SED-MVS | | | 95.53 1 | 95.79 1 | 95.23 1 | 97.60 9 | 98.92 1 | 95.99 5 | 92.05 8 | 97.14 1 | 94.19 1 | 94.71 7 | 93.25 1 | 95.08 1 | 94.32 11 | 92.59 15 | 96.49 18 | 99.58 3 |
|
DPE-MVS |  | | 95.10 2 | 95.53 2 | 94.60 5 | 97.77 7 | 98.64 3 | 96.60 4 | 92.45 6 | 96.34 5 | 91.41 5 | 96.70 2 | 92.26 5 | 93.56 4 | 93.68 17 | 91.73 29 | 95.79 37 | 99.37 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS | | | 95.06 3 | 95.37 4 | 94.70 2 | 97.59 10 | 98.89 2 | 95.37 11 | 92.04 9 | 96.85 3 | 94.00 2 | 92.81 14 | 93.02 2 | 92.93 5 | 94.22 14 | 92.15 20 | 96.30 24 | 99.61 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSP-MVS | | | 95.00 4 | 95.47 3 | 94.45 6 | 96.78 18 | 98.11 9 | 95.72 7 | 90.91 14 | 96.68 4 | 91.57 4 | 96.98 1 | 89.47 13 | 94.76 2 | 95.24 3 | 92.15 20 | 96.98 7 | 99.64 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 94.53 5 | 94.85 6 | 94.15 8 | 98.03 4 | 98.59 4 | 95.56 8 | 92.91 3 | 94.86 13 | 88.46 15 | 91.32 21 | 90.83 10 | 94.03 3 | 95.20 4 | 94.16 5 | 95.89 33 | 99.01 15 |
|
SF-MVS | | | 94.40 6 | 94.15 11 | 94.70 2 | 98.25 2 | 98.24 6 | 96.86 2 | 93.46 1 | 94.87 11 | 90.26 9 | 95.96 3 | 88.42 16 | 92.76 8 | 92.29 30 | 90.84 41 | 96.62 13 | 98.44 27 |
|
APDe-MVS | | | 94.31 7 | 94.30 9 | 94.33 7 | 97.57 11 | 98.06 11 | 95.79 6 | 91.98 10 | 95.50 8 | 92.19 3 | 95.25 5 | 87.97 19 | 92.93 5 | 93.01 24 | 91.02 39 | 95.52 39 | 99.29 8 |
|
MCST-MVS | | | 94.10 8 | 94.77 7 | 93.31 10 | 98.31 1 | 98.34 5 | 95.43 9 | 92.54 5 | 94.41 17 | 83.05 31 | 91.38 19 | 90.97 9 | 92.24 13 | 95.05 6 | 94.02 6 | 98.31 1 | 99.20 10 |
|
HPM-MVS++ |  | | 94.04 9 | 94.96 5 | 92.96 12 | 97.93 5 | 97.71 17 | 94.65 14 | 91.01 13 | 95.91 6 | 87.43 17 | 93.52 11 | 92.63 4 | 92.29 12 | 94.22 14 | 92.34 17 | 94.47 58 | 98.37 29 |
|
NCCC | | | 93.59 10 | 94.00 13 | 93.10 11 | 97.90 6 | 97.93 13 | 95.40 10 | 92.39 7 | 94.47 16 | 84.94 22 | 91.21 22 | 89.32 14 | 92.53 10 | 93.90 16 | 92.98 12 | 95.44 41 | 98.22 32 |
|
SMA-MVS |  | | 93.47 11 | 94.29 10 | 92.52 14 | 97.72 8 | 97.77 16 | 94.46 17 | 90.19 17 | 94.96 10 | 87.15 18 | 90.15 25 | 90.99 8 | 91.49 16 | 94.31 12 | 93.33 10 | 94.10 64 | 98.53 25 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 93.47 11 | 93.44 16 | 93.50 9 | 97.06 14 | 97.09 27 | 95.27 12 | 91.47 11 | 95.71 7 | 89.57 12 | 93.66 9 | 86.28 25 | 92.81 7 | 92.06 34 | 90.70 43 | 94.83 55 | 98.60 21 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SD-MVS | | | 93.36 13 | 94.33 8 | 92.22 16 | 94.68 44 | 97.89 15 | 94.56 15 | 90.89 15 | 94.80 14 | 90.04 11 | 93.53 10 | 90.14 11 | 89.78 24 | 92.74 26 | 92.17 18 | 93.35 104 | 99.07 13 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 93.07 14 | 93.53 15 | 92.53 13 | 94.23 47 | 97.54 21 | 94.75 13 | 89.87 18 | 95.26 9 | 89.20 14 | 93.16 12 | 88.19 18 | 92.15 14 | 91.79 38 | 89.65 56 | 94.99 51 | 99.16 11 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 92.86 15 | 93.19 18 | 92.47 15 | 95.78 35 | 97.40 22 | 97.39 1 | 92.56 4 | 92.88 26 | 81.84 39 | 81.31 40 | 92.95 3 | 91.21 17 | 96.54 1 | 97.33 1 | 96.01 30 | 93.94 109 |
|
SteuartSystems-ACMMP | | | 92.31 16 | 93.31 17 | 91.15 23 | 96.88 16 | 97.36 23 | 93.95 21 | 89.44 20 | 92.62 27 | 83.20 28 | 94.34 8 | 85.55 27 | 88.95 31 | 93.07 23 | 91.90 25 | 94.51 57 | 98.30 30 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 92.16 17 | 92.91 21 | 91.28 22 | 96.95 15 | 97.36 23 | 93.66 22 | 89.23 22 | 93.33 21 | 83.71 26 | 90.53 23 | 86.84 22 | 90.39 20 | 93.30 22 | 91.56 31 | 93.74 75 | 97.43 46 |
|
HFP-MVS | | | 92.02 18 | 92.13 23 | 91.89 20 | 97.16 13 | 96.46 40 | 93.57 23 | 87.60 26 | 93.79 19 | 88.17 16 | 93.15 13 | 83.94 38 | 91.19 18 | 90.81 49 | 89.83 51 | 93.66 79 | 96.94 62 |
|
train_agg | | | 91.99 19 | 93.71 14 | 89.98 28 | 96.42 27 | 97.03 29 | 94.31 19 | 89.05 23 | 93.33 21 | 77.75 46 | 95.06 6 | 88.27 17 | 88.38 37 | 92.02 35 | 91.41 33 | 94.00 67 | 98.84 18 |
|
xxxxxxxxxxxxxcwj | | | 91.86 20 | 89.43 37 | 94.70 2 | 98.25 2 | 98.24 6 | 96.86 2 | 93.46 1 | 94.87 11 | 90.26 9 | 95.96 3 | 55.37 145 | 92.76 8 | 92.29 30 | 90.84 41 | 96.62 13 | 98.44 27 |
|
DeepC-MVS_fast | | 86.59 2 | 91.69 21 | 91.39 26 | 92.05 19 | 97.43 12 | 96.92 32 | 94.05 20 | 90.23 16 | 93.31 24 | 83.19 29 | 77.91 46 | 84.23 34 | 92.42 11 | 94.62 9 | 94.83 3 | 95.00 50 | 97.88 36 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
zzz-MVS | | | 91.59 22 | 91.12 27 | 92.13 17 | 96.76 19 | 96.68 35 | 93.39 24 | 88.00 25 | 93.63 20 | 90.76 8 | 83.97 36 | 85.33 29 | 89.89 23 | 91.60 40 | 89.65 56 | 94.00 67 | 96.97 60 |
|
TSAR-MVS + GP. | | | 91.29 23 | 93.11 20 | 89.18 34 | 87.81 85 | 96.21 46 | 92.51 33 | 83.83 46 | 94.24 18 | 83.77 25 | 91.87 18 | 89.62 12 | 90.07 21 | 90.40 53 | 90.31 47 | 97.09 6 | 99.10 12 |
|
ACMMPR | | | 91.15 24 | 91.44 25 | 90.81 24 | 96.61 21 | 96.25 44 | 93.09 25 | 87.08 29 | 93.32 23 | 84.78 23 | 92.08 17 | 82.10 44 | 89.71 25 | 90.24 54 | 89.82 52 | 93.61 84 | 96.30 74 |
|
DeepPCF-MVS | | 86.71 1 | 91.00 25 | 94.05 12 | 87.43 45 | 95.58 38 | 98.17 8 | 86.22 75 | 88.59 24 | 97.01 2 | 76.77 52 | 85.11 34 | 88.90 15 | 87.29 44 | 95.02 7 | 94.69 4 | 90.15 175 | 99.48 6 |
|
TSAR-MVS + ACMM | | | 90.98 26 | 93.18 19 | 88.42 39 | 95.69 36 | 96.73 34 | 94.52 16 | 86.97 32 | 92.99 25 | 76.32 53 | 92.31 16 | 86.64 23 | 84.40 69 | 92.97 25 | 92.02 22 | 92.62 127 | 98.59 22 |
|
MP-MVS |  | | 90.81 27 | 91.45 24 | 90.06 27 | 96.59 22 | 96.33 43 | 92.46 34 | 87.19 28 | 90.27 41 | 82.54 35 | 91.38 19 | 84.88 31 | 88.27 38 | 90.58 51 | 89.30 62 | 93.30 106 | 97.44 44 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVS | | | 90.57 28 | 90.68 29 | 90.44 25 | 96.13 29 | 95.90 51 | 92.77 30 | 86.86 33 | 92.12 31 | 84.19 24 | 89.18 28 | 82.37 42 | 89.43 29 | 89.65 63 | 88.43 70 | 93.27 107 | 97.13 54 |
|
MSLP-MVS++ | | | 90.33 29 | 88.82 41 | 92.10 18 | 96.52 25 | 95.93 47 | 94.35 18 | 86.26 34 | 88.37 54 | 89.24 13 | 75.94 52 | 82.60 41 | 89.71 25 | 89.45 66 | 92.17 18 | 96.51 17 | 97.24 51 |
