MSP-MVS | | | 77.54 1 | 84.41 1 | 69.54 5 | 79.93 3 | 86.08 3 | 77.20 7 | 60.31 4 | 88.62 1 | 62.54 1 | 86.67 3 | 83.77 1 | 58.04 31 | 75.84 5 | 75.69 6 | 79.21 19 | 94.17 1 |
|
SF-MVS | | | 76.41 2 | 80.45 4 | 71.69 1 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 9 | 59.82 3 | 86.26 4 | 77.90 6 | 61.11 13 | 71.81 25 | 70.75 32 | 79.63 12 | 88.22 25 |
|
DVP-MVS | | | 76.38 3 | 82.99 2 | 68.68 6 | 71.93 17 | 78.65 22 | 77.61 4 | 55.44 17 | 88.04 2 | 60.25 2 | 92.24 1 | 77.08 8 | 69.84 1 | 75.48 6 | 75.69 6 | 76.99 52 | 93.75 2 |
|
DPE-MVS | | | 75.74 4 | 82.82 3 | 67.49 10 | 77.07 6 | 82.01 6 | 77.05 8 | 57.70 10 | 86.55 4 | 55.44 14 | 90.50 2 | 82.52 2 | 60.33 18 | 72.99 13 | 72.98 14 | 77.33 45 | 92.19 6 |
|
DPM-MVS | | | 74.63 5 | 78.53 9 | 70.07 3 | 76.10 8 | 82.56 5 | 79.30 3 | 59.89 6 | 80.49 12 | 57.75 9 | 66.98 24 | 76.16 11 | 65.95 2 | 79.35 1 | 78.47 1 | 81.45 5 | 85.71 45 |
|
APDe-MVS | | | 74.59 6 | 80.23 5 | 68.01 9 | 76.51 7 | 80.20 14 | 77.39 5 | 58.18 8 | 85.31 5 | 56.84 11 | 84.89 6 | 76.08 12 | 60.66 16 | 71.85 24 | 71.76 19 | 78.47 28 | 91.49 9 |
|
MCST-MVS | | | 74.06 7 | 77.71 12 | 69.79 4 | 78.95 4 | 81.99 7 | 76.33 9 | 62.16 3 | 75.89 20 | 52.96 24 | 64.37 30 | 73.30 20 | 65.66 3 | 77.49 2 | 77.43 3 | 82.67 1 | 93.51 3 |
|
CNVR-MVS | | | 73.87 8 | 78.60 8 | 68.35 8 | 73.32 12 | 81.97 8 | 76.19 10 | 59.29 7 | 80.12 13 | 56.70 12 | 67.09 23 | 76.48 9 | 64.26 5 | 75.88 4 | 75.75 5 | 80.32 7 | 92.93 4 |
|
SMA-MVS | | | 73.31 9 | 79.53 6 | 66.05 12 | 71.25 19 | 80.13 15 | 74.99 11 | 56.09 13 | 84.14 6 | 54.48 17 | 73.74 15 | 80.23 3 | 61.43 10 | 74.96 7 | 74.09 10 | 78.08 35 | 89.42 14 |
|
xxxxxxxxxxxxxcwj | | | 73.17 10 | 74.44 19 | 71.69 1 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 9 | 59.82 3 | 86.26 4 | 35.82 141 | 61.11 13 | 71.81 25 | 70.75 32 | 79.63 12 | 88.22 25 |
|
CSCG | | | 72.98 11 | 76.86 14 | 68.46 7 | 78.23 5 | 81.74 9 | 77.26 6 | 60.00 5 | 75.61 23 | 59.06 5 | 62.72 32 | 77.42 7 | 56.63 44 | 74.24 9 | 77.18 4 | 79.56 14 | 89.13 18 |
|
HPM-MVS++ | | | 72.44 12 | 78.73 7 | 65.11 13 | 71.88 18 | 77.31 31 | 71.98 19 | 55.67 15 | 83.11 8 | 53.59 21 | 75.90 11 | 78.49 5 | 61.00 15 | 73.99 10 | 73.31 13 | 76.55 55 | 88.97 19 |
|
APD-MVS | | | 71.86 13 | 77.91 11 | 64.80 15 | 70.39 24 | 75.69 41 | 74.02 13 | 56.14 12 | 83.59 7 | 52.92 25 | 84.67 7 | 73.46 19 | 59.30 25 | 69.47 40 | 69.66 40 | 76.02 61 | 88.84 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 71.50 14 | 77.27 13 | 64.77 16 | 69.64 26 | 79.26 16 | 73.53 14 | 54.73 23 | 79.32 15 | 54.23 18 | 74.81 12 | 74.61 16 | 59.40 24 | 73.00 12 | 72.17 17 | 77.10 51 | 87.72 30 |
|
NCCC | | | 71.36 15 | 75.44 16 | 66.60 11 | 72.46 15 | 79.18 18 | 74.16 12 | 57.83 9 | 76.93 18 | 54.19 19 | 63.47 31 | 71.08 25 | 61.30 12 | 73.56 11 | 73.70 11 | 79.69 11 | 90.19 11 |
|
train_agg | | | 70.74 16 | 76.53 15 | 63.98 18 | 70.33 25 | 75.16 45 | 72.33 18 | 55.78 14 | 75.74 21 | 50.41 33 | 80.08 10 | 73.15 21 | 57.75 36 | 71.96 23 | 70.94 29 | 77.25 49 | 88.69 22 |
|
TSAR-MVS + MP. | | | 70.28 17 | 75.09 17 | 64.66 17 | 69.34 28 | 64.61 123 | 72.60 17 | 56.29 11 | 80.73 11 | 58.36 7 | 84.56 8 | 75.22 14 | 55.37 50 | 69.11 47 | 69.45 42 | 75.97 63 | 81.97 74 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepPCF-MVS | | 62.48 1 | 70.07 18 | 78.36 10 | 60.39 42 | 62.38 58 | 76.96 34 | 65.54 54 | 52.23 32 | 87.46 3 | 49.07 34 | 74.05 14 | 76.19 10 | 59.01 27 | 72.79 17 | 71.61 21 | 74.13 103 | 89.49 13 |
|
SteuartSystems-ACMMP | | | 69.78 19 | 74.76 18 | 63.98 18 | 73.45 11 | 78.56 23 | 73.13 16 | 55.24 20 | 70.68 33 | 48.93 36 | 70.43 19 | 69.10 27 | 54.00 55 | 72.78 19 | 72.98 14 | 79.14 20 | 88.74 21 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 68.75 20 | 72.84 21 | 63.98 18 | 68.87 32 | 75.09 46 | 71.87 20 | 51.22 37 | 73.50 27 | 58.17 8 | 68.05 22 | 68.67 28 | 57.79 35 | 70.49 33 | 69.23 44 | 75.98 62 | 84.84 52 |
|
SD-MVS | | | 68.30 21 | 72.58 23 | 63.31 24 | 69.24 29 | 67.85 96 | 70.81 25 | 53.65 28 | 79.64 14 | 58.52 6 | 74.31 13 | 75.37 13 | 53.52 61 | 65.63 71 | 63.56 100 | 74.13 103 | 81.73 78 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
zzz-MVS | | | 67.78 22 | 72.46 24 | 62.33 29 | 66.09 38 | 74.21 51 | 70.05 27 | 51.54 35 | 77.27 16 | 54.61 16 | 60.30 40 | 71.51 24 | 56.73 42 | 69.19 45 | 68.63 53 | 74.96 83 | 86.11 42 |
|
DELS-MVS | | | 67.36 23 | 70.34 37 | 63.89 21 | 69.12 30 | 81.55 10 | 70.82 24 | 55.02 21 | 53.38 73 | 48.83 37 | 56.45 46 | 59.35 54 | 60.05 22 | 74.93 8 | 74.78 8 | 79.51 15 | 91.95 7 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MP-MVS | | | 67.34 24 | 73.08 20 | 60.64 39 | 66.20 37 | 76.62 36 | 69.22 31 | 50.92 39 | 70.07 34 | 48.81 38 | 69.66 20 | 70.12 26 | 53.68 58 | 68.41 52 | 69.13 46 | 74.98 82 | 87.53 32 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS | | 60.65 2 | 67.33 25 | 71.52 31 | 62.44 27 | 59.79 77 | 74.84 48 | 68.89 32 | 55.56 16 | 73.91 26 | 53.50 22 | 55.00 51 | 65.63 33 | 60.08 21 | 71.99 22 | 71.33 25 | 76.85 53 | 87.94 29 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP-MVS | | | 67.22 26 | 72.08 26 | 61.56 34 | 66.76 35 | 73.58 58 | 71.41 21 | 52.98 30 | 69.92 36 | 43.85 56 | 70.58 18 | 58.75 56 | 56.76 41 | 72.90 15 | 71.88 18 | 77.57 41 | 86.94 36 |
|
CANet | | | 67.21 27 | 71.83 28 | 61.83 30 | 64.51 44 | 79.25 17 | 66.72 47 | 48.73 55 | 68.49 41 | 50.63 32 | 61.40 36 | 66.47 31 | 61.44 9 | 69.31 44 | 69.90 36 | 78.94 23 | 88.00 27 |
|
CDPH-MVS | | | 67.03 28 | 71.64 29 | 61.65 33 | 69.10 31 | 76.84 35 | 71.35 23 | 55.42 18 | 67.02 44 | 42.83 61 | 65.27 28 | 64.60 37 | 53.16 64 | 69.70 39 | 71.40 23 | 78.02 37 | 86.67 37 |
|
