SED-MVS | | | 78.97 1 | 84.56 1 | 72.45 1 | 81.70 3 | 86.20 3 | 77.82 4 | 59.97 6 | 88.89 1 | 65.96 1 | 86.00 6 | 84.02 1 | 70.03 1 | 76.19 4 | 76.17 5 | 79.22 19 | 94.46 1 |
|
DVP-MVS | | | 77.54 2 | 84.41 2 | 69.54 6 | 79.93 4 | 86.08 4 | 77.20 8 | 60.31 4 | 88.62 2 | 62.54 2 | 86.67 3 | 83.77 2 | 58.04 32 | 75.84 6 | 75.69 7 | 79.21 20 | 94.17 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SF-MVS | | | 76.41 3 | 80.45 5 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 10 | 59.82 4 | 86.26 4 | 77.90 7 | 61.11 14 | 71.81 26 | 70.75 33 | 79.63 12 | 88.22 25 |
|
MSP-MVS | | | 76.38 4 | 82.99 3 | 68.68 7 | 71.93 18 | 78.65 23 | 77.61 5 | 55.44 18 | 88.04 3 | 60.25 3 | 92.24 1 | 77.08 9 | 69.84 2 | 75.48 7 | 75.69 7 | 76.99 53 | 93.75 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 75.74 5 | 82.82 4 | 67.49 11 | 77.07 7 | 82.01 7 | 77.05 9 | 57.70 11 | 86.55 5 | 55.44 15 | 90.50 2 | 82.52 3 | 60.33 19 | 72.99 14 | 72.98 15 | 77.33 46 | 92.19 6 |
|
DPM-MVS | | | 74.63 6 | 78.53 10 | 70.07 4 | 76.10 9 | 82.56 6 | 79.30 3 | 59.89 7 | 80.49 13 | 57.75 10 | 66.98 25 | 76.16 12 | 65.95 3 | 79.35 1 | 78.47 1 | 81.45 5 | 85.71 45 |
|
APDe-MVS | | | 74.59 7 | 80.23 6 | 68.01 10 | 76.51 8 | 80.20 15 | 77.39 6 | 58.18 9 | 85.31 6 | 56.84 12 | 84.89 7 | 76.08 13 | 60.66 17 | 71.85 25 | 71.76 20 | 78.47 29 | 91.49 9 |
|
MCST-MVS | | | 74.06 8 | 77.71 13 | 69.79 5 | 78.95 5 | 81.99 8 | 76.33 10 | 62.16 3 | 75.89 21 | 52.96 25 | 64.37 31 | 73.30 21 | 65.66 4 | 77.49 2 | 77.43 3 | 82.67 1 | 93.51 4 |
|
CNVR-MVS | | | 73.87 9 | 78.60 9 | 68.35 9 | 73.32 13 | 81.97 9 | 76.19 11 | 59.29 8 | 80.12 14 | 56.70 13 | 67.09 24 | 76.48 10 | 64.26 6 | 75.88 5 | 75.75 6 | 80.32 7 | 92.93 5 |
|
SMA-MVS |  | | 73.31 10 | 79.53 7 | 66.05 13 | 71.25 20 | 80.13 16 | 74.99 12 | 56.09 14 | 84.14 7 | 54.48 18 | 73.74 16 | 80.23 4 | 61.43 11 | 74.96 8 | 74.09 11 | 78.08 36 | 89.42 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
xxxxxxxxxxxxxcwj | | | 73.17 11 | 74.44 20 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 10 | 59.82 4 | 86.26 4 | 35.82 143 | 61.11 14 | 71.81 26 | 70.75 33 | 79.63 12 | 88.22 25 |
|
CSCG | | | 72.98 12 | 76.86 15 | 68.46 8 | 78.23 6 | 81.74 10 | 77.26 7 | 60.00 5 | 75.61 24 | 59.06 6 | 62.72 33 | 77.42 8 | 56.63 45 | 74.24 10 | 77.18 4 | 79.56 14 | 89.13 18 |
|
HPM-MVS++ |  | | 72.44 13 | 78.73 8 | 65.11 14 | 71.88 19 | 77.31 32 | 71.98 20 | 55.67 16 | 83.11 9 | 53.59 22 | 75.90 12 | 78.49 6 | 61.00 16 | 73.99 11 | 73.31 14 | 76.55 56 | 88.97 19 |
|
APD-MVS |  | | 71.86 14 | 77.91 12 | 64.80 16 | 70.39 25 | 75.69 42 | 74.02 14 | 56.14 13 | 83.59 8 | 52.92 26 | 84.67 8 | 73.46 20 | 59.30 26 | 69.47 41 | 69.66 41 | 76.02 62 | 88.84 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 71.50 15 | 77.27 14 | 64.77 17 | 69.64 27 | 79.26 17 | 73.53 15 | 54.73 24 | 79.32 16 | 54.23 19 | 74.81 13 | 74.61 17 | 59.40 25 | 73.00 13 | 72.17 18 | 77.10 52 | 87.72 30 |
|
NCCC | | | 71.36 16 | 75.44 17 | 66.60 12 | 72.46 16 | 79.18 19 | 74.16 13 | 57.83 10 | 76.93 19 | 54.19 20 | 63.47 32 | 71.08 26 | 61.30 13 | 73.56 12 | 73.70 12 | 79.69 11 | 90.19 11 |
|
train_agg | | | 70.74 17 | 76.53 16 | 63.98 19 | 70.33 26 | 75.16 46 | 72.33 19 | 55.78 15 | 75.74 22 | 50.41 34 | 80.08 11 | 73.15 22 | 57.75 37 | 71.96 24 | 70.94 30 | 77.25 50 | 88.69 22 |
|
TSAR-MVS + MP. | | | 70.28 18 | 75.09 18 | 64.66 18 | 69.34 29 | 64.61 125 | 72.60 18 | 56.29 12 | 80.73 12 | 58.36 8 | 84.56 9 | 75.22 15 | 55.37 51 | 69.11 48 | 69.45 43 | 75.97 64 | 81.97 74 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepPCF-MVS | | 62.48 1 | 70.07 19 | 78.36 11 | 60.39 43 | 62.38 59 | 76.96 35 | 65.54 56 | 52.23 33 | 87.46 4 | 49.07 35 | 74.05 15 | 76.19 11 | 59.01 28 | 72.79 18 | 71.61 22 | 74.13 105 | 89.49 13 |
|
SteuartSystems-ACMMP | | | 69.78 20 | 74.76 19 | 63.98 19 | 73.45 12 | 78.56 24 | 73.13 17 | 55.24 21 | 70.68 34 | 48.93 37 | 70.43 20 | 69.10 28 | 54.00 56 | 72.78 20 | 72.98 15 | 79.14 21 | 88.74 21 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 68.75 21 | 72.84 22 | 63.98 19 | 68.87 33 | 75.09 47 | 71.87 21 | 51.22 38 | 73.50 28 | 58.17 9 | 68.05 23 | 68.67 29 | 57.79 36 | 70.49 34 | 69.23 45 | 75.98 63 | 84.84 52 |
|
SD-MVS | | | 68.30 22 | 72.58 24 | 63.31 25 | 69.24 30 | 67.85 98 | 70.81 26 | 53.65 29 | 79.64 15 | 58.52 7 | 74.31 14 | 75.37 14 | 53.52 62 | 65.63 72 | 63.56 102 | 74.13 105 | 81.73 78 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
zzz-MVS | | | 67.78 23 | 72.46 25 | 62.33 30 | 66.09 39 | 74.21 52 | 70.05 28 | 51.54 36 | 77.27 17 | 54.61 17 | 60.30 41 | 71.51 25 | 56.73 43 | 69.19 46 | 68.63 54 | 74.96 85 | 86.11 42 |
|
DELS-MVS | | | 67.36 24 | 70.34 38 | 63.89 22 | 69.12 31 | 81.55 11 | 70.82 25 | 55.02 22 | 53.38 74 | 48.83 38 | 56.45 47 | 59.35 55 | 60.05 23 | 74.93 9 | 74.78 9 | 79.51 15 | 91.95 7 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MP-MVS |  | | 67.34 25 | 73.08 21 | 60.64 40 | 66.20 38 | 76.62 37 | 69.22 32 | 50.92 40 | 70.07 35 | 48.81 39 | 69.66 21 | 70.12 27 | 53.68 59 | 68.41 53 | 69.13 47 | 74.98 84 | 87.53 32 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS | | 60.65 2 | 67.33 26 | 71.52 32 | 62.44 28 | 59.79 79 | 74.84 49 | 68.89 33 | 55.56 17 | 73.91 27 | 53.50 23 | 55.00 52 | 65.63 34 | 60.08 22 | 71.99 23 | 71.33 26 | 76.85 54 | 87.94 29 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP-MVS | | | 67.22 27 | 72.08 27 | 61.56 35 | 66.76 36 | 73.58 59 | 71.41 22 | 52.98 31 | 69.92 37 | 43.85 58 | 70.58 19 | 58.75 57 | 56.76 42 | 72.90 16 | 71.88 19 | 77.57 42 | 86.94 36 |
|
CANet | | | 67.21 28 | 71.83 29 | 61.83 31 | 64.51 45 | 79.25 18 | 66.72 48 | 48.73 56 | 68.49 42 | 50.63 33 | 61.40 37 | 66.47 32 | 61.44 10 | 69.31 45 | 69.90 37 | 78.94 24 | 88.00 27 |
|
CDPH-MVS | | | 67.03 29 | 71.64 30 | 61.65 34 | 69.10 32 | 76.84 36 | 71.35 24 | 55.42 19 | 67.02 45 | 42.83 63 | 65.27 29 | 64.60 38 | 53.16 65 | 69.70 40 | 71.40 24 | 78.02 38 | 86.67 37 |
