | 99.71 9 | 99.77 8 | 99.76 17 | 99.52 3 | 99.80 3 | 99.79 21 | 99.91 1 | 99.56 13 | 99.83 4 | 99.75 5 | 99.86 10 | 99.75 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 99.74 2 | 99.75 2 | 99.73 11 | 99.92 6 | 99.67 13 | 99.76 10 | 99.84 11 | 99.59 1 | 99.52 24 | 99.87 11 | 99.91 1 | 99.43 27 | 99.87 1 | 99.81 3 | 99.89 6 | 99.52 10 |
|
test_part1 | | | 99.72 3 | 99.79 1 | 99.64 12 | 99.95 2 | 99.88 1 | 99.71 16 | 99.83 12 | 99.58 2 | 99.48 28 | 99.79 21 | 99.78 9 | 98.98 66 | 99.86 2 | 99.85 1 | 99.88 8 | 99.82 1 |
|
SixPastTwentyTwo | | | 99.70 4 | 99.59 5 | 99.82 2 | 99.93 4 | 99.80 2 | 99.86 2 | 99.87 6 | 98.87 12 | 99.79 5 | 99.85 14 | 99.33 64 | 99.74 5 | 99.85 3 | 99.82 2 | 99.74 23 | 99.63 5 |
|
v7n | | | 99.68 5 | 99.61 4 | 99.76 8 | 99.89 13 | 99.74 8 | 99.87 1 | 99.82 13 | 99.20 7 | 99.71 6 | 99.96 1 | 99.73 13 | 99.76 3 | 99.58 18 | 99.59 14 | 99.52 42 | 99.46 15 |
|
anonymousdsp | | | 99.64 6 | 99.55 7 | 99.74 10 | 99.87 16 | 99.56 20 | 99.82 3 | 99.73 20 | 98.54 17 | 99.71 6 | 99.92 4 | 99.84 6 | 99.61 9 | 99.70 7 | 99.63 7 | 99.69 28 | 99.64 3 |
|
UniMVSNet_ETH3D | | | 99.61 7 | 99.59 5 | 99.63 14 | 99.96 1 | 99.70 10 | 99.53 33 | 99.86 8 | 99.28 6 | 99.48 28 | 99.44 51 | 99.86 4 | 99.01 64 | 99.78 5 | 99.76 4 | 99.90 2 | 99.33 20 |
|
WR-MVS | | | 99.61 7 | 99.44 9 | 99.82 2 | 99.92 6 | 99.80 2 | 99.80 4 | 99.89 1 | 98.54 17 | 99.66 13 | 99.78 23 | 99.16 83 | 99.68 7 | 99.70 7 | 99.63 7 | 99.94 1 | 99.49 13 |
|
PEN-MVS | | | 99.54 9 | 99.30 16 | 99.83 1 | 99.92 6 | 99.76 5 | 99.80 4 | 99.88 3 | 97.60 57 | 99.71 6 | 99.59 36 | 99.52 44 | 99.75 4 | 99.64 13 | 99.51 17 | 99.90 2 | 99.46 15 |
|
TDRefinement | | | 99.54 9 | 99.50 8 | 99.60 17 | 99.70 62 | 99.35 39 | 99.77 8 | 99.58 44 | 99.40 5 | 99.28 48 | 99.66 27 | 99.41 54 | 99.55 15 | 99.74 6 | 99.65 6 | 99.70 25 | 99.25 24 |
|
DTE-MVSNet | | | 99.52 11 | 99.27 17 | 99.82 2 | 99.93 4 | 99.77 4 | 99.79 6 | 99.87 6 | 97.89 39 | 99.70 11 | 99.55 44 | 99.21 75 | 99.77 2 | 99.65 11 | 99.43 20 | 99.90 2 | 99.36 18 |
|
PS-CasMVS | | | 99.50 12 | 99.23 19 | 99.82 2 | 99.92 6 | 99.75 7 | 99.78 7 | 99.89 1 | 97.30 69 | 99.71 6 | 99.60 34 | 99.23 72 | 99.71 6 | 99.65 11 | 99.55 16 | 99.90 2 | 99.56 8 |
|
WR-MVS_H | | | 99.48 13 | 99.23 19 | 99.76 8 | 99.91 10 | 99.76 5 | 99.75 11 | 99.88 3 | 97.27 72 | 99.58 17 | 99.56 40 | 99.24 71 | 99.56 13 | 99.60 16 | 99.60 13 | 99.88 8 | 99.58 7 |
|
pm-mvs1 | | | 99.47 14 | 99.38 10 | 99.57 20 | 99.82 24 | 99.49 24 | 99.63 22 | 99.65 32 | 98.88 11 | 99.31 42 | 99.85 14 | 99.02 101 | 99.23 44 | 99.60 16 | 99.58 15 | 99.80 16 | 99.22 31 |
|
MIMVSNet1 | | | 99.46 15 | 99.34 11 | 99.60 17 | 99.83 22 | 99.68 12 | 99.74 14 | 99.71 23 | 98.20 25 | 99.41 34 | 99.86 13 | 99.66 26 | 99.41 30 | 99.50 22 | 99.39 22 | 99.50 47 | 99.10 42 |
|
TransMVSNet (Re) | | | 99.45 16 | 99.32 14 | 99.61 15 | 99.88 15 | 99.60 17 | 99.75 11 | 99.63 36 | 99.11 8 | 99.28 48 | 99.83 18 | 98.35 137 | 99.27 41 | 99.70 7 | 99.62 11 | 99.84 11 | 99.03 50 |
|
ACMH | | 97.81 6 | 99.44 17 | 99.33 12 | 99.56 21 | 99.81 27 | 99.42 32 | 99.73 15 | 99.58 44 | 99.02 9 | 99.10 73 | 99.41 55 | 99.69 19 | 99.60 10 | 99.45 26 | 99.26 32 | 99.55 38 | 99.05 47 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CP-MVSNet | | | 99.39 18 | 99.04 28 | 99.80 6 | 99.91 10 | 99.70 10 | 99.75 11 | 99.88 3 | 96.82 93 | 99.68 12 | 99.32 58 | 98.86 110 | 99.68 7 | 99.57 19 | 99.47 18 | 99.89 6 | 99.52 10 |
|
COLMAP_ROB | | 98.29 2 | 99.37 19 | 99.25 18 | 99.51 28 | 99.74 52 | 99.12 67 | 99.56 30 | 99.39 81 | 98.96 10 | 99.17 60 | 99.44 51 | 99.63 34 | 99.58 11 | 99.48 24 | 99.27 31 | 99.60 34 | 98.81 74 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepC-MVS | | 97.88 4 | 99.33 20 | 99.15 23 | 99.53 27 | 99.73 57 | 99.05 75 | 99.49 37 | 99.40 79 | 98.42 20 | 99.55 21 | 99.71 25 | 99.89 3 | 99.49 19 | 99.14 38 | 98.81 60 | 99.54 39 | 99.02 52 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FC-MVSNet-test | | | 99.32 21 | 99.33 12 | 99.31 52 | 99.87 16 | 99.65 16 | 99.63 22 | 99.75 19 | 97.76 41 | 97.29 189 | 99.87 11 | 99.63 34 | 99.52 16 | 99.66 10 | 99.63 7 | 99.77 20 | 99.12 37 |
|
UA-Net | | | 99.30 22 | 99.22 21 | 99.39 39 | 99.94 3 | 99.66 15 | 98.91 103 | 99.86 8 | 97.74 47 | 98.74 110 | 99.00 85 | 99.60 39 | 99.17 50 | 99.50 22 | 99.39 22 | 99.70 25 | 99.64 3 |
|
ACMH+ | | 97.53 7 | 99.29 23 | 99.20 22 | 99.40 38 | 99.81 27 | 99.22 55 | 99.59 27 | 99.50 62 | 98.64 16 | 98.29 143 | 99.21 70 | 99.69 19 | 99.57 12 | 99.53 21 | 99.33 27 | 99.66 29 | 98.81 74 |
|
Vis-MVSNet | | | 99.25 24 | 99.32 14 | 99.17 62 | 99.65 73 | 99.55 22 | 99.63 22 | 99.33 97 | 98.16 26 | 99.29 45 | 99.65 30 | 99.77 10 | 97.56 136 | 99.44 28 | 99.14 37 | 99.58 35 | 99.51 12 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TranMVSNet+NR-MVSNet | | | 99.23 25 | 98.91 35 | 99.61 15 | 99.81 27 | 99.45 28 | 99.47 39 | 99.68 26 | 97.28 71 | 99.39 35 | 99.54 45 | 99.08 97 | 99.45 22 | 99.09 44 | 98.84 57 | 99.83 12 | 99.04 48 |
|
CSCG | | | 99.23 25 | 99.15 23 | 99.32 51 | 99.83 22 | 99.45 28 | 98.97 95 | 99.21 117 | 98.83 13 | 99.04 82 | 99.43 53 | 99.64 32 | 99.26 42 | 98.85 70 | 98.20 98 | 99.62 32 | 99.62 6 |
|
Gipuma | | | 99.22 27 | 98.86 38 | 99.64 12 | 99.70 62 | 99.24 50 | 99.17 79 | 99.63 36 | 99.52 3 | 99.89 1 | 96.54 167 | 99.14 87 | 99.93 1 | 99.42 29 | 99.15 36 | 99.52 42 | 99.04 48 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
tfpnnormal | | | 99.19 28 | 98.90 36 | 99.54 24 | 99.81 27 | 99.55 22 | 99.60 26 | 99.54 53 | 98.53 19 | 99.23 52 | 98.40 103 | 98.23 140 | 99.40 31 | 99.29 33 | 99.36 25 | 99.63 31 | 98.95 62 |
|
Baseline_NR-MVSNet | | | 99.18 29 | 98.87 37 | 99.54 24 | 99.74 52 | 99.56 20 | 99.36 51 | 99.62 41 | 96.53 113 | 99.29 45 | 99.85 14 | 98.64 127 | 99.40 31 | 99.03 55 | 99.63 7 | 99.83 12 | 98.86 70 |
