LTVRE_ROB | | 95.06 1 | 97.73 1 | 98.39 2 | 96.95 1 | 96.33 51 | 96.94 35 | 98.30 22 | 94.90 15 | 98.61 2 | 97.73 3 | 97.97 24 | 98.57 23 | 95.74 4 | 99.24 1 | 98.70 4 | 98.72 8 | 98.70 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.59 2 | 98.32 3 | 96.73 4 | 95.90 66 | 98.10 2 | 99.08 2 | 93.92 32 | 98.24 4 | 96.44 13 | 98.12 20 | 97.86 52 | 96.06 2 | 99.24 1 | 98.93 1 | 99.00 2 | 97.77 4 |
|
WR-MVS | | | 97.53 3 | 98.20 4 | 96.76 3 | 96.93 29 | 98.17 1 | 98.60 10 | 96.67 7 | 96.39 14 | 94.46 33 | 99.14 1 | 98.92 11 | 94.57 15 | 99.06 3 | 98.80 2 | 99.32 1 | 96.92 26 |
|
SixPastTwentyTwo | | | 97.36 4 | 97.73 10 | 96.92 2 | 97.36 13 | 96.15 55 | 98.29 23 | 94.43 24 | 96.50 12 | 96.96 7 | 98.74 6 | 98.74 18 | 96.04 3 | 99.03 5 | 97.74 18 | 98.44 24 | 97.22 14 |
|
PS-CasMVS | | | 97.22 5 | 97.84 7 | 96.50 5 | 97.08 25 | 97.92 6 | 98.17 31 | 97.02 2 | 94.71 26 | 95.32 21 | 98.52 13 | 98.97 9 | 92.91 40 | 99.04 4 | 98.47 6 | 98.49 19 | 97.24 13 |
|
PEN-MVS | | | 97.16 6 | 97.87 6 | 96.33 12 | 97.20 21 | 97.97 4 | 98.25 26 | 96.86 6 | 95.09 24 | 94.93 26 | 98.66 8 | 99.16 6 | 92.27 51 | 98.98 6 | 98.39 8 | 98.49 19 | 96.83 30 |
|
DTE-MVSNet | | | 97.16 6 | 97.75 9 | 96.47 6 | 97.40 12 | 97.95 5 | 98.20 29 | 96.89 5 | 95.30 19 | 95.15 24 | 98.66 8 | 98.80 16 | 92.77 44 | 98.97 7 | 98.27 10 | 98.44 24 | 96.28 41 |
|
COLMAP_ROB |  | 93.74 2 | 97.09 8 | 97.98 5 | 96.05 18 | 95.97 63 | 97.78 9 | 98.56 11 | 91.72 82 | 97.53 8 | 96.01 15 | 98.14 19 | 98.76 17 | 95.28 5 | 98.76 12 | 98.23 11 | 98.77 6 | 96.67 35 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
WR-MVS_H | | | 97.06 9 | 97.78 8 | 96.23 14 | 96.74 37 | 98.04 3 | 98.25 26 | 97.32 1 | 94.40 33 | 93.71 52 | 98.55 11 | 98.89 12 | 92.97 37 | 98.91 9 | 98.45 7 | 98.38 29 | 97.19 15 |
|
CP-MVSNet | | | 96.97 10 | 97.42 14 | 96.44 7 | 97.06 26 | 97.82 8 | 98.12 33 | 96.98 3 | 93.50 46 | 95.21 23 | 97.98 23 | 98.44 25 | 92.83 43 | 98.93 8 | 98.37 9 | 98.46 23 | 96.91 27 |
|
test_part1 | | | 96.91 11 | 98.63 1 | 94.90 45 | 94.62 98 | 97.75 11 | 98.33 21 | 93.88 34 | 98.92 1 | 93.11 67 | 99.06 2 | 99.66 1 | 90.49 91 | 98.84 11 | 98.61 5 | 98.97 3 | 97.60 7 |
|
ACMH | | 90.17 8 | 96.61 12 | 97.69 12 | 95.35 31 | 95.29 82 | 96.94 35 | 98.43 15 | 92.05 70 | 98.04 5 | 95.38 19 | 98.07 21 | 99.25 5 | 93.23 33 | 98.35 17 | 97.16 41 | 97.72 51 | 96.00 47 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 96.56 13 | 96.73 24 | 96.36 10 | 98.99 1 | 97.90 7 | 97.79 44 | 95.64 10 | 92.78 60 | 92.54 76 | 96.23 69 | 95.02 129 | 94.31 18 | 98.43 16 | 98.12 12 | 98.89 4 | 98.58 2 |
|
ACMMPR | | | 96.54 14 | 96.71 25 | 96.35 11 | 97.55 9 | 97.63 12 | 98.62 9 | 94.54 19 | 94.45 30 | 94.19 39 | 95.04 94 | 97.35 65 | 94.92 10 | 97.85 30 | 97.50 28 | 98.26 30 | 97.17 16 |
|
v7n | | | 96.49 15 | 97.20 18 | 95.65 23 | 95.57 76 | 96.04 57 | 97.93 38 | 92.49 55 | 96.40 13 | 97.13 6 | 98.99 3 | 99.41 4 | 93.79 26 | 97.84 32 | 96.15 62 | 97.00 78 | 95.60 55 |
|
DeepC-MVS | | 92.47 4 | 96.44 16 | 96.75 23 | 96.08 17 | 97.57 7 | 97.19 31 | 97.96 37 | 94.28 25 | 95.29 20 | 94.92 27 | 98.31 18 | 96.92 77 | 93.69 27 | 96.81 63 | 96.50 52 | 98.06 40 | 96.27 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMM | | 90.06 9 | 96.31 17 | 96.42 32 | 96.19 15 | 97.21 20 | 97.16 33 | 98.71 5 | 93.79 38 | 94.35 34 | 93.81 46 | 92.80 126 | 98.23 33 | 95.11 6 | 98.07 22 | 97.45 30 | 98.51 18 | 96.86 29 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 89.90 10 | 96.27 18 | 97.52 13 | 94.81 46 | 95.19 85 | 97.18 32 | 97.97 36 | 92.52 53 | 96.72 10 | 90.50 123 | 97.31 44 | 99.11 7 | 94.10 20 | 98.67 13 | 97.90 15 | 98.56 16 | 95.79 51 |
|
APDe-MVS | | | 96.23 19 | 97.22 17 | 95.08 40 | 96.66 41 | 97.56 15 | 98.63 8 | 93.69 42 | 94.62 27 | 89.80 132 | 97.73 32 | 98.13 37 | 93.84 25 | 97.79 35 | 97.63 20 | 97.87 47 | 97.08 21 |
|
CP-MVS | | | 96.21 20 | 96.16 43 | 96.27 13 | 97.56 8 | 97.13 34 | 98.43 15 | 94.70 18 | 92.62 63 | 94.13 41 | 92.71 127 | 98.03 43 | 94.54 16 | 98.00 26 | 97.60 22 | 98.23 32 | 97.05 22 |
|
zzz-MVS | | | 96.18 21 | 96.01 46 | 96.38 8 | 98.30 2 | 96.18 54 | 98.51 13 | 94.48 23 | 94.56 28 | 94.81 30 | 91.73 136 | 96.96 75 | 94.30 19 | 98.09 20 | 97.83 16 | 97.91 46 | 96.73 32 |
|
HFP-MVS | | | 96.18 21 | 96.53 29 | 95.77 21 | 97.34 16 | 97.26 28 | 98.16 32 | 94.54 19 | 94.45 30 | 92.52 77 | 95.05 92 | 96.95 76 | 93.89 23 | 97.28 46 | 97.46 29 | 98.19 33 | 97.25 11 |
|
UniMVSNet_ETH3D | | | 96.15 23 | 97.71 11 | 94.33 54 | 97.31 17 | 96.71 40 | 95.06 109 | 96.91 4 | 97.86 6 | 90.42 124 | 98.55 11 | 99.60 2 | 88.01 119 | 98.51 14 | 97.81 17 | 98.26 30 | 94.95 67 |
|
MP-MVS |  | | 96.13 24 | 95.93 49 | 96.37 9 | 98.19 4 | 97.31 27 | 98.49 14 | 94.53 22 | 91.39 92 | 94.38 36 | 94.32 107 | 96.43 90 | 94.59 14 | 97.75 37 | 97.44 31 | 98.04 41 | 96.88 28 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP |  | | 96.12 25 | 96.27 39 | 95.93 19 | 97.20 21 | 97.60 13 | 98.64 7 | 93.74 39 | 92.47 65 | 93.13 66 | 93.23 120 | 98.06 40 | 94.51 17 | 97.99 27 | 97.57 25 | 98.39 28 | 96.99 23 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DVP-MVS | | | 96.10 26 | 97.23 16 | 94.79 48 | 96.28 54 | 97.49 16 | 97.90 39 | 93.60 44 | 95.47 17 | 89.57 138 | 97.32 43 | 97.72 56 | 93.89 23 | 97.74 38 | 97.53 26 | 97.51 56 | 97.34 9 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
LGP-MVS_train | | | 96.10 26 | 96.29 36 | 95.87 20 | 96.72 38 | 97.35 26 | 98.43 15 | 93.83 36 | 90.81 106 | 92.67 75 | 95.05 92 | 98.86 14 | 95.01 7 | 98.11 19 | 97.37 37 | 98.52 17 | 96.50 37 |
|
CSCG | | | 96.07 28 | 97.15 19 | 94.81 46 | 96.06 61 | 97.58 14 | 96.52 72 | 90.98 93 | 96.51 11 | 93.60 54 | 97.13 50 | 98.55 24 | 93.01 35 | 97.17 50 | 95.36 78 | 98.68 10 | 97.78 3 |
|
