SED-MVS | | | 98.87 1 | 99.20 2 | 98.48 1 | 99.32 11 | 99.85 2 | 99.55 6 | 96.20 6 | 99.48 3 | 96.78 3 | 98.51 16 | 99.99 1 | 99.36 1 | 98.98 8 | 97.59 29 | 99.67 20 | 99.99 3 |
|
MSP-MVS | | | 98.75 2 | 99.27 1 | 98.15 8 | 99.21 17 | 99.82 6 | 99.58 4 | 96.09 13 | 99.32 10 | 95.16 9 | 98.79 6 | 99.55 8 | 99.05 5 | 99.54 1 | 97.88 21 | 99.84 3 | 99.99 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 98.73 3 | 99.17 5 | 98.22 5 | 99.47 4 | 99.85 2 | 99.57 5 | 96.23 4 | 99.30 11 | 94.90 11 | 98.65 10 | 98.93 19 | 99.36 1 | 99.46 3 | 98.21 11 | 99.81 6 | 99.80 33 |
|
DPE-MVS |  | | 98.69 4 | 99.14 6 | 98.16 7 | 99.37 7 | 99.82 6 | 99.66 2 | 96.26 1 | 99.18 16 | 95.02 10 | 98.62 13 | 99.98 3 | 98.88 11 | 98.90 11 | 97.51 32 | 99.75 10 | 99.97 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS | | | 98.65 5 | 98.87 12 | 98.38 2 | 99.30 13 | 99.85 2 | 99.14 23 | 96.23 4 | 99.51 2 | 97.16 1 | 96.01 34 | 99.99 1 | 98.90 10 | 98.89 12 | 97.88 21 | 99.56 50 | 99.98 5 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 98.60 6 | 98.97 9 | 98.18 6 | 99.38 6 | 99.78 11 | 99.35 15 | 96.14 9 | 99.24 13 | 95.66 7 | 98.19 20 | 99.01 16 | 98.66 17 | 98.77 14 | 97.80 24 | 99.86 2 | 99.97 7 |
|
SF-MVS | | | 98.55 7 | 98.75 14 | 98.32 3 | 99.48 1 | 99.68 20 | 99.51 8 | 96.24 2 | 99.08 20 | 95.94 4 | 98.64 11 | 99.30 12 | 99.02 7 | 97.94 28 | 96.86 51 | 99.75 10 | 99.76 36 |
|
SMA-MVS |  | | 98.47 8 | 99.06 7 | 97.77 12 | 99.48 1 | 99.78 11 | 99.37 12 | 96.14 9 | 99.29 12 | 93.03 20 | 97.59 28 | 99.97 4 | 99.03 6 | 98.94 9 | 98.30 9 | 99.60 33 | 99.58 64 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NCCC | | | 98.41 9 | 99.18 3 | 97.52 16 | 99.36 8 | 99.84 5 | 99.55 6 | 96.08 15 | 99.33 9 | 91.77 25 | 98.79 6 | 99.46 10 | 98.59 19 | 99.15 7 | 98.07 18 | 99.73 14 | 99.64 53 |
|
SD-MVS | | | 98.33 10 | 99.01 8 | 97.54 15 | 97.17 51 | 99.77 13 | 99.14 23 | 96.09 13 | 99.34 8 | 94.06 16 | 97.91 25 | 99.89 5 | 99.18 4 | 97.99 27 | 98.21 11 | 99.63 27 | 99.95 12 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 98.28 11 | 98.69 15 | 97.80 10 | 99.31 12 | 99.62 28 | 99.31 18 | 96.15 8 | 99.19 15 | 93.60 17 | 97.28 29 | 98.35 27 | 98.72 16 | 98.27 20 | 98.22 10 | 99.73 14 | 99.89 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MCST-MVS | | | 98.20 12 | 99.18 3 | 97.06 22 | 99.27 15 | 99.87 1 | 99.37 12 | 96.11 11 | 99.37 6 | 89.29 33 | 98.76 8 | 99.50 9 | 98.37 25 | 99.23 5 | 97.64 27 | 99.95 1 | 99.87 28 |
|
HPM-MVS++ |  | | 98.16 13 | 98.87 12 | 97.32 18 | 99.39 5 | 99.70 18 | 99.18 21 | 96.10 12 | 99.09 19 | 91.14 27 | 98.02 23 | 99.89 5 | 98.44 23 | 98.75 15 | 97.03 46 | 99.67 20 | 99.63 56 |
|
MSLP-MVS++ | | | 98.12 14 | 98.23 27 | 97.99 9 | 99.28 14 | 99.72 15 | 99.59 3 | 95.27 29 | 98.61 32 | 94.79 12 | 96.11 33 | 97.79 36 | 99.27 3 | 96.62 63 | 98.96 5 | 99.77 9 | 99.80 33 |
|
HFP-MVS | | | 98.02 15 | 98.55 19 | 97.40 17 | 99.11 21 | 99.69 19 | 99.41 10 | 95.41 27 | 98.79 30 | 91.86 24 | 98.61 14 | 98.16 29 | 99.02 7 | 97.87 33 | 97.40 34 | 99.60 33 | 99.35 83 |
|
TSAR-MVS + MP. | | | 97.98 16 | 98.62 18 | 97.23 20 | 97.08 52 | 99.55 34 | 99.17 22 | 95.69 22 | 99.40 5 | 93.04 19 | 96.68 31 | 98.96 18 | 98.58 20 | 98.82 13 | 96.95 48 | 99.81 6 | 99.96 9 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
zzz-MVS | | | 97.93 17 | 98.05 31 | 97.80 10 | 99.20 18 | 99.64 24 | 99.40 11 | 95.76 20 | 98.01 52 | 94.31 15 | 96.54 32 | 98.49 25 | 98.58 20 | 98.22 23 | 96.23 61 | 99.54 59 | 99.23 89 |
|
SteuartSystems-ACMMP | | | 97.86 18 | 98.91 10 | 96.64 26 | 98.89 27 | 99.79 8 | 99.34 16 | 95.20 31 | 98.48 35 | 89.91 31 | 98.58 15 | 98.69 21 | 96.84 47 | 98.92 10 | 98.16 15 | 99.66 22 | 99.74 39 |
Skip Steuart: Steuart Systems R&D Blog. |
CP-MVS | | | 97.81 19 | 98.26 26 | 97.28 19 | 99.00 24 | 99.65 23 | 99.10 25 | 95.32 28 | 98.38 41 | 92.21 23 | 98.33 18 | 97.74 37 | 98.50 22 | 97.66 42 | 96.55 59 | 99.57 45 | 99.48 73 |
|
ACMMPR | | | 97.78 20 | 98.28 24 | 97.20 21 | 99.03 23 | 99.68 20 | 99.37 12 | 95.24 30 | 98.86 29 | 91.16 26 | 97.86 26 | 97.26 39 | 98.79 14 | 97.64 44 | 97.40 34 | 99.60 33 | 99.25 88 |
|
DeepC-MVS_fast | | 95.01 1 | 97.67 21 | 98.22 28 | 97.02 23 | 99.00 24 | 99.79 8 | 99.10 25 | 95.82 18 | 99.05 23 | 89.53 32 | 93.54 49 | 96.77 42 | 98.83 12 | 99.34 4 | 99.44 2 | 99.82 4 | 99.63 56 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 97.54 22 | 97.35 38 | 97.77 12 | 99.17 19 | 99.55 34 | 98.57 31 | 95.76 20 | 99.04 24 | 94.66 13 | 97.94 24 | 94.39 56 | 98.82 13 | 96.21 72 | 94.78 82 | 99.62 29 | 99.52 69 |
|
ACMMP_NAP | | | 97.51 23 | 98.27 25 | 96.63 27 | 99.34 9 | 99.72 15 | 99.25 19 | 95.94 17 | 98.11 46 | 87.10 46 | 96.98 30 | 98.50 24 | 98.61 18 | 98.58 17 | 96.83 53 | 99.56 50 | 99.14 97 |
|
MP-MVS |  | | 97.46 24 | 98.30 23 | 96.48 28 | 98.93 26 | 99.43 44 | 99.20 20 | 95.42 26 | 98.43 37 | 87.60 43 | 98.19 20 | 98.01 35 | 98.09 27 | 98.05 26 | 96.67 56 | 99.64 25 | 99.35 83 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
train_agg | | | 97.42 25 | 98.88 11 | 95.71 33 | 98.46 34 | 99.60 31 | 99.05 27 | 95.16 32 | 99.10 18 | 84.38 60 | 98.47 17 | 98.85 20 | 97.61 31 | 98.54 18 | 97.66 26 | 99.62 29 | 99.93 18 |
|
CPTT-MVS | | | 97.32 26 | 97.60 37 | 96.99 24 | 98.29 37 | 99.31 55 | 99.04 28 | 94.67 36 | 97.99 53 | 93.12 18 | 98.03 22 | 98.26 28 | 98.77 15 | 96.08 75 | 94.26 91 | 98.07 177 | 99.27 87 |
|
X-MVS | | | 97.20 27 | 98.42 22 | 95.77 31 | 99.04 22 | 99.64 24 | 98.95 30 | 95.10 34 | 98.16 44 | 83.97 66 | 98.27 19 | 98.08 32 | 97.95 28 | 97.89 30 | 97.46 33 | 99.58 41 | 99.47 74 |
|
PHI-MVS | | | 97.09 28 | 98.69 15 | 95.22 38 | 97.99 43 | 99.59 33 | 97.56 44 | 92.16 40 | 98.41 39 | 87.11 45 | 98.70 9 | 99.42 11 | 96.95 43 | 96.88 59 | 98.16 15 | 99.56 50 | 99.70 45 |
|
DPM-MVS | | | 97.07 29 | 97.99 32 | 96.00 30 | 97.25 50 | 99.16 61 | 99.67 1 | 95.99 16 | 99.08 20 | 85.97 50 | 93.00 54 | 98.44 26 | 97.47 33 | 99.22 6 | 99.62 1 | 99.66 22 | 97.44 154 |
