SED-MVS | | | 78.97 1 | 84.56 1 | 72.45 1 | 81.70 3 | 86.20 3 | 77.82 4 | 59.97 6 | 88.89 1 | 65.96 1 | 86.00 6 | 84.02 1 | 70.03 1 | 76.19 4 | 76.17 5 | 79.22 20 | 94.46 1 |
|
DVP-MVS | | | 77.54 2 | 84.41 2 | 69.54 6 | 79.93 4 | 86.08 4 | 77.20 8 | 60.31 4 | 88.62 2 | 62.54 2 | 86.67 3 | 83.77 2 | 58.04 33 | 75.84 6 | 75.69 7 | 79.21 21 | 94.17 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SF-MVS | | | 76.41 3 | 80.45 5 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 10 | 59.82 4 | 86.26 4 | 77.90 7 | 61.11 15 | 71.81 26 | 70.75 34 | 79.63 12 | 88.22 25 |
|
MSP-MVS | | | 76.38 4 | 82.99 3 | 68.68 7 | 71.93 18 | 78.65 23 | 77.61 5 | 55.44 18 | 88.04 3 | 60.25 3 | 92.24 1 | 77.08 9 | 69.84 2 | 75.48 7 | 75.69 7 | 76.99 54 | 93.75 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 75.74 5 | 82.82 4 | 67.49 11 | 77.07 7 | 82.01 7 | 77.05 9 | 57.70 11 | 86.55 5 | 55.44 15 | 90.50 2 | 82.52 3 | 60.33 20 | 72.99 14 | 72.98 15 | 77.33 47 | 92.19 6 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DPM-MVS | | | 74.63 6 | 78.53 10 | 70.07 4 | 76.10 9 | 82.56 6 | 79.30 3 | 59.89 7 | 80.49 13 | 57.75 10 | 66.98 25 | 76.16 12 | 65.95 3 | 79.35 1 | 78.47 1 | 81.45 5 | 85.71 46 |
|
APDe-MVS | | | 74.59 7 | 80.23 6 | 68.01 10 | 76.51 8 | 80.20 15 | 77.39 6 | 58.18 9 | 85.31 6 | 56.84 12 | 84.89 7 | 76.08 13 | 60.66 18 | 71.85 25 | 71.76 20 | 78.47 29 | 91.49 9 |
|
MCST-MVS | | | 74.06 8 | 77.71 13 | 69.79 5 | 78.95 5 | 81.99 8 | 76.33 10 | 62.16 3 | 75.89 21 | 52.96 25 | 64.37 31 | 73.30 21 | 65.66 4 | 77.49 2 | 77.43 3 | 82.67 1 | 93.51 4 |
|
CNVR-MVS | | | 73.87 9 | 78.60 9 | 68.35 9 | 73.32 13 | 81.97 9 | 76.19 11 | 59.29 8 | 80.12 14 | 56.70 13 | 67.09 24 | 76.48 10 | 64.26 6 | 75.88 5 | 75.75 6 | 80.32 7 | 92.93 5 |
|
SMA-MVS |  | | 73.31 10 | 79.53 7 | 66.05 13 | 71.25 20 | 80.13 16 | 74.99 12 | 56.09 14 | 84.14 7 | 54.48 18 | 73.74 16 | 80.23 4 | 61.43 12 | 74.96 8 | 74.09 11 | 78.08 36 | 89.42 15 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
xxxxxxxxxxxxxcwj | | | 73.17 11 | 74.44 20 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 10 | 59.82 4 | 86.26 4 | 35.82 146 | 61.11 15 | 71.81 26 | 70.75 34 | 79.63 12 | 88.22 25 |
|
CSCG | | | 72.98 12 | 76.86 15 | 68.46 8 | 78.23 6 | 81.74 10 | 77.26 7 | 60.00 5 | 75.61 24 | 59.06 6 | 62.72 33 | 77.42 8 | 56.63 46 | 74.24 10 | 77.18 4 | 79.56 14 | 89.13 19 |
|
HPM-MVS++ |  | | 72.44 13 | 78.73 8 | 65.11 14 | 71.88 19 | 77.31 32 | 71.98 20 | 55.67 16 | 83.11 9 | 53.59 22 | 75.90 12 | 78.49 6 | 61.00 17 | 73.99 11 | 73.31 14 | 76.55 57 | 88.97 20 |
|
APD-MVS |  | | 71.86 14 | 77.91 12 | 64.80 16 | 70.39 25 | 75.69 43 | 74.02 14 | 56.14 13 | 83.59 8 | 52.92 26 | 84.67 8 | 73.46 20 | 59.30 27 | 69.47 41 | 69.66 42 | 76.02 63 | 88.84 21 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 71.50 15 | 77.27 14 | 64.77 17 | 69.64 27 | 79.26 17 | 73.53 15 | 54.73 24 | 79.32 16 | 54.23 19 | 74.81 13 | 74.61 17 | 59.40 26 | 73.00 13 | 72.17 18 | 77.10 53 | 87.72 30 |
|
NCCC | | | 71.36 16 | 75.44 17 | 66.60 12 | 72.46 16 | 79.18 19 | 74.16 13 | 57.83 10 | 76.93 19 | 54.19 20 | 63.47 32 | 71.08 26 | 61.30 14 | 73.56 12 | 73.70 12 | 79.69 11 | 90.19 12 |
|
train_agg | | | 70.74 17 | 76.53 16 | 63.98 19 | 70.33 26 | 75.16 46 | 72.33 19 | 55.78 15 | 75.74 22 | 50.41 34 | 80.08 11 | 73.15 22 | 57.75 38 | 71.96 24 | 70.94 31 | 77.25 51 | 88.69 23 |
|
TSAR-MVS + MP. | | | 70.28 18 | 75.09 18 | 64.66 18 | 69.34 29 | 64.61 128 | 72.60 18 | 56.29 12 | 80.73 12 | 58.36 8 | 84.56 9 | 75.22 15 | 55.37 53 | 69.11 48 | 69.45 43 | 75.97 65 | 81.97 76 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepPCF-MVS | | 62.48 1 | 70.07 19 | 78.36 11 | 60.39 43 | 62.38 59 | 76.96 35 | 65.54 56 | 52.23 33 | 87.46 4 | 49.07 35 | 74.05 15 | 76.19 11 | 59.01 29 | 72.79 18 | 71.61 22 | 74.13 108 | 89.49 14 |
|
SteuartSystems-ACMMP | | | 69.78 20 | 74.76 19 | 63.98 19 | 73.45 12 | 78.56 24 | 73.13 17 | 55.24 21 | 70.68 34 | 48.93 37 | 70.43 20 | 69.10 28 | 54.00 58 | 72.78 20 | 72.98 15 | 79.14 22 | 88.74 22 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 68.75 21 | 72.84 22 | 63.98 19 | 68.87 33 | 75.09 47 | 71.87 21 | 51.22 38 | 73.50 28 | 58.17 9 | 68.05 23 | 68.67 29 | 57.79 37 | 70.49 35 | 69.23 45 | 75.98 64 | 84.84 54 |
|
SD-MVS | | | 68.30 22 | 72.58 24 | 63.31 25 | 69.24 30 | 67.85 101 | 70.81 26 | 53.65 29 | 79.64 15 | 58.52 7 | 74.31 14 | 75.37 14 | 53.52 64 | 65.63 73 | 63.56 105 | 74.13 108 | 81.73 80 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
zzz-MVS | | | 67.78 23 | 72.46 25 | 62.33 30 | 66.09 39 | 74.21 52 | 70.05 28 | 51.54 36 | 77.27 17 | 54.61 17 | 60.30 41 | 71.51 25 | 56.73 44 | 69.19 46 | 68.63 54 | 74.96 88 | 86.11 43 |
|
DELS-MVS | | | 67.36 24 | 70.34 39 | 63.89 22 | 69.12 31 | 81.55 11 | 70.82 25 | 55.02 22 | 53.38 74 | 48.83 38 | 56.45 47 | 59.35 56 | 60.05 24 | 74.93 9 | 74.78 9 | 79.51 15 | 91.95 7 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MP-MVS |  | | 67.34 25 | 73.08 21 | 60.64 40 | 66.20 38 | 76.62 37 | 69.22 32 | 50.92 40 | 70.07 35 | 48.81 39 | 69.66 21 | 70.12 27 | 53.68 61 | 68.41 53 | 69.13 47 | 74.98 87 | 87.53 32 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS | | 60.65 2 | 67.33 26 | 71.52 32 | 62.44 28 | 59.79 79 | 74.84 49 | 68.89 33 | 55.56 17 | 73.91 27 | 53.50 23 | 55.00 52 | 65.63 34 | 60.08 23 | 71.99 23 | 71.33 26 | 76.85 55 | 87.94 29 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP-MVS | | | 67.22 27 | 72.08 27 | 61.56 35 | 66.76 36 | 73.58 59 | 71.41 22 | 52.98 31 | 69.92 37 | 43.85 59 | 70.58 19 | 58.75 58 | 56.76 43 | 72.90 16 | 71.88 19 | 77.57 43 | 86.94 36 |
|
CANet | | | 67.21 28 | 71.83 29 | 61.83 31 | 64.51 45 | 79.25 18 | 66.72 48 | 48.73 56 | 68.49 42 | 50.63 33 | 61.40 37 | 66.47 32 | 61.44 11 | 69.31 45 | 69.90 38 | 78.94 25 | 88.00 27 |
|
CDPH-MVS | | | 67.03 29 | 71.64 30 | 61.65 34 | 69.10 32 | 76.84 36 | 71.35 24 | 55.42 19 | 67.02 45 | 42.83 64 | 65.27 29 | 64.60 38 | 53.16 67 | 69.70 40 | 71.40 24 | 78.02 38 | 86.67 38 |