DPE-MVS |  | | 96.00 29 | 96.80 22 | 95.06 41 | 95.87 69 | 97.47 21 | 98.25 26 | 93.73 40 | 92.38 67 | 91.57 104 | 97.55 38 | 97.97 45 | 92.98 36 | 97.49 44 | 97.61 21 | 97.96 45 | 97.16 17 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 95.99 30 | 96.48 30 | 95.41 30 | 97.43 11 | 97.36 24 | 97.55 49 | 93.70 41 | 94.05 41 | 93.79 47 | 97.02 53 | 94.53 134 | 92.28 50 | 97.53 43 | 97.19 39 | 97.73 50 | 97.67 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
TSAR-MVS + MP. | | | 95.99 30 | 96.57 28 | 95.31 33 | 96.87 30 | 96.50 47 | 98.71 5 | 91.58 83 | 93.25 51 | 92.71 71 | 96.86 55 | 96.57 88 | 93.92 21 | 98.09 20 | 97.91 14 | 98.08 38 | 96.81 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
OPM-MVS | | | 95.96 32 | 96.59 27 | 95.23 36 | 96.67 40 | 96.52 46 | 97.86 42 | 93.28 47 | 95.27 22 | 93.46 56 | 96.26 66 | 98.85 15 | 92.89 41 | 97.09 51 | 96.37 57 | 97.22 71 | 95.78 52 |
|
SteuartSystems-ACMMP | | | 95.96 32 | 96.13 45 | 95.76 22 | 97.06 26 | 97.36 24 | 98.40 19 | 94.24 27 | 91.49 86 | 91.91 95 | 94.50 103 | 96.89 78 | 94.99 8 | 98.01 25 | 97.44 31 | 97.97 44 | 97.25 11 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMP | | 89.62 11 | 95.96 32 | 96.28 37 | 95.59 24 | 96.58 43 | 97.23 30 | 98.26 25 | 93.22 48 | 92.33 70 | 92.31 84 | 94.29 108 | 98.73 19 | 94.68 12 | 98.04 23 | 97.14 42 | 98.47 21 | 96.17 44 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PGM-MVS | | | 95.90 35 | 95.72 54 | 96.10 16 | 97.53 10 | 97.45 22 | 98.55 12 | 94.12 29 | 90.25 110 | 93.71 52 | 93.20 121 | 97.18 69 | 94.63 13 | 97.68 40 | 97.34 38 | 98.08 38 | 96.97 24 |
|
PMVS |  | 87.16 16 | 95.88 36 | 96.47 31 | 95.19 38 | 97.00 28 | 96.02 58 | 96.70 63 | 91.57 84 | 94.43 32 | 95.33 20 | 97.16 49 | 95.37 117 | 92.39 46 | 98.89 10 | 98.72 3 | 98.17 35 | 94.71 72 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMMP_NAP | | | 95.86 37 | 96.18 40 | 95.47 29 | 97.11 24 | 97.26 28 | 98.37 20 | 93.48 46 | 93.49 47 | 93.99 44 | 95.61 78 | 94.11 139 | 92.49 45 | 97.87 29 | 97.44 31 | 97.40 61 | 97.52 8 |
|
Gipuma |  | | 95.86 37 | 96.17 41 | 95.50 28 | 95.92 65 | 94.59 102 | 94.77 117 | 92.50 54 | 97.82 7 | 97.90 2 | 95.56 81 | 97.88 50 | 94.71 11 | 98.02 24 | 94.81 92 | 97.23 70 | 94.48 79 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LS3D | | | 95.83 39 | 96.35 34 | 95.22 37 | 96.47 47 | 97.49 16 | 97.99 34 | 92.35 58 | 94.92 25 | 94.58 31 | 94.88 98 | 95.11 127 | 91.52 62 | 98.48 15 | 98.05 13 | 98.42 26 | 95.49 56 |
|
SD-MVS | | | 95.77 40 | 96.17 41 | 95.30 34 | 96.72 38 | 96.19 53 | 97.01 55 | 93.04 49 | 94.03 42 | 92.71 71 | 96.45 64 | 96.78 85 | 93.91 22 | 96.79 64 | 95.89 68 | 98.42 26 | 97.09 20 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SED-MVS | | | 95.73 41 | 96.98 20 | 94.28 55 | 96.08 59 | 97.39 23 | 98.18 30 | 93.80 37 | 94.20 36 | 89.61 137 | 97.29 45 | 97.49 62 | 90.69 81 | 97.74 38 | 97.41 34 | 97.32 67 | 97.34 9 |
|
TranMVSNet+NR-MVSNet | | | 95.72 42 | 96.42 32 | 94.91 44 | 96.21 55 | 96.77 39 | 96.90 60 | 94.99 13 | 92.62 63 | 91.92 94 | 98.51 14 | 98.63 21 | 90.82 78 | 97.27 47 | 96.83 46 | 98.63 13 | 94.31 80 |
|
DU-MVS | | | 95.51 43 | 95.68 55 | 95.33 32 | 96.45 48 | 96.44 49 | 96.61 69 | 95.32 11 | 89.97 115 | 93.78 48 | 97.46 40 | 98.07 39 | 91.19 69 | 97.03 53 | 96.53 50 | 98.61 14 | 94.22 81 |
|
UniMVSNet (Re) | | | 95.46 44 | 95.86 52 | 95.00 43 | 96.09 57 | 96.60 41 | 96.68 67 | 94.99 13 | 90.36 109 | 92.13 87 | 97.64 36 | 98.13 37 | 91.38 63 | 96.90 58 | 96.74 47 | 98.73 7 | 94.63 75 |
|
RPSCF | | | 95.46 44 | 96.95 21 | 93.73 78 | 95.72 73 | 95.94 61 | 95.58 100 | 88.08 140 | 95.31 18 | 91.34 107 | 96.26 66 | 98.04 42 | 93.63 28 | 98.28 18 | 97.67 19 | 98.01 42 | 97.13 18 |
|
anonymousdsp | | | 95.45 46 | 96.70 26 | 93.99 66 | 88.43 198 | 92.05 147 | 99.18 1 | 85.42 175 | 94.29 35 | 96.10 14 | 98.63 10 | 99.08 8 | 96.11 1 | 97.77 36 | 97.41 34 | 98.70 9 | 97.69 5 |
|
APD-MVS |  | | 95.38 47 | 95.68 55 | 95.03 42 | 97.30 18 | 96.90 37 | 97.83 43 | 93.92 32 | 89.40 122 | 90.35 125 | 95.41 85 | 97.69 58 | 92.97 37 | 97.24 49 | 97.17 40 | 97.83 48 | 95.96 48 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
UniMVSNet_NR-MVSNet | | | 95.34 48 | 95.51 59 | 95.14 39 | 95.80 71 | 96.55 42 | 96.61 69 | 94.79 16 | 90.04 114 | 93.78 48 | 97.51 39 | 97.25 66 | 91.19 69 | 96.68 66 | 96.31 59 | 98.65 12 | 94.22 81 |
|
X-MVS | | | 95.33 49 | 95.13 67 | 95.57 26 | 97.35 14 | 97.48 18 | 98.43 15 | 94.28 25 | 92.30 71 | 93.28 59 | 86.89 183 | 96.82 81 | 91.87 56 | 97.85 30 | 97.59 23 | 98.19 33 | 96.95 25 |
|
MSP-MVS | | | 95.32 50 | 96.28 37 | 94.19 58 | 96.87 30 | 97.77 10 | 98.27 24 | 93.88 34 | 94.15 40 | 89.63 136 | 95.36 86 | 98.37 28 | 90.73 79 | 94.37 113 | 97.53 26 | 95.77 118 | 96.40 38 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CS-MVS-test | | | 95.28 51 | 95.87 50 | 94.60 49 | 94.78 93 | 95.80 68 | 97.88 40 | 89.55 119 | 90.46 108 | 94.57 32 | 96.56 61 | 97.80 53 | 92.34 48 | 97.84 32 | 97.59 23 | 98.47 21 | 95.03 66 |
|
3Dnovator+ | | 92.82 3 | 95.22 52 | 95.16 65 | 95.29 35 | 96.17 56 | 96.55 42 | 97.64 46 | 94.02 31 | 94.16 39 | 94.29 38 | 92.09 133 | 93.71 144 | 91.90 54 | 96.68 66 | 96.51 51 | 97.70 53 | 96.40 38 |
|
HPM-MVS++ |  | | 95.21 53 | 94.89 70 | 95.59 24 | 97.79 6 | 95.39 80 | 97.68 45 | 94.05 30 | 91.91 78 | 94.35 37 | 93.38 119 | 95.07 128 | 92.94 39 | 96.01 79 | 95.88 69 | 96.73 81 | 96.61 36 |
|
TSAR-MVS + ACMM | | | 95.17 54 | 95.95 47 | 94.26 56 | 96.07 60 | 96.46 48 | 95.67 97 | 94.21 28 | 93.84 44 | 90.99 115 | 97.18 48 | 95.24 126 | 93.55 29 | 96.60 70 | 95.61 76 | 95.06 137 | 96.69 34 |
|
xxxxxxxxxxxxxcwj | | | 95.03 55 | 96.14 44 | 93.73 78 | 95.30 79 | 95.93 62 | 94.80 115 | 91.76 79 | 93.11 55 | 91.93 92 | 95.83 74 | 98.96 10 | 91.11 72 | 96.62 68 | 96.44 54 | 97.46 57 | 96.13 45 |
|
CPTT-MVS | | | 95.00 56 | 94.52 78 | 95.57 26 | 96.84 34 | 96.78 38 | 97.88 40 | 93.67 43 | 92.20 72 | 92.35 83 | 85.87 191 | 97.56 61 | 94.98 9 | 96.96 56 | 96.07 65 | 97.70 53 | 96.18 43 |
|