|
PGM-MVS | | | 97.03 30 | 98.14 30 | 95.73 32 | 99.34 9 | 99.61 30 | 99.34 16 | 89.99 46 | 97.70 56 | 87.67 42 | 99.44 2 | 96.45 45 | 98.44 23 | 97.65 43 | 97.09 43 | 99.58 41 | 99.06 105 |
|
PLC |  | 94.37 2 | 97.03 30 | 96.54 43 | 97.60 14 | 98.84 28 | 98.64 70 | 98.17 36 | 94.99 35 | 99.01 25 | 96.80 2 | 93.21 53 | 95.64 47 | 97.36 34 | 96.37 67 | 94.79 81 | 99.41 82 | 98.12 139 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TSAR-MVS + ACMM | | | 96.90 32 | 98.64 17 | 94.88 40 | 98.12 41 | 99.47 39 | 99.01 29 | 95.43 25 | 99.23 14 | 81.98 85 | 95.95 35 | 99.16 15 | 95.13 68 | 98.61 16 | 98.11 17 | 99.58 41 | 99.93 18 |
|
TSAR-MVS + GP. | | | 96.47 33 | 98.45 21 | 94.17 45 | 92.12 83 | 99.29 56 | 97.76 40 | 88.05 57 | 99.36 7 | 90.26 30 | 97.82 27 | 99.21 13 | 97.21 39 | 96.78 61 | 96.74 54 | 99.63 27 | 99.94 15 |
|
xxxxxxxxxxxxxcwj | | | 96.27 34 | 94.51 63 | 98.32 3 | 99.48 1 | 99.68 20 | 99.51 8 | 96.24 2 | 99.08 20 | 95.94 4 | 98.64 11 | 69.64 156 | 99.02 7 | 97.94 28 | 96.86 51 | 99.75 10 | 99.76 36 |
|
EPNet | | | 96.23 35 | 97.89 34 | 94.29 43 | 97.62 46 | 99.44 43 | 97.14 52 | 88.63 53 | 98.16 44 | 88.14 38 | 99.46 1 | 94.15 59 | 94.61 79 | 97.20 52 | 97.23 38 | 99.57 45 | 99.59 61 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CNLPA | | | 96.14 36 | 95.43 53 | 96.98 25 | 98.55 31 | 99.41 48 | 95.91 58 | 95.15 33 | 99.00 26 | 95.71 6 | 84.21 103 | 94.55 54 | 97.25 37 | 95.50 97 | 96.23 61 | 99.28 103 | 99.09 104 |
|
MVS_111021_LR | | | 96.07 37 | 97.94 33 | 93.88 48 | 97.86 44 | 99.43 44 | 95.70 61 | 89.65 49 | 98.73 31 | 84.86 58 | 99.38 3 | 94.08 60 | 95.78 66 | 97.81 37 | 96.73 55 | 99.43 79 | 99.42 77 |
|
ACMMP |  | | 96.05 38 | 96.70 42 | 95.29 37 | 98.01 42 | 99.43 44 | 97.60 43 | 94.33 38 | 97.62 59 | 86.17 49 | 98.92 4 | 92.81 68 | 96.10 59 | 95.67 87 | 93.33 111 | 99.55 55 | 99.12 100 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator+ | | 90.72 7 | 95.99 39 | 96.42 45 | 95.50 35 | 98.18 39 | 99.33 54 | 97.44 46 | 87.73 62 | 97.93 54 | 92.36 22 | 84.67 96 | 97.33 38 | 97.55 32 | 97.32 48 | 98.47 8 | 99.72 18 | 99.88 25 |
|
DeepPCF-MVS | | 94.02 3 | 95.92 40 | 98.47 20 | 92.95 57 | 97.57 47 | 99.79 8 | 91.45 112 | 94.42 37 | 99.76 1 | 86.48 48 | 92.88 55 | 98.12 31 | 92.62 98 | 99.49 2 | 99.32 3 | 95.15 202 | 99.95 12 |
|
CDPH-MVS | | | 95.90 41 | 97.77 36 | 93.72 51 | 98.28 38 | 99.43 44 | 98.40 32 | 91.30 44 | 98.34 42 | 78.62 104 | 94.80 41 | 95.74 46 | 96.11 58 | 97.86 34 | 98.67 7 | 99.59 36 | 99.56 66 |
|
CSCG | | | 95.77 42 | 95.35 55 | 96.26 29 | 99.13 20 | 99.60 31 | 98.14 37 | 91.89 43 | 96.57 76 | 92.61 21 | 89.65 64 | 91.74 75 | 96.96 41 | 93.69 122 | 96.58 58 | 98.86 131 | 99.63 56 |
|
OMC-MVS | | | 95.75 43 | 95.84 49 | 95.64 34 | 98.52 33 | 99.34 53 | 97.15 51 | 92.02 42 | 98.94 28 | 90.45 29 | 88.31 70 | 94.64 52 | 96.35 54 | 96.02 78 | 95.99 69 | 99.34 91 | 97.65 150 |
|
MVS_111021_HR | | | 95.70 44 | 98.16 29 | 92.83 58 | 97.57 47 | 99.77 13 | 94.78 73 | 88.05 57 | 98.61 32 | 82.29 80 | 98.85 5 | 94.66 51 | 94.63 77 | 97.80 38 | 97.63 28 | 99.64 25 | 99.79 35 |
|
3Dnovator | | 90.31 8 | 95.67 45 | 96.16 47 | 95.11 39 | 98.59 30 | 99.37 52 | 97.50 45 | 87.98 59 | 98.02 51 | 89.09 34 | 85.36 95 | 94.62 53 | 97.66 29 | 97.10 55 | 98.90 6 | 99.82 4 | 99.73 41 |
|
CANet | | | 95.40 46 | 96.27 46 | 94.40 42 | 96.25 57 | 99.62 28 | 98.37 33 | 88.59 54 | 98.09 47 | 87.58 44 | 84.57 98 | 95.54 49 | 95.87 63 | 98.12 24 | 98.03 20 | 99.73 14 | 99.90 23 |
|
QAPM | | | 95.17 47 | 96.05 48 | 94.14 46 | 98.55 31 | 99.49 37 | 97.41 47 | 87.88 60 | 97.72 55 | 84.21 63 | 84.59 97 | 95.60 48 | 97.21 39 | 97.10 55 | 98.19 14 | 99.57 45 | 99.65 51 |
|
MVSTER | | | 94.75 48 | 96.50 44 | 92.70 61 | 90.91 98 | 94.51 141 | 97.37 49 | 83.37 92 | 98.40 40 | 89.04 35 | 93.23 52 | 97.04 41 | 95.91 62 | 97.73 39 | 95.59 78 | 99.61 31 | 99.01 106 |
|
TAPA-MVS | | 92.04 6 | 94.72 49 | 95.13 58 | 94.24 44 | 97.72 45 | 99.17 59 | 97.61 42 | 92.16 40 | 97.66 58 | 81.99 84 | 87.84 75 | 93.94 62 | 96.50 51 | 95.74 84 | 94.27 90 | 99.46 74 | 97.31 155 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CS-MVS | | | 94.64 50 | 97.07 41 | 91.80 65 | 89.92 119 | 97.79 88 | 95.28 69 | 83.29 94 | 98.54 34 | 85.49 55 | 94.51 46 | 93.94 62 | 97.35 35 | 97.83 35 | 97.14 39 | 99.45 78 | 99.73 41 |
|
DeepC-MVS | | 92.23 5 | 94.53 51 | 94.26 72 | 94.86 41 | 96.73 54 | 99.50 36 | 97.85 39 | 95.45 24 | 96.22 83 | 82.73 75 | 80.68 112 | 88.02 88 | 96.92 44 | 97.49 46 | 98.20 13 | 99.47 68 | 99.69 48 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CHOSEN 280x420 | | | 94.51 52 | 97.78 35 | 90.70 79 | 95.54 63 | 99.49 37 | 94.14 81 | 74.91 157 | 98.43 37 | 85.32 56 | 94.78 42 | 99.19 14 | 94.95 72 | 97.02 57 | 96.18 64 | 99.35 87 | 99.36 82 |
|
ETV-MVS | | | 94.49 53 | 97.23 40 | 91.29 73 | 90.43 107 | 98.55 73 | 93.41 92 | 84.53 85 | 99.16 17 | 83.13 71 | 94.72 43 | 94.08 60 | 96.61 50 | 97.72 40 | 96.60 57 | 99.61 31 | 99.81 32 |
|
MVS_0304 | | | 94.35 54 | 95.66 51 | 92.83 58 | 94.82 65 | 99.46 41 | 98.19 35 | 87.75 61 | 97.32 65 | 81.83 88 | 83.50 105 | 93.19 67 | 94.71 75 | 98.24 22 | 98.07 18 | 99.68 19 | 99.83 30 |
|
MAR-MVS | | | 94.18 55 | 95.12 59 | 93.09 56 | 98.40 36 | 99.17 59 | 94.20 80 | 81.92 102 | 98.47 36 | 86.52 47 | 90.92 58 | 84.21 107 | 98.12 26 | 95.88 81 | 97.59 29 | 99.40 83 | 99.58 64 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 92.56 4 | 93.95 56 | 93.82 75 | 94.10 47 | 96.07 59 | 99.25 57 | 96.82 54 | 95.51 23 | 92.00 126 | 81.51 89 | 82.97 108 | 93.88 65 | 95.63 67 | 94.24 110 | 94.71 84 | 99.09 114 | 99.70 45 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DELS-MVS | | | 93.82 57 | 93.82 75 | 93.81 50 | 96.34 56 | 99.47 39 | 97.26 50 | 88.53 55 | 92.13 124 | 87.80 41 | 79.67 115 | 88.01 89 | 93.14 90 | 98.28 19 | 99.22 4 | 99.80 8 | 99.98 5 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OpenMVS |  | 88.43 11 | 93.49 58 | 93.62 78 | 93.34 52 | 98.46 34 | 99.39 49 | 97.00 53 | 87.66 64 | 95.37 90 | 81.21 91 | 75.96 130 | 91.58 76 | 96.21 57 | 96.37 67 | 97.10 42 | 99.52 60 | 99.54 68 |
