SED-MVS | | | 95.53 1 | 95.79 1 | 95.23 1 | 97.60 9 | 98.92 1 | 95.99 5 | 92.05 8 | 97.14 1 | 94.19 1 | 94.71 7 | 93.25 1 | 95.08 1 | 94.32 11 | 92.59 15 | 96.49 18 | 99.58 3 |
|
DPE-MVS | | | 95.10 2 | 95.53 2 | 94.60 5 | 97.77 7 | 98.64 3 | 96.60 4 | 92.45 6 | 96.34 5 | 91.41 5 | 96.70 2 | 92.26 5 | 93.56 4 | 93.68 17 | 91.73 29 | 95.79 37 | 99.37 7 |
|
DVP-MVS | | | 95.06 3 | 95.37 4 | 94.70 2 | 97.59 10 | 98.89 2 | 95.37 11 | 92.04 9 | 96.85 3 | 94.00 2 | 92.81 14 | 93.02 2 | 92.93 5 | 94.22 14 | 92.15 20 | 96.30 24 | 99.61 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSP-MVS | | | 95.00 4 | 95.47 3 | 94.45 6 | 96.78 18 | 98.11 9 | 95.72 7 | 90.91 14 | 96.68 4 | 91.57 4 | 96.98 1 | 89.47 13 | 94.76 2 | 95.24 3 | 92.15 20 | 96.98 7 | 99.64 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 94.53 5 | 94.85 6 | 94.15 8 | 98.03 4 | 98.59 4 | 95.56 8 | 92.91 3 | 94.86 13 | 88.46 15 | 91.32 21 | 90.83 10 | 94.03 3 | 95.20 4 | 94.16 5 | 95.89 33 | 99.01 15 |
|
SF-MVS | | | 94.40 6 | 94.15 11 | 94.70 2 | 98.25 2 | 98.24 6 | 96.86 2 | 93.46 1 | 94.87 11 | 90.26 9 | 95.96 3 | 88.42 16 | 92.76 8 | 92.29 30 | 90.84 40 | 96.62 13 | 98.44 26 |
|
APDe-MVS | | | 94.31 7 | 94.30 9 | 94.33 7 | 97.57 11 | 98.06 11 | 95.79 6 | 91.98 10 | 95.50 8 | 92.19 3 | 95.25 5 | 87.97 19 | 92.93 5 | 93.01 23 | 91.02 38 | 95.52 39 | 99.29 8 |
|
MCST-MVS | | | 94.10 8 | 94.77 7 | 93.31 10 | 98.31 1 | 98.34 5 | 95.43 9 | 92.54 5 | 94.41 17 | 83.05 31 | 91.38 19 | 90.97 9 | 92.24 13 | 95.05 6 | 94.02 6 | 98.31 1 | 99.20 10 |
|
HPM-MVS++ |  | | 94.04 9 | 94.96 5 | 92.96 12 | 97.93 5 | 97.71 17 | 94.65 14 | 91.01 13 | 95.91 6 | 87.43 17 | 93.52 11 | 92.63 4 | 92.29 12 | 94.22 14 | 92.34 17 | 94.47 58 | 98.37 28 |
|
NCCC | | | 93.59 10 | 94.00 13 | 93.10 11 | 97.90 6 | 97.93 13 | 95.40 10 | 92.39 7 | 94.47 16 | 84.94 22 | 91.21 22 | 89.32 14 | 92.53 10 | 93.90 16 | 92.98 12 | 95.44 41 | 98.22 31 |
|
SMA-MVS |  | | 93.47 11 | 94.29 10 | 92.52 14 | 97.72 8 | 97.77 16 | 94.46 17 | 90.19 17 | 94.96 10 | 87.15 18 | 90.15 25 | 90.99 8 | 91.49 16 | 94.31 12 | 93.33 10 | 94.10 63 | 98.53 24 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 93.47 11 | 93.44 16 | 93.50 9 | 97.06 14 | 97.09 27 | 95.27 12 | 91.47 11 | 95.71 7 | 89.57 12 | 93.66 9 | 86.28 25 | 92.81 7 | 92.06 34 | 90.70 42 | 94.83 55 | 98.60 21 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SD-MVS | | | 93.36 13 | 94.33 8 | 92.22 16 | 94.68 44 | 97.89 15 | 94.56 15 | 90.89 15 | 94.80 14 | 90.04 11 | 93.53 10 | 90.14 11 | 89.78 23 | 92.74 25 | 92.17 18 | 93.35 101 | 99.07 13 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 93.07 14 | 93.53 15 | 92.53 13 | 94.23 47 | 97.54 21 | 94.75 13 | 89.87 18 | 95.26 9 | 89.20 14 | 93.16 12 | 88.19 18 | 92.15 14 | 91.79 38 | 89.65 56 | 94.99 51 | 99.16 11 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 92.86 15 | 93.19 18 | 92.47 15 | 95.78 35 | 97.40 22 | 97.39 1 | 92.56 4 | 92.88 26 | 81.84 39 | 81.31 40 | 92.95 3 | 91.21 17 | 96.54 1 | 97.33 1 | 96.01 30 | 93.94 107 |
|
SteuartSystems-ACMMP | | | 92.31 16 | 93.31 17 | 91.15 23 | 96.88 16 | 97.36 23 | 93.95 21 | 89.44 20 | 92.62 27 | 83.20 28 | 94.34 8 | 85.55 27 | 88.95 30 | 93.07 22 | 91.90 25 | 94.51 57 | 98.30 29 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 92.16 17 | 92.91 21 | 91.28 22 | 96.95 15 | 97.36 23 | 93.66 22 | 89.23 22 | 93.33 21 | 83.71 26 | 90.53 23 | 86.84 22 | 90.39 19 | 93.30 21 | 91.56 31 | 93.74 73 | 97.43 45 |
|
HFP-MVS | | | 92.02 18 | 92.13 23 | 91.89 20 | 97.16 13 | 96.46 40 | 93.57 23 | 87.60 26 | 93.79 19 | 88.17 16 | 93.15 13 | 83.94 38 | 91.19 18 | 90.81 48 | 89.83 51 | 93.66 77 | 96.94 61 |
|
train_agg | | | 91.99 19 | 93.71 14 | 89.98 28 | 96.42 27 | 97.03 29 | 94.31 19 | 89.05 23 | 93.33 21 | 77.75 46 | 95.06 6 | 88.27 17 | 88.38 36 | 92.02 35 | 91.41 33 | 94.00 66 | 98.84 18 |
|
xxxxxxxxxxxxxcwj | | | 91.86 20 | 89.43 37 | 94.70 2 | 98.25 2 | 98.24 6 | 96.86 2 | 93.46 1 | 94.87 11 | 90.26 9 | 95.96 3 | 55.37 143 | 92.76 8 | 92.29 30 | 90.84 40 | 96.62 13 | 98.44 26 |
|
DeepC-MVS_fast | | 86.59 2 | 91.69 21 | 91.39 26 | 92.05 19 | 97.43 12 | 96.92 32 | 94.05 20 | 90.23 16 | 93.31 24 | 83.19 29 | 77.91 47 | 84.23 34 | 92.42 11 | 94.62 9 | 94.83 3 | 95.00 50 | 97.88 35 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
zzz-MVS | | | 91.59 22 | 91.12 27 | 92.13 17 | 96.76 19 | 96.68 35 | 93.39 24 | 88.00 25 | 93.63 20 | 90.76 8 | 83.97 36 | 85.33 29 | 89.89 22 | 91.60 40 | 89.65 56 | 94.00 66 | 96.97 59 |
|
TSAR-MVS + GP. | | | 91.29 23 | 93.11 20 | 89.18 34 | 87.81 85 | 96.21 46 | 92.51 33 | 83.83 46 | 94.24 18 | 83.77 25 | 91.87 18 | 89.62 12 | 90.07 20 | 90.40 52 | 90.31 46 | 97.09 6 | 99.10 12 |
|
ACMMPR | | | 91.15 24 | 91.44 25 | 90.81 24 | 96.61 21 | 96.25 44 | 93.09 25 | 87.08 29 | 93.32 23 | 84.78 23 | 92.08 17 | 82.10 44 | 89.71 24 | 90.24 53 | 89.82 52 | 93.61 82 | 96.30 73 |
|
DeepPCF-MVS | | 86.71 1 | 91.00 25 | 94.05 12 | 87.43 45 | 95.58 38 | 98.17 8 | 86.22 74 | 88.59 24 | 97.01 2 | 76.77 52 | 85.11 34 | 88.90 15 | 87.29 42 | 95.02 7 | 94.69 4 | 90.15 172 | 99.48 6 |
|
TSAR-MVS + ACMM | | | 90.98 26 | 93.18 19 | 88.42 39 | 95.69 36 | 96.73 34 | 94.52 16 | 86.97 32 | 92.99 25 | 76.32 53 | 92.31 16 | 86.64 23 | 84.40 68 | 92.97 24 | 92.02 22 | 92.62 124 | 98.59 22 |
|
MP-MVS |  | | 90.81 27 | 91.45 24 | 90.06 27 | 96.59 22 | 96.33 43 | 92.46 34 | 87.19 28 | 90.27 40 | 82.54 35 | 91.38 19 | 84.88 31 | 88.27 37 | 90.58 50 | 89.30 62 | 93.30 103 | 97.44 43 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVS | | | 90.57 28 | 90.68 29 | 90.44 25 | 96.13 29 | 95.90 51 | 92.77 30 | 86.86 33 | 92.12 31 | 84.19 24 | 89.18 28 | 82.37 42 | 89.43 28 | 89.65 62 | 88.43 69 | 93.27 104 | 97.13 53 |
|
MSLP-MVS++ | | | 90.33 29 | 88.82 41 | 92.10 18 | 96.52 25 | 95.93 47 | 94.35 18 | 86.26 34 | 88.37 53 | 89.24 13 | 75.94 52 | 82.60 41 | 89.71 24 | 89.45 65 | 92.17 18 | 96.51 17 | 97.24 50 |