|
CANet | | | 89.98 30 | 90.42 33 | 89.47 33 | 94.13 48 | 98.05 12 | 91.76 39 | 83.27 49 | 90.87 37 | 81.90 38 | 72.32 58 | 84.82 32 | 88.42 35 | 94.52 10 | 93.78 8 | 97.34 4 | 98.58 23 |
|
PGM-MVS | | | 89.97 31 | 90.64 31 | 89.18 34 | 96.53 24 | 95.90 51 | 93.06 26 | 82.48 57 | 90.04 43 | 80.37 41 | 92.75 15 | 80.96 49 | 88.93 32 | 89.88 59 | 89.08 64 | 93.69 78 | 95.86 78 |
|
PHI-MVS | | | 89.88 32 | 92.75 22 | 86.52 55 | 94.97 41 | 97.57 20 | 89.99 50 | 84.56 42 | 92.52 29 | 69.72 86 | 90.35 24 | 87.11 21 | 84.89 61 | 91.82 37 | 92.37 16 | 95.02 49 | 97.51 42 |
|
CSCG | | | 89.81 33 | 89.69 34 | 89.96 29 | 96.55 23 | 97.90 14 | 92.89 28 | 87.06 30 | 88.74 52 | 86.17 19 | 78.24 45 | 86.53 24 | 84.75 64 | 87.82 86 | 90.59 44 | 92.32 132 | 98.01 34 |
|
X-MVS | | | 89.73 34 | 90.65 30 | 88.66 37 | 96.44 26 | 95.93 47 | 92.26 36 | 86.98 31 | 90.73 38 | 76.32 53 | 89.56 27 | 82.05 45 | 86.51 50 | 89.98 57 | 89.60 58 | 93.43 99 | 96.72 69 |
|
EPNet | | | 89.30 35 | 90.89 28 | 87.44 44 | 95.67 37 | 96.81 33 | 91.13 42 | 83.12 51 | 91.14 34 | 76.31 57 | 87.60 30 | 80.40 53 | 84.45 67 | 92.13 33 | 91.12 38 | 93.96 69 | 97.01 58 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepC-MVS | | 84.14 3 | 88.80 36 | 88.03 45 | 89.71 31 | 94.83 42 | 96.56 36 | 92.57 32 | 89.38 21 | 89.25 49 | 79.59 43 | 70.02 68 | 77.05 65 | 88.24 39 | 92.44 28 | 92.79 13 | 93.65 82 | 98.10 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 88.76 37 | 90.43 32 | 86.81 51 | 96.04 31 | 96.53 39 | 92.95 27 | 85.95 36 | 90.36 40 | 67.93 91 | 85.80 33 | 80.69 50 | 83.82 72 | 90.81 49 | 91.85 28 | 94.18 62 | 96.99 59 |
|
3Dnovator+ | | 81.14 5 | 88.59 38 | 87.49 47 | 89.88 30 | 95.83 34 | 96.45 42 | 91.94 38 | 82.41 58 | 87.09 59 | 85.94 21 | 62.80 96 | 85.37 28 | 89.46 27 | 91.51 41 | 91.89 27 | 93.72 76 | 97.30 49 |
|
ACMMP |  | | 88.48 39 | 88.71 42 | 88.22 41 | 94.61 45 | 95.53 56 | 90.64 46 | 85.60 38 | 90.97 35 | 78.62 45 | 89.88 26 | 74.20 78 | 86.29 51 | 88.16 83 | 86.37 89 | 93.57 85 | 95.86 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
AdaColmap |  | | 88.46 40 | 85.75 61 | 91.62 21 | 96.25 28 | 95.35 60 | 90.71 44 | 91.08 12 | 90.22 42 | 86.17 19 | 74.33 54 | 73.67 82 | 92.00 15 | 86.31 103 | 85.82 98 | 93.52 88 | 94.53 96 |
|
MVS_0304 | | | 88.43 41 | 89.46 36 | 87.21 46 | 91.85 60 | 97.60 18 | 92.62 31 | 81.10 64 | 87.16 58 | 73.80 64 | 72.19 60 | 83.36 40 | 87.03 45 | 94.64 8 | 93.67 9 | 96.88 9 | 97.64 41 |
|
3Dnovator | | 80.58 8 | 88.20 42 | 86.53 53 | 90.15 26 | 96.86 17 | 96.46 40 | 91.97 37 | 83.06 52 | 85.16 64 | 83.66 27 | 62.28 99 | 82.15 43 | 88.98 30 | 90.99 47 | 92.65 14 | 96.38 23 | 96.03 75 |
|
CPTT-MVS | | | 88.17 43 | 87.84 46 | 88.55 38 | 93.33 50 | 93.75 76 | 92.33 35 | 84.75 41 | 89.87 45 | 81.72 40 | 83.93 37 | 81.12 48 | 88.45 34 | 85.42 112 | 84.07 117 | 90.72 167 | 96.72 69 |
|
MVS_111021_HR | | | 87.82 44 | 88.84 40 | 86.62 53 | 94.42 46 | 97.36 23 | 88.21 59 | 83.26 50 | 83.42 67 | 72.52 74 | 82.63 38 | 76.93 66 | 84.95 60 | 91.93 36 | 91.15 37 | 96.39 22 | 98.49 26 |
|
DELS-MVS | | | 87.75 45 | 86.92 51 | 88.71 36 | 94.69 43 | 97.34 26 | 92.78 29 | 84.50 43 | 77.87 91 | 81.94 37 | 67.17 76 | 75.49 73 | 82.84 79 | 95.38 2 | 95.93 2 | 95.55 38 | 99.27 9 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVSTER | | | 87.68 46 | 89.12 39 | 86.01 57 | 88.11 83 | 90.05 114 | 89.28 53 | 77.05 84 | 91.37 32 | 79.97 42 | 76.70 50 | 85.25 30 | 84.89 61 | 93.53 18 | 91.41 33 | 96.73 11 | 95.55 85 |
|
MVS_111021_LR | | | 87.58 47 | 88.67 43 | 86.31 56 | 92.58 54 | 95.89 53 | 86.20 76 | 82.49 56 | 89.08 51 | 77.47 49 | 86.20 32 | 74.22 77 | 85.49 56 | 90.03 56 | 88.52 68 | 93.66 79 | 96.74 68 |
|
CS-MVS | | | 87.41 48 | 89.43 37 | 85.04 61 | 86.76 94 | 94.49 69 | 86.38 74 | 74.86 97 | 90.66 39 | 75.65 59 | 77.20 49 | 80.41 52 | 90.66 19 | 93.47 19 | 91.22 35 | 95.96 31 | 98.58 23 |
|
QAPM | | | 87.06 49 | 86.46 54 | 87.75 42 | 96.63 20 | 97.09 27 | 91.71 40 | 82.62 55 | 80.58 81 | 71.28 79 | 66.04 83 | 84.24 33 | 87.01 46 | 89.93 58 | 89.91 50 | 97.26 5 | 97.44 44 |
|
PVSNet_BlendedMVS | | | 86.98 50 | 87.05 49 | 86.90 48 | 93.03 51 | 96.98 30 | 86.57 71 | 81.82 60 | 89.78 46 | 82.78 33 | 71.54 61 | 66.07 110 | 80.73 90 | 93.46 20 | 91.97 23 | 96.45 20 | 99.53 4 |
|
PVSNet_Blended | | | 86.98 50 | 87.05 49 | 86.90 48 | 93.03 51 | 96.98 30 | 86.57 71 | 81.82 60 | 89.78 46 | 82.78 33 | 71.54 61 | 66.07 110 | 80.73 90 | 93.46 20 | 91.97 23 | 96.45 20 | 99.53 4 |
|
ETV-MVS | | | 86.94 52 | 89.49 35 | 83.95 68 | 87.28 90 | 95.61 55 | 83.58 100 | 76.37 89 | 92.59 28 | 73.20 66 | 80.35 41 | 76.42 69 | 87.38 43 | 92.20 32 | 90.45 46 | 95.90 32 | 98.83 19 |
|
OMC-MVS | | | 86.38 53 | 86.21 58 | 86.57 54 | 92.30 56 | 94.35 70 | 87.60 63 | 83.51 48 | 92.32 30 | 77.37 50 | 72.27 59 | 77.83 58 | 86.59 49 | 87.62 88 | 85.95 95 | 92.08 136 | 93.11 122 |
|
HQP-MVS | | | 86.17 54 | 87.35 48 | 84.80 64 | 91.41 63 | 92.37 94 | 91.05 43 | 84.35 45 | 88.52 53 | 64.21 98 | 87.05 31 | 68.91 100 | 84.80 63 | 89.12 69 | 88.16 74 | 92.96 118 | 97.31 48 |
|
canonicalmvs | | | 85.93 55 | 86.26 57 | 85.54 58 | 88.94 74 | 95.44 57 | 89.56 51 | 76.01 91 | 87.83 55 | 77.70 47 | 76.43 51 | 68.66 102 | 87.80 42 | 87.02 91 | 91.51 32 | 93.25 108 | 96.95 61 |
|
MAR-MVS | | | 85.65 56 | 86.30 56 | 84.88 63 | 95.51 40 | 95.89 53 | 86.50 73 | 76.71 85 | 89.23 50 | 68.59 88 | 70.93 65 | 74.49 75 | 88.55 33 | 89.40 67 | 90.30 48 | 93.42 100 | 93.88 113 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 82.38 4 | 85.52 57 | 84.41 67 | 86.81 51 | 91.51 62 | 96.23 45 | 90.27 47 | 89.81 19 | 77.87 91 | 70.67 82 | 69.20 70 | 77.86 56 | 85.55 55 | 85.92 108 | 86.38 88 | 93.03 115 | 97.43 46 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CLD-MVS | | | 85.43 58 | 84.24 70 | 86.83 50 | 87.69 87 | 93.16 84 | 90.01 49 | 82.72 54 | 87.17 57 | 79.28 44 | 71.43 64 | 65.81 112 | 86.02 52 | 87.33 90 | 86.96 82 | 95.25 45 | 97.83 38 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OpenMVS |  | 77.91 11 | 85.09 59 | 83.42 74 | 87.03 47 | 96.12 30 | 96.55 38 | 89.36 52 | 81.59 62 | 79.19 87 | 75.20 60 | 55.84 125 | 79.04 55 | 84.45 67 | 88.47 77 | 89.35 61 | 95.48 40 | 95.48 86 |
