This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB95.06 197.73 198.39 296.95 196.33 5196.94 3598.30 2294.90 1598.61 297.73 397.97 2498.57 2395.74 499.24 198.70 498.72 898.70 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.59 298.32 396.73 495.90 6698.10 299.08 293.92 3298.24 496.44 1398.12 2097.86 5296.06 299.24 198.93 199.00 297.77 4
WR-MVS97.53 398.20 496.76 396.93 2998.17 198.60 1096.67 796.39 1494.46 3399.14 198.92 1194.57 1599.06 398.80 299.32 196.92 26
SixPastTwentyTwo97.36 497.73 1096.92 297.36 1396.15 5598.29 2394.43 2496.50 1296.96 798.74 698.74 1896.04 399.03 597.74 1898.44 2497.22 14
PS-CasMVS97.22 597.84 796.50 597.08 2597.92 698.17 3197.02 294.71 2695.32 2198.52 1398.97 992.91 4099.04 498.47 698.49 1997.24 13
PEN-MVS97.16 697.87 696.33 1297.20 2197.97 498.25 2696.86 695.09 2494.93 2698.66 899.16 692.27 5198.98 698.39 898.49 1996.83 30
DTE-MVSNet97.16 697.75 996.47 697.40 1297.95 598.20 2996.89 595.30 1995.15 2498.66 898.80 1692.77 4498.97 798.27 1098.44 2496.28 41
COLMAP_ROBcopyleft93.74 297.09 897.98 596.05 1895.97 6397.78 998.56 1191.72 8297.53 896.01 1598.14 1998.76 1795.28 598.76 1298.23 1198.77 696.67 35
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H97.06 997.78 896.23 1496.74 3798.04 398.25 2697.32 194.40 3393.71 5298.55 1198.89 1292.97 3798.91 998.45 798.38 2997.19 15
CP-MVSNet96.97 1097.42 1496.44 797.06 2697.82 898.12 3396.98 393.50 4695.21 2397.98 2398.44 2592.83 4398.93 898.37 998.46 2396.91 27
test_part196.91 1198.63 194.90 4594.62 9897.75 1198.33 2193.88 3498.92 193.11 6799.06 299.66 190.49 9198.84 1198.61 598.97 397.60 7
ACMH90.17 896.61 1297.69 1295.35 3195.29 8296.94 3598.43 1592.05 7098.04 595.38 1998.07 2199.25 593.23 3398.35 1797.16 4197.72 5196.00 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net96.56 1396.73 2496.36 1098.99 197.90 797.79 4495.64 1092.78 6092.54 7696.23 6995.02 12994.31 1898.43 1698.12 1298.89 498.58 2
ACMMPR96.54 1496.71 2596.35 1197.55 997.63 1298.62 994.54 1994.45 3094.19 3995.04 9497.35 6594.92 1097.85 3097.50 2898.26 3097.17 16
v7n96.49 1597.20 1895.65 2395.57 7696.04 5797.93 3892.49 5596.40 1397.13 698.99 399.41 493.79 2697.84 3296.15 6297.00 7895.60 55
DeepC-MVS92.47 496.44 1696.75 2396.08 1797.57 797.19 3197.96 3794.28 2595.29 2094.92 2798.31 1896.92 7793.69 2796.81 6396.50 5298.06 4096.27 42
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM90.06 996.31 1796.42 3296.19 1597.21 2097.16 3398.71 593.79 3894.35 3493.81 4692.80 12698.23 3395.11 698.07 2297.45 3098.51 1896.86 29
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+89.90 1096.27 1897.52 1394.81 4695.19 8597.18 3297.97 3692.52 5396.72 1090.50 12397.31 4499.11 794.10 2098.67 1397.90 1598.56 1695.79 51
APDe-MVS96.23 1997.22 1795.08 4096.66 4197.56 1598.63 893.69 4294.62 2789.80 13297.73 3298.13 3793.84 2597.79 3597.63 2097.87 4797.08 21
CP-MVS96.21 2096.16 4396.27 1397.56 897.13 3498.43 1594.70 1892.62 6394.13 4192.71 12798.03 4394.54 1698.00 2697.60 2298.23 3297.05 22
zzz-MVS96.18 2196.01 4696.38 898.30 296.18 5498.51 1394.48 2394.56 2894.81 3091.73 13696.96 7594.30 1998.09 2097.83 1697.91 4696.73 32
HFP-MVS96.18 2196.53 2995.77 2197.34 1697.26 2898.16 3294.54 1994.45 3092.52 7795.05 9296.95 7693.89 2397.28 4697.46 2998.19 3397.25 11
UniMVSNet_ETH3D96.15 2397.71 1194.33 5497.31 1796.71 4095.06 10996.91 497.86 690.42 12498.55 1199.60 288.01 11998.51 1497.81 1798.26 3094.95 67
MP-MVScopyleft96.13 2495.93 4996.37 998.19 497.31 2798.49 1494.53 2291.39 9294.38 3694.32 10796.43 9094.59 1497.75 3797.44 3198.04 4196.88 28
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPcopyleft96.12 2596.27 3995.93 1997.20 2197.60 1398.64 793.74 3992.47 6593.13 6693.23 12098.06 4094.51 1797.99 2797.57 2598.39 2896.99 23
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS96.10 2697.23 1694.79 4896.28 5497.49 1697.90 3993.60 4495.47 1789.57 13897.32 4397.72 5693.89 2397.74 3897.53 2697.51 5697.34 9
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LGP-MVS_train96.10 2696.29 3695.87 2096.72 3897.35 2698.43 1593.83 3690.81 10692.67 7595.05 9298.86 1495.01 798.11 1997.37 3798.52 1796.50 37
CSCG96.07 2897.15 1994.81 4696.06 6197.58 1496.52 7290.98 9396.51 1193.60 5497.13 5098.55 2493.01 3597.17 5095.36 7898.68 1097.78 3
DPE-MVScopyleft96.00 2996.80 2295.06 4195.87 6997.47 2198.25 2693.73 4092.38 6791.57 10497.55 3897.97 4592.98 3697.49 4497.61 2197.96 4597.16 17
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft95.99 3096.48 3095.41 3097.43 1197.36 2497.55 4993.70 4194.05 4193.79 4797.02 5394.53 13492.28 5097.53 4397.19 3997.73 5097.67 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.95.99 3096.57 2895.31 3396.87 3096.50 4798.71 591.58 8393.25 5192.71 7196.86 5596.57 8893.92 2198.09 2097.91 1498.08 3896.81 31
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS95.96 3296.59 2795.23 3696.67 4096.52 4697.86 4293.28 4795.27 2293.46 5696.26 6698.85 1592.89 4197.09 5196.37 5797.22 7195.78 52
SteuartSystems-ACMMP95.96 3296.13 4595.76 2297.06 2697.36 2498.40 1994.24 2791.49 8691.91 9594.50 10396.89 7894.99 898.01 2597.44 3197.97 4497.25 11
Skip Steuart: Steuart Systems R&D Blog.