|
MAR-MVS | | | 66.85 30 | 69.81 40 | 63.39 24 | 73.56 11 | 80.51 14 | 69.87 29 | 51.51 37 | 67.78 44 | 46.44 44 | 51.09 66 | 61.60 51 | 60.38 19 | 72.67 21 | 73.61 13 | 78.59 26 | 81.44 84 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS_fast | | 60.18 3 | 66.84 31 | 70.69 37 | 62.36 29 | 62.76 53 | 73.21 62 | 67.96 36 | 52.31 32 | 72.26 31 | 51.03 28 | 56.50 46 | 64.26 39 | 63.37 8 | 71.64 28 | 70.85 32 | 76.70 56 | 86.10 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 66.77 32 | 72.21 26 | 60.44 42 | 61.23 67 | 70.00 83 | 64.26 61 | 47.79 68 | 72.98 29 | 56.32 14 | 71.35 18 | 72.33 23 | 55.68 52 | 65.49 74 | 66.66 69 | 77.35 45 | 86.62 39 |
|
MVS_0304 | | | 66.31 33 | 71.61 31 | 60.14 44 | 62.59 57 | 78.98 21 | 67.13 44 | 45.75 92 | 64.35 51 | 45.23 52 | 60.69 39 | 67.67 31 | 61.73 10 | 71.09 31 | 71.03 29 | 78.41 32 | 87.44 33 |
|
ACMMPR | | | 66.20 34 | 71.51 33 | 60.00 46 | 65.34 43 | 74.04 54 | 69.39 31 | 50.92 40 | 71.97 32 | 46.04 47 | 66.79 26 | 65.68 33 | 53.07 68 | 68.93 50 | 69.12 48 | 75.21 81 | 84.05 60 |
|
3Dnovator | | 58.39 4 | 65.97 35 | 66.85 51 | 64.94 15 | 73.72 10 | 79.03 20 | 67.73 39 | 54.25 25 | 61.52 54 | 52.79 27 | 42.27 92 | 60.73 54 | 62.01 9 | 71.29 29 | 71.75 21 | 79.12 23 | 81.34 87 |
|
TSAR-MVS + ACMM | | | 65.95 36 | 72.83 23 | 57.93 56 | 69.35 28 | 65.85 120 | 73.36 16 | 39.84 145 | 76.00 20 | 48.69 40 | 82.54 10 | 75.03 16 | 49.38 95 | 65.33 76 | 63.42 107 | 66.94 167 | 81.67 81 |
|
canonicalmvs | | | 65.55 37 | 70.75 36 | 59.49 49 | 62.11 61 | 78.26 27 | 66.52 49 | 43.82 113 | 71.54 33 | 47.84 42 | 61.30 38 | 61.68 49 | 58.48 32 | 67.56 60 | 69.67 41 | 78.16 35 | 85.25 51 |
|
QAPM | | | 65.47 38 | 67.82 45 | 62.72 27 | 72.56 14 | 81.17 13 | 67.43 42 | 55.38 20 | 56.07 67 | 43.29 62 | 43.60 87 | 65.38 36 | 59.10 28 | 72.20 22 | 70.76 33 | 78.56 27 | 85.59 49 |
|
CS-MVS | | | 65.45 39 | 70.81 35 | 59.20 51 | 59.77 81 | 75.98 38 | 64.01 62 | 42.11 134 | 65.23 48 | 46.15 46 | 59.84 42 | 62.01 47 | 63.88 7 | 71.27 30 | 71.06 28 | 79.29 18 | 90.29 10 |
|
PGM-MVS | | | 65.35 40 | 70.43 38 | 59.43 50 | 65.78 41 | 73.75 56 | 69.41 30 | 48.18 64 | 68.80 41 | 45.37 51 | 65.88 28 | 64.04 40 | 52.68 74 | 68.94 49 | 68.68 53 | 75.18 82 | 82.93 67 |
|
PHI-MVS | | | 65.17 41 | 72.07 28 | 57.11 65 | 63.02 52 | 77.35 31 | 67.04 45 | 48.14 66 | 68.03 43 | 37.56 92 | 66.00 27 | 65.39 35 | 53.19 66 | 70.68 32 | 70.57 37 | 73.72 115 | 86.46 42 |
|
CLD-MVS | | | 64.69 42 | 67.25 46 | 61.69 33 | 68.22 35 | 78.33 25 | 63.09 65 | 47.59 71 | 69.64 38 | 53.98 21 | 54.87 53 | 53.94 72 | 57.87 34 | 72.79 18 | 71.34 25 | 79.40 17 | 69.87 155 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVS_111021_HR | | | 64.66 43 | 67.11 49 | 61.80 32 | 71.04 21 | 77.91 28 | 62.75 68 | 54.78 23 | 51.43 77 | 47.54 43 | 53.77 56 | 54.85 69 | 56.84 41 | 70.59 33 | 71.50 23 | 77.86 39 | 89.70 13 |
|
EPNet | | | 64.39 44 | 70.93 34 | 56.77 67 | 60.58 74 | 75.77 40 | 59.28 89 | 50.58 44 | 69.93 36 | 40.73 79 | 68.59 22 | 61.60 51 | 53.72 59 | 68.65 51 | 68.07 56 | 75.75 72 | 83.87 62 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVS | | | 64.37 45 | 69.48 41 | 58.39 53 | 62.21 60 | 71.81 74 | 67.27 43 | 49.51 50 | 69.40 40 | 45.76 49 | 60.41 40 | 64.96 37 | 51.84 76 | 67.33 64 | 67.57 62 | 73.78 114 | 84.89 52 |
|
casdiffmvs | | | 63.87 46 | 67.08 50 | 60.12 45 | 60.90 70 | 78.29 26 | 67.91 37 | 48.01 67 | 55.89 69 | 44.97 53 | 50.45 68 | 56.94 62 | 59.54 25 | 70.17 38 | 69.81 39 | 79.41 16 | 87.99 28 |
|
MVS_Test | | | 63.75 47 | 67.24 47 | 59.68 48 | 60.01 75 | 76.99 34 | 68.13 35 | 45.17 95 | 57.45 62 | 43.74 60 | 53.07 59 | 56.16 67 | 61.33 13 | 70.27 36 | 71.11 27 | 79.72 10 | 85.63 48 |
|
X-MVS | | | 63.53 48 | 68.62 42 | 57.60 60 | 64.77 44 | 73.06 63 | 65.82 54 | 50.53 45 | 65.77 47 | 42.02 72 | 58.20 44 | 63.42 43 | 47.83 107 | 68.25 57 | 68.50 55 | 74.61 98 | 83.16 66 |
|
ACMMP |  | | 63.27 49 | 67.85 44 | 57.93 56 | 62.64 56 | 72.30 71 | 68.23 34 | 48.77 55 | 66.50 46 | 43.05 63 | 62.07 34 | 57.84 61 | 49.98 87 | 66.58 69 | 66.46 74 | 74.93 89 | 83.17 64 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ETV-MVS | | | 62.88 50 | 68.18 43 | 56.70 68 | 58.47 88 | 74.89 48 | 60.26 81 | 43.96 110 | 58.27 61 | 42.37 70 | 61.47 36 | 56.56 63 | 57.80 35 | 68.00 58 | 68.74 51 | 77.34 46 | 89.33 18 |
|
AdaColmap |  | | 62.79 51 | 62.63 67 | 62.98 26 | 70.82 22 | 72.90 66 | 67.84 38 | 54.09 27 | 65.14 49 | 50.71 31 | 41.78 94 | 47.64 101 | 60.17 22 | 67.41 63 | 66.83 67 | 74.28 103 | 76.69 112 |
|
3Dnovator+ | | 55.76 7 | 62.70 52 | 65.10 58 | 59.90 47 | 65.89 40 | 72.15 72 | 62.94 67 | 49.82 49 | 62.77 53 | 49.06 36 | 43.62 86 | 61.47 53 | 58.60 31 | 68.51 52 | 66.75 68 | 73.08 129 | 80.40 96 |
|
OpenMVS |  | 55.62 8 | 62.57 53 | 63.76 64 | 61.19 37 | 72.13 17 | 78.84 22 | 64.42 59 | 50.51 46 | 56.44 64 | 45.67 50 | 36.88 122 | 56.51 64 | 56.66 45 | 68.28 56 | 68.96 49 | 77.73 41 | 80.44 95 |
|
PVSNet_BlendedMVS | | | 62.53 54 | 66.37 53 | 58.05 54 | 58.17 89 | 75.70 41 | 61.30 74 | 48.67 59 | 58.67 58 | 50.93 29 | 55.43 50 | 49.39 90 | 53.01 69 | 69.46 42 | 66.55 71 | 76.24 61 | 89.39 16 |
|
PVSNet_Blended | | | 62.53 54 | 66.37 53 | 58.05 54 | 58.17 89 | 75.70 41 | 61.30 74 | 48.67 59 | 58.67 58 | 50.93 29 | 55.43 50 | 49.39 90 | 53.01 69 | 69.46 42 | 66.55 71 | 76.24 61 | 89.39 16 |
|
MVSTER | | | 62.51 56 | 67.22 48 | 57.02 66 | 55.05 111 | 69.23 92 | 63.02 66 | 46.88 81 | 61.11 56 | 43.95 58 | 59.20 43 | 58.86 57 | 56.80 42 | 69.13 47 | 70.98 30 | 76.41 59 | 82.04 73 |
|
CHOSEN 1792x2688 | | | 62.48 57 | 64.06 63 | 60.64 40 | 72.50 15 | 84.18 5 | 62.43 69 | 53.77 28 | 47.90 91 | 39.85 83 | 25.15 184 | 44.76 114 | 53.72 59 | 77.29 3 | 77.61 2 | 81.60 4 | 91.53 8 |
|
CostFormer | | | 62.45 58 | 65.68 56 | 58.67 52 | 63.29 49 | 77.65 29 | 67.62 40 | 38.42 155 | 54.04 72 | 46.00 48 | 48.27 76 | 57.89 60 | 56.97 40 | 67.03 67 | 67.79 61 | 79.74 9 | 87.09 35 |
