This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS95.53 195.79 195.23 197.60 998.92 195.99 592.05 897.14 194.19 194.71 793.25 195.08 194.32 1192.59 1596.49 1899.58 3
DPE-MVS95.10 295.53 294.60 597.77 798.64 396.60 492.45 696.34 591.41 596.70 292.26 593.56 493.68 1791.73 2995.79 3799.37 7
DVP-MVS95.06 395.37 494.70 297.59 1098.89 295.37 1192.04 996.85 394.00 292.81 1493.02 292.93 594.22 1492.15 2096.30 2499.61 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS95.00 495.47 394.45 696.78 1898.11 995.72 790.91 1496.68 491.57 496.98 189.47 1394.76 295.24 392.15 2096.98 799.64 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS94.53 594.85 694.15 898.03 498.59 495.56 892.91 394.86 1388.46 1591.32 2190.83 1094.03 395.20 494.16 595.89 3399.01 15
SF-MVS94.40 694.15 1194.70 298.25 298.24 696.86 293.46 194.87 1190.26 995.96 388.42 1692.76 892.29 3090.84 4096.62 1398.44 26
APDe-MVS94.31 794.30 994.33 797.57 1198.06 1195.79 691.98 1095.50 892.19 395.25 587.97 1992.93 593.01 2391.02 3895.52 3999.29 8
MCST-MVS94.10 894.77 793.31 1098.31 198.34 595.43 992.54 594.41 1783.05 3191.38 1990.97 992.24 1395.05 694.02 698.31 199.20 10
HPM-MVS++copyleft94.04 994.96 592.96 1297.93 597.71 1794.65 1491.01 1395.91 687.43 1793.52 1192.63 492.29 1294.22 1492.34 1794.47 5898.37 28
NCCC93.59 1094.00 1393.10 1197.90 697.93 1395.40 1092.39 794.47 1684.94 2291.21 2289.32 1492.53 1093.90 1692.98 1295.44 4198.22 31
SMA-MVScopyleft93.47 1194.29 1092.52 1497.72 897.77 1694.46 1790.19 1794.96 1087.15 1890.15 2590.99 891.49 1694.31 1293.33 1094.10 6398.53 24
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft93.47 1193.44 1693.50 997.06 1497.09 2795.27 1291.47 1195.71 789.57 1293.66 986.28 2592.81 792.06 3490.70 4294.83 5598.60 21
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS93.36 1394.33 892.22 1694.68 4497.89 1594.56 1590.89 1594.80 1490.04 1193.53 1090.14 1189.78 2392.74 2592.17 1893.35 10199.07 13
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.93.07 1493.53 1592.53 1394.23 4797.54 2194.75 1389.87 1895.26 989.20 1493.16 1288.19 1892.15 1491.79 3889.65 5694.99 5199.16 11
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS92.86 1593.19 1892.47 1595.78 3597.40 2297.39 192.56 492.88 2681.84 3981.31 4092.95 391.21 1796.54 197.33 196.01 3093.94 107
SteuartSystems-ACMMP92.31 1693.31 1791.15 2396.88 1697.36 2393.95 2189.44 2092.62 2783.20 2894.34 885.55 2788.95 3093.07 2291.90 2594.51 5798.30 29
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP92.16 1792.91 2191.28 2296.95 1597.36 2393.66 2289.23 2293.33 2183.71 2690.53 2386.84 2290.39 1993.30 2191.56 3193.74 7397.43 45
HFP-MVS92.02 1892.13 2391.89 2097.16 1396.46 4093.57 2387.60 2693.79 1988.17 1693.15 1383.94 3891.19 1890.81 4889.83 5193.66 7796.94 61
train_agg91.99 1993.71 1489.98 2896.42 2797.03 2994.31 1989.05 2393.33 2177.75 4695.06 688.27 1788.38 3692.02 3591.41 3394.00 6698.84 18
xxxxxxxxxxxxxcwj91.86 2089.43 3794.70 298.25 298.24 696.86 293.46 194.87 1190.26 995.96 355.37 14392.76 892.29 3090.84 4096.62 1398.44 26
DeepC-MVS_fast86.59 291.69 2191.39 2692.05 1997.43 1296.92 3294.05 2090.23 1693.31 2483.19 2977.91 4784.23 3492.42 1194.62 994.83 395.00 5097.88 35
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS91.59 2291.12 2792.13 1796.76 1996.68 3593.39 2488.00 2593.63 2090.76 883.97 3685.33 2989.89 2291.60 4089.65 5694.00 6696.97 59
TSAR-MVS + GP.91.29 2393.11 2089.18 3487.81 8596.21 4692.51 3383.83 4694.24 1883.77 2591.87 1889.62 1290.07 2090.40 5290.31 4697.09 699.10 12
ACMMPR91.15 2491.44 2590.81 2496.61 2196.25 4493.09 2587.08 2993.32 2384.78 2392.08 1782.10 4489.71 2490.24 5389.82 5293.61 8296.30 73
DeepPCF-MVS86.71 191.00 2594.05 1287.43 4595.58 3898.17 886.22 7488.59 2497.01 276.77 5285.11 3488.90 1587.29 4295.02 794.69 490.15 17299.48 6
TSAR-MVS + ACMM90.98 2693.18 1988.42 3995.69 3696.73 3494.52 1686.97 3292.99 2576.32 5392.31 1686.64 2384.40 6892.97 2492.02 2292.62 12498.59 22
MP-MVScopyleft90.81 2791.45 2490.06 2796.59 2296.33 4392.46 3487.19 2890.27 4082.54 3591.38 1984.88 3188.27 3790.58 5089.30 6293.30 10397.44 43
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS90.57 2890.68 2990.44 2596.13 2995.90 5192.77 3086.86 3392.12 3184.19 2489.18 2882.37 4289.43 2889.65 6288.43 6993.27 10497.13 53