ACMP89.62 1195.96 3296.28 3795.59 2496.58 4397.23 3098.26 2593.22 4892.33 7092.31 8494.29 10898.73 1994.68 1298.04 2397.14 4298.47 2196.17 44
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PGM-MVS95.90 3595.72 5496.10 1697.53 1097.45 2298.55 1294.12 2990.25 11093.71 5293.20 12197.18 6994.63 1397.68 4097.34 3898.08 3896.97 24
PMVScopyleft87.16 1695.88 3696.47 3195.19 3897.00 2896.02 5896.70 6391.57 8494.43 3295.33 2097.16 4995.37 11792.39 4698.89 1098.72 398.17 3594.71 72
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMMP_NAP95.86 3796.18 4095.47 2997.11 2497.26 2898.37 2093.48 4693.49 4793.99 4495.61 7894.11 13992.49 4597.87 2997.44 3197.40 6197.52 8
Gipumacopyleft95.86 3796.17 4195.50 2895.92 6594.59 10294.77 11792.50 5497.82 797.90 295.56 8197.88 5094.71 1198.02 2494.81 9297.23 7094.48 79
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LS3D95.83 3996.35 3495.22 3796.47 4797.49 1697.99 3492.35 5894.92 2594.58 3194.88 9895.11 12791.52 6298.48 1598.05 1398.42 2695.49 56
SD-MVS95.77 4096.17 4195.30 3496.72 3896.19 5397.01 5593.04 4994.03 4292.71 7196.45 6496.78 8593.91 2296.79 6495.89 6898.42 2697.09 20
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS95.73 4196.98 2094.28 5596.08 5997.39 2398.18 3093.80 3794.20 3689.61 13797.29 4597.49 6290.69 8197.74 3897.41 3497.32 6797.34 9
TranMVSNet+NR-MVSNet95.72 4296.42 3294.91 4496.21 5596.77 3996.90 6094.99 1392.62 6391.92 9498.51 1498.63 2190.82 7897.27 4796.83 4698.63 1394.31 80
DU-MVS95.51 4395.68 5595.33 3296.45 4896.44 4996.61 6995.32 1189.97 11593.78 4897.46 4098.07 3991.19 6997.03 5396.53 5098.61 1494.22 81
UniMVSNet (Re)95.46 4495.86 5295.00 4396.09 5796.60 4196.68 6794.99 1390.36 10992.13 8797.64 3698.13 3791.38 6396.90 5896.74 4798.73 794.63 75
RPSCF95.46 4496.95 2193.73 7895.72 7395.94 6195.58 10088.08 14095.31 1891.34 10796.26 6698.04 4293.63 2898.28 1897.67 1998.01 4297.13 18
anonymousdsp95.45 4696.70 2693.99 6688.43 19892.05 14799.18 185.42 17594.29 3596.10 1498.63 1099.08 896.11 197.77 3697.41 3498.70 997.69 5
APD-MVScopyleft95.38 4795.68 5595.03 4297.30 1896.90 3797.83 4393.92 3289.40 12290.35 12595.41 8597.69 5892.97 3797.24 4997.17 4097.83 4895.96 48
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet_NR-MVSNet95.34 4895.51 5995.14 3995.80 7196.55 4296.61 6994.79 1690.04 11493.78 4897.51 3997.25 6691.19 6996.68 6696.31 5998.65 1294.22 81
X-MVS95.33 4995.13 6795.57 2697.35 1497.48 1898.43 1594.28 2592.30 7193.28 5986.89 18396.82 8191.87 5697.85 3097.59 2398.19 3396.95 25
MSP-MVS95.32 5096.28 3794.19 5896.87 3097.77 1098.27 2493.88 3494.15 4089.63 13695.36 8698.37 2890.73 7994.37 11397.53 2695.77 11896.40 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS-test95.28 5195.87 5094.60 4994.78 9395.80 6897.88 4089.55 11990.46 10894.57 3296.56 6197.80 5392.34 4897.84 3297.59 2398.47 2195.03 66
3Dnovator+92.82 395.22 5295.16 6595.29 3596.17 5696.55 4297.64 4694.02 3194.16 3994.29 3892.09 13393.71 14491.90 5496.68 6696.51 5197.70 5396.40 38
HPM-MVS++copyleft95.21 5394.89 7095.59 2497.79 695.39 8097.68 4594.05 3091.91 7894.35 3793.38 11995.07 12892.94 3996.01 7995.88 6996.73 8196.61 36
TSAR-MVS + ACMM95.17 5495.95 4794.26 5696.07 6096.46 4895.67 9794.21 2893.84 4490.99 11597.18 4895.24 12693.55 2996.60 7095.61 7695.06 13796.69 34
xxxxxxxxxxxxxcwj95.03 5596.14 4493.73 7895.30 7995.93 6294.80 11591.76 7993.11 5591.93 9295.83 7498.96 1091.11 7296.62 6896.44 5497.46 5796.13 45
CPTT-MVS95.00 5694.52 7895.57 2696.84 3496.78 3897.88 4093.67 4392.20 7292.35 8385.87 19197.56 6194.98 996.96 5696.07 6597.70 5396.18 43
SF-MVS94.88 5795.87 5093.73 7895.30 7995.93 6294.80 11591.76 7993.11 5591.93 9295.83 7497.07 7291.11 7296.62 6896.44 5497.46 5796.13 45
Baseline_NR-MVSNet94.85 5895.35 6394.26 5696.45 4893.86 11996.70 6394.54 1990.07 11390.17 12998.77 597.89 4790.64 8597.03 5396.16 6197.04 7793.67 93
EG-PatchMatch MVS94.81 5995.53 5893.97 6795.89 6894.62 10095.55 10288.18 13892.77 6194.88 2897.04 5298.61 2293.31 3096.89 5995.19 8295.99 11093.56 96
OMC-MVS94.74 6095.46 6193.91 7094.62 9896.26 5296.64 6889.36 12694.20 3694.15 4094.02 11397.73 5591.34 6596.15 7795.04 8697.37 6494.80 69