|
PCF-MVS | | 55.99 6 | 62.31 59 | 66.60 52 | 57.32 63 | 59.12 87 | 73.68 58 | 67.53 41 | 48.71 57 | 61.35 55 | 42.83 64 | 51.33 65 | 63.48 42 | 53.48 65 | 65.64 72 | 64.87 88 | 72.22 134 | 85.83 45 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
diffmvs | | | 62.30 60 | 66.05 55 | 57.92 58 | 57.08 94 | 75.60 45 | 66.90 46 | 47.06 79 | 55.45 71 | 43.37 61 | 53.45 58 | 55.60 68 | 57.21 39 | 66.57 70 | 68.00 58 | 75.89 69 | 87.70 31 |
|
DI_MVS_plusplus_trai | | | 61.86 61 | 65.26 57 | 57.90 59 | 57.93 92 | 74.51 51 | 66.30 51 | 46.49 87 | 49.96 81 | 41.62 75 | 42.69 90 | 61.77 48 | 58.74 30 | 70.25 37 | 69.32 44 | 76.31 60 | 88.30 24 |
|
MSLP-MVS++ | | | 61.81 62 | 62.19 72 | 61.37 36 | 68.33 34 | 63.08 142 | 70.75 27 | 38.89 151 | 63.96 52 | 57.51 11 | 48.59 74 | 61.66 50 | 53.67 62 | 62.04 115 | 59.92 150 | 79.03 24 | 76.08 115 |
|
OPM-MVS | | | 61.59 63 | 62.30 71 | 60.76 39 | 66.53 37 | 73.35 61 | 71.41 22 | 54.18 26 | 40.82 120 | 41.57 76 | 45.70 82 | 54.84 70 | 54.43 57 | 69.92 39 | 69.19 46 | 76.45 58 | 82.25 70 |
|
MS-PatchMatch | | | 61.41 64 | 61.88 75 | 60.85 38 | 70.57 24 | 75.98 38 | 66.29 52 | 46.91 80 | 50.56 79 | 48.28 41 | 36.30 125 | 51.64 76 | 50.95 82 | 72.89 17 | 70.65 36 | 82.13 3 | 75.17 121 |
|
EIA-MVS | | | 60.56 65 | 64.29 62 | 56.20 74 | 59.14 86 | 72.68 68 | 59.55 87 | 43.56 117 | 51.78 76 | 41.01 78 | 55.47 49 | 51.93 75 | 55.87 48 | 65.01 80 | 66.57 70 | 78.06 37 | 86.60 41 |
|
CS-MVS-test | | | 59.84 66 | 64.47 60 | 54.44 80 | 56.78 96 | 71.68 75 | 59.73 85 | 38.46 153 | 49.87 82 | 38.00 88 | 52.31 60 | 56.19 65 | 57.80 35 | 67.25 65 | 67.08 64 | 75.88 70 | 86.93 37 |
|
ACMP | | 56.21 5 | 59.78 67 | 61.81 77 | 57.41 62 | 61.15 68 | 68.88 94 | 65.98 53 | 48.85 54 | 58.56 60 | 44.19 56 | 48.89 72 | 46.31 107 | 48.56 100 | 63.61 97 | 64.49 97 | 75.75 72 | 81.91 77 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 59.69 68 | 62.59 68 | 56.31 72 | 61.94 62 | 68.15 100 | 66.90 46 | 48.15 65 | 59.75 57 | 38.47 87 | 50.38 69 | 48.34 98 | 46.87 112 | 65.39 75 | 64.93 87 | 75.51 77 | 81.21 89 |
|
Effi-MVS+ | | | 59.63 69 | 61.78 78 | 57.12 64 | 61.56 64 | 71.63 76 | 63.61 63 | 47.59 71 | 47.18 92 | 37.79 89 | 45.29 83 | 49.93 86 | 56.27 47 | 67.45 61 | 67.06 65 | 75.91 66 | 83.93 61 |
|
CPTT-MVS | | | 59.54 70 | 64.47 60 | 53.79 85 | 54.99 113 | 67.63 104 | 65.48 57 | 44.59 102 | 64.81 50 | 37.74 90 | 51.55 63 | 59.90 55 | 49.77 91 | 61.83 117 | 61.26 135 | 70.18 148 | 84.31 59 |
|
baseline2 | | | 59.20 71 | 61.72 79 | 56.27 73 | 59.61 82 | 74.12 53 | 58.65 92 | 49.42 51 | 48.10 89 | 40.12 82 | 49.10 71 | 44.15 116 | 51.24 79 | 66.65 68 | 67.88 60 | 78.56 27 | 82.06 72 |
|
GeoE | | | 58.97 72 | 60.94 80 | 56.67 69 | 61.27 66 | 72.71 67 | 61.35 73 | 45.69 93 | 49.19 86 | 41.22 77 | 39.55 109 | 49.58 89 | 52.79 73 | 64.79 82 | 65.89 77 | 77.73 41 | 84.87 53 |
|
baseline | | | 58.65 73 | 61.99 73 | 54.75 79 | 54.70 115 | 71.85 73 | 60.20 82 | 43.91 111 | 55.99 68 | 40.13 81 | 53.50 57 | 50.91 82 | 55.76 49 | 61.29 125 | 61.73 127 | 73.83 112 | 78.68 105 |
|
PVSNet_Blended_VisFu | | | 58.56 74 | 62.33 70 | 54.16 82 | 56.90 95 | 73.92 55 | 57.72 95 | 46.16 90 | 44.23 100 | 42.73 67 | 46.26 79 | 51.06 81 | 46.28 115 | 67.99 59 | 65.38 82 | 75.18 82 | 87.44 33 |
|
ACMM | | 53.73 9 | 57.91 75 | 58.27 94 | 57.49 61 | 63.10 50 | 66.45 114 | 65.65 55 | 49.02 53 | 53.69 73 | 42.67 68 | 36.41 124 | 46.07 110 | 50.38 85 | 64.74 84 | 64.63 93 | 74.14 107 | 75.91 116 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CANet_DTU | | | 57.87 76 | 63.63 65 | 51.15 100 | 52.18 122 | 70.20 82 | 58.14 94 | 37.32 162 | 56.49 63 | 31.06 123 | 57.38 45 | 50.05 84 | 53.67 62 | 64.98 81 | 65.04 86 | 74.57 99 | 81.29 88 |
|
ET-MVSNet_ETH3D | | | 57.84 77 | 61.91 74 | 53.09 87 | 32.91 203 | 74.53 50 | 63.51 64 | 46.80 83 | 46.52 95 | 36.14 97 | 56.00 48 | 46.20 108 | 64.41 5 | 60.75 133 | 66.99 66 | 74.79 90 | 82.35 68 |
|
tpm cat1 | | | 57.41 78 | 58.26 95 | 56.42 71 | 60.80 72 | 72.56 69 | 64.35 60 | 38.43 154 | 49.18 87 | 46.36 45 | 36.69 123 | 43.50 119 | 54.47 55 | 61.39 123 | 62.64 115 | 74.11 110 | 81.81 78 |
|
IB-MVS | | 53.15 10 | 57.33 79 | 59.02 86 | 55.37 76 | 60.83 71 | 77.11 33 | 54.51 120 | 50.10 48 | 43.22 104 | 42.82 66 | 40.50 100 | 37.61 138 | 44.67 127 | 59.27 147 | 69.81 39 | 79.29 18 | 85.59 49 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpmrst | | | 57.23 80 | 59.08 85 | 55.06 77 | 59.91 77 | 70.65 80 | 60.71 77 | 35.38 173 | 47.91 90 | 42.58 69 | 39.78 104 | 45.45 112 | 54.44 56 | 62.19 112 | 62.82 112 | 77.37 44 | 84.73 55 |
|
baseline1 | | | 57.21 81 | 60.53 82 | 53.33 86 | 62.50 58 | 69.86 85 | 57.33 99 | 50.59 43 | 43.39 103 | 30.00 129 | 48.60 73 | 51.09 80 | 42.36 139 | 69.38 44 | 68.03 57 | 77.20 52 | 73.39 128 |
|
HyFIR lowres test | | | 57.12 82 | 59.11 84 | 54.80 78 | 61.55 65 | 77.55 30 | 59.02 90 | 45.00 97 | 41.84 117 | 33.93 109 | 22.44 191 | 49.16 93 | 51.02 81 | 68.39 54 | 68.71 52 | 78.26 34 | 85.70 47 |
|
MVS_111021_LR | | | 57.06 83 | 60.60 81 | 52.93 88 | 56.25 100 | 65.14 126 | 55.16 118 | 41.21 137 | 52.32 75 | 44.89 54 | 53.92 55 | 49.27 92 | 52.16 75 | 61.46 121 | 60.54 143 | 67.92 160 | 81.53 83 |
|
DCV-MVSNet | | | 56.80 84 | 58.96 87 | 54.28 81 | 59.96 76 | 66.74 112 | 60.37 80 | 44.87 99 | 41.01 119 | 36.81 95 | 47.57 77 | 47.87 100 | 48.23 103 | 64.41 87 | 65.17 84 | 75.45 78 | 79.95 98 |
|
test_part1 | | | 56.55 85 | 56.50 110 | 56.60 70 | 61.77 63 | 69.59 89 | 66.45 50 | 43.70 115 | 38.22 131 | 44.13 57 | 29.53 169 | 49.96 85 | 47.92 105 | 63.09 102 | 64.59 94 | 75.61 75 | 80.54 94 |
|
Anonymous20231211 | | | 56.40 86 | 57.00 105 | 55.70 75 | 59.78 80 | 72.49 70 | 61.29 76 | 46.83 82 | 40.50 121 | 40.46 80 | 22.12 193 | 49.73 87 | 51.07 80 | 64.39 88 | 65.30 83 | 74.74 92 | 84.44 58 |
|
PMMVS | | | 55.74 87 | 62.68 66 | 47.64 129 | 44.34 172 | 65.58 124 | 47.22 155 | 37.96 158 | 56.43 65 | 34.11 107 | 61.51 35 | 47.41 102 | 54.55 54 | 65.88 71 | 62.49 119 | 67.67 162 | 79.48 99 |