|
TSAR-MVS + COLMAP | | | 84.93 60 | 85.79 60 | 83.92 69 | 90.90 65 | 93.57 80 | 89.25 54 | 82.00 59 | 91.29 33 | 61.66 106 | 88.25 29 | 59.46 133 | 86.71 48 | 89.79 60 | 87.09 80 | 93.01 116 | 91.09 142 |
|
TAPA-MVS | | 80.99 7 | 84.83 61 | 84.42 66 | 85.31 59 | 91.89 59 | 93.73 78 | 88.53 58 | 82.80 53 | 89.99 44 | 69.78 85 | 71.53 63 | 75.03 74 | 85.47 57 | 86.26 104 | 84.54 112 | 93.39 102 | 89.90 152 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PLC |  | 81.02 6 | 84.81 62 | 81.81 91 | 88.31 40 | 93.77 49 | 90.35 109 | 88.80 56 | 84.47 44 | 86.76 60 | 82.17 36 | 66.56 79 | 71.01 93 | 88.41 36 | 85.48 110 | 84.28 115 | 92.26 134 | 88.21 165 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EIA-MVS | | | 84.75 63 | 86.43 55 | 82.79 74 | 86.88 93 | 95.36 59 | 82.84 106 | 76.39 88 | 87.61 56 | 71.03 80 | 74.33 54 | 71.12 92 | 85.16 58 | 89.69 62 | 88.70 67 | 94.40 59 | 98.23 31 |
|
CNLPA | | | 84.72 64 | 82.14 86 | 87.73 43 | 92.85 53 | 93.83 75 | 84.70 91 | 85.07 39 | 90.90 36 | 83.16 30 | 56.28 121 | 71.53 89 | 88.14 40 | 84.19 117 | 84.00 121 | 92.48 129 | 94.26 103 |
|
MVS_Test | | | 84.60 65 | 85.13 65 | 83.99 67 | 88.17 81 | 95.27 61 | 88.21 59 | 73.15 112 | 84.31 66 | 70.55 83 | 68.67 74 | 68.78 101 | 86.99 47 | 91.71 39 | 91.90 25 | 96.84 10 | 95.27 90 |
|
casdiffmvs | | | 83.84 66 | 82.65 82 | 85.22 60 | 87.25 91 | 94.62 67 | 86.01 79 | 79.62 67 | 79.48 84 | 77.59 48 | 61.92 102 | 64.34 116 | 85.57 54 | 90.55 52 | 90.51 45 | 95.26 43 | 97.14 53 |
|
baseline | | | 83.83 67 | 84.38 68 | 83.18 73 | 86.65 96 | 94.59 68 | 85.79 82 | 73.78 109 | 85.83 62 | 72.94 67 | 69.28 69 | 70.80 95 | 83.45 75 | 86.80 94 | 87.59 76 | 96.47 19 | 95.77 82 |
|
diffmvs | | | 83.69 68 | 83.17 78 | 84.31 65 | 85.45 109 | 93.92 71 | 86.89 66 | 78.62 70 | 82.71 73 | 75.95 58 | 66.78 78 | 63.90 119 | 83.84 71 | 87.90 85 | 89.16 63 | 95.10 48 | 97.82 39 |
|
CS-MVS-test | | | 83.47 69 | 85.25 64 | 81.40 83 | 84.78 115 | 93.07 85 | 83.19 101 | 71.71 124 | 80.79 80 | 66.54 92 | 70.55 66 | 74.16 79 | 88.00 41 | 91.42 43 | 88.74 66 | 94.20 61 | 97.98 35 |
|
CANet_DTU | | | 83.33 70 | 86.59 52 | 79.53 95 | 88.88 75 | 94.87 64 | 86.63 70 | 68.85 145 | 85.45 63 | 50.54 152 | 77.86 47 | 69.94 98 | 85.62 53 | 92.63 27 | 90.88 40 | 96.63 12 | 94.46 97 |
|
DI_MVS_plusplus_trai | | | 83.32 71 | 82.53 84 | 84.25 66 | 86.26 103 | 93.66 79 | 90.23 48 | 77.16 83 | 77.05 98 | 74.06 63 | 53.74 135 | 74.33 76 | 83.61 74 | 91.40 44 | 89.82 52 | 94.17 63 | 97.73 40 |
|
baseline1 | | | 82.63 72 | 82.02 87 | 83.34 72 | 88.30 80 | 91.89 98 | 88.03 62 | 80.86 65 | 75.05 105 | 65.96 94 | 64.27 90 | 72.20 87 | 80.01 94 | 91.32 45 | 89.56 59 | 96.90 8 | 89.85 153 |
|
PVSNet_Blended_VisFu | | | 82.55 73 | 83.70 73 | 81.21 84 | 89.66 69 | 95.15 63 | 82.41 107 | 77.36 82 | 72.53 121 | 73.64 65 | 61.15 105 | 77.19 64 | 70.35 149 | 91.31 46 | 89.72 55 | 93.84 71 | 98.85 17 |
|
ET-MVSNet_ETH3D | | | 82.37 74 | 85.68 62 | 78.51 105 | 62.90 208 | 94.66 65 | 87.06 65 | 73.57 110 | 83.13 69 | 61.52 108 | 78.37 44 | 76.01 71 | 89.99 22 | 84.14 118 | 89.03 65 | 96.03 29 | 94.42 98 |
|
PMMVS | | | 82.26 75 | 85.48 63 | 78.51 105 | 85.92 106 | 91.92 97 | 78.30 138 | 70.77 130 | 86.30 61 | 61.11 110 | 82.46 39 | 70.88 94 | 84.70 65 | 88.05 84 | 84.78 108 | 90.24 174 | 93.98 107 |
|
ACMP | | 79.58 9 | 82.23 76 | 81.82 90 | 82.71 75 | 88.15 82 | 90.95 106 | 85.23 87 | 78.52 72 | 81.70 75 | 72.52 74 | 78.41 43 | 60.63 127 | 80.48 92 | 82.88 128 | 83.44 125 | 91.37 153 | 94.70 94 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CHOSEN 280x420 | | | 82.15 77 | 85.87 59 | 77.80 111 | 86.54 99 | 93.42 82 | 81.74 109 | 59.96 187 | 78.99 89 | 63.99 99 | 74.50 53 | 83.95 37 | 80.99 85 | 89.53 65 | 85.01 103 | 93.56 87 | 95.71 84 |
|
LGP-MVS_train | | | 82.12 78 | 82.57 83 | 81.59 80 | 89.26 73 | 90.23 112 | 88.76 57 | 78.05 73 | 81.26 77 | 61.64 107 | 79.52 42 | 62.11 122 | 79.59 96 | 85.20 113 | 84.68 110 | 92.27 133 | 95.02 92 |
|
FMVSNet3 | | | 81.93 79 | 81.98 88 | 81.88 79 | 79.49 148 | 87.02 130 | 88.15 61 | 72.57 115 | 83.02 70 | 72.63 71 | 56.55 117 | 73.48 83 | 82.34 82 | 91.49 42 | 91.20 36 | 96.07 25 | 91.13 141 |
|
thisisatest0530 | | | 81.67 80 | 84.27 69 | 78.63 101 | 85.53 107 | 93.88 74 | 81.77 108 | 73.84 106 | 81.35 76 | 63.85 101 | 68.79 72 | 77.64 60 | 73.02 130 | 88.73 75 | 85.73 99 | 93.76 74 | 93.80 117 |
|
tttt0517 | | | 81.51 81 | 84.12 72 | 78.47 107 | 85.33 111 | 93.74 77 | 81.42 113 | 73.84 106 | 81.21 78 | 63.59 102 | 68.73 73 | 77.46 63 | 73.02 130 | 88.47 77 | 85.73 99 | 93.63 83 | 93.49 121 |
|
OPM-MVS | | | 81.34 82 | 78.18 107 | 85.02 62 | 91.27 64 | 91.78 99 | 90.66 45 | 83.62 47 | 62.39 150 | 65.91 95 | 63.35 94 | 64.33 117 | 85.03 59 | 87.77 87 | 85.88 97 | 93.66 79 | 91.75 138 |
|
baseline2 | | | 81.21 83 | 83.36 77 | 78.70 99 | 83.22 126 | 92.71 87 | 80.32 119 | 74.25 105 | 80.39 82 | 63.94 100 | 68.89 71 | 68.44 103 | 74.67 116 | 89.61 64 | 86.68 86 | 95.83 36 | 96.81 67 |
|
IS_MVSNet | | | 80.92 84 | 84.14 71 | 77.16 114 | 87.43 88 | 93.90 73 | 80.44 115 | 74.64 99 | 75.05 105 | 61.10 111 | 65.59 85 | 76.89 67 | 67.39 157 | 90.88 48 | 90.05 49 | 91.95 140 | 96.62 72 |
|
ACMM | | 78.09 10 | 80.91 85 | 78.39 105 | 83.86 70 | 89.61 72 | 87.71 127 | 85.16 88 | 80.67 66 | 79.04 88 | 74.18 62 | 63.82 93 | 60.84 126 | 82.59 80 | 84.33 115 | 83.59 124 | 90.96 161 | 89.39 158 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPP-MVSNet | | | 80.82 86 | 82.79 80 | 78.52 103 | 86.31 102 | 92.37 94 | 79.83 122 | 74.51 100 | 73.79 114 | 64.46 97 | 67.01 77 | 80.63 51 | 74.33 119 | 85.63 109 | 84.35 114 | 91.68 146 | 95.79 81 |