MAR-MVS | | | 66.85 29 | 69.81 38 | 63.39 23 | 73.56 10 | 80.51 13 | 69.87 28 | 51.51 36 | 67.78 43 | 46.44 43 | 51.09 64 | 61.60 49 | 60.38 17 | 72.67 20 | 73.61 12 | 78.59 25 | 81.44 82 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS_fast | | 60.18 3 | 66.84 30 | 70.69 35 | 62.36 28 | 62.76 52 | 73.21 61 | 67.96 35 | 52.31 31 | 72.26 30 | 51.03 27 | 56.50 45 | 64.26 38 | 63.37 6 | 71.64 27 | 70.85 30 | 76.70 54 | 86.10 43 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 66.77 31 | 72.21 25 | 60.44 41 | 61.23 64 | 70.00 80 | 64.26 59 | 47.79 67 | 72.98 28 | 56.32 13 | 71.35 17 | 72.33 22 | 55.68 49 | 65.49 72 | 66.66 67 | 77.35 43 | 86.62 38 |
|
MVS_0304 | | | 66.31 32 | 71.61 30 | 60.14 43 | 62.59 56 | 78.98 20 | 67.13 43 | 45.75 91 | 64.35 49 | 45.23 50 | 60.69 38 | 67.67 30 | 61.73 8 | 71.09 29 | 71.03 27 | 78.41 31 | 87.44 33 |
|
ACMMPR | | | 66.20 33 | 71.51 32 | 60.00 45 | 65.34 42 | 74.04 53 | 69.39 30 | 50.92 39 | 71.97 31 | 46.04 45 | 66.79 25 | 65.68 32 | 53.07 65 | 68.93 49 | 69.12 47 | 75.21 76 | 84.05 58 |
|
3Dnovator | | 58.39 4 | 65.97 34 | 66.85 50 | 64.94 14 | 73.72 9 | 79.03 19 | 67.73 38 | 54.25 24 | 61.52 52 | 52.79 26 | 42.27 90 | 60.73 52 | 62.01 7 | 71.29 28 | 71.75 20 | 79.12 21 | 81.34 85 |
|
TSAR-MVS + ACMM | | | 65.95 35 | 72.83 22 | 57.93 54 | 69.35 27 | 65.85 115 | 73.36 15 | 39.84 141 | 76.00 19 | 48.69 39 | 82.54 9 | 75.03 15 | 49.38 91 | 65.33 74 | 63.42 102 | 66.94 161 | 81.67 79 |
|
canonicalmvs | | | 65.55 36 | 70.75 34 | 59.49 48 | 62.11 60 | 78.26 26 | 66.52 48 | 43.82 111 | 71.54 32 | 47.84 41 | 61.30 37 | 61.68 47 | 58.48 30 | 67.56 59 | 69.67 39 | 78.16 34 | 85.25 50 |
|
QAPM | | | 65.47 37 | 67.82 43 | 62.72 26 | 72.56 13 | 81.17 12 | 67.43 41 | 55.38 19 | 56.07 65 | 43.29 59 | 43.60 85 | 65.38 35 | 59.10 26 | 72.20 21 | 70.76 31 | 78.56 26 | 85.59 48 |
|
PGM-MVS | | | 65.35 38 | 70.43 36 | 59.43 49 | 65.78 40 | 73.75 55 | 69.41 29 | 48.18 63 | 68.80 40 | 45.37 49 | 65.88 27 | 64.04 39 | 52.68 70 | 68.94 48 | 68.68 52 | 75.18 77 | 82.93 65 |
|
PHI-MVS | | | 65.17 39 | 72.07 27 | 57.11 64 | 63.02 51 | 77.35 30 | 67.04 44 | 48.14 65 | 68.03 42 | 37.56 87 | 66.00 26 | 65.39 34 | 53.19 63 | 70.68 30 | 70.57 35 | 73.72 110 | 86.46 41 |
|
CLD-MVS | | | 64.69 40 | 67.25 45 | 61.69 32 | 68.22 34 | 78.33 24 | 63.09 62 | 47.59 70 | 69.64 37 | 53.98 20 | 54.87 52 | 53.94 70 | 57.87 32 | 72.79 17 | 71.34 24 | 79.40 17 | 69.87 151 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVS_111021_HR | | | 64.66 41 | 67.11 48 | 61.80 31 | 71.04 20 | 77.91 27 | 62.75 65 | 54.78 22 | 51.43 76 | 47.54 42 | 53.77 55 | 54.85 67 | 56.84 39 | 70.59 31 | 71.50 22 | 77.86 38 | 89.70 12 |
|
EPNet | | | 64.39 42 | 70.93 33 | 56.77 66 | 60.58 71 | 75.77 38 | 59.28 85 | 50.58 43 | 69.93 35 | 40.73 76 | 68.59 21 | 61.60 49 | 53.72 56 | 68.65 50 | 68.07 55 | 75.75 68 | 83.87 60 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVS | | | 64.37 43 | 69.48 39 | 58.39 51 | 62.21 59 | 71.81 72 | 67.27 42 | 49.51 49 | 69.40 39 | 45.76 47 | 60.41 39 | 64.96 36 | 51.84 72 | 67.33 63 | 67.57 61 | 73.78 109 | 84.89 51 |
|
casdiffmvs | | | 63.87 44 | 67.08 49 | 60.12 44 | 60.90 67 | 78.29 25 | 67.91 36 | 48.01 66 | 55.89 67 | 44.97 51 | 50.45 66 | 56.94 61 | 59.54 23 | 70.17 36 | 69.81 37 | 79.41 16 | 87.99 28 |
|
MVS_Test | | | 63.75 45 | 67.24 46 | 59.68 47 | 60.01 73 | 76.99 33 | 68.13 34 | 45.17 93 | 57.45 60 | 43.74 57 | 53.07 58 | 56.16 65 | 61.33 11 | 70.27 34 | 71.11 26 | 79.72 10 | 85.63 47 |
|
X-MVS | | | 63.53 46 | 68.62 40 | 57.60 58 | 64.77 43 | 73.06 62 | 65.82 52 | 50.53 44 | 65.77 46 | 42.02 69 | 58.20 42 | 63.42 42 | 47.83 102 | 68.25 56 | 68.50 54 | 74.61 93 | 83.16 64 |
|
ACMMP | | | 63.27 47 | 67.85 42 | 57.93 54 | 62.64 55 | 72.30 69 | 68.23 33 | 48.77 54 | 66.50 45 | 43.05 60 | 62.07 33 | 57.84 60 | 49.98 83 | 66.58 67 | 66.46 72 | 74.93 84 | 83.17 62 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ETV-MVS | | | 62.88 48 | 68.18 41 | 56.70 67 | 58.47 85 | 74.89 47 | 60.26 78 | 43.96 108 | 58.27 59 | 42.37 67 | 61.47 35 | 56.56 62 | 57.80 33 | 68.00 57 | 68.74 50 | 77.34 44 | 89.33 17 |
|
CS-MVS | | | 62.84 49 | 67.51 44 | 57.38 61 | 60.49 72 | 75.48 44 | 62.36 67 | 43.72 113 | 53.40 72 | 41.28 74 | 57.32 44 | 58.61 58 | 57.80 33 | 69.85 38 | 69.49 41 | 78.64 24 | 88.45 23 |
|
AdaColmap | | | 62.79 50 | 62.63 65 | 62.98 25 | 70.82 21 | 72.90 65 | 67.84 37 | 54.09 26 | 65.14 47 | 50.71 30 | 41.78 92 | 47.64 97 | 60.17 20 | 67.41 62 | 66.83 65 | 74.28 98 | 76.69 108 |
|
3Dnovator+ | | 55.76 7 | 62.70 51 | 65.10 57 | 59.90 46 | 65.89 39 | 72.15 70 | 62.94 64 | 49.82 48 | 62.77 51 | 49.06 35 | 43.62 84 | 61.47 51 | 58.60 29 | 68.51 51 | 66.75 66 | 73.08 124 | 80.40 93 |
|
OpenMVS | | 55.62 8 | 62.57 52 | 63.76 62 | 61.19 36 | 72.13 16 | 78.84 21 | 64.42 57 | 50.51 45 | 56.44 62 | 45.67 48 | 36.88 118 | 56.51 63 | 56.66 43 | 68.28 55 | 68.96 48 | 77.73 40 | 80.44 92 |
|
PVSNet_BlendedMVS | | | 62.53 53 | 66.37 52 | 58.05 52 | 58.17 86 | 75.70 39 | 61.30 71 | 48.67 58 | 58.67 56 | 50.93 28 | 55.43 49 | 49.39 86 | 53.01 66 | 69.46 41 | 66.55 69 | 76.24 59 | 89.39 15 |
|
PVSNet_Blended | | | 62.53 53 | 66.37 52 | 58.05 52 | 58.17 86 | 75.70 39 | 61.30 71 | 48.67 58 | 58.67 56 | 50.93 28 | 55.43 49 | 49.39 86 | 53.01 66 | 69.46 41 | 66.55 69 | 76.24 59 | 89.39 15 |
|
MVSTER | | | 62.51 55 | 67.22 47 | 57.02 65 | 55.05 107 | 69.23 88 | 63.02 63 | 46.88 80 | 61.11 54 | 43.95 55 | 59.20 41 | 58.86 55 | 56.80 40 | 69.13 46 | 70.98 28 | 76.41 57 | 82.04 71 |
|
CHOSEN 1792x2688 | | | 62.48 56 | 64.06 61 | 60.64 39 | 72.50 14 | 84.18 4 | 62.43 66 | 53.77 27 | 47.90 88 | 39.85 80 | 25.15 178 | 44.76 110 | 53.72 56 | 77.29 3 | 77.61 2 | 81.60 4 | 91.53 8 |
|
CostFormer | | | 62.45 57 | 65.68 55 | 58.67 50 | 63.29 48 | 77.65 28 | 67.62 39 | 38.42 150 | 54.04 70 | 46.00 46 | 48.27 74 | 57.89 59 | 56.97 38 | 67.03 65 | 67.79 60 | 79.74 9 | 87.09 35 |
