LTVRE_ROB | | 95.06 1 | 97.73 1 | 98.39 2 | 96.95 1 | 96.33 51 | 96.94 35 | 98.30 22 | 94.90 15 | 98.61 2 | 97.73 3 | 97.97 24 | 98.57 23 | 95.74 4 | 99.24 1 | 98.70 4 | 98.72 8 | 98.70 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.59 2 | 98.32 3 | 96.73 4 | 95.90 67 | 98.10 2 | 99.08 2 | 93.92 32 | 98.24 4 | 96.44 13 | 98.12 20 | 97.86 52 | 96.06 2 | 99.24 1 | 98.93 1 | 99.00 2 | 97.77 4 |
|
WR-MVS | | | 97.53 3 | 98.20 4 | 96.76 3 | 96.93 29 | 98.17 1 | 98.60 10 | 96.67 7 | 96.39 14 | 94.46 32 | 99.14 1 | 98.92 11 | 94.57 15 | 99.06 3 | 98.80 2 | 99.32 1 | 96.92 26 |
|
SixPastTwentyTwo | | | 97.36 4 | 97.73 10 | 96.92 2 | 97.36 13 | 96.15 55 | 98.29 23 | 94.43 24 | 96.50 12 | 96.96 7 | 98.74 6 | 98.74 18 | 96.04 3 | 99.03 5 | 97.74 18 | 98.44 23 | 97.22 14 |
|
PS-CasMVS | | | 97.22 5 | 97.84 7 | 96.50 5 | 97.08 25 | 97.92 6 | 98.17 31 | 97.02 2 | 94.71 26 | 95.32 21 | 98.52 13 | 98.97 9 | 92.91 40 | 99.04 4 | 98.47 6 | 98.49 19 | 97.24 13 |
|
PEN-MVS | | | 97.16 6 | 97.87 6 | 96.33 12 | 97.20 21 | 97.97 4 | 98.25 26 | 96.86 6 | 95.09 24 | 94.93 26 | 98.66 8 | 99.16 6 | 92.27 50 | 98.98 6 | 98.39 8 | 98.49 19 | 96.83 30 |
|
DTE-MVSNet | | | 97.16 6 | 97.75 9 | 96.47 6 | 97.40 12 | 97.95 5 | 98.20 29 | 96.89 5 | 95.30 19 | 95.15 24 | 98.66 8 | 98.80 16 | 92.77 44 | 98.97 7 | 98.27 10 | 98.44 23 | 96.28 41 |
|
COLMAP_ROB | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | 93.74 2 | 97.09 8 | 97.98 5 | 96.05 18 | 95.97 63 | 97.78 9 | 98.56 11 | 91.72 81 | 97.53 8 | 96.01 15 | 98.14 19 | 98.76 17 | 95.28 5 | 98.76 12 | 98.23 11 | 98.77 6 | 96.67 35 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
WR-MVS_H | | | 97.06 9 | 97.78 8 | 96.23 14 | 96.74 37 | 98.04 3 | 98.25 26 | 97.32 1 | 94.40 33 | 93.71 52 | 98.55 11 | 98.89 12 | 92.97 37 | 98.91 9 | 98.45 7 | 98.38 28 | 97.19 15 |
|
CP-MVSNet | | | 96.97 10 | 97.42 14 | 96.44 7 | 97.06 26 | 97.82 8 | 98.12 33 | 96.98 3 | 93.50 46 | 95.21 23 | 97.98 23 | 98.44 25 | 92.83 43 | 98.93 8 | 98.37 9 | 98.46 22 | 96.91 27 |
|
test_part1 | | | 96.91 11 | 98.63 1 | 94.90 45 | 94.62 97 | 97.75 11 | 98.33 21 | 93.88 34 | 98.92 1 | 93.11 67 | 99.06 2 | 99.66 1 | 90.49 89 | 98.84 11 | 98.61 5 | 98.97 3 | 97.60 7 |
|
ACMH | | 90.17 8 | 96.61 12 | 97.69 12 | 95.35 31 | 95.29 83 | 96.94 35 | 98.43 15 | 92.05 70 | 98.04 5 | 95.38 19 | 98.07 21 | 99.25 5 | 93.23 33 | 98.35 17 | 97.16 40 | 97.72 50 | 96.00 47 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 96.56 13 | 96.73 24 | 96.36 10 | 98.99 1 | 97.90 7 | 97.79 43 | 95.64 10 | 92.78 60 | 92.54 74 | 96.23 67 | 95.02 124 | 94.31 18 | 98.43 16 | 98.12 12 | 98.89 4 | 98.58 2 |
|
ACMMPR | | | 96.54 14 | 96.71 25 | 96.35 11 | 97.55 9 | 97.63 12 | 98.62 9 | 94.54 19 | 94.45 30 | 94.19 38 | 95.04 92 | 97.35 64 | 94.92 10 | 97.85 30 | 97.50 27 | 98.26 29 | 97.17 16 |
|
v7n | | | 96.49 15 | 97.20 18 | 95.65 23 | 95.57 77 | 96.04 57 | 97.93 38 | 92.49 55 | 96.40 13 | 97.13 6 | 98.99 3 | 99.41 4 | 93.79 26 | 97.84 32 | 96.15 61 | 97.00 77 | 95.60 55 |
|
DeepC-MVS | | 92.47 4 | 96.44 16 | 96.75 23 | 96.08 17 | 97.57 7 | 97.19 31 | 97.96 37 | 94.28 25 | 95.29 20 | 94.92 27 | 98.31 18 | 96.92 75 | 93.69 27 | 96.81 62 | 96.50 51 | 98.06 39 | 96.27 42 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMM | | 90.06 9 | 96.31 17 | 96.42 32 | 96.19 15 | 97.21 20 | 97.16 33 | 98.71 5 | 93.79 38 | 94.35 34 | 93.81 46 | 92.80 122 | 98.23 33 | 95.11 6 | 98.07 22 | 97.45 29 | 98.51 18 | 96.86 29 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 89.90 10 | 96.27 18 | 97.52 13 | 94.81 46 | 95.19 86 | 97.18 32 | 97.97 36 | 92.52 53 | 96.72 10 | 90.50 120 | 97.31 44 | 99.11 7 | 94.10 20 | 98.67 13 | 97.90 15 | 98.56 16 | 95.79 51 |
|
APDe-MVS | | | 96.23 19 | 97.22 17 | 95.08 40 | 96.66 41 | 97.56 15 | 98.63 8 | 93.69 42 | 94.62 27 | 89.80 129 | 97.73 32 | 98.13 37 | 93.84 25 | 97.79 34 | 97.63 20 | 97.87 46 | 97.08 21 |
|
CP-MVS | | | 96.21 20 | 96.16 43 | 96.27 13 | 97.56 8 | 97.13 34 | 98.43 15 | 94.70 18 | 92.62 63 | 94.13 41 | 92.71 123 | 98.03 43 | 94.54 16 | 98.00 26 | 97.60 22 | 98.23 31 | 97.05 22 |
|
zzz-MVS | | | 96.18 21 | 96.01 46 | 96.38 8 | 98.30 2 | 96.18 54 | 98.51 13 | 94.48 23 | 94.56 28 | 94.81 30 | 91.73 132 | 96.96 73 | 94.30 19 | 98.09 20 | 97.83 16 | 97.91 45 | 96.73 32 |
|
HFP-MVS | | | 96.18 21 | 96.53 29 | 95.77 21 | 97.34 16 | 97.26 28 | 98.16 32 | 94.54 19 | 94.45 30 | 92.52 75 | 95.05 90 | 96.95 74 | 93.89 23 | 97.28 45 | 97.46 28 | 98.19 32 | 97.25 11 |
|
UniMVSNet_ETH3D | | | 96.15 23 | 97.71 11 | 94.33 53 | 97.31 17 | 96.71 40 | 95.06 106 | 96.91 4 | 97.86 6 | 90.42 121 | 98.55 11 | 99.60 2 | 88.01 116 | 98.51 14 | 97.81 17 | 98.26 29 | 94.95 66 |
|
MP-MVS | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | | 96.13 24 | 95.93 49 | 96.37 9 | 98.19 4 | 97.31 27 | 98.49 14 | 94.53 22 | 91.39 91 | 94.38 35 | 94.32 105 | 96.43 88 | 94.59 14 | 97.75 36 | 97.44 30 | 98.04 40 | 96.88 28 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | | 96.12 25 | 96.27 39 | 95.93 19 | 97.20 21 | 97.60 13 | 98.64 7 | 93.74 39 | 92.47 65 | 93.13 66 | 93.23 117 | 98.06 40 | 94.51 17 | 97.99 27 | 97.57 24 | 98.39 27 | 96.99 23 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DVP-MVS | | | 96.10 26 | 97.23 16 | 94.79 48 | 96.28 54 | 97.49 16 | 97.90 39 | 93.60 44 | 95.47 17 | 89.57 135 | 97.32 43 | 97.72 55 | 93.89 23 | 97.74 37 | 97.53 25 | 97.51 55 | 97.34 9 |
|
LGP-MVS_train | | | 96.10 26 | 96.29 36 | 95.87 20 | 96.72 38 | 97.35 26 | 98.43 15 | 93.83 36 | 90.81 105 | 92.67 73 | 95.05 90 | 98.86 14 | 95.01 7 | 98.11 19 | 97.37 36 | 98.52 17 | 96.50 37 |
|
CSCG | | | 96.07 28 | 97.15 19 | 94.81 46 | 96.06 61 | 97.58 14 | 96.52 71 | 90.98 93 | 96.51 11 | 93.60 54 | 97.13 50 | 98.55 24 | 93.01 35 | 97.17 49 | 95.36 77 | 98.68 10 | 97.78 3 |
|
DPE-MVS | | | 96.00 29 | 96.80 22 | 95.06 41 | 95.87 70 | 97.47 21 | 98.25 26 | 93.73 40 | 92.38 67 | 91.57 102 | 97.55 38 | 97.97 45 | 92.98 36 | 97.49 43 | 97.61 21 | 97.96 44 | 97.16 17 |