|
CANet | | | 89.98 30 | 90.42 33 | 89.47 33 | 94.13 48 | 98.05 12 | 91.76 39 | 83.27 49 | 90.87 37 | 81.90 38 | 72.32 58 | 84.82 32 | 88.42 34 | 94.52 10 | 93.78 8 | 97.34 4 | 98.58 23 |
|
PGM-MVS | | | 89.97 31 | 90.64 31 | 89.18 34 | 96.53 24 | 95.90 51 | 93.06 26 | 82.48 57 | 90.04 42 | 80.37 41 | 92.75 15 | 80.96 49 | 88.93 31 | 89.88 58 | 89.08 64 | 93.69 76 | 95.86 76 |
|
PHI-MVS | | | 89.88 32 | 92.75 22 | 86.52 55 | 94.97 41 | 97.57 20 | 89.99 50 | 84.56 42 | 92.52 29 | 69.72 86 | 90.35 24 | 87.11 21 | 84.89 60 | 91.82 37 | 92.37 16 | 95.02 49 | 97.51 41 |
|
CSCG | | | 89.81 33 | 89.69 34 | 89.96 29 | 96.55 23 | 97.90 14 | 92.89 28 | 87.06 30 | 88.74 51 | 86.17 19 | 78.24 46 | 86.53 24 | 84.75 63 | 87.82 85 | 90.59 43 | 92.32 129 | 98.01 34 |
|
X-MVS | | | 89.73 34 | 90.65 30 | 88.66 37 | 96.44 26 | 95.93 47 | 92.26 36 | 86.98 31 | 90.73 38 | 76.32 53 | 89.56 27 | 82.05 45 | 86.51 49 | 89.98 56 | 89.60 58 | 93.43 96 | 96.72 68 |
|
EPNet | | | 89.30 35 | 90.89 28 | 87.44 44 | 95.67 37 | 96.81 33 | 91.13 42 | 83.12 51 | 91.14 34 | 76.31 57 | 87.60 30 | 80.40 52 | 84.45 66 | 92.13 33 | 91.12 37 | 93.96 68 | 97.01 57 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepC-MVS | | 84.14 3 | 88.80 36 | 88.03 45 | 89.71 31 | 94.83 42 | 96.56 36 | 92.57 32 | 89.38 21 | 89.25 48 | 79.59 43 | 70.02 67 | 77.05 65 | 88.24 38 | 92.44 28 | 92.79 13 | 93.65 80 | 98.10 32 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 88.76 37 | 90.43 32 | 86.81 51 | 96.04 31 | 96.53 39 | 92.95 27 | 85.95 36 | 90.36 39 | 67.93 91 | 85.80 33 | 80.69 50 | 83.82 71 | 90.81 48 | 91.85 28 | 94.18 61 | 96.99 58 |
|
3Dnovator+ | | 81.14 5 | 88.59 38 | 87.49 47 | 89.88 30 | 95.83 34 | 96.45 42 | 91.94 38 | 82.41 58 | 87.09 59 | 85.94 21 | 62.80 95 | 85.37 28 | 89.46 26 | 91.51 41 | 91.89 27 | 93.72 74 | 97.30 48 |
|
ACMMP |  | | 88.48 39 | 88.71 42 | 88.22 41 | 94.61 45 | 95.53 56 | 90.64 46 | 85.60 38 | 90.97 35 | 78.62 45 | 89.88 26 | 74.20 78 | 86.29 50 | 88.16 82 | 86.37 88 | 93.57 83 | 95.86 76 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
AdaColmap |  | | 88.46 40 | 85.75 61 | 91.62 21 | 96.25 28 | 95.35 61 | 90.71 44 | 91.08 12 | 90.22 41 | 86.17 19 | 74.33 54 | 73.67 81 | 92.00 15 | 86.31 101 | 85.82 96 | 93.52 86 | 94.53 94 |
|
MVS_0304 | | | 88.43 41 | 89.46 36 | 87.21 46 | 91.85 60 | 97.60 18 | 92.62 31 | 81.10 64 | 87.16 58 | 73.80 63 | 72.19 60 | 83.36 40 | 87.03 44 | 94.64 8 | 93.67 9 | 96.88 9 | 97.64 40 |
|
3Dnovator | | 80.58 8 | 88.20 42 | 86.53 53 | 90.15 26 | 96.86 17 | 96.46 40 | 91.97 37 | 83.06 52 | 85.16 64 | 83.66 27 | 62.28 98 | 82.15 43 | 88.98 29 | 90.99 46 | 92.65 14 | 96.38 23 | 96.03 74 |
|
CPTT-MVS | | | 88.17 43 | 87.84 46 | 88.55 38 | 93.33 50 | 93.75 76 | 92.33 35 | 84.75 41 | 89.87 44 | 81.72 40 | 83.93 37 | 81.12 48 | 88.45 33 | 85.42 110 | 84.07 114 | 90.72 164 | 96.72 68 |
|
MVS_111021_HR | | | 87.82 44 | 88.84 40 | 86.62 53 | 94.42 46 | 97.36 23 | 88.21 59 | 83.26 50 | 83.42 67 | 72.52 73 | 82.63 38 | 76.93 66 | 84.95 59 | 91.93 36 | 91.15 36 | 96.39 22 | 98.49 25 |
|
DELS-MVS | | | 87.75 45 | 86.92 51 | 88.71 36 | 94.69 43 | 97.34 26 | 92.78 29 | 84.50 43 | 77.87 90 | 81.94 37 | 67.17 75 | 75.49 73 | 82.84 77 | 95.38 2 | 95.93 2 | 95.55 38 | 99.27 9 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVSTER | | | 87.68 46 | 89.12 38 | 86.01 57 | 88.11 83 | 90.05 112 | 89.28 53 | 77.05 84 | 91.37 32 | 79.97 42 | 76.70 50 | 85.25 30 | 84.89 60 | 93.53 18 | 91.41 33 | 96.73 11 | 95.55 83 |
|
MVS_111021_LR | | | 87.58 47 | 88.67 43 | 86.31 56 | 92.58 54 | 95.89 53 | 86.20 75 | 82.49 56 | 89.08 50 | 77.47 49 | 86.20 32 | 74.22 77 | 85.49 55 | 90.03 55 | 88.52 67 | 93.66 77 | 96.74 67 |
|
QAPM | | | 87.06 48 | 86.46 54 | 87.75 42 | 96.63 20 | 97.09 27 | 91.71 40 | 82.62 55 | 80.58 80 | 71.28 79 | 66.04 82 | 84.24 33 | 87.01 45 | 89.93 57 | 89.91 50 | 97.26 5 | 97.44 43 |
|
PVSNet_BlendedMVS | | | 86.98 49 | 87.05 49 | 86.90 48 | 93.03 51 | 96.98 30 | 86.57 71 | 81.82 60 | 89.78 45 | 82.78 33 | 71.54 61 | 66.07 109 | 80.73 88 | 93.46 19 | 91.97 23 | 96.45 20 | 99.53 4 |
|
PVSNet_Blended | | | 86.98 49 | 87.05 49 | 86.90 48 | 93.03 51 | 96.98 30 | 86.57 71 | 81.82 60 | 89.78 45 | 82.78 33 | 71.54 61 | 66.07 109 | 80.73 88 | 93.46 19 | 91.97 23 | 96.45 20 | 99.53 4 |
|
ETV-MVS | | | 86.94 51 | 89.49 35 | 83.95 67 | 87.28 91 | 95.61 55 | 83.58 100 | 76.37 89 | 92.59 28 | 73.20 65 | 80.35 42 | 76.42 69 | 87.38 41 | 92.20 32 | 90.45 45 | 95.90 32 | 98.83 19 |
|
CS-MVS | | | 86.48 52 | 89.02 39 | 83.52 71 | 87.37 90 | 95.52 57 | 84.21 94 | 75.09 97 | 87.63 55 | 71.30 78 | 80.94 41 | 78.24 55 | 87.23 43 | 92.72 26 | 90.05 48 | 95.95 31 | 98.03 33 |
|
OMC-MVS | | | 86.38 53 | 86.21 58 | 86.57 54 | 92.30 56 | 94.35 70 | 87.60 63 | 83.51 48 | 92.32 30 | 77.37 50 | 72.27 59 | 77.83 58 | 86.59 48 | 87.62 87 | 85.95 93 | 92.08 133 | 93.11 120 |
|
HQP-MVS | | | 86.17 54 | 87.35 48 | 84.80 63 | 91.41 63 | 92.37 93 | 91.05 43 | 84.35 45 | 88.52 52 | 64.21 96 | 87.05 31 | 68.91 99 | 84.80 62 | 89.12 68 | 88.16 73 | 92.96 115 | 97.31 47 |
|
canonicalmvs | | | 85.93 55 | 86.26 57 | 85.54 58 | 88.94 74 | 95.44 58 | 89.56 51 | 76.01 91 | 87.83 54 | 77.70 47 | 76.43 51 | 68.66 101 | 87.80 40 | 87.02 90 | 91.51 32 | 93.25 105 | 96.95 60 |
|
MAR-MVS | | | 85.65 56 | 86.30 56 | 84.88 62 | 95.51 40 | 95.89 53 | 86.50 73 | 76.71 85 | 89.23 49 | 68.59 88 | 70.93 65 | 74.49 75 | 88.55 32 | 89.40 66 | 90.30 47 | 93.42 97 | 93.88 111 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 82.38 4 | 85.52 57 | 84.41 66 | 86.81 51 | 91.51 62 | 96.23 45 | 90.27 47 | 89.81 19 | 77.87 90 | 70.67 82 | 69.20 69 | 77.86 56 | 85.55 54 | 85.92 106 | 86.38 87 | 93.03 112 | 97.43 45 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CLD-MVS | | | 85.43 58 | 84.24 69 | 86.83 50 | 87.69 87 | 93.16 84 | 90.01 49 | 82.72 54 | 87.17 57 | 79.28 44 | 71.43 64 | 65.81 111 | 86.02 51 | 87.33 89 | 86.96 81 | 95.25 45 | 97.83 37 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OpenMVS |  | 77.91 11 | 85.09 59 | 83.42 73 | 87.03 47 | 96.12 30 | 96.55 38 | 89.36 52 | 81.59 62 | 79.19 86 | 75.20 59 | 55.84 124 | 79.04 54 | 84.45 66 | 88.47 76 | 89.35 61 | 95.48 40 | 95.48 84 |