|
Fast-Effi-MVS+ | | | 55.73 88 | 58.26 95 | 52.76 89 | 54.33 116 | 68.19 98 | 57.05 100 | 34.66 175 | 46.92 93 | 38.96 85 | 40.53 98 | 41.55 128 | 55.69 50 | 65.31 77 | 65.99 75 | 75.90 67 | 79.34 100 |
|
DROMVSNet | | | 55.73 88 | 58.26 95 | 52.76 89 | 54.33 116 | 68.19 98 | 57.05 100 | 34.66 175 | 46.92 93 | 38.96 85 | 40.53 98 | 41.55 128 | 55.69 50 | 65.31 77 | 65.99 75 | 75.90 67 | 79.34 100 |
|
FC-MVSNet-train | | | 55.68 90 | 57.00 105 | 54.13 83 | 63.37 47 | 66.16 116 | 46.77 158 | 52.14 34 | 42.36 111 | 37.67 91 | 48.50 75 | 41.42 131 | 51.28 78 | 61.58 120 | 63.22 109 | 73.56 117 | 75.76 118 |
|
FMVSNet3 | | | 55.66 91 | 59.68 83 | 50.96 102 | 50.59 136 | 66.49 113 | 57.57 96 | 46.61 84 | 49.30 83 | 28.77 134 | 39.61 105 | 51.42 77 | 43.85 132 | 68.29 55 | 68.80 50 | 78.35 33 | 73.86 123 |
|
OMC-MVS | | | 55.48 92 | 61.85 76 | 48.04 128 | 41.55 179 | 60.32 159 | 56.80 105 | 31.78 196 | 75.67 23 | 42.30 71 | 51.52 64 | 54.15 71 | 49.91 89 | 60.28 138 | 57.59 157 | 65.91 170 | 73.42 126 |
|
tpm | | | 54.94 93 | 57.86 101 | 51.54 98 | 59.48 84 | 67.04 108 | 58.34 93 | 34.60 178 | 41.93 116 | 34.41 104 | 42.40 91 | 47.14 103 | 49.07 98 | 61.46 121 | 61.67 131 | 73.31 124 | 83.39 63 |
|
GBi-Net | | | 54.66 94 | 58.42 92 | 50.26 110 | 49.36 145 | 65.81 121 | 56.80 105 | 46.61 84 | 49.30 83 | 28.77 134 | 39.61 105 | 51.42 77 | 42.71 135 | 64.25 90 | 65.54 79 | 77.32 48 | 73.03 131 |
|
test1 | | | 54.66 94 | 58.42 92 | 50.26 110 | 49.36 145 | 65.81 121 | 56.80 105 | 46.61 84 | 49.30 83 | 28.77 134 | 39.61 105 | 51.42 77 | 42.71 135 | 64.25 90 | 65.54 79 | 77.32 48 | 73.03 131 |
|
test-LLR | | | 54.62 96 | 58.66 90 | 49.89 116 | 51.68 128 | 65.89 118 | 47.88 149 | 46.35 88 | 42.51 108 | 29.84 130 | 41.41 95 | 48.87 94 | 45.20 120 | 62.91 106 | 64.43 98 | 78.43 30 | 84.62 56 |
|
TSAR-MVS + COLMAP | | | 54.37 97 | 62.43 69 | 44.98 143 | 34.33 199 | 58.94 166 | 54.11 123 | 34.15 187 | 74.06 26 | 34.57 103 | 71.63 17 | 42.03 127 | 47.88 106 | 61.26 126 | 57.33 160 | 64.83 173 | 71.74 141 |
|
EPMVS | | | 54.07 98 | 56.06 112 | 51.75 97 | 56.74 98 | 70.80 78 | 55.32 116 | 34.20 184 | 46.46 96 | 36.59 96 | 40.38 102 | 42.55 122 | 49.77 91 | 61.25 127 | 60.90 139 | 77.86 39 | 70.08 152 |
|
v2v482 | | | 54.00 99 | 55.12 118 | 52.69 92 | 51.73 127 | 69.42 91 | 60.65 78 | 45.09 96 | 34.56 153 | 33.73 112 | 35.29 128 | 35.36 149 | 49.92 88 | 64.05 94 | 65.16 85 | 75.00 86 | 81.98 75 |
|
CNLPA | | | 54.00 99 | 57.08 104 | 50.40 109 | 49.83 142 | 61.75 150 | 53.47 126 | 37.27 163 | 74.55 25 | 44.85 55 | 33.58 140 | 45.42 113 | 52.94 72 | 58.89 149 | 53.66 179 | 64.06 176 | 71.68 142 |
|
FMVSNet2 | | | 53.94 101 | 57.29 102 | 50.03 113 | 49.36 145 | 65.81 121 | 56.80 105 | 45.95 91 | 43.13 105 | 28.04 138 | 35.68 126 | 48.18 99 | 42.71 135 | 67.23 66 | 67.95 59 | 77.32 48 | 73.03 131 |
|
v8 | | | 53.77 102 | 54.82 122 | 52.54 93 | 52.12 123 | 66.95 111 | 60.56 79 | 43.23 123 | 37.17 142 | 35.35 99 | 34.96 131 | 37.50 140 | 49.51 94 | 63.67 96 | 64.59 94 | 74.48 100 | 78.91 104 |
|
GA-MVS | | | 53.77 102 | 56.41 111 | 50.70 104 | 51.63 130 | 69.96 84 | 57.55 97 | 44.39 103 | 34.31 154 | 27.15 140 | 40.99 97 | 36.40 144 | 47.65 109 | 67.45 61 | 67.16 63 | 75.83 71 | 78.60 106 |
|
Effi-MVS+-dtu | | | 53.63 104 | 54.85 121 | 52.20 95 | 59.32 85 | 61.33 153 | 56.42 111 | 40.24 143 | 43.84 102 | 34.22 106 | 39.49 110 | 46.18 109 | 53.00 71 | 58.72 153 | 57.49 159 | 69.99 151 | 76.91 111 |
|
thisisatest0530 | | | 53.61 105 | 57.22 103 | 49.40 121 | 51.30 132 | 68.22 97 | 52.72 134 | 43.34 121 | 42.72 107 | 35.31 100 | 43.57 88 | 44.14 117 | 44.37 130 | 63.00 104 | 64.86 89 | 69.34 154 | 74.00 122 |
|
v1144 | | | 53.47 106 | 54.65 123 | 52.10 96 | 51.93 125 | 69.81 86 | 59.32 88 | 44.77 101 | 33.21 160 | 32.52 115 | 33.55 141 | 34.34 157 | 49.29 96 | 64.58 85 | 64.81 91 | 74.74 92 | 82.27 69 |
|
v10 | | | 53.44 107 | 54.40 124 | 52.31 94 | 52.08 124 | 66.99 109 | 59.68 86 | 43.41 118 | 35.90 148 | 34.30 105 | 33.98 138 | 35.56 147 | 50.10 86 | 64.39 88 | 64.67 92 | 74.32 101 | 79.30 102 |
|
PatchmatchNet |  | | 53.37 108 | 55.62 116 | 50.75 103 | 55.93 107 | 70.54 81 | 51.39 139 | 36.41 166 | 44.85 98 | 37.26 93 | 39.40 112 | 42.54 123 | 47.83 107 | 60.29 137 | 60.88 141 | 75.69 74 | 70.87 146 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IterMVS-LS | | | 53.36 109 | 55.65 115 | 50.68 106 | 55.34 109 | 59.04 164 | 55.00 119 | 39.98 144 | 38.72 129 | 33.22 113 | 44.52 85 | 47.05 104 | 49.63 93 | 61.82 118 | 61.77 126 | 70.92 143 | 76.61 114 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TESTMET0.1,1 | | | 53.30 110 | 58.66 90 | 47.04 132 | 44.94 166 | 65.89 118 | 47.88 149 | 35.95 169 | 42.51 108 | 29.84 130 | 41.41 95 | 48.87 94 | 45.20 120 | 62.91 106 | 64.43 98 | 78.43 30 | 84.62 56 |
|
tttt0517 | | | 53.05 111 | 56.73 109 | 48.76 124 | 50.35 138 | 67.51 105 | 51.96 138 | 43.34 121 | 42.00 115 | 33.88 110 | 43.19 89 | 43.49 120 | 44.37 130 | 62.58 111 | 64.86 89 | 68.67 156 | 73.46 125 |
|
MDTV_nov1_ep13 | | | 52.99 112 | 55.59 117 | 49.95 115 | 54.08 118 | 70.69 79 | 56.47 110 | 38.42 155 | 42.78 106 | 30.19 128 | 39.56 108 | 43.31 121 | 45.78 117 | 60.07 142 | 62.11 123 | 74.74 92 | 70.62 147 |
|
EPP-MVSNet | | | 52.91 113 | 58.91 88 | 45.91 137 | 54.99 113 | 68.84 95 | 49.27 145 | 42.71 130 | 37.53 136 | 20.20 168 | 46.09 80 | 56.19 65 | 36.90 150 | 61.37 124 | 60.90 139 | 71.41 138 | 81.41 85 |
|
dps | | | 52.84 114 | 52.92 135 | 52.74 91 | 59.89 78 | 69.49 90 | 54.47 121 | 37.38 161 | 42.49 110 | 39.53 84 | 35.33 127 | 32.71 162 | 51.83 77 | 60.45 134 | 61.12 136 | 73.33 123 | 68.86 161 |
|
v1192 | | | 52.69 115 | 53.86 127 | 51.31 99 | 51.22 133 | 69.76 87 | 57.37 98 | 44.39 103 | 32.21 163 | 31.39 122 | 32.41 148 | 32.44 165 | 49.19 97 | 64.25 90 | 64.17 100 | 74.31 102 | 81.81 78 |
|