|
EIA-MVS | | | 93.32 59 | 95.32 56 | 90.99 76 | 90.45 106 | 98.53 76 | 93.46 91 | 84.68 84 | 97.56 62 | 81.38 90 | 91.04 57 | 87.37 92 | 96.39 53 | 97.27 49 | 95.73 74 | 99.59 36 | 99.76 36 |
|
PVSNet_BlendedMVS | | | 93.30 60 | 93.46 82 | 93.10 54 | 95.60 61 | 99.38 50 | 93.59 89 | 88.70 51 | 98.09 47 | 88.10 39 | 86.96 83 | 75.02 130 | 93.08 91 | 97.89 30 | 96.90 49 | 99.56 50 | 100.00 1 |
|
PVSNet_Blended | | | 93.30 60 | 93.46 82 | 93.10 54 | 95.60 61 | 99.38 50 | 93.59 89 | 88.70 51 | 98.09 47 | 88.10 39 | 86.96 83 | 75.02 130 | 93.08 91 | 97.89 30 | 96.90 49 | 99.56 50 | 100.00 1 |
|
PMMVS | | | 93.05 62 | 95.40 54 | 90.31 83 | 91.41 91 | 97.54 96 | 92.62 104 | 83.25 95 | 98.08 50 | 79.44 102 | 95.18 39 | 88.52 87 | 96.43 52 | 95.70 85 | 93.88 94 | 98.68 147 | 98.91 109 |
|
CS-MVS-test | | | 92.94 63 | 95.57 52 | 89.88 89 | 89.51 121 | 97.24 98 | 93.68 88 | 79.93 121 | 96.78 75 | 80.14 98 | 90.65 60 | 91.54 77 | 96.67 49 | 97.42 47 | 95.67 76 | 99.33 96 | 99.70 45 |
|
LS3D | | | 92.70 64 | 92.23 92 | 93.26 53 | 96.24 58 | 98.72 65 | 97.93 38 | 96.17 7 | 96.41 77 | 72.46 119 | 81.39 111 | 80.76 120 | 97.66 29 | 95.69 86 | 95.62 77 | 99.07 116 | 97.02 162 |
|
baseline1 | | | 92.67 65 | 93.62 78 | 91.55 68 | 91.16 94 | 97.15 100 | 93.92 86 | 85.97 74 | 94.76 97 | 84.07 65 | 87.17 79 | 86.89 95 | 94.62 78 | 96.72 62 | 95.90 72 | 99.57 45 | 96.79 166 |
|
IS_MVSNet | | | 92.67 65 | 94.99 61 | 89.96 88 | 91.17 93 | 98.54 74 | 92.77 99 | 84.00 86 | 92.72 120 | 81.90 87 | 85.67 93 | 92.47 70 | 90.39 118 | 97.82 36 | 97.81 23 | 99.51 61 | 99.91 22 |
|
TSAR-MVS + COLMAP | | | 92.56 67 | 92.44 90 | 92.71 60 | 94.61 67 | 97.69 92 | 97.69 41 | 91.09 45 | 98.96 27 | 76.71 109 | 94.68 44 | 69.41 157 | 96.91 45 | 95.80 83 | 94.18 92 | 99.26 104 | 96.33 170 |
|
baseline | | | 92.56 67 | 94.38 68 | 90.43 82 | 90.71 102 | 98.23 82 | 95.07 70 | 80.73 116 | 97.52 63 | 82.45 79 | 87.34 78 | 85.91 99 | 94.07 85 | 96.29 71 | 95.94 71 | 99.58 41 | 99.47 74 |
|
canonicalmvs | | | 92.54 69 | 93.28 84 | 91.68 66 | 91.44 90 | 98.24 81 | 95.45 66 | 81.84 106 | 95.98 87 | 84.85 59 | 90.69 59 | 78.53 125 | 96.96 41 | 92.97 128 | 97.06 44 | 99.57 45 | 99.47 74 |
|
PatchMatch-RL | | | 92.54 69 | 92.82 89 | 92.21 62 | 96.57 55 | 98.74 64 | 91.85 109 | 86.30 69 | 96.23 82 | 85.18 57 | 95.21 38 | 73.58 136 | 94.22 84 | 95.40 100 | 93.08 115 | 99.14 111 | 97.49 153 |
|
MVS_Test | | | 92.42 71 | 94.43 64 | 90.08 87 | 90.69 103 | 98.26 80 | 94.78 73 | 80.81 115 | 97.27 66 | 78.76 103 | 87.06 81 | 84.25 106 | 95.84 64 | 97.67 41 | 97.56 31 | 99.59 36 | 98.93 108 |
|
thisisatest0530 | | | 92.31 72 | 95.14 57 | 89.02 98 | 90.02 114 | 98.45 78 | 91.30 113 | 83.58 89 | 96.90 71 | 77.90 106 | 90.45 62 | 94.33 57 | 91.98 104 | 95.57 91 | 91.43 137 | 99.31 98 | 98.81 112 |
|
tttt0517 | | | 92.29 73 | 95.12 59 | 88.99 99 | 90.02 114 | 98.44 79 | 91.19 117 | 83.58 89 | 96.88 72 | 77.86 107 | 90.45 62 | 94.32 58 | 91.98 104 | 95.54 93 | 91.43 137 | 99.31 98 | 98.78 114 |
|
EPP-MVSNet | | | 92.29 73 | 94.35 70 | 89.88 89 | 90.36 109 | 97.69 92 | 90.89 120 | 83.31 93 | 93.39 112 | 83.47 70 | 85.56 94 | 93.92 64 | 91.93 106 | 95.49 98 | 94.77 83 | 99.34 91 | 99.62 59 |
|
HQP-MVS | | | 91.94 75 | 93.03 86 | 90.66 81 | 93.69 69 | 96.48 114 | 95.92 57 | 89.73 47 | 97.33 64 | 72.65 117 | 95.37 36 | 73.56 137 | 92.75 97 | 94.85 107 | 94.12 93 | 99.23 108 | 99.51 70 |
|
MSDG | | | 91.93 76 | 90.28 119 | 93.85 49 | 97.36 49 | 97.12 101 | 95.88 59 | 94.07 39 | 94.52 101 | 84.13 64 | 76.74 124 | 80.89 119 | 92.54 99 | 93.97 118 | 93.61 105 | 99.14 111 | 95.10 179 |
|
UGNet | | | 91.71 77 | 94.43 64 | 88.53 101 | 92.72 79 | 98.00 85 | 90.22 127 | 84.81 83 | 94.45 102 | 83.05 72 | 87.65 77 | 92.74 69 | 81.04 171 | 94.51 109 | 94.45 87 | 99.32 97 | 99.21 93 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
thres100view900 | | | 91.69 78 | 91.52 98 | 91.88 64 | 91.61 85 | 98.89 62 | 95.49 64 | 86.96 66 | 93.24 113 | 80.82 93 | 87.90 72 | 71.15 146 | 96.88 46 | 96.00 79 | 93.51 107 | 99.51 61 | 99.95 12 |
|
CLD-MVS | | | 91.67 79 | 91.30 103 | 92.10 63 | 91.25 92 | 96.59 111 | 95.93 56 | 87.25 65 | 96.86 73 | 85.55 54 | 87.08 80 | 73.01 138 | 93.26 89 | 93.07 126 | 92.84 121 | 99.34 91 | 99.68 49 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ET-MVSNet_ETH3D | | | 91.59 80 | 94.96 62 | 87.65 104 | 72.75 209 | 97.24 98 | 95.29 67 | 82.73 98 | 96.81 74 | 78.49 105 | 95.30 37 | 90.48 83 | 97.23 38 | 91.60 143 | 94.31 88 | 99.43 79 | 99.01 106 |
|
tfpn200view9 | | | 91.47 81 | 91.31 101 | 91.65 67 | 91.61 85 | 98.69 67 | 95.03 71 | 86.17 70 | 93.24 113 | 80.82 93 | 87.90 72 | 71.15 146 | 96.80 48 | 95.53 94 | 92.82 123 | 99.47 68 | 99.88 25 |
|
CANet_DTU | | | 91.36 82 | 95.75 50 | 86.23 115 | 92.31 82 | 98.71 66 | 95.60 63 | 78.41 132 | 98.20 43 | 56.48 178 | 94.38 47 | 87.96 90 | 95.11 69 | 96.89 58 | 96.07 65 | 99.48 66 | 98.01 143 |
|
thres200 | | | 91.36 82 | 91.19 105 | 91.55 68 | 91.60 87 | 98.69 67 | 94.98 72 | 86.17 70 | 92.16 123 | 80.76 95 | 87.66 76 | 71.15 146 | 96.35 54 | 95.53 94 | 93.23 113 | 99.47 68 | 99.92 21 |
|
FMVSNet3 | | | 91.25 84 | 92.13 94 | 90.21 84 | 85.64 149 | 93.14 150 | 95.29 67 | 80.09 117 | 96.40 78 | 85.74 51 | 77.13 119 | 86.81 96 | 94.98 71 | 97.19 53 | 97.11 41 | 99.55 55 | 97.13 159 |
|
thres400 | | | 91.24 85 | 91.01 111 | 91.50 71 | 91.56 88 | 98.77 63 | 94.66 76 | 86.41 68 | 91.87 128 | 80.56 96 | 87.05 82 | 71.01 149 | 96.35 54 | 95.67 87 | 92.82 123 | 99.48 66 | 99.88 25 |
|
PVSNet_Blended_VisFu | | | 91.20 86 | 92.89 88 | 89.23 96 | 93.41 72 | 98.61 72 | 89.80 129 | 85.39 78 | 92.84 117 | 82.80 74 | 74.21 134 | 91.38 79 | 84.64 150 | 97.22 51 | 96.04 68 | 99.34 91 | 99.93 18 |