|
MAR-MVS | | | 66.85 30 | 69.81 39 | 63.39 24 | 73.56 11 | 80.51 14 | 69.87 29 | 51.51 37 | 67.78 44 | 46.44 44 | 51.09 65 | 61.60 50 | 60.38 18 | 72.67 21 | 73.61 13 | 78.59 26 | 81.44 82 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS_fast | | 60.18 3 | 66.84 31 | 70.69 36 | 62.36 29 | 62.76 53 | 73.21 62 | 67.96 36 | 52.31 32 | 72.26 31 | 51.03 28 | 56.50 46 | 64.26 39 | 63.37 7 | 71.64 28 | 70.85 31 | 76.70 55 | 86.10 43 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 66.77 32 | 72.21 26 | 60.44 42 | 61.23 66 | 70.00 81 | 64.26 61 | 47.79 68 | 72.98 29 | 56.32 14 | 71.35 18 | 72.33 23 | 55.68 50 | 65.49 73 | 66.66 68 | 77.35 44 | 86.62 38 |
|
MVS_0304 | | | 66.31 33 | 71.61 31 | 60.14 44 | 62.59 57 | 78.98 21 | 67.13 44 | 45.75 92 | 64.35 50 | 45.23 51 | 60.69 39 | 67.67 31 | 61.73 9 | 71.09 30 | 71.03 28 | 78.41 32 | 87.44 33 |
|
ACMMPR | | | 66.20 34 | 71.51 33 | 60.00 46 | 65.34 43 | 74.04 54 | 69.39 31 | 50.92 40 | 71.97 32 | 46.04 46 | 66.79 26 | 65.68 33 | 53.07 66 | 68.93 50 | 69.12 48 | 75.21 78 | 84.05 58 |
|
3Dnovator | | 58.39 4 | 65.97 35 | 66.85 51 | 64.94 15 | 73.72 10 | 79.03 20 | 67.73 39 | 54.25 25 | 61.52 53 | 52.79 27 | 42.27 91 | 60.73 53 | 62.01 8 | 71.29 29 | 71.75 21 | 79.12 22 | 81.34 85 |
|
TSAR-MVS + ACMM | | | 65.95 36 | 72.83 23 | 57.93 55 | 69.35 28 | 65.85 117 | 73.36 16 | 39.84 144 | 76.00 20 | 48.69 40 | 82.54 10 | 75.03 16 | 49.38 92 | 65.33 75 | 63.42 104 | 66.94 164 | 81.67 79 |
|
canonicalmvs | | | 65.55 37 | 70.75 35 | 59.49 49 | 62.11 61 | 78.26 27 | 66.52 49 | 43.82 112 | 71.54 33 | 47.84 42 | 61.30 38 | 61.68 48 | 58.48 31 | 67.56 60 | 69.67 40 | 78.16 35 | 85.25 50 |
|
QAPM | | | 65.47 38 | 67.82 44 | 62.72 27 | 72.56 14 | 81.17 13 | 67.43 42 | 55.38 20 | 56.07 66 | 43.29 61 | 43.60 86 | 65.38 36 | 59.10 27 | 72.20 22 | 70.76 32 | 78.56 27 | 85.59 48 |
|
PGM-MVS | | | 65.35 39 | 70.43 37 | 59.43 50 | 65.78 41 | 73.75 56 | 69.41 30 | 48.18 64 | 68.80 41 | 45.37 50 | 65.88 28 | 64.04 40 | 52.68 71 | 68.94 49 | 68.68 53 | 75.18 79 | 82.93 65 |
|
PHI-MVS | | | 65.17 40 | 72.07 28 | 57.11 65 | 63.02 52 | 77.35 31 | 67.04 45 | 48.14 66 | 68.03 43 | 37.56 89 | 66.00 27 | 65.39 35 | 53.19 64 | 70.68 31 | 70.57 36 | 73.72 112 | 86.46 41 |
|
CLD-MVS | | | 64.69 41 | 67.25 46 | 61.69 33 | 68.22 35 | 78.33 25 | 63.09 64 | 47.59 71 | 69.64 38 | 53.98 21 | 54.87 53 | 53.94 71 | 57.87 33 | 72.79 18 | 71.34 25 | 79.40 17 | 69.87 152 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVS_111021_HR | | | 64.66 42 | 67.11 49 | 61.80 32 | 71.04 21 | 77.91 28 | 62.75 67 | 54.78 23 | 51.43 77 | 47.54 43 | 53.77 56 | 54.85 68 | 56.84 40 | 70.59 32 | 71.50 23 | 77.86 39 | 89.70 12 |
|
EPNet | | | 64.39 43 | 70.93 34 | 56.77 67 | 60.58 73 | 75.77 39 | 59.28 87 | 50.58 44 | 69.93 36 | 40.73 78 | 68.59 22 | 61.60 50 | 53.72 57 | 68.65 51 | 68.07 56 | 75.75 69 | 83.87 60 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVS | | | 64.37 44 | 69.48 40 | 58.39 52 | 62.21 60 | 71.81 73 | 67.27 43 | 49.51 50 | 69.40 40 | 45.76 48 | 60.41 40 | 64.96 37 | 51.84 73 | 67.33 64 | 67.57 62 | 73.78 111 | 84.89 51 |
|
casdiffmvs | | | 63.87 45 | 67.08 50 | 60.12 45 | 60.90 69 | 78.29 26 | 67.91 37 | 48.01 67 | 55.89 68 | 44.97 52 | 50.45 67 | 56.94 62 | 59.54 24 | 70.17 37 | 69.81 38 | 79.41 16 | 87.99 28 |
|
MVS_Test | | | 63.75 46 | 67.24 47 | 59.68 48 | 60.01 75 | 76.99 34 | 68.13 35 | 45.17 94 | 57.45 61 | 43.74 59 | 53.07 59 | 56.16 66 | 61.33 12 | 70.27 35 | 71.11 27 | 79.72 10 | 85.63 47 |
|
X-MVS | | | 63.53 47 | 68.62 41 | 57.60 59 | 64.77 44 | 73.06 63 | 65.82 54 | 50.53 45 | 65.77 47 | 42.02 71 | 58.20 43 | 63.42 43 | 47.83 104 | 68.25 57 | 68.50 55 | 74.61 95 | 83.16 64 |
|
ACMMP |  | | 63.27 48 | 67.85 43 | 57.93 55 | 62.64 56 | 72.30 70 | 68.23 34 | 48.77 55 | 66.50 46 | 43.05 62 | 62.07 34 | 57.84 61 | 49.98 84 | 66.58 68 | 66.46 73 | 74.93 86 | 83.17 62 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ETV-MVS | | | 62.88 49 | 68.18 42 | 56.70 68 | 58.47 87 | 74.89 48 | 60.26 80 | 43.96 109 | 58.27 60 | 42.37 69 | 61.47 36 | 56.56 63 | 57.80 34 | 68.00 58 | 68.74 51 | 77.34 45 | 89.33 17 |
|
CS-MVS | | | 62.84 50 | 67.51 45 | 57.38 62 | 60.49 74 | 75.48 45 | 62.36 69 | 43.72 114 | 53.40 73 | 41.28 76 | 57.32 45 | 58.61 59 | 57.80 34 | 69.85 39 | 69.49 42 | 78.64 25 | 88.45 23 |
|
AdaColmap |  | | 62.79 51 | 62.63 66 | 62.98 26 | 70.82 22 | 72.90 66 | 67.84 38 | 54.09 27 | 65.14 48 | 50.71 31 | 41.78 93 | 47.64 99 | 60.17 21 | 67.41 63 | 66.83 66 | 74.28 100 | 76.69 109 |
|
3Dnovator+ | | 55.76 7 | 62.70 52 | 65.10 58 | 59.90 47 | 65.89 40 | 72.15 71 | 62.94 66 | 49.82 49 | 62.77 52 | 49.06 36 | 43.62 85 | 61.47 52 | 58.60 30 | 68.51 52 | 66.75 67 | 73.08 126 | 80.40 94 |
|
OpenMVS |  | 55.62 8 | 62.57 53 | 63.76 63 | 61.19 37 | 72.13 17 | 78.84 22 | 64.42 59 | 50.51 46 | 56.44 63 | 45.67 49 | 36.88 119 | 56.51 64 | 56.66 44 | 68.28 56 | 68.96 49 | 77.73 41 | 80.44 93 |
|
PVSNet_BlendedMVS | | | 62.53 54 | 66.37 53 | 58.05 53 | 58.17 88 | 75.70 40 | 61.30 73 | 48.67 59 | 58.67 57 | 50.93 29 | 55.43 50 | 49.39 88 | 53.01 67 | 69.46 42 | 66.55 70 | 76.24 60 | 89.39 15 |
|
PVSNet_Blended | | | 62.53 54 | 66.37 53 | 58.05 53 | 58.17 88 | 75.70 40 | 61.30 73 | 48.67 59 | 58.67 57 | 50.93 29 | 55.43 50 | 49.39 88 | 53.01 67 | 69.46 42 | 66.55 70 | 76.24 60 | 89.39 15 |
|
MVSTER | | | 62.51 56 | 67.22 48 | 57.02 66 | 55.05 109 | 69.23 90 | 63.02 65 | 46.88 81 | 61.11 55 | 43.95 57 | 59.20 42 | 58.86 56 | 56.80 41 | 69.13 47 | 70.98 29 | 76.41 58 | 82.04 71 |
|
CHOSEN 1792x2688 | | | 62.48 57 | 64.06 62 | 60.64 40 | 72.50 15 | 84.18 5 | 62.43 68 | 53.77 28 | 47.90 89 | 39.85 82 | 25.15 181 | 44.76 112 | 53.72 57 | 77.29 3 | 77.61 2 | 81.60 4 | 91.53 8 |
|