|
SMA-MVS | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | | 95.99 30 | 96.48 30 | 95.41 30 | 97.43 11 | 97.36 24 | 97.55 48 | 93.70 41 | 94.05 41 | 93.79 47 | 97.02 53 | 94.53 129 | 92.28 49 | 97.53 42 | 97.19 38 | 97.73 49 | 97.67 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
TSAR-MVS + MP. | | | 95.99 30 | 96.57 28 | 95.31 33 | 96.87 30 | 96.50 47 | 98.71 5 | 91.58 82 | 93.25 51 | 92.71 70 | 96.86 55 | 96.57 86 | 93.92 21 | 98.09 20 | 97.91 14 | 98.08 37 | 96.81 31 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
OPM-MVS | | | 95.96 32 | 96.59 27 | 95.23 36 | 96.67 40 | 96.52 46 | 97.86 41 | 93.28 47 | 95.27 22 | 93.46 56 | 96.26 64 | 98.85 15 | 92.89 41 | 97.09 50 | 96.37 56 | 97.22 70 | 95.78 52 |
|
SteuartSystems-ACMMP | | | 95.96 32 | 96.13 45 | 95.76 22 | 97.06 26 | 97.36 24 | 98.40 19 | 94.24 27 | 91.49 85 | 91.91 93 | 94.50 101 | 96.89 76 | 94.99 8 | 98.01 25 | 97.44 30 | 97.97 43 | 97.25 11 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMP | | 89.62 11 | 95.96 32 | 96.28 37 | 95.59 24 | 96.58 43 | 97.23 30 | 98.26 25 | 93.22 48 | 92.33 70 | 92.31 82 | 94.29 106 | 98.73 19 | 94.68 12 | 98.04 23 | 97.14 41 | 98.47 21 | 96.17 44 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PGM-MVS | | | 95.90 35 | 95.72 53 | 96.10 16 | 97.53 10 | 97.45 22 | 98.55 12 | 94.12 29 | 90.25 108 | 93.71 52 | 93.20 118 | 97.18 67 | 94.63 13 | 97.68 39 | 97.34 37 | 98.08 37 | 96.97 24 |
|
PMVS | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | 87.16 16 | 95.88 36 | 96.47 31 | 95.19 38 | 97.00 28 | 96.02 58 | 96.70 62 | 91.57 83 | 94.43 32 | 95.33 20 | 97.16 49 | 95.37 113 | 92.39 46 | 98.89 10 | 98.72 3 | 98.17 34 | 94.71 71 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMMP_NAP | | | 95.86 37 | 96.18 40 | 95.47 29 | 97.11 24 | 97.26 28 | 98.37 20 | 93.48 46 | 93.49 47 | 93.99 44 | 95.61 76 | 94.11 134 | 92.49 45 | 97.87 29 | 97.44 30 | 97.40 61 | 97.52 8 |
|
Gipuma | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | | 95.86 37 | 96.17 41 | 95.50 28 | 95.92 66 | 94.59 101 | 94.77 114 | 92.50 54 | 97.82 7 | 97.90 2 | 95.56 79 | 97.88 50 | 94.71 11 | 98.02 24 | 94.81 91 | 97.23 69 | 94.48 78 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LS3D | | | 95.83 39 | 96.35 34 | 95.22 37 | 96.47 47 | 97.49 16 | 97.99 34 | 92.35 58 | 94.92 25 | 94.58 31 | 94.88 96 | 95.11 122 | 91.52 61 | 98.48 15 | 98.05 13 | 98.42 25 | 95.49 56 |
|
SD-MVS | | | 95.77 40 | 96.17 41 | 95.30 34 | 96.72 38 | 96.19 53 | 97.01 53 | 93.04 49 | 94.03 42 | 92.71 70 | 96.45 62 | 96.78 83 | 93.91 22 | 96.79 63 | 95.89 67 | 98.42 25 | 97.09 20 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SED-MVS | | | 95.73 41 | 96.98 20 | 94.28 55 | 96.08 59 | 97.39 23 | 98.18 30 | 93.80 37 | 94.20 36 | 89.61 134 | 97.29 45 | 97.49 61 | 90.69 80 | 97.74 37 | 97.41 33 | 97.32 66 | 97.34 9 |
|
TranMVSNet+NR-MVSNet | | | 95.72 42 | 96.42 32 | 94.91 44 | 96.21 55 | 96.77 39 | 96.90 58 | 94.99 13 | 92.62 63 | 91.92 92 | 98.51 14 | 98.63 21 | 90.82 77 | 97.27 46 | 96.83 45 | 98.63 13 | 94.31 79 |
|
DU-MVS | | | 95.51 43 | 95.68 54 | 95.33 32 | 96.45 48 | 96.44 49 | 96.61 68 | 95.32 11 | 89.97 113 | 93.78 48 | 97.46 40 | 98.07 39 | 91.19 68 | 97.03 52 | 96.53 49 | 98.61 14 | 94.22 80 |
|
UniMVSNet (Re) | | | 95.46 44 | 95.86 51 | 95.00 43 | 96.09 57 | 96.60 41 | 96.68 66 | 94.99 13 | 90.36 107 | 92.13 85 | 97.64 36 | 98.13 37 | 91.38 62 | 96.90 57 | 96.74 46 | 98.73 7 | 94.63 74 |
|
RPSCF | | | 95.46 44 | 96.95 21 | 93.73 77 | 95.72 74 | 95.94 61 | 95.58 97 | 88.08 138 | 95.31 18 | 91.34 104 | 96.26 64 | 98.04 42 | 93.63 28 | 98.28 18 | 97.67 19 | 98.01 41 | 97.13 18 |
|
anonymousdsp | | | 95.45 46 | 96.70 26 | 93.99 66 | 88.43 194 | 92.05 144 | 99.18 1 | 85.42 172 | 94.29 35 | 96.10 14 | 98.63 10 | 99.08 8 | 96.11 1 | 97.77 35 | 97.41 33 | 98.70 9 | 97.69 5 |
|
APD-MVS | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | | 95.38 47 | 95.68 54 | 95.03 42 | 97.30 18 | 96.90 37 | 97.83 42 | 93.92 32 | 89.40 120 | 90.35 122 | 95.41 83 | 97.69 57 | 92.97 37 | 97.24 48 | 97.17 39 | 97.83 47 | 95.96 48 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
UniMVSNet_NR-MVSNet | | | 95.34 48 | 95.51 58 | 95.14 39 | 95.80 72 | 96.55 42 | 96.61 68 | 94.79 16 | 90.04 112 | 93.78 48 | 97.51 39 | 97.25 65 | 91.19 68 | 96.68 65 | 96.31 58 | 98.65 12 | 94.22 80 |
|
X-MVS | | | 95.33 49 | 95.13 66 | 95.57 26 | 97.35 14 | 97.48 18 | 98.43 15 | 94.28 25 | 92.30 71 | 93.28 59 | 86.89 178 | 96.82 79 | 91.87 55 | 97.85 30 | 97.59 23 | 98.19 32 | 96.95 25 |
|
MSP-MVS | | | 95.32 50 | 96.28 37 | 94.19 58 | 96.87 30 | 97.77 10 | 98.27 24 | 93.88 34 | 94.15 40 | 89.63 133 | 95.36 84 | 98.37 28 | 90.73 78 | 94.37 110 | 97.53 25 | 95.77 115 | 96.40 38 |
|
3Dnovator+ | | 92.82 3 | 95.22 51 | 95.16 64 | 95.29 35 | 96.17 56 | 96.55 42 | 97.64 45 | 94.02 31 | 94.16 39 | 94.29 37 | 92.09 129 | 93.71 139 | 91.90 53 | 96.68 65 | 96.51 50 | 97.70 52 | 96.40 38 |
|
HPM-MVS++ | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | | 95.21 52 | 94.89 69 | 95.59 24 | 97.79 6 | 95.39 79 | 97.68 44 | 94.05 30 | 91.91 78 | 94.35 36 | 93.38 116 | 95.07 123 | 92.94 39 | 96.01 78 | 95.88 68 | 96.73 80 | 96.61 36 |
|
TSAR-MVS + ACMM | | | 95.17 53 | 95.95 47 | 94.26 56 | 96.07 60 | 96.46 48 | 95.67 94 | 94.21 28 | 93.84 44 | 90.99 112 | 97.18 48 | 95.24 121 | 93.55 29 | 96.60 69 | 95.61 74 | 95.06 134 | 96.69 34 |
|
xxxxxxxxxxxxxcwj | | | 95.03 54 | 96.14 44 | 93.73 77 | 95.30 80 | 95.93 62 | 94.80 112 | 91.76 78 | 93.11 55 | 91.93 90 | 95.83 72 | 98.96 10 | 91.11 71 | 96.62 67 | 96.44 53 | 97.46 56 | 96.13 45 |
|
CPTT-MVS | | | 95.00 55 | 94.52 77 | 95.57 26 | 96.84 34 | 96.78 38 | 97.88 40 | 93.67 43 | 92.20 72 | 92.35 81 | 85.87 186 | 97.56 60 | 94.98 9 | 96.96 55 | 96.07 64 | 97.70 52 | 96.18 43 |
|
