DVP-MVS | | | 98.75 1 | 99.27 1 | 98.15 7 | 99.21 16 | 99.82 5 | 99.58 4 | 96.09 12 | 99.32 9 | 95.16 8 | 98.79 6 | 99.55 7 | 99.05 4 | 99.54 1 | 97.88 21 | 99.84 3 | 99.99 3 |
|
CNVR-MVS | | | 98.73 2 | 99.17 4 | 98.22 4 | 99.47 4 | 99.85 2 | 99.57 5 | 96.23 4 | 99.30 10 | 94.90 10 | 98.65 10 | 98.93 18 | 99.36 1 | 99.46 3 | 98.21 11 | 99.81 6 | 99.80 33 |
|
DPE-MVS | | | 98.69 3 | 99.14 5 | 98.16 6 | 99.37 7 | 99.82 5 | 99.66 2 | 96.26 1 | 99.18 15 | 95.02 9 | 98.62 13 | 99.98 2 | 98.88 10 | 98.90 10 | 97.51 31 | 99.75 10 | 99.97 6 |
|
MSP-MVS | | | 98.65 4 | 98.87 11 | 98.38 1 | 99.30 12 | 99.85 2 | 99.14 22 | 96.23 4 | 99.51 2 | 97.16 1 | 96.01 33 | 99.99 1 | 98.90 9 | 98.89 11 | 97.88 21 | 99.56 49 | 99.98 4 |
|
APDe-MVS | | | 98.60 5 | 98.97 8 | 98.18 5 | 99.38 6 | 99.78 10 | 99.35 14 | 96.14 8 | 99.24 12 | 95.66 6 | 98.19 19 | 99.01 15 | 98.66 16 | 98.77 13 | 97.80 24 | 99.86 2 | 99.97 6 |
|
SF-MVS | | | 98.55 6 | 98.75 13 | 98.32 2 | 99.48 1 | 99.68 19 | 99.51 7 | 96.24 2 | 99.08 19 | 95.94 3 | 98.64 11 | 99.30 11 | 99.02 6 | 97.94 27 | 96.86 49 | 99.75 10 | 99.76 36 |
|
SMA-MVS | | | 98.47 7 | 99.06 6 | 97.77 11 | 99.48 1 | 99.78 10 | 99.37 11 | 96.14 8 | 99.29 11 | 93.03 19 | 97.59 27 | 99.97 3 | 99.03 5 | 98.94 8 | 98.30 9 | 99.60 32 | 99.58 62 |
|
NCCC | | | 98.41 8 | 99.18 2 | 97.52 15 | 99.36 8 | 99.84 4 | 99.55 6 | 96.08 14 | 99.33 8 | 91.77 24 | 98.79 6 | 99.46 9 | 98.59 18 | 99.15 7 | 98.07 18 | 99.73 14 | 99.64 51 |
|
SD-MVS | | | 98.33 9 | 99.01 7 | 97.54 14 | 97.17 50 | 99.77 12 | 99.14 22 | 96.09 12 | 99.34 7 | 94.06 15 | 97.91 24 | 99.89 4 | 99.18 3 | 97.99 26 | 98.21 11 | 99.63 26 | 99.95 12 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS | | | 98.28 10 | 98.69 14 | 97.80 9 | 99.31 11 | 99.62 27 | 99.31 17 | 96.15 7 | 99.19 14 | 93.60 16 | 97.28 28 | 98.35 26 | 98.72 15 | 98.27 19 | 98.22 10 | 99.73 14 | 99.89 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MCST-MVS | | | 98.20 11 | 99.18 2 | 97.06 21 | 99.27 14 | 99.87 1 | 99.37 11 | 96.11 10 | 99.37 5 | 89.29 32 | 98.76 8 | 99.50 8 | 98.37 24 | 99.23 5 | 97.64 27 | 99.95 1 | 99.87 28 |
|
HPM-MVS++ | | | 98.16 12 | 98.87 11 | 97.32 17 | 99.39 5 | 99.70 17 | 99.18 20 | 96.10 11 | 99.09 18 | 91.14 26 | 98.02 22 | 99.89 4 | 98.44 22 | 98.75 14 | 97.03 44 | 99.67 20 | 99.63 55 |
|
MSLP-MVS++ | | | 98.12 13 | 98.23 26 | 97.99 8 | 99.28 13 | 99.72 14 | 99.59 3 | 95.27 28 | 98.61 32 | 94.79 11 | 96.11 32 | 97.79 35 | 99.27 2 | 96.62 61 | 98.96 5 | 99.77 9 | 99.80 33 |
|
HFP-MVS | | | 98.02 14 | 98.55 18 | 97.40 16 | 99.11 20 | 99.69 18 | 99.41 9 | 95.41 26 | 98.79 30 | 91.86 23 | 98.61 14 | 98.16 28 | 99.02 6 | 97.87 32 | 97.40 33 | 99.60 32 | 99.35 81 |
|
TSAR-MVS + MP. | | | 97.98 15 | 98.62 17 | 97.23 19 | 97.08 51 | 99.55 33 | 99.17 21 | 95.69 21 | 99.40 4 | 93.04 18 | 96.68 30 | 98.96 17 | 98.58 19 | 98.82 12 | 96.95 46 | 99.81 6 | 99.96 9 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
zzz-MVS | | | 97.93 16 | 98.05 30 | 97.80 9 | 99.20 17 | 99.64 23 | 99.40 10 | 95.76 19 | 98.01 51 | 94.31 14 | 96.54 31 | 98.49 24 | 98.58 19 | 98.22 22 | 96.23 59 | 99.54 59 | 99.23 87 |
|
SteuartSystems-ACMMP | | | 97.86 17 | 98.91 9 | 96.64 25 | 98.89 26 | 99.79 7 | 99.34 15 | 95.20 30 | 98.48 34 | 89.91 30 | 98.58 15 | 98.69 20 | 96.84 45 | 98.92 9 | 98.16 15 | 99.66 21 | 99.74 39 |
Skip Steuart: Steuart Systems R&D Blog. |
CP-MVS | | | 97.81 18 | 98.26 25 | 97.28 18 | 99.00 23 | 99.65 22 | 99.10 24 | 95.32 27 | 98.38 40 | 92.21 22 | 98.33 17 | 97.74 36 | 98.50 21 | 97.66 41 | 96.55 57 | 99.57 44 | 99.48 71 |
|
ACMMPR | | | 97.78 19 | 98.28 23 | 97.20 20 | 99.03 22 | 99.68 19 | 99.37 11 | 95.24 29 | 98.86 29 | 91.16 25 | 97.86 25 | 97.26 38 | 98.79 13 | 97.64 43 | 97.40 33 | 99.60 32 | 99.25 86 |
|
DeepC-MVS_fast | | 95.01 1 | 97.67 20 | 98.22 27 | 97.02 22 | 99.00 23 | 99.79 7 | 99.10 24 | 95.82 17 | 99.05 22 | 89.53 31 | 93.54 48 | 96.77 41 | 98.83 11 | 99.34 4 | 99.44 2 | 99.82 4 | 99.63 55 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap | | | 97.54 21 | 97.35 37 | 97.77 11 | 99.17 18 | 99.55 33 | 98.57 30 | 95.76 19 | 99.04 23 | 94.66 12 | 97.94 23 | 94.39 56 | 98.82 12 | 96.21 70 | 94.78 80 | 99.62 28 | 99.52 67 |
|
ACMMP_NAP | | | 97.51 22 | 98.27 24 | 96.63 26 | 99.34 9 | 99.72 14 | 99.25 18 | 95.94 16 | 98.11 45 | 87.10 45 | 96.98 29 | 98.50 23 | 98.61 17 | 98.58 16 | 96.83 51 | 99.56 49 | 99.14 95 |
|
MP-MVS | | | 97.46 23 | 98.30 22 | 96.48 27 | 98.93 25 | 99.43 43 | 99.20 19 | 95.42 25 | 98.43 36 | 87.60 42 | 98.19 19 | 98.01 34 | 98.09 26 | 98.05 25 | 96.67 54 | 99.64 24 | 99.35 81 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
train_agg | | | 97.42 24 | 98.88 10 | 95.71 32 | 98.46 33 | 99.60 30 | 99.05 26 | 95.16 31 | 99.10 17 | 84.38 59 | 98.47 16 | 98.85 19 | 97.61 30 | 98.54 17 | 97.66 26 | 99.62 28 | 99.93 18 |
|
CPTT-MVS | | | 97.32 25 | 97.60 36 | 96.99 23 | 98.29 36 | 99.31 54 | 99.04 27 | 94.67 35 | 97.99 52 | 93.12 17 | 98.03 21 | 98.26 27 | 98.77 14 | 96.08 73 | 94.26 88 | 98.07 173 | 99.27 85 |
|
X-MVS | | | 97.20 26 | 98.42 21 | 95.77 30 | 99.04 21 | 99.64 23 | 98.95 29 | 95.10 33 | 98.16 43 | 83.97 65 | 98.27 18 | 98.08 31 | 97.95 27 | 97.89 29 | 97.46 32 | 99.58 40 | 99.47 72 |
|
PHI-MVS | | | 97.09 27 | 98.69 14 | 95.22 37 | 97.99 42 | 99.59 32 | 97.56 43 | 92.16 39 | 98.41 38 | 87.11 44 | 98.70 9 | 99.42 10 | 96.95 41 | 96.88 57 | 98.16 15 | 99.56 49 | 99.70 44 |
|
DPM-MVS | | | 97.07 28 | 97.99 31 | 96.00 29 | 97.25 49 | 99.16 60 | 99.67 1 | 95.99 15 | 99.08 19 | 85.97 49 | 93.00 53 | 98.44 25 | 97.47 32 | 99.22 6 | 99.62 1 | 99.66 21 | 97.44 149 |
|
PGM-MVS | | | 97.03 29 | 98.14 29 | 95.73 31 | 99.34 9 | 99.61 29 | 99.34 15 | 89.99 45 | 97.70 55 | 87.67 41 | 99.44 2 | 96.45 44 | 98.44 22 | 97.65 42 | 97.09 41 | 99.58 40 | 99.06 103 |