|
CostFormer | | | 80.72 87 | 81.81 91 | 79.44 97 | 86.50 100 | 91.65 100 | 84.31 93 | 59.84 188 | 80.86 79 | 72.69 69 | 62.46 98 | 73.74 80 | 79.93 95 | 82.58 132 | 84.50 113 | 93.37 103 | 96.90 65 |
|
GBi-Net | | | 80.72 87 | 80.49 94 | 81.00 87 | 78.18 152 | 86.19 144 | 86.73 67 | 72.57 115 | 83.02 70 | 72.63 71 | 56.55 117 | 73.48 83 | 80.99 85 | 86.57 96 | 86.83 83 | 94.89 52 | 90.77 145 |
|
test1 | | | 80.72 87 | 80.49 94 | 81.00 87 | 78.18 152 | 86.19 144 | 86.73 67 | 72.57 115 | 83.02 70 | 72.63 71 | 56.55 117 | 73.48 83 | 80.99 85 | 86.57 96 | 86.83 83 | 94.89 52 | 90.77 145 |
|
UGNet | | | 80.71 90 | 83.09 79 | 77.93 110 | 87.02 92 | 92.71 87 | 80.28 120 | 76.53 86 | 73.83 113 | 71.35 78 | 70.07 67 | 73.71 81 | 58.93 177 | 87.39 89 | 86.97 81 | 93.48 95 | 96.94 62 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CHOSEN 1792x2688 | | | 80.23 91 | 79.16 102 | 81.48 81 | 91.97 57 | 96.56 36 | 86.18 77 | 75.40 95 | 76.17 101 | 61.32 109 | 37.43 195 | 61.08 125 | 76.52 109 | 92.35 29 | 91.64 30 | 97.46 3 | 98.86 16 |
|
thres100view900 | | | 79.83 92 | 77.79 111 | 82.21 76 | 88.42 77 | 93.54 81 | 87.07 64 | 81.11 63 | 70.15 128 | 61.01 112 | 56.65 115 | 51.22 150 | 81.78 83 | 89.77 61 | 85.95 95 | 93.84 71 | 97.26 50 |
|
Effi-MVS+ | | | 79.80 93 | 80.04 96 | 79.52 96 | 85.53 107 | 93.31 83 | 85.28 85 | 70.68 132 | 74.15 109 | 58.79 122 | 62.03 101 | 60.51 128 | 83.37 76 | 88.41 79 | 86.09 94 | 93.49 94 | 95.80 80 |
|
DCV-MVSNet | | | 79.76 94 | 79.17 101 | 80.44 92 | 84.65 116 | 84.51 168 | 84.20 95 | 72.36 120 | 75.17 104 | 70.81 81 | 66.21 82 | 66.56 107 | 80.99 85 | 82.89 127 | 84.56 111 | 89.65 180 | 94.30 102 |
|
FC-MVSNet-train | | | 79.54 95 | 78.20 106 | 81.09 86 | 86.55 98 | 88.63 123 | 79.96 121 | 78.53 71 | 70.90 126 | 68.24 89 | 65.87 84 | 56.45 143 | 80.29 93 | 86.20 106 | 84.08 116 | 92.97 117 | 95.31 89 |
|
test-LLR | | | 79.52 96 | 83.42 74 | 74.97 123 | 81.79 132 | 91.26 101 | 76.17 159 | 70.57 133 | 77.71 93 | 52.14 139 | 66.26 80 | 77.47 61 | 73.10 126 | 87.02 91 | 87.16 78 | 96.05 27 | 97.02 56 |
|
FMVSNet2 | | | 79.24 97 | 78.14 108 | 80.53 91 | 78.18 152 | 86.19 144 | 86.73 67 | 71.91 121 | 72.97 117 | 70.48 84 | 50.63 145 | 66.56 107 | 80.99 85 | 90.10 55 | 89.77 54 | 94.89 52 | 90.77 145 |
|
TESTMET0.1,1 | | | 79.15 98 | 83.42 74 | 74.18 129 | 79.81 146 | 91.26 101 | 76.17 159 | 67.83 159 | 77.71 93 | 52.14 139 | 66.26 80 | 77.47 61 | 73.10 126 | 87.02 91 | 87.16 78 | 96.05 27 | 97.02 56 |
|
tfpn200view9 | | | 79.05 99 | 77.21 114 | 81.18 85 | 88.42 77 | 92.55 92 | 85.12 89 | 77.94 75 | 70.15 128 | 61.01 112 | 56.65 115 | 51.22 150 | 81.11 84 | 88.23 80 | 84.80 107 | 93.50 93 | 96.90 65 |
|
PatchMatch-RL | | | 78.75 100 | 76.47 122 | 81.41 82 | 88.53 76 | 91.10 103 | 78.09 139 | 77.51 81 | 77.33 95 | 71.98 76 | 64.38 89 | 48.10 162 | 82.55 81 | 84.06 119 | 82.35 134 | 89.78 177 | 87.97 167 |
|
LS3D | | | 78.72 101 | 75.79 126 | 82.15 77 | 91.91 58 | 89.39 120 | 83.66 98 | 85.88 37 | 76.81 99 | 59.22 121 | 57.67 112 | 58.53 137 | 83.72 73 | 82.07 137 | 81.63 145 | 88.50 188 | 84.39 178 |
|
thres200 | | | 78.69 102 | 76.71 117 | 80.99 89 | 88.35 79 | 92.56 90 | 86.03 78 | 77.94 75 | 66.27 135 | 60.66 114 | 56.08 122 | 51.11 152 | 79.45 97 | 88.23 80 | 85.54 102 | 93.52 88 | 97.20 52 |
|
Anonymous20231211 | | | 78.61 103 | 75.57 129 | 82.15 77 | 84.43 120 | 90.26 110 | 84.08 96 | 77.68 78 | 71.09 124 | 72.90 68 | 39.24 188 | 66.21 109 | 84.23 70 | 82.15 135 | 84.04 118 | 89.61 181 | 96.03 75 |
|
IB-MVS | | 74.10 12 | 78.52 104 | 78.51 104 | 78.52 103 | 90.15 67 | 95.39 58 | 71.95 179 | 77.53 80 | 74.95 107 | 77.25 51 | 58.93 109 | 55.92 144 | 58.37 179 | 79.01 162 | 87.89 75 | 95.88 34 | 97.47 43 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPNet_dtu | | | 78.49 105 | 81.96 89 | 74.45 128 | 92.57 55 | 88.74 122 | 82.98 102 | 78.83 69 | 83.28 68 | 44.64 183 | 77.40 48 | 67.73 104 | 53.98 188 | 85.44 111 | 84.91 104 | 93.71 77 | 86.22 173 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres400 | | | 78.39 106 | 76.39 123 | 80.73 90 | 88.02 84 | 92.94 86 | 84.77 90 | 78.88 68 | 65.20 143 | 59.70 119 | 55.20 128 | 50.85 153 | 79.45 97 | 88.81 72 | 84.81 106 | 93.57 85 | 96.91 64 |
|
UA-Net | | | 78.30 107 | 80.92 93 | 75.25 122 | 87.42 89 | 92.48 93 | 79.54 125 | 75.49 94 | 60.47 154 | 60.52 115 | 68.44 75 | 84.08 36 | 57.54 181 | 88.54 76 | 88.45 69 | 90.96 161 | 83.97 180 |
|
Vis-MVSNet (Re-imp) | | | 78.28 108 | 82.68 81 | 73.16 140 | 86.64 97 | 92.68 89 | 78.07 140 | 74.48 101 | 74.05 110 | 53.47 132 | 64.22 91 | 76.52 68 | 54.28 184 | 88.96 71 | 88.29 72 | 92.03 138 | 94.00 106 |
|
MSDG | | | 78.11 109 | 73.17 142 | 83.86 70 | 91.78 61 | 86.83 132 | 85.25 86 | 86.02 35 | 72.84 119 | 69.69 87 | 51.43 142 | 54.00 147 | 77.61 101 | 81.95 140 | 82.27 136 | 92.83 123 | 82.91 185 |
|
HyFIR lowres test | | | 78.08 110 | 76.81 115 | 79.56 94 | 90.77 66 | 94.64 66 | 82.97 103 | 69.85 138 | 69.81 130 | 59.53 120 | 33.52 200 | 64.66 113 | 78.97 99 | 88.77 74 | 88.38 71 | 95.27 42 | 97.86 37 |
|
GeoE | | | 78.04 111 | 77.52 113 | 78.65 100 | 84.51 118 | 90.84 107 | 80.94 114 | 69.24 143 | 72.86 118 | 66.06 93 | 53.45 136 | 60.46 129 | 77.37 102 | 84.20 116 | 84.85 105 | 93.78 73 | 96.00 77 |
|
test-mter | | | 77.90 112 | 82.44 85 | 72.60 145 | 78.52 150 | 90.24 111 | 73.85 172 | 65.31 173 | 76.37 100 | 51.29 143 | 65.58 86 | 75.94 72 | 71.36 140 | 85.98 107 | 86.26 90 | 95.26 43 | 96.71 71 |
|
thres600view7 | | | 77.66 113 | 75.67 127 | 79.98 93 | 87.71 86 | 92.56 90 | 83.79 97 | 77.94 75 | 64.41 145 | 58.69 123 | 54.32 134 | 50.54 154 | 78.23 100 | 88.23 80 | 83.06 128 | 93.52 88 | 96.55 73 |
|
MS-PatchMatch | | | 77.47 114 | 76.48 121 | 78.63 101 | 89.89 68 | 90.42 108 | 85.42 84 | 69.53 140 | 70.79 127 | 60.43 116 | 50.05 147 | 70.62 97 | 70.66 146 | 86.71 95 | 82.54 131 | 95.86 35 | 84.23 179 |