SF-MVS | | | 94.88 57 | 95.87 50 | 93.73 78 | 95.30 79 | 95.93 62 | 94.80 115 | 91.76 79 | 93.11 55 | 91.93 92 | 95.83 74 | 97.07 72 | 91.11 72 | 96.62 68 | 96.44 54 | 97.46 57 | 96.13 45 |
|
Baseline_NR-MVSNet | | | 94.85 58 | 95.35 63 | 94.26 56 | 96.45 48 | 93.86 119 | 96.70 63 | 94.54 19 | 90.07 113 | 90.17 129 | 98.77 5 | 97.89 47 | 90.64 85 | 97.03 53 | 96.16 61 | 97.04 77 | 93.67 93 |
|
EG-PatchMatch MVS | | | 94.81 59 | 95.53 58 | 93.97 67 | 95.89 68 | 94.62 100 | 95.55 102 | 88.18 138 | 92.77 61 | 94.88 28 | 97.04 52 | 98.61 22 | 93.31 30 | 96.89 59 | 95.19 82 | 95.99 110 | 93.56 96 |
|
OMC-MVS | | | 94.74 60 | 95.46 61 | 93.91 70 | 94.62 98 | 96.26 52 | 96.64 68 | 89.36 126 | 94.20 36 | 94.15 40 | 94.02 113 | 97.73 55 | 91.34 65 | 96.15 77 | 95.04 86 | 97.37 64 | 94.80 69 |
|
DeepC-MVS_fast | | 91.38 6 | 94.73 61 | 94.98 68 | 94.44 50 | 96.83 36 | 96.12 56 | 96.69 65 | 92.17 64 | 92.98 58 | 93.72 50 | 94.14 109 | 95.45 115 | 90.49 91 | 95.73 86 | 95.30 79 | 96.71 82 | 95.13 64 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 94.65 62 | 94.84 72 | 94.44 50 | 94.95 90 | 96.55 42 | 96.46 75 | 91.10 91 | 88.96 125 | 96.00 16 | 94.55 102 | 95.32 121 | 90.67 82 | 96.97 55 | 96.69 49 | 97.44 60 | 94.84 68 |
|
pmmvs6 | | | 94.58 63 | 97.30 15 | 91.40 120 | 94.84 92 | 94.61 101 | 93.40 145 | 92.43 57 | 98.51 3 | 85.61 163 | 98.73 7 | 99.53 3 | 84.40 141 | 97.88 28 | 97.03 43 | 97.72 51 | 94.79 70 |
|
DeepPCF-MVS | | 90.68 7 | 94.56 64 | 94.92 69 | 94.15 59 | 94.11 111 | 95.71 71 | 97.03 54 | 90.65 97 | 93.39 50 | 94.08 42 | 95.29 89 | 94.15 138 | 93.21 34 | 95.22 97 | 94.92 90 | 95.82 117 | 95.75 53 |
|
NR-MVSNet | | | 94.55 65 | 95.66 57 | 93.25 92 | 94.26 107 | 96.44 49 | 96.69 65 | 95.32 11 | 89.97 115 | 91.79 100 | 97.46 40 | 98.39 27 | 82.85 150 | 96.87 61 | 96.48 53 | 98.57 15 | 93.98 87 |
|
Vis-MVSNet |  | | 94.39 66 | 95.85 53 | 92.68 100 | 90.91 181 | 95.88 65 | 97.62 48 | 91.41 85 | 91.95 77 | 89.20 140 | 97.29 45 | 96.26 93 | 90.60 90 | 96.95 57 | 95.91 66 | 96.32 97 | 96.71 33 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TSAR-MVS + GP. | | | 94.25 67 | 94.81 73 | 93.60 81 | 96.52 46 | 95.80 68 | 94.37 125 | 92.47 56 | 90.89 102 | 88.92 142 | 95.34 87 | 94.38 136 | 92.85 42 | 96.36 75 | 95.62 75 | 96.47 89 | 95.28 61 |
|
CNVR-MVS | | | 94.24 68 | 94.47 79 | 93.96 68 | 96.56 44 | 95.67 72 | 96.43 76 | 91.95 73 | 92.08 75 | 91.28 109 | 90.51 144 | 95.35 118 | 91.20 68 | 96.34 76 | 95.50 77 | 96.34 95 | 95.88 50 |
|
v1192 | | | 93.98 69 | 93.94 91 | 94.01 64 | 93.91 119 | 94.63 99 | 97.00 56 | 89.75 115 | 91.01 100 | 96.50 10 | 97.93 25 | 98.26 32 | 91.74 58 | 92.06 143 | 92.05 133 | 95.18 132 | 91.66 135 |
|
v10 | | | 93.96 70 | 94.12 88 | 93.77 77 | 93.37 133 | 95.45 76 | 96.83 62 | 91.13 90 | 89.70 119 | 95.02 25 | 97.88 28 | 98.23 33 | 91.27 66 | 92.39 138 | 92.18 131 | 94.99 139 | 93.00 105 |
|
CDPH-MVS | | | 93.96 70 | 93.86 93 | 94.08 61 | 96.31 52 | 95.84 66 | 96.92 58 | 91.85 76 | 87.21 141 | 91.25 111 | 92.83 123 | 96.06 102 | 91.05 75 | 95.57 88 | 94.81 92 | 97.12 72 | 94.72 71 |
|
MVS_0304 | | | 93.92 72 | 93.81 97 | 94.05 63 | 96.06 61 | 96.00 59 | 96.43 76 | 92.76 51 | 85.99 152 | 94.43 35 | 94.04 112 | 97.08 71 | 88.12 118 | 94.65 109 | 94.20 105 | 96.47 89 | 94.71 72 |
|
MSLP-MVS++ | | | 93.91 73 | 94.30 85 | 93.45 83 | 95.51 77 | 95.83 67 | 93.12 151 | 91.93 75 | 91.45 89 | 91.40 106 | 87.42 178 | 96.12 101 | 93.27 31 | 96.57 71 | 96.40 56 | 95.49 122 | 96.29 40 |
|
v1921920 | | | 93.90 74 | 93.82 95 | 94.00 65 | 93.74 127 | 94.31 105 | 97.12 51 | 89.33 127 | 91.13 97 | 96.77 9 | 97.90 26 | 98.06 40 | 91.95 53 | 91.93 147 | 91.54 142 | 95.10 135 | 91.85 128 |
|
train_agg | | | 93.89 75 | 93.46 107 | 94.40 52 | 97.35 14 | 93.78 121 | 97.63 47 | 92.19 63 | 88.12 132 | 90.52 122 | 93.57 118 | 95.78 108 | 92.31 49 | 94.78 106 | 93.46 117 | 96.36 93 | 94.70 74 |
|
v144192 | | | 93.89 75 | 93.85 94 | 93.94 69 | 93.50 131 | 94.33 104 | 97.12 51 | 89.49 121 | 90.89 102 | 96.49 11 | 97.78 30 | 98.27 31 | 91.89 55 | 92.17 142 | 91.70 139 | 95.19 131 | 91.78 132 |
|
v1240 | | | 93.89 75 | 93.72 98 | 94.09 60 | 93.98 116 | 94.31 105 | 97.12 51 | 89.37 125 | 90.74 107 | 96.92 8 | 98.05 22 | 97.89 47 | 92.15 52 | 91.53 153 | 91.60 140 | 94.99 139 | 91.93 127 |
|
NCCC | | | 93.87 78 | 93.42 108 | 94.40 52 | 96.84 34 | 95.42 77 | 96.47 74 | 92.62 52 | 92.36 69 | 92.05 89 | 83.83 198 | 95.55 111 | 91.84 57 | 95.89 81 | 95.23 81 | 96.56 86 | 95.63 54 |
|
v1144 | | | 93.83 79 | 93.87 92 | 93.78 76 | 93.72 128 | 94.57 103 | 96.85 61 | 89.98 110 | 91.31 94 | 95.90 17 | 97.89 27 | 98.40 26 | 91.13 71 | 92.01 146 | 92.01 134 | 95.10 135 | 90.94 139 |
|
MVS_111021_HR | | | 93.82 80 | 94.26 87 | 93.31 86 | 95.01 88 | 93.97 116 | 95.73 94 | 89.75 115 | 92.06 76 | 92.49 78 | 94.01 114 | 96.05 103 | 90.61 89 | 95.95 80 | 94.78 95 | 96.28 98 | 93.04 104 |
|
thisisatest0515 | | | 93.79 81 | 94.41 81 | 93.06 97 | 94.14 108 | 92.50 140 | 95.56 101 | 88.55 135 | 91.61 82 | 92.45 79 | 96.84 56 | 95.71 109 | 90.62 87 | 94.58 110 | 95.07 84 | 97.05 75 | 94.58 76 |
|
TAPA-MVS | | 88.94 13 | 93.78 82 | 94.31 84 | 93.18 94 | 94.14 108 | 95.99 60 | 95.74 93 | 86.98 157 | 93.43 49 | 93.88 45 | 90.16 151 | 96.88 79 | 91.05 75 | 94.33 114 | 93.95 107 | 97.28 68 | 95.40 57 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
GeoE | | | 93.72 83 | 93.62 102 | 93.84 71 | 94.75 94 | 94.90 93 | 97.24 50 | 91.81 78 | 86.97 144 | 92.74 70 | 93.83 116 | 97.24 68 | 90.46 93 | 95.10 101 | 94.09 106 | 96.08 107 | 93.18 102 |
|
EPP-MVSNet | | | 93.63 84 | 93.95 90 | 93.26 90 | 95.15 86 | 96.54 45 | 96.18 84 | 91.97 72 | 91.74 79 | 85.76 161 | 94.95 96 | 84.27 185 | 91.60 61 | 97.61 42 | 97.38 36 | 98.87 5 | 95.18 63 |
|
v8 | | | 93.60 85 | 93.82 95 | 93.34 84 | 93.13 140 | 95.06 86 | 96.39 78 | 90.75 95 | 89.90 117 | 94.03 43 | 97.70 34 | 98.21 35 | 91.08 74 | 92.36 139 | 91.47 143 | 94.63 146 | 92.07 123 |
|