|
PLC | | 94.37 2 | 97.03 29 | 96.54 42 | 97.60 13 | 98.84 27 | 98.64 69 | 98.17 35 | 94.99 34 | 99.01 25 | 96.80 2 | 93.21 52 | 95.64 46 | 97.36 33 | 96.37 65 | 94.79 79 | 99.41 81 | 98.12 135 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TSAR-MVS + ACMM | | | 96.90 31 | 98.64 16 | 94.88 39 | 98.12 40 | 99.47 38 | 99.01 28 | 95.43 24 | 99.23 13 | 81.98 83 | 95.95 34 | 99.16 14 | 95.13 66 | 98.61 15 | 98.11 17 | 99.58 40 | 99.93 18 |
|
TSAR-MVS + GP. | | | 96.47 32 | 98.45 20 | 94.17 44 | 92.12 82 | 99.29 55 | 97.76 39 | 88.05 56 | 99.36 6 | 90.26 29 | 97.82 26 | 99.21 12 | 97.21 37 | 96.78 59 | 96.74 52 | 99.63 26 | 99.94 15 |
|
xxxxxxxxxxxxxcwj | | | 96.27 33 | 94.51 61 | 98.32 2 | 99.48 1 | 99.68 19 | 99.51 7 | 96.24 2 | 99.08 19 | 95.94 3 | 98.64 11 | 69.64 152 | 99.02 6 | 97.94 27 | 96.86 49 | 99.75 10 | 99.76 36 |
|
EPNet | | | 96.23 34 | 97.89 33 | 94.29 42 | 97.62 45 | 99.44 42 | 97.14 51 | 88.63 52 | 98.16 43 | 88.14 37 | 99.46 1 | 94.15 59 | 94.61 76 | 97.20 50 | 97.23 37 | 99.57 44 | 99.59 60 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CNLPA | | | 96.14 35 | 95.43 51 | 96.98 24 | 98.55 30 | 99.41 47 | 95.91 57 | 95.15 32 | 99.00 26 | 95.71 5 | 84.21 101 | 94.55 54 | 97.25 35 | 95.50 95 | 96.23 59 | 99.28 100 | 99.09 102 |
|
MVS_111021_LR | | | 96.07 36 | 97.94 32 | 93.88 47 | 97.86 43 | 99.43 43 | 95.70 60 | 89.65 48 | 98.73 31 | 84.86 56 | 99.38 3 | 94.08 60 | 95.78 64 | 97.81 35 | 96.73 53 | 99.43 78 | 99.42 75 |
|
ACMMP | | | 96.05 37 | 96.70 41 | 95.29 36 | 98.01 41 | 99.43 43 | 97.60 42 | 94.33 37 | 97.62 58 | 86.17 48 | 98.92 4 | 92.81 67 | 96.10 57 | 95.67 85 | 93.33 107 | 99.55 54 | 99.12 98 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator+ | | 90.72 7 | 95.99 38 | 96.42 44 | 95.50 34 | 98.18 38 | 99.33 53 | 97.44 45 | 87.73 61 | 97.93 53 | 92.36 21 | 84.67 94 | 97.33 37 | 97.55 31 | 97.32 46 | 98.47 8 | 99.72 18 | 99.88 25 |
|
DeepPCF-MVS | | 94.02 3 | 95.92 39 | 98.47 19 | 92.95 56 | 97.57 46 | 99.79 7 | 91.45 109 | 94.42 36 | 99.76 1 | 86.48 47 | 92.88 54 | 98.12 30 | 92.62 95 | 99.49 2 | 99.32 3 | 95.15 196 | 99.95 12 |
|
CDPH-MVS | | | 95.90 40 | 97.77 35 | 93.72 50 | 98.28 37 | 99.43 43 | 98.40 31 | 91.30 43 | 98.34 41 | 78.62 101 | 94.80 40 | 95.74 45 | 96.11 56 | 97.86 33 | 98.67 7 | 99.59 35 | 99.56 64 |
|
CSCG | | | 95.77 41 | 95.35 53 | 96.26 28 | 99.13 19 | 99.60 30 | 98.14 36 | 91.89 42 | 96.57 74 | 92.61 20 | 89.65 62 | 91.74 74 | 96.96 39 | 93.69 118 | 96.58 56 | 98.86 127 | 99.63 55 |
|
OMC-MVS | | | 95.75 42 | 95.84 48 | 95.64 33 | 98.52 32 | 99.34 52 | 97.15 50 | 92.02 41 | 98.94 28 | 90.45 28 | 88.31 68 | 94.64 51 | 96.35 52 | 96.02 76 | 95.99 68 | 99.34 90 | 97.65 145 |
|
MVS_111021_HR | | | 95.70 43 | 98.16 28 | 92.83 57 | 97.57 46 | 99.77 12 | 94.78 72 | 88.05 56 | 98.61 32 | 82.29 79 | 98.85 5 | 94.66 50 | 94.63 74 | 97.80 36 | 97.63 28 | 99.64 24 | 99.79 35 |
|
3Dnovator | | 90.31 8 | 95.67 44 | 96.16 46 | 95.11 38 | 98.59 29 | 99.37 51 | 97.50 44 | 87.98 58 | 98.02 50 | 89.09 33 | 85.36 93 | 94.62 52 | 97.66 28 | 97.10 53 | 98.90 6 | 99.82 4 | 99.73 41 |
|
CANet | | | 95.40 45 | 96.27 45 | 94.40 41 | 96.25 56 | 99.62 27 | 98.37 32 | 88.59 53 | 98.09 46 | 87.58 43 | 84.57 96 | 95.54 48 | 95.87 61 | 98.12 23 | 98.03 20 | 99.73 14 | 99.90 23 |
|
QAPM | | | 95.17 46 | 96.05 47 | 94.14 45 | 98.55 30 | 99.49 36 | 97.41 46 | 87.88 59 | 97.72 54 | 84.21 62 | 84.59 95 | 95.60 47 | 97.21 37 | 97.10 53 | 98.19 14 | 99.57 44 | 99.65 49 |
|
MVSTER | | | 94.75 47 | 96.50 43 | 92.70 60 | 90.91 97 | 94.51 137 | 97.37 48 | 83.37 91 | 98.40 39 | 89.04 34 | 93.23 51 | 97.04 40 | 95.91 60 | 97.73 37 | 95.59 76 | 99.61 30 | 99.01 104 |
|
TAPA-MVS | | 92.04 6 | 94.72 48 | 95.13 56 | 94.24 43 | 97.72 44 | 99.17 58 | 97.61 41 | 92.16 39 | 97.66 57 | 81.99 82 | 87.84 73 | 93.94 62 | 96.50 49 | 95.74 82 | 94.27 87 | 99.46 74 | 97.31 150 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CS-MVS | | | 94.60 49 | 97.10 40 | 91.67 65 | 90.73 100 | 98.52 76 | 95.51 63 | 83.30 93 | 99.02 24 | 84.42 58 | 94.12 46 | 94.58 53 | 96.52 48 | 97.70 39 | 96.12 63 | 99.55 54 | 99.64 51 |
|
DeepC-MVS | | 92.23 5 | 94.53 50 | 94.26 70 | 94.86 40 | 96.73 53 | 99.50 35 | 97.85 38 | 95.45 23 | 96.22 81 | 82.73 74 | 80.68 110 | 88.02 86 | 96.92 42 | 97.49 45 | 98.20 13 | 99.47 68 | 99.69 46 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CHOSEN 280x420 | | | 94.51 51 | 97.78 34 | 90.70 78 | 95.54 62 | 99.49 36 | 94.14 80 | 74.91 152 | 98.43 36 | 85.32 54 | 94.78 41 | 99.19 13 | 94.95 70 | 97.02 55 | 96.18 62 | 99.35 86 | 99.36 80 |
|
ETV-MVS | | | 94.49 52 | 97.23 39 | 91.29 72 | 90.43 107 | 98.55 72 | 93.41 90 | 84.53 84 | 99.16 16 | 83.13 70 | 94.72 42 | 94.08 60 | 96.61 47 | 97.72 38 | 96.60 55 | 99.61 30 | 99.81 32 |
|
MVS_0304 | | | 94.35 53 | 95.66 50 | 92.83 57 | 94.82 64 | 99.46 40 | 98.19 34 | 87.75 60 | 97.32 64 | 81.83 86 | 83.50 103 | 93.19 66 | 94.71 72 | 98.24 21 | 98.07 18 | 99.68 19 | 99.83 30 |
|
MAR-MVS | | | 94.18 54 | 95.12 57 | 93.09 55 | 98.40 35 | 99.17 58 | 94.20 79 | 81.92 101 | 98.47 35 | 86.52 46 | 90.92 57 | 84.21 105 | 98.12 25 | 95.88 79 | 97.59 29 | 99.40 82 | 99.58 62 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 92.56 4 | 93.95 55 | 93.82 73 | 94.10 46 | 96.07 58 | 99.25 56 | 96.82 53 | 95.51 22 | 92.00 123 | 81.51 87 | 82.97 106 | 93.88 64 | 95.63 65 | 94.24 107 | 94.71 82 | 99.09 110 | 99.70 44 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DELS-MVS | | | 93.82 56 | 93.82 73 | 93.81 49 | 96.34 55 | 99.47 38 | 97.26 49 | 88.53 54 | 92.13 121 | 87.80 40 | 79.67 113 | 88.01 87 | 93.14 87 | 98.28 18 | 99.22 4 | 99.80 8 | 99.98 4 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OpenMVS | | 88.43 11 | 93.49 57 | 93.62 76 | 93.34 51 | 98.46 33 | 99.39 48 | 97.00 52 | 87.66 63 | 95.37 88 | 81.21 89 | 75.96 128 | 91.58 75 | 96.21 55 | 96.37 65 | 97.10 40 | 99.52 60 | 99.54 66 |