|
Fast-Effi-MVS+ | | | 77.37 115 | 76.68 118 | 78.17 108 | 82.84 128 | 89.94 115 | 81.47 111 | 68.01 154 | 72.99 115 | 60.26 117 | 55.07 129 | 53.20 148 | 82.99 77 | 86.47 101 | 86.12 92 | 93.46 96 | 92.98 125 |
|
DROMVSNet | | | 77.37 115 | 76.68 118 | 78.17 108 | 82.84 128 | 89.94 115 | 81.47 111 | 68.01 154 | 72.99 115 | 60.26 117 | 55.07 129 | 53.20 148 | 82.99 77 | 86.47 101 | 86.12 92 | 93.46 96 | 92.98 125 |
|
Vis-MVSNet |  | | 77.24 117 | 79.99 99 | 74.02 130 | 84.62 117 | 93.92 71 | 80.33 118 | 72.55 118 | 62.58 149 | 55.25 130 | 64.45 88 | 69.49 99 | 57.00 182 | 88.78 73 | 88.21 73 | 94.36 60 | 92.54 129 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MDTV_nov1_ep13 | | | 77.20 118 | 80.04 96 | 73.90 132 | 82.22 130 | 90.14 113 | 79.25 129 | 61.52 183 | 78.63 90 | 56.98 124 | 65.52 87 | 72.80 86 | 73.05 128 | 80.93 148 | 83.20 126 | 90.36 171 | 89.05 161 |
|
EPMVS | | | 77.16 119 | 79.08 103 | 74.92 124 | 86.73 95 | 91.98 96 | 78.62 134 | 55.44 196 | 79.43 85 | 56.59 126 | 61.24 104 | 70.73 96 | 76.97 106 | 80.59 151 | 81.43 152 | 95.15 47 | 88.17 166 |
|
tpm cat1 | | | 76.93 120 | 76.19 125 | 77.79 112 | 85.08 114 | 88.58 124 | 82.96 104 | 59.33 189 | 75.72 103 | 72.64 70 | 51.25 143 | 64.41 115 | 75.74 113 | 77.90 171 | 80.10 168 | 90.97 160 | 95.35 87 |
|
PatchmatchNet |  | | 76.85 121 | 80.03 98 | 73.15 141 | 84.08 122 | 91.04 105 | 77.76 144 | 55.85 195 | 79.43 85 | 52.74 137 | 62.08 100 | 76.02 70 | 74.56 117 | 79.92 156 | 81.41 153 | 93.92 70 | 90.29 150 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IterMVS-LS | | | 76.80 122 | 76.33 124 | 77.35 113 | 84.07 123 | 84.11 170 | 81.54 110 | 68.52 147 | 66.17 136 | 61.74 105 | 57.84 111 | 64.31 118 | 74.88 115 | 83.48 124 | 86.21 91 | 93.34 105 | 92.16 133 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 76.57 123 | 76.78 116 | 76.32 117 | 80.94 139 | 89.75 117 | 82.94 105 | 72.64 114 | 59.01 160 | 62.95 104 | 58.60 110 | 62.67 121 | 66.91 159 | 86.26 104 | 87.20 77 | 91.57 148 | 93.97 108 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
SCA | | | 76.41 124 | 79.90 100 | 72.35 149 | 84.26 121 | 85.24 159 | 75.57 166 | 54.56 198 | 79.95 83 | 52.72 138 | 64.22 91 | 77.84 57 | 73.73 123 | 80.48 152 | 81.37 154 | 93.25 108 | 90.20 151 |
|
tpmrst | | | 76.27 125 | 77.65 112 | 74.66 126 | 86.13 105 | 89.53 119 | 79.31 128 | 54.91 197 | 77.19 97 | 56.27 127 | 55.87 124 | 64.58 114 | 77.25 103 | 80.85 149 | 80.21 165 | 94.07 65 | 95.32 88 |
|
dps | | | 75.76 126 | 75.02 131 | 76.63 116 | 84.51 118 | 88.12 125 | 77.51 145 | 58.33 191 | 75.91 102 | 71.98 76 | 57.37 113 | 57.85 138 | 76.81 108 | 77.89 172 | 78.40 177 | 90.63 168 | 89.63 155 |
|
CR-MVSNet | | | 74.84 127 | 77.91 109 | 71.26 162 | 81.77 134 | 85.52 155 | 78.32 136 | 54.14 200 | 74.05 110 | 51.09 146 | 50.00 148 | 71.38 91 | 70.77 144 | 86.48 99 | 84.03 119 | 91.46 152 | 93.92 110 |
|
Effi-MVS+-dtu | | | 74.57 128 | 74.60 135 | 74.53 127 | 81.38 136 | 86.74 134 | 80.39 117 | 67.70 160 | 67.36 134 | 53.06 133 | 59.86 107 | 57.50 139 | 75.84 112 | 80.19 154 | 78.62 175 | 88.79 187 | 91.95 137 |
|
test_part1 | | | 74.38 129 | 70.16 155 | 79.31 98 | 83.30 125 | 84.45 169 | 84.31 93 | 71.43 127 | 55.24 173 | 74.88 61 | 38.77 190 | 59.61 132 | 75.29 114 | 78.96 163 | 81.53 147 | 86.63 196 | 92.55 128 |
|
RPSCF | | | 74.27 130 | 73.24 141 | 75.48 121 | 81.01 138 | 80.18 192 | 76.24 158 | 72.37 119 | 74.84 108 | 68.24 89 | 72.47 57 | 67.39 105 | 73.89 120 | 71.05 196 | 69.38 203 | 81.14 208 | 77.37 197 |
|
FMVSNet1 | | | 74.26 131 | 71.95 147 | 76.95 115 | 74.28 184 | 83.94 172 | 83.61 99 | 69.99 136 | 57.08 166 | 65.08 96 | 42.39 177 | 57.41 140 | 76.98 105 | 86.57 96 | 86.83 83 | 91.77 145 | 89.42 156 |
|
GA-MVS | | | 73.62 132 | 74.52 136 | 72.58 146 | 79.93 144 | 89.29 121 | 78.02 141 | 71.67 125 | 60.79 153 | 42.68 187 | 54.41 133 | 49.07 158 | 70.07 150 | 89.39 68 | 86.55 87 | 93.13 113 | 92.12 134 |
|
Fast-Effi-MVS+-dtu | | | 73.56 133 | 75.32 130 | 71.50 158 | 80.35 141 | 86.83 132 | 79.72 123 | 58.07 192 | 67.64 133 | 44.83 180 | 60.28 106 | 54.07 146 | 73.59 125 | 81.90 142 | 82.30 135 | 92.46 130 | 94.18 104 |
|
tpm | | | 73.50 134 | 74.85 132 | 71.93 152 | 83.19 127 | 86.84 131 | 78.61 135 | 55.91 194 | 65.64 138 | 48.90 159 | 56.30 120 | 61.09 124 | 72.31 132 | 79.10 161 | 80.61 164 | 92.68 125 | 94.35 101 |
|
RPMNet | | | 73.46 135 | 77.85 110 | 68.34 172 | 81.71 135 | 85.52 155 | 73.83 173 | 50.54 207 | 74.05 110 | 46.10 174 | 53.03 139 | 71.91 88 | 66.31 161 | 83.55 122 | 82.18 138 | 91.55 150 | 94.71 93 |
|
USDC | | | 73.43 136 | 72.31 145 | 74.73 125 | 80.86 140 | 86.21 142 | 80.42 116 | 71.83 123 | 71.69 123 | 46.94 167 | 59.60 108 | 42.58 183 | 76.47 110 | 82.66 131 | 81.22 157 | 91.88 142 | 82.24 191 |
|
pmmvs4 | | | 73.38 137 | 71.53 150 | 75.55 120 | 75.95 170 | 85.24 159 | 77.25 149 | 71.59 126 | 71.03 125 | 63.10 103 | 49.09 153 | 44.22 173 | 73.73 123 | 82.04 138 | 80.18 166 | 91.68 146 | 88.89 163 |
|
UniMVSNet_NR-MVSNet | | | 73.11 138 | 72.59 143 | 73.71 135 | 76.90 161 | 86.58 138 | 77.01 150 | 75.82 92 | 65.59 139 | 48.82 160 | 50.97 144 | 48.42 160 | 71.61 136 | 79.19 160 | 83.03 129 | 92.11 135 | 94.37 99 |
|
FMVSNet5 | | | 72.83 139 | 73.89 139 | 71.59 156 | 67.42 202 | 76.28 200 | 75.88 163 | 63.74 177 | 77.27 96 | 54.59 131 | 53.32 137 | 71.48 90 | 73.85 121 | 81.95 140 | 81.69 143 | 94.06 66 | 75.20 201 |
|
PatchT | | | 72.66 140 | 76.58 120 | 68.09 174 | 79.02 149 | 86.09 148 | 59.81 201 | 51.78 205 | 72.00 122 | 51.09 146 | 46.84 157 | 66.70 106 | 70.77 144 | 86.48 99 | 84.03 119 | 96.07 25 | 93.92 110 |
|
