LTVRE_ROB | | 97.71 1 | 99.33 1 | 99.47 2 | 99.16 7 | 99.16 41 | 99.11 13 | 99.39 14 | 99.16 11 | 99.26 3 | 99.22 5 | 99.51 19 | 99.75 3 | 98.54 15 | 99.71 2 | 99.47 4 | 99.52 13 | 99.46 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
SixPastTwentyTwo | | | 99.25 2 | 99.20 4 | 99.32 1 | 99.53 15 | 99.32 9 | 99.64 2 | 99.19 10 | 98.05 11 | 99.19 6 | 99.74 4 | 98.96 51 | 99.03 2 | 99.69 3 | 99.58 2 | 99.32 26 | 99.06 6 |
|
WR-MVS | | | 99.22 3 | 99.15 6 | 99.30 2 | 99.54 11 | 99.62 1 | 99.63 4 | 99.45 1 | 97.75 15 | 98.47 22 | 99.71 6 | 99.05 42 | 98.88 4 | 99.54 6 | 99.49 3 | 99.81 1 | 98.87 9 |
|
test_part1 | | | 99.20 4 | 99.62 1 | 98.72 16 | 98.92 65 | 99.62 1 | 99.52 13 | 99.01 13 | 99.39 1 | 97.87 38 | 99.74 4 | 99.75 3 | 97.29 62 | 99.73 1 | 99.71 1 | 99.69 2 | 99.41 2 |
|
PS-CasMVS | | | 99.08 5 | 98.90 11 | 99.28 3 | 99.65 3 | 99.56 5 | 99.59 6 | 99.39 3 | 96.36 34 | 98.83 14 | 99.46 22 | 99.09 35 | 98.62 10 | 99.51 8 | 99.36 9 | 99.63 4 | 98.97 7 |
|
PEN-MVS | | | 99.08 5 | 98.95 9 | 99.23 5 | 99.65 3 | 99.59 3 | 99.64 2 | 99.34 6 | 96.68 27 | 98.65 17 | 99.43 24 | 99.33 16 | 98.47 17 | 99.50 9 | 99.32 10 | 99.60 6 | 98.79 11 |
|
v7n | | | 99.03 7 | 99.03 8 | 99.02 9 | 99.09 52 | 99.11 13 | 99.57 10 | 98.82 19 | 98.21 10 | 99.25 3 | 99.84 2 | 99.59 6 | 98.76 6 | 99.23 17 | 98.83 29 | 98.63 68 | 98.40 34 |
|
DTE-MVSNet | | | 99.03 7 | 98.88 12 | 99.21 6 | 99.66 2 | 99.59 3 | 99.62 5 | 99.34 6 | 96.92 23 | 98.52 19 | 99.36 30 | 98.98 47 | 98.57 13 | 99.49 10 | 99.23 13 | 99.56 10 | 98.55 25 |
|
TDRefinement | | | 99.00 9 | 99.13 7 | 98.86 10 | 98.99 62 | 99.05 18 | 99.58 7 | 98.29 44 | 98.96 5 | 97.96 36 | 99.40 27 | 98.67 75 | 98.87 5 | 99.60 4 | 99.46 5 | 99.46 19 | 98.74 14 |
|
WR-MVS_H | | | 98.97 10 | 98.82 14 | 99.14 8 | 99.56 9 | 99.56 5 | 99.54 12 | 99.42 2 | 96.07 39 | 98.37 24 | 99.34 31 | 99.09 35 | 98.43 18 | 99.45 11 | 99.41 6 | 99.53 11 | 98.86 10 |
|
UniMVSNet_ETH3D | | | 98.93 11 | 99.20 4 | 98.63 22 | 99.54 11 | 99.33 8 | 98.73 62 | 99.37 4 | 98.87 6 | 97.86 39 | 99.27 35 | 99.78 2 | 96.59 84 | 99.52 7 | 99.40 7 | 99.67 3 | 98.21 42 |
|
CP-MVSNet | | | 98.91 12 | 98.61 19 | 99.25 4 | 99.63 5 | 99.50 7 | 99.55 11 | 99.36 5 | 95.53 63 | 98.77 16 | 99.11 41 | 98.64 78 | 98.57 13 | 99.42 12 | 99.28 12 | 99.61 5 | 98.78 12 |
|
anonymousdsp | | | 98.85 13 | 98.88 12 | 98.83 11 | 98.69 82 | 98.20 74 | 99.68 1 | 97.35 119 | 97.09 22 | 98.98 10 | 99.86 1 | 99.43 10 | 98.94 3 | 99.28 15 | 99.19 14 | 99.33 24 | 99.08 5 |
|
pmmvs6 | | | 98.77 14 | 99.35 3 | 98.09 43 | 98.32 99 | 98.92 23 | 98.57 69 | 99.03 12 | 99.36 2 | 96.86 85 | 99.77 3 | 99.86 1 | 96.20 98 | 99.56 5 | 99.39 8 | 99.59 7 | 98.61 22 |
|