|
thisisatest0515 | | | 99.16 30 | 98.94 33 | 99.41 34 | 99.75 46 | 99.43 31 | 99.36 51 | 99.63 36 | 97.68 53 | 99.35 37 | 99.31 59 | 98.90 107 | 99.09 58 | 98.95 60 | 99.20 33 | 99.27 79 | 99.11 38 |
|
APDe-MVS | | | 99.15 31 | 98.95 30 | 99.39 39 | 99.77 37 | 99.28 47 | 99.52 34 | 99.54 53 | 97.22 76 | 99.06 77 | 99.20 71 | 99.64 32 | 99.05 62 | 99.14 38 | 99.02 46 | 99.39 60 | 99.17 35 |
|
FC-MVSNet-train | | | 99.13 32 | 99.05 27 | 99.21 57 | 99.87 16 | 99.57 19 | 99.67 17 | 99.60 43 | 96.75 99 | 98.28 144 | 99.48 48 | 99.52 44 | 98.10 115 | 99.47 25 | 99.37 24 | 99.76 22 | 99.21 32 |
|
NR-MVSNet | | | 99.10 33 | 98.68 53 | 99.58 19 | 99.89 13 | 99.23 52 | 99.35 54 | 99.63 36 | 96.58 107 | 99.36 36 | 99.05 79 | 98.67 125 | 99.46 20 | 99.63 14 | 98.73 71 | 99.80 16 | 98.88 69 |
|
DVP-MVS | | | 99.09 34 | 99.07 26 | 99.12 70 | 99.55 95 | 99.40 34 | 99.36 51 | 99.44 78 | 97.75 44 | 98.23 147 | 99.23 67 | 99.80 7 | 98.97 67 | 99.08 46 | 98.96 47 | 99.19 87 | 99.25 24 |
|
UniMVSNet (Re) | | | 99.08 35 | 98.69 51 | 99.54 24 | 99.75 46 | 99.33 42 | 99.29 62 | 99.64 35 | 96.75 99 | 99.48 28 | 99.30 61 | 98.69 121 | 99.26 42 | 98.94 62 | 98.76 67 | 99.78 19 | 99.02 52 |
|
ACMMPR | | | 99.05 36 | 98.72 47 | 99.44 29 | 99.79 32 | 99.12 67 | 99.35 54 | 99.56 47 | 97.74 47 | 99.21 53 | 97.72 129 | 99.55 42 | 99.29 39 | 98.90 68 | 98.81 60 | 99.41 59 | 99.19 33 |
|
DU-MVS | | | 99.04 37 | 98.59 57 | 99.56 21 | 99.74 52 | 99.23 52 | 99.29 62 | 99.63 36 | 96.58 107 | 99.55 21 | 99.05 79 | 98.68 123 | 99.36 35 | 99.03 55 | 98.60 78 | 99.77 20 | 98.97 57 |
|
TSAR-MVS + MP. | | | 99.02 38 | 98.95 30 | 99.11 73 | 99.23 150 | 98.79 111 | 99.51 35 | 98.73 158 | 97.50 61 | 98.56 120 | 99.03 82 | 99.59 40 | 99.16 52 | 99.29 33 | 99.17 35 | 99.50 47 | 99.24 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
v10 | | | 99.01 39 | 98.66 54 | 99.41 34 | 99.52 106 | 99.39 35 | 99.57 29 | 99.66 30 | 97.59 58 | 99.32 41 | 99.88 9 | 99.23 72 | 99.50 18 | 97.77 133 | 97.98 107 | 98.92 120 | 98.78 79 |
|
EG-PatchMatch MVS | | | 99.01 39 | 98.77 43 | 99.28 56 | 99.64 76 | 98.90 104 | 98.81 115 | 99.27 108 | 96.55 111 | 99.71 6 | 99.31 59 | 99.66 26 | 99.17 50 | 99.28 35 | 99.11 38 | 99.10 94 | 98.57 95 |
|
PVSNet_Blended_VisFu | | | 98.98 41 | 98.79 41 | 99.21 57 | 99.76 43 | 99.34 40 | 99.35 54 | 99.35 93 | 97.12 82 | 99.46 31 | 99.56 40 | 98.89 108 | 98.08 118 | 99.05 49 | 98.58 80 | 99.27 79 | 98.98 56 |
|
HFP-MVS | | | 98.97 42 | 98.70 49 | 99.29 54 | 99.67 67 | 98.98 87 | 99.13 84 | 99.53 56 | 97.76 41 | 98.90 96 | 98.07 117 | 99.50 50 | 99.14 56 | 98.64 81 | 98.78 64 | 99.37 62 | 99.18 34 |
|
UniMVSNet_NR-MVSNet | | | 98.97 42 | 98.46 68 | 99.56 21 | 99.76 43 | 99.34 40 | 99.29 62 | 99.61 42 | 96.55 111 | 99.55 21 | 99.05 79 | 97.96 148 | 99.36 35 | 98.84 71 | 98.50 86 | 99.81 15 | 98.97 57 |
|
SED-MVS | | | 98.94 44 | 98.95 30 | 98.91 95 | 99.43 122 | 99.38 37 | 99.12 86 | 99.46 72 | 97.05 85 | 98.43 135 | 99.23 67 | 99.79 8 | 97.99 121 | 99.05 49 | 98.94 49 | 99.05 106 | 99.23 29 |
|
ACMMP_NAP | | | 98.94 44 | 98.72 47 | 99.21 57 | 99.67 67 | 99.08 70 | 99.26 67 | 99.39 81 | 96.84 90 | 98.88 100 | 98.22 110 | 99.68 22 | 98.82 75 | 99.06 48 | 98.90 52 | 99.25 82 | 99.25 24 |
|
zzz-MVS | | | 98.94 44 | 98.57 60 | 99.37 46 | 99.77 37 | 99.15 64 | 99.24 70 | 99.55 49 | 97.38 67 | 99.16 63 | 96.64 163 | 99.69 19 | 99.15 54 | 99.09 44 | 98.92 51 | 99.37 62 | 99.11 38 |
|
v1144 | | | 98.94 44 | 98.53 63 | 99.42 33 | 99.62 80 | 99.03 81 | 99.58 28 | 99.36 90 | 97.99 30 | 99.49 27 | 99.91 8 | 99.20 77 | 99.51 17 | 97.61 138 | 97.85 114 | 98.95 115 | 98.10 134 |
|
v8 | | | 98.94 44 | 98.60 55 | 99.35 49 | 99.54 99 | 99.39 35 | 99.55 31 | 99.67 29 | 97.48 62 | 99.13 69 | 99.81 19 | 99.10 93 | 99.39 33 | 97.86 128 | 97.89 112 | 98.81 129 | 98.66 86 |
|
SteuartSystems-ACMMP | | | 98.94 44 | 98.52 64 | 99.43 32 | 99.79 32 | 99.13 66 | 99.33 58 | 99.55 49 | 96.17 129 | 99.04 82 | 97.53 135 | 99.65 30 | 99.46 20 | 99.04 54 | 98.76 67 | 99.44 54 | 99.35 19 |
Skip Steuart: Steuart Systems R&D Blog. |
v1192 | | | 98.91 50 | 98.48 67 | 99.41 34 | 99.61 84 | 99.03 81 | 99.64 19 | 99.25 112 | 97.91 36 | 99.58 17 | 99.92 4 | 99.07 99 | 99.45 22 | 97.55 142 | 97.68 128 | 98.93 117 | 98.23 124 |
|
FMVSNet1 | | | 98.90 51 | 99.10 25 | 98.67 119 | 99.54 99 | 99.48 25 | 99.22 73 | 99.66 30 | 98.39 23 | 97.50 177 | 99.66 27 | 99.04 100 | 96.58 158 | 99.05 49 | 99.03 43 | 99.52 42 | 99.08 44 |
|
ACMM | | 96.66 11 | 98.90 51 | 98.44 72 | 99.44 29 | 99.74 52 | 98.95 93 | 99.47 39 | 99.55 49 | 97.66 55 | 99.09 74 | 96.43 169 | 99.41 54 | 99.35 37 | 98.95 60 | 98.67 74 | 99.45 52 | 99.03 50 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20231211 | | | 98.89 53 | 98.79 41 | 98.99 88 | 99.82 24 | 99.41 33 | 99.18 78 | 99.31 103 | 96.92 87 | 98.54 123 | 98.58 100 | 98.84 113 | 97.46 138 | 99.45 26 | 99.29 29 | 99.65 30 | 99.08 44 |
|
v1921920 | | | 98.89 53 | 98.46 68 | 99.39 39 | 99.58 88 | 99.04 79 | 99.64 19 | 99.17 123 | 97.91 36 | 99.64 15 | 99.92 4 | 98.99 105 | 99.44 25 | 97.44 149 | 97.57 137 | 98.84 127 | 98.35 114 |
|
v144192 | | | 98.88 55 | 98.46 68 | 99.37 46 | 99.56 94 | 99.03 81 | 99.61 25 | 99.26 109 | 97.79 40 | 99.58 17 | 99.88 9 | 99.11 92 | 99.43 27 | 97.38 154 | 97.61 133 | 98.80 131 | 98.43 109 |
|
SMA-MVS | | | 98.87 56 | 98.73 46 | 99.04 81 | 99.72 58 | 99.05 75 | 98.64 126 | 99.17 123 | 96.31 124 | 98.80 105 | 99.07 77 | 99.70 18 | 98.67 83 | 98.93 65 | 98.82 58 | 99.23 85 | 99.23 29 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMP | | 96.54 13 | 98.87 56 | 98.40 77 | 99.41 34 | 99.74 52 | 98.88 105 | 99.29 62 | 99.50 62 | 96.85 89 | 98.96 88 | 97.05 150 | 99.66 26 | 99.43 27 | 98.98 59 | 98.60 78 | 99.52 42 | 98.81 74 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DCV-MVSNet | | | 98.86 58 | 98.57 60 | 99.19 60 | 99.86 20 | 99.67 13 | 99.39 47 | 99.71 23 | 97.53 60 | 98.69 113 | 95.85 180 | 98.48 131 | 97.75 130 | 99.57 19 | 99.41 21 | 99.72 24 | 99.48 14 |