ACMH | | 71.22 14 | 72.65 141 | 70.13 156 | 75.59 119 | 86.19 104 | 86.14 147 | 75.76 164 | 77.63 79 | 54.79 175 | 46.16 173 | 53.28 138 | 47.28 164 | 77.24 104 | 78.91 164 | 81.18 158 | 90.57 169 | 89.33 159 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS | | | 72.43 142 | 74.05 137 | 70.55 166 | 80.34 142 | 81.17 186 | 77.44 146 | 61.00 186 | 63.57 148 | 46.82 169 | 55.88 123 | 59.09 136 | 65.03 163 | 83.15 125 | 83.83 122 | 92.67 126 | 91.65 139 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH+ | | 72.14 13 | 72.38 143 | 69.34 163 | 75.93 118 | 85.21 112 | 84.89 163 | 76.96 153 | 76.04 90 | 59.76 155 | 51.63 142 | 50.37 146 | 48.69 159 | 76.90 107 | 76.06 180 | 78.69 173 | 88.85 186 | 86.90 171 |
|
DU-MVS | | | 72.19 144 | 71.35 151 | 73.17 139 | 75.95 170 | 86.02 149 | 77.01 150 | 74.42 102 | 65.39 141 | 48.82 160 | 49.10 151 | 42.81 181 | 71.61 136 | 78.67 165 | 83.10 127 | 91.22 156 | 94.37 99 |
|
IterMVS-SCA-FT | | | 72.18 145 | 73.96 138 | 70.11 168 | 80.15 143 | 81.11 187 | 77.42 147 | 61.09 185 | 63.67 147 | 46.73 170 | 55.77 126 | 59.15 135 | 63.95 166 | 82.83 129 | 83.70 123 | 91.31 154 | 91.49 140 |
|
UniMVSNet (Re) | | | 72.12 146 | 72.28 146 | 71.93 152 | 76.77 162 | 87.38 129 | 75.73 165 | 73.51 111 | 65.76 137 | 50.24 154 | 48.65 154 | 46.49 165 | 63.85 167 | 80.10 155 | 82.47 132 | 91.49 151 | 95.13 91 |
|
ADS-MVSNet | | | 72.11 147 | 73.72 140 | 70.24 167 | 81.24 137 | 86.59 137 | 74.75 169 | 50.56 206 | 72.58 120 | 49.17 157 | 55.40 127 | 61.46 123 | 73.80 122 | 76.01 181 | 78.14 178 | 91.93 141 | 85.86 174 |
|
gg-mvs-nofinetune | | | 72.10 148 | 74.79 133 | 68.97 171 | 83.31 124 | 95.22 62 | 85.66 83 | 48.77 208 | 35.68 211 | 22.17 217 | 30.49 203 | 77.73 59 | 76.37 111 | 94.30 13 | 93.03 11 | 97.55 2 | 97.05 55 |
|
TAMVS | | | 72.06 149 | 71.76 149 | 72.41 148 | 76.68 163 | 88.12 125 | 74.82 168 | 68.09 152 | 53.52 180 | 56.91 125 | 52.94 140 | 56.93 142 | 66.91 159 | 81.37 145 | 82.44 133 | 91.07 158 | 86.99 170 |
|
v2v482 | | | 71.73 150 | 69.80 158 | 73.99 131 | 75.88 174 | 86.66 136 | 79.58 124 | 71.90 122 | 57.58 164 | 50.41 153 | 45.35 161 | 43.24 179 | 73.05 128 | 79.69 157 | 82.18 138 | 93.08 114 | 93.87 114 |
|
test0.0.03 1 | | | 71.70 151 | 74.68 134 | 68.23 173 | 81.79 132 | 83.81 173 | 68.64 183 | 70.57 133 | 68.81 132 | 43.47 184 | 62.77 97 | 60.09 131 | 51.77 195 | 82.48 133 | 81.67 144 | 93.16 111 | 83.13 183 |
|
V42 | | | 71.58 152 | 70.11 157 | 73.30 138 | 75.66 177 | 86.68 135 | 79.17 131 | 69.92 137 | 59.29 159 | 52.80 136 | 44.36 165 | 45.66 167 | 68.83 151 | 79.48 159 | 81.49 149 | 93.44 98 | 93.82 116 |
|
NR-MVSNet | | | 71.47 153 | 71.11 152 | 71.90 154 | 77.73 157 | 86.02 149 | 76.88 154 | 74.42 102 | 65.39 141 | 46.09 175 | 49.10 151 | 39.87 196 | 64.27 165 | 81.40 144 | 82.24 137 | 91.99 139 | 93.75 118 |
|
v8 | | | 71.42 154 | 69.69 159 | 73.43 137 | 76.45 166 | 85.12 162 | 79.53 126 | 67.47 163 | 59.34 158 | 52.90 135 | 44.60 163 | 45.82 166 | 71.05 142 | 79.56 158 | 81.45 151 | 93.17 110 | 91.96 136 |
|
TranMVSNet+NR-MVSNet | | | 71.12 155 | 70.24 154 | 72.15 150 | 76.01 169 | 84.80 165 | 76.55 156 | 75.65 93 | 61.99 151 | 45.29 178 | 48.42 155 | 43.07 180 | 67.55 155 | 78.28 168 | 82.83 130 | 91.85 143 | 92.29 130 |
|
v10 | | | 70.97 156 | 69.44 160 | 72.75 142 | 75.90 173 | 84.58 167 | 79.43 127 | 66.45 168 | 58.07 162 | 49.93 155 | 43.87 171 | 43.68 174 | 71.91 134 | 82.04 138 | 81.70 142 | 92.89 121 | 92.11 135 |
|
v1144 | | | 70.93 157 | 69.42 162 | 72.70 143 | 75.48 178 | 86.26 140 | 79.22 130 | 69.39 142 | 55.61 171 | 48.05 165 | 43.47 172 | 42.55 184 | 71.51 138 | 82.11 136 | 81.74 141 | 92.56 128 | 94.17 105 |
|
thisisatest0515 | | | 70.62 158 | 71.94 148 | 69.07 170 | 76.48 165 | 85.59 154 | 68.03 184 | 68.02 153 | 59.70 156 | 52.94 134 | 52.19 141 | 50.36 155 | 58.10 180 | 83.15 125 | 81.63 145 | 90.87 164 | 90.99 143 |
|
Baseline_NR-MVSNet | | | 70.61 159 | 68.87 166 | 72.65 144 | 75.95 170 | 80.49 190 | 75.92 162 | 74.75 98 | 65.10 144 | 48.78 162 | 41.28 183 | 44.28 172 | 68.45 152 | 78.67 165 | 79.64 169 | 92.04 137 | 92.62 127 |
|
v148 | | | 70.34 160 | 68.46 169 | 72.54 147 | 76.04 168 | 86.38 139 | 74.83 167 | 72.73 113 | 55.88 170 | 55.26 129 | 43.32 174 | 43.49 175 | 64.52 164 | 76.93 178 | 80.11 167 | 91.85 143 | 93.11 122 |
|
v1192 | | | 70.32 161 | 68.77 167 | 72.12 151 | 74.76 180 | 85.62 153 | 78.73 132 | 68.53 146 | 55.08 174 | 46.34 172 | 42.39 177 | 40.67 191 | 71.90 135 | 82.27 134 | 81.53 147 | 92.43 131 | 93.86 115 |
|
v144192 | | | 70.10 162 | 68.55 168 | 71.90 154 | 74.55 181 | 85.67 152 | 77.81 142 | 68.22 151 | 54.65 176 | 46.91 168 | 42.76 175 | 41.27 188 | 70.95 143 | 80.48 152 | 81.11 162 | 92.96 118 | 93.90 112 |
|
pmmvs5 | | | 70.01 163 | 69.31 164 | 70.82 165 | 75.80 176 | 86.26 140 | 72.94 174 | 67.91 156 | 53.84 179 | 47.22 166 | 47.31 156 | 41.47 187 | 67.61 154 | 83.93 121 | 81.93 140 | 93.42 100 | 90.42 149 |
|
COLMAP_ROB |  | 66.31 15 | 69.91 164 | 66.61 174 | 73.76 133 | 86.44 101 | 82.76 177 | 76.59 155 | 76.46 87 | 63.82 146 | 50.92 150 | 45.60 160 | 49.13 157 | 65.87 162 | 74.96 186 | 74.45 193 | 86.30 198 | 75.57 200 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
v1921920 | | | 69.85 165 | 68.38 170 | 71.58 157 | 74.35 182 | 85.39 157 | 77.78 143 | 67.88 158 | 54.64 177 | 45.39 177 | 42.11 180 | 39.97 195 | 71.10 141 | 81.68 143 | 81.17 160 | 92.96 118 | 93.69 120 |
|
pm-mvs1 | | | 69.62 166 | 68.07 172 | 71.44 159 | 77.21 159 | 85.32 158 | 76.11 161 | 71.05 128 | 46.55 200 | 51.17 145 | 41.83 181 | 48.20 161 | 61.81 173 | 84.00 120 | 81.14 161 | 91.28 155 | 89.42 156 |
|
UniMVSNet_ETH3D | | | 69.49 167 | 65.86 176 | 73.72 134 | 76.51 164 | 85.88 151 | 78.65 133 | 70.52 135 | 48.08 197 | 55.71 128 | 37.64 192 | 40.56 192 | 71.38 139 | 75.05 185 | 81.49 149 | 89.57 183 | 92.29 130 |
|
tfpnnormal | | | 69.29 168 | 65.58 177 | 73.62 136 | 79.87 145 | 84.82 164 | 76.97 152 | 75.12 96 | 45.29 201 | 49.03 158 | 35.57 198 | 37.20 204 | 68.02 153 | 82.70 130 | 81.24 156 | 92.69 124 | 92.20 132 |
|