ACMH | | 95.26 7 | 98.75 15 | 98.93 10 | 98.54 26 | 98.86 68 | 99.01 20 | 99.58 7 | 98.10 63 | 98.67 7 | 97.30 63 | 99.18 39 | 99.42 11 | 98.40 19 | 99.19 19 | 98.86 27 | 98.99 43 | 98.19 43 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
COLMAP_ROB |  | 96.84 2 | 98.75 15 | 98.82 14 | 98.66 20 | 99.14 45 | 98.79 34 | 99.30 17 | 97.67 91 | 98.33 9 | 97.82 41 | 99.20 38 | 99.18 32 | 98.76 6 | 99.27 16 | 98.96 21 | 99.29 28 | 98.03 47 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
UA-Net | | | 98.66 17 | 98.60 22 | 98.73 15 | 99.83 1 | 99.28 10 | 98.56 71 | 99.24 8 | 96.04 40 | 97.12 72 | 98.44 75 | 98.95 52 | 98.17 26 | 99.15 22 | 99.00 20 | 99.48 18 | 99.33 3 |
|
DeepC-MVS | | 96.08 5 | 98.58 18 | 98.49 24 | 98.68 18 | 99.37 27 | 98.52 60 | 99.01 34 | 98.17 58 | 97.17 21 | 98.25 27 | 99.56 16 | 99.62 5 | 98.29 22 | 98.40 58 | 98.09 67 | 98.97 45 | 98.08 46 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TranMVSNet+NR-MVSNet | | | 98.45 19 | 98.22 31 | 98.72 16 | 99.32 32 | 99.06 16 | 98.99 35 | 98.89 15 | 95.52 64 | 97.53 51 | 99.42 26 | 98.83 63 | 98.01 33 | 98.55 50 | 98.34 53 | 99.57 9 | 97.80 57 |
|
CSCG | | | 98.45 19 | 98.61 19 | 98.26 37 | 99.11 49 | 99.06 16 | 98.17 88 | 97.49 104 | 97.93 13 | 97.37 60 | 98.88 52 | 99.29 19 | 98.10 27 | 98.40 58 | 97.51 84 | 99.32 26 | 99.16 4 |
|
Gipuma |  | | 98.43 21 | 98.15 35 | 98.76 14 | 99.00 61 | 98.29 71 | 97.91 104 | 98.06 65 | 99.02 4 | 99.50 1 | 96.33 125 | 98.67 75 | 99.22 1 | 99.02 25 | 98.02 72 | 98.88 59 | 97.66 66 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
CS-MVS-test | | | 98.41 22 | 98.22 31 | 98.64 21 | 98.75 77 | 99.16 11 | 99.58 7 | 97.99 73 | 94.54 101 | 98.06 32 | 98.30 79 | 99.14 34 | 98.07 29 | 98.93 29 | 99.18 15 | 99.40 20 | 98.27 41 |
|
ACMH+ | | 94.90 8 | 98.40 23 | 98.71 17 | 98.04 53 | 98.93 64 | 98.84 29 | 99.30 17 | 97.86 83 | 97.78 14 | 94.19 171 | 98.77 62 | 99.39 13 | 98.61 11 | 99.33 14 | 99.07 16 | 99.33 24 | 97.81 56 |
|
ACMMPR | | | 98.31 24 | 98.07 39 | 98.60 23 | 99.58 6 | 98.83 30 | 99.09 26 | 98.48 28 | 96.25 36 | 97.03 76 | 96.81 114 | 99.09 35 | 98.39 20 | 98.55 50 | 98.45 45 | 99.01 40 | 98.53 28 |
|
APDe-MVS | | | 98.29 25 | 98.42 26 | 98.14 40 | 99.45 22 | 98.90 24 | 99.18 23 | 98.30 42 | 95.96 45 | 95.13 150 | 98.79 59 | 99.25 27 | 97.92 37 | 98.80 34 | 98.71 32 | 98.85 61 | 98.54 26 |
|
DVP-MVS | | | 98.27 26 | 98.61 19 | 97.87 63 | 99.17 40 | 99.03 19 | 99.07 28 | 98.17 58 | 96.75 26 | 94.35 166 | 98.92 48 | 99.58 7 | 97.86 40 | 98.67 43 | 98.70 33 | 98.63 68 | 98.63 20 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
TransMVSNet (Re) | | | 98.23 27 | 98.72 16 | 97.66 75 | 98.22 108 | 98.73 45 | 98.66 64 | 98.03 70 | 98.60 8 | 96.40 104 | 99.60 13 | 98.24 99 | 95.26 120 | 99.19 19 | 99.05 19 | 99.36 21 | 97.64 67 |
|