|
EIA-MVS | | | 93.32 58 | 95.32 54 | 90.99 75 | 90.45 106 | 98.53 75 | 93.46 89 | 84.68 83 | 97.56 61 | 81.38 88 | 91.04 56 | 87.37 90 | 96.39 51 | 97.27 47 | 95.73 73 | 99.59 35 | 99.76 36 |
|
PVSNet_BlendedMVS | | | 93.30 59 | 93.46 80 | 93.10 53 | 95.60 60 | 99.38 49 | 93.59 87 | 88.70 50 | 98.09 46 | 88.10 38 | 86.96 81 | 75.02 128 | 93.08 88 | 97.89 29 | 96.90 47 | 99.56 49 | 100.00 1 |
|
PVSNet_Blended | | | 93.30 59 | 93.46 80 | 93.10 53 | 95.60 60 | 99.38 49 | 93.59 87 | 88.70 50 | 98.09 46 | 88.10 38 | 86.96 81 | 75.02 128 | 93.08 88 | 97.89 29 | 96.90 47 | 99.56 49 | 100.00 1 |
|
PMMVS | | | 93.05 61 | 95.40 52 | 90.31 82 | 91.41 90 | 97.54 95 | 92.62 101 | 83.25 94 | 98.08 49 | 79.44 99 | 95.18 38 | 88.52 85 | 96.43 50 | 95.70 83 | 93.88 91 | 98.68 143 | 98.91 107 |
|
LS3D | | | 92.70 62 | 92.23 90 | 93.26 52 | 96.24 57 | 98.72 64 | 97.93 37 | 96.17 6 | 96.41 75 | 72.46 115 | 81.39 109 | 80.76 118 | 97.66 28 | 95.69 84 | 95.62 75 | 99.07 112 | 97.02 157 |
|
baseline1 | | | 92.67 63 | 93.62 76 | 91.55 67 | 91.16 93 | 97.15 98 | 93.92 85 | 85.97 73 | 94.76 95 | 84.07 64 | 87.17 77 | 86.89 93 | 94.62 75 | 96.72 60 | 95.90 71 | 99.57 44 | 96.79 161 |
|
IS_MVSNet | | | 92.67 63 | 94.99 59 | 89.96 87 | 91.17 92 | 98.54 73 | 92.77 97 | 84.00 85 | 92.72 117 | 81.90 85 | 85.67 91 | 92.47 69 | 90.39 114 | 97.82 34 | 97.81 23 | 99.51 61 | 99.91 22 |
|
TSAR-MVS + COLMAP | | | 92.56 65 | 92.44 88 | 92.71 59 | 94.61 66 | 97.69 91 | 97.69 40 | 91.09 44 | 98.96 27 | 76.71 106 | 94.68 43 | 69.41 153 | 96.91 43 | 95.80 81 | 94.18 89 | 99.26 101 | 96.33 165 |
|
baseline | | | 92.56 65 | 94.38 66 | 90.43 81 | 90.71 102 | 98.23 82 | 95.07 69 | 80.73 115 | 97.52 62 | 82.45 78 | 87.34 76 | 85.91 97 | 94.07 82 | 96.29 69 | 95.94 70 | 99.58 40 | 99.47 72 |
|
canonicalmvs | | | 92.54 67 | 93.28 82 | 91.68 64 | 91.44 89 | 98.24 81 | 95.45 66 | 81.84 105 | 95.98 85 | 84.85 57 | 90.69 58 | 78.53 123 | 96.96 39 | 92.97 124 | 97.06 42 | 99.57 44 | 99.47 72 |
|
PatchMatch-RL | | | 92.54 67 | 92.82 87 | 92.21 61 | 96.57 54 | 98.74 63 | 91.85 106 | 86.30 68 | 96.23 80 | 85.18 55 | 95.21 37 | 73.58 133 | 94.22 81 | 95.40 98 | 93.08 111 | 99.14 107 | 97.49 148 |
|
MVS_Test | | | 92.42 69 | 94.43 62 | 90.08 86 | 90.69 103 | 98.26 80 | 94.78 72 | 80.81 114 | 97.27 65 | 78.76 100 | 87.06 79 | 84.25 104 | 95.84 62 | 97.67 40 | 97.56 30 | 99.59 35 | 98.93 106 |
|
thisisatest0530 | | | 92.31 70 | 95.14 55 | 89.02 96 | 90.02 114 | 98.45 78 | 91.30 110 | 83.58 88 | 96.90 70 | 77.90 103 | 90.45 60 | 94.33 57 | 91.98 100 | 95.57 89 | 91.43 133 | 99.31 96 | 98.81 110 |
|
tttt0517 | | | 92.29 71 | 95.12 57 | 88.99 97 | 90.02 114 | 98.44 79 | 91.19 113 | 83.58 88 | 96.88 71 | 77.86 104 | 90.45 60 | 94.32 58 | 91.98 100 | 95.54 91 | 91.43 133 | 99.31 96 | 98.78 112 |
|
EPP-MVSNet | | | 92.29 71 | 94.35 68 | 89.88 88 | 90.36 109 | 97.69 91 | 90.89 115 | 83.31 92 | 93.39 110 | 83.47 69 | 85.56 92 | 93.92 63 | 91.93 102 | 95.49 96 | 94.77 81 | 99.34 90 | 99.62 58 |
|
HQP-MVS | | | 91.94 73 | 93.03 84 | 90.66 80 | 93.69 68 | 96.48 112 | 95.92 56 | 89.73 46 | 97.33 63 | 72.65 113 | 95.37 35 | 73.56 134 | 92.75 94 | 94.85 104 | 94.12 90 | 99.23 104 | 99.51 68 |
|
MSDG | | | 91.93 74 | 90.28 117 | 93.85 48 | 97.36 48 | 97.12 99 | 95.88 58 | 94.07 38 | 94.52 99 | 84.13 63 | 76.74 122 | 80.89 117 | 92.54 96 | 93.97 114 | 93.61 101 | 99.14 107 | 95.10 173 |
|
UGNet | | | 91.71 75 | 94.43 62 | 88.53 99 | 92.72 78 | 98.00 85 | 90.22 122 | 84.81 82 | 94.45 100 | 83.05 71 | 87.65 75 | 92.74 68 | 81.04 166 | 94.51 106 | 94.45 84 | 99.32 95 | 99.21 91 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
thres100view900 | | | 91.69 76 | 91.52 96 | 91.88 63 | 91.61 84 | 98.89 61 | 95.49 64 | 86.96 65 | 93.24 111 | 80.82 91 | 87.90 70 | 71.15 143 | 96.88 44 | 96.00 77 | 93.51 103 | 99.51 61 | 99.95 12 |
|
CLD-MVS | | | 91.67 77 | 91.30 101 | 92.10 62 | 91.25 91 | 96.59 109 | 95.93 55 | 87.25 64 | 96.86 72 | 85.55 53 | 87.08 78 | 73.01 135 | 93.26 86 | 93.07 122 | 92.84 117 | 99.34 90 | 99.68 47 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ET-MVSNet_ETH3D | | | 91.59 78 | 94.96 60 | 87.65 101 | 72.75 203 | 97.24 97 | 95.29 67 | 82.73 97 | 96.81 73 | 78.49 102 | 95.30 36 | 90.48 81 | 97.23 36 | 91.60 139 | 94.31 85 | 99.43 78 | 99.01 104 |
|
tfpn200view9 | | | 91.47 79 | 91.31 99 | 91.65 66 | 91.61 84 | 98.69 66 | 95.03 70 | 86.17 69 | 93.24 111 | 80.82 91 | 87.90 70 | 71.15 143 | 96.80 46 | 95.53 92 | 92.82 119 | 99.47 68 | 99.88 25 |
|
CANet_DTU | | | 91.36 80 | 95.75 49 | 86.23 111 | 92.31 81 | 98.71 65 | 95.60 62 | 78.41 129 | 98.20 42 | 56.48 173 | 94.38 45 | 87.96 88 | 95.11 67 | 96.89 56 | 96.07 64 | 99.48 66 | 98.01 139 |
|
thres200 | | | 91.36 80 | 91.19 103 | 91.55 67 | 91.60 86 | 98.69 66 | 94.98 71 | 86.17 69 | 92.16 120 | 80.76 93 | 87.66 74 | 71.15 143 | 96.35 52 | 95.53 92 | 93.23 109 | 99.47 68 | 99.92 21 |
|
FMVSNet3 | | | 91.25 82 | 92.13 92 | 90.21 83 | 85.64 144 | 93.14 146 | 95.29 67 | 80.09 116 | 96.40 76 | 85.74 50 | 77.13 117 | 86.81 94 | 94.98 69 | 97.19 51 | 97.11 39 | 99.55 54 | 97.13 154 |
|
thres400 | | | 91.24 83 | 91.01 109 | 91.50 70 | 91.56 87 | 98.77 62 | 94.66 75 | 86.41 67 | 91.87 125 | 80.56 94 | 87.05 80 | 71.01 146 | 96.35 52 | 95.67 85 | 92.82 119 | 99.48 66 | 99.88 25 |
|
PVSNet_Blended_VisFu | | | 91.20 84 | 92.89 86 | 89.23 94 | 93.41 71 | 98.61 71 | 89.80 124 | 85.39 77 | 92.84 115 | 82.80 73 | 74.21 132 | 91.38 77 | 84.64 145 | 97.22 49 | 96.04 67 | 99.34 90 | 99.93 18 |