|
PCF-MVS | | 55.99 6 | 62.31 58 | 66.60 51 | 57.32 62 | 59.12 84 | 73.68 57 | 67.53 40 | 48.71 56 | 61.35 53 | 42.83 61 | 51.33 63 | 63.48 41 | 53.48 62 | 65.64 70 | 64.87 84 | 72.22 129 | 85.83 44 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
diffmvs | | | 62.30 59 | 66.05 54 | 57.92 56 | 57.08 91 | 75.60 43 | 66.90 45 | 47.06 78 | 55.45 69 | 43.37 58 | 53.45 57 | 55.60 66 | 57.21 37 | 66.57 68 | 68.00 57 | 75.89 66 | 87.70 31 |
|
DI_MVS_plusplus_trai | | | 61.86 60 | 65.26 56 | 57.90 57 | 57.93 89 | 74.51 50 | 66.30 49 | 46.49 86 | 49.96 80 | 41.62 72 | 42.69 88 | 61.77 46 | 58.74 28 | 70.25 35 | 69.32 43 | 76.31 58 | 88.30 24 |
|
MSLP-MVS++ | | | 61.81 61 | 62.19 70 | 61.37 35 | 68.33 33 | 63.08 137 | 70.75 26 | 38.89 147 | 63.96 50 | 57.51 10 | 48.59 72 | 61.66 48 | 53.67 59 | 62.04 110 | 59.92 145 | 79.03 22 | 76.08 111 |
|
OPM-MVS | | | 61.59 62 | 62.30 69 | 60.76 38 | 66.53 36 | 73.35 60 | 71.41 21 | 54.18 25 | 40.82 116 | 41.57 73 | 45.70 80 | 54.84 68 | 54.43 54 | 69.92 37 | 69.19 45 | 76.45 56 | 82.25 68 |
|
MS-PatchMatch | | | 61.41 63 | 61.88 73 | 60.85 37 | 70.57 23 | 75.98 37 | 66.29 50 | 46.91 79 | 50.56 78 | 48.28 40 | 36.30 121 | 51.64 74 | 50.95 78 | 72.89 16 | 70.65 34 | 82.13 3 | 75.17 117 |
|
EIA-MVS | | | 60.56 64 | 64.29 60 | 56.20 71 | 59.14 83 | 72.68 66 | 59.55 83 | 43.56 115 | 51.78 75 | 41.01 75 | 55.47 48 | 51.93 73 | 55.87 46 | 65.01 77 | 66.57 68 | 78.06 36 | 86.60 40 |
|
ACMP | | 56.21 5 | 59.78 65 | 61.81 75 | 57.41 60 | 61.15 65 | 68.88 90 | 65.98 51 | 48.85 53 | 58.56 58 | 44.19 54 | 48.89 70 | 46.31 103 | 48.56 96 | 63.61 93 | 64.49 92 | 75.75 68 | 81.91 75 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 59.69 66 | 62.59 66 | 56.31 69 | 61.94 61 | 68.15 95 | 66.90 45 | 48.15 64 | 59.75 55 | 38.47 83 | 50.38 67 | 48.34 94 | 46.87 107 | 65.39 73 | 64.93 83 | 75.51 72 | 81.21 87 |
|
Effi-MVS+ | | | 59.63 67 | 61.78 76 | 57.12 63 | 61.56 62 | 71.63 73 | 63.61 60 | 47.59 70 | 47.18 89 | 37.79 84 | 45.29 81 | 49.93 83 | 56.27 45 | 67.45 60 | 67.06 63 | 75.91 64 | 83.93 59 |
|
CPTT-MVS | | | 59.54 68 | 64.47 59 | 53.79 81 | 54.99 109 | 67.63 99 | 65.48 55 | 44.59 100 | 64.81 48 | 37.74 85 | 51.55 61 | 59.90 53 | 49.77 87 | 61.83 112 | 61.26 130 | 70.18 143 | 84.31 57 |
|
baseline2 | | | 59.20 69 | 61.72 77 | 56.27 70 | 59.61 79 | 74.12 52 | 58.65 88 | 49.42 50 | 48.10 86 | 40.12 79 | 49.10 69 | 44.15 112 | 51.24 75 | 66.65 66 | 67.88 59 | 78.56 26 | 82.06 70 |
|
baseline | | | 58.65 70 | 61.99 71 | 54.75 76 | 54.70 111 | 71.85 71 | 60.20 79 | 43.91 109 | 55.99 66 | 40.13 78 | 53.50 56 | 50.91 80 | 55.76 47 | 61.29 120 | 61.73 122 | 73.83 107 | 78.68 101 |
|
PVSNet_Blended_VisFu | | | 58.56 71 | 62.33 68 | 54.16 78 | 56.90 92 | 73.92 54 | 57.72 91 | 46.16 89 | 44.23 96 | 42.73 64 | 46.26 77 | 51.06 79 | 46.28 110 | 67.99 58 | 65.38 78 | 75.18 77 | 87.44 33 |
|
ACMM | | 53.73 9 | 57.91 72 | 58.27 91 | 57.49 59 | 63.10 49 | 66.45 109 | 65.65 53 | 49.02 52 | 53.69 71 | 42.67 65 | 36.41 120 | 46.07 106 | 50.38 81 | 64.74 80 | 64.63 89 | 74.14 102 | 75.91 112 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CANet_DTU | | | 57.87 73 | 63.63 63 | 51.15 95 | 52.18 117 | 70.20 79 | 58.14 90 | 37.32 157 | 56.49 61 | 31.06 118 | 57.38 43 | 50.05 82 | 53.67 59 | 64.98 78 | 65.04 82 | 74.57 94 | 81.29 86 |
|
ET-MVSNet_ETH3D | | | 57.84 74 | 61.91 72 | 53.09 83 | 32.91 197 | 74.53 49 | 63.51 61 | 46.80 82 | 46.52 91 | 36.14 92 | 56.00 47 | 46.20 104 | 64.41 4 | 60.75 128 | 66.99 64 | 74.79 85 | 82.35 66 |
|
tpm cat1 | | | 57.41 75 | 58.26 92 | 56.42 68 | 60.80 69 | 72.56 67 | 64.35 58 | 38.43 149 | 49.18 84 | 46.36 44 | 36.69 119 | 43.50 115 | 54.47 52 | 61.39 118 | 62.64 110 | 74.11 105 | 81.81 76 |
|
IB-MVS | | 53.15 10 | 57.33 76 | 59.02 83 | 55.37 73 | 60.83 68 | 77.11 32 | 54.51 115 | 50.10 47 | 43.22 100 | 42.82 63 | 40.50 97 | 37.61 133 | 44.67 122 | 59.27 142 | 69.81 37 | 79.29 18 | 85.59 48 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpmrst | | | 57.23 77 | 59.08 82 | 55.06 74 | 59.91 75 | 70.65 77 | 60.71 74 | 35.38 168 | 47.91 87 | 42.58 66 | 39.78 101 | 45.45 108 | 54.44 53 | 62.19 107 | 62.82 107 | 77.37 42 | 84.73 53 |
|
baseline1 | | | 57.21 78 | 60.53 79 | 53.33 82 | 62.50 57 | 69.86 82 | 57.33 95 | 50.59 42 | 43.39 99 | 30.00 124 | 48.60 71 | 51.09 78 | 42.36 134 | 69.38 43 | 68.03 56 | 77.20 50 | 73.39 124 |
|
HyFIR lowres test | | | 57.12 79 | 59.11 81 | 54.80 75 | 61.55 63 | 77.55 29 | 59.02 86 | 45.00 95 | 41.84 113 | 33.93 104 | 22.44 185 | 49.16 89 | 51.02 77 | 68.39 53 | 68.71 51 | 78.26 33 | 85.70 46 |
|
MVS_111021_LR | | | 57.06 80 | 60.60 78 | 52.93 84 | 56.25 96 | 65.14 121 | 55.16 113 | 41.21 133 | 52.32 74 | 44.89 52 | 53.92 54 | 49.27 88 | 52.16 71 | 61.46 116 | 60.54 138 | 67.92 154 | 81.53 81 |
|
DCV-MVSNet | | | 56.80 81 | 58.96 84 | 54.28 77 | 59.96 74 | 66.74 107 | 60.37 77 | 44.87 97 | 41.01 115 | 36.81 90 | 47.57 75 | 47.87 96 | 48.23 99 | 64.41 83 | 65.17 80 | 75.45 73 | 79.95 95 |
|
Anonymous20231211 | | | 56.40 82 | 57.00 101 | 55.70 72 | 59.78 78 | 72.49 68 | 61.29 73 | 46.83 81 | 40.50 117 | 40.46 77 | 22.12 187 | 49.73 84 | 51.07 76 | 64.39 84 | 65.30 79 | 74.74 87 | 84.44 56 |
|
PMMVS | | | 55.74 83 | 62.68 64 | 47.64 124 | 44.34 166 | 65.58 119 | 47.22 150 | 37.96 153 | 56.43 63 | 34.11 102 | 61.51 34 | 47.41 98 | 54.55 51 | 65.88 69 | 62.49 114 | 67.67 156 | 79.48 96 |
|
Fast-Effi-MVS+ | | | 55.73 84 | 58.26 92 | 52.76 85 | 54.33 112 | 68.19 94 | 57.05 96 | 34.66 170 | 46.92 90 | 38.96 82 | 40.53 96 | 41.55 124 | 55.69 48 | 65.31 75 | 65.99 73 | 75.90 65 | 79.34 97 |
|
FC-MVSNet-train | | | 55.68 85 | 57.00 101 | 54.13 79 | 63.37 46 | 66.16 111 | 46.77 153 | 52.14 33 | 42.36 107 | 37.67 86 | 48.50 73 | 41.42 126 | 51.28 74 | 61.58 115 | 63.22 104 | 73.56 112 | 75.76 114 |