DU-MVS | | | 98.23 27 | 97.74 56 | 98.81 12 | 99.23 34 | 98.77 36 | 98.76 56 | 98.88 16 | 94.10 113 | 98.50 20 | 98.87 54 | 98.32 96 | 97.99 34 | 98.40 58 | 98.08 70 | 99.49 17 | 97.64 67 |
|
UniMVSNet (Re) | | | 98.23 27 | 97.85 48 | 98.67 19 | 99.15 42 | 98.87 26 | 98.74 59 | 98.84 18 | 94.27 111 | 97.94 37 | 99.01 43 | 98.39 92 | 97.82 41 | 98.35 63 | 98.29 59 | 99.51 16 | 97.78 58 |
|
MIMVSNet1 | | | 98.22 30 | 98.51 23 | 97.87 63 | 99.40 26 | 98.82 32 | 99.31 16 | 98.53 26 | 97.39 18 | 96.59 94 | 99.31 33 | 99.23 29 | 94.76 130 | 98.93 29 | 98.67 35 | 98.63 68 | 97.25 90 |
|
HFP-MVS | | | 98.17 31 | 98.02 40 | 98.35 35 | 99.36 28 | 98.62 51 | 98.79 55 | 98.46 32 | 96.24 37 | 96.53 96 | 97.13 111 | 98.98 47 | 98.02 32 | 98.20 66 | 98.42 47 | 98.95 49 | 98.54 26 |
|
Baseline_NR-MVSNet | | | 98.17 31 | 97.90 45 | 98.48 29 | 99.23 34 | 98.59 52 | 98.83 52 | 98.73 23 | 93.97 118 | 96.95 79 | 99.66 8 | 98.23 101 | 97.90 38 | 98.40 58 | 99.06 18 | 99.25 29 | 97.42 82 |
|
TSAR-MVS + MP. | | | 98.15 33 | 98.23 30 | 98.06 51 | 98.47 90 | 98.16 80 | 99.23 20 | 96.87 135 | 95.58 58 | 96.72 88 | 98.41 76 | 99.06 39 | 98.05 31 | 98.99 26 | 98.90 24 | 99.00 41 | 98.51 29 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
zzz-MVS | | | 98.14 34 | 97.78 53 | 98.55 25 | 99.58 6 | 98.58 54 | 98.98 37 | 98.48 28 | 95.98 43 | 97.39 58 | 94.73 154 | 99.27 23 | 97.98 36 | 98.81 33 | 98.64 39 | 98.90 53 | 98.46 30 |
|
pm-mvs1 | | | 98.14 34 | 98.66 18 | 97.53 84 | 97.93 130 | 98.49 63 | 98.14 90 | 98.19 54 | 97.95 12 | 96.17 115 | 99.63 11 | 98.85 60 | 95.41 118 | 98.91 31 | 98.89 25 | 99.34 23 | 97.86 55 |
|
SMA-MVS |  | | 98.13 36 | 98.22 31 | 98.02 56 | 99.44 24 | 98.73 45 | 98.24 85 | 97.87 82 | 95.22 71 | 96.76 87 | 98.66 68 | 99.35 15 | 97.03 70 | 98.53 53 | 98.39 49 | 98.80 63 | 98.69 16 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMP_NAP | | | 98.12 37 | 98.08 38 | 98.18 39 | 99.34 29 | 98.74 44 | 98.97 38 | 98.00 72 | 95.13 75 | 96.90 80 | 97.54 99 | 99.27 23 | 97.18 64 | 98.72 39 | 98.45 45 | 98.68 67 | 98.69 16 |
|
UniMVSNet_NR-MVSNet | | | 98.12 37 | 97.56 63 | 98.78 13 | 99.13 47 | 98.89 25 | 98.76 56 | 98.78 20 | 93.81 121 | 98.50 20 | 98.81 58 | 97.64 122 | 97.99 34 | 98.18 69 | 97.92 75 | 99.53 11 | 97.64 67 |
|
ACMM | | 94.29 11 | 98.12 37 | 97.71 57 | 98.59 24 | 99.51 17 | 98.58 54 | 99.24 19 | 98.25 46 | 96.22 38 | 96.90 80 | 95.01 148 | 98.89 57 | 98.52 16 | 98.66 44 | 98.32 56 | 99.13 33 | 98.28 40 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SteuartSystems-ACMMP | | | 98.06 40 | 97.78 53 | 98.39 33 | 99.54 11 | 98.79 34 | 98.94 42 | 98.42 34 | 93.98 117 | 95.85 124 | 96.66 119 | 99.25 27 | 98.61 11 | 98.71 41 | 98.38 50 | 98.97 45 | 98.67 19 |
Skip Steuart: Steuart Systems R&D Blog. |