MSLP-MVS++90.33 2988.82 4192.10 1896.52 2595.93 4794.35 1886.26 3488.37 5389.24 1375.94 5282.60 4189.71 2489.45 6592.17 1896.51 1797.24 50
CANet89.98 3090.42 3389.47 3394.13 4898.05 1291.76 3983.27 4990.87 3781.90 3872.32 5884.82 3288.42 3494.52 1093.78 897.34 498.58 23
PGM-MVS89.97 3190.64 3189.18 3496.53 2495.90 5193.06 2682.48 5790.04 4280.37 4192.75 1580.96 4988.93 3189.88 5889.08 6493.69 7695.86 76
PHI-MVS89.88 3292.75 2286.52 5594.97 4197.57 2089.99 5084.56 4292.52 2969.72 8690.35 2487.11 2184.89 6091.82 3792.37 1695.02 4997.51 41
CSCG89.81 3389.69 3489.96 2996.55 2397.90 1492.89 2887.06 3088.74 5186.17 1978.24 4686.53 2484.75 6387.82 8590.59 4392.32 12998.01 34
X-MVS89.73 3490.65 3088.66 3796.44 2695.93 4792.26 3686.98 3190.73 3876.32 5389.56 2782.05 4586.51 4989.98 5689.60 5893.43 9696.72 68
EPNet89.30 3590.89 2887.44 4495.67 3796.81 3391.13 4283.12 5191.14 3476.31 5787.60 3080.40 5284.45 6692.13 3391.12 3793.96 6897.01 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS84.14 388.80 3688.03 4589.71 3194.83 4296.56 3692.57 3289.38 2189.25 4879.59 4370.02 6777.05 6588.24 3892.44 2892.79 1393.65 8098.10 32
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS88.76 3790.43 3286.81 5196.04 3196.53 3992.95 2785.95 3690.36 3967.93 9185.80 3380.69 5083.82 7190.81 4891.85 2894.18 6196.99 58
3Dnovator+81.14 588.59 3887.49 4789.88 3095.83 3496.45 4291.94 3882.41 5887.09 5985.94 2162.80 9585.37 2889.46 2691.51 4191.89 2793.72 7497.30 48
ACMMPcopyleft88.48 3988.71 4288.22 4194.61 4595.53 5690.64 4685.60 3890.97 3578.62 4589.88 2674.20 7886.29 5088.16 8286.37 8893.57 8395.86 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AdaColmapbinary88.46 4085.75 6191.62 2196.25 2895.35 6190.71 4491.08 1290.22 4186.17 1974.33 5473.67 8192.00 1586.31 10185.82 9693.52 8694.53 94
MVS_030488.43 4189.46 3687.21 4691.85 6097.60 1892.62 3181.10 6487.16 5873.80 6372.19 6083.36 4087.03 4494.64 893.67 996.88 997.64 40
3Dnovator80.58 888.20 4286.53 5390.15 2696.86 1796.46 4091.97 3783.06 5285.16 6483.66 2762.28 9882.15 4388.98 2990.99 4692.65 1496.38 2396.03 74
CPTT-MVS88.17 4387.84 4688.55 3893.33 5093.75 7692.33 3584.75 4189.87 4481.72 4083.93 3781.12 4888.45 3385.42 11084.07 11490.72 16496.72 68
MVS_111021_HR87.82 4488.84 4086.62 5394.42 4697.36 2388.21 5983.26 5083.42 6772.52 7382.63 3876.93 6684.95 5991.93 3691.15 3696.39 2298.49 25
DELS-MVS87.75 4586.92 5188.71 3694.69 4397.34 2692.78 2984.50 4377.87 9081.94 3767.17 7575.49 7382.84 7795.38 295.93 295.55 3899.27 9
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSTER87.68 4689.12 3886.01 5788.11 8390.05 11289.28 5377.05 8491.37 3279.97 4276.70 5085.25 3084.89 6093.53 1891.41 3396.73 1195.55 83
MVS_111021_LR87.58 4788.67 4386.31 5692.58 5495.89 5386.20 7582.49 5689.08 5077.47 4986.20 3274.22 7785.49 5590.03 5588.52 6793.66 7796.74 67
QAPM87.06 4886.46 5487.75 4296.63 2097.09 2791.71 4082.62 5580.58 8071.28 7966.04 8284.24 3387.01 4589.93 5789.91 5097.26 597.44 43
PVSNet_BlendedMVS86.98 4987.05 4986.90 4893.03 5196.98 3086.57 7181.82 6089.78 4582.78 3371.54 6166.07 10980.73 8893.46 1991.97 2396.45 2099.53 4
PVSNet_Blended86.98 4987.05 4986.90 4893.03 5196.98 3086.57 7181.82 6089.78 4582.78 3371.54 6166.07 10980.73 8893.46 1991.97 2396.45 2099.53 4
ETV-MVS86.94 5189.49 3583.95 6787.28 9195.61 5583.58 10076.37 8992.59 2873.20 6580.35 4276.42 6987.38 4192.20 3290.45 4595.90 3298.83 19
CS-MVS86.48 5289.02 3983.52 7187.37 9095.52 5784.21 9475.09 9787.63 5571.30 7880.94 4178.24 5587.23 4392.72 2690.05 4895.95 3198.03 33
OMC-MVS86.38 5386.21 5886.57 5492.30 5694.35 7087.60 6383.51 4892.32 3077.37 5072.27 5977.83 5886.59 4887.62 8785.95 9392.08 13393.11 120
HQP-MVS86.17 5487.35 4884.80 6391.41 6392.37 9391.05 4384.35 4588.52 5264.21 9687.05 3168.91 9984.80 6289.12 6888.16 7392.96 11597.31 47
canonicalmvs85.93 5586.26 5785.54 5888.94 7495.44 5889.56 5176.01 9187.83 5477.70 4776.43 5168.66 10187.80 4087.02 9091.51 3293.25 10596.95 60
MAR-MVS85.65 5686.30 5684.88 6295.51 4095.89 5386.50 7376.71 8589.23 4968.59 8870.93 6574.49 7588.55 3289.40 6690.30 4793.42 9793.88 111
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS82.38 485.52 5784.41 6686.81 5191.51 6296.23 4590.27 4789.81 1977.87 9070.67 8269.20 6977.86 5685.55 5485.92 10686.38 8793.03 11297.43 45