DeepC-MVS_fast91.38 694.73 6194.98 6894.44 5096.83 3696.12 5696.69 6592.17 6492.98 5893.72 5094.14 10995.45 11590.49 9195.73 8695.30 7996.71 8295.13 64
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS94.65 6294.84 7294.44 5094.95 9096.55 4296.46 7591.10 9188.96 12596.00 1694.55 10295.32 12190.67 8296.97 5596.69 4997.44 6094.84 68
pmmvs694.58 6397.30 1591.40 12094.84 9294.61 10193.40 14592.43 5798.51 385.61 16398.73 799.53 384.40 14197.88 2897.03 4397.72 5194.79 70
DeepPCF-MVS90.68 794.56 6494.92 6994.15 5994.11 11195.71 7197.03 5490.65 9793.39 5094.08 4295.29 8994.15 13893.21 3495.22 9794.92 9095.82 11795.75 53
NR-MVSNet94.55 6595.66 5793.25 9294.26 10796.44 4996.69 6595.32 1189.97 11591.79 10097.46 4098.39 2782.85 15096.87 6196.48 5398.57 1593.98 87
Vis-MVSNetpermissive94.39 6695.85 5392.68 10090.91 18195.88 6597.62 4891.41 8591.95 7789.20 14097.29 4596.26 9390.60 9096.95 5795.91 6696.32 9796.71 33
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TSAR-MVS + GP.94.25 6794.81 7393.60 8196.52 4695.80 6894.37 12592.47 5690.89 10288.92 14295.34 8794.38 13692.85 4296.36 7595.62 7596.47 8995.28 61
CNVR-MVS94.24 6894.47 7993.96 6896.56 4495.67 7296.43 7691.95 7392.08 7591.28 10990.51 14495.35 11891.20 6896.34 7695.50 7796.34 9595.88 50
v119293.98 6993.94 9194.01 6493.91 11994.63 9997.00 5689.75 11591.01 10096.50 1097.93 2598.26 3291.74 5892.06 14392.05 13395.18 13291.66 135
v1093.96 7094.12 8893.77 7793.37 13395.45 7696.83 6291.13 9089.70 11995.02 2597.88 2898.23 3391.27 6692.39 13892.18 13194.99 13993.00 105
CDPH-MVS93.96 7093.86 9394.08 6196.31 5295.84 6696.92 5891.85 7687.21 14191.25 11192.83 12396.06 10291.05 7595.57 8894.81 9297.12 7294.72 71
MVS_030493.92 7293.81 9794.05 6396.06 6196.00 5996.43 7692.76 5185.99 15294.43 3594.04 11297.08 7188.12 11894.65 10994.20 10596.47 8994.71 72
MSLP-MVS++93.91 7394.30 8593.45 8395.51 7795.83 6793.12 15191.93 7591.45 8991.40 10687.42 17896.12 10193.27 3196.57 7196.40 5695.49 12296.29 40
v192192093.90 7493.82 9594.00 6593.74 12794.31 10597.12 5189.33 12791.13 9796.77 997.90 2698.06 4091.95 5391.93 14791.54 14295.10 13591.85 128
train_agg93.89 7593.46 10794.40 5297.35 1493.78 12197.63 4792.19 6388.12 13290.52 12293.57 11895.78 10892.31 4994.78 10693.46 11796.36 9394.70 74
v14419293.89 7593.85 9493.94 6993.50 13194.33 10497.12 5189.49 12190.89 10296.49 1197.78 3098.27 3191.89 5592.17 14291.70 13995.19 13191.78 132
v124093.89 7593.72 9894.09 6093.98 11694.31 10597.12 5189.37 12590.74 10796.92 898.05 2297.89 4792.15 5291.53 15391.60 14094.99 13991.93 127
NCCC93.87 7893.42 10894.40 5296.84 3495.42 7796.47 7492.62 5292.36 6992.05 8983.83 19895.55 11191.84 5795.89 8195.23 8196.56 8695.63 54
v114493.83 7993.87 9293.78 7693.72 12894.57 10396.85 6189.98 11091.31 9495.90 1797.89 2798.40 2691.13 7192.01 14692.01 13495.10 13590.94 139
MVS_111021_HR93.82 8094.26 8793.31 8695.01 8893.97 11695.73 9489.75 11592.06 7692.49 7894.01 11496.05 10390.61 8995.95 8094.78 9596.28 9893.04 104
thisisatest051593.79 8194.41 8193.06 9794.14 10892.50 14095.56 10188.55 13591.61 8292.45 7996.84 5695.71 10990.62 8794.58 11095.07 8497.05 7594.58 76
TAPA-MVS88.94 1393.78 8294.31 8493.18 9494.14 10895.99 6095.74 9386.98 15793.43 4993.88 4590.16 15196.88 7991.05 7594.33 11493.95 10797.28 6895.40 57
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE93.72 8393.62 10293.84 7194.75 9494.90 9397.24 5091.81 7886.97 14492.74 7093.83 11697.24 6890.46 9395.10 10194.09 10696.08 10793.18 102
EPP-MVSNet93.63 8493.95 9093.26 9095.15 8696.54 4596.18 8491.97 7291.74 7985.76 16194.95 9684.27 18591.60 6197.61 4297.38 3698.87 595.18 63
v893.60 8593.82 9593.34 8493.13 14095.06 8696.39 7890.75 9589.90 11794.03 4397.70 3498.21 3591.08 7492.36 13991.47 14394.63 14692.07 123
MCST-MVS93.60 8593.40 11093.83 7295.30 7995.40 7996.49 7390.87 9490.08 11291.72 10190.28 14995.99 10491.69 5993.94 12292.99 12296.93 7995.13 64
PVSNet_Blended_VisFu93.60 8593.41 10993.83 7296.31 5295.65 7395.71 9590.58 10088.08 13493.17 6495.29 8992.20 15390.72 8094.69 10893.41 11996.51 8894.54 77
TransMVSNet (Re)93.55 8896.32 3590.32 13694.38 10494.05 11193.30 14889.53 12097.15 985.12 16698.83 497.89 4782.21 15696.75 6596.14 6397.35 6593.46 97
DCV-MVSNet93.49 8995.15 6691.55 11694.05 11295.92 6495.15 10791.21 8792.76 6287.01 15789.71 15497.16 7083.90 14597.65 4196.87 4597.99 4395.95 49