CostFormer | | | 62.45 58 | 65.68 56 | 58.67 51 | 63.29 49 | 77.65 29 | 67.62 40 | 38.42 153 | 54.04 71 | 46.00 47 | 48.27 75 | 57.89 60 | 56.97 39 | 67.03 66 | 67.79 61 | 79.74 9 | 87.09 35 |
|
PCF-MVS | | 55.99 6 | 62.31 59 | 66.60 52 | 57.32 63 | 59.12 86 | 73.68 58 | 67.53 41 | 48.71 57 | 61.35 54 | 42.83 63 | 51.33 64 | 63.48 42 | 53.48 63 | 65.64 71 | 64.87 85 | 72.22 131 | 85.83 44 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
diffmvs | | | 62.30 60 | 66.05 55 | 57.92 57 | 57.08 93 | 75.60 44 | 66.90 46 | 47.06 79 | 55.45 70 | 43.37 60 | 53.45 58 | 55.60 67 | 57.21 38 | 66.57 69 | 68.00 58 | 75.89 67 | 87.70 31 |
|
DI_MVS_plusplus_trai | | | 61.86 61 | 65.26 57 | 57.90 58 | 57.93 91 | 74.51 51 | 66.30 51 | 46.49 87 | 49.96 81 | 41.62 74 | 42.69 89 | 61.77 47 | 58.74 29 | 70.25 36 | 69.32 44 | 76.31 59 | 88.30 24 |
|
MSLP-MVS++ | | | 61.81 62 | 62.19 71 | 61.37 36 | 68.33 34 | 63.08 139 | 70.75 27 | 38.89 150 | 63.96 51 | 57.51 11 | 48.59 73 | 61.66 49 | 53.67 60 | 62.04 112 | 59.92 147 | 79.03 23 | 76.08 112 |
|
OPM-MVS | | | 61.59 63 | 62.30 70 | 60.76 39 | 66.53 37 | 73.35 61 | 71.41 22 | 54.18 26 | 40.82 117 | 41.57 75 | 45.70 81 | 54.84 69 | 54.43 55 | 69.92 38 | 69.19 46 | 76.45 57 | 82.25 68 |
|
MS-PatchMatch | | | 61.41 64 | 61.88 74 | 60.85 38 | 70.57 24 | 75.98 38 | 66.29 52 | 46.91 80 | 50.56 79 | 48.28 41 | 36.30 122 | 51.64 75 | 50.95 79 | 72.89 17 | 70.65 35 | 82.13 3 | 75.17 118 |
|
EIA-MVS | | | 60.56 65 | 64.29 61 | 56.20 73 | 59.14 85 | 72.68 67 | 59.55 85 | 43.56 117 | 51.78 76 | 41.01 77 | 55.47 49 | 51.93 74 | 55.87 47 | 65.01 78 | 66.57 69 | 78.06 37 | 86.60 40 |
|
ACMP | | 56.21 5 | 59.78 66 | 61.81 76 | 57.41 61 | 61.15 67 | 68.88 92 | 65.98 53 | 48.85 54 | 58.56 59 | 44.19 55 | 48.89 71 | 46.31 105 | 48.56 97 | 63.61 94 | 64.49 94 | 75.75 69 | 81.91 75 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 59.69 67 | 62.59 67 | 56.31 71 | 61.94 62 | 68.15 97 | 66.90 46 | 48.15 65 | 59.75 56 | 38.47 85 | 50.38 68 | 48.34 96 | 46.87 109 | 65.39 74 | 64.93 84 | 75.51 74 | 81.21 87 |
|
Effi-MVS+ | | | 59.63 68 | 61.78 77 | 57.12 64 | 61.56 64 | 71.63 74 | 63.61 62 | 47.59 71 | 47.18 90 | 37.79 86 | 45.29 82 | 49.93 85 | 56.27 46 | 67.45 61 | 67.06 64 | 75.91 65 | 83.93 59 |
|
CPTT-MVS | | | 59.54 69 | 64.47 60 | 53.79 83 | 54.99 111 | 67.63 101 | 65.48 57 | 44.59 101 | 64.81 49 | 37.74 87 | 51.55 62 | 59.90 54 | 49.77 88 | 61.83 114 | 61.26 132 | 70.18 145 | 84.31 57 |
|
baseline2 | | | 59.20 70 | 61.72 78 | 56.27 72 | 59.61 81 | 74.12 53 | 58.65 90 | 49.42 51 | 48.10 87 | 40.12 81 | 49.10 70 | 44.15 114 | 51.24 76 | 66.65 67 | 67.88 60 | 78.56 27 | 82.06 70 |
|
baseline | | | 58.65 71 | 61.99 72 | 54.75 78 | 54.70 113 | 71.85 72 | 60.20 81 | 43.91 110 | 55.99 67 | 40.13 80 | 53.50 57 | 50.91 81 | 55.76 48 | 61.29 122 | 61.73 124 | 73.83 109 | 78.68 102 |
|
PVSNet_Blended_VisFu | | | 58.56 72 | 62.33 69 | 54.16 80 | 56.90 94 | 73.92 55 | 57.72 93 | 46.16 90 | 44.23 97 | 42.73 66 | 46.26 78 | 51.06 80 | 46.28 112 | 67.99 59 | 65.38 79 | 75.18 79 | 87.44 33 |
|
ACMM | | 53.73 9 | 57.91 73 | 58.27 92 | 57.49 60 | 63.10 50 | 66.45 111 | 65.65 55 | 49.02 53 | 53.69 72 | 42.67 67 | 36.41 121 | 46.07 108 | 50.38 82 | 64.74 81 | 64.63 90 | 74.14 104 | 75.91 113 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CANet_DTU | | | 57.87 74 | 63.63 64 | 51.15 97 | 52.18 119 | 70.20 80 | 58.14 92 | 37.32 160 | 56.49 62 | 31.06 120 | 57.38 44 | 50.05 83 | 53.67 60 | 64.98 79 | 65.04 83 | 74.57 96 | 81.29 86 |
|
ET-MVSNet_ETH3D | | | 57.84 75 | 61.91 73 | 53.09 85 | 32.91 200 | 74.53 50 | 63.51 63 | 46.80 83 | 46.52 92 | 36.14 94 | 56.00 48 | 46.20 106 | 64.41 5 | 60.75 130 | 66.99 65 | 74.79 87 | 82.35 66 |
|
tpm cat1 | | | 57.41 76 | 58.26 93 | 56.42 70 | 60.80 71 | 72.56 68 | 64.35 60 | 38.43 152 | 49.18 85 | 46.36 45 | 36.69 120 | 43.50 117 | 54.47 53 | 61.39 120 | 62.64 112 | 74.11 107 | 81.81 76 |
|
IB-MVS | | 53.15 10 | 57.33 77 | 59.02 84 | 55.37 75 | 60.83 70 | 77.11 33 | 54.51 117 | 50.10 48 | 43.22 101 | 42.82 65 | 40.50 98 | 37.61 135 | 44.67 124 | 59.27 144 | 69.81 38 | 79.29 18 | 85.59 48 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpmrst | | | 57.23 78 | 59.08 83 | 55.06 76 | 59.91 77 | 70.65 78 | 60.71 76 | 35.38 171 | 47.91 88 | 42.58 68 | 39.78 102 | 45.45 110 | 54.44 54 | 62.19 109 | 62.82 109 | 77.37 43 | 84.73 53 |
|
baseline1 | | | 57.21 79 | 60.53 80 | 53.33 84 | 62.50 58 | 69.86 83 | 57.33 97 | 50.59 43 | 43.39 100 | 30.00 126 | 48.60 72 | 51.09 79 | 42.36 136 | 69.38 44 | 68.03 57 | 77.20 51 | 73.39 125 |
|
HyFIR lowres test | | | 57.12 80 | 59.11 82 | 54.80 77 | 61.55 65 | 77.55 30 | 59.02 88 | 45.00 96 | 41.84 114 | 33.93 106 | 22.44 188 | 49.16 91 | 51.02 78 | 68.39 54 | 68.71 52 | 78.26 34 | 85.70 46 |
|
MVS_111021_LR | | | 57.06 81 | 60.60 79 | 52.93 86 | 56.25 98 | 65.14 123 | 55.16 115 | 41.21 136 | 52.32 75 | 44.89 53 | 53.92 55 | 49.27 90 | 52.16 72 | 61.46 118 | 60.54 140 | 67.92 157 | 81.53 81 |
|
DCV-MVSNet | | | 56.80 82 | 58.96 85 | 54.28 79 | 59.96 76 | 66.74 109 | 60.37 79 | 44.87 98 | 41.01 116 | 36.81 92 | 47.57 76 | 47.87 98 | 48.23 100 | 64.41 84 | 65.17 81 | 75.45 75 | 79.95 96 |
|
test_part1 | | | 56.55 83 | 56.50 107 | 56.60 69 | 61.77 63 | 69.59 87 | 66.45 50 | 43.70 115 | 38.22 128 | 44.13 56 | 29.53 166 | 49.96 84 | 47.92 102 | 63.09 99 | 64.59 91 | 75.61 72 | 80.54 92 |
|
Anonymous20231211 | | | 56.40 84 | 57.00 102 | 55.70 74 | 59.78 80 | 72.49 69 | 61.29 75 | 46.83 82 | 40.50 118 | 40.46 79 | 22.12 190 | 49.73 86 | 51.07 77 | 64.39 85 | 65.30 80 | 74.74 89 | 84.44 56 |
|
PMMVS | | | 55.74 85 | 62.68 65 | 47.64 126 | 44.34 169 | 65.58 121 | 47.22 152 | 37.96 156 | 56.43 64 | 34.11 104 | 61.51 35 | 47.41 100 | 54.55 52 | 65.88 70 | 62.49 116 | 67.67 159 | 79.48 97 |
|
Fast-Effi-MVS+ | | | 55.73 86 | 58.26 93 | 52.76 87 | 54.33 114 | 68.19 96 | 57.05 98 | 34.66 173 | 46.92 91 | 38.96 84 | 40.53 97 | 41.55 126 | 55.69 49 | 65.31 76 | 65.99 74 | 75.90 66 | 79.34 98 |