|
DCV-MVSNet | | | 91.15 87 | 92.00 95 | 90.17 86 | 90.78 100 | 92.23 167 | 93.70 87 | 81.17 113 | 95.16 93 | 82.98 73 | 89.46 66 | 83.31 109 | 93.98 86 | 91.79 142 | 92.87 118 | 98.41 165 | 99.18 95 |
|
DI_MVS_plusplus_trai | | | 91.11 88 | 91.47 99 | 90.68 80 | 90.01 116 | 97.77 90 | 95.87 60 | 83.56 91 | 94.72 98 | 82.12 83 | 68.46 153 | 87.46 91 | 93.07 93 | 96.46 66 | 95.73 74 | 99.47 68 | 99.71 44 |
|
diffmvs | | | 91.05 89 | 91.15 106 | 90.93 77 | 90.15 112 | 97.79 88 | 94.05 82 | 85.45 76 | 95.63 88 | 81.95 86 | 80.45 114 | 73.01 138 | 94.47 80 | 95.56 92 | 95.89 73 | 99.49 65 | 99.72 43 |
|
Vis-MVSNet (Re-imp) | | | 91.05 89 | 94.43 64 | 87.11 106 | 91.05 96 | 97.99 86 | 92.53 105 | 83.82 88 | 92.71 121 | 76.28 110 | 84.50 99 | 92.43 71 | 79.52 176 | 97.24 50 | 97.68 25 | 99.43 79 | 98.45 126 |
|
thres600view7 | | | 90.97 91 | 90.70 113 | 91.30 72 | 91.53 89 | 98.69 67 | 94.33 77 | 86.17 70 | 91.75 130 | 80.19 97 | 86.06 91 | 70.90 150 | 96.10 59 | 95.53 94 | 92.08 130 | 99.47 68 | 99.86 29 |
|
baseline2 | | | 90.91 92 | 94.40 67 | 86.84 109 | 87.54 139 | 96.83 107 | 89.95 128 | 79.22 127 | 96.00 86 | 77.04 108 | 88.68 67 | 89.73 84 | 88.01 139 | 96.35 69 | 93.51 107 | 99.29 100 | 99.68 49 |
|
ACMP | | 89.80 9 | 90.72 93 | 91.15 106 | 90.21 84 | 92.55 80 | 96.52 113 | 92.63 103 | 85.71 75 | 94.65 99 | 81.06 92 | 93.32 50 | 70.56 153 | 90.52 117 | 92.68 132 | 91.05 142 | 98.76 139 | 99.31 86 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
casdiffmvs | | | 90.69 94 | 90.56 116 | 90.85 78 | 90.14 113 | 97.81 87 | 92.94 97 | 85.30 79 | 93.47 111 | 82.50 78 | 76.34 128 | 74.12 134 | 94.67 76 | 96.51 65 | 96.26 60 | 99.55 55 | 99.42 77 |
|
ACMM | | 89.40 10 | 90.58 95 | 90.02 122 | 91.23 74 | 93.30 74 | 94.75 137 | 90.69 123 | 88.22 56 | 95.20 91 | 82.70 76 | 88.54 68 | 71.40 145 | 93.48 88 | 93.64 123 | 90.94 143 | 98.99 122 | 95.72 175 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 90.49 96 | 91.12 109 | 89.75 92 | 84.99 152 | 92.73 155 | 93.94 83 | 80.09 117 | 96.40 78 | 85.74 51 | 77.13 119 | 86.81 96 | 94.42 81 | 94.12 112 | 93.73 96 | 99.35 87 | 96.90 163 |
|
test1 | | | 90.49 96 | 91.12 109 | 89.75 92 | 84.99 152 | 92.73 155 | 93.94 83 | 80.09 117 | 96.40 78 | 85.74 51 | 77.13 119 | 86.81 96 | 94.42 81 | 94.12 112 | 93.73 96 | 99.35 87 | 96.90 163 |
|
LGP-MVS_train | | | 90.34 98 | 91.63 97 | 88.83 100 | 93.31 73 | 96.14 119 | 95.49 64 | 85.24 81 | 93.91 106 | 68.71 132 | 93.96 48 | 71.63 143 | 91.12 114 | 93.82 120 | 92.79 125 | 99.07 116 | 99.16 96 |
|
EPNet_dtu | | | 89.82 99 | 94.18 73 | 84.74 126 | 96.87 53 | 95.54 130 | 92.65 102 | 86.91 67 | 96.99 68 | 54.17 189 | 92.41 56 | 88.54 86 | 78.35 179 | 96.15 74 | 96.05 67 | 99.47 68 | 93.60 187 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 89.81 100 | 89.75 123 | 89.88 89 | 93.22 76 | 93.99 144 | 94.78 73 | 85.23 82 | 94.01 105 | 82.52 77 | 95.00 40 | 87.23 93 | 92.01 103 | 85.16 196 | 83.48 201 | 91.54 207 | 89.38 201 |
|
MDTV_nov1_ep13 | | | 89.63 101 | 94.38 68 | 84.09 133 | 88.76 131 | 97.53 97 | 89.37 137 | 68.46 190 | 96.95 69 | 70.27 126 | 87.88 74 | 93.67 66 | 91.04 115 | 93.12 124 | 93.83 95 | 96.62 195 | 97.68 149 |
|
UA-Net | | | 89.56 102 | 93.03 86 | 85.52 122 | 92.46 81 | 97.55 95 | 91.92 108 | 81.91 103 | 85.24 161 | 71.39 121 | 83.57 104 | 96.56 44 | 76.01 190 | 96.81 60 | 97.04 45 | 99.46 74 | 94.41 182 |
|
FMVSNet2 | | | 89.51 103 | 89.63 124 | 89.38 94 | 84.99 152 | 92.73 155 | 93.94 83 | 79.28 125 | 93.73 108 | 84.28 62 | 69.36 152 | 82.32 112 | 94.42 81 | 96.16 73 | 96.22 63 | 99.35 87 | 96.90 163 |
|
CostFormer | | | 89.42 104 | 91.67 96 | 86.80 111 | 89.99 117 | 96.33 116 | 90.75 121 | 64.79 193 | 95.17 92 | 83.62 69 | 86.20 89 | 82.15 114 | 92.96 94 | 89.22 165 | 92.94 116 | 98.68 147 | 99.65 51 |
|
FC-MVSNet-train | | | 89.37 105 | 89.62 125 | 89.08 97 | 90.48 105 | 94.16 143 | 89.45 133 | 83.99 87 | 91.09 133 | 80.09 99 | 82.84 109 | 74.52 133 | 91.44 111 | 93.79 121 | 91.57 136 | 99.01 120 | 99.35 83 |
|
OPM-MVS | | | 89.33 106 | 87.45 141 | 91.53 70 | 94.49 68 | 96.20 118 | 96.47 55 | 89.72 48 | 82.77 168 | 75.43 111 | 80.53 113 | 70.86 151 | 93.80 87 | 94.00 116 | 91.85 134 | 99.29 100 | 95.91 173 |
|
test-LLR | | | 89.31 107 | 93.60 80 | 84.30 130 | 88.08 135 | 96.98 103 | 88.10 142 | 78.00 133 | 94.83 95 | 62.43 152 | 84.29 101 | 90.96 80 | 89.70 123 | 95.63 89 | 92.86 119 | 99.51 61 | 99.64 53 |
|
EPMVS | | | 89.31 107 | 93.70 77 | 84.18 132 | 91.10 95 | 98.10 83 | 89.17 139 | 62.71 197 | 96.24 81 | 70.21 128 | 86.46 87 | 92.37 72 | 92.79 95 | 91.95 140 | 93.59 106 | 99.10 113 | 97.19 156 |
|
Anonymous20231211 | | | 89.22 109 | 87.56 139 | 91.16 75 | 90.23 111 | 96.62 110 | 93.22 94 | 85.44 77 | 92.89 116 | 84.37 61 | 60.13 172 | 81.25 117 | 96.02 61 | 90.61 150 | 92.01 131 | 97.70 185 | 99.41 79 |
|
Effi-MVS+ | | | 88.96 110 | 91.13 108 | 86.43 113 | 89.12 127 | 97.62 94 | 93.15 95 | 75.52 151 | 93.90 107 | 66.40 136 | 86.23 88 | 70.51 154 | 95.03 70 | 95.89 80 | 94.28 89 | 99.37 84 | 99.51 70 |
|
SCA | | | 88.76 111 | 94.29 71 | 82.30 149 | 89.33 124 | 96.81 108 | 87.68 144 | 61.52 202 | 96.95 69 | 64.68 142 | 88.35 69 | 94.80 50 | 91.58 108 | 92.23 134 | 93.21 114 | 98.99 122 | 97.70 148 |
|
test0.0.03 1 | | | 88.71 112 | 92.22 93 | 84.63 128 | 88.08 135 | 94.71 139 | 85.91 167 | 78.00 133 | 95.54 89 | 72.96 115 | 86.10 90 | 85.88 101 | 83.59 158 | 92.95 130 | 93.24 112 | 99.25 107 | 97.09 160 |
|
PatchmatchNet |  | | 88.67 113 | 94.10 74 | 82.34 148 | 89.38 123 | 97.72 91 | 87.24 150 | 62.18 200 | 97.00 67 | 64.79 141 | 87.97 71 | 94.43 55 | 91.55 109 | 91.21 148 | 92.77 126 | 98.90 127 | 97.60 152 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
dps | | | 88.66 114 | 90.19 120 | 86.88 108 | 89.94 118 | 96.48 114 | 89.56 131 | 64.08 195 | 94.12 104 | 89.00 36 | 83.39 106 | 82.56 111 | 90.16 121 | 86.81 188 | 89.26 162 | 98.53 160 | 98.71 116 |