|
FMVSNet3 | | | 55.66 86 | 59.68 80 | 50.96 97 | 50.59 131 | 66.49 108 | 57.57 92 | 46.61 83 | 49.30 81 | 28.77 129 | 39.61 102 | 51.42 75 | 43.85 127 | 68.29 54 | 68.80 49 | 78.35 32 | 73.86 119 |
|
OMC-MVS | | | 55.48 87 | 61.85 74 | 48.04 123 | 41.55 173 | 60.32 154 | 56.80 100 | 31.78 190 | 75.67 22 | 42.30 68 | 51.52 62 | 54.15 69 | 49.91 85 | 60.28 133 | 57.59 152 | 65.91 164 | 73.42 122 |
|
tpm | | | 54.94 88 | 57.86 97 | 51.54 93 | 59.48 81 | 67.04 103 | 58.34 89 | 34.60 172 | 41.93 112 | 34.41 99 | 42.40 89 | 47.14 99 | 49.07 94 | 61.46 116 | 61.67 126 | 73.31 119 | 83.39 61 |
|
GBi-Net | | | 54.66 89 | 58.42 89 | 50.26 105 | 49.36 140 | 65.81 116 | 56.80 100 | 46.61 83 | 49.30 81 | 28.77 129 | 39.61 102 | 51.42 75 | 42.71 130 | 64.25 86 | 65.54 75 | 77.32 46 | 73.03 127 |
|
test1 | | | 54.66 89 | 58.42 89 | 50.26 105 | 49.36 140 | 65.81 116 | 56.80 100 | 46.61 83 | 49.30 81 | 28.77 129 | 39.61 102 | 51.42 75 | 42.71 130 | 64.25 86 | 65.54 75 | 77.32 46 | 73.03 127 |
|
test-LLR | | | 54.62 91 | 58.66 87 | 49.89 111 | 51.68 123 | 65.89 113 | 47.88 144 | 46.35 87 | 42.51 104 | 29.84 125 | 41.41 93 | 48.87 90 | 45.20 115 | 62.91 101 | 64.43 93 | 78.43 29 | 84.62 54 |
|
TSAR-MVS + COLMAP | | | 54.37 92 | 62.43 67 | 44.98 138 | 34.33 193 | 58.94 161 | 54.11 118 | 34.15 181 | 74.06 25 | 34.57 98 | 71.63 16 | 42.03 123 | 47.88 101 | 61.26 121 | 57.33 155 | 64.83 167 | 71.74 137 |
|
EPMVS | | | 54.07 93 | 56.06 107 | 51.75 92 | 56.74 94 | 70.80 75 | 55.32 111 | 34.20 178 | 46.46 92 | 36.59 91 | 40.38 99 | 42.55 118 | 49.77 87 | 61.25 122 | 60.90 134 | 77.86 38 | 70.08 148 |
|
v2v482 | | | 54.00 94 | 55.12 113 | 52.69 87 | 51.73 122 | 69.42 87 | 60.65 75 | 45.09 94 | 34.56 148 | 33.73 107 | 35.29 124 | 35.36 144 | 49.92 84 | 64.05 90 | 65.16 81 | 75.00 81 | 81.98 73 |
|
CNLPA | | | 54.00 94 | 57.08 100 | 50.40 104 | 49.83 137 | 61.75 145 | 53.47 121 | 37.27 158 | 74.55 24 | 44.85 53 | 33.58 136 | 45.42 109 | 52.94 69 | 58.89 144 | 53.66 173 | 64.06 170 | 71.68 138 |
|
FMVSNet2 | | | 53.94 96 | 57.29 98 | 50.03 108 | 49.36 140 | 65.81 116 | 56.80 100 | 45.95 90 | 43.13 101 | 28.04 133 | 35.68 122 | 48.18 95 | 42.71 130 | 67.23 64 | 67.95 58 | 77.32 46 | 73.03 127 |
|
v8 | | | 53.77 97 | 54.82 117 | 52.54 88 | 52.12 118 | 66.95 106 | 60.56 76 | 43.23 121 | 37.17 137 | 35.35 94 | 34.96 127 | 37.50 135 | 49.51 90 | 63.67 92 | 64.59 90 | 74.48 95 | 78.91 100 |
|
GA-MVS | | | 53.77 97 | 56.41 106 | 50.70 99 | 51.63 125 | 69.96 81 | 57.55 93 | 44.39 101 | 34.31 149 | 27.15 135 | 40.99 95 | 36.40 139 | 47.65 104 | 67.45 60 | 67.16 62 | 75.83 67 | 78.60 102 |
|
Effi-MVS+-dtu | | | 53.63 99 | 54.85 116 | 52.20 90 | 59.32 82 | 61.33 148 | 56.42 106 | 40.24 139 | 43.84 98 | 34.22 101 | 39.49 106 | 46.18 105 | 53.00 68 | 58.72 148 | 57.49 154 | 69.99 146 | 76.91 107 |
|
thisisatest0530 | | | 53.61 100 | 57.22 99 | 49.40 116 | 51.30 127 | 68.22 93 | 52.72 129 | 43.34 119 | 42.72 103 | 35.31 95 | 43.57 86 | 44.14 113 | 44.37 125 | 63.00 99 | 64.86 85 | 69.34 149 | 74.00 118 |
|
v1144 | | | 53.47 101 | 54.65 118 | 52.10 91 | 51.93 120 | 69.81 83 | 59.32 84 | 44.77 99 | 33.21 155 | 32.52 110 | 33.55 137 | 34.34 152 | 49.29 92 | 64.58 81 | 64.81 87 | 74.74 87 | 82.27 67 |
|
v10 | | | 53.44 102 | 54.40 119 | 52.31 89 | 52.08 119 | 66.99 104 | 59.68 82 | 43.41 116 | 35.90 143 | 34.30 100 | 33.98 134 | 35.56 142 | 50.10 82 | 64.39 84 | 64.67 88 | 74.32 96 | 79.30 98 |
|
PatchmatchNet | | | 53.37 103 | 55.62 111 | 50.75 98 | 55.93 103 | 70.54 78 | 51.39 134 | 36.41 161 | 44.85 94 | 37.26 88 | 39.40 108 | 42.54 119 | 47.83 102 | 60.29 132 | 60.88 136 | 75.69 70 | 70.87 142 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IterMVS-LS | | | 53.36 104 | 55.65 110 | 50.68 101 | 55.34 105 | 59.04 159 | 55.00 114 | 39.98 140 | 38.72 125 | 33.22 108 | 44.52 83 | 47.05 100 | 49.63 89 | 61.82 113 | 61.77 121 | 70.92 138 | 76.61 110 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TESTMET0.1,1 | | | 53.30 105 | 58.66 87 | 47.04 127 | 44.94 160 | 65.89 113 | 47.88 144 | 35.95 164 | 42.51 104 | 29.84 125 | 41.41 93 | 48.87 90 | 45.20 115 | 62.91 101 | 64.43 93 | 78.43 29 | 84.62 54 |
|
tttt0517 | | | 53.05 106 | 56.73 105 | 48.76 119 | 50.35 133 | 67.51 100 | 51.96 133 | 43.34 119 | 42.00 111 | 33.88 105 | 43.19 87 | 43.49 116 | 44.37 125 | 62.58 106 | 64.86 85 | 68.67 151 | 73.46 121 |
|
MDTV_nov1_ep13 | | | 52.99 107 | 55.59 112 | 49.95 110 | 54.08 113 | 70.69 76 | 56.47 105 | 38.42 150 | 42.78 102 | 30.19 123 | 39.56 105 | 43.31 117 | 45.78 112 | 60.07 137 | 62.11 118 | 74.74 87 | 70.62 143 |
|
EPP-MVSNet | | | 52.91 108 | 58.91 85 | 45.91 132 | 54.99 109 | 68.84 91 | 49.27 140 | 42.71 128 | 37.53 131 | 20.20 161 | 46.09 78 | 56.19 64 | 36.90 145 | 61.37 119 | 60.90 134 | 71.41 133 | 81.41 83 |
|
dps | | | 52.84 109 | 52.92 130 | 52.74 86 | 59.89 76 | 69.49 86 | 54.47 116 | 37.38 156 | 42.49 106 | 39.53 81 | 35.33 123 | 32.71 157 | 51.83 73 | 60.45 129 | 61.12 131 | 73.33 118 | 68.86 157 |
|
v1192 | | | 52.69 110 | 53.86 122 | 51.31 94 | 51.22 128 | 69.76 84 | 57.37 94 | 44.39 101 | 32.21 158 | 31.39 117 | 32.41 144 | 32.44 160 | 49.19 93 | 64.25 86 | 64.17 95 | 74.31 97 | 81.81 76 |
|
V42 | | | 52.63 111 | 55.08 114 | 49.76 113 | 44.93 161 | 67.49 102 | 60.19 80 | 42.13 131 | 37.21 136 | 34.08 103 | 34.57 130 | 37.30 136 | 47.29 105 | 63.48 95 | 64.15 96 | 69.96 147 | 81.38 84 |
|
MSDG | | | 52.58 112 | 51.40 143 | 53.95 80 | 65.48 41 | 64.31 131 | 61.44 70 | 44.02 106 | 44.17 97 | 32.92 109 | 30.40 156 | 31.81 164 | 46.35 109 | 62.13 108 | 62.55 112 | 73.49 114 | 64.41 165 |
|