v2v48293.42 9093.49 10693.32 8593.44 13294.05 11196.36 8189.76 11491.41 9195.24 2297.63 3798.34 2990.44 9491.65 15191.76 13894.69 14389.62 149
canonicalmvs93.38 9194.36 8292.24 10793.94 11896.41 5194.18 13290.47 10193.07 5788.47 14888.66 16593.78 14388.80 10895.74 8595.75 7397.57 5597.13 18
3Dnovator91.81 593.36 9294.27 8692.29 10692.99 14495.03 8795.76 9287.79 14393.82 4592.38 8292.19 13293.37 14888.14 11795.26 9694.85 9196.69 8395.40 57
pm-mvs193.27 9395.94 4890.16 13794.13 11093.66 12292.61 16189.91 11295.73 1684.28 17598.51 1498.29 3082.80 15196.44 7395.76 7297.25 6993.21 101
Anonymous2023121193.19 9495.50 6090.49 13393.77 12595.29 8294.36 12990.04 10991.44 9084.59 17096.72 5897.65 5982.45 15597.25 4896.32 5897.74 4993.79 90
TinyColmap93.17 9593.33 11193.00 9893.84 12192.76 13594.75 11988.90 13193.97 4397.48 495.28 9195.29 12288.37 11395.31 9591.58 14194.65 14589.10 153
MVS_111021_LR93.15 9693.65 10092.56 10193.89 12092.28 14295.09 10886.92 15991.26 9692.99 6994.46 10596.22 9690.64 8595.11 10093.45 11895.85 11592.74 112
CNLPA93.14 9793.67 9992.53 10294.62 9894.73 9695.00 11186.57 16492.85 5992.43 8090.94 13994.67 13190.35 9595.41 9093.70 11496.23 10193.37 99
PLCcopyleft87.27 1593.08 9892.92 11593.26 9094.67 9595.03 8794.38 12490.10 10491.69 8092.14 8687.24 17993.91 14191.61 6095.05 10294.73 9896.67 8492.80 108
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet93.07 9993.05 11493.10 9595.90 6695.41 7895.88 8991.94 7484.77 15993.36 5794.05 11195.25 12586.25 13094.33 11493.94 10895.30 12593.58 95
TSAR-MVS + COLMAP93.06 10093.65 10092.36 10494.62 9894.28 10895.36 10689.46 12392.18 7391.64 10295.55 8295.27 12488.60 11193.24 12892.50 12794.46 14892.55 118
Effi-MVS+92.93 10192.16 12793.83 7294.29 10593.53 12995.04 11092.98 5085.27 15694.46 3390.24 15095.34 11989.99 9893.72 12394.23 10496.22 10292.79 109
Fast-Effi-MVS+92.93 10192.64 11993.27 8893.81 12293.88 11795.90 8790.61 9883.98 16592.71 7192.81 12496.22 9690.67 8294.90 10493.92 10995.92 11292.77 110
DROMVSNet92.93 10192.64 11993.27 8893.81 12293.88 11795.90 8790.61 9883.98 16592.71 7192.81 12496.22 9690.67 8294.90 10493.92 10995.92 11292.77 110
HQP-MVS92.87 10492.49 12193.31 8695.75 7295.01 9095.64 9891.06 9288.54 12991.62 10388.16 17096.25 9489.47 10392.26 14191.81 13696.34 9595.40 57
FMVSNet192.86 10595.26 6490.06 13992.40 15895.16 8394.37 12592.22 6093.18 5482.16 18596.76 5797.48 6381.85 16095.32 9294.98 8797.34 6693.93 88
CLD-MVS92.81 10694.32 8391.05 12495.39 7895.31 8195.82 9181.44 19889.40 12291.94 9195.86 7297.36 6485.83 13295.35 9194.59 10095.85 11592.34 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS_MVSNet92.76 10793.25 11292.19 10894.91 9195.56 7495.86 9092.12 6688.10 13382.71 18093.15 12288.30 17388.86 10797.29 4596.95 4498.66 1193.38 98
FC-MVSNet-train92.75 10895.40 6289.66 14795.21 8494.82 9497.00 5689.40 12491.13 9781.71 18697.72 3396.43 9077.57 18396.89 5996.72 4897.05 7594.09 84
V4292.67 10993.50 10591.71 11491.41 17292.96 13395.71 9585.00 17689.67 12093.22 6297.67 3598.01 4491.02 7792.65 13492.12 13293.86 15691.42 136
PM-MVS92.65 11093.20 11392.00 11092.11 16690.16 16895.99 8684.81 18091.31 9492.41 8195.87 7196.64 8792.35 4793.65 12592.91 12394.34 15191.85 128
QAPM92.57 11193.51 10491.47 11892.91 14694.82 9493.01 15387.51 14791.49 8691.21 11292.24 13091.70 15688.74 10994.54 11194.39 10395.41 12395.37 60
MIMVSNet192.52 11294.88 7189.77 14396.09 5791.99 14896.92 5889.68 11795.92 1584.55 17196.64 6098.21 3578.44 17796.08 7895.10 8392.91 17090.22 146
tfpnnormal92.45 11394.77 7489.74 14493.95 11793.44 13193.25 14988.49 13795.27 2283.20 17896.51 6296.23 9583.17 14995.47 8994.52 10196.38 9291.97 126
PCF-MVS87.46 1492.44 11491.80 12993.19 9394.66 9695.80 6896.37 7990.19 10387.57 13892.23 8589.26 15993.97 14089.24 10491.32 15590.82 15196.46 9193.86 89
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvs92.42 11593.99 8990.60 13193.25 13693.82 12094.28 13188.73 13391.53 8484.53 17397.74 3198.64 2086.60 12793.21 13091.20 14696.21 10391.76 134
AdaColmapbinary92.41 11691.49 13493.48 8295.96 6495.02 8995.37 10591.73 8187.97 13691.28 10982.82 20291.04 16090.62 8795.82 8495.07 8495.95 11192.67 113