MCST-MVS | | | 93.60 85 | 93.40 110 | 93.83 72 | 95.30 79 | 95.40 79 | 96.49 73 | 90.87 94 | 90.08 112 | 91.72 101 | 90.28 149 | 95.99 104 | 91.69 59 | 93.94 122 | 92.99 122 | 96.93 79 | 95.13 64 |
|
PVSNet_Blended_VisFu | | | 93.60 85 | 93.41 109 | 93.83 72 | 96.31 52 | 95.65 73 | 95.71 95 | 90.58 100 | 88.08 134 | 93.17 64 | 95.29 89 | 92.20 153 | 90.72 80 | 94.69 108 | 93.41 119 | 96.51 88 | 94.54 77 |
|
TransMVSNet (Re) | | | 93.55 88 | 96.32 35 | 90.32 136 | 94.38 104 | 94.05 111 | 93.30 148 | 89.53 120 | 97.15 9 | 85.12 166 | 98.83 4 | 97.89 47 | 82.21 156 | 96.75 65 | 96.14 63 | 97.35 65 | 93.46 97 |
|
DCV-MVSNet | | | 93.49 89 | 95.15 66 | 91.55 116 | 94.05 112 | 95.92 64 | 95.15 107 | 91.21 87 | 92.76 62 | 87.01 157 | 89.71 154 | 97.16 70 | 83.90 145 | 97.65 41 | 96.87 45 | 97.99 43 | 95.95 49 |
|
v2v482 | | | 93.42 90 | 93.49 106 | 93.32 85 | 93.44 132 | 94.05 111 | 96.36 81 | 89.76 114 | 91.41 91 | 95.24 22 | 97.63 37 | 98.34 29 | 90.44 94 | 91.65 151 | 91.76 138 | 94.69 143 | 89.62 149 |
|
canonicalmvs | | | 93.38 91 | 94.36 82 | 92.24 107 | 93.94 118 | 96.41 51 | 94.18 132 | 90.47 101 | 93.07 57 | 88.47 148 | 88.66 165 | 93.78 143 | 88.80 108 | 95.74 85 | 95.75 73 | 97.57 55 | 97.13 18 |
|
3Dnovator | | 91.81 5 | 93.36 92 | 94.27 86 | 92.29 106 | 92.99 144 | 95.03 87 | 95.76 92 | 87.79 143 | 93.82 45 | 92.38 82 | 92.19 132 | 93.37 148 | 88.14 117 | 95.26 96 | 94.85 91 | 96.69 83 | 95.40 57 |
|
pm-mvs1 | | | 93.27 93 | 95.94 48 | 90.16 137 | 94.13 110 | 93.66 122 | 92.61 161 | 89.91 112 | 95.73 16 | 84.28 175 | 98.51 14 | 98.29 30 | 82.80 151 | 96.44 73 | 95.76 72 | 97.25 69 | 93.21 101 |
|
Anonymous20231211 | | | 93.19 94 | 95.50 60 | 90.49 133 | 93.77 125 | 95.29 82 | 94.36 129 | 90.04 109 | 91.44 90 | 84.59 170 | 96.72 58 | 97.65 59 | 82.45 155 | 97.25 48 | 96.32 58 | 97.74 49 | 93.79 90 |
|
TinyColmap | | | 93.17 95 | 93.33 111 | 93.00 98 | 93.84 121 | 92.76 135 | 94.75 119 | 88.90 131 | 93.97 43 | 97.48 4 | 95.28 91 | 95.29 122 | 88.37 113 | 95.31 95 | 91.58 141 | 94.65 145 | 89.10 153 |
|
MVS_111021_LR | | | 93.15 96 | 93.65 100 | 92.56 101 | 93.89 120 | 92.28 142 | 95.09 108 | 86.92 159 | 91.26 96 | 92.99 69 | 94.46 105 | 96.22 96 | 90.64 85 | 95.11 100 | 93.45 118 | 95.85 115 | 92.74 112 |
|
CNLPA | | | 93.14 97 | 93.67 99 | 92.53 102 | 94.62 98 | 94.73 96 | 95.00 111 | 86.57 164 | 92.85 59 | 92.43 80 | 90.94 139 | 94.67 131 | 90.35 95 | 95.41 90 | 93.70 114 | 96.23 101 | 93.37 99 |
|
PLC |  | 87.27 15 | 93.08 98 | 92.92 115 | 93.26 90 | 94.67 95 | 95.03 87 | 94.38 124 | 90.10 104 | 91.69 80 | 92.14 86 | 87.24 179 | 93.91 141 | 91.61 60 | 95.05 102 | 94.73 98 | 96.67 84 | 92.80 108 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CANet | | | 93.07 99 | 93.05 114 | 93.10 95 | 95.90 66 | 95.41 78 | 95.88 89 | 91.94 74 | 84.77 159 | 93.36 57 | 94.05 111 | 95.25 125 | 86.25 130 | 94.33 114 | 93.94 108 | 95.30 125 | 93.58 95 |
|
TSAR-MVS + COLMAP | | | 93.06 100 | 93.65 100 | 92.36 104 | 94.62 98 | 94.28 108 | 95.36 106 | 89.46 123 | 92.18 73 | 91.64 102 | 95.55 82 | 95.27 124 | 88.60 111 | 93.24 128 | 92.50 127 | 94.46 148 | 92.55 118 |
|
Effi-MVS+ | | | 92.93 101 | 92.16 127 | 93.83 72 | 94.29 105 | 93.53 129 | 95.04 110 | 92.98 50 | 85.27 156 | 94.46 33 | 90.24 150 | 95.34 119 | 89.99 98 | 93.72 123 | 94.23 104 | 96.22 102 | 92.79 109 |
|
Fast-Effi-MVS+ | | | 92.93 101 | 92.64 119 | 93.27 88 | 93.81 122 | 93.88 117 | 95.90 87 | 90.61 98 | 83.98 165 | 92.71 71 | 92.81 124 | 96.22 96 | 90.67 82 | 94.90 104 | 93.92 109 | 95.92 112 | 92.77 110 |
|
DROMVSNet | | | 92.93 101 | 92.64 119 | 93.27 88 | 93.81 122 | 93.88 117 | 95.90 87 | 90.61 98 | 83.98 165 | 92.71 71 | 92.81 124 | 96.22 96 | 90.67 82 | 94.90 104 | 93.92 109 | 95.92 112 | 92.77 110 |
|
HQP-MVS | | | 92.87 104 | 92.49 121 | 93.31 86 | 95.75 72 | 95.01 90 | 95.64 98 | 91.06 92 | 88.54 129 | 91.62 103 | 88.16 170 | 96.25 94 | 89.47 103 | 92.26 141 | 91.81 136 | 96.34 95 | 95.40 57 |
|
FMVSNet1 | | | 92.86 105 | 95.26 64 | 90.06 139 | 92.40 158 | 95.16 83 | 94.37 125 | 92.22 60 | 93.18 54 | 82.16 185 | 96.76 57 | 97.48 63 | 81.85 160 | 95.32 92 | 94.98 87 | 97.34 66 | 93.93 88 |
|
CLD-MVS | | | 92.81 106 | 94.32 83 | 91.05 124 | 95.39 78 | 95.31 81 | 95.82 91 | 81.44 198 | 89.40 122 | 91.94 91 | 95.86 72 | 97.36 64 | 85.83 132 | 95.35 91 | 94.59 100 | 95.85 115 | 92.34 120 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
IS_MVSNet | | | 92.76 107 | 93.25 112 | 92.19 108 | 94.91 91 | 95.56 74 | 95.86 90 | 92.12 66 | 88.10 133 | 82.71 180 | 93.15 122 | 88.30 173 | 88.86 107 | 97.29 45 | 96.95 44 | 98.66 11 | 93.38 98 |
|
FC-MVSNet-train | | | 92.75 108 | 95.40 62 | 89.66 147 | 95.21 84 | 94.82 94 | 97.00 56 | 89.40 124 | 91.13 97 | 81.71 186 | 97.72 33 | 96.43 90 | 77.57 183 | 96.89 59 | 96.72 48 | 97.05 75 | 94.09 84 |
|
V42 | | | 92.67 109 | 93.50 105 | 91.71 114 | 91.41 172 | 92.96 133 | 95.71 95 | 85.00 176 | 89.67 120 | 93.22 62 | 97.67 35 | 98.01 44 | 91.02 77 | 92.65 134 | 92.12 132 | 93.86 156 | 91.42 136 |
|
PM-MVS | | | 92.65 110 | 93.20 113 | 92.00 110 | 92.11 166 | 90.16 168 | 95.99 86 | 84.81 180 | 91.31 94 | 92.41 81 | 95.87 71 | 96.64 87 | 92.35 47 | 93.65 125 | 92.91 123 | 94.34 151 | 91.85 128 |
|
QAPM | | | 92.57 111 | 93.51 104 | 91.47 118 | 92.91 146 | 94.82 94 | 93.01 153 | 87.51 147 | 91.49 86 | 91.21 112 | 92.24 130 | 91.70 156 | 88.74 109 | 94.54 111 | 94.39 103 | 95.41 123 | 95.37 60 |
|
MIMVSNet1 | | | 92.52 112 | 94.88 71 | 89.77 143 | 96.09 57 | 91.99 148 | 96.92 58 | 89.68 117 | 95.92 15 | 84.55 171 | 96.64 60 | 98.21 35 | 78.44 177 | 96.08 78 | 95.10 83 | 92.91 170 | 90.22 146 |
|
tfpnnormal | | | 92.45 113 | 94.77 74 | 89.74 144 | 93.95 117 | 93.44 131 | 93.25 149 | 88.49 137 | 95.27 22 | 83.20 178 | 96.51 62 | 96.23 95 | 83.17 149 | 95.47 89 | 94.52 101 | 96.38 92 | 91.97 126 |
|