|
v1240 | | | 98.86 58 | 98.41 76 | 99.38 44 | 99.59 86 | 99.05 75 | 99.65 18 | 99.14 128 | 97.68 53 | 99.66 13 | 99.93 3 | 98.72 120 | 99.45 22 | 97.38 154 | 97.72 126 | 98.79 132 | 98.35 114 |
|
CP-MVS | | | 98.86 58 | 98.43 75 | 99.36 48 | 99.68 65 | 98.97 91 | 99.19 76 | 99.46 72 | 96.60 105 | 99.20 54 | 97.11 149 | 99.51 48 | 99.15 54 | 98.92 66 | 98.82 58 | 99.45 52 | 99.08 44 |
|
v2v482 | | | 98.85 61 | 98.40 77 | 99.38 44 | 99.65 73 | 98.98 87 | 99.55 31 | 99.39 81 | 97.92 35 | 99.35 37 | 99.85 14 | 99.14 87 | 99.39 33 | 97.50 144 | 97.78 117 | 98.98 112 | 97.60 148 |
|
DPE-MVS | | | 98.84 62 | 98.69 51 | 99.00 85 | 99.05 168 | 99.26 48 | 99.19 76 | 99.35 93 | 95.85 137 | 98.74 110 | 99.27 63 | 99.66 26 | 98.30 107 | 98.90 68 | 98.93 50 | 99.37 62 | 99.00 54 |
|
OPM-MVS | | | 98.84 62 | 98.59 57 | 99.12 70 | 99.52 106 | 98.50 135 | 99.13 84 | 99.22 115 | 97.76 41 | 98.76 107 | 98.70 94 | 99.61 37 | 98.90 70 | 98.67 79 | 98.37 92 | 99.19 87 | 98.57 95 |
|
test20.03 | | | 98.84 62 | 98.74 45 | 98.95 91 | 99.77 37 | 99.33 42 | 99.21 75 | 99.46 72 | 97.29 70 | 98.88 100 | 99.65 30 | 99.10 93 | 97.07 150 | 99.11 41 | 98.76 67 | 99.32 72 | 97.98 138 |
|
casdiffmvs | | | 98.84 62 | 98.75 44 | 98.94 94 | 99.75 46 | 99.21 56 | 99.33 58 | 99.04 139 | 98.04 28 | 97.46 180 | 99.72 24 | 99.72 15 | 98.60 87 | 98.30 103 | 98.37 92 | 99.48 49 | 97.92 140 |
|
LGP-MVS_train | | | 98.84 62 | 98.33 83 | 99.44 29 | 99.78 35 | 98.98 87 | 99.39 47 | 99.55 49 | 95.41 145 | 98.90 96 | 97.51 136 | 99.68 22 | 99.44 25 | 99.03 55 | 98.81 60 | 99.57 36 | 98.91 65 |
|
RPSCF | | | 98.84 62 | 98.81 40 | 98.89 97 | 99.37 129 | 98.95 93 | 98.51 138 | 98.85 151 | 97.73 49 | 98.33 140 | 98.97 87 | 99.14 87 | 98.95 68 | 99.18 37 | 98.68 73 | 99.31 73 | 98.99 55 |
|
ACMMP | | | 98.82 68 | 98.33 83 | 99.39 39 | 99.77 37 | 99.14 65 | 99.37 50 | 99.54 53 | 96.47 117 | 99.03 84 | 96.26 173 | 99.52 44 | 99.28 40 | 98.92 66 | 98.80 63 | 99.37 62 | 99.16 36 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
V42 | | | 98.81 69 | 98.49 66 | 99.18 61 | 99.52 106 | 98.92 99 | 99.50 36 | 99.29 105 | 97.43 65 | 98.97 86 | 99.81 19 | 99.00 104 | 99.30 38 | 97.93 124 | 98.01 105 | 98.51 155 | 98.34 118 |
|
LS3D | | | 98.79 70 | 98.52 64 | 99.12 70 | 99.64 76 | 99.09 69 | 99.24 70 | 99.46 72 | 97.75 44 | 98.93 94 | 97.47 137 | 98.23 140 | 97.98 122 | 99.36 30 | 99.30 28 | 99.46 50 | 98.42 110 |
|
MP-MVS | | | 98.78 71 | 98.30 85 | 99.34 50 | 99.75 46 | 98.95 93 | 99.26 67 | 99.46 72 | 95.78 140 | 99.17 60 | 96.98 154 | 99.72 15 | 99.06 61 | 98.84 71 | 98.74 70 | 99.33 69 | 99.11 38 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v148 | | | 98.77 72 | 98.45 71 | 99.15 66 | 99.68 65 | 98.94 97 | 99.49 37 | 99.31 103 | 97.95 32 | 98.91 95 | 99.65 30 | 99.62 36 | 99.18 47 | 97.99 122 | 97.64 132 | 98.33 160 | 97.38 154 |
|
SD-MVS | | | 98.73 73 | 98.54 62 | 98.95 91 | 99.14 159 | 98.76 114 | 98.46 142 | 99.14 128 | 97.71 51 | 98.56 120 | 98.06 119 | 99.61 37 | 98.85 74 | 98.56 83 | 97.74 123 | 99.54 39 | 99.32 21 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSP-MVS | | | 98.72 74 | 98.60 55 | 98.87 99 | 99.67 67 | 99.33 42 | 99.15 81 | 99.26 109 | 96.99 86 | 97.90 167 | 98.19 112 | 99.74 12 | 98.29 108 | 97.69 136 | 98.96 47 | 98.96 113 | 99.27 23 |
|
PGM-MVS | | | 98.69 75 | 98.09 102 | 99.39 39 | 99.76 43 | 99.07 71 | 99.30 61 | 99.51 60 | 94.76 156 | 99.18 59 | 96.70 161 | 99.51 48 | 99.20 45 | 98.79 75 | 98.71 72 | 99.39 60 | 99.11 38 |
|
pmmvs-eth3d | | | 98.68 76 | 98.14 98 | 99.29 54 | 99.49 111 | 98.45 138 | 99.45 43 | 99.38 86 | 97.21 77 | 99.50 26 | 99.65 30 | 99.21 75 | 99.16 52 | 97.11 161 | 97.56 138 | 98.79 132 | 97.82 144 |
|
EU-MVSNet | | | 98.68 76 | 98.94 33 | 98.37 139 | 99.14 159 | 98.74 116 | 99.64 19 | 98.20 184 | 98.21 24 | 99.17 60 | 99.66 27 | 99.18 80 | 99.08 59 | 99.11 41 | 98.86 53 | 95.00 195 | 98.83 71 |
|
PMVS | | 92.51 17 | 98.66 78 | 98.86 38 | 98.43 134 | 99.26 145 | 98.98 87 | 98.60 132 | 98.59 168 | 97.73 49 | 99.45 32 | 99.38 56 | 98.54 130 | 95.24 176 | 99.62 15 | 99.61 12 | 99.42 56 | 98.17 131 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepC-MVS_fast | | 97.38 8 | 98.65 79 | 98.34 82 | 99.02 84 | 99.33 133 | 98.29 145 | 98.99 93 | 98.71 160 | 97.40 66 | 99.31 42 | 98.20 111 | 99.40 57 | 98.54 95 | 98.33 100 | 98.18 99 | 99.23 85 | 98.58 93 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator | | 98.16 3 | 98.65 79 | 98.35 81 | 99.00 85 | 99.59 86 | 98.70 119 | 98.90 107 | 99.36 90 | 97.97 31 | 99.09 74 | 96.55 166 | 99.09 95 | 97.97 123 | 98.70 78 | 98.65 76 | 99.12 93 | 98.81 74 |
|
TSAR-MVS + ACMM | | | 98.64 81 | 98.58 59 | 98.72 113 | 99.17 157 | 98.63 124 | 98.69 122 | 99.10 135 | 97.69 52 | 98.30 142 | 99.12 75 | 99.38 59 | 98.70 82 | 98.45 86 | 97.51 140 | 98.35 159 | 99.25 24 |
|
DELS-MVS | | | 98.63 82 | 98.70 49 | 98.55 130 | 99.24 149 | 99.04 79 | 98.96 96 | 98.52 171 | 96.83 92 | 98.38 137 | 99.58 38 | 99.68 22 | 97.06 151 | 98.74 77 | 98.44 88 | 99.10 94 | 98.59 92 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
QAPM | | | 98.62 83 | 98.40 77 | 98.89 97 | 99.57 93 | 98.80 110 | 98.63 127 | 99.35 93 | 96.82 93 | 98.60 117 | 98.85 92 | 99.08 97 | 98.09 117 | 98.31 101 | 98.21 96 | 99.08 99 | 98.72 81 |
|
EPP-MVSNet | | | 98.61 84 | 98.19 94 | 99.11 73 | 99.86 20 | 99.60 17 | 99.44 44 | 99.53 56 | 97.37 68 | 96.85 193 | 98.69 95 | 93.75 180 | 99.18 47 | 99.22 36 | 99.35 26 | 99.82 14 | 99.32 21 |
|