|
TSAR-MVS + COLMAP | | | 84.93 60 | 85.79 60 | 83.92 68 | 90.90 65 | 93.57 80 | 89.25 54 | 82.00 59 | 91.29 33 | 61.66 104 | 88.25 29 | 59.46 131 | 86.71 47 | 89.79 59 | 87.09 79 | 93.01 113 | 91.09 139 |
|
TAPA-MVS | | 80.99 7 | 84.83 61 | 84.42 65 | 85.31 59 | 91.89 59 | 93.73 78 | 88.53 58 | 82.80 53 | 89.99 43 | 69.78 85 | 71.53 63 | 75.03 74 | 85.47 56 | 86.26 102 | 84.54 109 | 93.39 99 | 89.90 148 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PLC |  | 81.02 6 | 84.81 62 | 81.81 90 | 88.31 40 | 93.77 49 | 90.35 107 | 88.80 56 | 84.47 44 | 86.76 60 | 82.17 36 | 66.56 78 | 71.01 92 | 88.41 35 | 85.48 108 | 84.28 112 | 92.26 131 | 88.21 161 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EIA-MVS | | | 84.75 63 | 86.43 55 | 82.79 74 | 86.88 94 | 95.36 60 | 82.84 105 | 76.39 88 | 87.61 56 | 71.03 80 | 74.33 54 | 71.12 91 | 85.16 57 | 89.69 61 | 88.70 66 | 94.40 59 | 98.23 30 |
|
CNLPA | | | 84.72 64 | 82.14 85 | 87.73 43 | 92.85 53 | 93.83 75 | 84.70 90 | 85.07 39 | 90.90 36 | 83.16 30 | 56.28 120 | 71.53 88 | 88.14 39 | 84.19 114 | 84.00 118 | 92.48 126 | 94.26 101 |
|
MVS_Test | | | 84.60 65 | 85.13 64 | 83.99 66 | 88.17 81 | 95.27 62 | 88.21 59 | 73.15 112 | 84.31 66 | 70.55 83 | 68.67 73 | 68.78 100 | 86.99 46 | 91.71 39 | 91.90 25 | 96.84 10 | 95.27 88 |
|
casdiffmvs | | | 83.84 66 | 82.65 81 | 85.22 60 | 87.25 92 | 94.62 68 | 86.01 78 | 79.62 67 | 79.48 83 | 77.59 48 | 61.92 101 | 64.34 115 | 85.57 53 | 90.55 51 | 90.51 44 | 95.26 43 | 97.14 52 |
|
baseline | | | 83.83 67 | 84.38 67 | 83.18 73 | 86.65 96 | 94.59 69 | 85.79 81 | 73.78 109 | 85.83 62 | 72.94 66 | 69.28 68 | 70.80 94 | 83.45 74 | 86.80 93 | 87.59 75 | 96.47 19 | 95.77 80 |
|
diffmvs | | | 83.69 68 | 83.17 77 | 84.31 64 | 85.45 109 | 93.92 71 | 86.89 66 | 78.62 70 | 82.71 73 | 75.95 58 | 66.78 77 | 63.90 118 | 83.84 70 | 87.90 84 | 89.16 63 | 95.10 48 | 97.82 38 |
|
CANet_DTU | | | 83.33 69 | 86.59 52 | 79.53 94 | 88.88 75 | 94.87 65 | 86.63 70 | 68.85 143 | 85.45 63 | 50.54 149 | 77.86 48 | 69.94 97 | 85.62 52 | 92.63 27 | 90.88 39 | 96.63 12 | 94.46 95 |
|
DI_MVS_plusplus_trai | | | 83.32 70 | 82.53 83 | 84.25 65 | 86.26 103 | 93.66 79 | 90.23 48 | 77.16 83 | 77.05 97 | 74.06 62 | 53.74 133 | 74.33 76 | 83.61 73 | 91.40 43 | 89.82 52 | 94.17 62 | 97.73 39 |
|
baseline1 | | | 82.63 71 | 82.02 86 | 83.34 72 | 88.30 80 | 91.89 97 | 88.03 62 | 80.86 65 | 75.05 104 | 65.96 92 | 64.27 89 | 72.20 86 | 80.01 92 | 91.32 44 | 89.56 59 | 96.90 8 | 89.85 149 |
|
PVSNet_Blended_VisFu | | | 82.55 72 | 83.70 72 | 81.21 83 | 89.66 69 | 95.15 64 | 82.41 106 | 77.36 82 | 72.53 118 | 73.64 64 | 61.15 104 | 77.19 64 | 70.35 146 | 91.31 45 | 89.72 55 | 93.84 70 | 98.85 17 |
|
ET-MVSNet_ETH3D | | | 82.37 73 | 85.68 62 | 78.51 103 | 62.90 205 | 94.66 66 | 87.06 65 | 73.57 110 | 83.13 69 | 61.52 106 | 78.37 45 | 76.01 71 | 89.99 21 | 84.14 115 | 89.03 65 | 96.03 29 | 94.42 96 |
|
PMMVS | | | 82.26 74 | 85.48 63 | 78.51 103 | 85.92 106 | 91.92 96 | 78.30 135 | 70.77 129 | 86.30 61 | 61.11 108 | 82.46 39 | 70.88 93 | 84.70 64 | 88.05 83 | 84.78 105 | 90.24 171 | 93.98 105 |
|
ACMP | | 79.58 9 | 82.23 75 | 81.82 89 | 82.71 75 | 88.15 82 | 90.95 105 | 85.23 86 | 78.52 72 | 81.70 75 | 72.52 73 | 78.41 44 | 60.63 126 | 80.48 90 | 82.88 125 | 83.44 122 | 91.37 150 | 94.70 92 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CHOSEN 280x420 | | | 82.15 76 | 85.87 59 | 77.80 108 | 86.54 99 | 93.42 82 | 81.74 108 | 59.96 184 | 78.99 88 | 63.99 97 | 74.50 53 | 83.95 37 | 80.99 83 | 89.53 64 | 85.01 101 | 93.56 85 | 95.71 82 |
|
LGP-MVS_train | | | 82.12 77 | 82.57 82 | 81.59 80 | 89.26 73 | 90.23 110 | 88.76 57 | 78.05 73 | 81.26 77 | 61.64 105 | 79.52 43 | 62.11 121 | 79.59 94 | 85.20 111 | 84.68 107 | 92.27 130 | 95.02 90 |
|
FMVSNet3 | | | 81.93 78 | 81.98 87 | 81.88 79 | 79.49 145 | 87.02 127 | 88.15 61 | 72.57 115 | 83.02 70 | 72.63 70 | 56.55 116 | 73.48 82 | 82.34 80 | 91.49 42 | 91.20 35 | 96.07 25 | 91.13 138 |
|
thisisatest0530 | | | 81.67 79 | 84.27 68 | 78.63 99 | 85.53 107 | 93.88 74 | 81.77 107 | 73.84 106 | 81.35 76 | 63.85 99 | 68.79 71 | 77.64 60 | 73.02 127 | 88.73 74 | 85.73 97 | 93.76 72 | 93.80 115 |
|
tttt0517 | | | 81.51 80 | 84.12 71 | 78.47 105 | 85.33 111 | 93.74 77 | 81.42 111 | 73.84 106 | 81.21 78 | 63.59 100 | 68.73 72 | 77.46 63 | 73.02 127 | 88.47 76 | 85.73 97 | 93.63 81 | 93.49 119 |
|
OPM-MVS | | | 81.34 81 | 78.18 106 | 85.02 61 | 91.27 64 | 91.78 98 | 90.66 45 | 83.62 47 | 62.39 147 | 65.91 93 | 63.35 93 | 64.33 116 | 85.03 58 | 87.77 86 | 85.88 95 | 93.66 77 | 91.75 135 |
|
baseline2 | | | 81.21 82 | 83.36 76 | 78.70 98 | 83.22 124 | 92.71 86 | 80.32 116 | 74.25 105 | 80.39 81 | 63.94 98 | 68.89 70 | 68.44 102 | 74.67 113 | 89.61 63 | 86.68 85 | 95.83 36 | 96.81 66 |
|
IS_MVSNet | | | 80.92 83 | 84.14 70 | 77.16 111 | 87.43 88 | 93.90 73 | 80.44 112 | 74.64 99 | 75.05 104 | 61.10 109 | 65.59 84 | 76.89 67 | 67.39 154 | 90.88 47 | 90.05 48 | 91.95 137 | 96.62 71 |
|
ACMM | | 78.09 10 | 80.91 84 | 78.39 104 | 83.86 69 | 89.61 72 | 87.71 124 | 85.16 87 | 80.67 66 | 79.04 87 | 74.18 61 | 63.82 92 | 60.84 125 | 82.59 78 | 84.33 113 | 83.59 121 | 90.96 158 | 89.39 154 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPP-MVSNet | | | 80.82 85 | 82.79 79 | 78.52 101 | 86.31 102 | 92.37 93 | 79.83 119 | 74.51 100 | 73.79 113 | 64.46 95 | 67.01 76 | 80.63 51 | 74.33 116 | 85.63 107 | 84.35 111 | 91.68 143 | 95.79 79 |
|