v14892.38 11792.78 11791.91 11192.86 14792.13 14594.84 11387.03 15691.47 8893.07 6896.92 5498.89 1290.10 9792.05 14489.69 15993.56 15988.27 162
pmmvs-eth3d92.34 11892.33 12292.34 10592.67 15190.67 16296.37 7989.06 12890.98 10193.60 5497.13 5097.02 7488.29 11490.20 16291.42 14494.07 15488.89 157
DELS-MVS92.33 11993.61 10390.83 12792.84 14895.13 8594.76 11887.22 15587.78 13788.42 15095.78 7695.28 12385.71 13594.44 11293.91 11196.01 10992.97 106
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu92.32 12091.66 13293.09 9695.13 8794.73 9694.57 12292.14 6581.74 17790.33 12688.13 17195.91 10589.24 10494.23 11993.65 11697.12 7293.23 100
UGNet92.31 12194.70 7589.53 14990.99 18095.53 7596.19 8392.10 6891.35 9385.76 16195.31 8895.48 11476.84 18895.22 9794.79 9495.32 12495.19 62
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
USDC92.17 12292.17 12692.18 10992.93 14592.22 14393.66 13987.41 15093.49 4797.99 194.10 11096.68 8686.46 12892.04 14589.18 16594.61 14787.47 165
ETV-MVS92.12 12390.44 14194.08 6196.36 5093.63 12496.27 8292.00 7178.90 19792.13 8785.29 19389.85 16690.26 9697.07 5296.29 6097.46 5792.04 124
IterMVS-LS92.10 12492.33 12291.82 11393.18 13793.66 12292.80 15992.27 5990.82 10490.59 12197.19 4790.97 16187.76 12089.60 16990.94 15094.34 15193.16 103
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG92.09 12592.84 11691.22 12392.55 15392.97 13293.42 14485.43 17490.24 11191.83 9794.70 9994.59 13288.48 11294.91 10393.31 12195.59 12189.15 152
CS-MVS92.07 12691.69 13092.52 10393.80 12494.30 10796.15 8586.55 16579.55 18791.47 10589.10 16295.33 12089.78 10295.88 8295.85 7097.40 6191.81 131
EIA-MVS91.95 12790.36 14393.81 7596.54 4594.65 9895.38 10490.40 10278.01 20293.72 5086.70 18691.95 15589.93 9995.67 8794.72 9996.89 8090.79 140
MAR-MVS91.86 12891.14 13792.71 9994.29 10594.24 10994.91 11291.82 7781.66 17893.32 5884.51 19693.42 14786.86 12595.16 9994.44 10295.05 13894.53 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EU-MVSNet91.63 12992.73 11890.35 13588.36 19987.89 17996.53 7181.51 19792.45 6691.82 9896.44 6597.05 7393.26 3294.10 12088.94 17090.61 17792.24 121
FC-MVSNet-test91.49 13094.43 8088.07 16594.97 8990.53 16595.42 10391.18 8993.24 5272.94 20798.37 1693.86 14278.78 17197.82 3496.13 6495.13 13391.05 137
OpenMVScopyleft89.22 1291.09 13191.42 13590.71 12992.79 15093.61 12692.74 16085.47 17386.10 15190.73 11685.71 19293.07 15186.69 12694.07 12193.34 12095.86 11494.02 86
FPMVS90.81 13291.60 13389.88 14292.52 15488.18 17593.31 14783.62 18691.59 8388.45 14988.96 16389.73 16886.96 12396.42 7495.69 7494.43 14990.65 141
DI_MVS_plusplus_trai90.68 13390.40 14291.00 12592.43 15792.61 13994.17 13388.98 12988.32 13188.76 14693.67 11787.58 17586.44 12989.74 16790.33 15495.24 12890.56 144
Vis-MVSNet (Re-imp)90.68 13392.18 12588.92 15494.63 9792.75 13692.91 15591.20 8889.21 12475.01 20493.96 11589.07 17182.72 15395.88 8295.30 7997.08 7489.08 154
DPM-MVS90.67 13589.86 14791.63 11595.29 8294.16 11094.52 12389.63 11889.59 12189.67 13581.95 20488.64 17285.75 13490.46 16090.43 15394.91 14193.77 91
diffmvs90.44 13692.23 12488.35 16191.36 17491.38 15492.45 16584.84 17989.88 11885.09 16796.69 5997.71 5783.33 14890.01 16688.96 16993.03 16891.00 138
FMVSNet290.28 13792.04 12888.23 16391.22 17694.05 11192.88 15690.69 9686.53 14779.89 19394.38 10692.73 15278.54 17491.64 15292.26 13096.17 10492.67 113
IterMVS-SCA-FT90.24 13889.37 15391.26 12292.50 15592.11 14691.69 17587.48 14887.05 14391.82 9895.76 7787.25 17691.36 6489.02 17485.53 18592.68 17188.90 156
MVS_Test90.19 13990.58 13889.74 14492.12 16591.74 15092.51 16288.54 13682.80 17287.50 15494.62 10095.02 12983.97 14388.69 17789.32 16393.79 15791.85 128
EPNet90.17 14089.07 15591.45 11997.25 1990.62 16494.84 11393.54 4580.96 18091.85 9686.98 18285.88 18177.79 18092.30 14092.58 12693.41 16194.20 83
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS90.09 14190.12 14590.05 14092.40 15892.74 13791.74 17185.89 16980.54 18390.30 12788.54 16695.51 11284.69 13992.64 13590.25 15595.28 12690.61 142
PVSNet_Blended90.09 14190.12 14590.05 14092.40 15892.74 13791.74 17185.89 16980.54 18390.30 12788.54 16695.51 11284.69 13992.64 13590.25 15595.28 12690.61 142