|
FC-MVSNet-train | | | 55.68 87 | 57.00 102 | 54.13 81 | 63.37 47 | 66.16 113 | 46.77 155 | 52.14 34 | 42.36 108 | 37.67 88 | 48.50 74 | 41.42 128 | 51.28 75 | 61.58 117 | 63.22 106 | 73.56 114 | 75.76 115 |
|
FMVSNet3 | | | 55.66 88 | 59.68 81 | 50.96 99 | 50.59 133 | 66.49 110 | 57.57 94 | 46.61 84 | 49.30 82 | 28.77 131 | 39.61 103 | 51.42 76 | 43.85 129 | 68.29 55 | 68.80 50 | 78.35 33 | 73.86 120 |
|
OMC-MVS | | | 55.48 89 | 61.85 75 | 48.04 125 | 41.55 176 | 60.32 156 | 56.80 102 | 31.78 193 | 75.67 23 | 42.30 70 | 51.52 63 | 54.15 70 | 49.91 86 | 60.28 135 | 57.59 154 | 65.91 167 | 73.42 123 |
|
tpm | | | 54.94 90 | 57.86 98 | 51.54 95 | 59.48 83 | 67.04 105 | 58.34 91 | 34.60 175 | 41.93 113 | 34.41 101 | 42.40 90 | 47.14 101 | 49.07 95 | 61.46 118 | 61.67 128 | 73.31 121 | 83.39 61 |
|
GBi-Net | | | 54.66 91 | 58.42 90 | 50.26 107 | 49.36 142 | 65.81 118 | 56.80 102 | 46.61 84 | 49.30 82 | 28.77 131 | 39.61 103 | 51.42 76 | 42.71 132 | 64.25 87 | 65.54 76 | 77.32 47 | 73.03 128 |
|
test1 | | | 54.66 91 | 58.42 90 | 50.26 107 | 49.36 142 | 65.81 118 | 56.80 102 | 46.61 84 | 49.30 82 | 28.77 131 | 39.61 103 | 51.42 76 | 42.71 132 | 64.25 87 | 65.54 76 | 77.32 47 | 73.03 128 |
|
test-LLR | | | 54.62 93 | 58.66 88 | 49.89 113 | 51.68 125 | 65.89 115 | 47.88 146 | 46.35 88 | 42.51 105 | 29.84 127 | 41.41 94 | 48.87 92 | 45.20 117 | 62.91 103 | 64.43 95 | 78.43 30 | 84.62 54 |
|
TSAR-MVS + COLMAP | | | 54.37 94 | 62.43 68 | 44.98 140 | 34.33 196 | 58.94 163 | 54.11 120 | 34.15 184 | 74.06 26 | 34.57 100 | 71.63 17 | 42.03 125 | 47.88 103 | 61.26 123 | 57.33 157 | 64.83 170 | 71.74 138 |
|
EPMVS | | | 54.07 95 | 56.06 109 | 51.75 94 | 56.74 96 | 70.80 76 | 55.32 113 | 34.20 181 | 46.46 93 | 36.59 93 | 40.38 100 | 42.55 120 | 49.77 88 | 61.25 124 | 60.90 136 | 77.86 39 | 70.08 149 |
|
v2v482 | | | 54.00 96 | 55.12 115 | 52.69 89 | 51.73 124 | 69.42 89 | 60.65 77 | 45.09 95 | 34.56 150 | 33.73 109 | 35.29 125 | 35.36 146 | 49.92 85 | 64.05 91 | 65.16 82 | 75.00 83 | 81.98 73 |
|
CNLPA | | | 54.00 96 | 57.08 101 | 50.40 106 | 49.83 139 | 61.75 147 | 53.47 123 | 37.27 161 | 74.55 25 | 44.85 54 | 33.58 137 | 45.42 111 | 52.94 70 | 58.89 146 | 53.66 176 | 64.06 173 | 71.68 139 |
|
FMVSNet2 | | | 53.94 98 | 57.29 99 | 50.03 110 | 49.36 142 | 65.81 118 | 56.80 102 | 45.95 91 | 43.13 102 | 28.04 135 | 35.68 123 | 48.18 97 | 42.71 132 | 67.23 65 | 67.95 59 | 77.32 47 | 73.03 128 |
|
v8 | | | 53.77 99 | 54.82 119 | 52.54 90 | 52.12 120 | 66.95 108 | 60.56 78 | 43.23 123 | 37.17 139 | 35.35 96 | 34.96 128 | 37.50 137 | 49.51 91 | 63.67 93 | 64.59 91 | 74.48 97 | 78.91 101 |
|
GA-MVS | | | 53.77 99 | 56.41 108 | 50.70 101 | 51.63 127 | 69.96 82 | 57.55 95 | 44.39 102 | 34.31 151 | 27.15 137 | 40.99 96 | 36.40 141 | 47.65 106 | 67.45 61 | 67.16 63 | 75.83 68 | 78.60 103 |
|
Effi-MVS+-dtu | | | 53.63 101 | 54.85 118 | 52.20 92 | 59.32 84 | 61.33 150 | 56.42 108 | 40.24 142 | 43.84 99 | 34.22 103 | 39.49 107 | 46.18 107 | 53.00 69 | 58.72 150 | 57.49 156 | 69.99 148 | 76.91 108 |
|
thisisatest0530 | | | 53.61 102 | 57.22 100 | 49.40 118 | 51.30 129 | 68.22 95 | 52.72 131 | 43.34 121 | 42.72 104 | 35.31 97 | 43.57 87 | 44.14 115 | 44.37 127 | 63.00 101 | 64.86 86 | 69.34 151 | 74.00 119 |
|
v1144 | | | 53.47 103 | 54.65 120 | 52.10 93 | 51.93 122 | 69.81 84 | 59.32 86 | 44.77 100 | 33.21 157 | 32.52 112 | 33.55 138 | 34.34 154 | 49.29 93 | 64.58 82 | 64.81 88 | 74.74 89 | 82.27 67 |
|
v10 | | | 53.44 104 | 54.40 121 | 52.31 91 | 52.08 121 | 66.99 106 | 59.68 84 | 43.41 118 | 35.90 145 | 34.30 102 | 33.98 135 | 35.56 144 | 50.10 83 | 64.39 85 | 64.67 89 | 74.32 98 | 79.30 99 |
|
PatchmatchNet |  | | 53.37 105 | 55.62 113 | 50.75 100 | 55.93 105 | 70.54 79 | 51.39 136 | 36.41 164 | 44.85 95 | 37.26 90 | 39.40 109 | 42.54 121 | 47.83 104 | 60.29 134 | 60.88 138 | 75.69 71 | 70.87 143 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IterMVS-LS | | | 53.36 106 | 55.65 112 | 50.68 103 | 55.34 107 | 59.04 161 | 55.00 116 | 39.98 143 | 38.72 126 | 33.22 110 | 44.52 84 | 47.05 102 | 49.63 90 | 61.82 115 | 61.77 123 | 70.92 140 | 76.61 111 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TESTMET0.1,1 | | | 53.30 107 | 58.66 88 | 47.04 129 | 44.94 163 | 65.89 115 | 47.88 146 | 35.95 167 | 42.51 105 | 29.84 127 | 41.41 94 | 48.87 92 | 45.20 117 | 62.91 103 | 64.43 95 | 78.43 30 | 84.62 54 |
|
tttt0517 | | | 53.05 108 | 56.73 106 | 48.76 121 | 50.35 135 | 67.51 102 | 51.96 135 | 43.34 121 | 42.00 112 | 33.88 107 | 43.19 88 | 43.49 118 | 44.37 127 | 62.58 108 | 64.86 86 | 68.67 153 | 73.46 122 |
|
MDTV_nov1_ep13 | | | 52.99 109 | 55.59 114 | 49.95 112 | 54.08 115 | 70.69 77 | 56.47 107 | 38.42 153 | 42.78 103 | 30.19 125 | 39.56 106 | 43.31 119 | 45.78 114 | 60.07 139 | 62.11 120 | 74.74 89 | 70.62 144 |
|
EPP-MVSNet | | | 52.91 110 | 58.91 86 | 45.91 134 | 54.99 111 | 68.84 93 | 49.27 142 | 42.71 130 | 37.53 133 | 20.20 165 | 46.09 79 | 56.19 65 | 36.90 147 | 61.37 121 | 60.90 136 | 71.41 135 | 81.41 83 |
|
dps | | | 52.84 111 | 52.92 132 | 52.74 88 | 59.89 78 | 69.49 88 | 54.47 118 | 37.38 159 | 42.49 107 | 39.53 83 | 35.33 124 | 32.71 159 | 51.83 74 | 60.45 131 | 61.12 133 | 73.33 120 | 68.86 158 |
|
v1192 | | | 52.69 112 | 53.86 124 | 51.31 96 | 51.22 130 | 69.76 85 | 57.37 96 | 44.39 102 | 32.21 160 | 31.39 119 | 32.41 145 | 32.44 162 | 49.19 94 | 64.25 87 | 64.17 97 | 74.31 99 | 81.81 76 |
|
V42 | | | 52.63 113 | 55.08 116 | 49.76 115 | 44.93 164 | 67.49 104 | 60.19 82 | 42.13 133 | 37.21 138 | 34.08 105 | 34.57 131 | 37.30 138 | 47.29 107 | 63.48 96 | 64.15 98 | 69.96 149 | 81.38 84 |
|
MSDG | | | 52.58 114 | 51.40 145 | 53.95 82 | 65.48 42 | 64.31 133 | 61.44 72 | 44.02 107 | 44.17 98 | 32.92 111 | 30.40 157 | 31.81 166 | 46.35 111 | 62.13 110 | 62.55 114 | 73.49 116 | 64.41 166 |