CostFormer | | | 80.72 86 | 81.81 90 | 79.44 96 | 86.50 100 | 91.65 99 | 84.31 92 | 59.84 185 | 80.86 79 | 72.69 68 | 62.46 97 | 73.74 79 | 79.93 93 | 82.58 129 | 84.50 110 | 93.37 100 | 96.90 64 |
|
GBi-Net | | | 80.72 86 | 80.49 93 | 81.00 86 | 78.18 149 | 86.19 141 | 86.73 67 | 72.57 115 | 83.02 70 | 72.63 70 | 56.55 116 | 73.48 82 | 80.99 83 | 86.57 95 | 86.83 82 | 94.89 52 | 90.77 141 |
|
test1 | | | 80.72 86 | 80.49 93 | 81.00 86 | 78.18 149 | 86.19 141 | 86.73 67 | 72.57 115 | 83.02 70 | 72.63 70 | 56.55 116 | 73.48 82 | 80.99 83 | 86.57 95 | 86.83 82 | 94.89 52 | 90.77 141 |
|
UGNet | | | 80.71 89 | 83.09 78 | 77.93 107 | 87.02 93 | 92.71 86 | 80.28 117 | 76.53 86 | 73.83 112 | 71.35 77 | 70.07 66 | 73.71 80 | 58.93 174 | 87.39 88 | 86.97 80 | 93.48 93 | 96.94 61 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CHOSEN 1792x2688 | | | 80.23 90 | 79.16 101 | 81.48 81 | 91.97 57 | 96.56 36 | 86.18 76 | 75.40 95 | 76.17 100 | 61.32 107 | 37.43 192 | 61.08 124 | 76.52 106 | 92.35 29 | 91.64 30 | 97.46 3 | 98.86 16 |
|
thres100view900 | | | 79.83 91 | 77.79 110 | 82.21 76 | 88.42 77 | 93.54 81 | 87.07 64 | 81.11 63 | 70.15 125 | 61.01 110 | 56.65 114 | 51.22 147 | 81.78 81 | 89.77 60 | 85.95 93 | 93.84 70 | 97.26 49 |
|
Effi-MVS+ | | | 79.80 92 | 80.04 95 | 79.52 95 | 85.53 107 | 93.31 83 | 85.28 84 | 70.68 131 | 74.15 108 | 58.79 119 | 62.03 100 | 60.51 127 | 83.37 75 | 88.41 78 | 86.09 92 | 93.49 92 | 95.80 78 |
|
DCV-MVSNet | | | 79.76 93 | 79.17 100 | 80.44 91 | 84.65 115 | 84.51 165 | 84.20 95 | 72.36 120 | 75.17 103 | 70.81 81 | 66.21 81 | 66.56 106 | 80.99 83 | 82.89 124 | 84.56 108 | 89.65 177 | 94.30 100 |
|
FC-MVSNet-train | | | 79.54 94 | 78.20 105 | 81.09 85 | 86.55 98 | 88.63 120 | 79.96 118 | 78.53 71 | 70.90 123 | 68.24 89 | 65.87 83 | 56.45 141 | 80.29 91 | 86.20 104 | 84.08 113 | 92.97 114 | 95.31 87 |
|
test-LLR | | | 79.52 95 | 83.42 73 | 74.97 120 | 81.79 129 | 91.26 100 | 76.17 156 | 70.57 132 | 77.71 92 | 52.14 136 | 66.26 79 | 77.47 61 | 73.10 123 | 87.02 90 | 87.16 77 | 96.05 27 | 97.02 55 |
|
FMVSNet2 | | | 79.24 96 | 78.14 107 | 80.53 90 | 78.18 149 | 86.19 141 | 86.73 67 | 71.91 121 | 72.97 115 | 70.48 84 | 50.63 142 | 66.56 106 | 80.99 83 | 90.10 54 | 89.77 54 | 94.89 52 | 90.77 141 |
|
TESTMET0.1,1 | | | 79.15 97 | 83.42 73 | 74.18 126 | 79.81 143 | 91.26 100 | 76.17 156 | 67.83 156 | 77.71 92 | 52.14 136 | 66.26 79 | 77.47 61 | 73.10 123 | 87.02 90 | 87.16 77 | 96.05 27 | 97.02 55 |
|
tfpn200view9 | | | 79.05 98 | 77.21 112 | 81.18 84 | 88.42 77 | 92.55 91 | 85.12 88 | 77.94 75 | 70.15 125 | 61.01 110 | 56.65 114 | 51.22 147 | 81.11 82 | 88.23 79 | 84.80 104 | 93.50 91 | 96.90 64 |
|
PatchMatch-RL | | | 78.75 99 | 76.47 119 | 81.41 82 | 88.53 76 | 91.10 102 | 78.09 136 | 77.51 81 | 77.33 94 | 71.98 75 | 64.38 88 | 48.10 159 | 82.55 79 | 84.06 116 | 82.35 131 | 89.78 174 | 87.97 163 |
|
LS3D | | | 78.72 100 | 75.79 123 | 82.15 77 | 91.91 58 | 89.39 117 | 83.66 98 | 85.88 37 | 76.81 98 | 59.22 118 | 57.67 111 | 58.53 135 | 83.72 72 | 82.07 134 | 81.63 142 | 88.50 185 | 84.39 174 |
|
thres200 | | | 78.69 101 | 76.71 115 | 80.99 88 | 88.35 79 | 92.56 89 | 86.03 77 | 77.94 75 | 66.27 132 | 60.66 112 | 56.08 121 | 51.11 149 | 79.45 95 | 88.23 79 | 85.54 100 | 93.52 86 | 97.20 51 |
|
Anonymous20231211 | | | 78.61 102 | 75.57 126 | 82.15 77 | 84.43 118 | 90.26 108 | 84.08 96 | 77.68 78 | 71.09 121 | 72.90 67 | 39.24 185 | 66.21 108 | 84.23 69 | 82.15 132 | 84.04 115 | 89.61 178 | 96.03 74 |
|
IB-MVS | | 74.10 12 | 78.52 103 | 78.51 103 | 78.52 101 | 90.15 67 | 95.39 59 | 71.95 176 | 77.53 80 | 74.95 106 | 77.25 51 | 58.93 108 | 55.92 142 | 58.37 176 | 79.01 159 | 87.89 74 | 95.88 34 | 97.47 42 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPNet_dtu | | | 78.49 104 | 81.96 88 | 74.45 125 | 92.57 55 | 88.74 119 | 82.98 101 | 78.83 69 | 83.28 68 | 44.64 180 | 77.40 49 | 67.73 103 | 53.98 185 | 85.44 109 | 84.91 102 | 93.71 75 | 86.22 169 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres400 | | | 78.39 105 | 76.39 120 | 80.73 89 | 88.02 84 | 92.94 85 | 84.77 89 | 78.88 68 | 65.20 140 | 59.70 116 | 55.20 127 | 50.85 150 | 79.45 95 | 88.81 71 | 84.81 103 | 93.57 83 | 96.91 63 |
|
UA-Net | | | 78.30 106 | 80.92 92 | 75.25 119 | 87.42 89 | 92.48 92 | 79.54 122 | 75.49 94 | 60.47 151 | 60.52 113 | 68.44 74 | 84.08 36 | 57.54 178 | 88.54 75 | 88.45 68 | 90.96 158 | 83.97 176 |
|
Vis-MVSNet (Re-imp) | | | 78.28 107 | 82.68 80 | 73.16 137 | 86.64 97 | 92.68 88 | 78.07 137 | 74.48 101 | 74.05 109 | 53.47 129 | 64.22 90 | 76.52 68 | 54.28 181 | 88.96 70 | 88.29 71 | 92.03 135 | 94.00 104 |
|
MSDG | | | 78.11 108 | 73.17 139 | 83.86 69 | 91.78 61 | 86.83 129 | 85.25 85 | 86.02 35 | 72.84 116 | 69.69 87 | 51.43 139 | 54.00 145 | 77.61 99 | 81.95 137 | 82.27 133 | 92.83 120 | 82.91 181 |
|
HyFIR lowres test | | | 78.08 109 | 76.81 113 | 79.56 93 | 90.77 66 | 94.64 67 | 82.97 102 | 69.85 137 | 69.81 127 | 59.53 117 | 33.52 197 | 64.66 112 | 78.97 97 | 88.77 73 | 88.38 70 | 95.27 42 | 97.86 36 |
|
test-mter | | | 77.90 110 | 82.44 84 | 72.60 142 | 78.52 147 | 90.24 109 | 73.85 169 | 65.31 170 | 76.37 99 | 51.29 140 | 65.58 85 | 75.94 72 | 71.36 137 | 85.98 105 | 86.26 89 | 95.26 43 | 96.71 70 |
|
thres600view7 | | | 77.66 111 | 75.67 124 | 79.98 92 | 87.71 86 | 92.56 89 | 83.79 97 | 77.94 75 | 64.41 142 | 58.69 120 | 54.32 132 | 50.54 151 | 78.23 98 | 88.23 79 | 83.06 125 | 93.52 86 | 96.55 72 |
|
MS-PatchMatch | | | 77.47 112 | 76.48 118 | 78.63 99 | 89.89 68 | 90.42 106 | 85.42 83 | 69.53 139 | 70.79 124 | 60.43 114 | 50.05 144 | 70.62 96 | 70.66 143 | 86.71 94 | 82.54 128 | 95.86 35 | 84.23 175 |
|
Fast-Effi-MVS+ | | | 77.37 113 | 76.68 116 | 78.17 106 | 82.84 126 | 89.94 113 | 81.47 110 | 68.01 152 | 72.99 114 | 60.26 115 | 55.07 128 | 53.20 146 | 82.99 76 | 86.47 100 | 86.12 91 | 93.46 94 | 92.98 123 |
|