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS85.43 5884.24 6986.83 5087.69 8793.16 8490.01 4982.72 5487.17 5779.28 4471.43 6465.81 11186.02 5187.33 8986.96 8195.25 4597.83 37
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OpenMVScopyleft77.91 1185.09 5983.42 7387.03 4796.12 3096.55 3889.36 5281.59 6279.19 8675.20 5955.84 12479.04 5484.45 6688.47 7689.35 6195.48 4095.48 84
TSAR-MVS + COLMAP84.93 6085.79 6083.92 6890.90 6593.57 8089.25 5482.00 5991.29 3361.66 10488.25 2959.46 13186.71 4789.79 5987.09 7993.01 11391.09 139
TAPA-MVS80.99 784.83 6184.42 6585.31 5991.89 5993.73 7888.53 5882.80 5389.99 4369.78 8571.53 6375.03 7485.47 5686.26 10284.54 10993.39 9989.90 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft81.02 684.81 6281.81 9088.31 4093.77 4990.35 10788.80 5684.47 4486.76 6082.17 3666.56 7871.01 9288.41 3585.48 10884.28 11292.26 13188.21 161
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EIA-MVS84.75 6386.43 5582.79 7486.88 9495.36 6082.84 10576.39 8887.61 5671.03 8074.33 5471.12 9185.16 5789.69 6188.70 6694.40 5998.23 30
CNLPA84.72 6482.14 8587.73 4392.85 5393.83 7584.70 9085.07 3990.90 3683.16 3056.28 12071.53 8888.14 3984.19 11484.00 11892.48 12694.26 101
MVS_Test84.60 6585.13 6483.99 6688.17 8195.27 6288.21 5973.15 11284.31 6670.55 8368.67 7368.78 10086.99 4691.71 3991.90 2596.84 1095.27 88
casdiffmvs83.84 6682.65 8185.22 6087.25 9294.62 6886.01 7879.62 6779.48 8377.59 4861.92 10164.34 11585.57 5390.55 5190.51 4495.26 4397.14 52
baseline83.83 6784.38 6783.18 7386.65 9694.59 6985.79 8173.78 10985.83 6272.94 6669.28 6870.80 9483.45 7486.80 9387.59 7596.47 1995.77 80
diffmvs83.69 6883.17 7784.31 6485.45 10993.92 7186.89 6678.62 7082.71 7375.95 5866.78 7763.90 11883.84 7087.90 8489.16 6395.10 4897.82 38
CANet_DTU83.33 6986.59 5279.53 9488.88 7594.87 6586.63 7068.85 14385.45 6350.54 14977.86 4869.94 9785.62 5292.63 2790.88 3996.63 1294.46 95
DI_MVS_plusplus_trai83.32 7082.53 8384.25 6586.26 10393.66 7990.23 4877.16 8377.05 9774.06 6253.74 13374.33 7683.61 7391.40 4389.82 5294.17 6297.73 39
baseline182.63 7182.02 8683.34 7288.30 8091.89 9788.03 6280.86 6575.05 10465.96 9264.27 8972.20 8680.01 9291.32 4489.56 5996.90 889.85 149
PVSNet_Blended_VisFu82.55 7283.70 7281.21 8389.66 6995.15 6482.41 10677.36 8272.53 11873.64 6461.15 10477.19 6470.35 14691.31 4589.72 5593.84 7098.85 17
ET-MVSNet_ETH3D82.37 7385.68 6278.51 10362.90 20594.66 6687.06 6573.57 11083.13 6961.52 10678.37 4576.01 7189.99 2184.14 11589.03 6596.03 2994.42 96
PMMVS82.26 7485.48 6378.51 10385.92 10691.92 9678.30 13570.77 12986.30 6161.11 10882.46 3970.88 9384.70 6488.05 8384.78 10590.24 17193.98 105
ACMP79.58 982.23 7581.82 8982.71 7588.15 8290.95 10585.23 8678.52 7281.70 7572.52 7378.41 4460.63 12680.48 9082.88 12583.44 12291.37 15094.70 92
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CHOSEN 280x42082.15 7685.87 5977.80 10886.54 9993.42 8281.74 10859.96 18478.99 8863.99 9774.50 5383.95 3780.99 8389.53 6485.01 10193.56 8595.71 82
LGP-MVS_train82.12 7782.57 8281.59 8089.26 7390.23 11088.76 5778.05 7381.26 7761.64 10579.52 4362.11 12179.59 9485.20 11184.68 10792.27 13095.02 90
FMVSNet381.93 7881.98 8781.88 7979.49 14587.02 12788.15 6172.57 11583.02 7072.63 7056.55 11673.48 8282.34 8091.49 4291.20 3596.07 2591.13 138
thisisatest053081.67 7984.27 6878.63 9985.53 10793.88 7481.77 10773.84 10681.35 7663.85 9968.79 7177.64 6073.02 12788.73 7485.73 9793.76 7293.80 115
tttt051781.51 8084.12 7178.47 10585.33 11193.74 7781.42 11173.84 10681.21 7863.59 10068.73 7277.46 6373.02 12788.47 7685.73 9793.63 8193.49 119
OPM-MVS81.34 8178.18 10685.02 6191.27 6491.78 9890.66 4583.62 4762.39 14765.91 9363.35 9364.33 11685.03 5887.77 8685.88 9593.66 7791.75 135
baseline281.21 8283.36 7678.70 9883.22 12492.71 8680.32 11674.25 10580.39 8163.94 9868.89 7068.44 10274.67 11389.61 6386.68 8595.83 3696.81 66
IS_MVSNet80.92 8384.14 7077.16 11187.43 8893.90 7380.44 11274.64 9975.05 10461.10 10965.59 8476.89 6767.39 15490.88 4790.05 4891.95 13796.62 71
ACMM78.09 1080.91 8478.39 10483.86 6989.61 7287.71 12485.16 8780.67 6679.04 8774.18 6163.82 9260.84 12582.59 7884.33 11383.59 12190.96 15889.39 154