|
DCV-MVSNet | | | 91.15 85 | 92.00 93 | 90.17 85 | 90.78 99 | 92.23 163 | 93.70 86 | 81.17 112 | 95.16 91 | 82.98 72 | 89.46 64 | 83.31 107 | 93.98 83 | 91.79 138 | 92.87 114 | 98.41 161 | 99.18 93 |
|
DI_MVS_plusplus_trai | | | 91.11 86 | 91.47 97 | 90.68 79 | 90.01 116 | 97.77 89 | 95.87 59 | 83.56 90 | 94.72 96 | 82.12 81 | 68.46 149 | 87.46 89 | 93.07 90 | 96.46 64 | 95.73 73 | 99.47 68 | 99.71 43 |
|
diffmvs | | | 91.05 87 | 91.15 104 | 90.93 76 | 90.15 112 | 97.79 88 | 94.05 81 | 85.45 75 | 95.63 86 | 81.95 84 | 80.45 112 | 73.01 135 | 94.47 77 | 95.56 90 | 95.89 72 | 99.49 65 | 99.72 42 |
|
Vis-MVSNet (Re-imp) | | | 91.05 87 | 94.43 62 | 87.11 103 | 91.05 95 | 97.99 86 | 92.53 102 | 83.82 87 | 92.71 118 | 76.28 107 | 84.50 97 | 92.43 70 | 79.52 171 | 97.24 48 | 97.68 25 | 99.43 78 | 98.45 123 |
|
thres600view7 | | | 90.97 89 | 90.70 111 | 91.30 71 | 91.53 88 | 98.69 66 | 94.33 76 | 86.17 69 | 91.75 127 | 80.19 95 | 86.06 89 | 70.90 147 | 96.10 57 | 95.53 92 | 92.08 126 | 99.47 68 | 99.86 29 |
|
baseline2 | | | 90.91 90 | 94.40 65 | 86.84 106 | 87.54 135 | 96.83 105 | 89.95 123 | 79.22 124 | 96.00 84 | 77.04 105 | 88.68 65 | 89.73 82 | 88.01 134 | 96.35 67 | 93.51 103 | 99.29 98 | 99.68 47 |
|
ACMP | | 89.80 9 | 90.72 91 | 91.15 104 | 90.21 83 | 92.55 79 | 96.52 111 | 92.63 100 | 85.71 74 | 94.65 97 | 81.06 90 | 93.32 49 | 70.56 149 | 90.52 113 | 92.68 128 | 91.05 138 | 98.76 135 | 99.31 84 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
casdiffmvs | | | 90.69 92 | 90.56 114 | 90.85 77 | 90.14 113 | 97.81 87 | 92.94 95 | 85.30 78 | 93.47 109 | 82.50 77 | 76.34 126 | 74.12 132 | 94.67 73 | 96.51 63 | 96.26 58 | 99.55 54 | 99.42 75 |
|
ACMM | | 89.40 10 | 90.58 93 | 90.02 120 | 91.23 73 | 93.30 73 | 94.75 133 | 90.69 118 | 88.22 55 | 95.20 89 | 82.70 75 | 88.54 66 | 71.40 142 | 93.48 85 | 93.64 119 | 90.94 139 | 98.99 118 | 95.72 170 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 90.49 94 | 91.12 107 | 89.75 90 | 84.99 147 | 92.73 151 | 93.94 82 | 80.09 116 | 96.40 76 | 85.74 50 | 77.13 117 | 86.81 94 | 94.42 78 | 94.12 109 | 93.73 93 | 99.35 86 | 96.90 158 |
|
test1 | | | 90.49 94 | 91.12 107 | 89.75 90 | 84.99 147 | 92.73 151 | 93.94 82 | 80.09 116 | 96.40 76 | 85.74 50 | 77.13 117 | 86.81 94 | 94.42 78 | 94.12 109 | 93.73 93 | 99.35 86 | 96.90 158 |
|
LGP-MVS_train | | | 90.34 96 | 91.63 95 | 88.83 98 | 93.31 72 | 96.14 116 | 95.49 64 | 85.24 80 | 93.91 104 | 68.71 127 | 93.96 47 | 71.63 140 | 91.12 110 | 93.82 116 | 92.79 121 | 99.07 112 | 99.16 94 |
|
EPNet_dtu | | | 89.82 97 | 94.18 71 | 84.74 121 | 96.87 52 | 95.54 126 | 92.65 99 | 86.91 66 | 96.99 67 | 54.17 184 | 92.41 55 | 88.54 84 | 78.35 174 | 96.15 72 | 96.05 66 | 99.47 68 | 93.60 181 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 89.81 98 | 89.75 121 | 89.88 88 | 93.22 75 | 93.99 140 | 94.78 72 | 85.23 81 | 94.01 103 | 82.52 76 | 95.00 39 | 87.23 91 | 92.01 99 | 85.16 190 | 83.48 195 | 91.54 201 | 89.38 195 |
|
MDTV_nov1_ep13 | | | 89.63 99 | 94.38 66 | 84.09 128 | 88.76 128 | 97.53 96 | 89.37 132 | 68.46 184 | 96.95 68 | 70.27 122 | 87.88 72 | 93.67 65 | 91.04 111 | 93.12 120 | 93.83 92 | 96.62 190 | 97.68 144 |
|
UA-Net | | | 89.56 100 | 93.03 84 | 85.52 117 | 92.46 80 | 97.55 94 | 91.92 105 | 81.91 102 | 85.24 156 | 71.39 117 | 83.57 102 | 96.56 43 | 76.01 183 | 96.81 58 | 97.04 43 | 99.46 74 | 94.41 176 |
|
FMVSNet2 | | | 89.51 101 | 89.63 122 | 89.38 92 | 84.99 147 | 92.73 151 | 93.94 82 | 79.28 123 | 93.73 106 | 84.28 61 | 69.36 148 | 82.32 110 | 94.42 78 | 96.16 71 | 96.22 61 | 99.35 86 | 96.90 158 |
|
CostFormer | | | 89.42 102 | 91.67 94 | 86.80 107 | 89.99 117 | 96.33 114 | 90.75 116 | 64.79 187 | 95.17 90 | 83.62 68 | 86.20 87 | 82.15 112 | 92.96 91 | 89.22 160 | 92.94 112 | 98.68 143 | 99.65 49 |
|
FC-MVSNet-train | | | 89.37 103 | 89.62 123 | 89.08 95 | 90.48 105 | 94.16 139 | 89.45 128 | 83.99 86 | 91.09 130 | 80.09 96 | 82.84 107 | 74.52 131 | 91.44 107 | 93.79 117 | 91.57 132 | 99.01 116 | 99.35 81 |
|
OPM-MVS | | | 89.33 104 | 87.45 137 | 91.53 69 | 94.49 67 | 96.20 115 | 96.47 54 | 89.72 47 | 82.77 162 | 75.43 108 | 80.53 111 | 70.86 148 | 93.80 84 | 94.00 113 | 91.85 130 | 99.29 98 | 95.91 168 |
|
test-LLR | | | 89.31 105 | 93.60 78 | 84.30 125 | 88.08 131 | 96.98 101 | 88.10 137 | 78.00 130 | 94.83 93 | 62.43 147 | 84.29 99 | 90.96 78 | 89.70 119 | 95.63 87 | 92.86 115 | 99.51 61 | 99.64 51 |
|
EPMVS | | | 89.31 105 | 93.70 75 | 84.18 127 | 91.10 94 | 98.10 83 | 89.17 134 | 62.71 191 | 96.24 79 | 70.21 124 | 86.46 85 | 92.37 71 | 92.79 92 | 91.95 136 | 93.59 102 | 99.10 109 | 97.19 151 |
|
Anonymous20231211 | | | 89.22 107 | 87.56 135 | 91.16 74 | 90.23 111 | 96.62 108 | 93.22 92 | 85.44 76 | 92.89 114 | 84.37 60 | 60.13 167 | 81.25 115 | 96.02 59 | 90.61 145 | 92.01 127 | 97.70 181 | 99.41 77 |
|
Effi-MVS+ | | | 88.96 108 | 91.13 106 | 86.43 109 | 89.12 124 | 97.62 93 | 93.15 93 | 75.52 147 | 93.90 105 | 66.40 131 | 86.23 86 | 70.51 150 | 95.03 68 | 95.89 78 | 94.28 86 | 99.37 83 | 99.51 68 |
|
SCA | | | 88.76 109 | 94.29 69 | 82.30 144 | 89.33 122 | 96.81 106 | 87.68 139 | 61.52 196 | 96.95 68 | 64.68 137 | 88.35 67 | 94.80 49 | 91.58 104 | 92.23 130 | 93.21 110 | 98.99 118 | 97.70 143 |
|
test0.0.03 1 | | | 88.71 110 | 92.22 91 | 84.63 123 | 88.08 131 | 94.71 135 | 85.91 162 | 78.00 130 | 95.54 87 | 72.96 112 | 86.10 88 | 85.88 99 | 83.59 153 | 92.95 126 | 93.24 108 | 99.25 103 | 97.09 155 |
|
PatchmatchNet | | | 88.67 111 | 94.10 72 | 82.34 143 | 89.38 121 | 97.72 90 | 87.24 145 | 62.18 194 | 97.00 66 | 64.79 136 | 87.97 69 | 94.43 55 | 91.55 105 | 91.21 143 | 92.77 122 | 98.90 123 | 97.60 147 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