SF-MVS | | | 94.88 56 | 95.87 50 | 93.73 77 | 95.30 80 | 95.93 62 | 94.80 112 | 91.76 78 | 93.11 55 | 91.93 90 | 95.83 72 | 97.07 70 | 91.11 71 | 96.62 67 | 96.44 53 | 97.46 56 | 96.13 45 |
|
Baseline_NR-MVSNet | | | 94.85 57 | 95.35 62 | 94.26 56 | 96.45 48 | 93.86 116 | 96.70 62 | 94.54 19 | 90.07 111 | 90.17 126 | 98.77 5 | 97.89 47 | 90.64 83 | 97.03 52 | 96.16 60 | 97.04 76 | 93.67 92 |
|
EG-PatchMatch MVS | | | 94.81 58 | 95.53 57 | 93.97 67 | 95.89 69 | 94.62 99 | 95.55 99 | 88.18 136 | 92.77 61 | 94.88 28 | 97.04 52 | 98.61 22 | 93.31 30 | 96.89 58 | 95.19 81 | 95.99 108 | 93.56 95 |
|
OMC-MVS | | | 94.74 59 | 95.46 60 | 93.91 70 | 94.62 97 | 96.26 52 | 96.64 67 | 89.36 124 | 94.20 36 | 94.15 40 | 94.02 111 | 97.73 54 | 91.34 64 | 96.15 76 | 95.04 85 | 97.37 63 | 94.80 68 |
|
DeepC-MVS_fast | | 91.38 6 | 94.73 60 | 94.98 67 | 94.44 49 | 96.83 36 | 96.12 56 | 96.69 64 | 92.17 64 | 92.98 58 | 93.72 50 | 94.14 107 | 95.45 111 | 90.49 89 | 95.73 85 | 95.30 78 | 96.71 81 | 95.13 64 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 94.65 61 | 94.84 71 | 94.44 49 | 94.95 91 | 96.55 42 | 96.46 74 | 91.10 91 | 88.96 123 | 96.00 16 | 94.55 100 | 95.32 116 | 90.67 81 | 96.97 54 | 96.69 48 | 97.44 59 | 94.84 67 |
|
pmmvs6 | | | 94.58 62 | 97.30 15 | 91.40 117 | 94.84 93 | 94.61 100 | 93.40 142 | 92.43 57 | 98.51 3 | 85.61 160 | 98.73 7 | 99.53 3 | 84.40 138 | 97.88 28 | 97.03 42 | 97.72 50 | 94.79 69 |
|
DeepPCF-MVS | | 90.68 7 | 94.56 63 | 94.92 68 | 94.15 59 | 94.11 110 | 95.71 70 | 97.03 52 | 90.65 97 | 93.39 50 | 94.08 42 | 95.29 87 | 94.15 133 | 93.21 34 | 95.22 96 | 94.92 89 | 95.82 114 | 95.75 53 |
|
NR-MVSNet | | | 94.55 64 | 95.66 56 | 93.25 90 | 94.26 106 | 96.44 49 | 96.69 64 | 95.32 11 | 89.97 113 | 91.79 98 | 97.46 40 | 98.39 27 | 82.85 147 | 96.87 60 | 96.48 52 | 98.57 15 | 93.98 86 |
|
Vis-MVSNet | ![Method available under a permissive open source license. permissive](img/icon_permissive.png) | | 94.39 65 | 95.85 52 | 92.68 98 | 90.91 178 | 95.88 65 | 97.62 47 | 91.41 84 | 91.95 77 | 89.20 137 | 97.29 45 | 96.26 91 | 90.60 88 | 96.95 56 | 95.91 65 | 96.32 96 | 96.71 33 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TSAR-MVS + GP. | | | 94.25 66 | 94.81 72 | 93.60 80 | 96.52 46 | 95.80 68 | 94.37 122 | 92.47 56 | 90.89 101 | 88.92 139 | 95.34 85 | 94.38 131 | 92.85 42 | 96.36 74 | 95.62 73 | 96.47 88 | 95.28 61 |
|
CNVR-MVS | | | 94.24 67 | 94.47 78 | 93.96 68 | 96.56 44 | 95.67 71 | 96.43 75 | 91.95 73 | 92.08 75 | 91.28 106 | 90.51 140 | 95.35 114 | 91.20 67 | 96.34 75 | 95.50 76 | 96.34 94 | 95.88 50 |
|
v1192 | | | 93.98 68 | 93.94 90 | 94.01 64 | 93.91 118 | 94.63 98 | 97.00 54 | 89.75 114 | 91.01 99 | 96.50 10 | 97.93 25 | 98.26 32 | 91.74 57 | 92.06 140 | 92.05 130 | 95.18 129 | 91.66 132 |
|
v10 | | | 93.96 69 | 94.12 87 | 93.77 76 | 93.37 130 | 95.45 75 | 96.83 60 | 91.13 90 | 89.70 117 | 95.02 25 | 97.88 28 | 98.23 33 | 91.27 65 | 92.39 135 | 92.18 128 | 94.99 136 | 93.00 103 |
|
CDPH-MVS | | | 93.96 69 | 93.86 92 | 94.08 61 | 96.31 52 | 95.84 66 | 96.92 56 | 91.85 76 | 87.21 139 | 91.25 108 | 92.83 120 | 96.06 99 | 91.05 74 | 95.57 87 | 94.81 91 | 97.12 71 | 94.72 70 |
|
MVS_0304 | | | 93.92 71 | 93.81 96 | 94.05 63 | 96.06 61 | 96.00 59 | 96.43 75 | 92.76 51 | 85.99 149 | 94.43 34 | 94.04 110 | 97.08 69 | 88.12 115 | 94.65 106 | 94.20 104 | 96.47 88 | 94.71 71 |
|
MSLP-MVS++ | | | 93.91 72 | 94.30 84 | 93.45 82 | 95.51 78 | 95.83 67 | 93.12 148 | 91.93 75 | 91.45 88 | 91.40 103 | 87.42 173 | 96.12 98 | 93.27 31 | 96.57 70 | 96.40 55 | 95.49 119 | 96.29 40 |
|
v1921920 | | | 93.90 73 | 93.82 94 | 94.00 65 | 93.74 124 | 94.31 104 | 97.12 49 | 89.33 125 | 91.13 96 | 96.77 9 | 97.90 26 | 98.06 40 | 91.95 52 | 91.93 144 | 91.54 139 | 95.10 132 | 91.85 126 |
|
train_agg | | | 93.89 74 | 93.46 105 | 94.40 51 | 97.35 14 | 93.78 118 | 97.63 46 | 92.19 63 | 88.12 130 | 90.52 119 | 93.57 115 | 95.78 104 | 92.31 48 | 94.78 103 | 93.46 114 | 96.36 92 | 94.70 73 |
|
v144192 | | | 93.89 74 | 93.85 93 | 93.94 69 | 93.50 128 | 94.33 103 | 97.12 49 | 89.49 119 | 90.89 101 | 96.49 11 | 97.78 30 | 98.27 31 | 91.89 54 | 92.17 139 | 91.70 136 | 95.19 128 | 91.78 129 |
|
v1240 | | | 93.89 74 | 93.72 97 | 94.09 60 | 93.98 115 | 94.31 104 | 97.12 49 | 89.37 123 | 90.74 106 | 96.92 8 | 98.05 22 | 97.89 47 | 92.15 51 | 91.53 150 | 91.60 137 | 94.99 136 | 91.93 125 |
|
NCCC | | | 93.87 77 | 93.42 106 | 94.40 51 | 96.84 34 | 95.42 76 | 96.47 73 | 92.62 52 | 92.36 69 | 92.05 87 | 83.83 193 | 95.55 107 | 91.84 56 | 95.89 80 | 95.23 80 | 96.56 85 | 95.63 54 |
|
v1144 | | | 93.83 78 | 93.87 91 | 93.78 75 | 93.72 125 | 94.57 102 | 96.85 59 | 89.98 109 | 91.31 93 | 95.90 17 | 97.89 27 | 98.40 26 | 91.13 70 | 92.01 143 | 92.01 131 | 95.10 132 | 90.94 136 |
|
MVS_111021_HR | | | 93.82 79 | 94.26 86 | 93.31 85 | 95.01 89 | 93.97 114 | 95.73 91 | 89.75 114 | 92.06 76 | 92.49 76 | 94.01 112 | 96.05 100 | 90.61 87 | 95.95 79 | 94.78 94 | 96.28 97 | 93.04 102 |
|
thisisatest0515 | | | 93.79 80 | 94.41 80 | 93.06 95 | 94.14 107 | 92.50 137 | 95.56 98 | 88.55 133 | 91.61 82 | 92.45 77 | 96.84 56 | 95.71 105 | 90.62 85 | 94.58 107 | 95.07 83 | 97.05 74 | 94.58 75 |
|
TAPA-MVS | | 88.94 13 | 93.78 81 | 94.31 83 | 93.18 92 | 94.14 107 | 95.99 60 | 95.74 90 | 86.98 155 | 93.43 49 | 93.88 45 | 90.16 147 | 96.88 77 | 91.05 74 | 94.33 111 | 93.95 105 | 97.28 67 | 95.40 57 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
EPP-MVSNet | | | 93.63 82 | 93.95 89 | 93.26 88 | 95.15 87 | 96.54 45 | 96.18 83 | 91.97 72 | 91.74 79 | 85.76 158 | 94.95 94 | 84.27 181 | 91.60 60 | 97.61 41 | 97.38 35 | 98.87 5 | 95.18 63 |
|
v8 | | | 93.60 83 | 93.82 94 | 93.34 83 | 93.13 137 | 95.06 85 | 96.39 77 | 90.75 95 | 89.90 115 | 94.03 43 | 97.70 34 | 98.21 35 | 91.08 73 | 92.36 136 | 91.47 140 | 94.63 143 | 92.07 120 |
|
MCST-MVS | | | 93.60 83 | 93.40 108 | 93.83 71 | 95.30 80 | 95.40 78 | 96.49 72 | 90.87 94 | 90.08 110 | 91.72 99 | 90.28 145 | 95.99 101 | 91.69 58 | 93.94 119 | 92.99 119 | 96.93 78 | 95.13 64 |