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EPP-MVSNet80.82 8582.79 7978.52 10186.31 10292.37 9379.83 11974.51 10073.79 11364.46 9567.01 7680.63 5174.33 11685.63 10784.35 11191.68 14395.79 79
CostFormer80.72 8681.81 9079.44 9686.50 10091.65 9984.31 9259.84 18580.86 7972.69 6862.46 9773.74 7979.93 9382.58 12984.50 11093.37 10096.90 64
GBi-Net80.72 8680.49 9381.00 8678.18 14986.19 14186.73 6772.57 11583.02 7072.63 7056.55 11673.48 8280.99 8386.57 9586.83 8294.89 5290.77 141
test180.72 8680.49 9381.00 8678.18 14986.19 14186.73 6772.57 11583.02 7072.63 7056.55 11673.48 8280.99 8386.57 9586.83 8294.89 5290.77 141
UGNet80.71 8983.09 7877.93 10787.02 9392.71 8680.28 11776.53 8673.83 11271.35 7770.07 6673.71 8058.93 17487.39 8886.97 8093.48 9396.94 61
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268880.23 9079.16 10181.48 8191.97 5796.56 3686.18 7675.40 9576.17 10061.32 10737.43 19261.08 12476.52 10692.35 2991.64 3097.46 398.86 16
thres100view90079.83 9177.79 11082.21 7688.42 7793.54 8187.07 6481.11 6370.15 12561.01 11056.65 11451.22 14781.78 8189.77 6085.95 9393.84 7097.26 49
Effi-MVS+79.80 9280.04 9579.52 9585.53 10793.31 8385.28 8470.68 13174.15 10858.79 11962.03 10060.51 12783.37 7588.41 7886.09 9293.49 9295.80 78
DCV-MVSNet79.76 9379.17 10080.44 9184.65 11584.51 16584.20 9572.36 12075.17 10370.81 8166.21 8166.56 10680.99 8382.89 12484.56 10889.65 17794.30 100
FC-MVSNet-train79.54 9478.20 10581.09 8586.55 9888.63 12079.96 11878.53 7170.90 12368.24 8965.87 8356.45 14180.29 9186.20 10484.08 11392.97 11495.31 87
test-LLR79.52 9583.42 7374.97 12081.79 12991.26 10076.17 15670.57 13277.71 9252.14 13666.26 7977.47 6173.10 12387.02 9087.16 7796.05 2797.02 55
FMVSNet279.24 9678.14 10780.53 9078.18 14986.19 14186.73 6771.91 12172.97 11570.48 8450.63 14266.56 10680.99 8390.10 5489.77 5494.89 5290.77 141
TESTMET0.1,179.15 9783.42 7374.18 12679.81 14391.26 10076.17 15667.83 15677.71 9252.14 13666.26 7977.47 6173.10 12387.02 9087.16 7796.05 2797.02 55
tfpn200view979.05 9877.21 11281.18 8488.42 7792.55 9185.12 8877.94 7570.15 12561.01 11056.65 11451.22 14781.11 8288.23 7984.80 10493.50 9196.90 64
PatchMatch-RL78.75 9976.47 11981.41 8288.53 7691.10 10278.09 13677.51 8177.33 9471.98 7564.38 8848.10 15982.55 7984.06 11682.35 13189.78 17487.97 163
LS3D78.72 10075.79 12382.15 7791.91 5889.39 11783.66 9885.88 3776.81 9859.22 11857.67 11158.53 13583.72 7282.07 13481.63 14288.50 18584.39 174
thres20078.69 10176.71 11580.99 8888.35 7992.56 8986.03 7777.94 7566.27 13260.66 11256.08 12151.11 14979.45 9588.23 7985.54 10093.52 8697.20 51
Anonymous2023121178.61 10275.57 12682.15 7784.43 11890.26 10884.08 9677.68 7871.09 12172.90 6739.24 18566.21 10884.23 6982.15 13284.04 11589.61 17896.03 74
IB-MVS74.10 1278.52 10378.51 10378.52 10190.15 6795.39 5971.95 17677.53 8074.95 10677.25 5158.93 10855.92 14258.37 17679.01 15987.89 7495.88 3497.47 42
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet_dtu78.49 10481.96 8874.45 12592.57 5588.74 11982.98 10178.83 6983.28 6844.64 18077.40 4967.73 10353.98 18585.44 10984.91 10293.71 7586.22 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres40078.39 10576.39 12080.73 8988.02 8492.94 8584.77 8978.88 6865.20 14059.70 11655.20 12750.85 15079.45 9588.81 7184.81 10393.57 8396.91 63
UA-Net78.30 10680.92 9275.25 11987.42 8992.48 9279.54 12275.49 9460.47 15160.52 11368.44 7484.08 3657.54 17888.54 7588.45 6890.96 15883.97 176
Vis-MVSNet (Re-imp)78.28 10782.68 8073.16 13786.64 9792.68 8878.07 13774.48 10174.05 10953.47 12964.22 9076.52 6854.28 18188.96 7088.29 7192.03 13594.00 104
MSDG78.11 10873.17 13983.86 6991.78 6186.83 12985.25 8586.02 3572.84 11669.69 8751.43 13954.00 14577.61 9981.95 13782.27 13392.83 12082.91 181
HyFIR lowres test78.08 10976.81 11379.56 9390.77 6694.64 6782.97 10269.85 13769.81 12759.53 11733.52 19764.66 11278.97 9788.77 7388.38 7095.27 4297.86 36
test-mter77.90 11082.44 8472.60 14278.52 14790.24 10973.85 16965.31 17076.37 9951.29 14065.58 8575.94 7271.36 13785.98 10586.26 8995.26 4396.71 70
thres600view777.66 11175.67 12479.98 9287.71 8692.56 8983.79 9777.94 7564.41 14258.69 12054.32 13250.54 15178.23 9888.23 7983.06 12593.52 8696.55 72