SED-MVS | | | 98.05 41 | 98.46 25 | 97.57 80 | 99.01 58 | 98.99 21 | 98.82 54 | 98.24 47 | 95.76 53 | 94.70 159 | 98.96 45 | 99.49 9 | 96.19 99 | 98.74 35 | 98.65 37 | 98.46 82 | 98.63 20 |
|
OPM-MVS | | | 98.01 42 | 98.01 41 | 98.00 58 | 99.11 49 | 98.12 83 | 98.68 63 | 97.72 89 | 96.65 28 | 96.68 92 | 98.40 77 | 99.28 22 | 97.44 54 | 98.20 66 | 97.82 81 | 98.40 88 | 97.58 72 |
|
Vis-MVSNet |  | | 98.01 42 | 98.42 26 | 97.54 83 | 96.89 177 | 98.82 32 | 99.14 24 | 97.59 94 | 96.30 35 | 97.04 75 | 99.26 36 | 98.83 63 | 96.01 104 | 98.73 37 | 98.21 61 | 98.58 74 | 98.75 13 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
NR-MVSNet | | | 98.00 44 | 97.88 46 | 98.13 41 | 98.33 97 | 98.77 36 | 98.83 52 | 98.88 16 | 94.10 113 | 97.46 56 | 98.87 54 | 98.58 83 | 95.78 107 | 99.13 23 | 98.16 65 | 99.52 13 | 97.53 75 |
|
CP-MVS | | | 98.00 44 | 97.57 62 | 98.50 27 | 99.47 21 | 98.56 57 | 98.91 44 | 98.38 37 | 94.71 91 | 97.01 77 | 95.20 144 | 99.06 39 | 98.20 24 | 98.61 47 | 98.46 42 | 99.02 38 | 98.40 34 |
|
DPE-MVS |  | | 97.99 46 | 98.12 36 | 97.84 66 | 98.65 84 | 98.86 27 | 98.86 49 | 98.05 68 | 94.18 112 | 95.49 143 | 98.90 50 | 99.33 16 | 97.11 66 | 98.53 53 | 98.65 37 | 98.86 60 | 98.39 36 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
ACMMP |  | | 97.99 46 | 97.60 61 | 98.45 31 | 99.53 15 | 98.83 30 | 99.13 25 | 98.30 42 | 94.57 97 | 96.39 108 | 95.32 142 | 98.95 52 | 98.37 21 | 98.61 47 | 98.47 41 | 99.00 41 | 98.45 31 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MP-MVS |  | | 97.98 48 | 97.53 65 | 98.50 27 | 99.56 9 | 98.58 54 | 98.97 38 | 98.39 36 | 93.49 124 | 97.14 69 | 96.08 131 | 99.23 29 | 98.06 30 | 98.50 55 | 98.38 50 | 98.90 53 | 98.44 32 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EG-PatchMatch MVS | | | 97.98 48 | 97.92 43 | 98.04 53 | 98.84 71 | 98.04 91 | 97.90 105 | 96.83 138 | 95.07 77 | 98.79 15 | 99.07 42 | 99.37 14 | 97.88 39 | 98.74 35 | 98.16 65 | 98.01 110 | 96.96 97 |
|
ACMP | | 94.03 12 | 97.97 50 | 97.61 60 | 98.39 33 | 99.43 25 | 98.51 61 | 98.97 38 | 98.06 65 | 94.63 95 | 96.10 117 | 96.12 130 | 99.20 31 | 98.63 9 | 98.68 42 | 98.20 64 | 99.14 32 | 97.93 52 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 97.96 51 | 97.53 65 | 98.45 31 | 99.45 22 | 98.64 50 | 99.09 26 | 98.27 45 | 92.99 136 | 96.04 119 | 96.57 120 | 99.29 19 | 98.66 8 | 98.73 37 | 98.42 47 | 99.19 31 | 98.09 45 |
|
LS3D | | | 97.93 52 | 97.80 50 | 98.08 47 | 99.20 37 | 98.77 36 | 98.89 46 | 97.92 78 | 96.59 29 | 96.99 78 | 96.71 117 | 97.14 136 | 96.39 93 | 99.04 24 | 98.96 21 | 99.10 37 | 97.39 83 |
|
SD-MVS | | | 97.84 53 | 97.78 53 | 97.90 61 | 98.33 97 | 98.06 88 | 97.95 101 | 97.80 88 | 96.03 42 | 96.72 88 | 97.57 97 | 99.18 32 | 97.50 52 | 97.88 72 | 97.08 97 | 99.11 35 | 98.68 18 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