|
PVSNet_Blended_VisFu | | | 93.60 83 | 93.41 107 | 93.83 71 | 96.31 52 | 95.65 72 | 95.71 92 | 90.58 99 | 88.08 132 | 93.17 64 | 95.29 87 | 92.20 148 | 90.72 79 | 94.69 105 | 93.41 116 | 96.51 87 | 94.54 76 |
|
TransMVSNet (Re) | | | 93.55 86 | 96.32 35 | 90.32 133 | 94.38 103 | 94.05 109 | 93.30 145 | 89.53 118 | 97.15 9 | 85.12 163 | 98.83 4 | 97.89 47 | 82.21 153 | 96.75 64 | 96.14 62 | 97.35 64 | 93.46 96 |
|
DCV-MVSNet | | | 93.49 87 | 95.15 65 | 91.55 113 | 94.05 111 | 95.92 64 | 95.15 104 | 91.21 87 | 92.76 62 | 87.01 154 | 89.71 150 | 97.16 68 | 83.90 142 | 97.65 40 | 96.87 44 | 97.99 42 | 95.95 49 |
|
v2v482 | | | 93.42 88 | 93.49 104 | 93.32 84 | 93.44 129 | 94.05 109 | 96.36 80 | 89.76 113 | 91.41 90 | 95.24 22 | 97.63 37 | 98.34 29 | 90.44 91 | 91.65 148 | 91.76 135 | 94.69 140 | 89.62 146 |
|
canonicalmvs | | | 93.38 89 | 94.36 81 | 92.24 104 | 93.94 117 | 96.41 51 | 94.18 129 | 90.47 100 | 93.07 57 | 88.47 145 | 88.66 160 | 93.78 138 | 88.80 105 | 95.74 84 | 95.75 71 | 97.57 54 | 97.13 18 |
|
3Dnovator | | 91.81 5 | 93.36 90 | 94.27 85 | 92.29 103 | 92.99 141 | 95.03 86 | 95.76 89 | 87.79 141 | 93.82 45 | 92.38 80 | 92.19 128 | 93.37 143 | 88.14 114 | 95.26 95 | 94.85 90 | 96.69 82 | 95.40 57 |
|
pm-mvs1 | | | 93.27 91 | 95.94 48 | 90.16 134 | 94.13 109 | 93.66 119 | 92.61 158 | 89.91 111 | 95.73 16 | 84.28 172 | 98.51 14 | 98.29 30 | 82.80 148 | 96.44 72 | 95.76 70 | 97.25 68 | 93.21 100 |
|
Anonymous20231211 | | | 93.19 92 | 95.50 59 | 90.49 130 | 93.77 122 | 95.29 81 | 94.36 126 | 90.04 108 | 91.44 89 | 84.59 167 | 96.72 58 | 97.65 58 | 82.45 152 | 97.25 47 | 96.32 57 | 97.74 48 | 93.79 89 |
|
TinyColmap | | | 93.17 93 | 93.33 109 | 93.00 96 | 93.84 120 | 92.76 132 | 94.75 116 | 88.90 129 | 93.97 43 | 97.48 4 | 95.28 89 | 95.29 117 | 88.37 110 | 95.31 94 | 91.58 138 | 94.65 142 | 89.10 150 |
|
MVS_111021_LR | | | 93.15 94 | 93.65 99 | 92.56 99 | 93.89 119 | 92.28 139 | 95.09 105 | 86.92 157 | 91.26 95 | 92.99 69 | 94.46 103 | 96.22 94 | 90.64 83 | 95.11 99 | 93.45 115 | 95.85 112 | 92.74 109 |
|
CNLPA | | | 93.14 95 | 93.67 98 | 92.53 100 | 94.62 97 | 94.73 95 | 95.00 108 | 86.57 162 | 92.85 59 | 92.43 78 | 90.94 135 | 94.67 126 | 90.35 92 | 95.41 89 | 93.70 111 | 96.23 100 | 93.37 98 |
|
PLC | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | 87.27 15 | 93.08 96 | 92.92 113 | 93.26 88 | 94.67 94 | 95.03 86 | 94.38 121 | 90.10 103 | 91.69 80 | 92.14 84 | 87.24 174 | 93.91 136 | 91.61 59 | 95.05 100 | 94.73 97 | 96.67 83 | 92.80 106 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CANet | | | 93.07 97 | 93.05 112 | 93.10 93 | 95.90 67 | 95.41 77 | 95.88 86 | 91.94 74 | 84.77 156 | 93.36 57 | 94.05 109 | 95.25 120 | 86.25 127 | 94.33 111 | 93.94 106 | 95.30 122 | 93.58 94 |
|
TSAR-MVS + COLMAP | | | 93.06 98 | 93.65 99 | 92.36 101 | 94.62 97 | 94.28 106 | 95.36 103 | 89.46 121 | 92.18 73 | 91.64 100 | 95.55 80 | 95.27 119 | 88.60 108 | 93.24 125 | 92.50 124 | 94.46 145 | 92.55 115 |
|
Effi-MVS+ | | | 92.93 99 | 92.16 124 | 93.83 71 | 94.29 104 | 93.53 126 | 95.04 107 | 92.98 50 | 85.27 153 | 94.46 32 | 90.24 146 | 95.34 115 | 89.99 96 | 93.72 120 | 94.23 103 | 96.22 101 | 92.79 107 |
|
Fast-Effi-MVS+ | | | 92.93 99 | 92.64 117 | 93.27 87 | 93.81 121 | 93.88 115 | 95.90 85 | 90.61 98 | 83.98 162 | 92.71 70 | 92.81 121 | 96.22 94 | 90.67 81 | 94.90 102 | 93.92 107 | 95.92 110 | 92.77 108 |
|
HQP-MVS | | | 92.87 101 | 92.49 118 | 93.31 85 | 95.75 73 | 95.01 89 | 95.64 95 | 91.06 92 | 88.54 127 | 91.62 101 | 88.16 165 | 96.25 92 | 89.47 100 | 92.26 138 | 91.81 133 | 96.34 94 | 95.40 57 |
|
FMVSNet1 | | | 92.86 102 | 95.26 63 | 90.06 136 | 92.40 155 | 95.16 82 | 94.37 122 | 92.22 60 | 93.18 54 | 82.16 182 | 96.76 57 | 97.48 62 | 81.85 157 | 95.32 91 | 94.98 86 | 97.34 65 | 93.93 87 |
|
CLD-MVS | | | 92.81 103 | 94.32 82 | 91.05 121 | 95.39 79 | 95.31 80 | 95.82 88 | 81.44 195 | 89.40 120 | 91.94 89 | 95.86 70 | 97.36 63 | 85.83 129 | 95.35 90 | 94.59 99 | 95.85 112 | 92.34 117 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
IS_MVSNet | | | 92.76 104 | 93.25 110 | 92.19 105 | 94.91 92 | 95.56 73 | 95.86 87 | 92.12 66 | 88.10 131 | 82.71 177 | 93.15 119 | 88.30 169 | 88.86 104 | 97.29 44 | 96.95 43 | 98.66 11 | 93.38 97 |
|
FC-MVSNet-train | | | 92.75 105 | 95.40 61 | 89.66 144 | 95.21 85 | 94.82 93 | 97.00 54 | 89.40 122 | 91.13 96 | 81.71 183 | 97.72 33 | 96.43 88 | 77.57 180 | 96.89 58 | 96.72 47 | 97.05 74 | 94.09 83 |
|
V42 | | | 92.67 106 | 93.50 103 | 91.71 111 | 91.41 169 | 92.96 130 | 95.71 92 | 85.00 173 | 89.67 118 | 93.22 62 | 97.67 35 | 98.01 44 | 91.02 76 | 92.65 131 | 92.12 129 | 93.86 153 | 91.42 133 |
|
PM-MVS | | | 92.65 107 | 93.20 111 | 92.00 107 | 92.11 163 | 90.16 165 | 95.99 84 | 84.81 177 | 91.31 93 | 92.41 79 | 95.87 69 | 96.64 85 | 92.35 47 | 93.65 122 | 92.91 120 | 94.34 148 | 91.85 126 |
|
QAPM | | | 92.57 108 | 93.51 102 | 91.47 115 | 92.91 143 | 94.82 93 | 93.01 150 | 87.51 145 | 91.49 85 | 91.21 109 | 92.24 126 | 91.70 151 | 88.74 106 | 94.54 108 | 94.39 102 | 95.41 120 | 95.37 60 |
|
MIMVSNet1 | | | 92.52 109 | 94.88 70 | 89.77 140 | 96.09 57 | 91.99 145 | 96.92 56 | 89.68 116 | 95.92 15 | 84.55 168 | 96.64 60 | 98.21 35 | 78.44 174 | 96.08 77 | 95.10 82 | 92.91 167 | 90.22 143 |
|
tfpnnormal | | | 92.45 110 | 94.77 73 | 89.74 141 | 93.95 116 | 93.44 128 | 93.25 146 | 88.49 135 | 95.27 22 | 83.20 175 | 96.51 61 | 96.23 93 | 83.17 146 | 95.47 88 | 94.52 100 | 96.38 91 | 91.97 124 |
|
PCF-MVS | | 87.46 14 | 92.44 111 | 91.80 126 | 93.19 91 | 94.66 95 | 95.80 68 | 96.37 78 | 90.19 102 | 87.57 136 | 92.23 83 | 89.26 155 | 93.97 135 | 89.24 101 | 91.32 152 | 90.82 148 | 96.46 90 | 93.86 88 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