MS-PatchMatch77.47 11276.48 11878.63 9989.89 6890.42 10685.42 8369.53 13970.79 12460.43 11450.05 14470.62 9670.66 14386.71 9482.54 12895.86 3584.23 175
Fast-Effi-MVS+77.37 11376.68 11678.17 10682.84 12689.94 11381.47 11068.01 15272.99 11460.26 11555.07 12853.20 14682.99 7686.47 10086.12 9193.46 9492.98 123
Vis-MVSNetpermissive77.24 11479.99 9874.02 12784.62 11693.92 7180.33 11572.55 11862.58 14655.25 12764.45 8769.49 9857.00 17988.78 7288.21 7294.36 6092.54 126
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MDTV_nov1_ep1377.20 11580.04 9573.90 12982.22 12790.14 11179.25 12661.52 18078.63 8956.98 12165.52 8672.80 8573.05 12580.93 14583.20 12390.36 16889.05 157
EPMVS77.16 11679.08 10274.92 12186.73 9591.98 9578.62 13155.44 19379.43 8456.59 12361.24 10370.73 9576.97 10380.59 14881.43 14995.15 4788.17 162
tpm cat176.93 11776.19 12277.79 10985.08 11488.58 12182.96 10359.33 18675.72 10272.64 6951.25 14064.41 11475.74 11077.90 16880.10 16590.97 15795.35 85
PatchmatchNetpermissive76.85 11880.03 9773.15 13884.08 12091.04 10477.76 14155.85 19279.43 8452.74 13462.08 9976.02 7074.56 11479.92 15381.41 15093.92 6990.29 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS-LS76.80 11976.33 12177.35 11084.07 12184.11 16781.54 10968.52 14566.17 13361.74 10357.84 11064.31 11774.88 11283.48 12186.21 9093.34 10292.16 130
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet76.57 12076.78 11476.32 11480.94 13689.75 11482.94 10472.64 11459.01 15762.95 10258.60 10962.67 12066.91 15686.26 10287.20 7691.57 14593.97 106
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SCA76.41 12179.90 9972.35 14684.26 11985.24 15675.57 16354.56 19579.95 8252.72 13564.22 9077.84 5773.73 12080.48 14981.37 15193.25 10590.20 147
tpmrst76.27 12277.65 11174.66 12386.13 10589.53 11679.31 12554.91 19477.19 9656.27 12455.87 12364.58 11377.25 10080.85 14680.21 16294.07 6495.32 86
dps75.76 12375.02 12876.63 11384.51 11788.12 12277.51 14258.33 18875.91 10171.98 7557.37 11257.85 13676.81 10577.89 16978.40 17490.63 16589.63 151
CR-MVSNet74.84 12477.91 10871.26 15981.77 13185.52 15278.32 13354.14 19774.05 10951.09 14350.00 14571.38 9070.77 14186.48 9884.03 11691.46 14993.92 108
Effi-MVS+-dtu74.57 12574.60 13274.53 12481.38 13386.74 13180.39 11467.70 15767.36 13153.06 13059.86 10657.50 13775.84 10980.19 15178.62 17288.79 18491.95 134
test_part174.38 12670.16 15279.31 9783.30 12384.45 16684.31 9271.43 12655.24 16974.88 6038.77 18759.61 13075.29 11178.96 16081.53 14486.63 19392.55 125
RPSCF74.27 12773.24 13875.48 11881.01 13580.18 18976.24 15572.37 11974.84 10768.24 8972.47 5767.39 10473.89 11771.05 19369.38 20081.14 20577.37 193
FMVSNet174.26 12871.95 14476.95 11274.28 18183.94 16983.61 9969.99 13557.08 16265.08 9442.39 17457.41 13876.98 10286.57 9586.83 8291.77 14289.42 152
GA-MVS73.62 12974.52 13372.58 14379.93 14189.29 11878.02 13871.67 12460.79 15042.68 18454.41 13149.07 15570.07 14789.39 6786.55 8693.13 11092.12 131
Fast-Effi-MVS+-dtu73.56 13075.32 12771.50 15580.35 13886.83 12979.72 12058.07 18967.64 13044.83 17760.28 10554.07 14473.59 12281.90 13982.30 13292.46 12794.18 102
tpm73.50 13174.85 12971.93 14983.19 12586.84 12878.61 13255.91 19165.64 13548.90 15656.30 11961.09 12372.31 12979.10 15880.61 16192.68 12294.35 99
RPMNet73.46 13277.85 10968.34 16981.71 13285.52 15273.83 17050.54 20474.05 10946.10 17153.03 13671.91 8766.31 15883.55 11982.18 13591.55 14794.71 91
USDC73.43 13372.31 14274.73 12280.86 13786.21 13980.42 11371.83 12371.69 12046.94 16459.60 10742.58 18076.47 10782.66 12881.22 15491.88 13982.24 187
pmmvs473.38 13471.53 14775.55 11775.95 16785.24 15677.25 14671.59 12571.03 12263.10 10149.09 15044.22 17073.73 12082.04 13580.18 16391.68 14388.89 159
UniMVSNet_NR-MVSNet73.11 13572.59 14073.71 13276.90 15886.58 13577.01 14775.82 9265.59 13648.82 15750.97 14148.42 15771.61 13379.19 15783.03 12692.11 13294.37 97
FMVSNet572.83 13673.89 13671.59 15367.42 19976.28 19775.88 16063.74 17477.27 9554.59 12853.32 13471.48 8973.85 11881.95 13781.69 14094.06 6575.20 197
PatchT72.66 13776.58 11768.09 17179.02 14686.09 14559.81 19851.78 20272.00 11951.09 14346.84 15466.70 10570.77 14186.48 9884.03 11696.07 2593.92 108
ACMH71.22 1472.65 13870.13 15375.59 11686.19 10486.14 14475.76 16177.63 7954.79 17146.16 17053.28 13547.28 16177.24 10178.91 16181.18 15590.57 16689.33 155