RPSCF | | | 97.83 54 | 98.27 28 | 97.31 95 | 98.23 106 | 98.06 88 | 97.44 130 | 95.79 168 | 96.90 24 | 95.81 126 | 98.76 63 | 98.61 82 | 97.70 46 | 98.90 32 | 98.36 52 | 98.90 53 | 98.29 37 |
|
thisisatest0515 | | | 97.82 55 | 97.67 58 | 97.99 59 | 98.49 89 | 98.07 87 | 98.48 74 | 98.06 65 | 95.35 69 | 97.74 43 | 98.83 57 | 97.61 123 | 96.74 77 | 97.53 91 | 98.30 58 | 98.43 87 | 98.01 49 |
|
PGM-MVS | | | 97.82 55 | 97.25 73 | 98.48 29 | 99.54 11 | 98.75 43 | 99.02 30 | 98.35 40 | 92.41 140 | 96.84 86 | 95.39 141 | 98.99 46 | 98.24 23 | 98.43 57 | 98.34 53 | 98.90 53 | 98.41 33 |
|
PMVS |  | 90.51 17 | 97.77 57 | 97.98 42 | 97.53 84 | 98.68 83 | 98.14 82 | 97.67 115 | 97.03 129 | 96.43 30 | 98.38 23 | 98.72 65 | 97.03 138 | 94.44 135 | 99.37 13 | 99.30 11 | 98.98 44 | 96.86 103 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MSP-MVS | | | 97.67 58 | 97.88 46 | 97.43 90 | 99.34 29 | 98.99 21 | 98.87 48 | 98.12 61 | 95.63 55 | 94.16 172 | 97.45 100 | 99.50 8 | 96.44 92 | 96.35 128 | 98.70 33 | 97.65 127 | 98.57 24 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
tfpnnormal | | | 97.66 59 | 97.79 51 | 97.52 86 | 98.32 99 | 98.53 59 | 98.45 77 | 97.69 90 | 97.59 17 | 96.12 116 | 97.79 92 | 96.70 142 | 95.69 112 | 98.35 63 | 98.34 53 | 98.85 61 | 97.22 93 |
|
FC-MVSNet-train | | | 97.65 60 | 98.16 34 | 97.05 107 | 98.85 69 | 98.85 28 | 99.34 15 | 98.08 64 | 94.50 103 | 94.41 164 | 99.21 37 | 98.80 67 | 92.66 160 | 98.98 27 | 98.85 28 | 98.96 47 | 97.94 51 |
|
v10 | | | 97.64 61 | 97.26 72 | 98.08 47 | 98.07 120 | 98.56 57 | 98.86 49 | 98.18 56 | 94.48 104 | 98.24 28 | 99.56 16 | 98.98 47 | 97.72 45 | 96.05 138 | 96.26 125 | 97.42 136 | 96.93 98 |
|
X-MVS | | | 97.60 62 | 97.00 88 | 98.29 36 | 99.50 18 | 98.76 39 | 98.90 45 | 98.37 38 | 94.67 94 | 96.40 104 | 91.47 194 | 98.78 69 | 97.60 51 | 98.55 50 | 98.50 40 | 98.96 47 | 98.29 37 |
|
3Dnovator+ | | 96.20 4 | 97.58 63 | 97.14 80 | 98.10 42 | 98.98 63 | 97.85 103 | 98.60 67 | 98.33 41 | 96.41 32 | 97.23 67 | 94.66 157 | 97.26 132 | 96.91 73 | 97.91 71 | 97.87 77 | 98.53 77 | 98.03 47 |
|
DCV-MVSNet | | | 97.56 64 | 97.63 59 | 97.47 88 | 98.41 94 | 99.12 12 | 98.63 65 | 98.57 24 | 95.71 54 | 95.60 140 | 93.79 173 | 98.01 110 | 94.25 138 | 99.16 21 | 98.88 26 | 99.35 22 | 98.74 14 |
|
HPM-MVS++ |  | | 97.56 64 | 97.11 84 | 98.09 43 | 99.18 39 | 97.95 98 | 98.57 69 | 98.20 52 | 94.08 115 | 97.25 66 | 95.96 135 | 98.81 66 | 97.13 65 | 97.51 92 | 97.30 94 | 98.21 98 | 98.15 44 |
|
FC-MVSNet-test | | | 97.54 66 | 98.26 29 | 96.70 124 | 98.87 67 | 97.79 111 | 98.49 73 | 98.56 25 | 96.04 40 | 90.39 200 | 99.65 9 | 98.67 75 | 95.15 122 | 99.23 17 | 99.07 16 | 98.73 66 | 97.39 83 |
|