PCF-MVS | | 87.46 14 | 92.44 114 | 91.80 129 | 93.19 93 | 94.66 96 | 95.80 68 | 96.37 79 | 90.19 103 | 87.57 138 | 92.23 85 | 89.26 159 | 93.97 140 | 89.24 104 | 91.32 155 | 90.82 151 | 96.46 91 | 93.86 89 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
casdiffmvs | | | 92.42 115 | 93.99 89 | 90.60 131 | 93.25 136 | 93.82 120 | 94.28 131 | 88.73 133 | 91.53 84 | 84.53 173 | 97.74 31 | 98.64 20 | 86.60 127 | 93.21 130 | 91.20 146 | 96.21 103 | 91.76 134 |
|
AdaColmap |  | | 92.41 116 | 91.49 134 | 93.48 82 | 95.96 64 | 95.02 89 | 95.37 105 | 91.73 81 | 87.97 136 | 91.28 109 | 82.82 202 | 91.04 160 | 90.62 87 | 95.82 84 | 95.07 84 | 95.95 111 | 92.67 113 |
|
v148 | | | 92.38 117 | 92.78 117 | 91.91 111 | 92.86 147 | 92.13 145 | 94.84 113 | 87.03 156 | 91.47 88 | 93.07 68 | 96.92 54 | 98.89 12 | 90.10 97 | 92.05 144 | 89.69 159 | 93.56 159 | 88.27 162 |
|
pmmvs-eth3d | | | 92.34 118 | 92.33 122 | 92.34 105 | 92.67 151 | 90.67 162 | 96.37 79 | 89.06 128 | 90.98 101 | 93.60 54 | 97.13 50 | 97.02 74 | 88.29 114 | 90.20 162 | 91.42 144 | 94.07 154 | 88.89 157 |
|
DELS-MVS | | | 92.33 119 | 93.61 103 | 90.83 127 | 92.84 148 | 95.13 85 | 94.76 118 | 87.22 155 | 87.78 137 | 88.42 150 | 95.78 76 | 95.28 123 | 85.71 135 | 94.44 112 | 93.91 111 | 96.01 109 | 92.97 106 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+-dtu | | | 92.32 120 | 91.66 132 | 93.09 96 | 95.13 87 | 94.73 96 | 94.57 122 | 92.14 65 | 81.74 177 | 90.33 126 | 88.13 171 | 95.91 105 | 89.24 104 | 94.23 119 | 93.65 116 | 97.12 72 | 93.23 100 |
|
UGNet | | | 92.31 121 | 94.70 75 | 89.53 149 | 90.99 180 | 95.53 75 | 96.19 83 | 92.10 68 | 91.35 93 | 85.76 161 | 95.31 88 | 95.48 114 | 76.84 188 | 95.22 97 | 94.79 94 | 95.32 124 | 95.19 62 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
USDC | | | 92.17 122 | 92.17 126 | 92.18 109 | 92.93 145 | 92.22 143 | 93.66 139 | 87.41 150 | 93.49 47 | 97.99 1 | 94.10 110 | 96.68 86 | 86.46 128 | 92.04 145 | 89.18 165 | 94.61 147 | 87.47 165 |
|
ETV-MVS | | | 92.12 123 | 90.44 141 | 94.08 61 | 96.36 50 | 93.63 124 | 96.27 82 | 92.00 71 | 78.90 197 | 92.13 87 | 85.29 193 | 89.85 166 | 90.26 96 | 97.07 52 | 96.29 60 | 97.46 57 | 92.04 124 |
|
IterMVS-LS | | | 92.10 124 | 92.33 122 | 91.82 113 | 93.18 137 | 93.66 122 | 92.80 159 | 92.27 59 | 90.82 104 | 90.59 121 | 97.19 47 | 90.97 161 | 87.76 120 | 89.60 169 | 90.94 150 | 94.34 151 | 93.16 103 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 92.09 125 | 92.84 116 | 91.22 123 | 92.55 153 | 92.97 132 | 93.42 144 | 85.43 174 | 90.24 111 | 91.83 97 | 94.70 99 | 94.59 132 | 88.48 112 | 94.91 103 | 93.31 121 | 95.59 121 | 89.15 152 |
|
CS-MVS | | | 92.07 126 | 91.69 130 | 92.52 103 | 93.80 124 | 94.30 107 | 96.15 85 | 86.55 165 | 79.55 187 | 91.47 105 | 89.10 162 | 95.33 120 | 89.78 102 | 95.88 82 | 95.85 70 | 97.40 61 | 91.81 131 |
|
EIA-MVS | | | 91.95 127 | 90.36 143 | 93.81 75 | 96.54 45 | 94.65 98 | 95.38 104 | 90.40 102 | 78.01 202 | 93.72 50 | 86.70 186 | 91.95 155 | 89.93 99 | 95.67 87 | 94.72 99 | 96.89 80 | 90.79 140 |
|
MAR-MVS | | | 91.86 128 | 91.14 137 | 92.71 99 | 94.29 105 | 94.24 109 | 94.91 112 | 91.82 77 | 81.66 178 | 93.32 58 | 84.51 196 | 93.42 147 | 86.86 125 | 95.16 99 | 94.44 102 | 95.05 138 | 94.53 78 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
EU-MVSNet | | | 91.63 129 | 92.73 118 | 90.35 135 | 88.36 199 | 87.89 179 | 96.53 71 | 81.51 197 | 92.45 66 | 91.82 98 | 96.44 65 | 97.05 73 | 93.26 32 | 94.10 120 | 88.94 170 | 90.61 177 | 92.24 121 |
|
FC-MVSNet-test | | | 91.49 130 | 94.43 80 | 88.07 165 | 94.97 89 | 90.53 165 | 95.42 103 | 91.18 89 | 93.24 52 | 72.94 207 | 98.37 16 | 93.86 142 | 78.78 171 | 97.82 34 | 96.13 64 | 95.13 133 | 91.05 137 |
|
OpenMVS |  | 89.22 12 | 91.09 131 | 91.42 135 | 90.71 129 | 92.79 150 | 93.61 126 | 92.74 160 | 85.47 173 | 86.10 151 | 90.73 116 | 85.71 192 | 93.07 151 | 86.69 126 | 94.07 121 | 93.34 120 | 95.86 114 | 94.02 86 |
|
FPMVS | | | 90.81 132 | 91.60 133 | 89.88 142 | 92.52 154 | 88.18 175 | 93.31 147 | 83.62 186 | 91.59 83 | 88.45 149 | 88.96 163 | 89.73 168 | 86.96 123 | 96.42 74 | 95.69 74 | 94.43 149 | 90.65 141 |
|
DI_MVS_plusplus_trai | | | 90.68 133 | 90.40 142 | 91.00 125 | 92.43 157 | 92.61 139 | 94.17 133 | 88.98 129 | 88.32 131 | 88.76 146 | 93.67 117 | 87.58 175 | 86.44 129 | 89.74 167 | 90.33 154 | 95.24 128 | 90.56 144 |
|
Vis-MVSNet (Re-imp) | | | 90.68 133 | 92.18 125 | 88.92 154 | 94.63 97 | 92.75 136 | 92.91 155 | 91.20 88 | 89.21 124 | 75.01 204 | 93.96 115 | 89.07 171 | 82.72 153 | 95.88 82 | 95.30 79 | 97.08 74 | 89.08 154 |
|
DPM-MVS | | | 90.67 135 | 89.86 147 | 91.63 115 | 95.29 82 | 94.16 110 | 94.52 123 | 89.63 118 | 89.59 121 | 89.67 135 | 81.95 204 | 88.64 172 | 85.75 134 | 90.46 160 | 90.43 153 | 94.91 141 | 93.77 91 |
|
diffmvs | | | 90.44 136 | 92.23 124 | 88.35 161 | 91.36 174 | 91.38 154 | 92.45 165 | 84.84 179 | 89.88 118 | 85.09 167 | 96.69 59 | 97.71 57 | 83.33 148 | 90.01 166 | 88.96 169 | 93.03 168 | 91.00 138 |
|
FMVSNet2 | | | 90.28 137 | 92.04 128 | 88.23 163 | 91.22 176 | 94.05 111 | 92.88 156 | 90.69 96 | 86.53 147 | 79.89 193 | 94.38 106 | 92.73 152 | 78.54 174 | 91.64 152 | 92.26 130 | 96.17 104 | 92.67 113 |
|
IterMVS-SCA-FT | | | 90.24 138 | 89.37 153 | 91.26 122 | 92.50 155 | 92.11 146 | 91.69 175 | 87.48 148 | 87.05 143 | 91.82 98 | 95.76 77 | 87.25 176 | 91.36 64 | 89.02 174 | 85.53 185 | 92.68 171 | 88.90 156 |
|
MVS_Test | | | 90.19 139 | 90.58 138 | 89.74 144 | 92.12 165 | 91.74 150 | 92.51 162 | 88.54 136 | 82.80 172 | 87.50 154 | 94.62 100 | 95.02 129 | 83.97 143 | 88.69 177 | 89.32 163 | 93.79 157 | 91.85 128 |
|
EPNet | | | 90.17 140 | 89.07 155 | 91.45 119 | 97.25 19 | 90.62 164 | 94.84 113 | 93.54 45 | 80.96 180 | 91.85 96 | 86.98 182 | 85.88 181 | 77.79 180 | 92.30 140 | 92.58 126 | 93.41 161 | 94.20 83 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_BlendedMVS | | | 90.09 141 | 90.12 145 | 90.05 140 | 92.40 158 | 92.74 137 | 91.74 171 | 85.89 169 | 80.54 183 | 90.30 127 | 88.54 166 | 95.51 112 | 84.69 139 | 92.64 135 | 90.25 155 | 95.28 126 | 90.61 142 |