pmmvs489.95 14389.32 15490.69 13091.60 17189.17 17294.37 12587.63 14488.07 13591.02 11494.50 10390.50 16486.13 13186.33 19189.40 16293.39 16287.29 168
MDA-MVSNet-bldmvs89.75 14491.67 13187.50 17074.25 21790.88 15994.68 12085.89 16991.64 8191.03 11395.86 7294.35 13789.10 10696.87 6186.37 18190.04 17885.72 173
tttt051789.64 14588.05 16691.49 11793.52 13091.65 15193.67 13887.53 14582.77 17389.39 13990.37 14870.05 21088.21 11593.71 12493.79 11296.63 8594.04 85
PatchMatch-RL89.59 14688.80 15990.51 13292.20 16488.00 17891.72 17386.64 16184.75 16088.25 15187.10 18190.66 16389.85 10193.23 12992.28 12994.41 15085.60 174
Fast-Effi-MVS+-dtu89.57 14788.42 16390.92 12693.35 13491.57 15293.01 15395.71 978.94 19687.65 15384.68 19593.14 15082.00 15890.84 15891.01 14993.78 15888.77 158
thisisatest053089.54 14887.99 16891.35 12193.17 13891.31 15593.45 14387.53 14582.96 17189.17 14190.45 14570.32 20988.21 11593.37 12793.79 11296.54 8793.71 92
GBi-Net89.35 14990.58 13887.91 16691.22 17694.05 11192.88 15690.05 10679.40 18878.60 19590.58 14187.05 17778.54 17495.32 9294.98 8796.17 10492.67 113
test189.35 14990.58 13887.91 16691.22 17694.05 11192.88 15690.05 10679.40 18878.60 19590.58 14187.05 17778.54 17495.32 9294.98 8796.17 10492.67 113
thres600view789.14 15188.83 15789.51 15093.71 12993.55 12793.93 13688.02 14187.30 14082.40 18181.18 20580.63 19682.69 15494.27 11695.90 6796.27 9988.94 155
CVMVSNet88.97 15289.73 14988.10 16487.33 20585.22 18894.68 12078.68 19988.94 12686.98 15895.55 8285.71 18289.87 10091.19 15689.69 15991.05 17591.78 132
CANet_DTU88.95 15389.51 15288.29 16293.12 14191.22 15793.61 14083.47 18980.07 18690.71 12089.19 16093.68 14576.27 19291.44 15491.17 14892.59 17289.83 148
GA-MVS88.76 15488.04 16789.59 14892.32 16191.46 15392.28 16786.62 16283.82 16889.84 13192.51 12981.94 19083.53 14789.41 17189.27 16492.95 16987.90 163
pmmvs588.63 15589.70 15087.39 17189.24 19290.64 16391.87 17082.13 19383.34 16987.86 15294.58 10196.15 10079.87 16887.33 18689.07 16893.39 16286.76 169
thres40088.54 15688.15 16588.98 15293.17 13892.84 13493.56 14186.93 15886.45 14882.37 18279.96 20781.46 19381.83 16193.21 13094.76 9696.04 10888.39 160
CDS-MVSNet88.41 15789.79 14886.79 17594.55 10290.82 16092.50 16389.85 11383.26 17080.52 19091.05 13789.93 16569.11 20393.17 13292.71 12594.21 15387.63 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gg-mvs-nofinetune88.32 15888.81 15887.75 16893.07 14289.37 17189.06 19495.94 895.29 2087.15 15597.38 4276.38 19968.05 20691.04 15789.10 16793.24 16483.10 182
IterMVS88.32 15888.25 16488.41 16090.83 18291.24 15693.07 15281.69 19586.77 14588.55 14795.61 7886.91 18087.01 12287.38 18583.77 18789.29 18086.06 172
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres20088.29 16087.88 16988.76 15692.50 15593.55 12792.47 16488.02 14184.80 15881.44 18779.28 20982.20 18981.83 16194.27 11693.67 11596.27 9987.40 166
IB-MVS86.01 1788.24 16187.63 17188.94 15392.03 16791.77 14992.40 16685.58 17278.24 19984.85 16871.99 21393.45 14683.96 14493.48 12692.33 12894.84 14292.15 122
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep13_2view88.22 16287.85 17088.65 15891.40 17386.75 18394.07 13484.97 17788.86 12893.20 6396.11 7096.21 9983.70 14687.29 18780.29 19484.56 19879.46 195
test20.0388.20 16391.26 13684.63 18796.64 4289.39 17090.73 18289.97 11191.07 9972.02 20994.98 9595.45 11569.35 20292.70 13391.19 14789.06 18284.02 176
HyFIR lowres test88.19 16486.56 17890.09 13891.24 17592.17 14494.30 13088.79 13284.06 16285.45 16489.52 15785.64 18388.64 11085.40 19487.28 17592.14 17481.87 185
ET-MVSNet_ETH3D88.06 16585.75 18290.74 12892.82 14990.68 16193.77 13788.59 13481.22 17989.78 13389.15 16166.79 21784.29 14291.72 15091.34 14595.22 12989.36 151
tfpn200view987.94 16687.51 17388.44 15992.28 16293.63 12493.35 14688.11 13980.90 18180.89 18878.25 21082.25 18779.65 17094.27 11694.76 9696.36 9388.48 159
FMVSNet387.90 16788.63 16187.04 17289.78 19093.46 13091.62 17690.05 10679.40 18878.60 19590.58 14187.05 17777.07 18788.03 18289.86 15895.12 13492.04 124
MS-PatchMatch87.72 16888.62 16286.66 17690.81 18388.18 17590.92 17982.25 19285.86 15380.40 19190.14 15289.29 17084.93 13689.39 17289.12 16690.67 17688.34 161