V42 | | | 52.63 116 | 55.08 119 | 49.76 118 | 44.93 167 | 67.49 107 | 60.19 83 | 42.13 133 | 37.21 141 | 34.08 108 | 34.57 134 | 37.30 141 | 47.29 110 | 63.48 99 | 64.15 101 | 69.96 152 | 81.38 86 |
|
MSDG | | | 52.58 117 | 51.40 148 | 53.95 84 | 65.48 42 | 64.31 136 | 61.44 72 | 44.02 108 | 44.17 101 | 32.92 114 | 30.40 160 | 31.81 169 | 46.35 114 | 62.13 113 | 62.55 117 | 73.49 119 | 64.41 169 |
|
Fast-Effi-MVS+-dtu | | | 52.47 118 | 55.89 113 | 48.48 126 | 56.25 100 | 65.07 127 | 58.75 91 | 23.79 207 | 41.27 118 | 27.07 142 | 37.95 117 | 41.34 132 | 50.85 83 | 62.90 108 | 62.34 121 | 74.17 106 | 80.37 97 |
|
v144192 | | | 52.43 119 | 53.63 129 | 51.03 101 | 51.06 134 | 69.60 88 | 56.94 103 | 44.84 100 | 32.15 164 | 30.88 124 | 32.45 147 | 32.71 162 | 48.36 101 | 62.98 105 | 63.52 106 | 74.10 111 | 82.02 74 |
|
thres100view900 | | | 52.33 120 | 53.91 126 | 50.48 108 | 56.10 102 | 67.79 102 | 56.18 113 | 49.18 52 | 35.86 150 | 25.22 148 | 34.74 132 | 34.10 158 | 42.41 138 | 64.45 86 | 62.62 116 | 73.81 113 | 77.85 107 |
|
v1921920 | | | 51.95 121 | 53.19 131 | 50.51 107 | 50.82 135 | 69.14 93 | 55.45 115 | 44.34 107 | 31.53 168 | 30.53 126 | 31.96 150 | 31.67 170 | 48.31 102 | 63.12 101 | 63.28 108 | 73.59 116 | 81.60 82 |
|
v148 | | | 51.72 122 | 53.15 132 | 50.05 112 | 50.15 140 | 67.51 105 | 56.98 102 | 42.85 128 | 32.60 162 | 32.41 117 | 33.88 139 | 34.71 154 | 44.45 128 | 61.06 128 | 63.00 111 | 73.45 120 | 79.24 103 |
|
TAPA-MVS | | 47.92 11 | 51.66 123 | 57.88 100 | 44.40 146 | 36.46 194 | 58.42 169 | 53.82 125 | 30.83 197 | 69.51 39 | 34.97 102 | 46.90 78 | 49.67 88 | 46.99 111 | 58.00 156 | 54.64 175 | 63.33 182 | 68.00 163 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS_MVSNet | | | 51.53 124 | 57.98 99 | 44.01 150 | 55.96 106 | 66.16 116 | 47.65 151 | 42.84 129 | 39.82 124 | 19.09 176 | 44.97 84 | 50.28 83 | 27.20 182 | 63.43 100 | 63.84 102 | 71.33 140 | 77.33 109 |
|
v1240 | | | 51.42 125 | 52.66 137 | 49.97 114 | 50.31 139 | 68.70 96 | 54.05 124 | 43.85 112 | 30.78 172 | 30.22 127 | 31.43 153 | 31.03 177 | 47.98 104 | 62.62 110 | 63.16 110 | 73.40 121 | 80.93 91 |
|
pmmvs4 | | | 51.28 126 | 52.50 139 | 49.85 117 | 49.54 144 | 63.02 143 | 52.83 133 | 43.41 118 | 44.65 99 | 35.71 98 | 34.38 135 | 32.25 166 | 45.14 123 | 60.21 141 | 60.03 147 | 72.44 133 | 72.98 134 |
|
Vis-MVSNet |  | | 51.13 127 | 58.04 98 | 43.06 156 | 47.68 152 | 67.71 103 | 49.10 146 | 39.09 150 | 37.75 134 | 22.57 159 | 51.03 67 | 48.78 96 | 32.42 167 | 62.12 114 | 61.80 125 | 67.49 164 | 77.12 110 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UGNet | | | 51.04 128 | 58.79 89 | 42.00 162 | 40.59 181 | 65.32 125 | 46.65 160 | 39.26 148 | 39.90 123 | 27.30 139 | 54.12 54 | 52.03 74 | 30.93 171 | 59.85 144 | 59.62 152 | 67.23 166 | 80.70 92 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tfpn200view9 | | | 50.91 129 | 52.45 140 | 49.11 123 | 56.10 102 | 64.53 131 | 53.06 130 | 47.31 76 | 35.86 150 | 25.22 148 | 34.74 132 | 34.10 158 | 41.08 141 | 60.84 130 | 61.37 133 | 71.90 137 | 75.70 119 |
|
SCA | | | 50.88 130 | 53.70 128 | 47.59 130 | 55.99 104 | 55.81 178 | 43.14 172 | 33.45 190 | 45.16 97 | 37.14 94 | 41.83 93 | 43.82 118 | 44.43 129 | 60.37 135 | 60.02 148 | 71.38 139 | 68.90 160 |
|
gg-mvs-nofinetune | | | 50.82 131 | 55.83 114 | 44.97 144 | 60.63 73 | 75.69 43 | 53.40 127 | 34.48 180 | 20.05 207 | 6.93 202 | 18.27 199 | 52.70 73 | 33.57 158 | 70.50 34 | 72.93 17 | 80.84 6 | 80.68 93 |
|
thres200 | | | 50.76 132 | 52.52 138 | 48.70 125 | 55.98 105 | 64.60 129 | 55.29 117 | 47.34 74 | 33.91 157 | 24.36 151 | 34.33 136 | 33.90 160 | 37.27 148 | 60.84 130 | 62.41 120 | 71.99 135 | 77.63 108 |
|
thres400 | | | 50.39 133 | 52.22 141 | 48.26 127 | 55.02 112 | 66.32 115 | 52.97 131 | 48.33 63 | 32.68 161 | 22.94 157 | 33.21 143 | 33.38 161 | 37.27 148 | 62.74 109 | 61.38 132 | 73.04 130 | 75.81 117 |
|
EG-PatchMatch MVS | | | 50.23 134 | 50.89 151 | 49.47 119 | 59.54 83 | 70.88 77 | 52.46 135 | 44.01 109 | 26.22 193 | 31.91 118 | 24.97 185 | 31.45 173 | 33.48 160 | 64.79 82 | 66.51 73 | 75.40 79 | 71.39 144 |
|
IterMVS | | | 50.23 134 | 53.27 130 | 46.68 133 | 47.59 154 | 60.58 157 | 53.10 129 | 36.62 165 | 36.07 146 | 25.89 145 | 39.42 111 | 40.05 135 | 43.65 133 | 60.22 140 | 61.35 134 | 73.23 125 | 75.23 120 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 50.14 136 | 52.78 136 | 47.06 131 | 45.56 163 | 63.56 139 | 54.22 122 | 43.74 114 | 34.10 156 | 25.37 147 | 29.79 166 | 42.06 126 | 38.70 144 | 64.25 90 | 65.54 79 | 74.75 91 | 70.18 151 |
|
ACMH | | 47.82 13 | 50.10 137 | 49.60 157 | 50.69 105 | 63.36 48 | 66.99 109 | 56.83 104 | 52.13 35 | 31.06 171 | 17.74 181 | 28.22 173 | 26.24 193 | 45.17 122 | 60.88 129 | 63.80 103 | 68.91 155 | 70.00 154 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPNet_dtu | | | 49.85 138 | 56.99 107 | 41.52 165 | 52.79 120 | 57.06 172 | 41.44 177 | 43.13 124 | 56.13 66 | 19.24 175 | 52.11 61 | 48.38 97 | 22.14 189 | 58.19 155 | 58.38 155 | 70.35 146 | 68.71 162 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LS3D | | | 49.59 139 | 49.75 156 | 49.40 121 | 55.88 108 | 59.86 161 | 56.31 112 | 45.33 94 | 48.57 88 | 28.32 137 | 31.54 152 | 36.81 143 | 46.27 116 | 57.17 161 | 55.88 170 | 64.29 175 | 58.42 187 |
|
UniMVSNet_NR-MVSNet | | | 49.56 140 | 53.04 133 | 45.49 140 | 51.59 131 | 64.42 135 | 46.97 156 | 51.01 39 | 37.87 132 | 16.42 182 | 39.87 103 | 34.91 153 | 33.43 162 | 59.59 145 | 62.70 113 | 73.52 118 | 71.94 137 |
|
CDS-MVSNet | | | 49.25 141 | 53.97 125 | 43.75 152 | 47.53 155 | 64.53 131 | 48.59 147 | 42.27 132 | 33.77 158 | 26.64 143 | 40.46 101 | 42.26 125 | 30.01 174 | 61.77 119 | 61.71 128 | 67.48 165 | 73.28 130 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PLC |  | 44.22 14 | 49.14 142 | 51.75 144 | 46.10 136 | 42.78 177 | 55.60 181 | 53.11 128 | 34.46 181 | 55.69 70 | 32.47 116 | 34.16 137 | 41.45 130 | 48.91 99 | 57.13 162 | 54.09 176 | 64.84 172 | 64.10 170 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMH+ | | 47.85 12 | 49.13 143 | 48.86 163 | 49.44 120 | 56.75 97 | 62.01 149 | 56.62 109 | 47.55 73 | 37.49 137 | 23.98 152 | 26.68 178 | 29.46 184 | 43.12 134 | 57.45 160 | 58.85 154 | 68.62 157 | 70.05 153 |