Vis-MVSNet |  | | 77.24 114 | 79.99 98 | 74.02 127 | 84.62 116 | 93.92 71 | 80.33 115 | 72.55 118 | 62.58 146 | 55.25 127 | 64.45 87 | 69.49 98 | 57.00 179 | 88.78 72 | 88.21 72 | 94.36 60 | 92.54 126 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MDTV_nov1_ep13 | | | 77.20 115 | 80.04 95 | 73.90 129 | 82.22 127 | 90.14 111 | 79.25 126 | 61.52 180 | 78.63 89 | 56.98 121 | 65.52 86 | 72.80 85 | 73.05 125 | 80.93 145 | 83.20 123 | 90.36 168 | 89.05 157 |
|
EPMVS | | | 77.16 116 | 79.08 102 | 74.92 121 | 86.73 95 | 91.98 95 | 78.62 131 | 55.44 193 | 79.43 84 | 56.59 123 | 61.24 103 | 70.73 95 | 76.97 103 | 80.59 148 | 81.43 149 | 95.15 47 | 88.17 162 |
|
tpm cat1 | | | 76.93 117 | 76.19 122 | 77.79 109 | 85.08 114 | 88.58 121 | 82.96 103 | 59.33 186 | 75.72 102 | 72.64 69 | 51.25 140 | 64.41 114 | 75.74 110 | 77.90 168 | 80.10 165 | 90.97 157 | 95.35 85 |
|
PatchmatchNet |  | | 76.85 118 | 80.03 97 | 73.15 138 | 84.08 120 | 91.04 104 | 77.76 141 | 55.85 192 | 79.43 84 | 52.74 134 | 62.08 99 | 76.02 70 | 74.56 114 | 79.92 153 | 81.41 150 | 93.92 69 | 90.29 146 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IterMVS-LS | | | 76.80 119 | 76.33 121 | 77.35 110 | 84.07 121 | 84.11 167 | 81.54 109 | 68.52 145 | 66.17 133 | 61.74 103 | 57.84 110 | 64.31 117 | 74.88 112 | 83.48 121 | 86.21 90 | 93.34 102 | 92.16 130 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 76.57 120 | 76.78 114 | 76.32 114 | 80.94 136 | 89.75 114 | 82.94 104 | 72.64 114 | 59.01 157 | 62.95 102 | 58.60 109 | 62.67 120 | 66.91 156 | 86.26 102 | 87.20 76 | 91.57 145 | 93.97 106 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
SCA | | | 76.41 121 | 79.90 99 | 72.35 146 | 84.26 119 | 85.24 156 | 75.57 163 | 54.56 195 | 79.95 82 | 52.72 135 | 64.22 90 | 77.84 57 | 73.73 120 | 80.48 149 | 81.37 151 | 93.25 105 | 90.20 147 |
|
tpmrst | | | 76.27 122 | 77.65 111 | 74.66 123 | 86.13 105 | 89.53 116 | 79.31 125 | 54.91 194 | 77.19 96 | 56.27 124 | 55.87 123 | 64.58 113 | 77.25 100 | 80.85 146 | 80.21 162 | 94.07 64 | 95.32 86 |
|
dps | | | 75.76 123 | 75.02 128 | 76.63 113 | 84.51 117 | 88.12 122 | 77.51 142 | 58.33 188 | 75.91 101 | 71.98 75 | 57.37 112 | 57.85 136 | 76.81 105 | 77.89 169 | 78.40 174 | 90.63 165 | 89.63 151 |
|
CR-MVSNet | | | 74.84 124 | 77.91 108 | 71.26 159 | 81.77 131 | 85.52 152 | 78.32 133 | 54.14 197 | 74.05 109 | 51.09 143 | 50.00 145 | 71.38 90 | 70.77 141 | 86.48 98 | 84.03 116 | 91.46 149 | 93.92 108 |
|
Effi-MVS+-dtu | | | 74.57 125 | 74.60 132 | 74.53 124 | 81.38 133 | 86.74 131 | 80.39 114 | 67.70 157 | 67.36 131 | 53.06 130 | 59.86 106 | 57.50 137 | 75.84 109 | 80.19 151 | 78.62 172 | 88.79 184 | 91.95 134 |
|
test_part1 | | | 74.38 126 | 70.16 152 | 79.31 97 | 83.30 123 | 84.45 166 | 84.31 92 | 71.43 126 | 55.24 169 | 74.88 60 | 38.77 187 | 59.61 130 | 75.29 111 | 78.96 160 | 81.53 144 | 86.63 193 | 92.55 125 |
|
RPSCF | | | 74.27 127 | 73.24 138 | 75.48 118 | 81.01 135 | 80.18 189 | 76.24 155 | 72.37 119 | 74.84 107 | 68.24 89 | 72.47 57 | 67.39 104 | 73.89 117 | 71.05 193 | 69.38 200 | 81.14 205 | 77.37 193 |
|
FMVSNet1 | | | 74.26 128 | 71.95 144 | 76.95 112 | 74.28 181 | 83.94 169 | 83.61 99 | 69.99 135 | 57.08 162 | 65.08 94 | 42.39 174 | 57.41 138 | 76.98 102 | 86.57 95 | 86.83 82 | 91.77 142 | 89.42 152 |
|
GA-MVS | | | 73.62 129 | 74.52 133 | 72.58 143 | 79.93 141 | 89.29 118 | 78.02 138 | 71.67 124 | 60.79 150 | 42.68 184 | 54.41 131 | 49.07 155 | 70.07 147 | 89.39 67 | 86.55 86 | 93.13 110 | 92.12 131 |
|
Fast-Effi-MVS+-dtu | | | 73.56 130 | 75.32 127 | 71.50 155 | 80.35 138 | 86.83 129 | 79.72 120 | 58.07 189 | 67.64 130 | 44.83 177 | 60.28 105 | 54.07 144 | 73.59 122 | 81.90 139 | 82.30 132 | 92.46 127 | 94.18 102 |
|
tpm | | | 73.50 131 | 74.85 129 | 71.93 149 | 83.19 125 | 86.84 128 | 78.61 132 | 55.91 191 | 65.64 135 | 48.90 156 | 56.30 119 | 61.09 123 | 72.31 129 | 79.10 158 | 80.61 161 | 92.68 122 | 94.35 99 |
|
RPMNet | | | 73.46 132 | 77.85 109 | 68.34 169 | 81.71 132 | 85.52 152 | 73.83 170 | 50.54 204 | 74.05 109 | 46.10 171 | 53.03 136 | 71.91 87 | 66.31 158 | 83.55 119 | 82.18 135 | 91.55 147 | 94.71 91 |
|
USDC | | | 73.43 133 | 72.31 142 | 74.73 122 | 80.86 137 | 86.21 139 | 80.42 113 | 71.83 123 | 71.69 120 | 46.94 164 | 59.60 107 | 42.58 180 | 76.47 107 | 82.66 128 | 81.22 154 | 91.88 139 | 82.24 187 |
|
pmmvs4 | | | 73.38 134 | 71.53 147 | 75.55 117 | 75.95 167 | 85.24 156 | 77.25 146 | 71.59 125 | 71.03 122 | 63.10 101 | 49.09 150 | 44.22 170 | 73.73 120 | 82.04 135 | 80.18 163 | 91.68 143 | 88.89 159 |
|
UniMVSNet_NR-MVSNet | | | 73.11 135 | 72.59 140 | 73.71 132 | 76.90 158 | 86.58 135 | 77.01 147 | 75.82 92 | 65.59 136 | 48.82 157 | 50.97 141 | 48.42 157 | 71.61 133 | 79.19 157 | 83.03 126 | 92.11 132 | 94.37 97 |
|
FMVSNet5 | | | 72.83 136 | 73.89 136 | 71.59 153 | 67.42 199 | 76.28 197 | 75.88 160 | 63.74 174 | 77.27 95 | 54.59 128 | 53.32 134 | 71.48 89 | 73.85 118 | 81.95 137 | 81.69 140 | 94.06 65 | 75.20 197 |
|
PatchT | | | 72.66 137 | 76.58 117 | 68.09 171 | 79.02 146 | 86.09 145 | 59.81 198 | 51.78 202 | 72.00 119 | 51.09 143 | 46.84 154 | 66.70 105 | 70.77 141 | 86.48 98 | 84.03 116 | 96.07 25 | 93.92 108 |
|
ACMH | | 71.22 14 | 72.65 138 | 70.13 153 | 75.59 116 | 86.19 104 | 86.14 144 | 75.76 161 | 77.63 79 | 54.79 171 | 46.16 170 | 53.28 135 | 47.28 161 | 77.24 101 | 78.91 161 | 81.18 155 | 90.57 166 | 89.33 155 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS | | | 72.43 139 | 74.05 134 | 70.55 163 | 80.34 139 | 81.17 183 | 77.44 143 | 61.00 183 | 63.57 145 | 46.82 166 | 55.88 122 | 59.09 134 | 65.03 160 | 83.15 122 | 83.83 119 | 92.67 123 | 91.65 136 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH+ | | 72.14 13 | 72.38 140 | 69.34 160 | 75.93 115 | 85.21 112 | 84.89 160 | 76.96 150 | 76.04 90 | 59.76 152 | 51.63 139 | 50.37 143 | 48.69 156 | 76.90 104 | 76.06 177 | 78.69 170 | 88.85 183 | 86.90 167 |