|
TESTMET0.1,1 | | | 88.63 115 | 93.60 80 | 82.84 145 | 84.07 159 | 96.98 103 | 88.10 142 | 73.22 172 | 94.83 95 | 62.43 152 | 84.29 101 | 90.96 80 | 89.70 123 | 95.63 89 | 92.86 119 | 99.51 61 | 99.64 53 |
|
CHOSEN 1792x2688 | | | 88.63 115 | 89.01 129 | 88.19 102 | 94.83 64 | 99.21 58 | 92.66 101 | 79.85 122 | 92.40 122 | 72.18 120 | 56.38 193 | 80.22 122 | 90.24 119 | 97.64 44 | 97.28 37 | 99.37 84 | 99.94 15 |
|
CDS-MVSNet | | | 88.59 117 | 90.13 121 | 86.79 112 | 86.98 145 | 95.43 131 | 92.03 107 | 81.33 111 | 85.54 158 | 74.51 114 | 77.07 122 | 85.14 103 | 87.03 144 | 93.90 119 | 95.18 79 | 98.88 129 | 98.67 118 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IB-MVS | | 84.67 14 | 88.34 118 | 90.61 115 | 85.70 119 | 92.99 78 | 98.62 71 | 78.85 193 | 86.07 73 | 94.35 103 | 88.64 37 | 85.99 92 | 75.69 128 | 68.09 203 | 88.21 168 | 91.43 137 | 99.55 55 | 99.96 9 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-mter | | | 88.25 119 | 93.27 85 | 82.38 147 | 83.89 160 | 96.86 106 | 87.10 154 | 72.80 174 | 94.58 100 | 61.85 157 | 83.21 107 | 90.65 82 | 89.18 127 | 95.43 99 | 92.58 128 | 99.46 74 | 99.61 60 |
|
COLMAP_ROB |  | 84.42 15 | 88.24 120 | 87.32 142 | 89.32 95 | 95.83 60 | 95.82 123 | 92.81 98 | 87.68 63 | 92.09 125 | 72.64 118 | 72.34 143 | 79.96 123 | 88.79 130 | 89.54 160 | 89.46 158 | 98.16 174 | 92.00 193 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
IterMVS-LS | | | 87.95 121 | 89.40 127 | 86.26 114 | 88.79 130 | 90.93 183 | 91.23 116 | 76.05 148 | 90.87 134 | 71.07 123 | 75.51 131 | 81.18 118 | 91.21 113 | 94.11 115 | 95.01 80 | 99.20 110 | 98.23 134 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 87.86 122 | 88.25 134 | 87.40 105 | 94.67 66 | 98.54 74 | 90.33 126 | 76.51 147 | 89.60 142 | 70.89 124 | 51.43 204 | 85.69 102 | 92.79 95 | 96.59 64 | 95.96 70 | 99.22 109 | 99.94 15 |
|
Vis-MVSNet |  | | 87.60 123 | 91.31 101 | 83.27 140 | 89.14 126 | 98.04 84 | 90.35 125 | 79.42 123 | 87.23 147 | 66.92 135 | 79.10 118 | 84.63 105 | 74.34 197 | 95.81 82 | 96.06 66 | 99.46 74 | 98.32 130 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GeoE | | | 87.55 124 | 88.17 135 | 86.82 110 | 88.74 132 | 96.32 117 | 92.75 100 | 74.93 156 | 90.13 139 | 72.73 116 | 69.47 151 | 74.03 135 | 92.51 100 | 93.99 117 | 93.62 104 | 99.29 100 | 99.59 61 |
|
RPMNet | | | 87.35 125 | 92.41 91 | 81.45 153 | 88.85 129 | 96.06 120 | 89.42 136 | 59.59 209 | 93.57 109 | 61.81 158 | 76.48 127 | 91.48 78 | 90.18 120 | 96.32 70 | 93.37 110 | 98.87 130 | 99.59 61 |
|
tpm cat1 | | | 87.34 126 | 88.52 133 | 85.95 116 | 89.83 120 | 95.80 124 | 90.73 122 | 64.91 192 | 92.99 115 | 82.21 82 | 71.19 149 | 82.68 110 | 90.13 122 | 86.38 189 | 90.87 145 | 97.90 182 | 99.74 39 |
|
MS-PatchMatch | | | 87.19 127 | 88.59 132 | 85.55 121 | 93.15 77 | 96.58 112 | 92.35 106 | 74.19 164 | 91.97 127 | 70.33 125 | 71.42 147 | 85.89 100 | 84.28 152 | 93.12 124 | 89.16 164 | 99.00 121 | 91.99 194 |
|
Effi-MVS+-dtu | | | 87.18 128 | 90.48 117 | 83.32 139 | 86.51 146 | 95.76 127 | 91.16 119 | 74.28 163 | 90.44 138 | 61.31 161 | 86.72 86 | 72.68 141 | 91.25 112 | 95.01 104 | 93.64 99 | 95.45 201 | 99.12 100 |
|
FMVSNet5 | | | 87.06 129 | 89.52 126 | 84.20 131 | 79.92 197 | 86.57 203 | 87.11 153 | 72.37 176 | 96.06 84 | 75.41 112 | 84.33 100 | 91.76 74 | 91.60 107 | 91.51 144 | 91.22 140 | 98.77 136 | 85.16 206 |
|
Fast-Effi-MVS+-dtu | | | 86.94 130 | 91.27 104 | 81.89 150 | 86.27 147 | 95.06 132 | 90.68 124 | 68.93 187 | 91.76 129 | 57.18 176 | 89.56 65 | 75.85 127 | 89.19 126 | 94.56 108 | 92.84 121 | 99.07 116 | 99.23 89 |
|
Fast-Effi-MVS+ | | | 86.94 130 | 87.88 137 | 85.84 117 | 86.99 143 | 95.80 124 | 91.24 114 | 73.48 170 | 92.75 118 | 69.22 129 | 72.70 140 | 65.71 163 | 94.84 73 | 94.98 105 | 94.71 84 | 99.26 104 | 98.48 124 |
|
DROMVSNet | | | 86.94 130 | 87.88 137 | 85.84 117 | 86.99 143 | 95.80 124 | 91.24 114 | 73.48 170 | 92.75 118 | 69.22 129 | 72.70 140 | 65.71 163 | 94.84 73 | 94.98 105 | 94.71 84 | 99.26 104 | 98.48 124 |
|
tpmrst | | | 86.78 133 | 90.29 118 | 82.69 146 | 90.55 104 | 96.95 105 | 88.49 141 | 62.58 198 | 95.09 94 | 63.52 148 | 76.67 126 | 84.00 108 | 92.05 102 | 87.93 171 | 91.89 133 | 98.98 124 | 99.50 72 |
|
CR-MVSNet | | | 86.73 134 | 91.47 99 | 81.20 156 | 88.56 133 | 96.06 120 | 89.43 134 | 61.37 203 | 93.57 109 | 60.81 163 | 72.89 139 | 88.85 85 | 88.13 137 | 96.03 76 | 93.64 99 | 98.89 128 | 99.22 91 |
|
ADS-MVSNet | | | 86.68 135 | 90.79 112 | 81.88 151 | 90.38 108 | 96.81 108 | 86.90 155 | 60.50 207 | 96.01 85 | 63.93 145 | 81.67 110 | 84.72 104 | 90.78 116 | 87.03 182 | 91.67 135 | 98.77 136 | 97.63 151 |
|
FMVSNet1 | | | 85.85 136 | 84.91 152 | 86.96 107 | 82.70 165 | 91.39 177 | 91.54 111 | 77.45 139 | 85.29 160 | 79.56 101 | 60.70 169 | 72.68 141 | 92.37 101 | 94.12 112 | 93.73 96 | 98.12 175 | 96.44 167 |
|
FC-MVSNet-test | | | 85.51 137 | 89.08 128 | 81.35 154 | 85.31 151 | 93.35 146 | 87.65 145 | 77.55 138 | 90.01 140 | 64.07 144 | 79.63 116 | 81.83 116 | 74.94 194 | 92.08 137 | 90.83 147 | 98.55 157 | 95.81 174 |
|
ACMH | | 85.22 13 | 85.40 138 | 85.73 149 | 85.02 124 | 91.76 84 | 94.46 142 | 84.97 173 | 81.54 109 | 85.18 162 | 65.22 140 | 76.92 123 | 64.22 165 | 88.58 133 | 90.17 152 | 90.25 153 | 98.03 178 | 98.90 110 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 85.35 139 | 86.00 148 | 84.59 129 | 84.97 155 | 95.57 129 | 88.98 140 | 77.29 142 | 81.44 173 | 71.36 122 | 71.48 146 | 75.00 132 | 87.03 144 | 91.92 141 | 92.21 129 | 97.92 181 | 94.40 183 |
|
ACMH+ | | 85.62 12 | 85.27 140 | 84.96 151 | 85.64 120 | 90.84 99 | 94.78 136 | 87.46 147 | 81.30 112 | 86.94 148 | 67.35 134 | 74.56 133 | 64.09 166 | 88.70 131 | 88.14 169 | 89.00 165 | 98.22 173 | 97.19 156 |
|
USDC | | | 85.11 141 | 85.35 150 | 84.83 125 | 89.45 122 | 94.93 135 | 92.98 96 | 77.30 141 | 90.53 136 | 61.80 159 | 76.69 125 | 59.62 176 | 88.90 129 | 92.78 131 | 90.79 149 | 98.53 160 | 92.12 191 |