Fast-Effi-MVS+-dtu | | | 52.47 113 | 55.89 108 | 48.48 121 | 56.25 96 | 65.07 122 | 58.75 87 | 23.79 201 | 41.27 114 | 27.07 137 | 37.95 113 | 41.34 127 | 50.85 79 | 62.90 103 | 62.34 116 | 74.17 101 | 80.37 94 |
|
v144192 | | | 52.43 114 | 53.63 124 | 51.03 96 | 51.06 129 | 69.60 85 | 56.94 98 | 44.84 98 | 32.15 159 | 30.88 119 | 32.45 143 | 32.71 157 | 48.36 97 | 62.98 100 | 63.52 101 | 74.10 106 | 82.02 72 |
|
thres100view900 | | | 52.33 115 | 53.91 121 | 50.48 103 | 56.10 98 | 67.79 97 | 56.18 108 | 49.18 51 | 35.86 145 | 25.22 143 | 34.74 128 | 34.10 153 | 42.41 133 | 64.45 82 | 62.62 111 | 73.81 108 | 77.85 103 |
|
v1921920 | | | 51.95 116 | 53.19 126 | 50.51 102 | 50.82 130 | 69.14 89 | 55.45 110 | 44.34 105 | 31.53 163 | 30.53 121 | 31.96 146 | 31.67 165 | 48.31 98 | 63.12 97 | 63.28 103 | 73.59 111 | 81.60 80 |
|
v148 | | | 51.72 117 | 53.15 127 | 50.05 107 | 50.15 135 | 67.51 100 | 56.98 97 | 42.85 126 | 32.60 157 | 32.41 112 | 33.88 135 | 34.71 149 | 44.45 123 | 61.06 123 | 63.00 106 | 73.45 115 | 79.24 99 |
|
TAPA-MVS | | 47.92 11 | 51.66 118 | 57.88 96 | 44.40 141 | 36.46 188 | 58.42 164 | 53.82 120 | 30.83 191 | 69.51 38 | 34.97 97 | 46.90 76 | 49.67 85 | 46.99 106 | 58.00 151 | 54.64 170 | 63.33 176 | 68.00 159 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS_MVSNet | | | 51.53 119 | 57.98 95 | 44.01 145 | 55.96 102 | 66.16 111 | 47.65 146 | 42.84 127 | 39.82 120 | 19.09 169 | 44.97 82 | 50.28 81 | 27.20 176 | 63.43 96 | 63.84 97 | 71.33 135 | 77.33 105 |
|
v1240 | | | 51.42 120 | 52.66 132 | 49.97 109 | 50.31 134 | 68.70 92 | 54.05 119 | 43.85 110 | 30.78 167 | 30.22 122 | 31.43 149 | 31.03 172 | 47.98 100 | 62.62 105 | 63.16 105 | 73.40 116 | 80.93 89 |
|
pmmvs4 | | | 51.28 121 | 52.50 134 | 49.85 112 | 49.54 139 | 63.02 138 | 52.83 128 | 43.41 116 | 44.65 95 | 35.71 93 | 34.38 131 | 32.25 161 | 45.14 118 | 60.21 136 | 60.03 142 | 72.44 128 | 72.98 130 |
|
Vis-MVSNet | | | 51.13 122 | 58.04 94 | 43.06 151 | 47.68 147 | 67.71 98 | 49.10 141 | 39.09 146 | 37.75 129 | 22.57 153 | 51.03 65 | 48.78 92 | 32.42 162 | 62.12 109 | 61.80 120 | 67.49 158 | 77.12 106 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UGNet | | | 51.04 123 | 58.79 86 | 42.00 157 | 40.59 175 | 65.32 120 | 46.65 155 | 39.26 144 | 39.90 119 | 27.30 134 | 54.12 53 | 52.03 72 | 30.93 166 | 59.85 139 | 59.62 147 | 67.23 160 | 80.70 90 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tfpn200view9 | | | 50.91 124 | 52.45 135 | 49.11 118 | 56.10 98 | 64.53 126 | 53.06 125 | 47.31 75 | 35.86 145 | 25.22 143 | 34.74 128 | 34.10 153 | 41.08 136 | 60.84 125 | 61.37 128 | 71.90 132 | 75.70 115 |
|
SCA | | | 50.88 125 | 53.70 123 | 47.59 125 | 55.99 100 | 55.81 172 | 43.14 167 | 33.45 184 | 45.16 93 | 37.14 89 | 41.83 91 | 43.82 114 | 44.43 124 | 60.37 130 | 60.02 143 | 71.38 134 | 68.90 156 |
|
gg-mvs-nofinetune | | | 50.82 126 | 55.83 109 | 44.97 139 | 60.63 70 | 75.69 41 | 53.40 122 | 34.48 174 | 20.05 200 | 6.93 194 | 18.27 193 | 52.70 71 | 33.57 153 | 70.50 32 | 72.93 16 | 80.84 6 | 80.68 91 |
|
thres200 | | | 50.76 127 | 52.52 133 | 48.70 120 | 55.98 101 | 64.60 124 | 55.29 112 | 47.34 73 | 33.91 152 | 24.36 146 | 34.33 132 | 33.90 155 | 37.27 143 | 60.84 125 | 62.41 115 | 71.99 130 | 77.63 104 |
|
thres400 | | | 50.39 128 | 52.22 136 | 48.26 122 | 55.02 108 | 66.32 110 | 52.97 126 | 48.33 62 | 32.68 156 | 22.94 151 | 33.21 139 | 33.38 156 | 37.27 143 | 62.74 104 | 61.38 127 | 73.04 125 | 75.81 113 |
|
EG-PatchMatch MVS | | | 50.23 129 | 50.89 146 | 49.47 114 | 59.54 80 | 70.88 74 | 52.46 130 | 44.01 107 | 26.22 187 | 31.91 113 | 24.97 179 | 31.45 168 | 33.48 155 | 64.79 79 | 66.51 71 | 75.40 74 | 71.39 140 |
|
IterMVS | | | 50.23 129 | 53.27 125 | 46.68 128 | 47.59 149 | 60.58 152 | 53.10 124 | 36.62 160 | 36.07 141 | 25.89 140 | 39.42 107 | 40.05 130 | 43.65 128 | 60.22 135 | 61.35 129 | 73.23 120 | 75.23 116 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 50.14 131 | 52.78 131 | 47.06 126 | 45.56 157 | 63.56 134 | 54.22 117 | 43.74 112 | 34.10 151 | 25.37 142 | 29.79 162 | 42.06 122 | 38.70 139 | 64.25 86 | 65.54 75 | 74.75 86 | 70.18 147 |
|
ACMH | | 47.82 13 | 50.10 132 | 49.60 152 | 50.69 100 | 63.36 47 | 66.99 104 | 56.83 99 | 52.13 34 | 31.06 166 | 17.74 174 | 28.22 168 | 26.24 188 | 45.17 117 | 60.88 124 | 63.80 98 | 68.91 150 | 70.00 150 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPNet_dtu | | | 49.85 133 | 56.99 103 | 41.52 160 | 52.79 115 | 57.06 166 | 41.44 171 | 43.13 122 | 56.13 64 | 19.24 168 | 52.11 59 | 48.38 93 | 22.14 183 | 58.19 150 | 58.38 150 | 70.35 141 | 68.71 158 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LS3D | | | 49.59 134 | 49.75 151 | 49.40 116 | 55.88 104 | 59.86 156 | 56.31 107 | 45.33 92 | 48.57 85 | 28.32 132 | 31.54 148 | 36.81 138 | 46.27 111 | 57.17 156 | 55.88 165 | 64.29 169 | 58.42 182 |
|
UniMVSNet_NR-MVSNet | | | 49.56 135 | 53.04 128 | 45.49 135 | 51.59 126 | 64.42 130 | 46.97 151 | 51.01 38 | 37.87 127 | 16.42 175 | 39.87 100 | 34.91 148 | 33.43 157 | 59.59 140 | 62.70 108 | 73.52 113 | 71.94 133 |
|
CDS-MVSNet | | | 49.25 136 | 53.97 120 | 43.75 147 | 47.53 150 | 64.53 126 | 48.59 142 | 42.27 130 | 33.77 153 | 26.64 138 | 40.46 98 | 42.26 121 | 30.01 169 | 61.77 114 | 61.71 123 | 67.48 159 | 73.28 126 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PLC | | 44.22 14 | 49.14 137 | 51.75 139 | 46.10 131 | 42.78 171 | 55.60 175 | 53.11 123 | 34.46 175 | 55.69 68 | 32.47 111 | 34.16 133 | 41.45 125 | 48.91 95 | 57.13 157 | 54.09 171 | 64.84 166 | 64.10 166 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMH+ | | 47.85 12 | 49.13 138 | 48.86 158 | 49.44 115 | 56.75 93 | 62.01 144 | 56.62 104 | 47.55 72 | 37.49 132 | 23.98 147 | 26.68 173 | 29.46 179 | 43.12 129 | 57.45 155 | 58.85 149 | 68.62 152 | 70.05 149 |
|