|
DU-MVS | | | 72.19 141 | 71.35 148 | 73.17 136 | 75.95 167 | 86.02 146 | 77.01 147 | 74.42 102 | 65.39 138 | 48.82 157 | 49.10 148 | 42.81 178 | 71.61 133 | 78.67 162 | 83.10 124 | 91.22 153 | 94.37 97 |
|
IterMVS-SCA-FT | | | 72.18 142 | 73.96 135 | 70.11 165 | 80.15 140 | 81.11 184 | 77.42 144 | 61.09 182 | 63.67 144 | 46.73 167 | 55.77 125 | 59.15 133 | 63.95 163 | 82.83 126 | 83.70 120 | 91.31 151 | 91.49 137 |
|
UniMVSNet (Re) | | | 72.12 143 | 72.28 143 | 71.93 149 | 76.77 159 | 87.38 126 | 75.73 162 | 73.51 111 | 65.76 134 | 50.24 151 | 48.65 151 | 46.49 162 | 63.85 164 | 80.10 152 | 82.47 129 | 91.49 148 | 95.13 89 |
|
ADS-MVSNet | | | 72.11 144 | 73.72 137 | 70.24 164 | 81.24 134 | 86.59 134 | 74.75 166 | 50.56 203 | 72.58 117 | 49.17 154 | 55.40 126 | 61.46 122 | 73.80 119 | 76.01 178 | 78.14 175 | 91.93 138 | 85.86 170 |
|
gg-mvs-nofinetune | | | 72.10 145 | 74.79 130 | 68.97 168 | 83.31 122 | 95.22 63 | 85.66 82 | 48.77 205 | 35.68 207 | 22.17 213 | 30.49 200 | 77.73 59 | 76.37 108 | 94.30 13 | 93.03 11 | 97.55 2 | 97.05 54 |
|
TAMVS | | | 72.06 146 | 71.76 146 | 72.41 145 | 76.68 160 | 88.12 122 | 74.82 165 | 68.09 150 | 53.52 176 | 56.91 122 | 52.94 137 | 56.93 140 | 66.91 156 | 81.37 142 | 82.44 130 | 91.07 155 | 86.99 166 |
|
v2v482 | | | 71.73 147 | 69.80 155 | 73.99 128 | 75.88 171 | 86.66 133 | 79.58 121 | 71.90 122 | 57.58 161 | 50.41 150 | 45.35 158 | 43.24 176 | 73.05 125 | 79.69 154 | 82.18 135 | 93.08 111 | 93.87 112 |
|
test0.0.03 1 | | | 71.70 148 | 74.68 131 | 68.23 170 | 81.79 129 | 83.81 170 | 68.64 180 | 70.57 132 | 68.81 129 | 43.47 181 | 62.77 96 | 60.09 129 | 51.77 192 | 82.48 130 | 81.67 141 | 93.16 108 | 83.13 179 |
|
V42 | | | 71.58 149 | 70.11 154 | 73.30 135 | 75.66 174 | 86.68 132 | 79.17 128 | 69.92 136 | 59.29 156 | 52.80 133 | 44.36 162 | 45.66 164 | 68.83 148 | 79.48 156 | 81.49 146 | 93.44 95 | 93.82 114 |
|
NR-MVSNet | | | 71.47 150 | 71.11 149 | 71.90 151 | 77.73 154 | 86.02 146 | 76.88 151 | 74.42 102 | 65.39 138 | 46.09 172 | 49.10 148 | 39.87 192 | 64.27 162 | 81.40 141 | 82.24 134 | 91.99 136 | 93.75 116 |
|
v8 | | | 71.42 151 | 69.69 156 | 73.43 134 | 76.45 163 | 85.12 159 | 79.53 123 | 67.47 160 | 59.34 155 | 52.90 132 | 44.60 160 | 45.82 163 | 71.05 139 | 79.56 155 | 81.45 148 | 93.17 107 | 91.96 133 |
|
TranMVSNet+NR-MVSNet | | | 71.12 152 | 70.24 151 | 72.15 147 | 76.01 166 | 84.80 162 | 76.55 153 | 75.65 93 | 61.99 148 | 45.29 175 | 48.42 152 | 43.07 177 | 67.55 152 | 78.28 165 | 82.83 127 | 91.85 140 | 92.29 127 |
|
v10 | | | 70.97 153 | 69.44 157 | 72.75 139 | 75.90 170 | 84.58 164 | 79.43 124 | 66.45 165 | 58.07 159 | 49.93 152 | 43.87 168 | 43.68 171 | 71.91 131 | 82.04 135 | 81.70 139 | 92.89 118 | 92.11 132 |
|
v1144 | | | 70.93 154 | 69.42 159 | 72.70 140 | 75.48 175 | 86.26 137 | 79.22 127 | 69.39 141 | 55.61 167 | 48.05 162 | 43.47 169 | 42.55 181 | 71.51 135 | 82.11 133 | 81.74 138 | 92.56 125 | 94.17 103 |
|
thisisatest0515 | | | 70.62 155 | 71.94 145 | 69.07 167 | 76.48 162 | 85.59 151 | 68.03 181 | 68.02 151 | 59.70 153 | 52.94 131 | 52.19 138 | 50.36 152 | 58.10 177 | 83.15 122 | 81.63 142 | 90.87 161 | 90.99 140 |
|
Baseline_NR-MVSNet | | | 70.61 156 | 68.87 163 | 72.65 141 | 75.95 167 | 80.49 187 | 75.92 159 | 74.75 98 | 65.10 141 | 48.78 159 | 41.28 180 | 44.28 169 | 68.45 149 | 78.67 162 | 79.64 166 | 92.04 134 | 92.62 124 |
|
v148 | | | 70.34 157 | 68.46 166 | 72.54 144 | 76.04 165 | 86.38 136 | 74.83 164 | 72.73 113 | 55.88 166 | 55.26 126 | 43.32 171 | 43.49 172 | 64.52 161 | 76.93 175 | 80.11 164 | 91.85 140 | 93.11 120 |
|
v1192 | | | 70.32 158 | 68.77 164 | 72.12 148 | 74.76 177 | 85.62 150 | 78.73 129 | 68.53 144 | 55.08 170 | 46.34 169 | 42.39 174 | 40.67 187 | 71.90 132 | 82.27 131 | 81.53 144 | 92.43 128 | 93.86 113 |
|
v144192 | | | 70.10 159 | 68.55 165 | 71.90 151 | 74.55 178 | 85.67 149 | 77.81 139 | 68.22 149 | 54.65 172 | 46.91 165 | 42.76 172 | 41.27 185 | 70.95 140 | 80.48 149 | 81.11 159 | 92.96 115 | 93.90 110 |
|
pmmvs5 | | | 70.01 160 | 69.31 161 | 70.82 162 | 75.80 173 | 86.26 137 | 72.94 171 | 67.91 153 | 53.84 175 | 47.22 163 | 47.31 153 | 41.47 184 | 67.61 151 | 83.93 118 | 81.93 137 | 93.42 97 | 90.42 145 |
|
COLMAP_ROB |  | 66.31 15 | 69.91 161 | 66.61 171 | 73.76 130 | 86.44 101 | 82.76 174 | 76.59 152 | 76.46 87 | 63.82 143 | 50.92 147 | 45.60 157 | 49.13 154 | 65.87 159 | 74.96 183 | 74.45 190 | 86.30 195 | 75.57 196 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
v1921920 | | | 69.85 162 | 68.38 167 | 71.58 154 | 74.35 179 | 85.39 154 | 77.78 140 | 67.88 155 | 54.64 173 | 45.39 174 | 42.11 177 | 39.97 191 | 71.10 138 | 81.68 140 | 81.17 157 | 92.96 115 | 93.69 118 |
|
pm-mvs1 | | | 69.62 163 | 68.07 169 | 71.44 156 | 77.21 156 | 85.32 155 | 76.11 158 | 71.05 127 | 46.55 196 | 51.17 142 | 41.83 178 | 48.20 158 | 61.81 170 | 84.00 117 | 81.14 158 | 91.28 152 | 89.42 152 |
|
UniMVSNet_ETH3D | | | 69.49 164 | 65.86 173 | 73.72 131 | 76.51 161 | 85.88 148 | 78.65 130 | 70.52 134 | 48.08 193 | 55.71 125 | 37.64 189 | 40.56 188 | 71.38 136 | 75.05 182 | 81.49 146 | 89.57 180 | 92.29 127 |
|
tfpnnormal | | | 69.29 165 | 65.58 174 | 73.62 133 | 79.87 142 | 84.82 161 | 76.97 149 | 75.12 96 | 45.29 197 | 49.03 155 | 35.57 195 | 37.20 200 | 68.02 150 | 82.70 127 | 81.24 153 | 92.69 121 | 92.20 129 |
|
v1240 | | | 69.28 166 | 67.82 170 | 71.00 161 | 74.09 183 | 85.13 158 | 76.54 154 | 67.28 162 | 53.17 177 | 44.70 178 | 41.55 179 | 39.38 193 | 70.51 145 | 81.29 143 | 81.18 155 | 92.88 119 | 93.02 122 |
|
CVMVSNet | | | 68.95 167 | 70.79 150 | 66.79 177 | 79.69 144 | 83.75 171 | 72.05 175 | 70.90 128 | 56.20 164 | 36.30 196 | 54.94 130 | 59.22 132 | 54.03 184 | 78.33 164 | 78.65 171 | 87.77 190 | 84.44 173 |
|