|
IterMVS | | | 85.02 142 | 88.98 130 | 80.41 162 | 87.03 142 | 90.34 191 | 89.78 130 | 69.45 184 | 89.77 141 | 54.04 190 | 73.71 136 | 82.05 115 | 83.44 161 | 95.11 102 | 93.64 99 | 98.75 140 | 98.22 136 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 84.91 143 | 88.90 131 | 80.25 165 | 87.04 141 | 90.27 192 | 89.23 138 | 69.25 186 | 89.17 143 | 54.04 190 | 73.65 137 | 82.22 113 | 83.23 166 | 95.11 102 | 93.63 103 | 98.73 141 | 98.23 134 |
|
PatchT | | | 84.89 144 | 90.67 114 | 78.13 185 | 87.83 138 | 94.99 134 | 72.46 205 | 60.22 208 | 91.74 131 | 60.81 163 | 72.16 144 | 86.95 94 | 88.13 137 | 96.03 76 | 93.64 99 | 99.36 86 | 99.22 91 |
|
pmmvs4 | | | 84.88 145 | 84.67 153 | 85.13 123 | 82.80 164 | 92.37 160 | 87.29 148 | 79.08 128 | 90.51 137 | 74.94 113 | 70.37 150 | 62.49 169 | 88.17 136 | 92.01 139 | 88.51 170 | 98.49 163 | 96.44 167 |
|
test_part1 | | | 84.71 146 | 82.08 163 | 87.78 103 | 89.19 125 | 91.40 176 | 91.19 117 | 79.25 126 | 79.62 185 | 82.23 81 | 57.07 189 | 70.79 152 | 88.95 128 | 87.46 176 | 89.91 155 | 95.89 200 | 98.31 132 |
|
CVMVSNet | | | 84.01 147 | 86.91 143 | 80.61 160 | 88.39 134 | 93.29 147 | 86.06 163 | 82.29 100 | 83.13 166 | 54.29 186 | 72.68 142 | 79.59 124 | 75.11 193 | 91.23 147 | 92.91 117 | 97.54 189 | 95.58 176 |
|
tpm | | | 83.97 148 | 87.97 136 | 79.31 175 | 87.35 140 | 93.21 149 | 86.00 165 | 61.90 201 | 90.69 135 | 54.01 192 | 79.42 117 | 75.61 129 | 88.65 132 | 87.18 180 | 90.48 151 | 97.95 180 | 99.21 93 |
|
GA-MVS | | | 83.83 149 | 86.63 144 | 80.58 161 | 85.40 150 | 94.73 138 | 87.27 149 | 78.76 131 | 86.49 150 | 49.57 200 | 74.21 134 | 67.67 160 | 83.38 162 | 95.28 101 | 90.92 144 | 99.08 115 | 97.09 160 |
|
UniMVSNet_NR-MVSNet | | | 83.83 149 | 83.70 156 | 83.98 134 | 81.41 175 | 92.56 159 | 86.54 158 | 82.96 96 | 85.98 155 | 66.27 137 | 66.16 160 | 63.63 167 | 87.78 141 | 87.65 174 | 90.81 148 | 98.94 125 | 99.13 98 |
|
UniMVSNet (Re) | | | 83.28 151 | 83.16 157 | 83.42 138 | 81.93 170 | 93.12 151 | 86.27 161 | 80.83 114 | 85.88 156 | 68.23 133 | 64.56 163 | 60.58 171 | 84.25 153 | 89.13 166 | 89.44 160 | 99.04 119 | 99.40 80 |
|
thisisatest0515 | | | 83.17 152 | 86.49 145 | 79.30 176 | 82.04 168 | 93.12 151 | 78.70 194 | 77.92 135 | 86.43 151 | 63.05 149 | 74.91 132 | 73.01 138 | 75.56 192 | 92.10 136 | 88.05 183 | 98.50 162 | 97.76 147 |
|
TinyColmap | | | 83.03 153 | 82.24 161 | 83.95 135 | 88.88 128 | 93.22 148 | 89.48 132 | 76.89 144 | 87.53 146 | 62.12 154 | 68.46 153 | 55.03 192 | 88.43 135 | 90.87 149 | 89.65 156 | 97.89 183 | 90.91 197 |
|
testgi | | | 82.88 154 | 86.14 147 | 79.08 178 | 86.05 148 | 92.20 168 | 81.23 190 | 74.77 159 | 88.70 144 | 57.63 175 | 86.73 85 | 61.53 170 | 76.83 187 | 90.33 151 | 89.43 161 | 97.99 179 | 94.05 184 |
|
DU-MVS | | | 82.87 155 | 82.16 162 | 83.70 137 | 80.77 184 | 92.24 164 | 86.54 158 | 81.91 103 | 86.41 152 | 66.27 137 | 63.95 164 | 55.66 190 | 87.78 141 | 86.83 185 | 90.86 146 | 98.94 125 | 99.13 98 |
|
MIMVSNet | | | 82.87 155 | 86.17 146 | 79.02 179 | 77.23 205 | 92.88 154 | 84.88 174 | 60.62 206 | 86.72 149 | 64.16 143 | 73.58 138 | 71.48 144 | 88.51 134 | 94.14 111 | 93.50 109 | 98.72 143 | 90.87 198 |
|
NR-MVSNet | | | 82.37 157 | 81.95 165 | 82.85 144 | 82.56 167 | 92.24 164 | 87.49 146 | 81.91 103 | 86.41 152 | 65.51 139 | 63.95 164 | 52.93 201 | 80.80 173 | 89.41 162 | 89.61 157 | 98.85 132 | 99.10 103 |
|
Baseline_NR-MVSNet | | | 82.08 158 | 80.64 172 | 83.77 136 | 80.77 184 | 88.50 198 | 86.88 156 | 81.71 107 | 85.58 157 | 68.80 131 | 58.20 184 | 57.75 182 | 86.16 146 | 86.83 185 | 88.68 167 | 98.33 170 | 98.90 110 |
|
TranMVSNet+NR-MVSNet | | | 82.07 159 | 81.36 168 | 82.90 143 | 80.43 190 | 91.39 177 | 87.16 152 | 82.75 97 | 84.28 164 | 62.98 150 | 62.28 168 | 56.01 189 | 85.30 149 | 86.06 191 | 90.69 150 | 98.80 133 | 98.80 113 |
|
pm-mvs1 | | | 81.68 160 | 81.70 166 | 81.65 152 | 82.61 166 | 92.26 163 | 85.54 171 | 78.95 129 | 76.29 196 | 63.81 146 | 58.43 183 | 66.33 162 | 80.63 174 | 92.30 133 | 89.93 154 | 98.37 169 | 96.39 169 |
|
TDRefinement | | | 81.49 161 | 80.08 178 | 83.13 142 | 91.02 97 | 94.53 140 | 91.66 110 | 82.43 99 | 81.70 171 | 62.12 154 | 62.30 167 | 59.32 177 | 73.93 198 | 87.31 178 | 85.29 194 | 97.61 186 | 90.14 199 |
|
anonymousdsp | | | 81.29 162 | 84.52 155 | 77.52 187 | 79.83 198 | 92.62 158 | 82.61 185 | 70.88 181 | 80.76 177 | 50.82 197 | 68.35 155 | 68.76 158 | 82.45 169 | 93.00 127 | 89.45 159 | 98.55 157 | 98.69 117 |
|
gg-mvs-nofinetune | | | 81.27 163 | 84.65 154 | 77.32 188 | 87.96 137 | 98.48 77 | 95.64 62 | 56.36 212 | 59.35 214 | 32.80 218 | 47.96 208 | 92.11 73 | 91.49 110 | 98.12 24 | 97.00 47 | 99.65 24 | 99.56 66 |
|
tfpnnormal | | | 81.11 164 | 79.33 186 | 83.19 141 | 84.23 157 | 92.29 162 | 86.76 157 | 82.27 101 | 72.67 202 | 62.02 156 | 56.10 195 | 53.86 198 | 85.35 148 | 92.06 138 | 89.23 163 | 98.49 163 | 99.11 102 |
|
UniMVSNet_ETH3D | | | 80.95 165 | 77.71 194 | 84.74 126 | 84.45 156 | 93.11 153 | 86.45 160 | 79.97 120 | 75.21 198 | 70.22 127 | 51.24 205 | 50.26 207 | 89.55 125 | 84.47 198 | 91.12 141 | 97.81 184 | 98.53 122 |
|
V42 | | | 80.88 166 | 80.74 170 | 81.05 157 | 81.21 178 | 92.01 170 | 85.96 166 | 77.75 137 | 81.62 172 | 59.73 170 | 59.93 175 | 58.35 181 | 82.98 168 | 86.90 184 | 88.06 182 | 98.69 146 | 98.32 130 |
|
v2v482 | | | 80.86 167 | 80.52 176 | 81.25 155 | 80.79 183 | 91.85 171 | 85.68 169 | 78.78 130 | 81.05 174 | 58.09 173 | 60.46 170 | 56.08 187 | 85.45 147 | 87.27 179 | 88.53 169 | 98.73 141 | 98.38 129 |
|
v8 | | | 80.61 168 | 80.61 174 | 80.62 159 | 81.51 173 | 91.00 182 | 86.06 163 | 74.07 166 | 81.78 170 | 59.93 169 | 60.10 174 | 58.42 180 | 83.35 163 | 86.99 183 | 88.11 180 | 98.79 134 | 97.83 145 |
|