|
NR-MVSNet | | | 48.84 144 | 51.76 143 | 45.44 141 | 57.66 93 | 60.64 155 | 47.39 152 | 47.63 69 | 37.26 138 | 13.31 186 | 37.31 119 | 29.64 183 | 33.53 159 | 63.52 98 | 62.09 124 | 73.10 128 | 71.89 140 |
|
CR-MVSNet | | | 48.82 145 | 51.85 142 | 45.29 142 | 46.74 157 | 55.95 176 | 52.06 136 | 34.21 182 | 42.17 112 | 31.74 119 | 32.92 145 | 42.53 124 | 45.00 124 | 58.80 150 | 61.11 137 | 61.99 187 | 69.47 156 |
|
thres600view7 | | | 48.44 146 | 50.23 154 | 46.35 135 | 54.05 119 | 64.60 129 | 50.18 142 | 47.34 74 | 31.73 167 | 20.74 166 | 32.28 149 | 32.62 164 | 33.79 157 | 60.84 130 | 56.11 168 | 71.99 135 | 73.40 127 |
|
test-mter | | | 48.31 147 | 55.04 120 | 40.45 169 | 34.12 200 | 59.02 165 | 41.77 176 | 28.05 201 | 38.43 130 | 22.67 158 | 39.35 113 | 44.40 115 | 41.88 140 | 60.30 136 | 61.68 130 | 74.20 104 | 82.12 71 |
|
PatchT | | | 48.11 148 | 51.27 150 | 44.43 145 | 50.13 141 | 61.58 151 | 33.59 190 | 32.92 192 | 40.38 122 | 31.74 119 | 30.60 159 | 36.93 142 | 45.00 124 | 58.80 150 | 61.11 137 | 73.19 126 | 69.47 156 |
|
TranMVSNet+NR-MVSNet | | | 48.06 149 | 51.36 149 | 44.21 148 | 50.38 137 | 62.09 148 | 47.28 153 | 50.88 42 | 36.11 145 | 13.25 187 | 37.51 118 | 31.60 172 | 30.70 172 | 59.34 146 | 62.53 118 | 72.81 131 | 70.31 149 |
|
TransMVSNet (Re) | | | 47.46 150 | 48.94 162 | 45.74 139 | 57.96 91 | 64.29 137 | 48.26 148 | 48.47 62 | 26.33 192 | 19.33 173 | 29.45 170 | 31.28 176 | 25.31 186 | 63.05 103 | 62.70 113 | 75.10 85 | 65.47 167 |
|
DU-MVS | | | 47.33 151 | 50.86 152 | 43.20 155 | 44.43 170 | 60.64 155 | 46.97 156 | 47.63 69 | 37.26 138 | 16.42 182 | 37.31 119 | 31.39 174 | 33.43 162 | 57.53 158 | 59.98 149 | 70.35 146 | 71.94 137 |
|
v7n | | | 47.22 152 | 48.38 164 | 45.87 138 | 48.20 151 | 63.58 138 | 50.69 140 | 40.93 141 | 26.60 191 | 26.44 144 | 26.52 179 | 29.65 182 | 38.19 146 | 58.22 154 | 60.23 146 | 70.79 144 | 73.83 124 |
|
UA-Net | | | 47.19 153 | 53.02 134 | 40.38 170 | 55.31 110 | 60.02 160 | 38.41 183 | 38.68 152 | 36.42 144 | 22.47 161 | 51.95 62 | 58.72 59 | 25.62 185 | 54.11 174 | 53.40 180 | 61.79 188 | 56.51 190 |
|
Baseline_NR-MVSNet | | | 47.14 154 | 50.83 153 | 42.84 158 | 44.43 170 | 63.31 141 | 44.50 168 | 50.36 47 | 37.71 135 | 11.25 192 | 30.84 156 | 32.09 167 | 30.96 170 | 57.53 158 | 63.73 104 | 75.53 76 | 70.60 148 |
|
pmmvs5 | | | 47.02 155 | 50.02 155 | 43.51 154 | 43.48 175 | 62.65 145 | 47.24 154 | 37.78 160 | 30.59 173 | 24.80 150 | 35.26 129 | 30.43 178 | 34.36 155 | 59.05 148 | 60.28 145 | 73.40 121 | 71.92 139 |
|
UniMVSNet (Re) | | | 46.89 156 | 51.65 146 | 41.34 167 | 45.60 162 | 62.71 144 | 44.05 169 | 47.10 78 | 37.24 140 | 13.55 185 | 36.90 121 | 34.54 156 | 26.76 183 | 57.56 157 | 59.90 151 | 70.98 142 | 72.69 135 |
|
thisisatest0515 | | | 46.88 157 | 49.57 158 | 43.74 153 | 45.33 165 | 60.46 158 | 46.19 162 | 41.06 140 | 30.34 174 | 29.73 132 | 32.50 146 | 31.63 171 | 35.43 153 | 58.75 152 | 61.71 128 | 64.70 174 | 71.59 143 |
|
tfpnnormal | | | 46.61 158 | 46.82 171 | 46.37 134 | 52.70 121 | 62.31 146 | 50.39 141 | 47.17 77 | 25.74 195 | 21.80 162 | 23.13 189 | 24.15 201 | 33.45 161 | 60.28 138 | 60.77 142 | 72.70 132 | 71.39 144 |
|
pm-mvs1 | | | 46.14 159 | 49.34 161 | 42.41 159 | 48.93 148 | 62.22 147 | 44.98 166 | 42.68 131 | 27.66 185 | 20.76 165 | 29.88 165 | 34.96 152 | 26.41 184 | 60.03 143 | 60.42 144 | 70.70 145 | 70.20 150 |
|
IterMVS-SCA-FT | | | 45.87 160 | 51.55 147 | 39.24 173 | 46.22 158 | 59.43 162 | 52.89 132 | 31.93 193 | 36.01 147 | 23.68 153 | 38.86 114 | 39.88 137 | 39.05 143 | 56.25 167 | 58.17 156 | 41.70 208 | 72.25 136 |
|
MIMVSNet | | | 45.62 161 | 49.56 159 | 41.02 168 | 38.17 185 | 64.43 134 | 49.48 144 | 35.43 172 | 36.53 143 | 20.06 170 | 22.58 190 | 35.16 151 | 28.75 179 | 61.97 116 | 62.20 122 | 74.20 104 | 64.07 171 |
|
gm-plane-assit | | | 45.41 162 | 48.03 166 | 42.34 160 | 56.49 99 | 40.48 206 | 24.54 210 | 34.15 187 | 14.44 213 | 6.59 203 | 17.82 200 | 35.32 150 | 49.82 90 | 72.93 15 | 74.11 10 | 82.47 2 | 81.12 90 |
|
ADS-MVSNet | | | 45.39 163 | 46.42 172 | 44.19 149 | 48.74 150 | 57.52 170 | 43.91 170 | 31.93 193 | 35.89 149 | 27.11 141 | 30.12 161 | 32.06 168 | 45.30 118 | 53.13 180 | 55.19 172 | 68.15 159 | 61.07 179 |
|
GG-mvs-BLEND | | | 44.87 164 | 64.59 59 | 21.86 206 | 0.01 222 | 73.70 57 | 55.99 114 | 0.01 219 | 50.70 78 | 0.01 223 | 49.18 70 | 63.61 41 | 0.01 218 | 63.83 95 | 64.50 96 | 75.13 84 | 86.62 39 |
|
pmmvs-eth3d | | | 44.67 165 | 45.27 177 | 43.98 151 | 42.56 178 | 55.72 180 | 44.97 167 | 40.81 142 | 31.96 166 | 29.13 133 | 26.09 181 | 25.27 198 | 36.69 151 | 55.13 171 | 56.62 165 | 69.68 153 | 66.12 166 |
|
MDTV_nov1_ep13_2view | | | 44.44 166 | 45.75 175 | 42.91 157 | 46.13 159 | 63.43 140 | 46.53 161 | 34.20 184 | 29.08 180 | 19.95 171 | 26.23 180 | 27.89 188 | 35.88 152 | 53.36 179 | 56.43 166 | 74.74 92 | 63.86 172 |
|
CMPMVS |  | 33.64 16 | 44.39 167 | 46.41 173 | 42.03 161 | 44.21 173 | 56.50 174 | 46.73 159 | 26.48 206 | 34.20 155 | 35.14 101 | 24.22 186 | 34.64 155 | 40.52 142 | 56.50 166 | 56.07 169 | 59.12 192 | 62.74 175 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Vis-MVSNet (Re-imp) | | | 44.31 168 | 51.67 145 | 35.72 183 | 51.82 126 | 55.24 182 | 34.57 189 | 41.63 135 | 39.10 127 | 8.84 199 | 45.93 81 | 46.63 106 | 14.45 199 | 54.09 175 | 57.03 162 | 63.00 183 | 63.65 173 |
|
TAMVS | | | 44.27 169 | 49.35 160 | 38.35 177 | 44.74 168 | 61.04 154 | 39.07 181 | 31.82 195 | 29.95 176 | 18.34 179 | 33.55 141 | 39.94 136 | 30.01 174 | 56.85 164 | 57.58 158 | 66.13 169 | 66.54 164 |
|