NR-MVSNet | | | 48.84 139 | 51.76 138 | 45.44 136 | 57.66 90 | 60.64 150 | 47.39 147 | 47.63 68 | 37.26 133 | 13.31 179 | 37.31 115 | 29.64 178 | 33.53 154 | 63.52 94 | 62.09 119 | 73.10 123 | 71.89 136 |
|
CR-MVSNet | | | 48.82 140 | 51.85 137 | 45.29 137 | 46.74 152 | 55.95 170 | 52.06 131 | 34.21 176 | 42.17 108 | 31.74 114 | 32.92 141 | 42.53 120 | 45.00 119 | 58.80 145 | 61.11 132 | 61.99 181 | 69.47 152 |
|
thres600view7 | | | 48.44 141 | 50.23 149 | 46.35 130 | 54.05 114 | 64.60 124 | 50.18 137 | 47.34 73 | 31.73 162 | 20.74 159 | 32.28 145 | 32.62 159 | 33.79 152 | 60.84 125 | 56.11 163 | 71.99 130 | 73.40 123 |
|
test-mter | | | 48.31 142 | 55.04 115 | 40.45 163 | 34.12 194 | 59.02 160 | 41.77 170 | 28.05 195 | 38.43 126 | 22.67 152 | 39.35 109 | 44.40 111 | 41.88 135 | 60.30 131 | 61.68 125 | 74.20 99 | 82.12 69 |
|
PatchT | | | 48.11 143 | 51.27 145 | 44.43 140 | 50.13 136 | 61.58 146 | 33.59 184 | 32.92 186 | 40.38 118 | 31.74 114 | 30.60 155 | 36.93 137 | 45.00 119 | 58.80 145 | 61.11 132 | 73.19 121 | 69.47 152 |
|
TranMVSNet+NR-MVSNet | | | 48.06 144 | 51.36 144 | 44.21 143 | 50.38 132 | 62.09 143 | 47.28 148 | 50.88 41 | 36.11 140 | 13.25 180 | 37.51 114 | 31.60 167 | 30.70 167 | 59.34 141 | 62.53 113 | 72.81 126 | 70.31 145 |
|
TransMVSNet (Re) | | | 47.46 145 | 48.94 157 | 45.74 134 | 57.96 88 | 64.29 132 | 48.26 143 | 48.47 61 | 26.33 186 | 19.33 166 | 29.45 165 | 31.28 171 | 25.31 180 | 63.05 98 | 62.70 108 | 75.10 80 | 65.47 163 |
|
DU-MVS | | | 47.33 146 | 50.86 147 | 43.20 150 | 44.43 164 | 60.64 150 | 46.97 151 | 47.63 68 | 37.26 133 | 16.42 175 | 37.31 115 | 31.39 169 | 33.43 157 | 57.53 153 | 59.98 144 | 70.35 141 | 71.94 133 |
|
v7n | | | 47.22 147 | 48.38 159 | 45.87 133 | 48.20 146 | 63.58 133 | 50.69 135 | 40.93 137 | 26.60 185 | 26.44 139 | 26.52 174 | 29.65 177 | 38.19 141 | 58.22 149 | 60.23 141 | 70.79 139 | 73.83 120 |
|
UA-Net | | | 47.19 148 | 53.02 129 | 40.38 164 | 55.31 106 | 60.02 155 | 38.41 177 | 38.68 148 | 36.42 139 | 22.47 155 | 51.95 60 | 58.72 57 | 25.62 179 | 54.11 169 | 53.40 174 | 61.79 182 | 56.51 185 |
|
Baseline_NR-MVSNet | | | 47.14 149 | 50.83 148 | 42.84 153 | 44.43 164 | 63.31 136 | 44.50 163 | 50.36 46 | 37.71 130 | 11.25 185 | 30.84 152 | 32.09 162 | 30.96 165 | 57.53 153 | 63.73 99 | 75.53 71 | 70.60 144 |
|
pmmvs5 | | | 47.02 150 | 50.02 150 | 43.51 149 | 43.48 169 | 62.65 140 | 47.24 149 | 37.78 155 | 30.59 168 | 24.80 145 | 35.26 125 | 30.43 173 | 34.36 150 | 59.05 143 | 60.28 140 | 73.40 116 | 71.92 135 |
|
UniMVSNet (Re) | | | 46.89 151 | 51.65 141 | 41.34 161 | 45.60 156 | 62.71 139 | 44.05 164 | 47.10 77 | 37.24 135 | 13.55 178 | 36.90 117 | 34.54 151 | 26.76 177 | 57.56 152 | 59.90 146 | 70.98 137 | 72.69 131 |
|
thisisatest0515 | | | 46.88 152 | 49.57 153 | 43.74 148 | 45.33 159 | 60.46 153 | 46.19 157 | 41.06 136 | 30.34 169 | 29.73 127 | 32.50 142 | 31.63 166 | 35.43 148 | 58.75 147 | 61.71 123 | 64.70 168 | 71.59 139 |
|
tfpnnormal | | | 46.61 153 | 46.82 166 | 46.37 129 | 52.70 116 | 62.31 141 | 50.39 136 | 47.17 76 | 25.74 189 | 21.80 156 | 23.13 183 | 24.15 196 | 33.45 156 | 60.28 133 | 60.77 137 | 72.70 127 | 71.39 140 |
|
pm-mvs1 | | | 46.14 154 | 49.34 156 | 42.41 154 | 48.93 143 | 62.22 142 | 44.98 161 | 42.68 129 | 27.66 179 | 20.76 158 | 29.88 161 | 34.96 147 | 26.41 178 | 60.03 138 | 60.42 139 | 70.70 140 | 70.20 146 |
|
IterMVS-SCA-FT | | | 45.87 155 | 51.55 142 | 39.24 167 | 46.22 153 | 59.43 157 | 52.89 127 | 31.93 187 | 36.01 142 | 23.68 148 | 38.86 110 | 39.88 132 | 39.05 138 | 56.25 162 | 58.17 151 | 41.70 202 | 72.25 132 |
|
MIMVSNet | | | 45.62 156 | 49.56 154 | 41.02 162 | 38.17 179 | 64.43 129 | 49.48 139 | 35.43 167 | 36.53 138 | 20.06 163 | 22.58 184 | 35.16 146 | 28.75 174 | 61.97 111 | 62.20 117 | 74.20 99 | 64.07 167 |
|
gm-plane-assit | | | 45.41 157 | 48.03 161 | 42.34 155 | 56.49 95 | 40.48 200 | 24.54 204 | 34.15 181 | 14.44 206 | 6.59 195 | 17.82 194 | 35.32 145 | 49.82 86 | 72.93 14 | 74.11 9 | 82.47 2 | 81.12 88 |
|
ADS-MVSNet | | | 45.39 158 | 46.42 167 | 44.19 144 | 48.74 145 | 57.52 165 | 43.91 165 | 31.93 187 | 35.89 144 | 27.11 136 | 30.12 157 | 32.06 163 | 45.30 113 | 53.13 175 | 55.19 167 | 68.15 153 | 61.07 175 |
|
GG-mvs-BLEND | | | 44.87 159 | 64.59 58 | 21.86 200 | 0.01 215 | 73.70 56 | 55.99 109 | 0.01 212 | 50.70 77 | 0.01 215 | 49.18 68 | 63.61 40 | 0.01 211 | 63.83 91 | 64.50 91 | 75.13 79 | 86.62 38 |
|
pmmvs-eth3d | | | 44.67 160 | 45.27 172 | 43.98 146 | 42.56 172 | 55.72 174 | 44.97 162 | 40.81 138 | 31.96 161 | 29.13 128 | 26.09 176 | 25.27 193 | 36.69 146 | 55.13 166 | 56.62 160 | 69.68 148 | 66.12 162 |
|
MDTV_nov1_ep13_2view | | | 44.44 161 | 45.75 170 | 42.91 152 | 46.13 154 | 63.43 135 | 46.53 156 | 34.20 178 | 29.08 174 | 19.95 164 | 26.23 175 | 27.89 183 | 35.88 147 | 53.36 174 | 56.43 161 | 74.74 87 | 63.86 168 |
|
CMPMVS | | 33.64 16 | 44.39 162 | 46.41 168 | 42.03 156 | 44.21 167 | 56.50 168 | 46.73 154 | 26.48 200 | 34.20 150 | 35.14 96 | 24.22 180 | 34.64 150 | 40.52 137 | 56.50 161 | 56.07 164 | 59.12 186 | 62.74 171 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Vis-MVSNet (Re-imp) | | | 44.31 163 | 51.67 140 | 35.72 177 | 51.82 121 | 55.24 176 | 34.57 183 | 41.63 132 | 39.10 123 | 8.84 192 | 45.93 79 | 46.63 102 | 14.45 193 | 54.09 170 | 57.03 157 | 63.00 177 | 63.65 169 |
|
TAMVS | | | 44.27 164 | 49.35 155 | 38.35 171 | 44.74 162 | 61.04 149 | 39.07 175 | 31.82 189 | 29.95 171 | 18.34 172 | 33.55 137 | 39.94 131 | 30.01 169 | 56.85 159 | 57.58 153 | 66.13 163 | 66.54 160 |
|
MVS-HIRNet | | | 43.98 165 | 43.63 176 | 44.39 142 | 47.66 148 | 59.31 158 | 32.66 190 | 33.88 183 | 30.15 170 | 33.75 106 | 16.82 199 | 28.39 182 | 45.25 114 | 53.92 173 | 55.00 169 | 73.16 122 | 61.80 172 |