v1240 | | | 69.28 169 | 67.82 173 | 71.00 164 | 74.09 186 | 85.13 161 | 76.54 157 | 67.28 165 | 53.17 181 | 44.70 181 | 41.55 182 | 39.38 197 | 70.51 148 | 81.29 146 | 81.18 158 | 92.88 122 | 93.02 124 |
|
CVMVSNet | | | 68.95 170 | 70.79 153 | 66.79 180 | 79.69 147 | 83.75 174 | 72.05 178 | 70.90 129 | 56.20 168 | 36.30 199 | 54.94 132 | 59.22 134 | 54.03 187 | 78.33 167 | 78.65 174 | 87.77 193 | 84.44 177 |
|
MIMVSNet | | | 68.66 171 | 69.43 161 | 67.76 175 | 64.92 205 | 84.68 166 | 74.16 170 | 54.10 202 | 60.85 152 | 51.27 144 | 39.47 187 | 49.48 156 | 67.48 156 | 84.86 114 | 85.57 101 | 94.63 56 | 81.10 192 |
|
TDRefinement | | | 67.82 172 | 64.91 183 | 71.22 163 | 82.08 131 | 81.45 182 | 77.42 147 | 73.79 108 | 59.62 157 | 48.35 164 | 42.35 179 | 42.40 185 | 60.87 175 | 74.69 187 | 74.64 192 | 84.83 202 | 79.20 195 |
|
anonymousdsp | | | 67.61 173 | 68.94 165 | 66.04 181 | 71.44 198 | 83.97 171 | 66.45 188 | 63.53 179 | 50.54 190 | 42.42 188 | 49.39 149 | 45.63 168 | 62.84 170 | 77.99 170 | 81.34 155 | 89.59 182 | 93.75 118 |
|
TinyColmap | | | 67.16 174 | 63.51 190 | 71.42 160 | 77.94 155 | 79.54 196 | 72.80 175 | 69.78 139 | 56.58 167 | 45.52 176 | 44.53 164 | 33.53 209 | 74.45 118 | 76.91 179 | 77.06 184 | 88.03 192 | 76.41 198 |
|
FC-MVSNet-test | | | 67.04 175 | 72.47 144 | 60.70 198 | 76.92 160 | 81.41 183 | 61.52 198 | 69.45 141 | 65.58 140 | 26.74 213 | 61.79 103 | 60.40 130 | 41.17 204 | 77.60 174 | 77.78 180 | 88.41 189 | 82.70 187 |
|
TransMVSNet (Re) | | | 66.87 176 | 64.30 185 | 69.88 169 | 78.32 151 | 81.35 185 | 73.88 171 | 74.34 104 | 43.19 205 | 45.20 179 | 40.12 185 | 42.37 186 | 55.97 183 | 80.85 149 | 79.15 170 | 91.56 149 | 83.06 184 |
|
CMPMVS |  | 50.59 17 | 66.74 177 | 62.72 194 | 71.42 160 | 85.40 110 | 89.72 118 | 72.69 176 | 70.72 131 | 51.24 186 | 51.75 141 | 38.91 189 | 44.40 170 | 63.74 168 | 70.84 197 | 71.52 197 | 84.19 203 | 72.45 205 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
v7n | | | 66.43 178 | 65.51 178 | 67.51 176 | 71.63 197 | 83.10 175 | 70.89 182 | 65.02 174 | 50.13 193 | 44.68 182 | 39.59 186 | 38.77 198 | 62.57 171 | 77.59 175 | 78.91 171 | 90.29 173 | 90.44 148 |
|
EG-PatchMatch MVS | | | 66.23 179 | 65.20 180 | 67.43 177 | 77.74 156 | 86.20 143 | 72.51 177 | 63.68 178 | 43.95 203 | 43.44 185 | 36.22 197 | 45.43 169 | 54.04 186 | 81.00 147 | 80.95 163 | 93.15 112 | 82.67 188 |
|
WR-MVS | | | 64.98 180 | 66.59 175 | 63.09 191 | 74.34 183 | 82.68 178 | 64.98 194 | 69.17 144 | 54.42 178 | 36.18 200 | 44.32 166 | 44.35 171 | 44.65 198 | 73.60 188 | 77.83 179 | 89.21 185 | 88.96 162 |
|
gm-plane-assit | | | 64.86 181 | 68.15 171 | 61.02 197 | 76.44 167 | 68.29 209 | 41.60 214 | 53.37 203 | 34.68 213 | 26.19 215 | 33.22 201 | 57.09 141 | 71.97 133 | 95.12 5 | 93.97 7 | 96.54 16 | 94.66 95 |
|
CP-MVSNet | | | 64.84 182 | 64.97 181 | 64.69 186 | 72.09 193 | 81.04 188 | 66.66 187 | 67.53 162 | 52.45 183 | 37.40 195 | 44.00 170 | 38.37 200 | 53.54 190 | 72.26 192 | 76.93 185 | 90.94 163 | 89.75 154 |
|
MDTV_nov1_ep13_2view | | | 64.72 183 | 64.94 182 | 64.46 187 | 71.14 199 | 81.94 181 | 67.53 185 | 54.54 199 | 55.92 169 | 43.29 186 | 44.02 169 | 43.27 178 | 59.87 176 | 71.85 194 | 74.77 191 | 90.36 171 | 82.82 186 |
|
MVS-HIRNet | | | 64.63 184 | 64.03 189 | 65.33 183 | 75.01 179 | 82.84 176 | 58.54 205 | 52.10 204 | 55.42 172 | 49.29 156 | 29.83 206 | 43.48 176 | 66.97 158 | 78.28 168 | 78.81 172 | 90.07 176 | 79.52 194 |
|
pmnet_mix02 | | | 64.58 185 | 64.11 188 | 65.12 184 | 74.16 185 | 80.17 193 | 63.24 196 | 67.91 156 | 57.87 163 | 41.69 189 | 45.86 159 | 40.99 190 | 53.97 189 | 69.92 200 | 71.67 196 | 89.77 178 | 82.29 190 |
|
LTVRE_ROB | | 63.07 16 | 64.49 186 | 63.16 193 | 66.04 181 | 77.47 158 | 82.64 179 | 70.98 181 | 65.02 174 | 34.01 214 | 29.61 209 | 49.12 150 | 35.58 208 | 70.57 147 | 75.10 184 | 78.45 176 | 82.60 206 | 87.24 169 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PEN-MVS | | | 64.35 187 | 64.29 186 | 64.42 188 | 72.67 189 | 79.83 194 | 66.97 186 | 68.24 150 | 51.21 187 | 35.29 202 | 44.09 167 | 38.51 199 | 52.36 193 | 71.06 195 | 77.65 181 | 90.99 159 | 87.68 168 |
|
pmmvs6 | | | 64.24 188 | 61.77 198 | 67.12 178 | 72.39 192 | 81.39 184 | 71.33 180 | 65.95 172 | 36.05 210 | 48.48 163 | 30.55 202 | 43.45 177 | 58.75 178 | 77.88 173 | 76.36 188 | 85.83 199 | 86.70 172 |
|
pmmvs-eth3d | | | 64.24 188 | 61.96 196 | 66.90 179 | 66.35 203 | 76.04 202 | 66.09 190 | 66.31 169 | 52.59 182 | 50.94 149 | 37.61 193 | 32.79 211 | 62.43 172 | 75.78 182 | 75.48 190 | 89.27 184 | 83.39 182 |
|
PS-CasMVS | | | 64.22 190 | 64.19 187 | 64.25 189 | 71.86 195 | 80.67 189 | 66.42 189 | 67.43 164 | 50.64 189 | 36.48 197 | 42.60 176 | 37.46 203 | 52.56 192 | 71.98 193 | 76.69 187 | 90.76 165 | 89.29 160 |
|
WR-MVS_H | | | 64.14 191 | 65.36 179 | 62.71 193 | 72.47 191 | 82.33 180 | 65.13 191 | 66.99 166 | 51.81 185 | 36.47 198 | 43.33 173 | 42.77 182 | 43.99 200 | 72.41 191 | 75.99 189 | 91.20 157 | 88.86 164 |
|
SixPastTwentyTwo | | | 63.75 192 | 63.42 191 | 64.13 190 | 72.91 188 | 80.34 191 | 61.29 199 | 63.90 176 | 49.58 194 | 40.42 191 | 54.99 131 | 37.13 205 | 60.90 174 | 68.46 201 | 70.80 198 | 85.37 201 | 82.65 189 |
|
PM-MVS | | | 63.52 193 | 62.51 195 | 64.70 185 | 64.79 207 | 76.08 201 | 65.07 192 | 62.08 181 | 58.13 161 | 46.56 171 | 44.98 162 | 31.31 212 | 62.89 169 | 72.58 190 | 69.93 202 | 86.81 195 | 84.55 176 |
|
DTE-MVSNet | | | 63.26 194 | 63.41 192 | 63.08 192 | 72.59 190 | 78.56 197 | 65.03 193 | 68.28 149 | 50.53 191 | 32.38 206 | 44.03 168 | 37.79 202 | 49.48 196 | 70.83 198 | 76.73 186 | 90.73 166 | 85.42 175 |
|
testgi | | | 63.11 195 | 64.88 184 | 61.05 196 | 75.83 175 | 78.51 198 | 60.42 200 | 66.20 170 | 48.77 195 | 34.56 203 | 56.96 114 | 40.35 193 | 40.95 205 | 77.46 176 | 77.22 183 | 88.37 191 | 74.86 203 |
|
GG-mvs-BLEND | | | 62.08 196 | 88.31 44 | 31.46 211 | 0.16 222 | 98.10 10 | 91.57 41 | 0.09 219 | 85.07 65 | 0.21 223 | 73.90 56 | 83.74 39 | 0.19 220 | 88.98 70 | 89.39 60 | 96.58 15 | 99.02 14 |