MVS-HIRNet | | | 43.98 170 | 43.63 181 | 44.39 147 | 47.66 153 | 59.31 163 | 32.66 196 | 33.88 189 | 30.15 175 | 33.75 111 | 16.82 205 | 28.39 187 | 45.25 119 | 53.92 178 | 55.00 174 | 73.16 127 | 61.80 176 |
|
UniMVSNet_ETH3D | | | 43.97 171 | 46.01 174 | 41.59 163 | 38.31 184 | 56.20 175 | 49.69 143 | 38.18 157 | 28.18 181 | 19.88 172 | 27.82 175 | 30.20 179 | 33.41 164 | 54.18 173 | 56.30 167 | 70.05 150 | 69.17 158 |
|
RPMNet | | | 43.70 172 | 48.17 165 | 38.48 176 | 45.52 164 | 55.95 176 | 37.66 184 | 26.63 205 | 42.17 112 | 25.47 146 | 29.59 168 | 37.61 138 | 33.87 156 | 50.85 185 | 52.02 184 | 61.75 189 | 69.00 159 |
|
PatchMatch-RL | | | 43.37 173 | 44.93 178 | 41.56 164 | 37.94 186 | 51.70 184 | 40.02 179 | 35.75 170 | 39.04 128 | 30.71 125 | 35.14 130 | 27.43 190 | 46.58 113 | 51.99 181 | 50.55 188 | 58.38 194 | 58.64 185 |
|
FMVSNet5 | | | 43.29 174 | 47.07 169 | 38.87 174 | 30.46 205 | 50.99 186 | 45.87 163 | 37.19 164 | 42.17 112 | 19.32 174 | 26.77 177 | 40.51 133 | 30.26 173 | 56.82 165 | 55.81 171 | 70.10 149 | 56.46 191 |
|
test0.0.03 1 | | | 43.07 175 | 46.95 170 | 38.54 175 | 51.68 128 | 58.77 167 | 35.28 185 | 46.35 88 | 32.05 165 | 12.44 188 | 28.53 172 | 35.52 148 | 14.40 200 | 57.12 163 | 56.93 163 | 71.11 141 | 59.69 181 |
|
anonymousdsp | | | 43.03 176 | 47.19 168 | 38.18 178 | 36.00 196 | 56.92 173 | 38.44 182 | 34.56 179 | 24.22 197 | 22.53 160 | 29.69 167 | 29.92 180 | 35.21 154 | 53.96 177 | 58.98 153 | 62.32 186 | 76.66 113 |
|
USDC | | | 42.80 177 | 45.57 176 | 39.58 171 | 34.55 198 | 51.13 185 | 42.61 173 | 36.21 167 | 39.59 125 | 23.65 154 | 33.13 144 | 20.87 207 | 37.86 147 | 55.35 170 | 57.16 161 | 62.61 184 | 61.75 177 |
|
pmnet_mix02 | | | 42.41 178 | 43.24 183 | 41.44 166 | 45.80 161 | 57.46 171 | 42.19 174 | 41.57 136 | 29.38 178 | 23.39 155 | 26.08 182 | 23.96 202 | 27.31 181 | 51.50 182 | 53.76 178 | 68.36 158 | 60.58 180 |
|
CHOSEN 280x420 | | | 42.39 179 | 47.40 167 | 36.54 181 | 33.56 201 | 39.66 209 | 40.67 178 | 26.88 204 | 34.66 152 | 18.03 180 | 30.09 162 | 45.59 111 | 44.82 126 | 54.46 172 | 54.00 177 | 55.28 201 | 73.32 129 |
|
pmmvs6 | | | 41.90 180 | 44.01 180 | 39.43 172 | 44.45 169 | 58.77 167 | 41.92 175 | 39.22 149 | 21.74 200 | 19.08 177 | 17.40 203 | 31.33 175 | 24.28 188 | 55.94 168 | 56.67 164 | 67.60 163 | 66.24 165 |
|
Anonymous20231206 | | | 40.63 181 | 43.29 182 | 37.53 179 | 48.88 149 | 55.81 178 | 34.99 186 | 44.98 98 | 28.16 182 | 10.16 196 | 17.26 204 | 27.50 189 | 18.28 193 | 54.00 176 | 55.07 173 | 67.85 161 | 65.23 168 |
|
CVMVSNet | | | 38.91 182 | 44.49 179 | 32.40 192 | 34.57 197 | 47.20 197 | 34.81 187 | 34.20 184 | 31.45 169 | 8.95 198 | 38.86 114 | 36.38 145 | 24.30 187 | 47.77 189 | 46.94 200 | 57.59 196 | 62.85 174 |
|
COLMAP_ROB |  | 34.79 15 | 38.65 183 | 40.72 186 | 36.23 182 | 36.41 195 | 49.22 193 | 45.51 165 | 27.60 203 | 37.81 133 | 20.54 167 | 23.37 188 | 24.25 200 | 28.11 180 | 51.02 184 | 48.55 191 | 59.22 191 | 50.82 201 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 38.23 184 | 41.72 185 | 34.15 185 | 40.56 182 | 50.07 189 | 33.17 193 | 44.35 106 | 27.64 187 | 5.54 209 | 30.84 156 | 26.67 191 | 14.99 197 | 45.64 192 | 52.38 183 | 66.29 168 | 58.83 184 |
|
WR-MVS | | | 37.61 185 | 42.15 184 | 32.31 194 | 43.64 174 | 51.85 183 | 29.39 202 | 43.35 120 | 27.65 186 | 4.40 211 | 29.90 164 | 29.80 181 | 10.46 204 | 46.73 191 | 51.98 185 | 62.60 185 | 57.16 188 |
|
TinyColmap | | | 37.18 186 | 37.37 199 | 36.95 180 | 31.17 204 | 45.21 200 | 39.71 180 | 34.65 177 | 29.83 177 | 20.20 168 | 18.54 198 | 13.72 215 | 38.27 145 | 50.33 186 | 51.57 186 | 57.71 195 | 52.42 198 |
|
CP-MVSNet | | | 37.09 187 | 40.62 187 | 32.99 187 | 37.56 188 | 48.25 194 | 32.75 194 | 43.05 125 | 27.88 184 | 5.93 205 | 31.27 154 | 25.82 196 | 15.09 195 | 43.37 199 | 48.82 189 | 63.54 180 | 58.90 182 |
|
DTE-MVSNet | | | 36.91 188 | 40.44 188 | 32.79 190 | 40.74 180 | 47.55 196 | 30.71 200 | 44.39 103 | 27.03 189 | 4.32 212 | 30.88 155 | 25.99 194 | 12.73 202 | 45.58 193 | 50.80 187 | 63.86 177 | 55.23 194 |
|
PS-CasMVS | | | 36.84 189 | 40.23 191 | 32.89 188 | 37.44 189 | 48.09 195 | 32.68 195 | 42.97 127 | 27.36 188 | 5.89 206 | 30.08 163 | 25.48 197 | 14.96 198 | 43.28 200 | 48.71 190 | 63.39 181 | 58.63 186 |
|
WR-MVS_H | | | 36.29 190 | 40.35 190 | 31.55 196 | 37.80 187 | 49.94 191 | 30.57 201 | 41.11 139 | 26.90 190 | 4.14 213 | 30.72 158 | 28.85 185 | 10.45 205 | 42.47 201 | 47.99 195 | 65.24 171 | 55.54 192 |
|
SixPastTwentyTwo | | | 36.11 191 | 37.80 195 | 34.13 186 | 37.13 192 | 46.72 198 | 34.58 188 | 34.96 174 | 21.20 203 | 11.66 189 | 29.15 171 | 19.88 208 | 29.77 176 | 44.93 194 | 48.34 192 | 56.67 198 | 54.41 196 |
|
test20.03 | | | 36.00 192 | 38.92 192 | 32.60 191 | 45.92 160 | 50.99 186 | 28.05 206 | 43.69 116 | 21.62 201 | 6.03 204 | 17.61 202 | 25.91 195 | 8.34 211 | 51.26 183 | 52.60 182 | 63.58 178 | 52.46 197 |
|
TDRefinement | | | 35.76 193 | 38.23 193 | 32.88 189 | 19.09 214 | 46.04 199 | 43.29 171 | 29.49 198 | 33.49 159 | 19.04 178 | 22.29 192 | 17.82 210 | 29.69 178 | 48.60 188 | 47.24 198 | 56.65 199 | 52.12 199 |
|
LTVRE_ROB | | 32.83 17 | 35.10 194 | 37.46 196 | 32.35 193 | 43.12 176 | 49.99 190 | 28.52 204 | 33.23 191 | 12.73 214 | 8.18 200 | 27.71 176 | 21.34 205 | 32.64 166 | 46.92 190 | 48.11 193 | 48.41 205 | 55.45 193 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PM-MVS | | | 34.96 195 | 38.17 194 | 31.22 197 | 22.78 209 | 40.82 205 | 33.56 191 | 23.61 208 | 29.16 179 | 21.43 164 | 28.00 174 | 21.43 204 | 31.90 168 | 44.33 197 | 42.12 203 | 54.07 203 | 61.34 178 |
|
testgi | | | 34.51 196 | 37.42 197 | 31.12 198 | 47.37 156 | 50.34 188 | 24.38 211 | 41.21 137 | 20.32 205 | 5.64 208 | 20.56 194 | 26.55 192 | 8.06 212 | 49.28 187 | 52.65 181 | 60.05 190 | 42.23 207 |
|
MDA-MVSNet-bldmvs | | | 34.31 197 | 34.11 203 | 34.54 184 | 24.73 207 | 49.66 192 | 33.42 192 | 43.03 126 | 21.59 202 | 11.10 193 | 19.81 196 | 12.68 216 | 31.41 169 | 35.59 206 | 48.05 194 | 63.56 179 | 51.39 200 |
|