|
Fast-Effi-MVS+-dtu | | | 52.47 115 | 55.89 110 | 48.48 123 | 56.25 98 | 65.07 124 | 58.75 89 | 23.79 204 | 41.27 115 | 27.07 139 | 37.95 114 | 41.34 129 | 50.85 80 | 62.90 105 | 62.34 118 | 74.17 103 | 80.37 95 |
|
v144192 | | | 52.43 116 | 53.63 126 | 51.03 98 | 51.06 131 | 69.60 86 | 56.94 100 | 44.84 99 | 32.15 161 | 30.88 121 | 32.45 144 | 32.71 159 | 48.36 98 | 62.98 102 | 63.52 103 | 74.10 108 | 82.02 72 |
|
thres100view900 | | | 52.33 117 | 53.91 123 | 50.48 105 | 56.10 100 | 67.79 99 | 56.18 110 | 49.18 52 | 35.86 147 | 25.22 145 | 34.74 129 | 34.10 155 | 42.41 135 | 64.45 83 | 62.62 113 | 73.81 110 | 77.85 104 |
|
v1921920 | | | 51.95 118 | 53.19 128 | 50.51 104 | 50.82 132 | 69.14 91 | 55.45 112 | 44.34 106 | 31.53 165 | 30.53 123 | 31.96 147 | 31.67 167 | 48.31 99 | 63.12 98 | 63.28 105 | 73.59 113 | 81.60 80 |
|
v148 | | | 51.72 119 | 53.15 129 | 50.05 109 | 50.15 137 | 67.51 102 | 56.98 99 | 42.85 128 | 32.60 159 | 32.41 114 | 33.88 136 | 34.71 151 | 44.45 125 | 61.06 125 | 63.00 108 | 73.45 117 | 79.24 100 |
|
TAPA-MVS | | 47.92 11 | 51.66 120 | 57.88 97 | 44.40 143 | 36.46 191 | 58.42 166 | 53.82 122 | 30.83 194 | 69.51 39 | 34.97 99 | 46.90 77 | 49.67 87 | 46.99 108 | 58.00 153 | 54.64 172 | 63.33 179 | 68.00 160 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS_MVSNet | | | 51.53 121 | 57.98 96 | 44.01 147 | 55.96 104 | 66.16 113 | 47.65 148 | 42.84 129 | 39.82 121 | 19.09 173 | 44.97 83 | 50.28 82 | 27.20 179 | 63.43 97 | 63.84 99 | 71.33 137 | 77.33 106 |
|
v1240 | | | 51.42 122 | 52.66 134 | 49.97 111 | 50.31 136 | 68.70 94 | 54.05 121 | 43.85 111 | 30.78 169 | 30.22 124 | 31.43 150 | 31.03 174 | 47.98 101 | 62.62 107 | 63.16 107 | 73.40 118 | 80.93 89 |
|
pmmvs4 | | | 51.28 123 | 52.50 136 | 49.85 114 | 49.54 141 | 63.02 140 | 52.83 130 | 43.41 118 | 44.65 96 | 35.71 95 | 34.38 132 | 32.25 163 | 45.14 120 | 60.21 138 | 60.03 144 | 72.44 130 | 72.98 131 |
|
Vis-MVSNet |  | | 51.13 124 | 58.04 95 | 43.06 153 | 47.68 149 | 67.71 100 | 49.10 143 | 39.09 149 | 37.75 131 | 22.57 156 | 51.03 66 | 48.78 94 | 32.42 164 | 62.12 111 | 61.80 122 | 67.49 161 | 77.12 107 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UGNet | | | 51.04 125 | 58.79 87 | 42.00 159 | 40.59 178 | 65.32 122 | 46.65 157 | 39.26 147 | 39.90 120 | 27.30 136 | 54.12 54 | 52.03 73 | 30.93 168 | 59.85 141 | 59.62 149 | 67.23 163 | 80.70 90 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tfpn200view9 | | | 50.91 126 | 52.45 137 | 49.11 120 | 56.10 100 | 64.53 128 | 53.06 127 | 47.31 76 | 35.86 147 | 25.22 145 | 34.74 129 | 34.10 155 | 41.08 138 | 60.84 127 | 61.37 130 | 71.90 134 | 75.70 116 |
|
SCA | | | 50.88 127 | 53.70 125 | 47.59 127 | 55.99 102 | 55.81 175 | 43.14 169 | 33.45 187 | 45.16 94 | 37.14 91 | 41.83 92 | 43.82 116 | 44.43 126 | 60.37 132 | 60.02 145 | 71.38 136 | 68.90 157 |
|
gg-mvs-nofinetune | | | 50.82 128 | 55.83 111 | 44.97 141 | 60.63 72 | 75.69 42 | 53.40 124 | 34.48 177 | 20.05 203 | 6.93 198 | 18.27 196 | 52.70 72 | 33.57 155 | 70.50 33 | 72.93 17 | 80.84 6 | 80.68 91 |
|
thres200 | | | 50.76 129 | 52.52 135 | 48.70 122 | 55.98 103 | 64.60 126 | 55.29 114 | 47.34 74 | 33.91 154 | 24.36 148 | 34.33 133 | 33.90 157 | 37.27 145 | 60.84 127 | 62.41 117 | 71.99 132 | 77.63 105 |
|
thres400 | | | 50.39 130 | 52.22 138 | 48.26 124 | 55.02 110 | 66.32 112 | 52.97 128 | 48.33 63 | 32.68 158 | 22.94 154 | 33.21 140 | 33.38 158 | 37.27 145 | 62.74 106 | 61.38 129 | 73.04 127 | 75.81 114 |
|
EG-PatchMatch MVS | | | 50.23 131 | 50.89 148 | 49.47 116 | 59.54 82 | 70.88 75 | 52.46 132 | 44.01 108 | 26.22 190 | 31.91 115 | 24.97 182 | 31.45 170 | 33.48 157 | 64.79 80 | 66.51 72 | 75.40 76 | 71.39 141 |
|
IterMVS | | | 50.23 131 | 53.27 127 | 46.68 130 | 47.59 151 | 60.58 154 | 53.10 126 | 36.62 163 | 36.07 143 | 25.89 142 | 39.42 108 | 40.05 132 | 43.65 130 | 60.22 137 | 61.35 131 | 73.23 122 | 75.23 117 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 50.14 133 | 52.78 133 | 47.06 128 | 45.56 160 | 63.56 136 | 54.22 119 | 43.74 113 | 34.10 153 | 25.37 144 | 29.79 163 | 42.06 124 | 38.70 141 | 64.25 87 | 65.54 76 | 74.75 88 | 70.18 148 |
|
ACMH | | 47.82 13 | 50.10 134 | 49.60 154 | 50.69 102 | 63.36 48 | 66.99 106 | 56.83 101 | 52.13 35 | 31.06 168 | 17.74 178 | 28.22 170 | 26.24 190 | 45.17 119 | 60.88 126 | 63.80 100 | 68.91 152 | 70.00 151 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPNet_dtu | | | 49.85 135 | 56.99 104 | 41.52 162 | 52.79 117 | 57.06 169 | 41.44 174 | 43.13 124 | 56.13 65 | 19.24 172 | 52.11 60 | 48.38 95 | 22.14 186 | 58.19 152 | 58.38 152 | 70.35 143 | 68.71 159 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LS3D | | | 49.59 136 | 49.75 153 | 49.40 118 | 55.88 106 | 59.86 158 | 56.31 109 | 45.33 93 | 48.57 86 | 28.32 134 | 31.54 149 | 36.81 140 | 46.27 113 | 57.17 158 | 55.88 167 | 64.29 172 | 58.42 184 |
|
UniMVSNet_NR-MVSNet | | | 49.56 137 | 53.04 130 | 45.49 137 | 51.59 128 | 64.42 132 | 46.97 153 | 51.01 39 | 37.87 129 | 16.42 179 | 39.87 101 | 34.91 150 | 33.43 159 | 59.59 142 | 62.70 110 | 73.52 115 | 71.94 134 |
|
CDS-MVSNet | | | 49.25 138 | 53.97 122 | 43.75 149 | 47.53 152 | 64.53 128 | 48.59 144 | 42.27 132 | 33.77 155 | 26.64 140 | 40.46 99 | 42.26 123 | 30.01 171 | 61.77 116 | 61.71 125 | 67.48 162 | 73.28 127 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PLC |  | 44.22 14 | 49.14 139 | 51.75 141 | 46.10 133 | 42.78 174 | 55.60 178 | 53.11 125 | 34.46 178 | 55.69 69 | 32.47 113 | 34.16 134 | 41.45 127 | 48.91 96 | 57.13 159 | 54.09 173 | 64.84 169 | 64.10 167 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMH+ | | 47.85 12 | 49.13 140 | 48.86 160 | 49.44 117 | 56.75 95 | 62.01 146 | 56.62 106 | 47.55 73 | 37.49 134 | 23.98 149 | 26.68 175 | 29.46 181 | 43.12 131 | 57.45 157 | 58.85 151 | 68.62 154 | 70.05 150 |