TSAR-MVS + ACMM | | | 97.54 66 | 97.79 51 | 97.26 96 | 98.23 106 | 98.10 86 | 97.71 113 | 97.88 81 | 95.97 44 | 95.57 142 | 98.71 66 | 98.57 84 | 97.36 57 | 97.74 79 | 96.81 106 | 96.83 161 | 98.59 23 |
|
DeepC-MVS_fast | | 95.38 6 | 97.53 68 | 97.30 71 | 97.79 71 | 98.83 72 | 97.64 114 | 98.18 86 | 97.14 125 | 95.57 59 | 97.83 40 | 97.10 112 | 98.80 67 | 96.53 89 | 97.41 95 | 97.32 92 | 98.24 97 | 97.26 89 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
v1192 | | | 97.52 69 | 97.03 87 | 98.09 43 | 98.31 102 | 98.01 93 | 98.96 41 | 97.25 122 | 95.22 71 | 98.89 12 | 99.64 10 | 98.83 63 | 97.68 47 | 95.63 145 | 95.91 135 | 97.47 132 | 95.97 131 |
|
v1144 | | | 97.51 70 | 97.05 86 | 98.04 53 | 98.26 104 | 97.98 95 | 98.88 47 | 97.42 113 | 95.38 68 | 98.56 18 | 99.59 15 | 99.01 45 | 97.65 48 | 95.77 142 | 96.06 132 | 97.47 132 | 95.56 143 |
|
v8 | | | 97.51 70 | 97.16 78 | 97.91 60 | 97.99 126 | 98.48 64 | 98.76 56 | 98.17 58 | 94.54 101 | 97.69 45 | 99.48 21 | 98.76 72 | 97.63 50 | 96.10 137 | 96.14 127 | 97.20 146 | 96.64 112 |
|
v1921920 | | | 97.50 72 | 97.00 88 | 98.07 49 | 98.20 110 | 97.94 101 | 99.03 29 | 97.06 127 | 95.29 70 | 99.01 9 | 99.62 12 | 98.73 74 | 97.74 44 | 95.52 148 | 95.78 140 | 97.39 138 | 96.12 127 |
|
Anonymous20231211 | | | 97.49 73 | 97.91 44 | 97.00 111 | 98.31 102 | 98.72 47 | 98.27 83 | 97.84 85 | 94.76 90 | 94.77 158 | 98.14 85 | 98.38 94 | 93.60 148 | 98.96 28 | 98.66 36 | 99.22 30 | 97.77 61 |
|
v144192 | | | 97.49 73 | 96.99 90 | 98.07 49 | 98.11 119 | 97.95 98 | 99.02 30 | 97.21 123 | 94.90 86 | 98.88 13 | 99.53 18 | 98.89 57 | 97.75 43 | 95.59 146 | 95.90 136 | 97.43 135 | 96.16 125 |
|
GeoE | | | 97.48 75 | 96.84 96 | 98.22 38 | 99.01 58 | 98.39 67 | 98.85 51 | 98.76 21 | 92.37 141 | 97.53 51 | 97.58 96 | 98.23 101 | 97.11 66 | 97.57 90 | 96.98 100 | 98.10 106 | 96.78 106 |
|
APD-MVS |  | | 97.47 76 | 97.16 78 | 97.84 66 | 99.32 32 | 98.39 67 | 98.47 76 | 98.21 51 | 92.08 145 | 95.23 147 | 96.68 118 | 98.90 55 | 96.99 71 | 98.20 66 | 98.21 61 | 98.80 63 | 97.67 65 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PVSNet_Blended_VisFu | | | 97.44 77 | 97.14 80 | 97.79 71 | 99.15 42 | 98.44 65 | 98.32 81 | 97.66 92 | 93.74 123 | 97.73 44 | 98.79 59 | 96.93 141 | 95.64 117 | 97.69 82 | 96.91 103 | 98.25 96 | 97.50 78 |
|
PHI-MVS | | | 97.44 77 | 97.17 77 | 97.74 74 | 98.14 116 | 98.41 66 | 98.03 97 | 97.50 102 | 92.07 146 | 98.01 35 | 97.33 105 | 98.62 81 | 96.02 103 | 98.34 65 | 98.21 61 | 98.76 65 | 97.24 92 |
|
v1240 | | | 97.43 79 | 96.87 95 | 98.09 43 | 98.25 105 | 97.92 102 | 99.02 30 | 97.06 127 | 94.77 89 | 99.09 8 | 99.68 7 | 98.51 87 | 97.78 42 | 95.25 153 | 95.81 138 | 97.32 142 | 96.13 126 |
|
FMVSNet1 | | | 97.40 80 | 98.09 37 | 96.60 128 | 97.80 144 | 98.76 39 | 98.26 84 | 98.50 27 | 96.79 25 | 93.13 188 | 99.28 34 | 98.64 78 | 92.90 158 | 97.67 84 | 97.86 78 | 99.02 38 | 97.64 67 |