dps | | | 88.66 112 | 90.19 118 | 86.88 105 | 89.94 118 | 96.48 112 | 89.56 126 | 64.08 189 | 94.12 102 | 89.00 35 | 83.39 104 | 82.56 109 | 90.16 117 | 86.81 182 | 89.26 157 | 98.53 156 | 98.71 114 |
|
TESTMET0.1,1 | | | 88.63 113 | 93.60 78 | 82.84 140 | 84.07 154 | 96.98 101 | 88.10 137 | 73.22 166 | 94.83 93 | 62.43 147 | 84.29 99 | 90.96 78 | 89.70 119 | 95.63 87 | 92.86 115 | 99.51 61 | 99.64 51 |
|
CHOSEN 1792x2688 | | | 88.63 113 | 89.01 127 | 88.19 100 | 94.83 63 | 99.21 57 | 92.66 98 | 79.85 120 | 92.40 119 | 72.18 116 | 56.38 187 | 80.22 120 | 90.24 115 | 97.64 43 | 97.28 36 | 99.37 83 | 99.94 15 |
|
CDS-MVSNet | | | 88.59 115 | 90.13 119 | 86.79 108 | 86.98 140 | 95.43 127 | 92.03 104 | 81.33 110 | 85.54 153 | 74.51 111 | 77.07 120 | 85.14 101 | 87.03 139 | 93.90 115 | 95.18 77 | 98.88 125 | 98.67 116 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IB-MVS | | 84.67 14 | 88.34 116 | 90.61 113 | 85.70 114 | 92.99 77 | 98.62 70 | 78.85 188 | 86.07 72 | 94.35 101 | 88.64 36 | 85.99 90 | 75.69 126 | 68.09 196 | 88.21 163 | 91.43 133 | 99.55 54 | 99.96 9 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-mter | | | 88.25 117 | 93.27 83 | 82.38 142 | 83.89 155 | 96.86 104 | 87.10 149 | 72.80 168 | 94.58 98 | 61.85 152 | 83.21 105 | 90.65 80 | 89.18 123 | 95.43 97 | 92.58 124 | 99.46 74 | 99.61 59 |
|
COLMAP_ROB | | 84.42 15 | 88.24 118 | 87.32 138 | 89.32 93 | 95.83 59 | 95.82 120 | 92.81 96 | 87.68 62 | 92.09 122 | 72.64 114 | 72.34 140 | 79.96 121 | 88.79 125 | 89.54 155 | 89.46 153 | 98.16 170 | 92.00 187 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
IterMVS-LS | | | 87.95 119 | 89.40 125 | 86.26 110 | 88.79 127 | 90.93 178 | 91.23 112 | 76.05 144 | 90.87 131 | 71.07 119 | 75.51 129 | 81.18 116 | 91.21 109 | 94.11 112 | 95.01 78 | 99.20 106 | 98.23 130 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 87.86 120 | 88.25 132 | 87.40 102 | 94.67 65 | 98.54 73 | 90.33 121 | 76.51 143 | 89.60 138 | 70.89 120 | 51.43 198 | 85.69 100 | 92.79 92 | 96.59 62 | 95.96 69 | 99.22 105 | 99.94 15 |
|
Vis-MVSNet | | | 87.60 121 | 91.31 99 | 83.27 135 | 89.14 123 | 98.04 84 | 90.35 120 | 79.42 121 | 87.23 143 | 66.92 130 | 79.10 116 | 84.63 103 | 74.34 190 | 95.81 80 | 96.06 65 | 99.46 74 | 98.32 127 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
RPMNet | | | 87.35 122 | 92.41 89 | 81.45 148 | 88.85 126 | 96.06 117 | 89.42 131 | 59.59 203 | 93.57 107 | 61.81 153 | 76.48 125 | 91.48 76 | 90.18 116 | 96.32 68 | 93.37 106 | 98.87 126 | 99.59 60 |
|
tpm cat1 | | | 87.34 123 | 88.52 131 | 85.95 112 | 89.83 119 | 95.80 121 | 90.73 117 | 64.91 186 | 92.99 113 | 82.21 80 | 71.19 146 | 82.68 108 | 90.13 118 | 86.38 183 | 90.87 141 | 97.90 178 | 99.74 39 |
|
MS-PatchMatch | | | 87.19 124 | 88.59 130 | 85.55 116 | 93.15 76 | 96.58 110 | 92.35 103 | 74.19 159 | 91.97 124 | 70.33 121 | 71.42 144 | 85.89 98 | 84.28 147 | 93.12 120 | 89.16 159 | 99.00 117 | 91.99 188 |
|
Effi-MVS+-dtu | | | 87.18 125 | 90.48 115 | 83.32 134 | 86.51 141 | 95.76 123 | 91.16 114 | 74.28 158 | 90.44 135 | 61.31 156 | 86.72 84 | 72.68 138 | 91.25 108 | 95.01 102 | 93.64 96 | 95.45 195 | 99.12 98 |
|
FMVSNet5 | | | 87.06 126 | 89.52 124 | 84.20 126 | 79.92 191 | 86.57 197 | 87.11 148 | 72.37 170 | 96.06 82 | 75.41 109 | 84.33 98 | 91.76 73 | 91.60 103 | 91.51 140 | 91.22 136 | 98.77 132 | 85.16 200 |
|
Fast-Effi-MVS+-dtu | | | 86.94 127 | 91.27 102 | 81.89 145 | 86.27 142 | 95.06 128 | 90.68 119 | 68.93 181 | 91.76 126 | 57.18 171 | 89.56 63 | 75.85 125 | 89.19 122 | 94.56 105 | 92.84 117 | 99.07 112 | 99.23 87 |
|
Fast-Effi-MVS+ | | | 86.94 127 | 87.88 134 | 85.84 113 | 86.99 139 | 95.80 121 | 91.24 111 | 73.48 165 | 92.75 116 | 69.22 125 | 72.70 138 | 65.71 159 | 94.84 71 | 94.98 103 | 94.71 82 | 99.26 101 | 98.48 122 |
|
tpmrst | | | 86.78 129 | 90.29 116 | 82.69 141 | 90.55 104 | 96.95 103 | 88.49 136 | 62.58 192 | 95.09 92 | 63.52 143 | 76.67 124 | 84.00 106 | 92.05 98 | 87.93 166 | 91.89 129 | 98.98 120 | 99.50 70 |
|
CR-MVSNet | | | 86.73 130 | 91.47 97 | 81.20 151 | 88.56 129 | 96.06 117 | 89.43 129 | 61.37 197 | 93.57 107 | 60.81 158 | 72.89 137 | 88.85 83 | 88.13 132 | 96.03 74 | 93.64 96 | 98.89 124 | 99.22 89 |
|
ADS-MVSNet | | | 86.68 131 | 90.79 110 | 81.88 146 | 90.38 108 | 96.81 106 | 86.90 150 | 60.50 201 | 96.01 83 | 63.93 140 | 81.67 108 | 84.72 102 | 90.78 112 | 87.03 176 | 91.67 131 | 98.77 132 | 97.63 146 |
|
FMVSNet1 | | | 85.85 132 | 84.91 148 | 86.96 104 | 82.70 160 | 91.39 172 | 91.54 108 | 77.45 135 | 85.29 155 | 79.56 98 | 60.70 164 | 72.68 138 | 92.37 97 | 94.12 109 | 93.73 93 | 98.12 171 | 96.44 162 |
|
FC-MVSNet-test | | | 85.51 133 | 89.08 126 | 81.35 149 | 85.31 146 | 93.35 142 | 87.65 140 | 77.55 134 | 90.01 136 | 64.07 139 | 79.63 114 | 81.83 114 | 74.94 187 | 92.08 133 | 90.83 143 | 98.55 153 | 95.81 169 |
|
ACMH | | 85.22 13 | 85.40 134 | 85.73 145 | 85.02 119 | 91.76 83 | 94.46 138 | 84.97 168 | 81.54 108 | 85.18 157 | 65.22 135 | 76.92 121 | 64.22 160 | 88.58 128 | 90.17 147 | 90.25 149 | 98.03 174 | 98.90 108 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 85.35 135 | 86.00 144 | 84.59 124 | 84.97 150 | 95.57 125 | 88.98 135 | 77.29 138 | 81.44 167 | 71.36 118 | 71.48 143 | 75.00 130 | 87.03 139 | 91.92 137 | 92.21 125 | 97.92 177 | 94.40 177 |
|
ACMH+ | | 85.62 12 | 85.27 136 | 84.96 147 | 85.64 115 | 90.84 98 | 94.78 132 | 87.46 142 | 81.30 111 | 86.94 144 | 67.35 129 | 74.56 131 | 64.09 161 | 88.70 126 | 88.14 164 | 89.00 160 | 98.22 169 | 97.19 151 |
|
USDC | | | 85.11 137 | 85.35 146 | 84.83 120 | 89.45 120 | 94.93 131 | 92.98 94 | 77.30 137 | 90.53 133 | 61.80 154 | 76.69 123 | 59.62 170 | 88.90 124 | 92.78 127 | 90.79 145 | 98.53 156 | 92.12 185 |