|
PVSNet_Blended | | | 90.09 141 | 90.12 145 | 90.05 140 | 92.40 158 | 92.74 137 | 91.74 171 | 85.89 169 | 80.54 183 | 90.30 127 | 88.54 166 | 95.51 112 | 84.69 139 | 92.64 135 | 90.25 155 | 95.28 126 | 90.61 142 |
|
pmmvs4 | | | 89.95 143 | 89.32 154 | 90.69 130 | 91.60 171 | 89.17 172 | 94.37 125 | 87.63 144 | 88.07 135 | 91.02 114 | 94.50 103 | 90.50 164 | 86.13 131 | 86.33 191 | 89.40 162 | 93.39 162 | 87.29 168 |
|
MDA-MVSNet-bldmvs | | | 89.75 144 | 91.67 131 | 87.50 170 | 74.25 217 | 90.88 159 | 94.68 120 | 85.89 169 | 91.64 81 | 91.03 113 | 95.86 72 | 94.35 137 | 89.10 106 | 96.87 61 | 86.37 181 | 90.04 178 | 85.72 173 |
|
tttt0517 | | | 89.64 145 | 88.05 166 | 91.49 117 | 93.52 130 | 91.65 151 | 93.67 138 | 87.53 145 | 82.77 173 | 89.39 139 | 90.37 148 | 70.05 210 | 88.21 115 | 93.71 124 | 93.79 112 | 96.63 85 | 94.04 85 |
|
PatchMatch-RL | | | 89.59 146 | 88.80 159 | 90.51 132 | 92.20 164 | 88.00 178 | 91.72 173 | 86.64 161 | 84.75 160 | 88.25 151 | 87.10 181 | 90.66 163 | 89.85 101 | 93.23 129 | 92.28 129 | 94.41 150 | 85.60 174 |
|
Fast-Effi-MVS+-dtu | | | 89.57 147 | 88.42 163 | 90.92 126 | 93.35 134 | 91.57 152 | 93.01 153 | 95.71 9 | 78.94 196 | 87.65 153 | 84.68 195 | 93.14 150 | 82.00 158 | 90.84 158 | 91.01 149 | 93.78 158 | 88.77 158 |
|
thisisatest0530 | | | 89.54 148 | 87.99 168 | 91.35 121 | 93.17 138 | 91.31 155 | 93.45 143 | 87.53 145 | 82.96 171 | 89.17 141 | 90.45 145 | 70.32 209 | 88.21 115 | 93.37 127 | 93.79 112 | 96.54 87 | 93.71 92 |
|
GBi-Net | | | 89.35 149 | 90.58 138 | 87.91 166 | 91.22 176 | 94.05 111 | 92.88 156 | 90.05 106 | 79.40 188 | 78.60 195 | 90.58 141 | 87.05 177 | 78.54 174 | 95.32 92 | 94.98 87 | 96.17 104 | 92.67 113 |
|
test1 | | | 89.35 149 | 90.58 138 | 87.91 166 | 91.22 176 | 94.05 111 | 92.88 156 | 90.05 106 | 79.40 188 | 78.60 195 | 90.58 141 | 87.05 177 | 78.54 174 | 95.32 92 | 94.98 87 | 96.17 104 | 92.67 113 |
|
thres600view7 | | | 89.14 151 | 88.83 157 | 89.51 150 | 93.71 129 | 93.55 127 | 93.93 136 | 88.02 141 | 87.30 140 | 82.40 181 | 81.18 205 | 80.63 196 | 82.69 154 | 94.27 116 | 95.90 67 | 96.27 99 | 88.94 155 |
|
CVMVSNet | | | 88.97 152 | 89.73 149 | 88.10 164 | 87.33 205 | 85.22 188 | 94.68 120 | 78.68 199 | 88.94 126 | 86.98 158 | 95.55 82 | 85.71 182 | 89.87 100 | 91.19 156 | 89.69 159 | 91.05 175 | 91.78 132 |
|
CANet_DTU | | | 88.95 153 | 89.51 152 | 88.29 162 | 93.12 141 | 91.22 157 | 93.61 140 | 83.47 189 | 80.07 186 | 90.71 120 | 89.19 160 | 93.68 145 | 76.27 192 | 91.44 154 | 91.17 148 | 92.59 172 | 89.83 148 |
|
GA-MVS | | | 88.76 154 | 88.04 167 | 89.59 148 | 92.32 161 | 91.46 153 | 92.28 167 | 86.62 162 | 83.82 168 | 89.84 131 | 92.51 129 | 81.94 190 | 83.53 147 | 89.41 171 | 89.27 164 | 92.95 169 | 87.90 163 |
|
pmmvs5 | | | 88.63 155 | 89.70 150 | 87.39 171 | 89.24 192 | 90.64 163 | 91.87 170 | 82.13 193 | 83.34 169 | 87.86 152 | 94.58 101 | 96.15 100 | 79.87 168 | 87.33 186 | 89.07 168 | 93.39 162 | 86.76 169 |
|
thres400 | | | 88.54 156 | 88.15 165 | 88.98 152 | 93.17 138 | 92.84 134 | 93.56 141 | 86.93 158 | 86.45 148 | 82.37 182 | 79.96 207 | 81.46 193 | 81.83 161 | 93.21 130 | 94.76 96 | 96.04 108 | 88.39 160 |
|
CDS-MVSNet | | | 88.41 157 | 89.79 148 | 86.79 175 | 94.55 102 | 90.82 160 | 92.50 163 | 89.85 113 | 83.26 170 | 80.52 190 | 91.05 137 | 89.93 165 | 69.11 203 | 93.17 132 | 92.71 125 | 94.21 153 | 87.63 164 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
gg-mvs-nofinetune | | | 88.32 158 | 88.81 158 | 87.75 168 | 93.07 142 | 89.37 171 | 89.06 194 | 95.94 8 | 95.29 20 | 87.15 155 | 97.38 42 | 76.38 199 | 68.05 206 | 91.04 157 | 89.10 167 | 93.24 164 | 83.10 182 |
|
IterMVS | | | 88.32 158 | 88.25 164 | 88.41 160 | 90.83 182 | 91.24 156 | 93.07 152 | 81.69 195 | 86.77 145 | 88.55 147 | 95.61 78 | 86.91 180 | 87.01 122 | 87.38 185 | 83.77 187 | 89.29 180 | 86.06 172 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
thres200 | | | 88.29 160 | 87.88 169 | 88.76 156 | 92.50 155 | 93.55 127 | 92.47 164 | 88.02 141 | 84.80 158 | 81.44 187 | 79.28 209 | 82.20 189 | 81.83 161 | 94.27 116 | 93.67 115 | 96.27 99 | 87.40 166 |
|
IB-MVS | | 86.01 17 | 88.24 161 | 87.63 171 | 88.94 153 | 92.03 167 | 91.77 149 | 92.40 166 | 85.58 172 | 78.24 199 | 84.85 168 | 71.99 213 | 93.45 146 | 83.96 144 | 93.48 126 | 92.33 128 | 94.84 142 | 92.15 122 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13_2view | | | 88.22 162 | 87.85 170 | 88.65 158 | 91.40 173 | 86.75 183 | 94.07 134 | 84.97 177 | 88.86 128 | 93.20 63 | 96.11 70 | 96.21 99 | 83.70 146 | 87.29 187 | 80.29 194 | 84.56 198 | 79.46 195 |
|
test20.03 | | | 88.20 163 | 91.26 136 | 84.63 187 | 96.64 42 | 89.39 170 | 90.73 182 | 89.97 111 | 91.07 99 | 72.02 209 | 94.98 95 | 95.45 115 | 69.35 202 | 92.70 133 | 91.19 147 | 89.06 182 | 84.02 176 |
|
HyFIR lowres test | | | 88.19 164 | 86.56 178 | 90.09 138 | 91.24 175 | 92.17 144 | 94.30 130 | 88.79 132 | 84.06 162 | 85.45 164 | 89.52 157 | 85.64 183 | 88.64 110 | 85.40 194 | 87.28 175 | 92.14 174 | 81.87 185 |
|
ET-MVSNet_ETH3D | | | 88.06 165 | 85.75 182 | 90.74 128 | 92.82 149 | 90.68 161 | 93.77 137 | 88.59 134 | 81.22 179 | 89.78 133 | 89.15 161 | 66.79 217 | 84.29 142 | 91.72 150 | 91.34 145 | 95.22 129 | 89.36 151 |
|
tfpn200view9 | | | 87.94 166 | 87.51 173 | 88.44 159 | 92.28 162 | 93.63 124 | 93.35 146 | 88.11 139 | 80.90 181 | 80.89 188 | 78.25 210 | 82.25 187 | 79.65 170 | 94.27 116 | 94.76 96 | 96.36 93 | 88.48 159 |
|
FMVSNet3 | | | 87.90 167 | 88.63 161 | 87.04 172 | 89.78 190 | 93.46 130 | 91.62 176 | 90.05 106 | 79.40 188 | 78.60 195 | 90.58 141 | 87.05 177 | 77.07 187 | 88.03 182 | 89.86 158 | 95.12 134 | 92.04 124 |
|
MS-PatchMatch | | | 87.72 168 | 88.62 162 | 86.66 176 | 90.81 183 | 88.18 175 | 90.92 179 | 82.25 192 | 85.86 153 | 80.40 191 | 90.14 152 | 89.29 170 | 84.93 136 | 89.39 172 | 89.12 166 | 90.67 176 | 88.34 161 |