|
v2v482 | | | 97.33 81 | 96.84 96 | 97.90 61 | 98.19 111 | 97.83 104 | 98.74 59 | 97.44 110 | 95.42 67 | 98.23 29 | 99.46 22 | 98.84 62 | 97.46 53 | 95.51 149 | 96.10 130 | 97.36 140 | 94.72 152 |
|
xxxxxxxxxxxxxcwj | | | 97.32 82 | 97.55 64 | 97.05 107 | 98.80 74 | 97.83 104 | 96.02 178 | 97.44 110 | 94.98 80 | 95.74 130 | 97.16 108 | 99.30 18 | 95.72 109 | 97.85 73 | 97.97 73 | 98.60 71 | 97.78 58 |
|
EPP-MVSNet | | | 97.29 83 | 96.88 93 | 97.76 73 | 98.70 79 | 99.10 15 | 98.92 43 | 98.36 39 | 95.12 76 | 93.36 186 | 97.39 102 | 91.00 185 | 97.65 48 | 98.72 39 | 98.91 23 | 99.58 8 | 97.92 53 |
|
MVS_111021_HR | | | 97.27 84 | 97.11 84 | 97.46 89 | 98.46 91 | 97.82 108 | 97.50 126 | 96.86 136 | 94.97 82 | 97.13 71 | 96.99 113 | 98.39 92 | 96.82 75 | 97.65 87 | 97.38 87 | 98.02 109 | 96.56 115 |
|
SF-MVS | | | 97.26 85 | 97.43 67 | 97.05 107 | 98.80 74 | 97.83 104 | 96.02 178 | 97.44 110 | 94.98 80 | 95.74 130 | 97.16 108 | 98.45 91 | 95.72 109 | 97.85 73 | 97.97 73 | 98.60 71 | 97.78 58 |
|
TSAR-MVS + GP. | | | 97.26 85 | 97.33 70 | 97.18 101 | 98.21 109 | 98.06 88 | 96.38 169 | 97.66 92 | 93.92 120 | 95.23 147 | 98.48 73 | 98.33 95 | 97.41 55 | 97.63 88 | 97.35 88 | 98.18 100 | 97.57 73 |
|
OMC-MVS | | | 97.23 87 | 97.21 75 | 97.25 99 | 97.85 135 | 97.52 123 | 97.92 103 | 95.77 169 | 95.83 49 | 97.09 74 | 97.86 90 | 98.52 86 | 96.62 82 | 97.51 92 | 96.65 111 | 98.26 94 | 96.57 113 |
|
3Dnovator | | 96.31 3 | 97.22 88 | 97.19 76 | 97.25 99 | 98.14 116 | 97.95 98 | 98.03 97 | 96.77 141 | 96.42 31 | 97.14 69 | 95.11 145 | 97.59 124 | 95.14 124 | 97.79 77 | 97.72 82 | 98.26 94 | 97.76 63 |
|
MVS_0304 | | | 97.18 89 | 96.84 96 | 97.58 79 | 99.15 42 | 98.19 75 | 98.11 91 | 97.81 87 | 92.36 142 | 98.06 32 | 97.43 101 | 99.06 39 | 94.24 139 | 96.80 117 | 96.54 116 | 98.12 104 | 97.52 76 |
|
canonicalmvs | | | 97.11 90 | 96.88 93 | 97.38 91 | 98.34 96 | 98.72 47 | 97.52 125 | 97.94 76 | 95.60 56 | 95.01 155 | 94.58 158 | 94.50 166 | 96.59 84 | 97.84 75 | 98.03 71 | 98.90 53 | 98.91 8 |
|
V42 | | | 97.10 91 | 96.97 91 | 97.26 96 | 97.64 150 | 97.60 116 | 98.45 77 | 95.99 158 | 94.44 105 | 97.35 61 | 99.40 27 | 98.63 80 | 97.34 59 | 96.33 131 | 96.38 122 | 96.82 163 | 96.00 129 |
|
CPTT-MVS | | | 97.08 92 | 96.25 110 | 98.05 52 | 99.21 36 | 98.30 70 | 98.54 72 | 97.98 74 | 94.28 109 | 95.89 123 | 89.57 203 | 98.54 85 | 98.18 25 | 97.82 76 | 97.32 92 | 98.54 75 | 97.91 54 |
|
DeepPCF-MVS | | 94.55 10 | 97.05 93 | 97.13 83 | 96.95 113 | 96.06 191 | 97.12 141 | 98.01 99 | 95.44 175 | 95.18 73 | 97.50 53 | 97.86 90 | 98.08 106 | 97.31 61 | 97.23 100 | 97.00 99 | 97.36 140 | 97.45 80 |
|