casdiffmvs | | | 92.42 112 | 93.99 88 | 90.60 128 | 93.25 133 | 93.82 117 | 94.28 128 | 88.73 131 | 91.53 84 | 84.53 170 | 97.74 31 | 98.64 20 | 86.60 124 | 93.21 127 | 91.20 143 | 96.21 102 | 91.76 131 |
|
AdaColmap | ![Method available as binary. binary](img/icon_binary.png) | | 92.41 113 | 91.49 130 | 93.48 81 | 95.96 64 | 95.02 88 | 95.37 102 | 91.73 80 | 87.97 134 | 91.28 106 | 82.82 197 | 91.04 155 | 90.62 85 | 95.82 83 | 95.07 83 | 95.95 109 | 92.67 110 |
|
v148 | | | 92.38 114 | 92.78 115 | 91.91 108 | 92.86 144 | 92.13 142 | 94.84 110 | 87.03 154 | 91.47 87 | 93.07 68 | 96.92 54 | 98.89 12 | 90.10 95 | 92.05 141 | 89.69 156 | 93.56 156 | 88.27 159 |
|
pmmvs-eth3d | | | 92.34 115 | 92.33 119 | 92.34 102 | 92.67 148 | 90.67 159 | 96.37 78 | 89.06 126 | 90.98 100 | 93.60 54 | 97.13 50 | 97.02 72 | 88.29 111 | 90.20 159 | 91.42 141 | 94.07 151 | 88.89 154 |
|
DELS-MVS | | | 92.33 116 | 93.61 101 | 90.83 124 | 92.84 145 | 95.13 84 | 94.76 115 | 87.22 153 | 87.78 135 | 88.42 147 | 95.78 74 | 95.28 118 | 85.71 132 | 94.44 109 | 93.91 108 | 96.01 107 | 92.97 104 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+-dtu | | | 92.32 117 | 91.66 128 | 93.09 94 | 95.13 88 | 94.73 95 | 94.57 119 | 92.14 65 | 81.74 173 | 90.33 123 | 88.13 166 | 95.91 102 | 89.24 101 | 94.23 116 | 93.65 113 | 97.12 71 | 93.23 99 |
|
UGNet | | | 92.31 118 | 94.70 74 | 89.53 146 | 90.99 177 | 95.53 74 | 96.19 82 | 92.10 68 | 91.35 92 | 85.76 158 | 95.31 86 | 95.48 110 | 76.84 185 | 95.22 96 | 94.79 93 | 95.32 121 | 95.19 62 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
USDC | | | 92.17 119 | 92.17 123 | 92.18 106 | 92.93 142 | 92.22 140 | 93.66 136 | 87.41 148 | 93.49 47 | 97.99 1 | 94.10 108 | 96.68 84 | 86.46 125 | 92.04 142 | 89.18 162 | 94.61 144 | 87.47 162 |
|
ETV-MVS | | | 92.12 120 | 90.44 137 | 94.08 61 | 96.36 50 | 93.63 121 | 96.27 81 | 92.00 71 | 78.90 193 | 92.13 85 | 85.29 188 | 89.85 162 | 90.26 94 | 97.07 51 | 96.29 59 | 97.46 56 | 92.04 122 |
|
IterMVS-LS | | | 92.10 121 | 92.33 119 | 91.82 110 | 93.18 134 | 93.66 119 | 92.80 156 | 92.27 59 | 90.82 103 | 90.59 118 | 97.19 47 | 90.97 156 | 87.76 117 | 89.60 166 | 90.94 147 | 94.34 148 | 93.16 101 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 92.09 122 | 92.84 114 | 91.22 120 | 92.55 150 | 92.97 129 | 93.42 141 | 85.43 171 | 90.24 109 | 91.83 95 | 94.70 97 | 94.59 127 | 88.48 109 | 94.91 101 | 93.31 118 | 95.59 118 | 89.15 149 |
|
CS-MVS | | | 92.04 123 | 90.08 143 | 94.32 54 | 95.94 65 | 94.95 92 | 96.72 61 | 91.36 85 | 80.81 179 | 94.18 39 | 81.09 201 | 90.28 160 | 90.30 93 | 95.84 82 | 95.57 75 | 97.41 60 | 92.05 121 |
|
EIA-MVS | | | 91.95 124 | 90.36 139 | 93.81 74 | 96.54 45 | 94.65 97 | 95.38 101 | 90.40 101 | 78.01 198 | 93.72 50 | 86.70 181 | 91.95 150 | 89.93 97 | 95.67 86 | 94.72 98 | 96.89 79 | 90.79 137 |
|
MAR-MVS | | | 91.86 125 | 91.14 133 | 92.71 97 | 94.29 104 | 94.24 107 | 94.91 109 | 91.82 77 | 81.66 174 | 93.32 58 | 84.51 191 | 93.42 142 | 86.86 122 | 95.16 98 | 94.44 101 | 95.05 135 | 94.53 77 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
EU-MVSNet | | | 91.63 126 | 92.73 116 | 90.35 132 | 88.36 195 | 87.89 176 | 96.53 70 | 81.51 194 | 92.45 66 | 91.82 96 | 96.44 63 | 97.05 71 | 93.26 32 | 94.10 117 | 88.94 167 | 90.61 174 | 92.24 118 |
|
FC-MVSNet-test | | | 91.49 127 | 94.43 79 | 88.07 162 | 94.97 90 | 90.53 162 | 95.42 100 | 91.18 89 | 93.24 52 | 72.94 203 | 98.37 16 | 93.86 137 | 78.78 168 | 97.82 33 | 96.13 63 | 95.13 130 | 91.05 134 |
|
OpenMVS | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | 89.22 12 | 91.09 128 | 91.42 131 | 90.71 126 | 92.79 147 | 93.61 123 | 92.74 157 | 85.47 170 | 86.10 148 | 90.73 113 | 85.71 187 | 93.07 146 | 86.69 123 | 94.07 118 | 93.34 117 | 95.86 111 | 94.02 85 |
|
FPMVS | | | 90.81 129 | 91.60 129 | 89.88 139 | 92.52 151 | 88.18 172 | 93.31 144 | 83.62 183 | 91.59 83 | 88.45 146 | 88.96 158 | 89.73 164 | 86.96 120 | 96.42 73 | 95.69 72 | 94.43 146 | 90.65 138 |
|
DI_MVS_plusplus_trai | | | 90.68 130 | 90.40 138 | 91.00 122 | 92.43 154 | 92.61 136 | 94.17 130 | 88.98 127 | 88.32 129 | 88.76 143 | 93.67 114 | 87.58 171 | 86.44 126 | 89.74 164 | 90.33 151 | 95.24 125 | 90.56 141 |
|
Vis-MVSNet (Re-imp) | | | 90.68 130 | 92.18 122 | 88.92 151 | 94.63 96 | 92.75 133 | 92.91 152 | 91.20 88 | 89.21 122 | 75.01 200 | 93.96 113 | 89.07 167 | 82.72 150 | 95.88 81 | 95.30 78 | 97.08 73 | 89.08 151 |
|
DPM-MVS | | | 90.67 132 | 89.86 144 | 91.63 112 | 95.29 83 | 94.16 108 | 94.52 120 | 89.63 117 | 89.59 119 | 89.67 132 | 81.95 199 | 88.64 168 | 85.75 131 | 90.46 157 | 90.43 150 | 94.91 138 | 93.77 90 |
|
diffmvs | | | 90.44 133 | 92.23 121 | 88.35 158 | 91.36 171 | 91.38 151 | 92.45 162 | 84.84 176 | 89.88 116 | 85.09 164 | 96.69 59 | 97.71 56 | 83.33 145 | 90.01 163 | 88.96 166 | 93.03 165 | 91.00 135 |
|
FMVSNet2 | | | 90.28 134 | 92.04 125 | 88.23 160 | 91.22 173 | 94.05 109 | 92.88 153 | 90.69 96 | 86.53 144 | 79.89 189 | 94.38 104 | 92.73 147 | 78.54 171 | 91.64 149 | 92.26 127 | 96.17 103 | 92.67 110 |
|
IterMVS-SCA-FT | | | 90.24 135 | 89.37 150 | 91.26 119 | 92.50 152 | 92.11 143 | 91.69 172 | 87.48 146 | 87.05 141 | 91.82 96 | 95.76 75 | 87.25 172 | 91.36 63 | 89.02 171 | 85.53 182 | 92.68 168 | 88.90 153 |
|
MVS_Test | | | 90.19 136 | 90.58 134 | 89.74 141 | 92.12 162 | 91.74 147 | 92.51 159 | 88.54 134 | 82.80 168 | 87.50 151 | 94.62 98 | 95.02 124 | 83.97 140 | 88.69 174 | 89.32 160 | 93.79 154 | 91.85 126 |
|
EPNet | | | 90.17 137 | 89.07 152 | 91.45 116 | 97.25 19 | 90.62 161 | 94.84 110 | 93.54 45 | 80.96 176 | 91.85 94 | 86.98 177 | 85.88 177 | 77.79 177 | 92.30 137 | 92.58 123 | 93.41 158 | 94.20 82 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PVSNet_BlendedMVS | | | 90.09 138 | 90.12 141 | 90.05 137 | 92.40 155 | 92.74 134 | 91.74 168 | 85.89 166 | 80.54 180 | 90.30 124 | 88.54 161 | 95.51 108 | 84.69 136 | 92.64 132 | 90.25 152 | 95.28 123 | 90.61 139 |
|