|
IterMVS | | | 85.02 138 | 88.98 128 | 80.41 157 | 87.03 138 | 90.34 185 | 89.78 125 | 69.45 178 | 89.77 137 | 54.04 185 | 73.71 134 | 82.05 113 | 83.44 156 | 95.11 100 | 93.64 96 | 98.75 136 | 98.22 132 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 84.91 139 | 88.90 129 | 80.25 160 | 87.04 137 | 90.27 186 | 89.23 133 | 69.25 180 | 89.17 139 | 54.04 185 | 73.65 135 | 82.22 111 | 83.23 161 | 95.11 100 | 93.63 100 | 98.73 137 | 98.23 130 |
|
PatchT | | | 84.89 140 | 90.67 112 | 78.13 180 | 87.83 134 | 94.99 130 | 72.46 199 | 60.22 202 | 91.74 128 | 60.81 158 | 72.16 141 | 86.95 92 | 88.13 132 | 96.03 74 | 93.64 96 | 99.36 85 | 99.22 89 |
|
pmmvs4 | | | 84.88 141 | 84.67 149 | 85.13 118 | 82.80 159 | 92.37 156 | 87.29 143 | 79.08 125 | 90.51 134 | 74.94 110 | 70.37 147 | 62.49 163 | 88.17 131 | 92.01 135 | 88.51 165 | 98.49 159 | 96.44 162 |
|
CVMVSNet | | | 84.01 142 | 86.91 139 | 80.61 155 | 88.39 130 | 93.29 143 | 86.06 158 | 82.29 99 | 83.13 160 | 54.29 181 | 72.68 139 | 79.59 122 | 75.11 186 | 91.23 142 | 92.91 113 | 97.54 185 | 95.58 171 |
|
tpm | | | 83.97 143 | 87.97 133 | 79.31 170 | 87.35 136 | 93.21 145 | 86.00 160 | 61.90 195 | 90.69 132 | 54.01 187 | 79.42 115 | 75.61 127 | 88.65 127 | 87.18 174 | 90.48 147 | 97.95 176 | 99.21 91 |
|
GA-MVS | | | 83.83 144 | 86.63 140 | 80.58 156 | 85.40 145 | 94.73 134 | 87.27 144 | 78.76 128 | 86.49 146 | 49.57 194 | 74.21 132 | 67.67 156 | 83.38 157 | 95.28 99 | 90.92 140 | 99.08 111 | 97.09 155 |
|
UniMVSNet_NR-MVSNet | | | 83.83 144 | 83.70 152 | 83.98 129 | 81.41 169 | 92.56 155 | 86.54 153 | 82.96 95 | 85.98 150 | 66.27 132 | 66.16 155 | 63.63 162 | 87.78 136 | 87.65 169 | 90.81 144 | 98.94 121 | 99.13 96 |
|
UniMVSNet (Re) | | | 83.28 146 | 83.16 153 | 83.42 133 | 81.93 165 | 93.12 147 | 86.27 156 | 80.83 113 | 85.88 151 | 68.23 128 | 64.56 158 | 60.58 165 | 84.25 148 | 89.13 161 | 89.44 155 | 99.04 115 | 99.40 78 |
|
thisisatest0515 | | | 83.17 147 | 86.49 141 | 79.30 171 | 82.04 163 | 93.12 147 | 78.70 189 | 77.92 132 | 86.43 147 | 63.05 144 | 74.91 130 | 73.01 135 | 75.56 185 | 92.10 132 | 88.05 178 | 98.50 158 | 97.76 142 |
|
TinyColmap | | | 83.03 148 | 82.24 157 | 83.95 130 | 88.88 125 | 93.22 144 | 89.48 127 | 76.89 140 | 87.53 142 | 62.12 149 | 68.46 149 | 55.03 186 | 88.43 130 | 90.87 144 | 89.65 151 | 97.89 179 | 90.91 191 |
|
testgi | | | 82.88 149 | 86.14 143 | 79.08 173 | 86.05 143 | 92.20 164 | 81.23 185 | 74.77 154 | 88.70 140 | 57.63 170 | 86.73 83 | 61.53 164 | 76.83 181 | 90.33 146 | 89.43 156 | 97.99 175 | 94.05 178 |
|
DU-MVS | | | 82.87 150 | 82.16 158 | 83.70 132 | 80.77 178 | 92.24 160 | 86.54 153 | 81.91 102 | 86.41 148 | 66.27 132 | 63.95 159 | 55.66 184 | 87.78 136 | 86.83 179 | 90.86 142 | 98.94 121 | 99.13 96 |
|
MIMVSNet | | | 82.87 150 | 86.17 142 | 79.02 174 | 77.23 199 | 92.88 150 | 84.88 169 | 60.62 200 | 86.72 145 | 64.16 138 | 73.58 136 | 71.48 141 | 88.51 129 | 94.14 108 | 93.50 105 | 98.72 139 | 90.87 192 |
|
NR-MVSNet | | | 82.37 152 | 81.95 160 | 82.85 139 | 82.56 162 | 92.24 160 | 87.49 141 | 81.91 102 | 86.41 148 | 65.51 134 | 63.95 159 | 52.93 194 | 80.80 168 | 89.41 157 | 89.61 152 | 98.85 128 | 99.10 101 |
|
Baseline_NR-MVSNet | | | 82.08 153 | 80.64 166 | 83.77 131 | 80.77 178 | 88.50 192 | 86.88 151 | 81.71 106 | 85.58 152 | 68.80 126 | 58.20 179 | 57.75 176 | 86.16 141 | 86.83 179 | 88.68 162 | 98.33 166 | 98.90 108 |
|
TranMVSNet+NR-MVSNet | | | 82.07 154 | 81.36 163 | 82.90 138 | 80.43 184 | 91.39 172 | 87.16 147 | 82.75 96 | 84.28 159 | 62.98 145 | 62.28 163 | 56.01 183 | 85.30 144 | 86.06 185 | 90.69 146 | 98.80 129 | 98.80 111 |
|
pm-mvs1 | | | 81.68 155 | 81.70 161 | 81.65 147 | 82.61 161 | 92.26 159 | 85.54 166 | 78.95 126 | 76.29 189 | 63.81 141 | 58.43 178 | 66.33 158 | 80.63 169 | 92.30 129 | 89.93 150 | 98.37 165 | 96.39 164 |
|
TDRefinement | | | 81.49 156 | 80.08 172 | 83.13 137 | 91.02 96 | 94.53 136 | 91.66 107 | 82.43 98 | 81.70 165 | 62.12 149 | 62.30 162 | 59.32 171 | 73.93 191 | 87.31 172 | 85.29 188 | 97.61 182 | 90.14 193 |
|
anonymousdsp | | | 81.29 157 | 84.52 151 | 77.52 182 | 79.83 192 | 92.62 154 | 82.61 180 | 70.88 175 | 80.76 171 | 50.82 192 | 68.35 151 | 68.76 154 | 82.45 164 | 93.00 123 | 89.45 154 | 98.55 153 | 98.69 115 |
|
gg-mvs-nofinetune | | | 81.27 158 | 84.65 150 | 77.32 183 | 87.96 133 | 98.48 77 | 95.64 61 | 56.36 206 | 59.35 207 | 32.80 210 | 47.96 202 | 92.11 72 | 91.49 106 | 98.12 23 | 97.00 45 | 99.65 23 | 99.56 64 |
|
tfpnnormal | | | 81.11 159 | 79.33 180 | 83.19 136 | 84.23 152 | 92.29 158 | 86.76 152 | 82.27 100 | 72.67 195 | 62.02 151 | 56.10 189 | 53.86 192 | 85.35 143 | 92.06 134 | 89.23 158 | 98.49 159 | 99.11 100 |
|
UniMVSNet_ETH3D | | | 80.95 160 | 77.71 188 | 84.74 121 | 84.45 151 | 93.11 149 | 86.45 155 | 79.97 119 | 75.21 191 | 70.22 123 | 51.24 199 | 50.26 200 | 89.55 121 | 84.47 192 | 91.12 137 | 97.81 180 | 98.53 120 |
|
V42 | | | 80.88 161 | 80.74 164 | 81.05 152 | 81.21 172 | 92.01 166 | 85.96 161 | 77.75 133 | 81.62 166 | 59.73 165 | 59.93 170 | 58.35 175 | 82.98 163 | 86.90 178 | 88.06 177 | 98.69 142 | 98.32 127 |
|
v2v482 | | | 80.86 162 | 80.52 170 | 81.25 150 | 80.79 177 | 91.85 167 | 85.68 164 | 78.78 127 | 81.05 168 | 58.09 168 | 60.46 165 | 56.08 181 | 85.45 142 | 87.27 173 | 88.53 164 | 98.73 137 | 98.38 126 |
|
v8 | | | 80.61 163 | 80.61 168 | 80.62 154 | 81.51 167 | 91.00 177 | 86.06 158 | 74.07 161 | 81.78 164 | 59.93 164 | 60.10 169 | 58.42 174 | 83.35 158 | 86.99 177 | 88.11 175 | 98.79 130 | 97.83 141 |
|
pmmvs5 | | | 80.48 164 | 81.43 162 | 79.36 169 | 81.50 168 | 92.24 160 | 82.07 183 | 74.08 160 | 78.10 182 | 55.86 176 | 67.72 152 | 54.35 189 | 83.91 152 | 92.97 124 | 88.65 163 | 98.77 132 | 96.01 166 |