MIMVSNet | | | 68.66 168 | 69.43 158 | 67.76 172 | 64.92 202 | 84.68 163 | 74.16 167 | 54.10 199 | 60.85 149 | 51.27 141 | 39.47 184 | 49.48 153 | 67.48 153 | 84.86 112 | 85.57 99 | 94.63 56 | 81.10 188 |
|
TDRefinement | | | 67.82 169 | 64.91 180 | 71.22 160 | 82.08 128 | 81.45 179 | 77.42 144 | 73.79 108 | 59.62 154 | 48.35 161 | 42.35 176 | 42.40 182 | 60.87 172 | 74.69 184 | 74.64 189 | 84.83 199 | 79.20 191 |
|
anonymousdsp | | | 67.61 170 | 68.94 162 | 66.04 178 | 71.44 195 | 83.97 168 | 66.45 185 | 63.53 176 | 50.54 186 | 42.42 185 | 49.39 146 | 45.63 165 | 62.84 167 | 77.99 167 | 81.34 152 | 89.59 179 | 93.75 116 |
|
TinyColmap | | | 67.16 171 | 63.51 187 | 71.42 157 | 77.94 152 | 79.54 193 | 72.80 172 | 69.78 138 | 56.58 163 | 45.52 173 | 44.53 161 | 33.53 205 | 74.45 115 | 76.91 176 | 77.06 181 | 88.03 189 | 76.41 194 |
|
FC-MVSNet-test | | | 67.04 172 | 72.47 141 | 60.70 195 | 76.92 157 | 81.41 180 | 61.52 195 | 69.45 140 | 65.58 137 | 26.74 209 | 61.79 102 | 60.40 128 | 41.17 200 | 77.60 171 | 77.78 177 | 88.41 186 | 82.70 183 |
|
TransMVSNet (Re) | | | 66.87 173 | 64.30 182 | 69.88 166 | 78.32 148 | 81.35 182 | 73.88 168 | 74.34 104 | 43.19 201 | 45.20 176 | 40.12 182 | 42.37 183 | 55.97 180 | 80.85 146 | 79.15 167 | 91.56 146 | 83.06 180 |
|
CMPMVS |  | 50.59 17 | 66.74 174 | 62.72 191 | 71.42 157 | 85.40 110 | 89.72 115 | 72.69 173 | 70.72 130 | 51.24 182 | 51.75 138 | 38.91 186 | 44.40 167 | 63.74 165 | 70.84 194 | 71.52 194 | 84.19 200 | 72.45 201 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
v7n | | | 66.43 175 | 65.51 175 | 67.51 173 | 71.63 194 | 83.10 172 | 70.89 179 | 65.02 171 | 50.13 189 | 44.68 179 | 39.59 183 | 38.77 194 | 62.57 168 | 77.59 172 | 78.91 168 | 90.29 170 | 90.44 144 |
|
EG-PatchMatch MVS | | | 66.23 176 | 65.20 177 | 67.43 174 | 77.74 153 | 86.20 140 | 72.51 174 | 63.68 175 | 43.95 199 | 43.44 182 | 36.22 194 | 45.43 166 | 54.04 183 | 81.00 144 | 80.95 160 | 93.15 109 | 82.67 184 |
|
WR-MVS | | | 64.98 177 | 66.59 172 | 63.09 188 | 74.34 180 | 82.68 175 | 64.98 191 | 69.17 142 | 54.42 174 | 36.18 197 | 44.32 163 | 44.35 168 | 44.65 195 | 73.60 185 | 77.83 176 | 89.21 182 | 88.96 158 |
|
gm-plane-assit | | | 64.86 178 | 68.15 168 | 61.02 194 | 76.44 164 | 68.29 206 | 41.60 211 | 53.37 200 | 34.68 209 | 26.19 211 | 33.22 198 | 57.09 139 | 71.97 130 | 95.12 5 | 93.97 7 | 96.54 16 | 94.66 93 |
|
CP-MVSNet | | | 64.84 179 | 64.97 178 | 64.69 183 | 72.09 190 | 81.04 185 | 66.66 184 | 67.53 159 | 52.45 179 | 37.40 192 | 44.00 167 | 38.37 196 | 53.54 187 | 72.26 189 | 76.93 182 | 90.94 160 | 89.75 150 |
|
MDTV_nov1_ep13_2view | | | 64.72 180 | 64.94 179 | 64.46 184 | 71.14 196 | 81.94 178 | 67.53 182 | 54.54 196 | 55.92 165 | 43.29 183 | 44.02 166 | 43.27 175 | 59.87 173 | 71.85 191 | 74.77 188 | 90.36 168 | 82.82 182 |
|
MVS-HIRNet | | | 64.63 181 | 64.03 186 | 65.33 180 | 75.01 176 | 82.84 173 | 58.54 202 | 52.10 201 | 55.42 168 | 49.29 153 | 29.83 203 | 43.48 173 | 66.97 155 | 78.28 165 | 78.81 169 | 90.07 173 | 79.52 190 |
|
pmnet_mix02 | | | 64.58 182 | 64.11 185 | 65.12 181 | 74.16 182 | 80.17 190 | 63.24 193 | 67.91 153 | 57.87 160 | 41.69 186 | 45.86 156 | 40.99 186 | 53.97 186 | 69.92 197 | 71.67 193 | 89.77 175 | 82.29 186 |
|
LTVRE_ROB | | 63.07 16 | 64.49 183 | 63.16 190 | 66.04 178 | 77.47 155 | 82.64 176 | 70.98 178 | 65.02 171 | 34.01 210 | 29.61 205 | 49.12 147 | 35.58 204 | 70.57 144 | 75.10 181 | 78.45 173 | 82.60 203 | 87.24 165 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PEN-MVS | | | 64.35 184 | 64.29 183 | 64.42 185 | 72.67 186 | 79.83 191 | 66.97 183 | 68.24 148 | 51.21 183 | 35.29 199 | 44.09 164 | 38.51 195 | 52.36 190 | 71.06 192 | 77.65 178 | 90.99 156 | 87.68 164 |
|
pmmvs6 | | | 64.24 185 | 61.77 195 | 67.12 175 | 72.39 189 | 81.39 181 | 71.33 177 | 65.95 169 | 36.05 206 | 48.48 160 | 30.55 199 | 43.45 174 | 58.75 175 | 77.88 170 | 76.36 185 | 85.83 196 | 86.70 168 |
|
pmmvs-eth3d | | | 64.24 185 | 61.96 193 | 66.90 176 | 66.35 200 | 76.04 199 | 66.09 187 | 66.31 166 | 52.59 178 | 50.94 146 | 37.61 190 | 32.79 207 | 62.43 169 | 75.78 179 | 75.48 187 | 89.27 181 | 83.39 178 |
|
PS-CasMVS | | | 64.22 187 | 64.19 184 | 64.25 186 | 71.86 192 | 80.67 186 | 66.42 186 | 67.43 161 | 50.64 185 | 36.48 194 | 42.60 173 | 37.46 199 | 52.56 189 | 71.98 190 | 76.69 184 | 90.76 162 | 89.29 156 |
|
WR-MVS_H | | | 64.14 188 | 65.36 176 | 62.71 190 | 72.47 188 | 82.33 177 | 65.13 188 | 66.99 163 | 51.81 181 | 36.47 195 | 43.33 170 | 42.77 179 | 43.99 196 | 72.41 188 | 75.99 186 | 91.20 154 | 88.86 160 |
|
SixPastTwentyTwo | | | 63.75 189 | 63.42 188 | 64.13 187 | 72.91 185 | 80.34 188 | 61.29 196 | 63.90 173 | 49.58 190 | 40.42 188 | 54.99 129 | 37.13 201 | 60.90 171 | 68.46 198 | 70.80 195 | 85.37 198 | 82.65 185 |
|
PM-MVS | | | 63.52 190 | 62.51 192 | 64.70 182 | 64.79 204 | 76.08 198 | 65.07 189 | 62.08 178 | 58.13 158 | 46.56 168 | 44.98 159 | 31.31 208 | 62.89 166 | 72.58 187 | 69.93 199 | 86.81 192 | 84.55 172 |
|
DTE-MVSNet | | | 63.26 191 | 63.41 189 | 63.08 189 | 72.59 187 | 78.56 194 | 65.03 190 | 68.28 147 | 50.53 187 | 32.38 202 | 44.03 165 | 37.79 198 | 49.48 193 | 70.83 195 | 76.73 183 | 90.73 163 | 85.42 171 |
|
testgi | | | 63.11 192 | 64.88 181 | 61.05 193 | 75.83 172 | 78.51 195 | 60.42 197 | 66.20 167 | 48.77 191 | 34.56 200 | 56.96 113 | 40.35 189 | 40.95 201 | 77.46 173 | 77.22 180 | 88.37 188 | 74.86 199 |
|
GG-mvs-BLEND | | | 62.08 193 | 88.31 44 | 31.46 207 | 0.16 218 | 98.10 10 | 91.57 41 | 0.09 215 | 85.07 65 | 0.21 219 | 73.90 56 | 83.74 39 | 0.19 216 | 88.98 69 | 89.39 60 | 96.58 15 | 99.02 14 |
|
Anonymous20231206 | | | 62.05 194 | 61.83 194 | 62.30 192 | 72.09 190 | 77.84 196 | 63.10 194 | 67.62 158 | 50.20 188 | 36.68 193 | 29.59 204 | 37.05 202 | 43.90 197 | 77.33 174 | 77.31 179 | 90.41 167 | 83.49 177 |
|
N_pmnet | | | 60.52 195 | 58.83 198 | 62.50 191 | 68.97 198 | 75.61 200 | 59.72 200 | 66.47 164 | 51.90 180 | 41.26 187 | 35.42 196 | 35.63 203 | 52.25 191 | 67.07 201 | 70.08 198 | 86.35 194 | 76.10 195 |