PVSNet_Blended | | | 90.09 138 | 90.12 141 | 90.05 137 | 92.40 155 | 92.74 134 | 91.74 168 | 85.89 166 | 80.54 180 | 90.30 124 | 88.54 161 | 95.51 108 | 84.69 136 | 92.64 132 | 90.25 152 | 95.28 123 | 90.61 139 |
|
pmmvs4 | | | 89.95 140 | 89.32 151 | 90.69 127 | 91.60 168 | 89.17 169 | 94.37 122 | 87.63 142 | 88.07 133 | 91.02 111 | 94.50 101 | 90.50 159 | 86.13 128 | 86.33 188 | 89.40 159 | 93.39 159 | 87.29 165 |
|
MDA-MVSNet-bldmvs | | | 89.75 141 | 91.67 127 | 87.50 167 | 74.25 213 | 90.88 156 | 94.68 117 | 85.89 166 | 91.64 81 | 91.03 110 | 95.86 70 | 94.35 132 | 89.10 103 | 96.87 60 | 86.37 178 | 90.04 175 | 85.72 170 |
|
tttt0517 | | | 89.64 142 | 88.05 163 | 91.49 114 | 93.52 127 | 91.65 148 | 93.67 135 | 87.53 143 | 82.77 169 | 89.39 136 | 90.37 144 | 70.05 205 | 88.21 112 | 93.71 121 | 93.79 109 | 96.63 84 | 94.04 84 |
|
PatchMatch-RL | | | 89.59 143 | 88.80 156 | 90.51 129 | 92.20 161 | 88.00 175 | 91.72 170 | 86.64 159 | 84.75 157 | 88.25 148 | 87.10 176 | 90.66 158 | 89.85 99 | 93.23 126 | 92.28 126 | 94.41 147 | 85.60 171 |
|
Fast-Effi-MVS+-dtu | | | 89.57 144 | 88.42 160 | 90.92 123 | 93.35 131 | 91.57 149 | 93.01 150 | 95.71 9 | 78.94 192 | 87.65 150 | 84.68 190 | 93.14 145 | 82.00 155 | 90.84 155 | 91.01 146 | 93.78 155 | 88.77 155 |
|
thisisatest0530 | | | 89.54 145 | 87.99 165 | 91.35 118 | 93.17 135 | 91.31 152 | 93.45 140 | 87.53 143 | 82.96 167 | 89.17 138 | 90.45 141 | 70.32 204 | 88.21 112 | 93.37 124 | 93.79 109 | 96.54 86 | 93.71 91 |
|
GBi-Net | | | 89.35 146 | 90.58 134 | 87.91 163 | 91.22 173 | 94.05 109 | 92.88 153 | 90.05 105 | 79.40 184 | 78.60 191 | 90.58 137 | 87.05 173 | 78.54 171 | 95.32 91 | 94.98 86 | 96.17 103 | 92.67 110 |
|
test1 | | | 89.35 146 | 90.58 134 | 87.91 163 | 91.22 173 | 94.05 109 | 92.88 153 | 90.05 105 | 79.40 184 | 78.60 191 | 90.58 137 | 87.05 173 | 78.54 171 | 95.32 91 | 94.98 86 | 96.17 103 | 92.67 110 |
|
thres600view7 | | | 89.14 148 | 88.83 154 | 89.51 147 | 93.71 126 | 93.55 124 | 93.93 133 | 88.02 139 | 87.30 138 | 82.40 178 | 81.18 200 | 80.63 191 | 82.69 151 | 94.27 113 | 95.90 66 | 96.27 98 | 88.94 152 |
|
CVMVSNet | | | 88.97 149 | 89.73 146 | 88.10 161 | 87.33 201 | 85.22 185 | 94.68 117 | 78.68 196 | 88.94 124 | 86.98 155 | 95.55 80 | 85.71 178 | 89.87 98 | 91.19 153 | 89.69 156 | 91.05 172 | 91.78 129 |
|
CANet_DTU | | | 88.95 150 | 89.51 149 | 88.29 159 | 93.12 138 | 91.22 154 | 93.61 137 | 83.47 186 | 80.07 183 | 90.71 117 | 89.19 156 | 93.68 140 | 76.27 189 | 91.44 151 | 91.17 145 | 92.59 169 | 89.83 145 |
|
GA-MVS | | | 88.76 151 | 88.04 164 | 89.59 145 | 92.32 158 | 91.46 150 | 92.28 164 | 86.62 160 | 83.82 164 | 89.84 128 | 92.51 125 | 81.94 186 | 83.53 144 | 89.41 168 | 89.27 161 | 92.95 166 | 87.90 160 |
|
pmmvs5 | | | 88.63 152 | 89.70 147 | 87.39 168 | 89.24 188 | 90.64 160 | 91.87 167 | 82.13 190 | 83.34 165 | 87.86 149 | 94.58 99 | 96.15 97 | 79.87 165 | 87.33 183 | 89.07 165 | 93.39 159 | 86.76 166 |
|
thres400 | | | 88.54 153 | 88.15 162 | 88.98 149 | 93.17 135 | 92.84 131 | 93.56 138 | 86.93 156 | 86.45 145 | 82.37 179 | 79.96 203 | 81.46 189 | 81.83 158 | 93.21 127 | 94.76 95 | 96.04 106 | 88.39 157 |
|
CDS-MVSNet | | | 88.41 154 | 89.79 145 | 86.79 172 | 94.55 101 | 90.82 157 | 92.50 160 | 89.85 112 | 83.26 166 | 80.52 187 | 91.05 133 | 89.93 161 | 69.11 199 | 93.17 129 | 92.71 122 | 94.21 150 | 87.63 161 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
gg-mvs-nofinetune | | | 88.32 155 | 88.81 155 | 87.75 165 | 93.07 139 | 89.37 168 | 89.06 191 | 95.94 8 | 95.29 20 | 87.15 152 | 97.38 42 | 76.38 194 | 68.05 202 | 91.04 154 | 89.10 164 | 93.24 161 | 83.10 179 |
|
IterMVS | | | 88.32 155 | 88.25 161 | 88.41 157 | 90.83 179 | 91.24 153 | 93.07 149 | 81.69 192 | 86.77 142 | 88.55 144 | 95.61 76 | 86.91 176 | 87.01 119 | 87.38 182 | 83.77 184 | 89.29 177 | 86.06 169 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
thres200 | | | 88.29 157 | 87.88 166 | 88.76 153 | 92.50 152 | 93.55 124 | 92.47 161 | 88.02 139 | 84.80 155 | 81.44 184 | 79.28 205 | 82.20 185 | 81.83 158 | 94.27 113 | 93.67 112 | 96.27 98 | 87.40 163 |
|
IB-MVS | | 86.01 17 | 88.24 158 | 87.63 168 | 88.94 150 | 92.03 164 | 91.77 146 | 92.40 163 | 85.58 169 | 78.24 195 | 84.85 165 | 71.99 209 | 93.45 141 | 83.96 141 | 93.48 123 | 92.33 125 | 94.84 139 | 92.15 119 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDTV_nov1_ep13_2view | | | 88.22 159 | 87.85 167 | 88.65 155 | 91.40 170 | 86.75 180 | 94.07 131 | 84.97 174 | 88.86 126 | 93.20 63 | 96.11 68 | 96.21 96 | 83.70 143 | 87.29 184 | 80.29 191 | 84.56 195 | 79.46 191 |
|
test20.03 | | | 88.20 160 | 91.26 132 | 84.63 184 | 96.64 42 | 89.39 167 | 90.73 179 | 89.97 110 | 91.07 98 | 72.02 205 | 94.98 93 | 95.45 111 | 69.35 198 | 92.70 130 | 91.19 144 | 89.06 179 | 84.02 173 |
|
HyFIR lowres test | | | 88.19 161 | 86.56 174 | 90.09 135 | 91.24 172 | 92.17 141 | 94.30 127 | 88.79 130 | 84.06 159 | 85.45 161 | 89.52 153 | 85.64 179 | 88.64 107 | 85.40 191 | 87.28 172 | 92.14 171 | 81.87 182 |
|
ET-MVSNet_ETH3D | | | 88.06 162 | 85.75 178 | 90.74 125 | 92.82 146 | 90.68 158 | 93.77 134 | 88.59 132 | 81.22 175 | 89.78 130 | 89.15 157 | 66.79 212 | 84.29 139 | 91.72 147 | 91.34 142 | 95.22 126 | 89.36 148 |
|
tfpn200view9 | | | 87.94 163 | 87.51 170 | 88.44 156 | 92.28 159 | 93.63 121 | 93.35 143 | 88.11 137 | 80.90 177 | 80.89 185 | 78.25 206 | 82.25 183 | 79.65 167 | 94.27 113 | 94.76 95 | 96.36 92 | 88.48 156 |
|
FMVSNet3 | | | 87.90 164 | 88.63 158 | 87.04 169 | 89.78 186 | 93.46 127 | 91.62 173 | 90.05 105 | 79.40 184 | 78.60 191 | 90.58 137 | 87.05 173 | 77.07 184 | 88.03 179 | 89.86 155 | 95.12 131 | 92.04 122 |
|
MS-PatchMatch | | | 87.72 165 | 88.62 159 | 86.66 173 | 90.81 180 | 88.18 172 | 90.92 176 | 82.25 189 | 85.86 150 | 80.40 188 | 90.14 148 | 89.29 166 | 84.93 133 | 89.39 169 | 89.12 163 | 90.67 173 | 88.34 158 |
|