|
Anonymous20231206 | | | 87.45 169 | 89.66 151 | 84.87 184 | 94.00 113 | 87.73 181 | 91.36 177 | 86.41 167 | 88.89 127 | 75.03 203 | 92.59 128 | 96.82 81 | 72.48 200 | 89.72 168 | 88.06 172 | 89.93 179 | 83.81 178 |
|
EPNet_dtu | | | 87.40 170 | 86.27 179 | 88.72 157 | 95.68 74 | 83.37 194 | 92.09 169 | 90.08 105 | 78.11 201 | 91.29 108 | 86.33 187 | 89.74 167 | 75.39 195 | 89.07 173 | 87.89 173 | 87.81 187 | 89.38 150 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline1 | | | 86.96 171 | 87.58 172 | 86.24 178 | 93.07 142 | 90.44 166 | 89.24 193 | 86.85 160 | 85.14 157 | 77.26 201 | 90.45 145 | 76.09 201 | 75.79 193 | 91.80 149 | 91.81 136 | 95.20 130 | 87.35 167 |
|
baseline | | | 86.71 172 | 88.89 156 | 84.16 189 | 87.85 201 | 85.23 187 | 89.82 187 | 77.69 202 | 84.03 164 | 84.75 169 | 94.91 97 | 94.59 132 | 77.19 186 | 86.57 190 | 86.51 180 | 87.66 190 | 90.36 145 |
|
CHOSEN 1792x2688 | | | 86.64 173 | 86.62 176 | 86.65 177 | 90.33 186 | 87.86 180 | 93.19 150 | 83.30 190 | 83.95 167 | 82.32 183 | 87.93 173 | 89.34 169 | 86.92 124 | 85.64 193 | 84.95 186 | 83.85 202 | 86.68 170 |
|
testgi | | | 86.49 174 | 90.31 144 | 82.03 193 | 95.63 75 | 88.18 175 | 93.47 142 | 84.89 178 | 93.23 53 | 69.54 213 | 87.16 180 | 97.96 46 | 60.66 210 | 91.90 148 | 89.90 157 | 87.99 185 | 83.84 177 |
|
thres100view900 | | | 86.46 175 | 86.00 181 | 86.99 173 | 92.28 162 | 91.03 158 | 91.09 178 | 84.49 182 | 80.90 181 | 80.89 188 | 78.25 210 | 82.25 187 | 77.57 183 | 90.17 163 | 92.84 124 | 95.63 119 | 86.57 171 |
|
gm-plane-assit | | | 86.15 176 | 82.51 190 | 90.40 134 | 95.81 70 | 92.29 141 | 97.99 34 | 84.66 181 | 92.15 74 | 93.15 65 | 97.84 29 | 44.65 224 | 78.60 173 | 88.02 183 | 85.95 182 | 92.20 173 | 76.69 203 |
|
CMPMVS |  | 66.55 18 | 85.55 177 | 87.46 174 | 83.32 190 | 84.99 207 | 81.97 199 | 79.19 214 | 75.93 204 | 79.32 191 | 88.82 144 | 85.09 194 | 91.07 159 | 82.12 157 | 92.56 137 | 89.63 161 | 88.84 183 | 92.56 117 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 85.32 178 | 81.58 192 | 89.69 146 | 90.36 185 | 84.79 190 | 86.72 205 | 92.22 60 | 75.38 207 | 90.73 116 | 90.41 147 | 67.88 214 | 84.86 137 | 83.76 197 | 85.74 183 | 93.24 164 | 83.14 180 |
|
baseline2 | | | 84.95 179 | 82.68 189 | 87.59 169 | 92.64 152 | 88.41 174 | 90.09 184 | 84.25 183 | 75.88 205 | 85.23 165 | 82.49 203 | 71.15 207 | 80.14 167 | 88.21 181 | 87.21 178 | 93.21 167 | 85.39 175 |
|
pmnet_mix02 | | | 84.85 180 | 86.58 177 | 82.83 191 | 90.19 187 | 81.10 202 | 88.52 197 | 78.58 200 | 91.50 85 | 80.32 192 | 96.48 63 | 95.86 106 | 75.42 194 | 85.17 195 | 76.44 203 | 83.91 201 | 79.51 194 |
|
MVSTER | | | 84.79 181 | 83.79 185 | 85.96 180 | 89.14 193 | 89.80 169 | 89.39 191 | 82.99 191 | 74.16 211 | 82.78 179 | 85.97 190 | 66.81 216 | 76.84 188 | 90.77 159 | 88.83 171 | 94.66 144 | 90.19 147 |
|
MIMVSNet | | | 84.76 182 | 86.75 175 | 82.44 192 | 91.71 170 | 85.95 185 | 89.74 189 | 89.49 121 | 85.28 155 | 69.69 212 | 87.93 173 | 90.88 162 | 64.85 208 | 88.26 180 | 87.74 174 | 89.18 181 | 81.24 186 |
|
SCA | | | 84.69 183 | 81.10 193 | 88.87 155 | 89.02 194 | 90.31 167 | 92.21 168 | 92.09 69 | 82.72 174 | 89.68 134 | 86.83 184 | 73.08 203 | 85.80 133 | 80.50 205 | 77.51 200 | 84.45 200 | 76.80 202 |
|
new-patchmatchnet | | | 84.45 184 | 88.75 160 | 79.43 199 | 93.28 135 | 81.87 200 | 81.68 211 | 83.48 188 | 94.47 29 | 71.53 210 | 98.33 17 | 97.88 50 | 58.61 213 | 90.35 161 | 77.33 201 | 87.99 185 | 81.05 188 |
|
PatchT | | | 83.44 185 | 81.10 193 | 86.18 179 | 77.92 215 | 82.58 198 | 89.87 186 | 87.39 151 | 75.88 205 | 90.73 116 | 89.86 153 | 66.71 218 | 84.86 137 | 83.76 197 | 85.74 183 | 86.33 195 | 83.14 180 |
|
RPMNet | | | 83.42 186 | 78.40 202 | 89.28 151 | 89.79 189 | 84.79 190 | 90.64 183 | 92.11 67 | 75.38 207 | 87.10 156 | 79.80 208 | 61.99 223 | 82.79 152 | 81.88 203 | 82.07 191 | 93.23 166 | 82.87 183 |
|
TAMVS | | | 82.96 187 | 86.15 180 | 79.24 202 | 90.57 184 | 83.12 197 | 87.29 201 | 75.12 206 | 84.06 162 | 65.81 214 | 92.22 131 | 88.27 174 | 69.11 203 | 88.72 175 | 87.26 177 | 87.56 191 | 79.38 196 |
|
PatchmatchNet |  | | 82.44 188 | 78.69 201 | 86.83 174 | 89.81 188 | 81.55 201 | 90.78 181 | 87.27 154 | 82.39 176 | 88.85 143 | 88.31 169 | 70.96 208 | 81.90 159 | 78.58 209 | 74.33 209 | 82.35 206 | 74.69 206 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDTV_nov1_ep13 | | | 82.33 189 | 79.66 196 | 85.45 182 | 88.83 196 | 83.88 192 | 90.09 184 | 81.98 194 | 79.07 195 | 88.82 144 | 88.70 164 | 73.77 202 | 78.41 178 | 80.29 207 | 76.08 204 | 84.56 198 | 75.83 204 |
|
CostFormer | | | 82.15 190 | 79.54 197 | 85.20 183 | 88.92 195 | 85.70 186 | 90.87 180 | 86.26 168 | 79.19 194 | 83.87 176 | 87.89 175 | 69.20 212 | 76.62 190 | 77.50 212 | 75.28 206 | 84.69 197 | 82.02 184 |
|
PMMVS | | | 81.93 191 | 83.48 187 | 80.12 198 | 72.35 218 | 75.05 211 | 88.54 196 | 64.01 211 | 77.02 204 | 82.22 184 | 87.51 177 | 91.12 158 | 79.70 169 | 86.59 188 | 86.64 179 | 93.88 155 | 80.41 189 |
|
pmmvs3 | | | 81.69 192 | 83.83 184 | 79.19 203 | 78.33 214 | 78.57 205 | 89.53 190 | 58.71 214 | 78.88 198 | 84.34 174 | 88.36 168 | 91.96 154 | 77.69 182 | 87.48 184 | 82.42 190 | 86.54 194 | 79.18 197 |
|
tpm | | | 81.58 193 | 78.84 199 | 84.79 186 | 91.11 179 | 79.50 203 | 89.79 188 | 83.75 184 | 79.30 192 | 92.05 89 | 90.98 138 | 64.78 220 | 74.54 196 | 80.50 205 | 76.67 202 | 77.49 211 | 80.15 192 |
|
test0.0.03 1 | | | 81.51 194 | 83.30 188 | 79.42 200 | 93.99 114 | 86.50 184 | 85.93 209 | 87.32 152 | 78.16 200 | 61.62 215 | 80.78 206 | 81.78 191 | 59.87 211 | 88.40 179 | 87.27 176 | 87.78 189 | 80.19 191 |
|
dps | | | 81.42 195 | 77.88 207 | 85.56 181 | 87.67 203 | 85.17 189 | 88.37 199 | 87.46 149 | 74.37 210 | 84.55 171 | 86.80 185 | 62.18 222 | 80.20 166 | 81.13 204 | 77.52 199 | 85.10 196 | 77.98 200 |
|