Anonymous2023120687.45 16989.66 15184.87 18494.00 11387.73 18191.36 17786.41 16788.89 12775.03 20392.59 12896.82 8172.48 20089.72 16888.06 17289.93 17983.81 178
EPNet_dtu87.40 17086.27 17988.72 15795.68 7483.37 19492.09 16990.08 10578.11 20191.29 10886.33 18789.74 16775.39 19589.07 17387.89 17387.81 18789.38 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline186.96 17187.58 17286.24 17893.07 14290.44 16689.24 19386.85 16085.14 15777.26 20190.45 14576.09 20175.79 19391.80 14991.81 13695.20 13087.35 167
baseline86.71 17288.89 15684.16 18987.85 20185.23 18789.82 18777.69 20284.03 16484.75 16994.91 9794.59 13277.19 18686.57 19086.51 18087.66 19090.36 145
CHOSEN 1792x268886.64 17386.62 17686.65 17790.33 18687.86 18093.19 15083.30 19083.95 16782.32 18387.93 17389.34 16986.92 12485.64 19384.95 18683.85 20286.68 170
testgi86.49 17490.31 14482.03 19395.63 7588.18 17593.47 14284.89 17893.23 5369.54 21387.16 18097.96 4660.66 21091.90 14889.90 15787.99 18583.84 177
thres100view90086.46 17586.00 18186.99 17392.28 16291.03 15891.09 17884.49 18280.90 18180.89 18878.25 21082.25 18777.57 18390.17 16392.84 12495.63 11986.57 171
gm-plane-assit86.15 17682.51 19090.40 13495.81 7092.29 14197.99 3484.66 18192.15 7493.15 6597.84 2944.65 22478.60 17388.02 18385.95 18292.20 17376.69 203
CMPMVSbinary66.55 1885.55 17787.46 17483.32 19084.99 20781.97 19979.19 21475.93 20479.32 19188.82 14485.09 19491.07 15982.12 15792.56 13789.63 16188.84 18392.56 117
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet85.32 17881.58 19289.69 14690.36 18584.79 19086.72 20592.22 6075.38 20790.73 11690.41 14767.88 21484.86 13783.76 19785.74 18393.24 16483.14 180
baseline284.95 17982.68 18987.59 16992.64 15288.41 17490.09 18484.25 18375.88 20585.23 16582.49 20371.15 20780.14 16788.21 18187.21 17893.21 16785.39 175
pmnet_mix0284.85 18086.58 17782.83 19190.19 18781.10 20288.52 19778.58 20091.50 8580.32 19296.48 6395.86 10675.42 19485.17 19576.44 20383.91 20179.51 194
MVSTER84.79 18183.79 18585.96 18089.14 19389.80 16989.39 19182.99 19174.16 21182.78 17985.97 19066.81 21676.84 18890.77 15988.83 17194.66 14490.19 147
MIMVSNet84.76 18286.75 17582.44 19291.71 17085.95 18589.74 18989.49 12185.28 15569.69 21287.93 17390.88 16264.85 20888.26 18087.74 17489.18 18181.24 186
SCA84.69 18381.10 19388.87 15589.02 19490.31 16792.21 16892.09 6982.72 17489.68 13486.83 18473.08 20385.80 13380.50 20577.51 20084.45 20076.80 202
new-patchmatchnet84.45 18488.75 16079.43 19993.28 13581.87 20081.68 21183.48 18894.47 2971.53 21098.33 1797.88 5058.61 21390.35 16177.33 20187.99 18581.05 188
PatchT83.44 18581.10 19386.18 17977.92 21582.58 19889.87 18687.39 15175.88 20590.73 11689.86 15366.71 21884.86 13783.76 19785.74 18386.33 19583.14 180
RPMNet83.42 18678.40 20289.28 15189.79 18984.79 19090.64 18392.11 6775.38 20787.10 15679.80 20861.99 22382.79 15281.88 20382.07 19193.23 16682.87 183
TAMVS82.96 18786.15 18079.24 20290.57 18483.12 19787.29 20175.12 20684.06 16265.81 21492.22 13188.27 17469.11 20388.72 17587.26 17787.56 19179.38 196
PatchmatchNetpermissive82.44 18878.69 20186.83 17489.81 18881.55 20190.78 18187.27 15482.39 17688.85 14388.31 16970.96 20881.90 15978.58 20974.33 20982.35 20674.69 206
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1382.33 18979.66 19685.45 18288.83 19683.88 19290.09 18481.98 19479.07 19588.82 14488.70 16473.77 20278.41 17880.29 20776.08 20484.56 19875.83 204
CostFormer82.15 19079.54 19785.20 18388.92 19585.70 18690.87 18086.26 16879.19 19483.87 17687.89 17569.20 21276.62 19077.50 21275.28 20684.69 19782.02 184
PMMVS81.93 19183.48 18780.12 19872.35 21875.05 21188.54 19664.01 21177.02 20482.22 18487.51 17791.12 15879.70 16986.59 18886.64 17993.88 15580.41 189
pmmvs381.69 19283.83 18479.19 20378.33 21478.57 20589.53 19058.71 21478.88 19884.34 17488.36 16891.96 15477.69 18287.48 18482.42 19086.54 19479.18 197
tpm81.58 19378.84 19984.79 18691.11 17979.50 20389.79 18883.75 18479.30 19292.05 8990.98 13864.78 22074.54 19680.50 20576.67 20277.49 21180.15 192
test0.0.03 181.51 19483.30 18879.42 20093.99 11486.50 18485.93 20987.32 15278.16 20061.62 21580.78 20681.78 19159.87 21188.40 17987.27 17687.78 18980.19 191