Anonymous20231206 | | | 87.45 166 | 89.66 148 | 84.87 181 | 94.00 112 | 87.73 178 | 91.36 174 | 86.41 164 | 88.89 125 | 75.03 199 | 92.59 124 | 96.82 79 | 72.48 196 | 89.72 165 | 88.06 169 | 89.93 176 | 83.81 175 |
|
EPNet_dtu | | | 87.40 167 | 86.27 175 | 88.72 154 | 95.68 75 | 83.37 191 | 92.09 166 | 90.08 104 | 78.11 197 | 91.29 105 | 86.33 182 | 89.74 163 | 75.39 191 | 89.07 170 | 87.89 170 | 87.81 184 | 89.38 147 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline1 | | | 86.96 168 | 87.58 169 | 86.24 175 | 93.07 139 | 90.44 163 | 89.24 190 | 86.85 158 | 85.14 154 | 77.26 197 | 90.45 141 | 76.09 196 | 75.79 190 | 91.80 146 | 91.81 133 | 95.20 127 | 87.35 164 |
|
baseline | | | 86.71 169 | 88.89 153 | 84.16 186 | 87.85 197 | 85.23 184 | 89.82 184 | 77.69 198 | 84.03 161 | 84.75 166 | 94.91 95 | 94.59 127 | 77.19 183 | 86.57 187 | 86.51 177 | 87.66 187 | 90.36 142 |
|
CHOSEN 1792x2688 | | | 86.64 170 | 86.62 173 | 86.65 174 | 90.33 183 | 87.86 177 | 93.19 147 | 83.30 187 | 83.95 163 | 82.32 180 | 87.93 168 | 89.34 165 | 86.92 121 | 85.64 190 | 84.95 183 | 83.85 198 | 86.68 167 |
|
testgi | | | 86.49 171 | 90.31 140 | 82.03 189 | 95.63 76 | 88.18 172 | 93.47 139 | 84.89 175 | 93.23 53 | 69.54 209 | 87.16 175 | 97.96 46 | 60.66 206 | 91.90 145 | 89.90 154 | 87.99 182 | 83.84 174 |
|
thres100view900 | | | 86.46 172 | 86.00 177 | 86.99 170 | 92.28 159 | 91.03 155 | 91.09 175 | 84.49 179 | 80.90 177 | 80.89 185 | 78.25 206 | 82.25 183 | 77.57 180 | 90.17 160 | 92.84 121 | 95.63 116 | 86.57 168 |
|
gm-plane-assit | | | 86.15 173 | 82.51 186 | 90.40 131 | 95.81 71 | 92.29 138 | 97.99 34 | 84.66 178 | 92.15 74 | 93.15 65 | 97.84 29 | 44.65 219 | 78.60 170 | 88.02 180 | 85.95 179 | 92.20 170 | 76.69 199 |
|
CMPMVS | ![Method available as binary. binary](img/icon_binary.png) | 66.55 18 | 85.55 174 | 87.46 171 | 83.32 187 | 84.99 203 | 81.97 196 | 79.19 210 | 75.93 200 | 79.32 187 | 88.82 141 | 85.09 189 | 91.07 154 | 82.12 154 | 92.56 134 | 89.63 158 | 88.84 180 | 92.56 114 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 85.32 175 | 81.58 188 | 89.69 143 | 90.36 182 | 84.79 187 | 86.72 201 | 92.22 60 | 75.38 203 | 90.73 113 | 90.41 143 | 67.88 209 | 84.86 134 | 83.76 193 | 85.74 180 | 93.24 161 | 83.14 177 |
|
baseline2 | | | 84.95 176 | 82.68 185 | 87.59 166 | 92.64 149 | 88.41 171 | 90.09 181 | 84.25 180 | 75.88 201 | 85.23 162 | 82.49 198 | 71.15 202 | 80.14 164 | 88.21 178 | 87.21 175 | 93.21 164 | 85.39 172 |
|
MVSTER | | | 84.79 177 | 83.79 181 | 85.96 177 | 89.14 189 | 89.80 166 | 89.39 188 | 82.99 188 | 74.16 207 | 82.78 176 | 85.97 185 | 66.81 211 | 76.84 185 | 90.77 156 | 88.83 168 | 94.66 141 | 90.19 144 |
|
MIMVSNet | | | 84.76 178 | 86.75 172 | 82.44 188 | 91.71 167 | 85.95 182 | 89.74 186 | 89.49 119 | 85.28 152 | 69.69 208 | 87.93 168 | 90.88 157 | 64.85 204 | 88.26 177 | 87.74 171 | 89.18 178 | 81.24 183 |
|
SCA | | | 84.69 179 | 81.10 189 | 88.87 152 | 89.02 190 | 90.31 164 | 92.21 165 | 92.09 69 | 82.72 170 | 89.68 131 | 86.83 179 | 73.08 198 | 85.80 130 | 80.50 201 | 77.51 197 | 84.45 197 | 76.80 198 |
|
new-patchmatchnet | | | 84.45 180 | 88.75 157 | 79.43 195 | 93.28 132 | 81.87 197 | 81.68 207 | 83.48 185 | 94.47 29 | 71.53 206 | 98.33 17 | 97.88 50 | 58.61 209 | 90.35 158 | 77.33 198 | 87.99 182 | 81.05 185 |
|
PatchT | | | 83.44 181 | 81.10 189 | 86.18 176 | 77.92 211 | 82.58 195 | 89.87 183 | 87.39 149 | 75.88 201 | 90.73 113 | 89.86 149 | 66.71 213 | 84.86 134 | 83.76 193 | 85.74 180 | 86.33 192 | 83.14 177 |
|
RPMNet | | | 83.42 182 | 78.40 198 | 89.28 148 | 89.79 185 | 84.79 187 | 90.64 180 | 92.11 67 | 75.38 203 | 87.10 153 | 79.80 204 | 61.99 218 | 82.79 149 | 81.88 199 | 82.07 188 | 93.23 163 | 82.87 180 |
|
TAMVS | | | 82.96 183 | 86.15 176 | 79.24 198 | 90.57 181 | 83.12 194 | 87.29 197 | 75.12 202 | 84.06 159 | 65.81 210 | 92.22 127 | 88.27 170 | 69.11 199 | 88.72 172 | 87.26 174 | 87.56 188 | 79.38 192 |
|
PatchmatchNet | ![Method available under a permissive open source license. permissive](img/icon_permissive.png) | | 82.44 184 | 78.69 197 | 86.83 171 | 89.81 184 | 81.55 198 | 90.78 178 | 87.27 152 | 82.39 172 | 88.85 140 | 88.31 164 | 70.96 203 | 81.90 156 | 78.58 205 | 74.33 205 | 82.35 202 | 74.69 202 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDTV_nov1_ep13 | | | 82.33 185 | 79.66 192 | 85.45 179 | 88.83 192 | 83.88 189 | 90.09 181 | 81.98 191 | 79.07 191 | 88.82 141 | 88.70 159 | 73.77 197 | 78.41 175 | 80.29 203 | 76.08 200 | 84.56 195 | 75.83 200 |
|
CostFormer | | | 82.15 186 | 79.54 193 | 85.20 180 | 88.92 191 | 85.70 183 | 90.87 177 | 86.26 165 | 79.19 190 | 83.87 173 | 87.89 170 | 69.20 207 | 76.62 187 | 77.50 208 | 75.28 202 | 84.69 194 | 82.02 181 |
|
PMMVS | | | 81.93 187 | 83.48 183 | 80.12 194 | 72.35 214 | 75.05 207 | 88.54 193 | 64.01 207 | 77.02 200 | 82.22 181 | 87.51 172 | 91.12 153 | 79.70 166 | 86.59 185 | 86.64 176 | 93.88 152 | 80.41 186 |
|
pmmvs3 | | | 81.69 188 | 83.83 180 | 79.19 199 | 78.33 210 | 78.57 201 | 89.53 187 | 58.71 210 | 78.88 194 | 84.34 171 | 88.36 163 | 91.96 149 | 77.69 179 | 87.48 181 | 82.42 187 | 86.54 191 | 79.18 193 |
|
tpm | | | 81.58 189 | 78.84 195 | 84.79 183 | 91.11 176 | 79.50 199 | 89.79 185 | 83.75 181 | 79.30 188 | 92.05 87 | 90.98 134 | 64.78 215 | 74.54 192 | 80.50 201 | 76.67 199 | 77.49 207 | 80.15 189 |
|
test0.0.03 1 | | | 81.51 190 | 83.30 184 | 79.42 196 | 93.99 113 | 86.50 181 | 85.93 205 | 87.32 150 | 78.16 196 | 61.62 211 | 80.78 202 | 81.78 187 | 59.87 207 | 88.40 176 | 87.27 173 | 87.78 186 | 80.19 188 |
|
dps | | | 81.42 191 | 77.88 203 | 85.56 178 | 87.67 199 | 85.17 186 | 88.37 195 | 87.46 147 | 74.37 206 | 84.55 168 | 86.80 180 | 62.18 217 | 80.20 163 | 81.13 200 | 77.52 196 | 85.10 193 | 77.98 196 |
|
test-LLR | | | 80.62 192 | 77.20 206 | 84.62 185 | 93.99 113 | 75.11 205 | 87.04 198 | 87.32 150 | 70.11 210 | 78.59 194 | 83.17 195 | 71.60 200 | 73.88 194 | 82.32 197 | 79.20 193 | 86.91 189 | 78.87 194 |