|
v10 | | | 80.38 165 | 80.73 165 | 79.96 162 | 81.22 171 | 90.40 184 | 86.11 157 | 71.63 172 | 82.42 163 | 57.65 169 | 58.74 176 | 57.47 177 | 84.44 146 | 89.75 151 | 88.28 168 | 98.71 140 | 98.06 138 |
|
v1144 | | | 80.36 166 | 80.63 167 | 80.05 161 | 80.86 176 | 91.56 170 | 85.78 163 | 75.22 149 | 80.73 172 | 55.83 177 | 58.51 177 | 56.99 179 | 83.93 151 | 89.79 150 | 88.25 169 | 98.68 143 | 98.56 119 |
|
SixPastTwentyTwo | | | 80.28 167 | 82.06 159 | 78.21 179 | 81.89 166 | 92.35 157 | 77.72 190 | 74.48 155 | 83.04 161 | 54.22 182 | 76.06 127 | 56.40 180 | 83.55 154 | 86.83 179 | 84.83 190 | 97.38 186 | 94.93 174 |
|
CP-MVSNet | | | 79.90 168 | 79.49 177 | 80.38 158 | 80.72 180 | 90.83 179 | 82.98 177 | 75.17 150 | 79.70 177 | 61.39 155 | 59.74 171 | 51.98 197 | 83.31 159 | 87.37 171 | 88.38 166 | 98.71 140 | 98.45 123 |
|
v1192 | | | 79.84 169 | 80.05 174 | 79.61 165 | 80.49 183 | 91.04 176 | 85.56 165 | 74.37 157 | 80.73 172 | 54.35 180 | 57.07 184 | 54.54 188 | 84.23 149 | 89.94 148 | 88.38 166 | 98.63 147 | 98.61 117 |
|
WR-MVS_H | | | 79.76 170 | 80.07 173 | 79.40 168 | 81.25 170 | 91.73 169 | 82.77 178 | 74.82 153 | 79.02 181 | 62.55 146 | 59.41 173 | 57.32 178 | 76.27 182 | 87.61 170 | 87.30 183 | 98.78 131 | 98.09 136 |
|
WR-MVS | | | 79.67 171 | 80.25 171 | 79.00 175 | 80.65 181 | 91.16 174 | 83.31 175 | 76.57 142 | 80.97 169 | 60.50 163 | 59.20 174 | 58.66 173 | 74.38 189 | 85.85 187 | 87.76 180 | 98.61 148 | 98.14 133 |
|
v148 | | | 79.66 172 | 79.13 182 | 80.27 159 | 81.02 174 | 91.76 168 | 81.90 184 | 79.32 122 | 79.24 179 | 63.79 142 | 58.07 181 | 54.34 190 | 77.17 179 | 84.42 193 | 87.52 182 | 98.40 162 | 98.59 118 |
|
LTVRE_ROB | | 79.45 16 | 79.66 172 | 80.55 169 | 78.61 177 | 83.01 158 | 92.19 165 | 87.18 146 | 73.69 164 | 71.70 198 | 43.22 205 | 71.22 145 | 50.85 198 | 87.82 135 | 89.47 156 | 90.43 148 | 96.75 188 | 98.00 140 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v144192 | | | 79.61 174 | 79.77 175 | 79.41 167 | 80.28 185 | 91.06 175 | 84.87 170 | 73.86 162 | 79.65 178 | 55.38 178 | 57.76 182 | 55.20 185 | 83.46 155 | 88.42 162 | 87.89 179 | 98.61 148 | 98.42 125 |
|
v1921920 | | | 79.55 175 | 79.77 175 | 79.30 171 | 80.24 186 | 90.77 180 | 85.37 167 | 73.75 163 | 80.38 174 | 53.78 188 | 56.89 186 | 54.18 191 | 84.05 150 | 89.55 154 | 88.13 174 | 98.59 150 | 98.52 121 |
|
TransMVSNet (Re) | | | 79.51 176 | 78.36 184 | 80.84 153 | 83.17 156 | 89.72 188 | 84.22 173 | 81.45 109 | 73.98 194 | 60.79 161 | 57.20 183 | 56.05 182 | 77.11 180 | 89.88 149 | 88.86 161 | 98.30 168 | 92.83 183 |
|
MVS-HIRNet | | | 79.34 177 | 82.56 154 | 75.57 187 | 84.11 153 | 95.02 129 | 75.03 197 | 57.28 205 | 85.50 154 | 55.88 175 | 53.00 195 | 70.51 150 | 83.05 162 | 92.12 131 | 91.96 128 | 98.09 172 | 89.83 194 |
|
PS-CasMVS | | | 79.06 178 | 78.58 183 | 79.63 164 | 80.59 182 | 90.55 182 | 82.54 181 | 75.04 151 | 77.76 183 | 58.84 166 | 58.16 180 | 50.11 202 | 82.09 165 | 87.05 175 | 88.18 172 | 98.66 146 | 98.27 129 |
|
v1240 | | | 78.97 179 | 79.27 181 | 78.63 176 | 80.04 187 | 90.61 181 | 84.25 172 | 72.95 167 | 79.22 180 | 52.70 190 | 56.22 188 | 52.88 196 | 83.28 160 | 89.60 153 | 88.20 171 | 98.56 152 | 98.14 133 |
|
MDTV_nov1_ep13_2view | | | 78.83 180 | 82.35 155 | 74.73 190 | 78.65 194 | 91.51 171 | 79.18 187 | 62.52 193 | 84.51 158 | 52.51 191 | 67.49 153 | 67.29 157 | 78.90 172 | 85.52 189 | 86.34 186 | 96.62 190 | 93.76 179 |
|
PEN-MVS | | | 78.80 181 | 78.13 186 | 79.58 166 | 80.03 188 | 89.67 189 | 83.61 174 | 75.83 145 | 77.71 185 | 58.41 167 | 60.11 168 | 50.00 203 | 81.02 167 | 84.08 194 | 88.14 173 | 98.59 150 | 97.18 153 |
|
EG-PatchMatch MVS | | | 78.32 182 | 79.42 179 | 77.03 185 | 83.03 157 | 93.77 141 | 84.47 171 | 69.26 179 | 75.85 190 | 53.69 189 | 55.68 190 | 60.23 168 | 73.20 192 | 89.69 152 | 88.22 170 | 98.55 153 | 92.54 184 |
|
DTE-MVSNet | | | 77.92 183 | 77.42 189 | 78.51 178 | 79.34 193 | 89.00 191 | 83.05 176 | 75.60 146 | 76.89 187 | 56.58 172 | 59.63 172 | 50.31 199 | 78.09 177 | 82.57 198 | 87.56 181 | 98.38 163 | 95.95 167 |
|
v7n | | | 77.71 184 | 78.25 185 | 77.09 184 | 78.49 195 | 90.55 182 | 82.15 182 | 71.11 174 | 76.79 188 | 54.18 183 | 55.63 191 | 50.20 201 | 78.28 175 | 89.36 159 | 87.15 184 | 98.33 166 | 98.07 137 |
|
gm-plane-assit | | | 77.20 185 | 82.26 156 | 71.30 193 | 81.10 173 | 82.00 205 | 54.33 209 | 64.41 188 | 63.80 206 | 40.93 207 | 59.04 175 | 76.57 124 | 87.30 138 | 98.26 20 | 97.36 35 | 99.74 13 | 98.76 113 |
|
N_pmnet | | | 76.83 186 | 77.97 187 | 75.50 188 | 80.96 175 | 88.23 194 | 72.81 198 | 76.83 141 | 80.87 170 | 50.55 193 | 56.94 185 | 60.09 169 | 75.70 184 | 83.28 196 | 84.23 192 | 96.14 194 | 92.12 185 |
|
pmmvs6 | | | 76.79 187 | 75.69 193 | 78.09 181 | 79.95 190 | 89.57 190 | 80.92 186 | 74.46 156 | 64.79 204 | 60.74 162 | 45.71 203 | 60.55 166 | 78.37 173 | 88.04 165 | 86.00 187 | 94.07 198 | 95.15 172 |
|
CMPMVS | | 58.73 17 | 76.78 188 | 74.27 194 | 79.70 163 | 93.26 74 | 95.58 124 | 82.74 179 | 77.44 136 | 71.46 201 | 56.29 174 | 53.58 194 | 59.13 172 | 77.33 178 | 79.20 199 | 79.71 199 | 91.14 202 | 81.24 203 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
EU-MVSNet | | | 76.76 189 | 79.47 178 | 73.60 191 | 79.99 189 | 87.47 195 | 77.39 191 | 75.43 148 | 77.62 186 | 47.83 197 | 64.78 157 | 60.44 167 | 64.80 197 | 86.28 184 | 86.53 185 | 96.17 193 | 93.19 182 |
|
PM-MVS | | | 75.81 190 | 76.11 192 | 75.46 189 | 73.81 200 | 85.48 199 | 76.42 193 | 70.57 176 | 80.05 176 | 54.75 179 | 62.33 161 | 39.56 209 | 80.59 170 | 87.71 168 | 82.81 196 | 96.61 192 | 94.81 175 |
|