dps81.42 19577.88 20785.56 18187.67 20385.17 18988.37 19987.46 14974.37 21084.55 17186.80 18562.18 22280.20 16681.13 20477.52 19985.10 19677.98 200
test-LLR80.62 19677.20 21084.62 18893.99 11475.11 20987.04 20287.32 15270.11 21478.59 19883.17 20071.60 20573.88 19882.32 20179.20 19686.91 19278.87 198
tpm cat180.03 19775.93 21384.81 18589.31 19183.26 19688.86 19586.55 16579.24 19386.10 16084.22 19763.62 22177.37 18573.43 21370.88 21280.67 20776.87 201
N_pmnet79.33 19884.22 18373.62 20991.72 16973.72 21286.11 20776.36 20392.38 6753.38 21695.54 8495.62 11059.14 21284.23 19674.84 20875.03 21473.25 210
EPMVS79.26 19978.20 20580.49 19687.04 20678.86 20486.08 20883.51 18782.63 17573.94 20689.59 15568.67 21372.03 20178.17 21075.08 20780.37 20874.37 207
CHOSEN 280x42079.24 20078.26 20480.38 19779.60 21368.80 21789.32 19275.38 20577.25 20378.02 20075.57 21276.17 20081.19 16488.61 17881.39 19278.79 20980.03 193
ADS-MVSNet79.11 20179.38 19878.80 20581.90 21175.59 20884.36 21083.69 18587.31 13976.76 20287.58 17676.90 19868.55 20578.70 20875.56 20577.53 21074.07 208
FMVSNet579.08 20278.83 20079.38 20187.52 20486.78 18287.64 20078.15 20169.54 21670.64 21165.97 21665.44 21963.87 20990.17 16390.46 15288.48 18483.45 179
tpmrst78.81 20376.18 21281.87 19488.56 19777.45 20686.74 20481.52 19680.08 18583.48 17790.84 14066.88 21574.54 19673.04 21471.02 21176.38 21273.95 209
test-mter78.71 20478.35 20379.12 20484.03 20876.58 20788.51 19859.06 21371.06 21278.87 19483.73 19971.83 20476.44 19183.41 20080.61 19387.79 18881.24 186
MVS-HIRNet78.28 20575.28 21481.79 19580.33 21269.38 21676.83 21586.59 16370.76 21386.66 15989.57 15681.04 19477.74 18177.81 21171.65 21082.62 20466.73 214
E-PMN77.81 20677.88 20777.73 20888.26 20070.48 21580.19 21371.20 20886.66 14672.89 20888.09 17281.74 19278.75 17290.02 16568.30 21375.10 21359.85 215
EMVS77.65 20777.49 20977.83 20687.75 20271.02 21481.13 21270.54 20986.38 14974.52 20589.38 15880.19 19778.22 17989.48 17067.13 21474.83 21558.84 216
TESTMET0.1,177.47 20877.20 21077.78 20781.94 21075.11 20987.04 20258.33 21570.11 21478.59 19883.17 20071.60 20573.88 19882.32 20179.20 19686.91 19278.87 198
new_pmnet76.65 20983.52 18668.63 21082.60 20972.08 21376.76 21664.17 21084.41 16149.73 21891.77 13491.53 15756.16 21486.59 18883.26 18982.37 20575.02 205
MVEpermissive60.41 1973.21 21080.84 19564.30 21156.34 21957.24 21975.28 21872.76 20787.14 14241.39 22086.31 18885.30 18480.66 16586.17 19283.36 18859.35 21780.38 190
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS269.86 21182.14 19155.52 21275.19 21663.08 21875.52 21760.97 21288.50 13025.11 22291.77 13496.44 8925.43 21688.70 17679.34 19570.93 21667.17 213
GG-mvs-BLEND54.28 21277.89 20626.72 2150.37 22483.31 19570.04 2190.39 22174.71 2095.36 22368.78 21483.06 1860.62 22083.73 19978.99 19883.55 20372.68 212
test_method43.16 21351.13 21533.85 2137.35 22112.38 22251.70 22111.91 21762.51 21847.64 21962.49 21780.78 19528.84 21559.55 21734.48 21655.68 21845.72 217
testmvs2.38 2143.35 2161.26 2170.83 2220.96 2241.53 2240.83 2193.59 2201.63 2256.03 2192.93 2261.55 2193.49 2182.51 2181.21 2223.92 219
test1232.16 2152.82 2171.41 2160.62 2231.18 2231.53 2240.82 2202.78 2212.27 2244.18 2201.98 2271.64 2182.58 2193.01 2171.56 2214.00 218
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def97.21 5
9.1493.19 149
SR-MVS97.13 2394.77 1797.77 54
Anonymous20240521194.63 7694.51 10394.96 9293.94 13591.35 8690.82 10495.60 8095.85 10781.74 16396.47 7295.84 7197.39 6392.85 107
our_test_391.78 16888.87 17394.37 125
ambc94.61 7798.09 595.14 8491.71 17494.18 3896.46 1296.26 6696.30 9291.26 6794.70 10792.00 13593.45 16093.67 93
MTAPA94.88 2896.88 79
MTMP95.43 1897.25 66
Patchmatch-RL test8.96 223
tmp_tt28.44 21436.05 22015.86 22121.29 2226.40 21854.52 21951.96 21750.37 21838.68 2259.55 21761.75 21659.66 21545.36 220
XVS96.86 3297.48 1898.73 393.28 5996.82 8198.17 35
X-MVStestdata96.86 3297.48 1898.73 393.28 5996.82 8198.17 35
abl_691.88 11293.76 12694.98 9195.64 9888.97 13086.20 15090.00 13086.31 18894.50 13587.31 12195.60 12092.48 119
mPP-MVS98.24 397.65 59
NP-MVS85.48 154
Patchmtry83.74 19386.72 20592.22 6090.73 116
DeepMVS_CXcopyleft47.68 22053.20 22019.21 21663.24 21726.96 22166.50 21569.82 21166.91 20764.27 21554.91 21972.72 211