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS72.43 13974.05 13470.55 16380.34 13981.17 18377.44 14361.00 18363.57 14546.82 16655.88 12259.09 13465.03 16083.15 12283.83 11992.67 12391.65 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH+72.14 1372.38 14069.34 16075.93 11585.21 11284.89 16076.96 15076.04 9059.76 15251.63 13950.37 14348.69 15676.90 10476.06 17778.69 17088.85 18386.90 167
DU-MVS72.19 14171.35 14873.17 13675.95 16786.02 14677.01 14774.42 10265.39 13848.82 15749.10 14842.81 17871.61 13378.67 16283.10 12491.22 15394.37 97
IterMVS-SCA-FT72.18 14273.96 13570.11 16580.15 14081.11 18477.42 14461.09 18263.67 14446.73 16755.77 12559.15 13363.95 16382.83 12683.70 12091.31 15191.49 137
UniMVSNet (Re)72.12 14372.28 14371.93 14976.77 15987.38 12675.73 16273.51 11165.76 13450.24 15148.65 15146.49 16263.85 16480.10 15282.47 12991.49 14895.13 89
ADS-MVSNet72.11 14473.72 13770.24 16481.24 13486.59 13474.75 16650.56 20372.58 11749.17 15455.40 12661.46 12273.80 11976.01 17878.14 17591.93 13885.86 170
gg-mvs-nofinetune72.10 14574.79 13068.97 16883.31 12295.22 6385.66 8248.77 20535.68 20722.17 21330.49 20077.73 5976.37 10894.30 1393.03 1197.55 297.05 54
TAMVS72.06 14671.76 14672.41 14576.68 16088.12 12274.82 16568.09 15053.52 17656.91 12252.94 13756.93 14066.91 15681.37 14282.44 13091.07 15586.99 166
v2v48271.73 14769.80 15573.99 12875.88 17186.66 13379.58 12171.90 12257.58 16150.41 15045.35 15843.24 17673.05 12579.69 15482.18 13593.08 11193.87 112
test0.0.03 171.70 14874.68 13168.23 17081.79 12983.81 17068.64 18070.57 13268.81 12943.47 18162.77 9660.09 12951.77 19282.48 13081.67 14193.16 10883.13 179
V4271.58 14970.11 15473.30 13575.66 17486.68 13279.17 12869.92 13659.29 15652.80 13344.36 16245.66 16468.83 14879.48 15681.49 14693.44 9593.82 114
NR-MVSNet71.47 15071.11 14971.90 15177.73 15486.02 14676.88 15174.42 10265.39 13846.09 17249.10 14839.87 19264.27 16281.40 14182.24 13491.99 13693.75 116
v871.42 15169.69 15673.43 13476.45 16385.12 15979.53 12367.47 16059.34 15552.90 13244.60 16045.82 16371.05 13979.56 15581.45 14893.17 10791.96 133
TranMVSNet+NR-MVSNet71.12 15270.24 15172.15 14776.01 16684.80 16276.55 15375.65 9361.99 14845.29 17548.42 15243.07 17767.55 15278.28 16582.83 12791.85 14092.29 127
v1070.97 15369.44 15772.75 13975.90 17084.58 16479.43 12466.45 16558.07 15949.93 15243.87 16843.68 17171.91 13182.04 13581.70 13992.89 11892.11 132
v114470.93 15469.42 15972.70 14075.48 17586.26 13779.22 12769.39 14155.61 16748.05 16243.47 16942.55 18171.51 13582.11 13381.74 13892.56 12594.17 103
thisisatest051570.62 15571.94 14569.07 16776.48 16285.59 15168.03 18168.02 15159.70 15352.94 13152.19 13850.36 15258.10 17783.15 12281.63 14290.87 16190.99 140
Baseline_NR-MVSNet70.61 15668.87 16372.65 14175.95 16780.49 18775.92 15974.75 9865.10 14148.78 15941.28 18044.28 16968.45 14978.67 16279.64 16692.04 13492.62 124
v14870.34 15768.46 16672.54 14476.04 16586.38 13674.83 16472.73 11355.88 16655.26 12643.32 17143.49 17264.52 16176.93 17580.11 16491.85 14093.11 120
v119270.32 15868.77 16472.12 14874.76 17785.62 15078.73 12968.53 14455.08 17046.34 16942.39 17440.67 18771.90 13282.27 13181.53 14492.43 12893.86 113
v14419270.10 15968.55 16571.90 15174.55 17885.67 14977.81 13968.22 14954.65 17246.91 16542.76 17241.27 18570.95 14080.48 14981.11 15992.96 11593.90 110
pmmvs570.01 16069.31 16170.82 16275.80 17386.26 13772.94 17167.91 15353.84 17547.22 16347.31 15341.47 18467.61 15183.93 11881.93 13793.42 9790.42 145
COLMAP_ROBcopyleft66.31 1569.91 16166.61 17173.76 13086.44 10182.76 17476.59 15276.46 8763.82 14350.92 14745.60 15749.13 15465.87 15974.96 18374.45 19086.30 19575.57 196
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v192192069.85 16268.38 16771.58 15474.35 17985.39 15477.78 14067.88 15554.64 17345.39 17442.11 17739.97 19171.10 13881.68 14081.17 15792.96 11593.69 118
pm-mvs169.62 16368.07 16971.44 15677.21 15685.32 15576.11 15871.05 12746.55 19651.17 14241.83 17848.20 15861.81 17084.00 11781.14 15891.28 15289.42 152
UniMVSNet_ETH3D69.49 16465.86 17373.72 13176.51 16185.88 14878.65 13070.52 13448.08 19355.71 12537.64 18940.56 18871.38 13675.05 18281.49 14689.57 18092.29 127