|
NR-MVSNet | | | 48.84 141 | 51.76 140 | 45.44 138 | 57.66 92 | 60.64 152 | 47.39 149 | 47.63 69 | 37.26 135 | 13.31 183 | 37.31 116 | 29.64 180 | 33.53 156 | 63.52 95 | 62.09 121 | 73.10 125 | 71.89 137 |
|
CR-MVSNet | | | 48.82 142 | 51.85 139 | 45.29 139 | 46.74 154 | 55.95 173 | 52.06 133 | 34.21 179 | 42.17 109 | 31.74 116 | 32.92 142 | 42.53 122 | 45.00 121 | 58.80 147 | 61.11 134 | 61.99 184 | 69.47 153 |
|
thres600view7 | | | 48.44 143 | 50.23 151 | 46.35 132 | 54.05 116 | 64.60 126 | 50.18 139 | 47.34 74 | 31.73 164 | 20.74 163 | 32.28 146 | 32.62 161 | 33.79 154 | 60.84 127 | 56.11 165 | 71.99 132 | 73.40 124 |
|
test-mter | | | 48.31 144 | 55.04 117 | 40.45 166 | 34.12 197 | 59.02 162 | 41.77 173 | 28.05 198 | 38.43 127 | 22.67 155 | 39.35 110 | 44.40 113 | 41.88 137 | 60.30 133 | 61.68 127 | 74.20 101 | 82.12 69 |
|
PatchT | | | 48.11 145 | 51.27 147 | 44.43 142 | 50.13 138 | 61.58 148 | 33.59 187 | 32.92 189 | 40.38 119 | 31.74 116 | 30.60 156 | 36.93 139 | 45.00 121 | 58.80 147 | 61.11 134 | 73.19 123 | 69.47 153 |
|
TranMVSNet+NR-MVSNet | | | 48.06 146 | 51.36 146 | 44.21 145 | 50.38 134 | 62.09 145 | 47.28 150 | 50.88 42 | 36.11 142 | 13.25 184 | 37.51 115 | 31.60 169 | 30.70 169 | 59.34 143 | 62.53 115 | 72.81 128 | 70.31 146 |
|
TransMVSNet (Re) | | | 47.46 147 | 48.94 159 | 45.74 136 | 57.96 90 | 64.29 134 | 48.26 145 | 48.47 62 | 26.33 189 | 19.33 170 | 29.45 167 | 31.28 173 | 25.31 183 | 63.05 100 | 62.70 110 | 75.10 82 | 65.47 164 |
|
DU-MVS | | | 47.33 148 | 50.86 149 | 43.20 152 | 44.43 167 | 60.64 152 | 46.97 153 | 47.63 69 | 37.26 135 | 16.42 179 | 37.31 116 | 31.39 171 | 33.43 159 | 57.53 155 | 59.98 146 | 70.35 143 | 71.94 134 |
|
v7n | | | 47.22 149 | 48.38 161 | 45.87 135 | 48.20 148 | 63.58 135 | 50.69 137 | 40.93 140 | 26.60 188 | 26.44 141 | 26.52 176 | 29.65 179 | 38.19 143 | 58.22 151 | 60.23 143 | 70.79 141 | 73.83 121 |
|
UA-Net | | | 47.19 150 | 53.02 131 | 40.38 167 | 55.31 108 | 60.02 157 | 38.41 180 | 38.68 151 | 36.42 141 | 22.47 158 | 51.95 61 | 58.72 58 | 25.62 182 | 54.11 171 | 53.40 177 | 61.79 185 | 56.51 187 |
|
Baseline_NR-MVSNet | | | 47.14 151 | 50.83 150 | 42.84 155 | 44.43 167 | 63.31 138 | 44.50 165 | 50.36 47 | 37.71 132 | 11.25 189 | 30.84 153 | 32.09 164 | 30.96 167 | 57.53 155 | 63.73 101 | 75.53 73 | 70.60 145 |
|
pmmvs5 | | | 47.02 152 | 50.02 152 | 43.51 151 | 43.48 172 | 62.65 142 | 47.24 151 | 37.78 158 | 30.59 170 | 24.80 147 | 35.26 126 | 30.43 175 | 34.36 152 | 59.05 145 | 60.28 142 | 73.40 118 | 71.92 136 |
|
UniMVSNet (Re) | | | 46.89 153 | 51.65 143 | 41.34 164 | 45.60 159 | 62.71 141 | 44.05 166 | 47.10 78 | 37.24 137 | 13.55 182 | 36.90 118 | 34.54 153 | 26.76 180 | 57.56 154 | 59.90 148 | 70.98 139 | 72.69 132 |
|
thisisatest0515 | | | 46.88 154 | 49.57 155 | 43.74 150 | 45.33 162 | 60.46 155 | 46.19 159 | 41.06 139 | 30.34 171 | 29.73 129 | 32.50 143 | 31.63 168 | 35.43 150 | 58.75 149 | 61.71 125 | 64.70 171 | 71.59 140 |
|
tfpnnormal | | | 46.61 155 | 46.82 168 | 46.37 131 | 52.70 118 | 62.31 143 | 50.39 138 | 47.17 77 | 25.74 192 | 21.80 159 | 23.13 186 | 24.15 198 | 33.45 158 | 60.28 135 | 60.77 139 | 72.70 129 | 71.39 141 |
|
pm-mvs1 | | | 46.14 156 | 49.34 158 | 42.41 156 | 48.93 145 | 62.22 144 | 44.98 163 | 42.68 131 | 27.66 182 | 20.76 162 | 29.88 162 | 34.96 149 | 26.41 181 | 60.03 140 | 60.42 141 | 70.70 142 | 70.20 147 |
|
IterMVS-SCA-FT | | | 45.87 157 | 51.55 144 | 39.24 170 | 46.22 155 | 59.43 159 | 52.89 129 | 31.93 190 | 36.01 144 | 23.68 150 | 38.86 111 | 39.88 134 | 39.05 140 | 56.25 164 | 58.17 153 | 41.70 205 | 72.25 133 |
|
MIMVSNet | | | 45.62 158 | 49.56 156 | 41.02 165 | 38.17 182 | 64.43 131 | 49.48 141 | 35.43 170 | 36.53 140 | 20.06 167 | 22.58 187 | 35.16 148 | 28.75 176 | 61.97 113 | 62.20 119 | 74.20 101 | 64.07 168 |
|
gm-plane-assit | | | 45.41 159 | 48.03 163 | 42.34 157 | 56.49 97 | 40.48 203 | 24.54 207 | 34.15 184 | 14.44 209 | 6.59 199 | 17.82 197 | 35.32 147 | 49.82 87 | 72.93 15 | 74.11 10 | 82.47 2 | 81.12 88 |
|
ADS-MVSNet | | | 45.39 160 | 46.42 169 | 44.19 146 | 48.74 147 | 57.52 167 | 43.91 167 | 31.93 190 | 35.89 146 | 27.11 138 | 30.12 158 | 32.06 165 | 45.30 115 | 53.13 177 | 55.19 169 | 68.15 156 | 61.07 176 |
|
GG-mvs-BLEND | | | 44.87 161 | 64.59 59 | 21.86 203 | 0.01 218 | 73.70 57 | 55.99 111 | 0.01 215 | 50.70 78 | 0.01 219 | 49.18 69 | 63.61 41 | 0.01 214 | 63.83 92 | 64.50 93 | 75.13 81 | 86.62 38 |
|
pmmvs-eth3d | | | 44.67 162 | 45.27 174 | 43.98 148 | 42.56 175 | 55.72 177 | 44.97 164 | 40.81 141 | 31.96 163 | 29.13 130 | 26.09 178 | 25.27 195 | 36.69 148 | 55.13 168 | 56.62 162 | 69.68 150 | 66.12 163 |
|
MDTV_nov1_ep13_2view | | | 44.44 163 | 45.75 172 | 42.91 154 | 46.13 156 | 63.43 137 | 46.53 158 | 34.20 181 | 29.08 177 | 19.95 168 | 26.23 177 | 27.89 185 | 35.88 149 | 53.36 176 | 56.43 163 | 74.74 89 | 63.86 169 |
|
CMPMVS |  | 33.64 16 | 44.39 164 | 46.41 170 | 42.03 158 | 44.21 170 | 56.50 171 | 46.73 156 | 26.48 203 | 34.20 152 | 35.14 98 | 24.22 183 | 34.64 152 | 40.52 139 | 56.50 163 | 56.07 166 | 59.12 189 | 62.74 172 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Vis-MVSNet (Re-imp) | | | 44.31 165 | 51.67 142 | 35.72 180 | 51.82 123 | 55.24 179 | 34.57 186 | 41.63 134 | 39.10 124 | 8.84 196 | 45.93 80 | 46.63 104 | 14.45 196 | 54.09 172 | 57.03 159 | 63.00 180 | 63.65 170 |
|
TAMVS | | | 44.27 166 | 49.35 157 | 38.35 174 | 44.74 165 | 61.04 151 | 39.07 178 | 31.82 192 | 29.95 173 | 18.34 176 | 33.55 138 | 39.94 133 | 30.01 171 | 56.85 161 | 57.58 155 | 66.13 166 | 66.54 161 |
|
MVS-HIRNet | | | 43.98 167 | 43.63 178 | 44.39 144 | 47.66 150 | 59.31 160 | 32.66 193 | 33.88 186 | 30.15 172 | 33.75 108 | 16.82 202 | 28.39 184 | 45.25 116 | 53.92 175 | 55.00 171 | 73.16 124 | 61.80 173 |
|