3Dnovator+ | | 97.85 5 | 98.61 84 | 98.14 98 | 99.15 66 | 99.62 80 | 98.37 143 | 99.10 87 | 99.51 60 | 98.04 28 | 98.98 85 | 96.07 177 | 98.75 119 | 98.55 93 | 98.51 85 | 98.40 89 | 99.17 89 | 98.82 72 |
|
X-MVS | | | 98.59 86 | 97.99 108 | 99.30 53 | 99.75 46 | 99.07 71 | 99.17 79 | 99.50 62 | 96.62 103 | 98.95 90 | 93.95 195 | 99.37 60 | 99.11 57 | 98.94 62 | 98.86 53 | 99.35 67 | 99.09 43 |
|
MVS_111021_HR | | | 98.58 87 | 98.26 88 | 98.96 90 | 99.32 136 | 98.81 108 | 98.48 140 | 98.99 144 | 96.81 95 | 99.16 63 | 98.07 117 | 99.23 72 | 98.89 72 | 98.43 88 | 98.27 95 | 98.90 122 | 98.24 123 |
|
MVS_0304 | | | 98.57 88 | 98.36 80 | 98.82 106 | 99.72 58 | 98.94 97 | 98.92 101 | 99.14 128 | 96.76 98 | 99.33 40 | 98.30 107 | 99.73 13 | 96.74 154 | 98.05 119 | 97.79 116 | 99.08 99 | 98.97 57 |
|
PM-MVS | | | 98.57 88 | 98.24 90 | 98.95 91 | 99.26 145 | 98.59 127 | 99.03 90 | 98.74 157 | 96.84 90 | 99.44 33 | 99.13 74 | 98.31 139 | 98.75 80 | 98.03 120 | 98.21 96 | 98.48 156 | 98.58 93 |
|
PHI-MVS | | | 98.57 88 | 98.20 93 | 99.00 85 | 99.48 113 | 98.91 101 | 98.68 123 | 99.17 123 | 94.97 152 | 99.27 50 | 98.33 105 | 99.33 64 | 98.05 119 | 98.82 73 | 98.62 77 | 99.34 68 | 98.38 112 |
|
HPM-MVS++ | | | 98.56 91 | 98.08 103 | 99.11 73 | 99.53 102 | 98.61 126 | 99.02 92 | 99.32 101 | 96.29 126 | 99.06 77 | 97.23 144 | 99.50 50 | 98.77 78 | 98.15 115 | 97.90 110 | 98.96 113 | 98.90 66 |
|
TSAR-MVS + GP. | | | 98.54 92 | 98.29 87 | 98.82 106 | 99.28 143 | 98.59 127 | 97.73 181 | 99.24 114 | 95.93 135 | 98.59 118 | 99.07 77 | 99.17 81 | 98.86 73 | 98.44 87 | 98.10 101 | 99.26 81 | 98.72 81 |
|
UGNet | | | 98.52 93 | 99.00 29 | 97.96 160 | 99.58 88 | 99.26 48 | 99.27 66 | 99.40 79 | 98.07 27 | 98.28 144 | 98.76 93 | 99.71 17 | 92.24 203 | 98.94 62 | 98.85 55 | 99.00 111 | 99.43 17 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231206 | | | 98.50 94 | 98.03 105 | 99.05 79 | 99.50 109 | 99.01 84 | 99.15 81 | 99.26 109 | 96.38 122 | 99.12 71 | 99.50 47 | 99.12 90 | 98.60 87 | 97.68 137 | 97.24 151 | 98.66 140 | 97.30 158 |
|
CLD-MVS | | | 98.48 95 | 98.15 97 | 98.86 102 | 99.53 102 | 98.35 144 | 98.55 135 | 97.83 193 | 96.02 134 | 98.97 86 | 99.08 76 | 99.75 11 | 99.03 63 | 98.10 118 | 97.33 147 | 99.28 77 | 98.44 108 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 98.47 96 | 98.30 85 | 98.67 119 | 99.65 73 | 98.87 106 | 98.82 114 | 99.01 142 | 96.14 130 | 99.29 45 | 98.86 90 | 99.01 102 | 96.54 159 | 98.36 94 | 98.08 102 | 98.72 136 | 98.80 78 |
|
APD-MVS | | | 98.47 96 | 97.97 109 | 99.05 79 | 99.64 76 | 98.91 101 | 98.94 98 | 99.45 77 | 94.40 167 | 98.77 106 | 97.26 143 | 99.41 54 | 98.21 111 | 98.67 79 | 98.57 83 | 99.31 73 | 98.57 95 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Vis-MVSNet (Re-imp) | | | 98.46 98 | 98.23 91 | 98.73 112 | 99.81 27 | 99.29 46 | 98.79 117 | 99.50 62 | 96.20 128 | 96.03 199 | 98.29 108 | 96.98 163 | 98.54 95 | 99.11 41 | 99.08 39 | 99.70 25 | 98.62 89 |
|
Fast-Effi-MVS+ | | | 98.42 99 | 97.79 115 | 99.15 66 | 99.69 64 | 98.66 122 | 98.94 98 | 99.68 26 | 94.49 161 | 99.05 79 | 98.06 119 | 98.86 110 | 98.48 98 | 98.18 112 | 97.78 117 | 99.05 106 | 98.54 100 |
|
ETV-MVS | | | 98.41 100 | 97.76 116 | 99.17 62 | 99.58 88 | 99.01 84 | 98.91 103 | 99.50 62 | 93.33 186 | 99.31 42 | 96.82 158 | 98.42 135 | 98.17 114 | 99.13 40 | 99.08 39 | 99.54 39 | 98.56 98 |
|
MVS_111021_LR | | | 98.39 101 | 98.11 100 | 98.71 115 | 99.08 165 | 98.54 133 | 98.23 162 | 98.56 170 | 96.57 109 | 99.13 69 | 98.41 102 | 98.86 110 | 98.65 85 | 98.23 110 | 97.87 113 | 98.65 142 | 98.28 120 |
|
pmmvs5 | | | 98.37 102 | 97.81 114 | 99.03 82 | 99.46 115 | 98.97 91 | 99.03 90 | 98.96 146 | 95.85 137 | 99.05 79 | 99.45 50 | 98.66 126 | 98.79 77 | 96.02 178 | 97.52 139 | 98.87 124 | 98.21 127 |
|
OMC-MVS | | | 98.35 103 | 98.10 101 | 98.64 125 | 98.85 176 | 97.99 165 | 98.56 134 | 98.21 182 | 97.26 74 | 98.87 102 | 98.54 101 | 99.27 70 | 98.43 100 | 98.34 98 | 97.66 129 | 98.92 120 | 97.65 147 |
|
canonicalmvs | | | 98.34 104 | 97.92 111 | 98.83 104 | 99.45 117 | 99.21 56 | 98.37 149 | 99.53 56 | 97.06 84 | 97.74 171 | 96.95 156 | 95.05 177 | 98.36 103 | 98.77 76 | 98.85 55 | 99.51 46 | 99.53 9 |
|
CHOSEN 1792x2688 | | | 98.31 105 | 98.02 106 | 98.66 121 | 99.55 95 | 98.57 130 | 99.38 49 | 99.25 112 | 98.42 20 | 98.48 131 | 99.58 38 | 99.85 5 | 98.31 106 | 95.75 181 | 95.71 176 | 96.96 183 | 98.27 122 |
|
xxxxxxxxxxxxxcwj | | | 98.28 106 | 98.23 91 | 98.35 140 | 99.43 122 | 98.42 141 | 97.05 203 | 99.09 136 | 96.42 119 | 98.13 153 | 97.73 127 | 99.65 30 | 97.22 144 | 98.36 94 | 98.38 90 | 99.16 91 | 98.62 89 |
|
CPTT-MVS | | | 98.28 106 | 97.51 128 | 99.16 64 | 99.54 99 | 98.78 112 | 98.96 96 | 99.36 90 | 96.30 125 | 98.89 99 | 93.10 200 | 99.30 67 | 99.20 45 | 98.35 97 | 97.96 108 | 99.03 109 | 98.82 72 |
|
TinyColmap | | | 98.27 108 | 97.62 125 | 99.03 82 | 99.29 141 | 97.79 174 | 98.92 101 | 98.95 147 | 97.48 62 | 99.52 24 | 98.65 97 | 97.86 150 | 98.90 70 | 98.34 98 | 97.27 149 | 98.64 143 | 95.97 178 |
|
diffmvs | | | 98.26 109 | 98.16 95 | 98.39 136 | 99.61 84 | 98.78 112 | 98.79 117 | 98.61 166 | 97.94 33 | 97.11 192 | 99.51 46 | 99.52 44 | 97.61 134 | 96.55 170 | 96.93 157 | 98.61 145 | 97.87 142 |
|
USDC | | | 98.26 109 | 97.57 126 | 99.06 76 | 99.42 126 | 97.98 167 | 98.83 111 | 98.85 151 | 97.57 59 | 99.59 16 | 99.15 73 | 98.59 128 | 98.99 65 | 97.42 150 | 96.08 175 | 98.69 139 | 96.23 176 |
|
SF-MVS | | | 98.25 111 | 98.16 95 | 98.35 140 | 99.43 122 | 98.42 141 | 97.05 203 | 99.09 136 | 96.42 119 | 98.13 153 | 97.73 127 | 99.20 77 | 97.22 144 | 98.36 94 | 98.38 90 | 99.16 91 | 98.62 89 |
|
MCST-MVS | | | 98.25 111 | 97.57 126 | 99.06 76 | 99.53 102 | 98.24 151 | 98.63 127 | 99.17 123 | 95.88 136 | 98.58 119 | 96.11 175 | 99.09 95 | 99.18 47 | 97.58 141 | 97.31 148 | 99.25 82 | 98.75 80 |