|
Anonymous20231206 | | | 62.05 197 | 61.83 197 | 62.30 195 | 72.09 193 | 77.84 199 | 63.10 197 | 67.62 161 | 50.20 192 | 36.68 196 | 29.59 207 | 37.05 206 | 43.90 201 | 77.33 177 | 77.31 182 | 90.41 170 | 83.49 181 |
|
N_pmnet | | | 60.52 198 | 58.83 201 | 62.50 194 | 68.97 201 | 75.61 203 | 59.72 203 | 66.47 167 | 51.90 184 | 41.26 190 | 35.42 199 | 35.63 207 | 52.25 194 | 67.07 204 | 70.08 201 | 86.35 197 | 76.10 199 |
|
EU-MVSNet | | | 58.73 199 | 60.92 199 | 56.17 201 | 66.17 204 | 72.39 206 | 58.85 204 | 61.24 184 | 48.47 196 | 27.91 211 | 46.70 158 | 40.06 194 | 39.07 206 | 68.27 202 | 70.34 200 | 83.77 204 | 80.23 193 |
|
test20.03 | | | 57.93 200 | 59.22 200 | 56.44 200 | 71.84 196 | 73.78 205 | 53.55 208 | 65.96 171 | 43.02 206 | 28.46 210 | 37.50 194 | 38.17 201 | 30.41 210 | 75.25 183 | 74.42 194 | 88.41 189 | 72.37 206 |
|
MDA-MVSNet-bldmvs | | | 54.99 201 | 52.66 205 | 57.71 199 | 52.74 213 | 74.87 204 | 55.61 206 | 68.41 148 | 43.65 204 | 32.54 204 | 37.93 191 | 22.11 218 | 54.11 185 | 48.85 211 | 67.34 204 | 82.85 205 | 73.88 204 |
|
new-patchmatchnet | | | 53.91 202 | 52.69 204 | 55.33 203 | 64.83 206 | 70.90 207 | 52.24 209 | 61.75 182 | 41.09 207 | 30.82 207 | 29.90 205 | 28.22 214 | 36.69 207 | 61.52 206 | 65.08 205 | 85.64 200 | 72.14 207 |
|
MIMVSNet1 | | | 52.76 203 | 53.95 203 | 51.38 205 | 41.96 216 | 70.79 208 | 53.56 207 | 63.03 180 | 39.36 208 | 27.83 212 | 22.73 212 | 33.07 210 | 34.47 209 | 70.49 199 | 72.69 195 | 87.41 194 | 68.51 208 |
|
pmmvs3 | | | 52.59 204 | 52.43 206 | 52.78 204 | 54.53 212 | 64.49 211 | 50.07 210 | 46.89 211 | 35.31 212 | 30.19 208 | 27.27 209 | 26.96 216 | 53.02 191 | 67.28 203 | 70.54 199 | 81.96 207 | 75.20 201 |
|
new_pmnet | | | 50.32 205 | 51.36 207 | 49.11 206 | 49.19 214 | 64.89 210 | 48.66 212 | 47.99 210 | 47.55 198 | 26.27 214 | 29.51 208 | 28.66 213 | 44.89 197 | 61.12 207 | 62.74 207 | 77.66 209 | 65.03 209 |
|
FPMVS | | | 50.25 206 | 45.67 209 | 55.58 202 | 70.48 200 | 60.12 212 | 59.78 202 | 59.33 189 | 46.66 199 | 37.94 193 | 30.22 204 | 27.51 215 | 35.94 208 | 50.98 210 | 47.90 210 | 70.02 211 | 56.31 210 |
|
test_method | | | 47.92 207 | 55.39 202 | 39.21 209 | 19.90 220 | 49.24 214 | 39.29 215 | 34.65 216 | 57.37 165 | 32.54 204 | 25.11 210 | 41.02 189 | 44.31 199 | 66.58 205 | 57.57 209 | 64.59 214 | 90.82 144 |
|
PMVS |  | 36.83 18 | 40.62 208 | 36.39 210 | 45.56 207 | 58.40 209 | 33.20 217 | 32.62 217 | 56.02 193 | 28.25 215 | 37.92 194 | 22.29 213 | 26.15 217 | 25.29 212 | 48.49 212 | 43.82 213 | 63.13 215 | 52.53 213 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 35.20 209 | 33.96 211 | 36.65 210 | 43.30 215 | 32.51 218 | 26.96 219 | 48.31 209 | 38.87 209 | 20.08 218 | 8.08 215 | 7.41 222 | 26.44 211 | 53.60 208 | 58.43 208 | 54.81 216 | 38.79 215 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 32.52 210 | 33.92 212 | 30.88 212 | 34.15 219 | 44.70 216 | 27.79 218 | 39.69 215 | 22.21 216 | 4.31 222 | 15.73 214 | 14.13 220 | 12.45 217 | 40.11 213 | 47.00 211 | 66.88 212 | 53.54 211 |
|
E-PMN | | | 21.42 211 | 17.56 214 | 25.94 213 | 36.25 218 | 19.02 221 | 11.56 220 | 43.72 213 | 15.25 218 | 6.99 220 | 8.04 216 | 4.53 224 | 21.77 214 | 16.13 216 | 26.16 215 | 35.34 218 | 33.77 216 |
|
MVE |  | 25.07 19 | 21.25 212 | 23.51 213 | 18.62 215 | 15.07 221 | 29.77 220 | 10.67 222 | 34.60 217 | 12.51 219 | 9.46 219 | 7.84 217 | 3.82 225 | 14.38 216 | 27.45 215 | 42.42 214 | 27.56 220 | 40.74 214 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 20.61 213 | 16.32 215 | 25.62 214 | 36.41 217 | 18.93 222 | 11.51 221 | 43.75 212 | 15.65 217 | 6.53 221 | 7.56 218 | 4.68 223 | 22.03 213 | 14.56 217 | 23.10 216 | 33.51 219 | 29.77 217 |
|
testmvs | | | 0.76 214 | 1.23 216 | 0.21 216 | 0.05 223 | 0.21 223 | 0.38 224 | 0.09 219 | 0.94 220 | 0.05 224 | 2.13 220 | 0.08 226 | 0.60 219 | 0.82 218 | 0.77 217 | 0.11 221 | 3.62 219 |
|
test123 | | | 0.67 215 | 1.11 217 | 0.16 217 | 0.01 224 | 0.14 224 | 0.20 225 | 0.04 221 | 0.77 221 | 0.02 225 | 2.15 219 | 0.02 227 | 0.61 218 | 0.23 219 | 0.72 218 | 0.07 222 | 3.76 218 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 39.41 192 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 91.16 7 | | | | | |
|
SR-MVS | | | | | | 96.04 31 | | | 87.51 27 | | | | 87.60 20 | | | | | |
|
Anonymous202405211 | | | | 75.59 128 | | 85.13 113 | 91.06 104 | 84.62 92 | 77.96 74 | 69.47 131 | | 40.79 184 | 63.84 120 | 84.57 66 | 83.55 122 | 84.69 109 | 89.69 179 | 95.75 83 |
|
our_test_3 | | | | | | 73.80 187 | 79.57 195 | 64.47 195 | | | | | | | | | | |
|
ambc | | | | 50.35 208 | | 55.61 211 | 59.93 213 | 48.73 211 | | 44.08 202 | 35.81 201 | 24.01 211 | 10.64 221 | 41.57 203 | 72.83 189 | 63.35 206 | 74.99 210 | 77.61 196 |
|
MTAPA | | | | | | | | | | | 91.14 6 | | 85.84 26 | | | | | |
|
MTMP | | | | | | | | | | | 90.95 7 | | 84.13 35 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.17 223 | | | | | | | | | | |
|
tmp_tt | | | | | 39.78 208 | 56.31 210 | 31.71 219 | 35.84 216 | 15.08 218 | 82.57 74 | 50.83 151 | 63.07 95 | 47.51 163 | 15.28 215 | 52.23 209 | 44.24 212 | 65.35 213 | |
|
XVS | | | | | | 89.65 70 | 95.93 47 | 85.97 80 | | | 76.32 53 | | 82.05 45 | | | | 93.51 91 | |
|
X-MVStestdata | | | | | | 89.65 70 | 95.93 47 | 85.97 80 | | | 76.32 53 | | 82.05 45 | | | | 93.51 91 | |
|
abl_6 | | | | | 89.54 32 | 95.55 39 | 97.59 19 | 89.01 55 | 85.00 40 | 94.67 15 | 83.04 32 | 84.70 35 | 91.47 6 | 89.46 27 | | | 95.20 46 | 98.63 20 |
|
mPP-MVS | | | | | | 95.90 33 | | | | | | | 80.22 54 | | | | | |
|
NP-MVS | | | | | | | | | | 89.55 48 | | | | | | | | |
|
Patchmtry | | | | | | | 87.41 128 | 78.32 136 | 54.14 200 | | 51.09 146 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 48.96 215 | 43.77 213 | 40.58 214 | 50.93 188 | 24.67 216 | 36.95 196 | 20.18 219 | 41.60 202 | 38.92 214 | | 52.37 217 | 53.31 212 |
|