|
tpm cat1 | | | 80.03 193 | 75.93 209 | 84.81 182 | 89.31 187 | 83.26 193 | 88.86 192 | 86.55 163 | 79.24 189 | 86.10 157 | 84.22 192 | 63.62 216 | 77.37 182 | 73.43 209 | 70.88 208 | 80.67 203 | 76.87 197 |
|
N_pmnet | | | 79.33 194 | 84.22 179 | 73.62 205 | 91.72 166 | 73.72 208 | 86.11 203 | 76.36 199 | 92.38 67 | 53.38 212 | 95.54 82 | 95.62 106 | 59.14 208 | 84.23 192 | 74.84 204 | 75.03 210 | 73.25 206 |
|
EPMVS | | | 79.26 195 | 78.20 201 | 80.49 192 | 87.04 202 | 78.86 200 | 86.08 204 | 83.51 184 | 82.63 171 | 73.94 202 | 89.59 151 | 68.67 208 | 72.03 197 | 78.17 206 | 75.08 203 | 80.37 204 | 74.37 203 |
|
CHOSEN 280x420 | | | 79.24 196 | 78.26 200 | 80.38 193 | 79.60 209 | 68.80 213 | 89.32 189 | 75.38 201 | 77.25 199 | 78.02 196 | 75.57 208 | 76.17 195 | 81.19 161 | 88.61 175 | 81.39 189 | 78.79 205 | 80.03 190 |
|
ADS-MVSNet | | | 79.11 197 | 79.38 194 | 78.80 201 | 81.90 207 | 75.59 204 | 84.36 206 | 83.69 182 | 87.31 137 | 76.76 198 | 87.58 171 | 76.90 193 | 68.55 201 | 78.70 204 | 75.56 201 | 77.53 206 | 74.07 204 |
|
FMVSNet5 | | | 79.08 198 | 78.83 196 | 79.38 197 | 87.52 200 | 86.78 179 | 87.64 196 | 78.15 197 | 69.54 212 | 70.64 207 | 65.97 212 | 65.44 214 | 63.87 205 | 90.17 160 | 90.46 149 | 88.48 181 | 83.45 176 |
|
tpmrst | | | 78.81 199 | 76.18 208 | 81.87 190 | 88.56 193 | 77.45 202 | 86.74 200 | 81.52 193 | 80.08 182 | 83.48 174 | 90.84 136 | 66.88 210 | 74.54 192 | 73.04 210 | 71.02 207 | 76.38 208 | 73.95 205 |
|
test-mter | | | 78.71 200 | 78.35 199 | 79.12 200 | 84.03 204 | 76.58 203 | 88.51 194 | 59.06 209 | 71.06 208 | 78.87 190 | 83.73 194 | 71.83 199 | 76.44 188 | 83.41 196 | 80.61 190 | 87.79 185 | 81.24 183 |
|
MVS-HIRNet | | | 78.28 201 | 75.28 210 | 81.79 191 | 80.33 208 | 69.38 212 | 76.83 211 | 86.59 161 | 70.76 209 | 86.66 156 | 89.57 152 | 81.04 190 | 77.74 178 | 77.81 207 | 71.65 206 | 82.62 200 | 66.73 210 |
|
E-PMN | | | 77.81 202 | 77.88 203 | 77.73 204 | 88.26 196 | 70.48 211 | 80.19 209 | 71.20 204 | 86.66 143 | 72.89 204 | 88.09 167 | 81.74 188 | 78.75 169 | 90.02 162 | 68.30 209 | 75.10 209 | 59.85 211 |
|
EMVS | | | 77.65 203 | 77.49 205 | 77.83 202 | 87.75 198 | 71.02 210 | 81.13 208 | 70.54 205 | 86.38 146 | 74.52 201 | 89.38 154 | 80.19 192 | 78.22 176 | 89.48 167 | 67.13 210 | 74.83 211 | 58.84 212 |
|
TESTMET0.1,1 | | | 77.47 204 | 77.20 206 | 77.78 203 | 81.94 206 | 75.11 205 | 87.04 198 | 58.33 211 | 70.11 210 | 78.59 194 | 83.17 195 | 71.60 200 | 73.88 194 | 82.32 197 | 79.20 193 | 86.91 189 | 78.87 194 |
|
new_pmnet | | | 76.65 205 | 83.52 182 | 68.63 206 | 82.60 205 | 72.08 209 | 76.76 212 | 64.17 206 | 84.41 158 | 49.73 214 | 91.77 130 | 91.53 152 | 56.16 210 | 86.59 185 | 83.26 186 | 82.37 201 | 75.02 201 |
|
MVE | ![Method available under a permissive open source license. permissive](img/icon_permissive.png) | 60.41 19 | 73.21 206 | 80.84 191 | 64.30 207 | 56.34 215 | 57.24 215 | 75.28 214 | 72.76 203 | 87.14 140 | 41.39 215 | 86.31 183 | 85.30 180 | 80.66 162 | 86.17 189 | 83.36 185 | 59.35 213 | 80.38 187 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMMVS2 | | | 69.86 207 | 82.14 187 | 55.52 208 | 75.19 212 | 63.08 214 | 75.52 213 | 60.97 208 | 88.50 128 | 25.11 217 | 91.77 130 | 96.44 87 | 25.43 211 | 88.70 173 | 79.34 192 | 70.93 212 | 67.17 209 |
|
GG-mvs-BLEND | | | 54.28 208 | 77.89 202 | 26.72 210 | 0.37 219 | 83.31 192 | 70.04 215 | 0.39 216 | 74.71 205 | 5.36 218 | 68.78 210 | 83.06 182 | 0.62 215 | 83.73 195 | 78.99 195 | 83.55 199 | 72.68 208 |
|
testmvs | | | 2.38 209 | 3.35 211 | 1.26 212 | 0.83 217 | 0.96 219 | 1.53 219 | 0.83 214 | 3.59 215 | 1.63 220 | 6.03 214 | 2.93 221 | 1.55 214 | 3.49 213 | 2.51 213 | 1.21 217 | 3.92 214 |
|
test123 | | | 2.16 210 | 2.82 212 | 1.41 211 | 0.62 218 | 1.18 218 | 1.53 219 | 0.82 215 | 2.78 216 | 2.27 219 | 4.18 215 | 1.98 222 | 1.64 213 | 2.58 214 | 3.01 212 | 1.56 216 | 4.00 213 |
|
uanet_test | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet-low-res | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
RE-MVS-def | | | | | | | | | | | 97.21 5 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 93.19 144 | | | | | |
|
SR-MVS | | | | | | 97.13 23 | | | 94.77 17 | | | | 97.77 53 | | | | | |
|
Anonymous202405211 | | | | 94.63 75 | | 94.51 102 | 94.96 91 | 93.94 132 | 91.35 86 | 90.82 103 | | 95.60 78 | 95.85 103 | 81.74 160 | 96.47 71 | 95.84 69 | 97.39 62 | 92.85 105 |
|
our_test_3 | | | | | | 91.78 165 | 88.87 170 | 94.37 122 | | | | | | | | | | |
|
ambc | | | | 94.61 76 | | 98.09 5 | 95.14 83 | 91.71 171 | | 94.18 38 | 96.46 12 | 96.26 64 | 96.30 90 | 91.26 66 | 94.70 104 | 92.00 132 | 93.45 157 | 93.67 92 |
|
MTAPA | | | | | | | | | | | 94.88 28 | | 96.88 77 | | | | | |
|
MTMP | | | | | | | | | | | 95.43 18 | | 97.25 65 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.96 218 | | | | | | | | | | |
|
tmp_tt | | | | | 28.44 209 | 36.05 216 | 15.86 217 | 21.29 217 | 6.40 213 | 54.52 214 | 51.96 213 | 50.37 213 | 38.68 220 | 9.55 212 | 61.75 212 | 59.66 211 | 45.36 215 | |
|
XVS | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 79 | | | | 98.17 34 | |
|
X-MVStestdata | | | | | | 96.86 32 | 97.48 18 | 98.73 3 | | | 93.28 59 | | 96.82 79 | | | | 98.17 34 | |
|
abl_6 | | | | | 91.88 109 | 93.76 123 | 94.98 90 | 95.64 95 | 88.97 128 | 86.20 147 | 90.00 127 | 86.31 183 | 94.50 130 | 87.31 118 | | | 95.60 117 | 92.48 116 |
|
mPP-MVS | | | | | | 98.24 3 | | | | | | | 97.65 58 | | | | | |
|
NP-MVS | | | | | | | | | | 85.48 151 | | | | | | | | |
|
Patchmtry | | | | | | | 83.74 190 | 86.72 201 | 92.22 60 | | 90.73 113 | | | | | | | |
|
DeepMVS_CX | ![Method available under an open source license with copyleft or other restrictive terms. copyleft](img/icon_copyleft.png) | | | | | | 47.68 216 | 53.20 216 | 19.21 212 | 63.24 213 | 26.96 216 | 66.50 211 | 69.82 206 | 66.91 203 | 64.27 211 | | 54.91 214 | 72.72 207 |
|