|
IterMVS-LS | | | 98.23 113 | 97.66 121 | 98.90 96 | 99.63 79 | 99.38 37 | 99.07 88 | 99.48 68 | 97.75 44 | 98.81 104 | 99.37 57 | 94.57 179 | 97.88 127 | 96.54 171 | 97.04 154 | 98.53 152 | 98.97 57 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TAPA-MVS | | 96.65 12 | 98.23 113 | 97.96 110 | 98.55 130 | 98.81 178 | 98.16 155 | 98.40 146 | 97.94 191 | 96.68 101 | 98.49 129 | 98.61 98 | 98.89 108 | 98.57 91 | 97.45 147 | 97.59 135 | 99.09 98 | 98.35 114 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CNVR-MVS | | | 98.22 115 | 97.76 116 | 98.76 110 | 99.33 133 | 98.26 149 | 98.48 140 | 98.88 150 | 96.22 127 | 98.47 133 | 95.79 181 | 99.33 64 | 98.35 104 | 98.37 93 | 97.99 106 | 99.03 109 | 98.38 112 |
|
IS_MVSNet | | | 98.20 116 | 98.00 107 | 98.44 133 | 99.82 24 | 99.48 25 | 99.25 69 | 99.56 47 | 95.58 142 | 93.93 211 | 97.56 134 | 96.52 167 | 98.27 109 | 99.08 46 | 99.20 33 | 99.80 16 | 98.56 98 |
|
DeepPCF-MVS | | 96.68 10 | 98.20 116 | 98.26 88 | 98.12 154 | 97.03 214 | 98.11 158 | 98.44 144 | 97.70 195 | 96.77 97 | 98.52 125 | 98.91 88 | 99.17 81 | 98.58 90 | 98.41 90 | 98.02 104 | 98.46 157 | 98.46 105 |
|
MSDG | | | 98.20 116 | 97.88 113 | 98.56 129 | 99.33 133 | 97.74 175 | 98.27 159 | 98.10 185 | 97.20 79 | 98.06 158 | 98.59 99 | 99.16 83 | 98.76 79 | 98.39 91 | 97.71 127 | 98.86 126 | 96.38 173 |
|
testgi | | | 98.18 119 | 98.44 72 | 97.89 162 | 99.78 35 | 99.23 52 | 98.78 119 | 99.21 117 | 97.26 74 | 97.41 182 | 97.39 140 | 99.36 63 | 92.85 200 | 98.82 73 | 98.66 75 | 99.31 73 | 98.35 114 |
|
CS-MVS | | | 98.13 120 | 97.25 138 | 99.16 64 | 99.71 61 | 99.44 30 | 98.80 116 | 99.49 67 | 93.16 189 | 99.19 56 | 93.95 195 | 98.47 133 | 98.19 113 | 98.30 103 | 98.78 64 | 99.56 37 | 98.66 86 |
|
Effi-MVS+ | | | 98.11 121 | 97.29 134 | 99.06 76 | 99.62 80 | 98.55 131 | 98.16 165 | 99.80 14 | 94.64 157 | 99.15 67 | 96.59 164 | 97.43 156 | 98.44 99 | 97.46 146 | 97.90 110 | 99.17 89 | 98.45 107 |
|
HyFIR lowres test | | | 98.08 122 | 97.16 144 | 99.14 69 | 99.72 58 | 98.91 101 | 99.41 45 | 99.58 44 | 97.93 34 | 98.82 103 | 99.24 65 | 95.81 173 | 98.73 81 | 95.16 192 | 95.13 185 | 98.60 147 | 97.94 139 |
|
EIA-MVS | | | 98.03 123 | 97.20 141 | 98.99 88 | 99.66 70 | 99.24 50 | 98.53 137 | 99.52 59 | 91.56 203 | 99.25 51 | 95.34 185 | 98.78 116 | 97.72 131 | 98.38 92 | 98.58 80 | 99.28 77 | 98.54 100 |
|
train_agg | | | 97.99 124 | 97.26 135 | 98.83 104 | 99.43 122 | 98.22 153 | 98.91 103 | 99.07 138 | 94.43 165 | 97.96 164 | 96.42 170 | 99.30 67 | 98.81 76 | 97.39 152 | 96.62 163 | 98.82 128 | 98.47 103 |
|
MSLP-MVS++ | | | 97.99 124 | 97.64 124 | 98.40 135 | 98.91 174 | 98.47 137 | 97.12 201 | 98.78 155 | 96.49 115 | 98.48 131 | 93.57 198 | 99.12 90 | 98.51 97 | 98.31 101 | 98.58 80 | 98.58 149 | 98.95 62 |
|
CDPH-MVS | | | 97.99 124 | 97.23 139 | 98.87 99 | 99.58 88 | 98.29 145 | 98.83 111 | 99.20 119 | 93.76 180 | 98.11 156 | 96.11 175 | 99.16 83 | 98.23 110 | 97.80 131 | 97.22 152 | 99.29 76 | 98.28 120 |
|
FMVSNet2 | | | 97.94 127 | 98.08 103 | 97.77 168 | 98.71 182 | 99.21 56 | 98.62 129 | 99.47 69 | 96.62 103 | 96.37 198 | 99.20 71 | 97.70 152 | 94.39 187 | 97.39 152 | 97.75 122 | 99.08 99 | 98.70 83 |
|
PVSNet_BlendedMVS | | | 97.93 128 | 97.66 121 | 98.25 147 | 99.30 138 | 98.67 120 | 98.31 154 | 97.95 189 | 94.30 171 | 98.75 108 | 97.63 131 | 98.76 117 | 96.30 166 | 98.29 105 | 97.78 117 | 98.93 117 | 98.18 129 |
|
PVSNet_Blended | | | 97.93 128 | 97.66 121 | 98.25 147 | 99.30 138 | 98.67 120 | 98.31 154 | 97.95 189 | 94.30 171 | 98.75 108 | 97.63 131 | 98.76 117 | 96.30 166 | 98.29 105 | 97.78 117 | 98.93 117 | 98.18 129 |
|
OpenMVS | | 97.26 9 | 97.88 130 | 97.17 143 | 98.70 116 | 99.50 109 | 98.55 131 | 98.34 152 | 99.11 133 | 93.92 178 | 98.90 96 | 95.04 189 | 98.23 140 | 97.38 141 | 98.11 117 | 98.12 100 | 98.95 115 | 98.23 124 |
|
pmmvs4 | | | 97.87 131 | 97.02 148 | 98.86 102 | 99.20 151 | 97.68 178 | 98.89 108 | 99.03 140 | 96.57 109 | 99.12 71 | 99.03 82 | 97.26 160 | 98.42 101 | 95.16 192 | 96.34 167 | 98.53 152 | 97.10 165 |
|
NCCC | | | 97.84 132 | 96.96 150 | 98.87 99 | 99.39 128 | 98.27 148 | 98.46 142 | 99.02 141 | 96.78 96 | 98.73 112 | 91.12 203 | 98.91 106 | 98.57 91 | 97.83 130 | 97.49 141 | 99.04 108 | 98.33 119 |
|
Effi-MVS+-dtu | | | 97.78 133 | 97.37 132 | 98.26 145 | 99.25 147 | 98.50 135 | 97.89 175 | 99.19 122 | 94.51 159 | 98.16 151 | 95.93 178 | 98.80 115 | 95.97 169 | 98.27 109 | 97.38 144 | 99.10 94 | 98.23 124 |
|
MDA-MVSNet-bldmvs | | | 97.75 134 | 97.26 135 | 98.33 142 | 99.35 132 | 98.45 138 | 99.32 60 | 97.21 199 | 97.90 38 | 99.05 79 | 99.01 84 | 96.86 165 | 99.08 59 | 99.36 30 | 92.97 195 | 95.97 192 | 96.25 175 |
|
CDS-MVSNet | | | 97.75 134 | 97.68 120 | 97.83 166 | 99.08 165 | 98.20 154 | 98.68 123 | 98.61 166 | 95.63 141 | 97.80 169 | 99.24 65 | 96.93 164 | 94.09 192 | 97.96 123 | 97.82 115 | 98.71 137 | 97.99 136 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CNLPA | | | 97.75 134 | 97.26 135 | 98.32 144 | 98.58 190 | 97.86 170 | 97.80 177 | 98.09 186 | 96.49 115 | 98.49 129 | 96.15 174 | 98.08 143 | 98.35 104 | 98.00 121 | 97.03 155 | 98.61 145 | 97.21 162 |
|
PLC | | 95.63 15 | 97.73 137 | 97.01 149 | 98.57 128 | 99.10 162 | 97.80 173 | 97.72 182 | 98.77 156 | 96.34 123 | 98.38 137 | 93.46 199 | 98.06 144 | 98.66 84 | 97.90 126 | 97.65 131 | 98.77 134 | 97.90 141 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_Test | | | 97.69 138 | 97.15 145 | 98.33 142 | 99.27 144 | 98.43 140 | 98.25 160 | 99.29 105 | 95.00 151 | 97.39 184 | 98.86 90 | 98.00 147 | 97.14 148 | 95.38 187 | 96.22 169 | 98.62 144 | 98.15 133 |
|
GBi-Net | | | 97.69 138 | 97.75 118 | 97.62 169 | 98.71 182 | 99.21 56 | 98.62 129 | 99.33 97 | 94.09 174 | 95.60 201 | 98.17 114 | 95.97 170 | 94.39 187 | 99.05 49 | 99.03 43 | 99.08 99 | 98.70 83 |