UniMVSNet_ETH3D | | | 43.97 168 | 46.01 171 | 41.59 160 | 38.31 181 | 56.20 172 | 49.69 140 | 38.18 155 | 28.18 178 | 19.88 169 | 27.82 172 | 30.20 176 | 33.41 161 | 54.18 170 | 56.30 164 | 70.05 147 | 69.17 155 |
|
RPMNet | | | 43.70 169 | 48.17 162 | 38.48 173 | 45.52 161 | 55.95 173 | 37.66 181 | 26.63 202 | 42.17 109 | 25.47 143 | 29.59 165 | 37.61 135 | 33.87 153 | 50.85 182 | 52.02 181 | 61.75 186 | 69.00 156 |
|
PatchMatch-RL | | | 43.37 170 | 44.93 175 | 41.56 161 | 37.94 183 | 51.70 181 | 40.02 176 | 35.75 168 | 39.04 125 | 30.71 122 | 35.14 127 | 27.43 187 | 46.58 110 | 51.99 178 | 50.55 185 | 58.38 191 | 58.64 182 |
|
FMVSNet5 | | | 43.29 171 | 47.07 166 | 38.87 171 | 30.46 202 | 50.99 183 | 45.87 160 | 37.19 162 | 42.17 109 | 19.32 171 | 26.77 174 | 40.51 130 | 30.26 170 | 56.82 162 | 55.81 168 | 70.10 146 | 56.46 188 |
|
test0.0.03 1 | | | 43.07 172 | 46.95 167 | 38.54 172 | 51.68 125 | 58.77 164 | 35.28 182 | 46.35 88 | 32.05 162 | 12.44 185 | 28.53 169 | 35.52 145 | 14.40 197 | 57.12 160 | 56.93 160 | 71.11 138 | 59.69 178 |
|
anonymousdsp | | | 43.03 173 | 47.19 165 | 38.18 175 | 36.00 193 | 56.92 170 | 38.44 179 | 34.56 176 | 24.22 194 | 22.53 157 | 29.69 164 | 29.92 177 | 35.21 151 | 53.96 174 | 58.98 150 | 62.32 183 | 76.66 110 |
|
USDC | | | 42.80 174 | 45.57 173 | 39.58 168 | 34.55 195 | 51.13 182 | 42.61 170 | 36.21 165 | 39.59 122 | 23.65 151 | 33.13 141 | 20.87 203 | 37.86 144 | 55.35 167 | 57.16 158 | 62.61 181 | 61.75 174 |
|
pmnet_mix02 | | | 42.41 175 | 43.24 180 | 41.44 163 | 45.80 158 | 57.46 168 | 42.19 171 | 41.57 135 | 29.38 175 | 23.39 152 | 26.08 179 | 23.96 199 | 27.31 178 | 51.50 179 | 53.76 175 | 68.36 155 | 60.58 177 |
|
CHOSEN 280x420 | | | 42.39 176 | 47.40 164 | 36.54 178 | 33.56 198 | 39.66 206 | 40.67 175 | 26.88 201 | 34.66 149 | 18.03 177 | 30.09 159 | 45.59 109 | 44.82 123 | 54.46 169 | 54.00 174 | 55.28 198 | 73.32 126 |
|
pmmvs6 | | | 41.90 177 | 44.01 177 | 39.43 169 | 44.45 166 | 58.77 164 | 41.92 172 | 39.22 148 | 21.74 196 | 19.08 174 | 17.40 200 | 31.33 172 | 24.28 185 | 55.94 165 | 56.67 161 | 67.60 160 | 66.24 162 |
|
Anonymous20231206 | | | 40.63 178 | 43.29 179 | 37.53 176 | 48.88 146 | 55.81 175 | 34.99 183 | 44.98 97 | 28.16 179 | 10.16 193 | 17.26 201 | 27.50 186 | 18.28 190 | 54.00 173 | 55.07 170 | 67.85 158 | 65.23 165 |
|
CVMVSNet | | | 38.91 179 | 44.49 176 | 32.40 189 | 34.57 194 | 47.20 194 | 34.81 184 | 34.20 181 | 31.45 166 | 8.95 195 | 38.86 111 | 36.38 142 | 24.30 184 | 47.77 186 | 46.94 197 | 57.59 193 | 62.85 171 |
|
COLMAP_ROB |  | 34.79 15 | 38.65 180 | 40.72 183 | 36.23 179 | 36.41 192 | 49.22 190 | 45.51 162 | 27.60 200 | 37.81 130 | 20.54 164 | 23.37 185 | 24.25 197 | 28.11 177 | 51.02 181 | 48.55 188 | 59.22 188 | 50.82 198 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 38.23 181 | 41.72 182 | 34.15 182 | 40.56 179 | 50.07 186 | 33.17 190 | 44.35 105 | 27.64 184 | 5.54 205 | 30.84 153 | 26.67 188 | 14.99 194 | 45.64 189 | 52.38 180 | 66.29 165 | 58.83 181 |
|
WR-MVS | | | 37.61 182 | 42.15 181 | 32.31 191 | 43.64 171 | 51.85 180 | 29.39 199 | 43.35 120 | 27.65 183 | 4.40 207 | 29.90 161 | 29.80 178 | 10.46 200 | 46.73 188 | 51.98 182 | 62.60 182 | 57.16 185 |
|
TinyColmap | | | 37.18 183 | 37.37 196 | 36.95 177 | 31.17 201 | 45.21 197 | 39.71 177 | 34.65 174 | 29.83 174 | 20.20 165 | 18.54 195 | 13.72 211 | 38.27 142 | 50.33 183 | 51.57 183 | 57.71 192 | 52.42 195 |
|
CP-MVSNet | | | 37.09 184 | 40.62 184 | 32.99 184 | 37.56 185 | 48.25 191 | 32.75 191 | 43.05 125 | 27.88 181 | 5.93 201 | 31.27 151 | 25.82 193 | 15.09 192 | 43.37 196 | 48.82 186 | 63.54 177 | 58.90 179 |
|
DTE-MVSNet | | | 36.91 185 | 40.44 185 | 32.79 187 | 40.74 177 | 47.55 193 | 30.71 197 | 44.39 102 | 27.03 186 | 4.32 208 | 30.88 152 | 25.99 191 | 12.73 198 | 45.58 190 | 50.80 184 | 63.86 174 | 55.23 191 |
|
PS-CasMVS | | | 36.84 186 | 40.23 188 | 32.89 185 | 37.44 186 | 48.09 192 | 32.68 192 | 42.97 127 | 27.36 185 | 5.89 202 | 30.08 160 | 25.48 194 | 14.96 195 | 43.28 197 | 48.71 187 | 63.39 178 | 58.63 183 |
|
WR-MVS_H | | | 36.29 187 | 40.35 187 | 31.55 193 | 37.80 184 | 49.94 188 | 30.57 198 | 41.11 138 | 26.90 187 | 4.14 209 | 30.72 155 | 28.85 182 | 10.45 201 | 42.47 198 | 47.99 192 | 65.24 168 | 55.54 189 |
|
SixPastTwentyTwo | | | 36.11 188 | 37.80 192 | 34.13 183 | 37.13 189 | 46.72 195 | 34.58 185 | 34.96 172 | 21.20 199 | 11.66 186 | 29.15 168 | 19.88 204 | 29.77 173 | 44.93 191 | 48.34 189 | 56.67 195 | 54.41 193 |
|
test20.03 | | | 36.00 189 | 38.92 189 | 32.60 188 | 45.92 157 | 50.99 183 | 28.05 203 | 43.69 116 | 21.62 197 | 6.03 200 | 17.61 199 | 25.91 192 | 8.34 207 | 51.26 180 | 52.60 179 | 63.58 175 | 52.46 194 |
|
TDRefinement | | | 35.76 190 | 38.23 190 | 32.88 186 | 19.09 211 | 46.04 196 | 43.29 168 | 29.49 195 | 33.49 156 | 19.04 175 | 22.29 189 | 17.82 206 | 29.69 175 | 48.60 185 | 47.24 195 | 56.65 196 | 52.12 196 |
|
LTVRE_ROB | | 32.83 17 | 35.10 191 | 37.46 193 | 32.35 190 | 43.12 173 | 49.99 187 | 28.52 201 | 33.23 188 | 12.73 210 | 8.18 197 | 27.71 173 | 21.34 202 | 32.64 163 | 46.92 187 | 48.11 190 | 48.41 202 | 55.45 190 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PM-MVS | | | 34.96 192 | 38.17 191 | 31.22 194 | 22.78 206 | 40.82 202 | 33.56 188 | 23.61 205 | 29.16 176 | 21.43 161 | 28.00 171 | 21.43 201 | 31.90 165 | 44.33 194 | 42.12 200 | 54.07 200 | 61.34 175 |
|
testgi | | | 34.51 193 | 37.42 194 | 31.12 195 | 47.37 153 | 50.34 185 | 24.38 208 | 41.21 136 | 20.32 201 | 5.64 204 | 20.56 191 | 26.55 189 | 8.06 208 | 49.28 184 | 52.65 178 | 60.05 187 | 42.23 204 |
|
MDA-MVSNet-bldmvs | | | 34.31 194 | 34.11 200 | 34.54 181 | 24.73 204 | 49.66 189 | 33.42 189 | 43.03 126 | 21.59 198 | 11.10 190 | 19.81 193 | 12.68 212 | 31.41 166 | 35.59 203 | 48.05 191 | 63.56 176 | 51.39 197 |
|