test-LLR | | | 80.62 196 | 77.20 210 | 84.62 188 | 93.99 114 | 75.11 209 | 87.04 202 | 87.32 152 | 70.11 214 | 78.59 198 | 83.17 200 | 71.60 205 | 73.88 198 | 82.32 201 | 79.20 196 | 86.91 192 | 78.87 198 |
|
tpm cat1 | | | 80.03 197 | 75.93 213 | 84.81 185 | 89.31 191 | 83.26 196 | 88.86 195 | 86.55 165 | 79.24 193 | 86.10 160 | 84.22 197 | 63.62 221 | 77.37 185 | 73.43 213 | 70.88 212 | 80.67 207 | 76.87 201 |
|
N_pmnet | | | 79.33 198 | 84.22 183 | 73.62 209 | 91.72 169 | 73.72 212 | 86.11 207 | 76.36 203 | 92.38 67 | 53.38 216 | 95.54 84 | 95.62 110 | 59.14 212 | 84.23 196 | 74.84 208 | 75.03 214 | 73.25 210 |
|
EPMVS | | | 79.26 199 | 78.20 205 | 80.49 196 | 87.04 206 | 78.86 204 | 86.08 208 | 83.51 187 | 82.63 175 | 73.94 206 | 89.59 155 | 68.67 213 | 72.03 201 | 78.17 210 | 75.08 207 | 80.37 208 | 74.37 207 |
|
CHOSEN 280x420 | | | 79.24 200 | 78.26 204 | 80.38 197 | 79.60 213 | 68.80 217 | 89.32 192 | 75.38 205 | 77.25 203 | 78.02 200 | 75.57 212 | 76.17 200 | 81.19 164 | 88.61 178 | 81.39 192 | 78.79 209 | 80.03 193 |
|
ADS-MVSNet | | | 79.11 201 | 79.38 198 | 78.80 205 | 81.90 211 | 75.59 208 | 84.36 210 | 83.69 185 | 87.31 139 | 76.76 202 | 87.58 176 | 76.90 198 | 68.55 205 | 78.70 208 | 75.56 205 | 77.53 210 | 74.07 208 |
|
FMVSNet5 | | | 79.08 202 | 78.83 200 | 79.38 201 | 87.52 204 | 86.78 182 | 87.64 200 | 78.15 201 | 69.54 216 | 70.64 211 | 65.97 216 | 65.44 219 | 63.87 209 | 90.17 163 | 90.46 152 | 88.48 184 | 83.45 179 |
|
tpmrst | | | 78.81 203 | 76.18 212 | 81.87 194 | 88.56 197 | 77.45 206 | 86.74 204 | 81.52 196 | 80.08 185 | 83.48 177 | 90.84 140 | 66.88 215 | 74.54 196 | 73.04 214 | 71.02 211 | 76.38 212 | 73.95 209 |
|
test-mter | | | 78.71 204 | 78.35 203 | 79.12 204 | 84.03 208 | 76.58 207 | 88.51 198 | 59.06 213 | 71.06 212 | 78.87 194 | 83.73 199 | 71.83 204 | 76.44 191 | 83.41 200 | 80.61 193 | 87.79 188 | 81.24 186 |
|
MVS-HIRNet | | | 78.28 205 | 75.28 214 | 81.79 195 | 80.33 212 | 69.38 216 | 76.83 215 | 86.59 163 | 70.76 213 | 86.66 159 | 89.57 156 | 81.04 194 | 77.74 181 | 77.81 211 | 71.65 210 | 82.62 204 | 66.73 214 |
|
E-PMN | | | 77.81 206 | 77.88 207 | 77.73 208 | 88.26 200 | 70.48 215 | 80.19 213 | 71.20 208 | 86.66 146 | 72.89 208 | 88.09 172 | 81.74 192 | 78.75 172 | 90.02 165 | 68.30 213 | 75.10 213 | 59.85 215 |
|
EMVS | | | 77.65 207 | 77.49 209 | 77.83 206 | 87.75 202 | 71.02 214 | 81.13 212 | 70.54 209 | 86.38 149 | 74.52 205 | 89.38 158 | 80.19 197 | 78.22 179 | 89.48 170 | 67.13 214 | 74.83 215 | 58.84 216 |
|
TESTMET0.1,1 | | | 77.47 208 | 77.20 210 | 77.78 207 | 81.94 210 | 75.11 209 | 87.04 202 | 58.33 215 | 70.11 214 | 78.59 198 | 83.17 200 | 71.60 205 | 73.88 198 | 82.32 201 | 79.20 196 | 86.91 192 | 78.87 198 |
|
new_pmnet | | | 76.65 209 | 83.52 186 | 68.63 210 | 82.60 209 | 72.08 213 | 76.76 216 | 64.17 210 | 84.41 161 | 49.73 218 | 91.77 134 | 91.53 157 | 56.16 214 | 86.59 188 | 83.26 189 | 82.37 205 | 75.02 205 |
|
MVE |  | 60.41 19 | 73.21 210 | 80.84 195 | 64.30 211 | 56.34 219 | 57.24 219 | 75.28 218 | 72.76 207 | 87.14 142 | 41.39 220 | 86.31 188 | 85.30 184 | 80.66 165 | 86.17 192 | 83.36 188 | 59.35 217 | 80.38 190 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 69.86 211 | 82.14 191 | 55.52 212 | 75.19 216 | 63.08 218 | 75.52 217 | 60.97 212 | 88.50 130 | 25.11 222 | 91.77 134 | 96.44 89 | 25.43 216 | 88.70 176 | 79.34 195 | 70.93 216 | 67.17 213 |
|
GG-mvs-BLEND | | | 54.28 212 | 77.89 206 | 26.72 215 | 0.37 224 | 83.31 195 | 70.04 219 | 0.39 221 | 74.71 209 | 5.36 223 | 68.78 214 | 83.06 186 | 0.62 220 | 83.73 199 | 78.99 198 | 83.55 203 | 72.68 212 |
|
test_method | | | 43.16 213 | 51.13 215 | 33.85 213 | 7.35 221 | 12.38 222 | 51.70 221 | 11.91 217 | 62.51 218 | 47.64 219 | 62.49 217 | 80.78 195 | 28.84 215 | 59.55 217 | 34.48 216 | 55.68 218 | 45.72 217 |
|
testmvs | | | 2.38 214 | 3.35 216 | 1.26 217 | 0.83 222 | 0.96 224 | 1.53 224 | 0.83 219 | 3.59 220 | 1.63 225 | 6.03 219 | 2.93 226 | 1.55 219 | 3.49 218 | 2.51 218 | 1.21 222 | 3.92 219 |
|
test123 | | | 2.16 215 | 2.82 217 | 1.41 216 | 0.62 223 | 1.18 223 | 1.53 224 | 0.82 220 | 2.78 221 | 2.27 224 | 4.18 220 | 1.98 227 | 1.64 218 | 2.58 219 | 3.01 217 | 1.56 221 | 4.00 218 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 97.21 5 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 93.19 149 | | | | | |
|
SR-MVS | | | | | | 97.13 23 | | | 94.77 17 | | | | 97.77 54 | | | | | |
|
Anonymous202405211 | | | | 94.63 76 | | 94.51 103 | 94.96 92 | 93.94 135 | 91.35 86 | 90.82 104 | | 95.60 80 | 95.85 107 | 81.74 163 | 96.47 72 | 95.84 71 | 97.39 63 | 92.85 107 |
|
our_test_3 | | | | | | 91.78 168 | 88.87 173 | 94.37 125 | | | | | | | | | | |
|
ambc | | | | 94.61 77 | | 98.09 5 | 95.14 84 | 91.71 174 | | 94.18 38 | 96.46 12 | 96.26 66 | 96.30 92 | 91.26 67 | 94.70 107 | 92.00 135 | 93.45 160 | 93.67 93 |
|
MTAPA | | | | | | | | | | | 94.88 28 | | 96.88 79 | | | | | |
|
MTMP | | | | | | | | | | | 95.43 18 | | 97.25 66 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.96 223 | | | | | | | | | | |
|
tmp_tt | | | | | 28.44 214 | 36.05 220 | 15.86 221 | 21.29 222 | 6.40 218 | 54.52 219 | 51.96 217 | 50.37 218 | 38.68 225 | 9.55 217 | 61.75 216 | 59.66 215 | 45.36 220 | |
|
XVS | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 81 | | | | 98.17 35 | |
|
X-MVStestdata | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 81 | | | | 98.17 35 | |
|
abl_6 | | | | | 91.88 112 | 93.76 126 | 94.98 91 | 95.64 98 | 88.97 130 | 86.20 150 | 90.00 130 | 86.31 188 | 94.50 135 | 87.31 121 | | | 95.60 120 | 92.48 119 |
|
mPP-MVS | | | | | | 98.24 3 | | | | | | | 97.65 59 | | | | | |
|
NP-MVS | | | | | | | | | | 85.48 154 | | | | | | | | |
|
Patchmtry | | | | | | | 83.74 193 | 86.72 205 | 92.22 60 | | 90.73 116 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 47.68 220 | 53.20 220 | 19.21 216 | 63.24 217 | 26.96 221 | 66.50 215 | 69.82 211 | 66.91 207 | 64.27 215 | | 54.91 219 | 72.72 211 |
|