|
test1 | | | 97.69 138 | 97.75 118 | 97.62 169 | 98.71 182 | 99.21 56 | 98.62 129 | 99.33 97 | 94.09 174 | 95.60 201 | 98.17 114 | 95.97 170 | 94.39 187 | 99.05 49 | 99.03 43 | 99.08 99 | 98.70 83 |
|
CANet_DTU | | | 97.65 141 | 97.50 130 | 97.82 167 | 99.19 154 | 98.08 160 | 98.41 145 | 98.67 162 | 94.40 167 | 99.16 63 | 98.32 106 | 98.69 121 | 93.96 194 | 97.87 127 | 97.61 133 | 97.51 179 | 97.56 150 |
|
IterMVS-SCA-FT | | | 97.63 142 | 96.86 152 | 98.52 132 | 99.48 113 | 98.71 118 | 98.84 110 | 98.91 148 | 96.44 118 | 99.16 63 | 99.56 40 | 95.54 175 | 97.95 124 | 95.68 184 | 95.07 188 | 96.76 184 | 97.03 168 |
|
TSAR-MVS + COLMAP | | | 97.62 143 | 97.31 133 | 97.98 158 | 98.47 196 | 97.39 181 | 98.29 156 | 98.25 181 | 96.68 101 | 97.54 176 | 98.87 89 | 98.04 146 | 97.08 149 | 96.78 165 | 96.26 168 | 98.26 163 | 97.12 164 |
|
MS-PatchMatch | | | 97.60 144 | 97.22 140 | 98.04 157 | 98.67 186 | 97.18 185 | 97.91 173 | 98.28 180 | 95.82 139 | 98.34 139 | 97.66 130 | 98.38 136 | 97.77 129 | 97.10 162 | 97.25 150 | 97.27 181 | 97.18 163 |
|
PCF-MVS | | 95.58 16 | 97.60 144 | 96.67 153 | 98.69 117 | 99.44 120 | 98.23 152 | 98.37 149 | 98.81 153 | 93.01 192 | 98.22 148 | 97.97 123 | 99.59 40 | 98.20 112 | 95.72 183 | 95.08 186 | 99.08 99 | 97.09 167 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP-MVS | | | 97.58 146 | 96.65 156 | 98.66 121 | 99.30 138 | 97.99 165 | 97.88 176 | 98.65 163 | 94.58 158 | 98.66 114 | 94.65 192 | 99.15 86 | 98.59 89 | 96.10 176 | 95.59 177 | 98.90 122 | 98.50 102 |
|
DI_MVS_plusplus_trai | | | 97.57 147 | 96.55 158 | 98.77 109 | 99.55 95 | 98.76 114 | 99.22 73 | 99.00 143 | 97.08 83 | 97.95 165 | 97.78 126 | 91.35 187 | 98.02 120 | 96.20 174 | 96.81 159 | 98.87 124 | 97.87 142 |
|
AdaColmap | | | 97.57 147 | 96.57 157 | 98.74 111 | 99.25 147 | 98.01 163 | 98.36 151 | 98.98 145 | 94.44 164 | 98.47 133 | 92.44 201 | 97.91 149 | 98.62 86 | 98.19 111 | 97.74 123 | 98.73 135 | 97.28 159 |
|
baseline | | | 97.50 149 | 97.51 128 | 97.50 173 | 99.18 155 | 97.38 182 | 98.00 169 | 98.00 188 | 96.52 114 | 97.49 178 | 99.28 62 | 99.43 53 | 95.31 175 | 95.27 189 | 96.22 169 | 96.99 182 | 98.47 103 |
|
IterMVS | | | 97.40 150 | 96.67 153 | 98.25 147 | 99.45 117 | 98.66 122 | 98.87 109 | 98.73 158 | 96.40 121 | 98.94 93 | 99.56 40 | 95.26 176 | 97.58 135 | 95.38 187 | 94.70 190 | 95.90 193 | 96.72 171 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CVMVSNet | | | 97.38 151 | 97.39 131 | 97.37 176 | 98.58 190 | 97.72 176 | 98.70 121 | 97.42 197 | 97.21 77 | 95.95 200 | 99.46 49 | 93.31 183 | 97.38 141 | 97.60 139 | 97.78 117 | 96.18 189 | 98.66 86 |
|
new-patchmatchnet | | | 97.26 152 | 96.12 166 | 98.58 127 | 99.55 95 | 98.63 124 | 99.14 83 | 97.04 201 | 98.80 14 | 99.19 56 | 99.92 4 | 99.19 79 | 98.92 69 | 95.51 186 | 87.04 203 | 97.66 176 | 93.73 194 |
|
MIMVSNet | | | 97.24 153 | 97.15 145 | 97.36 177 | 99.03 169 | 98.52 134 | 98.55 135 | 99.73 20 | 94.94 155 | 94.94 208 | 97.98 122 | 97.37 158 | 93.66 195 | 97.60 139 | 97.34 146 | 98.23 166 | 96.29 174 |
|
PatchMatch-RL | | | 97.24 153 | 96.45 161 | 98.17 151 | 98.70 185 | 97.57 180 | 97.31 196 | 98.48 174 | 94.42 166 | 98.39 136 | 95.74 182 | 96.35 169 | 97.88 127 | 97.75 134 | 97.48 142 | 98.24 165 | 95.87 179 |
|
thisisatest0530 | | | 97.20 155 | 95.95 170 | 98.66 121 | 99.46 115 | 98.84 107 | 98.29 156 | 99.20 119 | 94.51 159 | 98.25 146 | 97.42 138 | 85.03 202 | 97.68 132 | 98.43 88 | 98.56 84 | 99.08 99 | 98.89 68 |
|
tttt0517 | | | 97.18 156 | 95.92 171 | 98.65 124 | 99.49 111 | 98.92 99 | 98.29 156 | 99.20 119 | 94.37 169 | 98.17 149 | 97.37 141 | 84.72 205 | 97.68 132 | 98.55 84 | 98.56 84 | 99.10 94 | 98.95 62 |
|
MDTV_nov1_ep13_2view | | | 97.12 157 | 96.19 165 | 98.22 150 | 99.13 161 | 98.05 161 | 99.24 70 | 99.47 69 | 97.61 56 | 99.15 67 | 99.59 36 | 99.01 102 | 98.40 102 | 94.87 195 | 90.14 198 | 93.91 198 | 94.04 193 |
|
MAR-MVS | | | 97.12 157 | 96.28 164 | 98.11 155 | 98.94 172 | 97.22 184 | 97.65 186 | 99.38 86 | 90.93 209 | 98.15 152 | 95.17 187 | 97.13 161 | 96.48 162 | 97.71 135 | 97.40 143 | 98.06 169 | 98.40 111 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Fast-Effi-MVS+-dtu | | | 96.99 159 | 96.46 160 | 97.61 171 | 98.98 171 | 97.89 168 | 97.54 190 | 99.76 17 | 93.43 184 | 96.55 197 | 94.93 190 | 98.06 144 | 94.32 190 | 96.93 163 | 96.50 165 | 98.53 152 | 97.47 151 |
|
FPMVS | | | 96.97 160 | 97.20 141 | 96.70 193 | 97.75 206 | 96.11 197 | 97.72 182 | 95.47 205 | 97.13 81 | 98.02 160 | 97.57 133 | 96.67 166 | 92.97 199 | 99.00 58 | 98.34 94 | 98.28 162 | 95.58 181 |
|
TAMVS | | | 96.95 161 | 96.94 151 | 96.97 188 | 99.07 167 | 97.67 179 | 97.98 171 | 97.12 200 | 95.04 150 | 95.41 204 | 99.27 63 | 95.57 174 | 94.09 192 | 97.32 156 | 97.11 153 | 98.16 168 | 96.59 172 |
|
FMVSNet3 | | | 96.85 162 | 96.67 153 | 97.06 182 | 97.56 209 | 99.01 84 | 97.99 170 | 99.33 97 | 94.09 174 | 95.60 201 | 98.17 114 | 95.97 170 | 93.26 198 | 94.76 197 | 96.22 169 | 98.59 148 | 98.46 105 |
|
GA-MVS | | | 96.84 163 | 95.86 173 | 97.98 158 | 99.16 158 | 98.29 145 | 97.91 173 | 98.64 165 | 95.14 148 | 97.71 172 | 98.04 121 | 88.90 190 | 96.50 161 | 96.41 173 | 96.61 164 | 97.97 173 | 97.60 148 |
|
CHOSEN 280x420 | | | 96.80 164 | 96.30 163 | 97.39 174 | 99.09 163 | 96.52 189 | 98.76 120 | 99.29 105 | 93.88 179 | 97.65 173 | 98.34 104 | 93.66 181 | 96.29 168 | 98.28 107 | 97.73 125 | 93.27 201 | 95.70 180 |
|
gg-mvs-nofinetune | | | 96.77 165 | 96.52 159 | 97.06 182 | 99.66 70 | 97.82 172 | 97.54 190 | 99.86 8 | 98.69 15 | 98.61 116 | 99.94 2 | 89.62 188 | 88.37 211 | 97.55 142 | 96.67 161 | 98.30 161 | 95.35 182 |
|