tfpnnormal69.29 16565.58 17473.62 13379.87 14284.82 16176.97 14975.12 9645.29 19749.03 15535.57 19537.20 20068.02 15082.70 12781.24 15392.69 12192.20 129
v124069.28 16667.82 17071.00 16174.09 18385.13 15876.54 15467.28 16253.17 17744.70 17841.55 17939.38 19370.51 14581.29 14381.18 15592.88 11993.02 122
CVMVSNet68.95 16770.79 15066.79 17779.69 14483.75 17172.05 17570.90 12856.20 16436.30 19654.94 13059.22 13254.03 18478.33 16478.65 17187.77 19084.44 173
MIMVSNet68.66 16869.43 15867.76 17264.92 20284.68 16374.16 16754.10 19960.85 14951.27 14139.47 18449.48 15367.48 15384.86 11285.57 9994.63 5681.10 188
TDRefinement67.82 16964.91 18071.22 16082.08 12881.45 17977.42 14473.79 10859.62 15448.35 16142.35 17642.40 18260.87 17274.69 18474.64 18984.83 19979.20 191
anonymousdsp67.61 17068.94 16266.04 17871.44 19583.97 16866.45 18563.53 17650.54 18642.42 18549.39 14645.63 16562.84 16777.99 16781.34 15289.59 17993.75 116
TinyColmap67.16 17163.51 18771.42 15777.94 15279.54 19372.80 17269.78 13856.58 16345.52 17344.53 16133.53 20574.45 11576.91 17677.06 18188.03 18976.41 194
FC-MVSNet-test67.04 17272.47 14160.70 19576.92 15781.41 18061.52 19569.45 14065.58 13726.74 20961.79 10260.40 12841.17 20077.60 17177.78 17788.41 18682.70 183
TransMVSNet (Re)66.87 17364.30 18269.88 16678.32 14881.35 18273.88 16874.34 10443.19 20145.20 17640.12 18242.37 18355.97 18080.85 14679.15 16791.56 14683.06 180
CMPMVSbinary50.59 1766.74 17462.72 19171.42 15785.40 11089.72 11572.69 17370.72 13051.24 18251.75 13838.91 18644.40 16763.74 16570.84 19471.52 19484.19 20072.45 201
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v7n66.43 17565.51 17567.51 17371.63 19483.10 17270.89 17965.02 17150.13 18944.68 17939.59 18338.77 19462.57 16877.59 17278.91 16890.29 17090.44 144
EG-PatchMatch MVS66.23 17665.20 17767.43 17477.74 15386.20 14072.51 17463.68 17543.95 19943.44 18236.22 19445.43 16654.04 18381.00 14480.95 16093.15 10982.67 184
WR-MVS64.98 17766.59 17263.09 18874.34 18082.68 17564.98 19169.17 14254.42 17436.18 19744.32 16344.35 16844.65 19573.60 18577.83 17689.21 18288.96 158
gm-plane-assit64.86 17868.15 16861.02 19476.44 16468.29 20641.60 21153.37 20034.68 20926.19 21133.22 19857.09 13971.97 13095.12 593.97 796.54 1694.66 93
CP-MVSNet64.84 17964.97 17864.69 18372.09 19081.04 18566.66 18467.53 15952.45 17937.40 19244.00 16738.37 19653.54 18772.26 18976.93 18290.94 16089.75 150
MDTV_nov1_ep13_2view64.72 18064.94 17964.46 18471.14 19681.94 17867.53 18254.54 19655.92 16543.29 18344.02 16643.27 17559.87 17371.85 19174.77 18890.36 16882.82 182
MVS-HIRNet64.63 18164.03 18665.33 18075.01 17682.84 17358.54 20252.10 20155.42 16849.29 15329.83 20343.48 17366.97 15578.28 16578.81 16990.07 17379.52 190
pmnet_mix0264.58 18264.11 18565.12 18174.16 18280.17 19063.24 19367.91 15357.87 16041.69 18645.86 15640.99 18653.97 18669.92 19771.67 19389.77 17582.29 186
LTVRE_ROB63.07 1664.49 18363.16 19066.04 17877.47 15582.64 17670.98 17865.02 17134.01 21029.61 20549.12 14735.58 20470.57 14475.10 18178.45 17382.60 20387.24 165
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS64.35 18464.29 18364.42 18572.67 18679.83 19166.97 18368.24 14851.21 18335.29 19944.09 16438.51 19552.36 19071.06 19277.65 17890.99 15687.68 164
pmmvs664.24 18561.77 19567.12 17572.39 18981.39 18171.33 17765.95 16936.05 20648.48 16030.55 19943.45 17458.75 17577.88 17076.36 18585.83 19686.70 168
pmmvs-eth3d64.24 18561.96 19366.90 17666.35 20076.04 19966.09 18766.31 16652.59 17850.94 14637.61 19032.79 20762.43 16975.78 17975.48 18789.27 18183.39 178
PS-CasMVS64.22 18764.19 18464.25 18671.86 19280.67 18666.42 18667.43 16150.64 18536.48 19442.60 17337.46 19952.56 18971.98 19076.69 18490.76 16289.29 156
WR-MVS_H64.14 18865.36 17662.71 19072.47 18882.33 17765.13 18866.99 16351.81 18136.47 19543.33 17042.77 17943.99 19672.41 18875.99 18691.20 15488.86 160
SixPastTwentyTwo63.75 18963.42 18864.13 18772.91 18580.34 18861.29 19663.90 17349.58 19040.42 18854.99 12937.13 20160.90 17168.46 19870.80 19585.37 19882.65 185
PM-MVS63.52 19062.51 19264.70 18264.79 20476.08 19865.07 18962.08 17858.13 15846.56 16844.98 15931.31 20862.89 16672.58 18769.93 19986.81 19284.55 172
DTE-MVSNet63.26 19163.41 18963.08 18972.59 18778.56 19465.03 19068.28 14750.53 18732.38 20244.03 16537.79 19849.48 19370.83 19576.73 18390.73 16385.42 171