|
UniMVSNet_ETH3D | | | 43.97 166 | 46.01 169 | 41.59 158 | 38.31 178 | 56.20 169 | 49.69 138 | 38.18 152 | 28.18 175 | 19.88 165 | 27.82 170 | 30.20 174 | 33.41 159 | 54.18 168 | 56.30 162 | 70.05 145 | 69.17 154 |
|
RPMNet | | | 43.70 167 | 48.17 160 | 38.48 170 | 45.52 158 | 55.95 170 | 37.66 178 | 26.63 199 | 42.17 108 | 25.47 141 | 29.59 164 | 37.61 133 | 33.87 151 | 50.85 179 | 52.02 178 | 61.75 183 | 69.00 155 |
|
PatchMatch-RL | | | 43.37 168 | 44.93 173 | 41.56 159 | 37.94 180 | 51.70 178 | 40.02 173 | 35.75 165 | 39.04 124 | 30.71 120 | 35.14 126 | 27.43 185 | 46.58 108 | 51.99 176 | 50.55 182 | 58.38 188 | 58.64 180 |
|
FMVSNet5 | | | 43.29 169 | 47.07 164 | 38.87 168 | 30.46 199 | 50.99 180 | 45.87 158 | 37.19 159 | 42.17 108 | 19.32 167 | 26.77 172 | 40.51 128 | 30.26 168 | 56.82 160 | 55.81 166 | 70.10 144 | 56.46 186 |
|
test0.0.03 1 | | | 43.07 170 | 46.95 165 | 38.54 169 | 51.68 123 | 58.77 162 | 35.28 179 | 46.35 87 | 32.05 160 | 12.44 181 | 28.53 167 | 35.52 143 | 14.40 194 | 57.12 158 | 56.93 158 | 71.11 136 | 59.69 176 |
|
anonymousdsp | | | 43.03 171 | 47.19 163 | 38.18 172 | 36.00 190 | 56.92 167 | 38.44 176 | 34.56 173 | 24.22 191 | 22.53 154 | 29.69 163 | 29.92 175 | 35.21 149 | 53.96 172 | 58.98 148 | 62.32 180 | 76.66 109 |
|
USDC | | | 42.80 172 | 45.57 171 | 39.58 165 | 34.55 192 | 51.13 179 | 42.61 168 | 36.21 162 | 39.59 121 | 23.65 149 | 33.13 140 | 20.87 200 | 37.86 142 | 55.35 165 | 57.16 156 | 62.61 178 | 61.75 173 |
|
CHOSEN 280x420 | | | 42.39 173 | 47.40 162 | 36.54 175 | 33.56 195 | 39.66 203 | 40.67 172 | 26.88 198 | 34.66 147 | 18.03 173 | 30.09 158 | 45.59 107 | 44.82 121 | 54.46 167 | 54.00 172 | 55.28 195 | 73.32 125 |
|
pmmvs6 | | | 41.90 174 | 44.01 175 | 39.43 166 | 44.45 163 | 58.77 162 | 41.92 169 | 39.22 145 | 21.74 193 | 19.08 170 | 17.40 197 | 31.33 170 | 24.28 182 | 55.94 163 | 56.67 159 | 67.60 157 | 66.24 161 |
|
Anonymous20231206 | | | 40.63 175 | 43.29 177 | 37.53 173 | 48.88 144 | 55.81 172 | 34.99 180 | 44.98 96 | 28.16 176 | 10.16 189 | 17.26 198 | 27.50 184 | 18.28 187 | 54.00 171 | 55.07 168 | 67.85 155 | 65.23 164 |
|
CVMVSNet | | | 38.91 176 | 44.49 174 | 32.40 186 | 34.57 191 | 47.20 191 | 34.81 181 | 34.20 178 | 31.45 164 | 8.95 191 | 38.86 110 | 36.38 140 | 24.30 181 | 47.77 183 | 46.94 194 | 57.59 190 | 62.85 170 |
|
COLMAP_ROB | | 34.79 15 | 38.65 177 | 40.72 180 | 36.23 176 | 36.41 189 | 49.22 187 | 45.51 160 | 27.60 197 | 37.81 128 | 20.54 160 | 23.37 182 | 24.25 195 | 28.11 175 | 51.02 178 | 48.55 185 | 59.22 185 | 50.82 196 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 38.23 178 | 41.72 179 | 34.15 179 | 40.56 176 | 50.07 183 | 33.17 187 | 44.35 104 | 27.64 181 | 5.54 201 | 30.84 152 | 26.67 186 | 14.99 191 | 45.64 186 | 52.38 177 | 66.29 162 | 58.83 179 |
|
WR-MVS | | | 37.61 179 | 42.15 178 | 32.31 188 | 43.64 168 | 51.85 177 | 29.39 196 | 43.35 118 | 27.65 180 | 4.40 203 | 29.90 160 | 29.80 176 | 10.46 197 | 46.73 185 | 51.98 179 | 62.60 179 | 57.16 183 |
|
TinyColmap | | | 37.18 180 | 37.37 193 | 36.95 174 | 31.17 198 | 45.21 194 | 39.71 174 | 34.65 171 | 29.83 172 | 20.20 161 | 18.54 192 | 13.72 208 | 38.27 140 | 50.33 180 | 51.57 180 | 57.71 189 | 52.42 193 |
|
CP-MVSNet | | | 37.09 181 | 40.62 181 | 32.99 181 | 37.56 182 | 48.25 188 | 32.75 188 | 43.05 123 | 27.88 178 | 5.93 197 | 31.27 150 | 25.82 191 | 15.09 189 | 43.37 193 | 48.82 183 | 63.54 174 | 58.90 177 |
|
DTE-MVSNet | | | 36.91 182 | 40.44 182 | 32.79 184 | 40.74 174 | 47.55 190 | 30.71 194 | 44.39 101 | 27.03 183 | 4.32 204 | 30.88 151 | 25.99 189 | 12.73 195 | 45.58 187 | 50.80 181 | 63.86 171 | 55.23 189 |
|
PS-CasMVS | | | 36.84 183 | 40.23 185 | 32.89 182 | 37.44 183 | 48.09 189 | 32.68 189 | 42.97 125 | 27.36 182 | 5.89 198 | 30.08 159 | 25.48 192 | 14.96 192 | 43.28 194 | 48.71 184 | 63.39 175 | 58.63 181 |
|
WR-MVS_H | | | 36.29 184 | 40.35 184 | 31.55 190 | 37.80 181 | 49.94 185 | 30.57 195 | 41.11 135 | 26.90 184 | 4.14 205 | 30.72 154 | 28.85 180 | 10.45 198 | 42.47 195 | 47.99 189 | 65.24 165 | 55.54 187 |
|
SixPastTwentyTwo | | | 36.11 185 | 37.80 189 | 34.13 180 | 37.13 186 | 46.72 192 | 34.58 182 | 34.96 169 | 21.20 196 | 11.66 182 | 29.15 166 | 19.88 201 | 29.77 171 | 44.93 188 | 48.34 186 | 56.67 192 | 54.41 191 |
|
test20.03 | | | 36.00 186 | 38.92 186 | 32.60 185 | 45.92 155 | 50.99 180 | 28.05 200 | 43.69 114 | 21.62 194 | 6.03 196 | 17.61 196 | 25.91 190 | 8.34 204 | 51.26 177 | 52.60 176 | 63.58 172 | 52.46 192 |
|
TDRefinement | | | 35.76 187 | 38.23 187 | 32.88 183 | 19.09 208 | 46.04 193 | 43.29 166 | 29.49 192 | 33.49 154 | 19.04 171 | 22.29 186 | 17.82 203 | 29.69 173 | 48.60 182 | 47.24 192 | 56.65 193 | 52.12 194 |
|
LTVRE_ROB | | 32.83 17 | 35.10 188 | 37.46 190 | 32.35 187 | 43.12 170 | 49.99 184 | 28.52 198 | 33.23 185 | 12.73 207 | 8.18 193 | 27.71 171 | 21.34 199 | 32.64 161 | 46.92 184 | 48.11 187 | 48.41 199 | 55.45 188 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PM-MVS | | | 34.96 189 | 38.17 188 | 31.22 191 | 22.78 203 | 40.82 199 | 33.56 185 | 23.61 202 | 29.16 173 | 21.43 157 | 28.00 169 | 21.43 198 | 31.90 163 | 44.33 191 | 42.12 197 | 54.07 197 | 61.34 174 |
|
testgi | | | 34.51 190 | 37.42 191 | 31.12 192 | 47.37 151 | 50.34 182 | 24.38 205 | 41.21 133 | 20.32 198 | 5.64 200 | 20.56 188 | 26.55 187 | 8.06 205 | 49.28 181 | 52.65 175 | 60.05 184 | 42.23 202 |
|
MDA-MVSNet-bldmvs | | | 34.31 191 | 34.11 197 | 34.54 178 | 24.73 201 | 49.66 186 | 33.42 186 | 43.03 124 | 21.59 195 | 11.10 186 | 19.81 190 | 12.68 209 | 31.41 164 | 35.59 200 | 48.05 188 | 63.56 173 | 51.39 195 |
|
N_pmnet | | | 34.09 192 | 35.74 195 | 32.17 189 | 37.25 185 | 43.17 197 | 32.26 192 | 35.57 166 | 26.22 187 | 10.60 188 | 20.44 189 | 19.38 202 | 20.20 185 | 44.59 190 | 47.00 193 | 57.13 191 | 49.35 199 |