DPM-MVS | | | 96.73 166 | 95.70 176 | 97.95 161 | 98.93 173 | 97.26 183 | 97.39 195 | 98.44 176 | 95.47 144 | 97.62 174 | 90.71 204 | 98.47 133 | 97.03 152 | 95.02 194 | 95.27 182 | 98.26 163 | 97.67 146 |
|
baseline1 | | | 96.72 167 | 95.40 178 | 98.26 145 | 99.53 102 | 98.81 108 | 98.32 153 | 98.80 154 | 94.96 153 | 96.78 196 | 96.50 168 | 84.87 204 | 96.68 157 | 97.42 150 | 97.91 109 | 99.46 50 | 97.33 157 |
|
N_pmnet | | | 96.68 168 | 95.70 176 | 97.84 165 | 99.42 126 | 98.00 164 | 99.35 54 | 98.21 182 | 98.40 22 | 98.13 153 | 99.42 54 | 99.30 67 | 97.44 140 | 94.00 201 | 88.79 199 | 94.47 197 | 91.96 199 |
|
new_pmnet | | | 96.59 169 | 96.40 162 | 96.81 190 | 98.24 202 | 95.46 206 | 97.71 184 | 94.75 208 | 96.92 87 | 96.80 195 | 99.23 67 | 97.81 151 | 96.69 155 | 96.58 169 | 95.16 184 | 96.69 185 | 93.64 195 |
|
PMMVS | | | 96.47 170 | 95.81 174 | 97.23 178 | 97.38 211 | 95.96 201 | 97.31 196 | 96.91 202 | 93.21 188 | 97.93 166 | 97.14 147 | 97.64 154 | 95.70 171 | 95.24 190 | 96.18 172 | 98.17 167 | 95.33 183 |
|
EPNet | | | 96.44 171 | 96.08 167 | 96.86 189 | 99.32 136 | 97.15 186 | 97.69 185 | 99.32 101 | 93.67 181 | 98.11 156 | 95.64 183 | 93.44 182 | 89.07 209 | 96.86 164 | 96.83 158 | 97.67 175 | 98.97 57 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres600view7 | | | 96.35 172 | 94.27 180 | 98.79 108 | 99.66 70 | 99.18 61 | 98.94 98 | 99.38 86 | 94.37 169 | 97.21 191 | 87.19 206 | 84.10 206 | 98.10 115 | 98.16 113 | 99.47 18 | 99.42 56 | 97.43 152 |
|
EPNet_dtu | | | 96.31 173 | 95.96 169 | 96.72 192 | 99.18 155 | 95.39 207 | 97.03 205 | 99.13 132 | 93.02 191 | 99.35 37 | 97.23 144 | 97.07 162 | 90.70 208 | 95.74 182 | 95.08 186 | 94.94 196 | 98.16 132 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
pmmvs3 | | | 96.30 174 | 95.87 172 | 96.80 191 | 97.66 208 | 96.48 190 | 97.93 172 | 93.80 209 | 93.40 185 | 98.54 123 | 98.27 109 | 97.50 155 | 97.37 143 | 97.49 145 | 93.11 194 | 95.52 194 | 94.85 187 |
|
PMMVS2 | | | 96.29 175 | 97.05 147 | 95.40 203 | 98.32 201 | 96.16 194 | 98.18 164 | 97.46 196 | 97.20 79 | 84.51 216 | 99.60 34 | 98.68 123 | 96.37 163 | 98.59 82 | 97.38 144 | 97.58 178 | 91.76 200 |
|
thres200 | | | 96.23 176 | 94.13 181 | 98.69 117 | 99.44 120 | 99.18 61 | 98.58 133 | 99.38 86 | 93.52 183 | 97.35 185 | 86.33 211 | 85.83 200 | 97.93 125 | 98.16 113 | 98.78 64 | 99.42 56 | 97.10 165 |
|
thres400 | | | 96.22 177 | 94.08 183 | 98.72 113 | 99.58 88 | 99.05 75 | 98.83 111 | 99.22 115 | 94.01 177 | 97.40 183 | 86.34 210 | 84.91 203 | 97.93 125 | 97.85 129 | 99.08 39 | 99.37 62 | 97.28 159 |
|
tfpn200view9 | | | 96.17 178 | 94.08 183 | 98.60 126 | 99.37 129 | 99.18 61 | 98.68 123 | 99.39 81 | 92.02 197 | 97.30 187 | 86.53 208 | 86.34 197 | 97.45 139 | 98.15 115 | 99.08 39 | 99.43 55 | 97.28 159 |
|
CMPMVS | | 74.71 19 | 96.17 178 | 96.06 168 | 96.30 197 | 97.41 210 | 94.52 210 | 94.83 212 | 95.46 206 | 91.57 202 | 97.26 190 | 94.45 194 | 98.33 138 | 94.98 178 | 98.28 107 | 97.59 135 | 97.86 174 | 97.68 145 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
IB-MVS | | 95.85 14 | 95.87 180 | 94.88 179 | 97.02 185 | 99.09 163 | 98.25 150 | 97.16 198 | 97.38 198 | 91.97 200 | 97.77 170 | 83.61 213 | 97.29 159 | 92.03 206 | 97.16 160 | 97.66 129 | 98.66 140 | 98.20 128 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test0.0.03 1 | | | 95.81 181 | 95.77 175 | 95.85 202 | 99.20 151 | 98.15 157 | 97.49 194 | 98.50 172 | 92.24 193 | 92.74 214 | 96.82 158 | 92.70 184 | 88.60 210 | 97.31 158 | 97.01 156 | 98.57 150 | 96.19 177 |
|
thres100view900 | | | 95.74 182 | 93.66 192 | 98.17 151 | 99.37 129 | 98.59 127 | 98.10 166 | 98.33 179 | 92.02 197 | 97.30 187 | 86.53 208 | 86.34 197 | 96.69 155 | 96.77 166 | 98.47 87 | 99.24 84 | 96.89 169 |
|
ET-MVSNet_ETH3D | | | 95.72 183 | 93.85 188 | 97.89 162 | 97.30 212 | 98.09 159 | 98.19 163 | 98.40 177 | 94.46 163 | 98.01 163 | 96.71 160 | 77.85 216 | 96.76 153 | 96.08 177 | 96.39 166 | 98.70 138 | 97.36 155 |
|
baseline2 | | | 95.58 184 | 94.04 185 | 97.38 175 | 98.80 179 | 98.16 155 | 97.14 199 | 97.80 194 | 91.45 204 | 97.49 178 | 95.22 186 | 83.63 207 | 94.98 178 | 96.42 172 | 96.66 162 | 98.06 169 | 96.76 170 |
|
PatchT | | | 95.49 185 | 93.29 193 | 98.06 156 | 98.65 187 | 96.20 193 | 98.91 103 | 99.73 20 | 92.00 199 | 98.50 126 | 96.67 162 | 83.25 208 | 96.34 164 | 94.40 198 | 95.50 178 | 96.21 188 | 95.04 185 |
|
CR-MVSNet | | | 95.38 186 | 93.01 194 | 98.16 153 | 98.63 188 | 95.85 203 | 97.64 187 | 99.78 15 | 91.27 206 | 98.50 126 | 96.84 157 | 82.16 209 | 96.34 164 | 94.40 198 | 95.50 178 | 98.05 171 | 95.04 185 |
|
MVSTER | | | 95.38 186 | 93.99 187 | 97.01 186 | 98.83 177 | 98.95 93 | 96.62 206 | 99.14 128 | 92.17 195 | 97.44 181 | 97.29 142 | 77.88 215 | 91.63 207 | 97.45 147 | 96.18 172 | 98.41 158 | 97.99 136 |
|
MVS-HIRNet | | | 94.86 188 | 93.83 189 | 96.07 198 | 97.07 213 | 94.00 211 | 94.31 213 | 99.17 123 | 91.23 208 | 98.17 149 | 98.69 95 | 97.43 156 | 95.66 172 | 94.05 200 | 91.92 196 | 92.04 208 | 89.46 208 |
|
test-LLR | | | 94.79 189 | 93.71 190 | 96.06 199 | 99.20 151 | 96.16 194 | 96.31 207 | 98.50 172 | 89.98 210 | 94.08 209 | 97.01 151 | 86.43 195 | 92.20 204 | 96.76 167 | 95.31 180 | 96.05 190 | 94.31 190 |
|
RPMNet | | | 94.72 190 | 92.01 199 | 97.88 164 | 98.56 193 | 95.85 203 | 97.78 178 | 99.70 25 | 91.27 206 | 98.33 140 | 93.69 197 | 81.88 210 | 94.91 181 | 92.60 203 | 94.34 192 | 98.01 172 | 94.46 189 |
|
gm-plane-assit | | | 94.62 191 | 91.39 201 | 98.39 136 | 99.90 12 | 99.47 27 | 99.40 46 | 99.65 32 | 97.44 64 | 99.56 20 | 99.68 26 | 59.40 220 | 94.23 191 | 96.17 175 | 94.77 189 | 97.61 177 | 92.79 198 |
|
test-mter | | | 94.62 191 | 94.02 186 | 95.32 204 | 97.72 207 | 96.75 187 | 96.23 209 | 95.67 204 | 89.83 213 | 93.23 213 | 96.99 153 | 85.94 199 | 92.66 202 | 97.32 156 | 96.11 174 | 96.44 186 | 95.22 184 |