pmmvs-eth3d | | | 75.17 191 | 74.09 195 | 76.43 186 | 72.92 201 | 84.49 201 | 76.61 192 | 72.42 169 | 74.33 192 | 61.28 157 | 54.71 193 | 39.42 210 | 78.20 176 | 87.77 167 | 84.25 191 | 97.17 187 | 93.63 180 |
|
Anonymous20231206 | | | 74.59 192 | 77.00 190 | 71.78 192 | 77.89 198 | 87.45 196 | 75.14 196 | 72.29 171 | 77.76 183 | 46.65 199 | 52.14 196 | 52.93 194 | 61.10 200 | 89.37 158 | 88.09 176 | 97.59 183 | 91.30 190 |
|
test20.03 | | | 72.81 193 | 76.24 191 | 68.80 196 | 78.31 196 | 85.40 200 | 71.04 200 | 71.20 173 | 71.85 197 | 43.40 204 | 65.31 156 | 54.71 187 | 51.27 203 | 85.92 186 | 84.18 193 | 97.58 184 | 86.35 199 |
|
new_pmnet | | | 71.86 194 | 73.67 196 | 69.75 195 | 72.56 204 | 84.20 202 | 70.95 202 | 66.81 185 | 80.34 175 | 43.62 203 | 51.60 197 | 53.81 193 | 71.24 194 | 82.91 197 | 80.93 197 | 93.35 200 | 81.92 202 |
|
MDA-MVSNet-bldmvs | | | 69.61 195 | 70.36 198 | 68.74 197 | 62.88 207 | 88.50 192 | 65.40 206 | 77.01 139 | 71.60 200 | 43.93 200 | 66.71 154 | 35.33 212 | 72.47 193 | 61.01 205 | 80.63 198 | 90.73 203 | 88.75 197 |
|
pmmvs3 | | | 69.04 196 | 70.75 197 | 67.04 199 | 66.83 205 | 78.54 206 | 64.99 207 | 60.92 199 | 64.67 205 | 40.61 208 | 55.08 192 | 40.29 208 | 74.89 188 | 83.76 195 | 84.01 194 | 93.98 199 | 88.88 196 |
|
MIMVSNet1 | | | 68.63 197 | 70.24 199 | 66.76 200 | 56.86 210 | 83.26 203 | 67.93 204 | 70.26 177 | 68.05 202 | 46.80 198 | 40.44 204 | 48.15 204 | 62.01 198 | 84.96 191 | 84.86 189 | 96.69 189 | 81.93 201 |
|
GG-mvs-BLEND | | | 67.99 198 | 97.35 37 | 33.72 207 | 1.22 216 | 99.72 14 | 98.30 33 | 0.57 214 | 97.61 60 | 1.18 216 | 93.26 50 | 96.63 42 | 1.74 213 | 97.15 52 | 97.14 38 | 99.34 90 | 99.96 9 |
|
new-patchmatchnet | | | 67.66 199 | 68.07 200 | 67.18 198 | 72.85 202 | 82.86 204 | 63.09 208 | 68.61 183 | 66.60 203 | 42.64 206 | 49.28 200 | 38.68 211 | 61.21 199 | 75.84 200 | 75.22 201 | 94.67 197 | 88.00 198 |
|
FPMVS | | | 63.27 200 | 61.31 202 | 65.57 201 | 78.25 197 | 74.42 209 | 75.23 195 | 68.92 182 | 72.33 196 | 43.87 201 | 49.01 201 | 43.94 206 | 48.64 205 | 61.15 204 | 58.81 206 | 78.51 209 | 69.49 208 |
|
Gipuma | | | 54.59 201 | 53.98 203 | 55.30 202 | 59.03 209 | 52.63 211 | 47.17 211 | 56.08 207 | 71.68 199 | 37.54 209 | 20.90 210 | 19.00 214 | 52.33 202 | 71.69 202 | 75.20 202 | 79.64 208 | 66.79 209 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS | | 49.05 18 | 51.88 202 | 50.56 205 | 53.42 203 | 64.21 206 | 43.30 213 | 42.64 212 | 62.93 190 | 50.56 208 | 43.72 202 | 37.44 205 | 42.95 207 | 35.05 208 | 58.76 207 | 54.58 207 | 71.95 210 | 66.33 210 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 50.69 203 | 52.33 204 | 48.78 204 | 51.24 211 | 64.81 210 | 47.91 210 | 53.79 210 | 44.95 209 | 21.75 211 | 29.98 208 | 25.90 213 | 31.98 210 | 59.95 206 | 65.37 204 | 86.00 206 | 75.36 206 |
|
E-PMN | | | 37.15 204 | 34.82 207 | 39.86 205 | 47.53 213 | 35.42 215 | 23.79 214 | 55.26 208 | 35.18 212 | 14.12 213 | 17.38 213 | 14.13 216 | 39.73 207 | 32.24 209 | 46.98 208 | 58.76 211 | 62.39 212 |
|
EMVS | | | 36.45 205 | 33.63 208 | 39.74 206 | 48.47 212 | 35.73 214 | 23.59 215 | 55.11 209 | 35.61 211 | 12.88 214 | 17.49 211 | 14.62 215 | 41.04 206 | 29.33 210 | 43.00 209 | 57.32 212 | 59.62 213 |
|
MVE | | 42.40 19 | 36.00 206 | 38.65 206 | 32.92 208 | 29.16 214 | 46.17 212 | 22.61 216 | 44.21 211 | 26.44 214 | 18.88 212 | 17.41 212 | 9.36 218 | 32.29 209 | 45.75 208 | 61.38 205 | 50.35 213 | 64.03 211 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 21.55 207 | 30.91 209 | 10.62 209 | 2.78 215 | 11.66 216 | 18.51 217 | 4.82 212 | 38.21 210 | 4.06 215 | 36.35 206 | 4.47 219 | 26.81 211 | 23.27 211 | 27.11 210 | 6.75 214 | 75.30 207 |
|
test123 | | | 16.81 208 | 24.80 210 | 7.48 210 | 0.82 217 | 8.38 217 | 11.92 218 | 2.60 213 | 28.96 213 | 1.12 217 | 28.39 209 | 1.26 220 | 24.51 212 | 8.93 212 | 22.19 211 | 3.90 215 | 75.49 205 |
|
uanet_test | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet-low-res | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
9.14 | | | | | | | | | | | | | 99.73 6 | | | | | |
|
SR-MVS | | | | | | 99.27 14 | | | 95.82 17 | | | | 99.00 16 | | | | | |
|
Anonymous202405211 | | | | 87.54 136 | | 90.72 101 | 97.10 100 | 93.40 91 | 85.30 78 | 91.41 129 | | 60.23 166 | 80.69 119 | 95.80 63 | 91.33 141 | 92.60 123 | 98.38 163 | 99.40 78 |
|
our_test_3 | | | | | | 81.94 164 | 90.26 187 | 75.39 194 | | | | | | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 99.97 6 |
|
ambc | | | | 64.61 201 | | 61.80 208 | 75.31 208 | 71.00 201 | | 74.16 193 | 48.83 195 | 36.02 207 | 13.22 217 | 58.66 201 | 85.80 188 | 76.26 200 | 88.01 204 | 91.53 189 |
|
MTAPA | | | | | | | | | | | 94.58 13 | | 98.56 22 | | | | | |
|
MTMP | | | | | | | | | | | 95.24 7 | | 98.13 29 | | | | | |
|
Patchmatch-RL test | | | | | | | | 37.05 213 | | | | | | | | | | |
|
tmp_tt | | | | | 71.24 194 | 90.29 110 | 76.39 207 | 65.81 205 | 59.43 204 | 97.62 58 | 79.65 97 | 90.60 59 | 68.71 155 | 49.71 204 | 72.71 201 | 65.70 203 | 82.54 207 | |
|
XVS | | | | | | 93.63 69 | 99.64 23 | 94.32 77 | | | 83.97 65 | | 98.08 31 | | | | 99.59 35 | |
|
X-MVStestdata | | | | | | 93.63 69 | 99.64 23 | 94.32 77 | | | 83.97 65 | | 98.08 31 | | | | 99.59 35 | |
|
abl_6 | | | | | 95.40 35 | 98.18 38 | 99.45 41 | 97.39 47 | 89.27 49 | 99.48 3 | 90.52 27 | 94.52 44 | 98.63 21 | 97.32 34 | | | 99.73 14 | 99.82 31 |
|
mPP-MVS | | | | | | 98.66 28 | | | | | | | 97.11 39 | | | | | |
|
NP-MVS | | | | | | | | | | 97.69 56 | | | | | | | | |
|
Patchmtry | | | | | | | 95.86 119 | 89.43 129 | 61.37 197 | | 60.81 158 | | | | | | | |
|
DeepMVS_CX | | | | | | | 85.88 198 | 69.83 203 | 81.56 107 | 87.99 141 | 48.22 196 | 71.85 142 | 45.52 205 | 68.67 195 | 63.21 203 | | 86.64 205 | 80.03 204 |
|