N_pmnet | | | 34.09 195 | 35.74 198 | 32.17 192 | 37.25 188 | 43.17 200 | 32.26 195 | 35.57 169 | 26.22 190 | 10.60 192 | 20.44 192 | 19.38 205 | 20.20 188 | 44.59 193 | 47.00 196 | 57.13 194 | 49.35 201 |
|
RPSCF | | | 33.61 196 | 40.43 186 | 25.65 199 | 16.00 213 | 32.41 208 | 31.73 196 | 13.33 212 | 50.13 80 | 23.12 153 | 31.56 148 | 40.09 131 | 32.73 162 | 41.14 202 | 37.05 203 | 36.99 208 | 50.63 199 |
|
EU-MVSNet | | | 33.00 197 | 36.49 197 | 28.92 196 | 33.10 199 | 42.86 201 | 29.32 200 | 35.99 166 | 22.94 195 | 5.83 203 | 25.29 180 | 24.43 196 | 15.21 191 | 41.22 201 | 41.65 202 | 54.08 199 | 57.01 186 |
|
pmmvs3 | | | 31.22 198 | 33.62 201 | 28.43 197 | 22.82 205 | 40.26 205 | 26.40 204 | 22.05 207 | 16.89 207 | 10.99 191 | 14.72 204 | 16.26 207 | 29.70 174 | 44.82 192 | 47.39 194 | 58.61 190 | 54.98 192 |
|
FC-MVSNet-test | | | 30.97 199 | 37.38 195 | 23.49 202 | 37.42 187 | 33.68 207 | 19.43 210 | 39.27 146 | 31.37 167 | 1.67 215 | 38.56 113 | 28.85 182 | 6.06 211 | 41.40 199 | 43.80 199 | 37.10 207 | 44.03 203 |
|
new-patchmatchnet | | | 30.47 200 | 32.80 203 | 27.75 198 | 36.81 190 | 43.98 198 | 24.85 206 | 39.29 145 | 20.52 200 | 4.06 210 | 15.94 203 | 16.05 208 | 9.57 202 | 41.32 200 | 42.05 201 | 51.94 201 | 49.74 200 |
|
MIMVSNet1 | | | 29.60 201 | 33.37 202 | 25.20 201 | 19.52 209 | 43.94 199 | 26.29 205 | 37.92 157 | 19.95 204 | 3.79 211 | 12.64 208 | 21.99 200 | 7.70 209 | 43.83 195 | 46.32 198 | 55.97 197 | 44.92 202 |
|
FPMVS | | | 26.87 202 | 28.19 204 | 25.32 200 | 27.09 203 | 29.49 209 | 32.28 194 | 17.79 209 | 28.09 180 | 11.33 187 | 19.38 194 | 14.69 209 | 20.88 187 | 35.11 204 | 32.82 205 | 42.56 204 | 37.75 205 |
|
PMVS |  | 18.18 18 | 21.95 203 | 22.85 205 | 20.90 204 | 21.92 207 | 14.78 211 | 19.95 209 | 17.31 210 | 15.69 208 | 11.32 188 | 13.70 205 | 13.91 210 | 15.02 193 | 34.92 205 | 31.72 206 | 39.85 206 | 35.20 206 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 19.10 204 | 22.71 206 | 14.89 206 | 10.93 215 | 24.08 210 | 14.22 211 | 13.94 211 | 18.68 205 | 2.93 212 | 12.84 207 | 11.27 213 | 11.94 199 | 30.57 207 | 30.58 207 | 35.38 209 | 30.93 207 |
|
Gipuma |  | | 17.16 205 | 17.83 207 | 16.36 205 | 18.76 212 | 12.15 214 | 11.97 212 | 27.78 199 | 17.94 206 | 4.86 206 | 2.53 214 | 2.73 218 | 8.90 205 | 34.32 206 | 36.09 204 | 25.92 210 | 19.06 209 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 12.25 206 | 14.17 208 | 10.00 209 | 11.39 214 | 14.35 212 | 8.21 213 | 19.29 208 | 9.31 211 | 0.19 218 | 7.38 210 | 6.19 216 | 1.10 213 | 19.26 208 | 21.13 209 | 19.85 211 | 21.56 208 |
|
E-PMN | | | 10.66 207 | 8.30 210 | 13.42 207 | 19.91 208 | 7.87 215 | 4.30 216 | 29.47 196 | 8.37 214 | 1.70 214 | 3.67 211 | 1.29 221 | 9.12 204 | 8.98 212 | 13.59 210 | 16.03 212 | 14.30 212 |
|
EMVS | | | 10.15 208 | 7.67 211 | 13.05 208 | 19.22 210 | 7.77 216 | 4.48 214 | 29.34 197 | 8.65 213 | 1.67 215 | 3.55 212 | 1.36 220 | 9.15 203 | 8.15 213 | 11.79 212 | 14.44 213 | 12.43 213 |
|
MVE |  | 10.35 19 | 9.76 209 | 11.08 209 | 8.22 210 | 4.43 216 | 13.04 213 | 3.36 217 | 23.57 206 | 5.74 215 | 1.76 213 | 3.09 213 | 1.75 219 | 6.78 210 | 12.78 210 | 23.04 208 | 9.44 214 | 18.09 210 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.01 210 | 0.01 212 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.01 216 | 0.00 220 | 0.02 215 | 0.00 222 | 0.00 216 | 0.01 214 | 0.01 213 | 0.00 217 | 0.03 214 |
|
test123 | | | 0.01 210 | 0.01 212 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.01 216 | 0.00 220 | 0.02 215 | 0.00 222 | 0.01 214 | 0.00 215 | 0.01 213 | 0.00 217 | 0.03 214 |
|
uanet_test | | | 0.00 212 | 0.00 214 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.00 218 | 0.00 220 | 0.00 217 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 215 | 0.00 217 | 0.00 216 |
|
sosnet-low-res | | | 0.00 212 | 0.00 214 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.00 218 | 0.00 220 | 0.00 217 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 215 | 0.00 217 | 0.00 216 |
|
sosnet | | | 0.00 212 | 0.00 214 | 0.00 212 | 0.00 219 | 0.00 219 | 0.00 220 | 0.00 216 | 0.00 218 | 0.00 220 | 0.00 217 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 215 | 0.00 217 | 0.00 216 |
|
RE-MVS-def | | | | | | | | | | | 21.59 160 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 80.07 5 | | | | | |
|
SR-MVS | | | | | | 63.74 46 | | | 48.51 61 | | | | 73.80 18 | | | | | |
|
Anonymous202405211 | | | | 56.81 105 | | 60.91 68 | 73.48 60 | 59.82 83 | 48.68 58 | 39.26 123 | | 24.00 184 | 46.77 103 | 50.73 81 | 65.28 77 | 65.72 75 | 75.37 77 | 83.17 62 |
|
our_test_3 | | | | | | 49.68 140 | 61.50 149 | 45.84 161 | | | | | | | | | | |
|
ambc | | | | 35.52 199 | | 38.36 180 | 40.40 204 | 28.38 202 | | 25.20 193 | 14.87 181 | 13.22 206 | 7.54 215 | 19.34 189 | 55.63 166 | 47.79 193 | 47.91 203 | 58.89 180 |
|
MTAPA | | | | | | | | | | | 54.82 16 | | 71.98 24 | | | | | |
|
MTMP | | | | | | | | | | | 50.64 32 | | 68.31 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 0.69 219 | | | | | | | | | | |
|
tmp_tt | | | | | 4.41 211 | 2.56 217 | 1.81 218 | 2.61 218 | 0.27 214 | 20.12 202 | 9.81 194 | 17.69 198 | 9.04 214 | 1.96 212 | 12.88 209 | 12.11 211 | 9.23 215 | |
|
XVS | | | | | | 62.70 54 | 73.06 63 | 61.80 70 | | | 42.02 71 | | 63.42 43 | | | | 74.68 93 | |
|
X-MVStestdata | | | | | | 62.70 54 | 73.06 63 | 61.80 70 | | | 42.02 71 | | 63.42 43 | | | | 74.68 93 | |
|
abl_6 | | | | | 63.79 23 | 70.80 23 | 81.22 12 | 65.26 58 | 53.25 30 | 77.02 18 | 53.02 24 | 65.14 30 | 73.74 19 | 60.30 20 | | | 80.13 8 | 90.27 10 |
|
mPP-MVS | | | | | | 63.08 51 | | | | | | | 62.34 46 | | | | | |
|
NP-MVS | | | | | | | | | | 72.62 30 | | | | | | | | |
|
Patchmtry | | | | | | | 64.49 130 | 52.06 133 | 34.21 179 | | 31.74 116 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 5.87 217 | 4.32 215 | 1.74 213 | 9.04 212 | 1.30 217 | 7.97 209 | 3.16 217 | 8.56 206 | 9.74 211 | | 6.30 216 | 14.51 211 |
|