|
FMVSNet5 | | | 94.57 193 | 92.77 195 | 96.67 194 | 97.88 204 | 98.72 117 | 97.54 190 | 98.70 161 | 88.64 214 | 95.11 206 | 86.90 207 | 81.77 211 | 93.27 197 | 97.92 125 | 98.07 103 | 97.50 180 | 97.34 156 |
|
SCA | | | 94.53 194 | 91.95 200 | 97.55 172 | 98.58 190 | 97.86 170 | 98.49 139 | 99.68 26 | 95.11 149 | 99.07 76 | 95.87 179 | 87.24 193 | 96.53 160 | 89.77 206 | 87.08 202 | 92.96 203 | 90.69 203 |
|
MDTV_nov1_ep13 | | | 94.47 195 | 92.15 197 | 97.17 179 | 98.54 195 | 96.42 191 | 98.10 166 | 98.89 149 | 94.49 161 | 98.02 160 | 97.41 139 | 86.49 194 | 95.56 173 | 90.85 204 | 87.95 200 | 93.91 198 | 91.45 202 |
|
TESTMET0.1,1 | | | 94.44 196 | 93.71 190 | 95.30 205 | 97.84 205 | 96.16 194 | 96.31 207 | 95.32 207 | 89.98 210 | 94.08 209 | 97.01 151 | 86.43 195 | 92.20 204 | 96.76 167 | 95.31 180 | 96.05 190 | 94.31 190 |
|
ADS-MVSNet | | | 94.41 197 | 92.13 198 | 97.07 181 | 98.86 175 | 96.60 188 | 98.38 148 | 98.47 175 | 96.13 132 | 98.02 160 | 96.98 154 | 87.50 192 | 95.87 170 | 89.89 205 | 87.58 201 | 92.79 205 | 90.27 205 |
|
tpm | | | 93.89 198 | 91.21 202 | 97.03 184 | 98.36 199 | 96.07 198 | 97.53 193 | 99.65 32 | 92.24 193 | 98.64 115 | 97.23 144 | 74.67 219 | 94.64 185 | 92.68 202 | 90.73 197 | 93.37 200 | 94.82 188 |
|
PatchmatchNet | | | 93.88 199 | 91.08 203 | 97.14 180 | 98.75 181 | 96.01 200 | 98.25 160 | 99.39 81 | 94.95 154 | 98.96 88 | 96.32 171 | 85.35 201 | 95.50 174 | 88.89 207 | 85.89 206 | 91.99 209 | 90.15 206 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 93.67 200 | 90.82 204 | 96.99 187 | 98.62 189 | 96.39 192 | 98.40 146 | 99.11 133 | 95.54 143 | 97.87 168 | 97.14 147 | 81.27 213 | 94.97 180 | 88.54 209 | 86.80 204 | 92.95 204 | 90.06 207 |
|
MVE | | 82.47 18 | 93.12 201 | 94.09 182 | 91.99 208 | 90.79 215 | 82.50 216 | 93.93 214 | 96.30 203 | 96.06 133 | 88.81 215 | 98.19 112 | 96.38 168 | 97.56 136 | 97.24 159 | 95.18 183 | 84.58 214 | 93.07 196 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
CostFormer | | | 92.75 202 | 89.49 206 | 96.55 195 | 98.78 180 | 95.83 205 | 97.55 189 | 98.59 168 | 91.83 201 | 97.34 186 | 96.31 172 | 78.53 214 | 94.50 186 | 86.14 210 | 84.92 207 | 92.54 206 | 92.84 197 |
|
tpmrst | | | 92.45 203 | 89.48 207 | 95.92 201 | 98.43 198 | 95.03 208 | 97.14 199 | 97.92 192 | 94.16 173 | 97.56 175 | 97.86 125 | 81.63 212 | 93.56 196 | 85.89 211 | 82.86 208 | 90.91 213 | 88.95 210 |
|
dps | | | 92.35 204 | 88.78 209 | 96.52 196 | 98.21 203 | 95.94 202 | 97.78 178 | 98.38 178 | 89.88 212 | 96.81 194 | 95.07 188 | 75.31 218 | 94.70 184 | 88.62 208 | 86.21 205 | 93.21 202 | 90.41 204 |
|
E-PMN | | | 92.28 205 | 90.12 205 | 94.79 206 | 98.56 193 | 90.90 213 | 95.16 211 | 93.68 210 | 95.36 146 | 95.10 207 | 96.56 165 | 89.05 189 | 95.24 176 | 95.21 191 | 81.84 210 | 90.98 211 | 81.94 211 |
|
EMVS | | | 91.84 206 | 89.39 208 | 94.70 207 | 98.44 197 | 90.84 214 | 95.27 210 | 93.53 211 | 95.18 147 | 95.26 205 | 95.62 184 | 87.59 191 | 94.77 183 | 94.87 195 | 80.72 211 | 90.95 212 | 80.88 212 |
|
tpm cat1 | | | 91.52 207 | 87.70 210 | 95.97 200 | 98.33 200 | 94.98 209 | 97.06 202 | 98.03 187 | 92.11 196 | 98.03 159 | 94.77 191 | 77.19 217 | 92.71 201 | 83.56 212 | 82.24 209 | 91.67 210 | 89.04 209 |
|
GG-mvs-BLEND | | | 65.66 208 | 92.62 196 | 34.20 210 | 1.45 219 | 93.75 212 | 85.40 216 | 1.64 216 | 91.37 205 | 17.21 218 | 87.25 205 | 94.78 178 | 3.25 215 | 95.64 185 | 93.80 193 | 96.27 187 | 91.74 201 |
|
testmvs | | | 9.73 209 | 13.38 211 | 5.48 212 | 3.62 217 | 4.12 218 | 6.40 219 | 3.19 215 | 14.92 215 | 7.68 220 | 22.10 214 | 13.89 222 | 6.83 213 | 13.47 213 | 10.38 213 | 5.14 217 | 14.81 213 |
|
test123 | | | 9.37 210 | 12.26 212 | 6.00 211 | 3.32 218 | 4.06 219 | 6.39 220 | 3.41 214 | 13.20 216 | 10.48 219 | 16.43 215 | 16.22 221 | 6.76 214 | 11.37 214 | 10.40 212 | 5.62 216 | 14.10 214 |
|
uanet_test | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet-low-res | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
RE-MVS-def | | | | | | | | | | | 99.88 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 98.83 114 | | | | | |
|
SR-MVS | | | | | | 99.62 80 | | | 99.47 69 | | | | 99.40 57 | | | | | |
|
Anonymous202405211 | | | | 98.44 72 | | 99.79 32 | 99.32 45 | 99.05 89 | 99.34 96 | 96.59 106 | | 97.95 124 | 97.68 153 | 97.16 147 | 99.36 30 | 99.28 30 | 99.61 33 | 98.90 66 |
|
our_test_3 | | | | | | 99.29 141 | 97.72 176 | 98.98 94 | | | | | | | | | | |
|
ambc | | | | 97.89 112 | | 99.45 117 | 97.88 169 | 97.78 178 | | 97.27 72 | 99.80 3 | 98.99 86 | 98.48 131 | 98.55 93 | 97.80 131 | 96.68 160 | 98.54 151 | 98.10 134 |
|
MTAPA | | | | | | | | | | | 99.19 56 | | 99.68 22 | | | | | |
|
MTMP | | | | | | | | | | | 99.20 54 | | 99.54 43 | | | | | |
|
Patchmatch-RL test | | | | | | | | 32.47 218 | | | | | | | | | | |
|
tmp_tt | | | | | 65.28 209 | 82.24 216 | 71.50 217 | 70.81 217 | 23.21 213 | 96.14 130 | 81.70 217 | 85.98 212 | 92.44 185 | 49.84 212 | 95.81 180 | 94.36 191 | 83.86 215 | |
|
XVS | | | | | | 99.77 37 | 99.07 71 | 99.46 41 | | | 98.95 90 | | 99.37 60 | | | | 99.33 69 | |
|
X-MVStestdata | | | | | | 99.77 37 | 99.07 71 | 99.46 41 | | | 98.95 90 | | 99.37 60 | | | | 99.33 69 | |
|
abl_6 | | | | | 98.38 138 | 99.03 169 | 98.04 162 | 98.08 168 | 98.65 163 | 93.23 187 | 98.56 120 | 94.58 193 | 98.57 129 | 97.17 146 | | | 98.81 129 | 97.42 153 |
|
mPP-MVS | | | | | | 99.75 46 | | | | | | | 99.49 52 | | | | | |
|
NP-MVS | | | | | | | | | | 93.07 190 | | | | | | | | |
|
Patchmtry | | | | | | | 96.05 199 | 97.64 187 | 99.78 15 | | 98.50 126 | | | | | | | |
|
DeepMVS_CX | | | | | | | 87.86 215 | 92.27 215 | 61.98 212 | 93.64 182 | 93.62 212 | 91.17 202 | 91.67 186 | 94.90 182 | 95.99 179 | | 92.48 207 | 94.18 192 |
|