pmmvs5 | | | 80.48 169 | 81.43 167 | 79.36 174 | 81.50 174 | 92.24 164 | 82.07 188 | 74.08 165 | 78.10 189 | 55.86 181 | 67.72 157 | 54.35 195 | 83.91 157 | 92.97 128 | 88.65 168 | 98.77 136 | 96.01 171 |
|
v10 | | | 80.38 170 | 80.73 171 | 79.96 167 | 81.22 177 | 90.40 190 | 86.11 162 | 71.63 178 | 82.42 169 | 57.65 174 | 58.74 181 | 57.47 183 | 84.44 151 | 89.75 156 | 88.28 173 | 98.71 144 | 98.06 142 |
|
v1144 | | | 80.36 171 | 80.63 173 | 80.05 166 | 80.86 182 | 91.56 174 | 85.78 168 | 75.22 153 | 80.73 178 | 55.83 182 | 58.51 182 | 56.99 185 | 83.93 156 | 89.79 155 | 88.25 174 | 98.68 147 | 98.56 121 |
|
SixPastTwentyTwo | | | 80.28 172 | 82.06 164 | 78.21 184 | 81.89 172 | 92.35 161 | 77.72 195 | 74.48 160 | 83.04 167 | 54.22 187 | 76.06 129 | 56.40 186 | 83.55 159 | 86.83 185 | 84.83 196 | 97.38 190 | 94.93 180 |
|
CP-MVSNet | | | 79.90 173 | 79.49 183 | 80.38 163 | 80.72 186 | 90.83 184 | 82.98 182 | 75.17 154 | 79.70 183 | 61.39 160 | 59.74 176 | 51.98 204 | 83.31 164 | 87.37 177 | 88.38 171 | 98.71 144 | 98.45 126 |
|
v1192 | | | 79.84 174 | 80.05 180 | 79.61 170 | 80.49 189 | 91.04 181 | 85.56 170 | 74.37 162 | 80.73 178 | 54.35 185 | 57.07 189 | 54.54 194 | 84.23 154 | 89.94 153 | 88.38 171 | 98.63 151 | 98.61 119 |
|
WR-MVS_H | | | 79.76 175 | 80.07 179 | 79.40 173 | 81.25 176 | 91.73 173 | 82.77 183 | 74.82 158 | 79.02 188 | 62.55 151 | 59.41 178 | 57.32 184 | 76.27 189 | 87.61 175 | 87.30 188 | 98.78 135 | 98.09 140 |
|
WR-MVS | | | 79.67 176 | 80.25 177 | 79.00 180 | 80.65 187 | 91.16 179 | 83.31 180 | 76.57 146 | 80.97 175 | 60.50 168 | 59.20 179 | 58.66 179 | 74.38 196 | 85.85 193 | 87.76 185 | 98.61 152 | 98.14 137 |
|
v148 | | | 79.66 177 | 79.13 188 | 80.27 164 | 81.02 180 | 91.76 172 | 81.90 189 | 79.32 124 | 79.24 186 | 63.79 147 | 58.07 186 | 54.34 196 | 77.17 185 | 84.42 199 | 87.52 187 | 98.40 166 | 98.59 120 |
|
LTVRE_ROB | | 79.45 16 | 79.66 177 | 80.55 175 | 78.61 182 | 83.01 163 | 92.19 169 | 87.18 151 | 73.69 169 | 71.70 205 | 43.22 213 | 71.22 148 | 50.85 205 | 87.82 140 | 89.47 161 | 90.43 152 | 96.75 193 | 98.00 144 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v144192 | | | 79.61 179 | 79.77 181 | 79.41 172 | 80.28 191 | 91.06 180 | 84.87 175 | 73.86 167 | 79.65 184 | 55.38 183 | 57.76 187 | 55.20 191 | 83.46 160 | 88.42 167 | 87.89 184 | 98.61 152 | 98.42 128 |
|
v1921920 | | | 79.55 180 | 79.77 181 | 79.30 176 | 80.24 192 | 90.77 186 | 85.37 172 | 73.75 168 | 80.38 180 | 53.78 193 | 56.89 192 | 54.18 197 | 84.05 155 | 89.55 159 | 88.13 179 | 98.59 154 | 98.52 123 |
|
TransMVSNet (Re) | | | 79.51 181 | 78.36 190 | 80.84 158 | 83.17 161 | 89.72 194 | 84.22 178 | 81.45 110 | 73.98 201 | 60.79 166 | 57.20 188 | 56.05 188 | 77.11 186 | 89.88 154 | 88.86 166 | 98.30 172 | 92.83 189 |
|
MVS-HIRNet | | | 79.34 182 | 82.56 158 | 75.57 193 | 84.11 158 | 95.02 133 | 75.03 202 | 57.28 211 | 85.50 159 | 55.88 180 | 53.00 201 | 70.51 154 | 83.05 167 | 92.12 135 | 91.96 132 | 98.09 176 | 89.83 200 |
|
PS-CasMVS | | | 79.06 183 | 78.58 189 | 79.63 169 | 80.59 188 | 90.55 188 | 82.54 186 | 75.04 155 | 77.76 190 | 58.84 171 | 58.16 185 | 50.11 209 | 82.09 170 | 87.05 181 | 88.18 177 | 98.66 150 | 98.27 133 |
|
v1240 | | | 78.97 184 | 79.27 187 | 78.63 181 | 80.04 193 | 90.61 187 | 84.25 177 | 72.95 173 | 79.22 187 | 52.70 195 | 56.22 194 | 52.88 203 | 83.28 165 | 89.60 158 | 88.20 176 | 98.56 156 | 98.14 137 |
|
pmnet_mix02 | | | 78.91 185 | 81.17 169 | 76.28 192 | 81.91 171 | 90.82 185 | 74.25 203 | 77.87 136 | 86.17 154 | 49.04 201 | 67.97 156 | 62.93 168 | 77.40 183 | 82.75 204 | 82.11 203 | 97.18 191 | 95.42 177 |
|
MDTV_nov1_ep13_2view | | | 78.83 186 | 82.35 159 | 74.73 196 | 78.65 200 | 91.51 175 | 79.18 192 | 62.52 199 | 84.51 163 | 52.51 196 | 67.49 158 | 67.29 161 | 78.90 177 | 85.52 195 | 86.34 191 | 96.62 195 | 93.76 185 |
|
PEN-MVS | | | 78.80 187 | 78.13 192 | 79.58 171 | 80.03 194 | 89.67 195 | 83.61 179 | 75.83 149 | 77.71 192 | 58.41 172 | 60.11 173 | 50.00 210 | 81.02 172 | 84.08 200 | 88.14 178 | 98.59 154 | 97.18 158 |
|
EG-PatchMatch MVS | | | 78.32 188 | 79.42 185 | 77.03 190 | 83.03 162 | 93.77 145 | 84.47 176 | 69.26 185 | 75.85 197 | 53.69 194 | 55.68 196 | 60.23 174 | 73.20 199 | 89.69 157 | 88.22 175 | 98.55 157 | 92.54 190 |
|
DTE-MVSNet | | | 77.92 189 | 77.42 195 | 78.51 183 | 79.34 199 | 89.00 197 | 83.05 181 | 75.60 150 | 76.89 194 | 56.58 177 | 59.63 177 | 50.31 206 | 78.09 182 | 82.57 205 | 87.56 186 | 98.38 167 | 95.95 172 |
|
v7n | | | 77.71 190 | 78.25 191 | 77.09 189 | 78.49 201 | 90.55 188 | 82.15 187 | 71.11 180 | 76.79 195 | 54.18 188 | 55.63 197 | 50.20 208 | 78.28 180 | 89.36 164 | 87.15 189 | 98.33 170 | 98.07 141 |
|
gm-plane-assit | | | 77.20 191 | 82.26 160 | 71.30 199 | 81.10 179 | 82.00 211 | 54.33 216 | 64.41 194 | 63.80 213 | 40.93 215 | 59.04 180 | 76.57 126 | 87.30 143 | 98.26 21 | 97.36 36 | 99.74 13 | 98.76 115 |
|
N_pmnet | | | 76.83 192 | 77.97 193 | 75.50 194 | 80.96 181 | 88.23 200 | 72.81 204 | 76.83 145 | 80.87 176 | 50.55 198 | 56.94 191 | 60.09 175 | 75.70 191 | 83.28 202 | 84.23 198 | 96.14 199 | 92.12 191 |
|
pmmvs6 | | | 76.79 193 | 75.69 200 | 78.09 186 | 79.95 196 | 89.57 196 | 80.92 191 | 74.46 161 | 64.79 211 | 60.74 167 | 45.71 210 | 60.55 172 | 78.37 178 | 88.04 170 | 86.00 192 | 94.07 204 | 95.15 178 |
|
CMPMVS |  | 58.73 17 | 76.78 194 | 74.27 201 | 79.70 168 | 93.26 75 | 95.58 128 | 82.74 184 | 77.44 140 | 71.46 208 | 56.29 179 | 53.58 200 | 59.13 178 | 77.33 184 | 79.20 206 | 79.71 206 | 91.14 209 | 81.24 209 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
EU-MVSNet | | | 76.76 195 | 79.47 184 | 73.60 197 | 79.99 195 | 87.47 201 | 77.39 196 | 75.43 152 | 77.62 193 | 47.83 204 | 64.78 162 | 60.44 173 | 64.80 204 | 86.28 190 | 86.53 190 | 96.17 198 | 93.19 188 |
|
PM-MVS | | | 75.81 196 | 76.11 199 | 75.46 195 | 73.81 206 | 85.48 205 | 76.42 198 | 70.57 182 | 80.05 182 | 54.75 184 | 62.33 166 | 39.56 216 | 80.59 175 | 87.71 173 | 82.81 202 | 96.61 197 | 94.81 181 |