|
EU-MVSNet | | | 58.73 196 | 60.92 196 | 56.17 198 | 66.17 201 | 72.39 203 | 58.85 201 | 61.24 181 | 48.47 192 | 27.91 207 | 46.70 155 | 40.06 190 | 39.07 202 | 68.27 199 | 70.34 197 | 83.77 201 | 80.23 189 |
|
test20.03 | | | 57.93 197 | 59.22 197 | 56.44 197 | 71.84 193 | 73.78 202 | 53.55 205 | 65.96 168 | 43.02 202 | 28.46 206 | 37.50 191 | 38.17 197 | 30.41 206 | 75.25 180 | 74.42 191 | 88.41 186 | 72.37 202 |
|
MDA-MVSNet-bldmvs | | | 54.99 198 | 52.66 201 | 57.71 196 | 52.74 210 | 74.87 201 | 55.61 203 | 68.41 146 | 43.65 200 | 32.54 201 | 37.93 188 | 22.11 214 | 54.11 182 | 48.85 207 | 67.34 201 | 82.85 202 | 73.88 200 |
|
new-patchmatchnet | | | 53.91 199 | 52.69 200 | 55.33 200 | 64.83 203 | 70.90 204 | 52.24 206 | 61.75 179 | 41.09 203 | 30.82 203 | 29.90 202 | 28.22 210 | 36.69 203 | 61.52 202 | 65.08 202 | 85.64 197 | 72.14 203 |
|
MIMVSNet1 | | | 52.76 200 | 53.95 199 | 51.38 202 | 41.96 213 | 70.79 205 | 53.56 204 | 63.03 177 | 39.36 204 | 27.83 208 | 22.73 208 | 33.07 206 | 34.47 205 | 70.49 196 | 72.69 192 | 87.41 191 | 68.51 204 |
|
pmmvs3 | | | 52.59 201 | 52.43 202 | 52.78 201 | 54.53 209 | 64.49 208 | 50.07 207 | 46.89 208 | 35.31 208 | 30.19 204 | 27.27 206 | 26.96 212 | 53.02 188 | 67.28 200 | 70.54 196 | 81.96 204 | 75.20 197 |
|
new_pmnet | | | 50.32 202 | 51.36 203 | 49.11 203 | 49.19 211 | 64.89 207 | 48.66 209 | 47.99 207 | 47.55 194 | 26.27 210 | 29.51 205 | 28.66 209 | 44.89 194 | 61.12 203 | 62.74 204 | 77.66 206 | 65.03 205 |
|
FPMVS | | | 50.25 203 | 45.67 205 | 55.58 199 | 70.48 197 | 60.12 209 | 59.78 199 | 59.33 186 | 46.66 195 | 37.94 190 | 30.22 201 | 27.51 211 | 35.94 204 | 50.98 206 | 47.90 206 | 70.02 208 | 56.31 206 |
|
PMVS |  | 36.83 18 | 40.62 204 | 36.39 206 | 45.56 204 | 58.40 206 | 33.20 213 | 32.62 213 | 56.02 190 | 28.25 211 | 37.92 191 | 22.29 209 | 26.15 213 | 25.29 208 | 48.49 208 | 43.82 209 | 63.13 211 | 52.53 209 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 35.20 205 | 33.96 207 | 36.65 206 | 43.30 212 | 32.51 214 | 26.96 215 | 48.31 206 | 38.87 205 | 20.08 214 | 8.08 211 | 7.41 218 | 26.44 207 | 53.60 204 | 58.43 205 | 54.81 212 | 38.79 211 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 32.52 206 | 33.92 208 | 30.88 208 | 34.15 216 | 44.70 212 | 27.79 214 | 39.69 212 | 22.21 212 | 4.31 218 | 15.73 210 | 14.13 216 | 12.45 213 | 40.11 209 | 47.00 207 | 66.88 209 | 53.54 207 |
|
E-PMN | | | 21.42 207 | 17.56 210 | 25.94 209 | 36.25 215 | 19.02 217 | 11.56 216 | 43.72 210 | 15.25 214 | 6.99 216 | 8.04 212 | 4.53 220 | 21.77 210 | 16.13 212 | 26.16 211 | 35.34 214 | 33.77 212 |
|
MVE |  | 25.07 19 | 21.25 208 | 23.51 209 | 18.62 211 | 15.07 217 | 29.77 216 | 10.67 218 | 34.60 213 | 12.51 215 | 9.46 215 | 7.84 213 | 3.82 221 | 14.38 212 | 27.45 211 | 42.42 210 | 27.56 216 | 40.74 210 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 20.61 209 | 16.32 211 | 25.62 210 | 36.41 214 | 18.93 218 | 11.51 217 | 43.75 209 | 15.65 213 | 6.53 217 | 7.56 214 | 4.68 219 | 22.03 209 | 14.56 213 | 23.10 212 | 33.51 215 | 29.77 213 |
|
testmvs | | | 0.76 210 | 1.23 212 | 0.21 212 | 0.05 219 | 0.21 219 | 0.38 220 | 0.09 215 | 0.94 216 | 0.05 220 | 2.13 216 | 0.08 222 | 0.60 215 | 0.82 214 | 0.77 213 | 0.11 217 | 3.62 215 |
|
test123 | | | 0.67 211 | 1.11 213 | 0.16 213 | 0.01 220 | 0.14 220 | 0.20 221 | 0.04 217 | 0.77 217 | 0.02 221 | 2.15 215 | 0.02 223 | 0.61 214 | 0.23 215 | 0.72 214 | 0.07 218 | 3.76 214 |
|
uanet_test | | | 0.00 212 | 0.00 214 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.00 218 | 0.00 222 | 0.00 217 | 0.00 224 | 0.00 217 | 0.00 216 | 0.00 215 | 0.00 219 | 0.00 216 |
|
sosnet-low-res | | | 0.00 212 | 0.00 214 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.00 218 | 0.00 222 | 0.00 217 | 0.00 224 | 0.00 217 | 0.00 216 | 0.00 215 | 0.00 219 | 0.00 216 |
|
sosnet | | | 0.00 212 | 0.00 214 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.00 218 | 0.00 222 | 0.00 217 | 0.00 224 | 0.00 217 | 0.00 216 | 0.00 215 | 0.00 219 | 0.00 216 |
|
RE-MVS-def | | | | | | | | | | | 39.41 189 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 91.16 7 | | | | | |
|
SR-MVS | | | | | | 96.04 31 | | | 87.51 27 | | | | 87.60 20 | | | | | |
|
Anonymous202405211 | | | | 75.59 125 | | 85.13 113 | 91.06 103 | 84.62 91 | 77.96 74 | 69.47 128 | | 40.79 181 | 63.84 119 | 84.57 65 | 83.55 119 | 84.69 106 | 89.69 176 | 95.75 81 |
|
our_test_3 | | | | | | 73.80 184 | 79.57 192 | 64.47 192 | | | | | | | | | | |
|
ambc | | | | 50.35 204 | | 55.61 208 | 59.93 210 | 48.73 208 | | 44.08 198 | 35.81 198 | 24.01 207 | 10.64 217 | 41.57 199 | 72.83 186 | 63.35 203 | 74.99 207 | 77.61 192 |
|
MTAPA | | | | | | | | | | | 91.14 6 | | 85.84 26 | | | | | |
|
MTMP | | | | | | | | | | | 90.95 7 | | 84.13 35 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.17 219 | | | | | | | | | | |
|
tmp_tt | | | | | 39.78 205 | 56.31 207 | 31.71 215 | 35.84 212 | 15.08 214 | 82.57 74 | 50.83 148 | 63.07 94 | 47.51 160 | 15.28 211 | 52.23 205 | 44.24 208 | 65.35 210 | |
|
XVS | | | | | | 89.65 70 | 95.93 47 | 85.97 79 | | | 76.32 53 | | 82.05 45 | | | | 93.51 89 | |
|
X-MVStestdata | | | | | | 89.65 70 | 95.93 47 | 85.97 79 | | | 76.32 53 | | 82.05 45 | | | | 93.51 89 | |
|
abl_6 | | | | | 89.54 32 | 95.55 39 | 97.59 19 | 89.01 55 | 85.00 40 | 94.67 15 | 83.04 32 | 84.70 35 | 91.47 6 | 89.46 26 | | | 95.20 46 | 98.63 20 |
|
mPP-MVS | | | | | | 95.90 33 | | | | | | | 80.22 53 | | | | | |
|
NP-MVS | | | | | | | | | | 89.55 47 | | | | | | | | |
|
Patchmtry | | | | | | | 87.41 125 | 78.32 133 | 54.14 197 | | 51.09 143 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 48.96 211 | 43.77 210 | 40.58 211 | 50.93 184 | 24.67 212 | 36.95 193 | 20.18 215 | 41.60 198 | 38.92 210 | | 52.37 213 | 53.31 208 |
|