N_pmnet | | | 34.09 198 | 35.74 201 | 32.17 195 | 37.25 191 | 43.17 203 | 32.26 198 | 35.57 171 | 26.22 193 | 10.60 195 | 20.44 195 | 19.38 209 | 20.20 191 | 44.59 196 | 47.00 199 | 57.13 197 | 49.35 204 |
|
RPSCF | | | 33.61 199 | 40.43 189 | 25.65 202 | 16.00 216 | 32.41 211 | 31.73 199 | 13.33 215 | 50.13 80 | 23.12 156 | 31.56 151 | 40.09 134 | 32.73 165 | 41.14 205 | 37.05 206 | 36.99 211 | 50.63 202 |
|
EU-MVSNet | | | 33.00 200 | 36.49 200 | 28.92 199 | 33.10 202 | 42.86 204 | 29.32 203 | 35.99 168 | 22.94 198 | 5.83 207 | 25.29 183 | 24.43 199 | 15.21 194 | 41.22 204 | 41.65 205 | 54.08 202 | 57.01 189 |
|
pmmvs3 | | | 31.22 201 | 33.62 204 | 28.43 200 | 22.82 208 | 40.26 208 | 26.40 207 | 22.05 210 | 16.89 211 | 10.99 194 | 14.72 207 | 16.26 211 | 29.70 177 | 44.82 195 | 47.39 197 | 58.61 193 | 54.98 195 |
|
FC-MVSNet-test | | | 30.97 202 | 37.38 198 | 23.49 205 | 37.42 190 | 33.68 210 | 19.43 213 | 39.27 147 | 31.37 170 | 1.67 219 | 38.56 116 | 28.85 185 | 6.06 215 | 41.40 202 | 43.80 202 | 37.10 210 | 44.03 206 |
|
new-patchmatchnet | | | 30.47 203 | 32.80 206 | 27.75 201 | 36.81 193 | 43.98 201 | 24.85 209 | 39.29 146 | 20.52 204 | 4.06 214 | 15.94 206 | 16.05 212 | 9.57 206 | 41.32 203 | 42.05 204 | 51.94 204 | 49.74 203 |
|
MIMVSNet1 | | | 29.60 204 | 33.37 205 | 25.20 204 | 19.52 212 | 43.94 202 | 26.29 208 | 37.92 159 | 19.95 208 | 3.79 215 | 12.64 211 | 21.99 203 | 7.70 213 | 43.83 198 | 46.32 201 | 55.97 200 | 44.92 205 |
|
FPMVS | | | 26.87 205 | 28.19 207 | 25.32 203 | 27.09 206 | 29.49 212 | 32.28 197 | 17.79 212 | 28.09 183 | 11.33 190 | 19.38 197 | 14.69 213 | 20.88 190 | 35.11 207 | 32.82 208 | 42.56 207 | 37.75 208 |
|
PMVS |  | 18.18 18 | 21.95 206 | 22.85 208 | 20.90 207 | 21.92 210 | 14.78 214 | 19.95 212 | 17.31 213 | 15.69 212 | 11.32 191 | 13.70 208 | 13.91 214 | 15.02 196 | 34.92 208 | 31.72 209 | 39.85 209 | 35.20 209 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 19.10 207 | 22.71 209 | 14.89 209 | 10.93 218 | 24.08 213 | 14.22 214 | 13.94 214 | 18.68 209 | 2.93 216 | 12.84 210 | 11.27 217 | 11.94 203 | 30.57 210 | 30.58 210 | 35.38 212 | 30.93 210 |
|
Gipuma |  | | 17.16 208 | 17.83 210 | 16.36 208 | 18.76 215 | 12.15 217 | 11.97 215 | 27.78 202 | 17.94 210 | 4.86 210 | 2.53 218 | 2.73 222 | 8.90 209 | 34.32 209 | 36.09 207 | 25.92 213 | 19.06 213 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 13.92 209 | 17.14 211 | 10.16 212 | 1.69 221 | 6.92 220 | 11.25 216 | 5.74 216 | 22.41 199 | 8.11 201 | 10.40 212 | 20.91 206 | 13.73 201 | 22.17 211 | 13.98 213 | 20.44 214 | 23.18 211 |
|
PMMVS2 | | | 12.25 210 | 14.17 212 | 10.00 213 | 11.39 217 | 14.35 215 | 8.21 217 | 19.29 211 | 9.31 215 | 0.19 222 | 7.38 214 | 6.19 220 | 1.10 217 | 19.26 212 | 21.13 212 | 19.85 215 | 21.56 212 |
|
E-PMN | | | 10.66 211 | 8.30 214 | 13.42 210 | 19.91 211 | 7.87 218 | 4.30 220 | 29.47 199 | 8.37 218 | 1.70 218 | 3.67 215 | 1.29 225 | 9.12 208 | 8.98 216 | 13.59 214 | 16.03 216 | 14.30 216 |
|
EMVS | | | 10.15 212 | 7.67 215 | 13.05 211 | 19.22 213 | 7.77 219 | 4.48 218 | 29.34 200 | 8.65 217 | 1.67 219 | 3.55 216 | 1.36 224 | 9.15 207 | 8.15 217 | 11.79 216 | 14.44 217 | 12.43 217 |
|
MVE |  | 10.35 19 | 9.76 213 | 11.08 213 | 8.22 214 | 4.43 219 | 13.04 216 | 3.36 221 | 23.57 209 | 5.74 219 | 1.76 217 | 3.09 217 | 1.75 223 | 6.78 214 | 12.78 214 | 23.04 211 | 9.44 218 | 18.09 214 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.01 214 | 0.01 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.01 220 | 0.00 224 | 0.02 219 | 0.00 226 | 0.00 220 | 0.01 218 | 0.01 217 | 0.00 221 | 0.03 218 |
|
test123 | | | 0.01 214 | 0.01 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.01 220 | 0.00 224 | 0.02 219 | 0.00 226 | 0.01 218 | 0.00 219 | 0.01 217 | 0.00 221 | 0.03 218 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 222 | 0.00 224 | 0.00 221 | 0.00 226 | 0.00 220 | 0.00 219 | 0.00 219 | 0.00 221 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 222 | 0.00 224 | 0.00 221 | 0.00 226 | 0.00 220 | 0.00 219 | 0.00 219 | 0.00 221 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 222 | 0.00 224 | 0.00 221 | 0.00 226 | 0.00 220 | 0.00 219 | 0.00 219 | 0.00 221 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 21.59 163 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 80.07 5 | | | | | |
|
SR-MVS | | | | | | 63.74 46 | | | 48.51 61 | | | | 73.80 18 | | | | | |
|
Anonymous202405211 | | | | 56.81 108 | | 60.91 69 | 73.48 60 | 59.82 84 | 48.68 58 | 39.26 126 | | 24.00 187 | 46.77 105 | 50.73 84 | 65.28 79 | 65.72 78 | 75.37 80 | 83.17 64 |
|
our_test_3 | | | | | | 49.68 143 | 61.50 152 | 45.84 164 | | | | | | | | | | |
|
ambc | | | | 35.52 202 | | 38.36 183 | 40.40 207 | 28.38 205 | | 25.20 196 | 14.87 184 | 13.22 209 | 7.54 219 | 19.34 192 | 55.63 169 | 47.79 196 | 47.91 206 | 58.89 183 |
|
MTAPA | | | | | | | | | | | 54.82 16 | | 71.98 24 | | | | | |
|
MTMP | | | | | | | | | | | 50.64 32 | | 68.31 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 0.69 223 | | | | | | | | | | |
|
tmp_tt | | | | | 4.41 215 | 2.56 220 | 1.81 222 | 2.61 222 | 0.27 218 | 20.12 206 | 9.81 197 | 17.69 201 | 9.04 218 | 1.96 216 | 12.88 213 | 12.11 215 | 9.23 219 | |
|
XVS | | | | | | 62.70 54 | 73.06 63 | 61.80 70 | | | 42.02 72 | | 63.42 43 | | | | 74.68 96 | |
|
X-MVStestdata | | | | | | 62.70 54 | 73.06 63 | 61.80 70 | | | 42.02 72 | | 63.42 43 | | | | 74.68 96 | |
|
abl_6 | | | | | 63.79 23 | 70.80 23 | 81.22 12 | 65.26 58 | 53.25 30 | 77.02 18 | 53.02 24 | 65.14 30 | 73.74 19 | 60.30 21 | | | 80.13 8 | 90.27 11 |
|
mPP-MVS | | | | | | 63.08 51 | | | | | | | 62.34 46 | | | | | |
|
NP-MVS | | | | | | | | | | 72.62 30 | | | | | | | | |
|
Patchmtry | | | | | | | 64.49 133 | 52.06 136 | 34.21 182 | | 31.74 119 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 5.87 221 | 4.32 219 | 1.74 217 | 9.04 216 | 1.30 221 | 7.97 213 | 3.16 221 | 8.56 210 | 9.74 215 | | 6.30 220 | 14.51 215 |
|