|
pmmvs-eth3d | | | 75.17 197 | 74.09 202 | 76.43 191 | 72.92 207 | 84.49 207 | 76.61 197 | 72.42 175 | 74.33 199 | 61.28 162 | 54.71 199 | 39.42 217 | 78.20 181 | 87.77 172 | 84.25 197 | 97.17 192 | 93.63 186 |
|
Anonymous20231206 | | | 74.59 198 | 77.00 196 | 71.78 198 | 77.89 204 | 87.45 202 | 75.14 201 | 72.29 177 | 77.76 190 | 46.65 206 | 52.14 202 | 52.93 201 | 61.10 207 | 89.37 163 | 88.09 181 | 97.59 187 | 91.30 196 |
|
test20.03 | | | 72.81 199 | 76.24 198 | 68.80 202 | 78.31 202 | 85.40 206 | 71.04 206 | 71.20 179 | 71.85 204 | 43.40 212 | 65.31 161 | 54.71 193 | 51.27 210 | 85.92 192 | 84.18 199 | 97.58 188 | 86.35 205 |
|
test_method | | | 71.90 200 | 76.72 197 | 66.28 207 | 60.87 215 | 78.37 213 | 69.75 210 | 49.81 217 | 83.44 165 | 49.63 199 | 47.13 209 | 53.23 200 | 76.38 188 | 91.32 146 | 85.76 193 | 91.22 208 | 97.77 146 |
|
new_pmnet | | | 71.86 201 | 73.67 203 | 69.75 201 | 72.56 210 | 84.20 208 | 70.95 208 | 66.81 191 | 80.34 181 | 43.62 211 | 51.60 203 | 53.81 199 | 71.24 201 | 82.91 203 | 80.93 204 | 93.35 206 | 81.92 208 |
|
MDA-MVSNet-bldmvs | | | 69.61 202 | 70.36 205 | 68.74 203 | 62.88 213 | 88.50 198 | 65.40 213 | 77.01 143 | 71.60 207 | 43.93 208 | 66.71 159 | 35.33 219 | 72.47 200 | 61.01 212 | 80.63 205 | 90.73 210 | 88.75 203 |
|
pmmvs3 | | | 69.04 203 | 70.75 204 | 67.04 205 | 66.83 211 | 78.54 212 | 64.99 214 | 60.92 205 | 64.67 212 | 40.61 216 | 55.08 198 | 40.29 215 | 74.89 195 | 83.76 201 | 84.01 200 | 93.98 205 | 88.88 202 |
|
MIMVSNet1 | | | 68.63 204 | 70.24 206 | 66.76 206 | 56.86 217 | 83.26 209 | 67.93 211 | 70.26 183 | 68.05 209 | 46.80 205 | 40.44 211 | 48.15 211 | 62.01 205 | 84.96 197 | 84.86 195 | 96.69 194 | 81.93 207 |
|
GG-mvs-BLEND | | | 67.99 205 | 97.35 38 | 33.72 214 | 1.22 223 | 99.72 15 | 98.30 34 | 0.57 221 | 97.61 61 | 1.18 224 | 93.26 51 | 96.63 43 | 1.74 220 | 97.15 54 | 97.14 39 | 99.34 91 | 99.96 9 |
|
new-patchmatchnet | | | 67.66 206 | 68.07 207 | 67.18 204 | 72.85 208 | 82.86 210 | 63.09 215 | 68.61 189 | 66.60 210 | 42.64 214 | 49.28 206 | 38.68 218 | 61.21 206 | 75.84 207 | 75.22 208 | 94.67 203 | 88.00 204 |
|
FPMVS | | | 63.27 207 | 61.31 209 | 65.57 208 | 78.25 203 | 74.42 216 | 75.23 200 | 68.92 188 | 72.33 203 | 43.87 209 | 49.01 207 | 43.94 213 | 48.64 212 | 61.15 211 | 58.81 213 | 78.51 216 | 69.49 214 |
|
Gipuma |  | | 54.59 208 | 53.98 210 | 55.30 209 | 59.03 216 | 52.63 218 | 47.17 218 | 56.08 213 | 71.68 206 | 37.54 217 | 20.90 217 | 19.00 221 | 52.33 209 | 71.69 209 | 75.20 209 | 79.64 215 | 66.79 215 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 49.05 18 | 51.88 209 | 50.56 212 | 53.42 210 | 64.21 212 | 43.30 220 | 42.64 219 | 62.93 196 | 50.56 215 | 43.72 210 | 37.44 212 | 42.95 214 | 35.05 215 | 58.76 214 | 54.58 214 | 71.95 217 | 66.33 216 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 50.69 210 | 52.33 211 | 48.78 211 | 51.24 218 | 64.81 217 | 47.91 217 | 53.79 216 | 44.95 216 | 21.75 219 | 29.98 215 | 25.90 220 | 31.98 217 | 59.95 213 | 65.37 211 | 86.00 213 | 75.36 212 |
|
E-PMN | | | 37.15 211 | 34.82 214 | 39.86 212 | 47.53 220 | 35.42 222 | 23.79 221 | 55.26 214 | 35.18 219 | 14.12 221 | 17.38 220 | 14.13 223 | 39.73 214 | 32.24 216 | 46.98 215 | 58.76 218 | 62.39 218 |
|
EMVS | | | 36.45 212 | 33.63 215 | 39.74 213 | 48.47 219 | 35.73 221 | 23.59 222 | 55.11 215 | 35.61 218 | 12.88 222 | 17.49 218 | 14.62 222 | 41.04 213 | 29.33 217 | 43.00 216 | 57.32 219 | 59.62 219 |
|
MVE |  | 42.40 19 | 36.00 213 | 38.65 213 | 32.92 215 | 29.16 221 | 46.17 219 | 22.61 223 | 44.21 218 | 26.44 221 | 18.88 220 | 17.41 219 | 9.36 225 | 32.29 216 | 45.75 215 | 61.38 212 | 50.35 220 | 64.03 217 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 21.55 214 | 30.91 216 | 10.62 216 | 2.78 222 | 11.66 223 | 18.51 224 | 4.82 219 | 38.21 217 | 4.06 223 | 36.35 213 | 4.47 226 | 26.81 218 | 23.27 218 | 27.11 217 | 6.75 221 | 75.30 213 |
|
test123 | | | 16.81 215 | 24.80 217 | 7.48 217 | 0.82 224 | 8.38 224 | 11.92 225 | 2.60 220 | 28.96 220 | 1.12 225 | 28.39 216 | 1.26 227 | 24.51 219 | 8.93 219 | 22.19 218 | 3.90 222 | 75.49 211 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 46.54 207 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.73 7 | | | | | |
|
SR-MVS | | | | | | 99.27 15 | | | 95.82 18 | | | | 99.00 17 | | | | | |
|
Anonymous202405211 | | | | 87.54 140 | | 90.72 101 | 97.10 102 | 93.40 93 | 85.30 79 | 91.41 132 | | 60.23 171 | 80.69 121 | 95.80 65 | 91.33 145 | 92.60 127 | 98.38 167 | 99.40 80 |
|
our_test_3 | | | | | | 81.94 169 | 90.26 193 | 75.39 199 | | | | | | | | | | |
|
ambc | | | | 64.61 208 | | 61.80 214 | 75.31 215 | 71.00 207 | | 74.16 200 | 48.83 202 | 36.02 214 | 13.22 224 | 58.66 208 | 85.80 194 | 76.26 207 | 88.01 211 | 91.53 195 |
|
MTAPA | | | | | | | | | | | 94.58 14 | | 98.56 23 | | | | | |
|
MTMP | | | | | | | | | | | 95.24 8 | | 98.13 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 37.05 220 | | | | | | | | | | |
|
tmp_tt | | | | | 71.24 200 | 90.29 110 | 76.39 214 | 65.81 212 | 59.43 210 | 97.62 59 | 79.65 100 | 90.60 61 | 68.71 159 | 49.71 211 | 72.71 208 | 65.70 210 | 82.54 214 | |
|
XVS | | | | | | 93.63 70 | 99.64 24 | 94.32 78 | | | 83.97 66 | | 98.08 32 | | | | 99.59 36 | |
|
X-MVStestdata | | | | | | 93.63 70 | 99.64 24 | 94.32 78 | | | 83.97 66 | | 98.08 32 | | | | 99.59 36 | |
|
abl_6 | | | | | 95.40 36 | 98.18 39 | 99.45 42 | 97.39 48 | 89.27 50 | 99.48 3 | 90.52 28 | 94.52 45 | 98.63 22 | 97.32 36 | | | 99.73 14 | 99.82 31 |
|
mPP-MVS | | | | | | 98.66 29 | | | | | | | 97.11 40 | | | | | |
|
NP-MVS | | | | | | | | | | 97.69 57 | | | | | | | | |
|
Patchmtry | | | | | | | 95.86 122 | 89.43 134 | 61.37 203 | | 60.81 163 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 85.88 204 | 69.83 209 | 81.56 108 | 87.99 145 | 48.22 203 | 71.85 145 | 45.52 212 | 68.67 202 | 63.21 210 | | 86.64 212 | 80.03 210 |
|