testgi63.11 19264.88 18161.05 19375.83 17278.51 19560.42 19766.20 16748.77 19134.56 20056.96 11340.35 18940.95 20177.46 17377.22 18088.37 18874.86 199
GG-mvs-BLEND62.08 19388.31 4431.46 2070.16 21898.10 1091.57 410.09 21585.07 650.21 21973.90 5683.74 390.19 21688.98 6989.39 6096.58 1599.02 14
Anonymous2023120662.05 19461.83 19462.30 19272.09 19077.84 19663.10 19467.62 15850.20 18836.68 19329.59 20437.05 20243.90 19777.33 17477.31 17990.41 16783.49 177
N_pmnet60.52 19558.83 19862.50 19168.97 19875.61 20059.72 20066.47 16451.90 18041.26 18735.42 19635.63 20352.25 19167.07 20170.08 19886.35 19476.10 195
EU-MVSNet58.73 19660.92 19656.17 19866.17 20172.39 20358.85 20161.24 18148.47 19227.91 20746.70 15540.06 19039.07 20268.27 19970.34 19783.77 20180.23 189
test20.0357.93 19759.22 19756.44 19771.84 19373.78 20253.55 20565.96 16843.02 20228.46 20637.50 19138.17 19730.41 20675.25 18074.42 19188.41 18672.37 202
MDA-MVSNet-bldmvs54.99 19852.66 20157.71 19652.74 21074.87 20155.61 20368.41 14643.65 20032.54 20137.93 18822.11 21454.11 18248.85 20767.34 20182.85 20273.88 200
new-patchmatchnet53.91 19952.69 20055.33 20064.83 20370.90 20452.24 20661.75 17941.09 20330.82 20329.90 20228.22 21036.69 20361.52 20265.08 20285.64 19772.14 203
MIMVSNet152.76 20053.95 19951.38 20241.96 21370.79 20553.56 20463.03 17739.36 20427.83 20822.73 20833.07 20634.47 20570.49 19672.69 19287.41 19168.51 204
pmmvs352.59 20152.43 20252.78 20154.53 20964.49 20850.07 20746.89 20835.31 20830.19 20427.27 20626.96 21253.02 18867.28 20070.54 19681.96 20475.20 197
new_pmnet50.32 20251.36 20349.11 20349.19 21164.89 20748.66 20947.99 20747.55 19426.27 21029.51 20528.66 20944.89 19461.12 20362.74 20477.66 20665.03 205
FPMVS50.25 20345.67 20555.58 19970.48 19760.12 20959.78 19959.33 18646.66 19537.94 19030.22 20127.51 21135.94 20450.98 20647.90 20670.02 20856.31 206
PMVScopyleft36.83 1840.62 20436.39 20645.56 20458.40 20633.20 21332.62 21356.02 19028.25 21137.92 19122.29 20926.15 21325.29 20848.49 20843.82 20963.13 21152.53 209
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft35.20 20533.96 20736.65 20643.30 21232.51 21426.96 21548.31 20638.87 20520.08 2148.08 2117.41 21826.44 20753.60 20458.43 20554.81 21238.79 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS232.52 20633.92 20830.88 20834.15 21644.70 21227.79 21439.69 21222.21 2124.31 21815.73 21014.13 21612.45 21340.11 20947.00 20766.88 20953.54 207
E-PMN21.42 20717.56 21025.94 20936.25 21519.02 21711.56 21643.72 21015.25 2146.99 2168.04 2124.53 22021.77 21016.13 21226.16 21135.34 21433.77 212
MVEpermissive25.07 1921.25 20823.51 20918.62 21115.07 21729.77 21610.67 21834.60 21312.51 2159.46 2157.84 2133.82 22114.38 21227.45 21142.42 21027.56 21640.74 210
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS20.61 20916.32 21125.62 21036.41 21418.93 21811.51 21743.75 20915.65 2136.53 2177.56 2144.68 21922.03 20914.56 21323.10 21233.51 21529.77 213
testmvs0.76 2101.23 2120.21 2120.05 2190.21 2190.38 2200.09 2150.94 2160.05 2202.13 2160.08 2220.60 2150.82 2140.77 2130.11 2173.62 215
test1230.67 2111.11 2130.16 2130.01 2200.14 2200.20 2210.04 2170.77 2170.02 2212.15 2150.02 2230.61 2140.23 2150.72 2140.07 2183.76 214
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def39.41 189
9.1491.16 7
SR-MVS96.04 3187.51 2787.60 20
Anonymous20240521175.59 12585.13 11391.06 10384.62 9177.96 7469.47 12840.79 18163.84 11984.57 6583.55 11984.69 10689.69 17695.75 81
our_test_373.80 18479.57 19264.47 192
ambc50.35 20455.61 20859.93 21048.73 20844.08 19835.81 19824.01 20710.64 21741.57 19972.83 18663.35 20374.99 20777.61 192
MTAPA91.14 685.84 26
MTMP90.95 784.13 35
Patchmatch-RL test8.17 219
tmp_tt39.78 20556.31 20731.71 21535.84 21215.08 21482.57 7450.83 14863.07 9447.51 16015.28 21152.23 20544.24 20865.35 210
XVS89.65 7095.93 4785.97 7976.32 5382.05 4593.51 89
X-MVStestdata89.65 7095.93 4785.97 7976.32 5382.05 4593.51 89
abl_689.54 3295.55 3997.59 1989.01 5585.00 4094.67 1583.04 3284.70 3591.47 689.46 2695.20 4698.63 20
mPP-MVS95.90 3380.22 53
NP-MVS89.55 47
Patchmtry87.41 12578.32 13354.14 19751.09 143
DeepMVS_CXcopyleft48.96 21143.77 21040.58 21150.93 18424.67 21236.95 19320.18 21541.60 19838.92 21052.37 21353.31 208