|
RPSCF | | | 33.61 193 | 40.43 183 | 25.65 196 | 16.00 210 | 32.41 205 | 31.73 193 | 13.33 209 | 50.13 79 | 23.12 150 | 31.56 147 | 40.09 129 | 32.73 160 | 41.14 199 | 37.05 200 | 36.99 205 | 50.63 197 |
|
EU-MVSNet | | | 33.00 194 | 36.49 194 | 28.92 193 | 33.10 196 | 42.86 198 | 29.32 197 | 35.99 163 | 22.94 192 | 5.83 199 | 25.29 177 | 24.43 194 | 15.21 188 | 41.22 198 | 41.65 199 | 54.08 196 | 57.01 184 |
|
pmmvs3 | | | 31.22 195 | 33.62 198 | 28.43 194 | 22.82 202 | 40.26 202 | 26.40 201 | 22.05 204 | 16.89 204 | 10.99 187 | 14.72 201 | 16.26 204 | 29.70 172 | 44.82 189 | 47.39 191 | 58.61 187 | 54.98 190 |
|
FC-MVSNet-test | | | 30.97 196 | 37.38 192 | 23.49 199 | 37.42 184 | 33.68 204 | 19.43 207 | 39.27 143 | 31.37 165 | 1.67 211 | 38.56 112 | 28.85 180 | 6.06 208 | 41.40 196 | 43.80 196 | 37.10 204 | 44.03 201 |
|
new-patchmatchnet | | | 30.47 197 | 32.80 200 | 27.75 195 | 36.81 187 | 43.98 195 | 24.85 203 | 39.29 142 | 20.52 197 | 4.06 206 | 15.94 200 | 16.05 205 | 9.57 199 | 41.32 197 | 42.05 198 | 51.94 198 | 49.74 198 |
|
MIMVSNet1 | | | 29.60 198 | 33.37 199 | 25.20 198 | 19.52 206 | 43.94 196 | 26.29 202 | 37.92 154 | 19.95 201 | 3.79 207 | 12.64 205 | 21.99 197 | 7.70 206 | 43.83 192 | 46.32 195 | 55.97 194 | 44.92 200 |
|
FPMVS | | | 26.87 199 | 28.19 201 | 25.32 197 | 27.09 200 | 29.49 206 | 32.28 191 | 17.79 206 | 28.09 177 | 11.33 183 | 19.38 191 | 14.69 206 | 20.88 184 | 35.11 201 | 32.82 202 | 42.56 201 | 37.75 203 |
|
PMVS | | 18.18 18 | 21.95 200 | 22.85 202 | 20.90 201 | 21.92 204 | 14.78 208 | 19.95 206 | 17.31 207 | 15.69 205 | 11.32 184 | 13.70 202 | 13.91 207 | 15.02 190 | 34.92 202 | 31.72 203 | 39.85 203 | 35.20 204 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 19.10 201 | 22.71 203 | 14.89 203 | 10.93 212 | 24.08 207 | 14.22 208 | 13.94 208 | 18.68 202 | 2.93 208 | 12.84 204 | 11.27 210 | 11.94 196 | 30.57 204 | 30.58 204 | 35.38 206 | 30.93 205 |
|
Gipuma | | | 17.16 202 | 17.83 204 | 16.36 202 | 18.76 209 | 12.15 211 | 11.97 209 | 27.78 196 | 17.94 203 | 4.86 202 | 2.53 211 | 2.73 215 | 8.90 202 | 34.32 203 | 36.09 201 | 25.92 207 | 19.06 207 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 12.25 203 | 14.17 205 | 10.00 206 | 11.39 211 | 14.35 209 | 8.21 210 | 19.29 205 | 9.31 208 | 0.19 214 | 7.38 207 | 6.19 213 | 1.10 210 | 19.26 205 | 21.13 206 | 19.85 208 | 21.56 206 |
|
E-PMN | | | 10.66 204 | 8.30 207 | 13.42 204 | 19.91 205 | 7.87 212 | 4.30 213 | 29.47 193 | 8.37 211 | 1.70 210 | 3.67 208 | 1.29 218 | 9.12 201 | 8.98 209 | 13.59 207 | 16.03 209 | 14.30 210 |
|
EMVS | | | 10.15 205 | 7.67 208 | 13.05 205 | 19.22 207 | 7.77 213 | 4.48 211 | 29.34 194 | 8.65 210 | 1.67 211 | 3.55 209 | 1.36 217 | 9.15 200 | 8.15 210 | 11.79 209 | 14.44 210 | 12.43 211 |
|
MVE | | 10.35 19 | 9.76 206 | 11.08 206 | 8.22 207 | 4.43 213 | 13.04 210 | 3.36 214 | 23.57 203 | 5.74 212 | 1.76 209 | 3.09 210 | 1.75 216 | 6.78 207 | 12.78 207 | 23.04 205 | 9.44 211 | 18.09 208 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.01 207 | 0.01 209 | 0.00 209 | 0.00 216 | 0.00 216 | 0.00 217 | 0.00 213 | 0.01 213 | 0.00 216 | 0.02 212 | 0.00 219 | 0.00 213 | 0.01 211 | 0.01 210 | 0.00 214 | 0.03 212 |
|
test123 | | | 0.01 207 | 0.01 209 | 0.00 209 | 0.00 216 | 0.00 216 | 0.00 217 | 0.00 213 | 0.01 213 | 0.00 216 | 0.02 212 | 0.00 219 | 0.01 211 | 0.00 212 | 0.01 210 | 0.00 214 | 0.03 212 |
|
uanet_test | | | 0.00 209 | 0.00 211 | 0.00 209 | 0.00 216 | 0.00 216 | 0.00 217 | 0.00 213 | 0.00 215 | 0.00 216 | 0.00 214 | 0.00 219 | 0.00 213 | 0.00 212 | 0.00 212 | 0.00 214 | 0.00 214 |
|
sosnet-low-res | | | 0.00 209 | 0.00 211 | 0.00 209 | 0.00 216 | 0.00 216 | 0.00 217 | 0.00 213 | 0.00 215 | 0.00 216 | 0.00 214 | 0.00 219 | 0.00 213 | 0.00 212 | 0.00 212 | 0.00 214 | 0.00 214 |
|
sosnet | | | 0.00 209 | 0.00 211 | 0.00 209 | 0.00 216 | 0.00 216 | 0.00 217 | 0.00 213 | 0.00 215 | 0.00 216 | 0.00 214 | 0.00 219 | 0.00 213 | 0.00 212 | 0.00 212 | 0.00 214 | 0.00 214 |
|
9.14 | | | | | | | | | | | | | 80.07 4 | | | | | |
|
SR-MVS | | | | | | 63.74 45 | | | 48.51 60 | | | | 73.80 17 | | | | | |
|
Anonymous202405211 | | | | 56.81 104 | | 60.91 66 | 73.48 59 | 59.82 81 | 48.68 57 | 39.26 122 | | 24.00 181 | 46.77 101 | 50.73 80 | 65.28 76 | 65.72 74 | 75.37 75 | 83.17 62 |
|
our_test_3 | | | | | | 49.68 138 | 61.50 147 | 45.84 159 | | | | | | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 92.54 5 |
|
ambc | | | | 35.52 196 | | 38.36 177 | 40.40 201 | 28.38 199 | | 25.20 190 | 14.87 177 | 13.22 203 | 7.54 212 | 19.34 186 | 55.63 164 | 47.79 190 | 47.91 200 | 58.89 178 |
|
MTAPA | | | | | | | | | | | 54.82 15 | | 71.98 23 | | | | | |
|
MTMP | | | | | | | | | | | 50.64 31 | | 68.31 29 | | | | | |
|
Patchmatch-RL test | | | | | | | | 0.69 216 | | | | | | | | | | |
|
tmp_tt | | | | | 4.41 208 | 2.56 214 | 1.81 215 | 2.61 215 | 0.27 211 | 20.12 199 | 9.81 190 | 17.69 195 | 9.04 211 | 1.96 209 | 12.88 206 | 12.11 208 | 9.23 212 | |
|
XVS | | | | | | 62.70 53 | 73.06 62 | 61.80 68 | | | 42.02 69 | | 63.42 42 | | | | 74.68 91 | |
|
X-MVStestdata | | | | | | 62.70 53 | 73.06 62 | 61.80 68 | | | 42.02 69 | | 63.42 42 | | | | 74.68 91 | |
|
abl_6 | | | | | 63.79 22 | 70.80 22 | 81.22 11 | 65.26 56 | 53.25 29 | 77.02 17 | 53.02 23 | 65.14 29 | 73.74 18 | 60.30 19 | | | 80.13 8 | 90.27 10 |
|
mPP-MVS | | | | | | 63.08 50 | | | | | | | 62.34 45 | | | | | |
|
NP-MVS | | | | | | | | | | 72.62 29 | | | | | | | | |
|
Patchmtry | | | | | | | 64.49 128 | 52.06 131 | 34.21 176 | | 31.74 114 | | | | | | | |
|
DeepMVS_CX | | | | | | | 5.87 214 | 4.32 212 | 1.74 210 | 9.04 209 | 1.30 213 | 7.97 206 | 3.16 214 | 8.56 203 | 9.74 208 | | 6.30 213 | 14.51 209 |
|