QAPM | | | 97.04 94 | 97.14 80 | 96.93 115 | 97.78 147 | 98.02 92 | 97.36 135 | 96.72 142 | 94.68 93 | 96.23 110 | 97.21 107 | 97.68 120 | 95.70 111 | 97.37 96 | 97.24 96 | 97.78 120 | 97.77 61 |
|
CNVR-MVS | | | 97.03 95 | 96.77 101 | 97.34 92 | 98.89 66 | 97.67 113 | 97.64 118 | 97.17 124 | 94.40 107 | 95.70 136 | 94.02 168 | 98.76 72 | 96.49 91 | 97.78 78 | 97.29 95 | 98.12 104 | 97.47 79 |
|
casdiffmvs | | | 97.00 96 | 97.36 69 | 96.59 129 | 97.65 149 | 97.98 95 | 98.06 93 | 96.81 139 | 95.78 51 | 92.77 194 | 99.40 27 | 99.26 26 | 95.65 116 | 96.70 120 | 96.39 121 | 98.59 73 | 95.99 130 |
|
v148 | | | 96.99 97 | 96.70 103 | 97.34 92 | 97.89 133 | 97.23 133 | 98.33 80 | 96.96 130 | 95.57 59 | 97.12 72 | 98.99 44 | 99.40 12 | 97.23 63 | 96.22 134 | 95.45 145 | 96.50 168 | 94.02 164 |
|
DELS-MVS | | | 96.90 98 | 97.24 74 | 96.50 134 | 97.85 135 | 98.18 76 | 97.88 108 | 95.92 161 | 93.48 125 | 95.34 145 | 98.86 56 | 98.94 54 | 94.03 142 | 97.33 98 | 97.04 98 | 98.00 111 | 96.85 104 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_LR | | | 96.86 99 | 96.72 102 | 97.03 110 | 97.80 144 | 97.06 144 | 97.04 149 | 95.51 174 | 94.55 98 | 97.47 54 | 97.35 104 | 97.68 120 | 96.66 80 | 97.11 106 | 96.73 108 | 97.69 124 | 96.57 113 |
|
PM-MVS | | | 96.85 100 | 96.62 105 | 97.11 103 | 97.13 172 | 96.51 157 | 98.29 82 | 94.65 192 | 94.84 87 | 98.12 30 | 98.59 69 | 97.20 133 | 97.41 55 | 96.24 133 | 96.41 120 | 97.09 151 | 96.56 115 |
|
pmmvs-eth3d | | | 96.84 101 | 96.22 112 | 97.56 81 | 97.63 152 | 96.38 164 | 98.74 59 | 96.91 134 | 94.63 95 | 98.26 26 | 99.43 24 | 98.28 97 | 96.58 86 | 94.52 163 | 95.54 143 | 97.24 144 | 94.75 151 |
|
CANet | | | 96.81 102 | 96.50 106 | 97.17 102 | 99.10 51 | 97.96 97 | 97.86 109 | 97.51 100 | 91.30 151 | 97.75 42 | 97.64 94 | 97.89 114 | 93.39 152 | 96.98 113 | 96.73 108 | 97.40 137 | 96.99 96 |
|
Fast-Effi-MVS+ | | | 96.80 103 | 95.92 123 | 97.84 66 | 98.57 86 | 97.46 126 | 98.06 93 | 98.24 47 | 89.64 173 | 97.57 49 | 96.45 122 | 97.35 129 | 96.73 78 | 97.22 101 | 96.64 112 | 97.86 116 | 96.65 110 |
|
DROMVSNet | | | 96.80 103 | 95.92 123 | 97.84 66 | 98.57 86 | 97.46 126 | 98.06 93 | 98.24 47 | 89.64 173 | 97.57 49 | 96.45 122 | 97.35 129 | 96.73 78 | 97.22 101 | 96.64 112 | 97.86 116 | 96.65 110 |
|
MCST-MVS | | | 96.79 105 | 96.08 116 | 97.62 77 | 98.78 76 | 97.52 123 | 98.01 99 | 97.32 120 | 93.20 128 | 95.84 125 | 93.97 170 | 98.12 104 | 97.34 59 | 96.34 129 | 95.88 137 | 98.45 83 | 97.51 77 |
|
UGNet | | | 96.79 105 | 97.82 49 | 95.58 157 | 97.57 155 | 98.39 67 | 98.48 74 | 97.84 85 | 95.85 48 | 94.68 160 | 97.91 89 | 99.07 38 | 87.12 199 | 97.71 80 | 97.51 84 | 97.80 118 | 98.29 37 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TAPA-MVS | | 93.96 13 | 96.79 105 | 96.70 103 | 96.90 117 | 97.64 150 | 97.58 117 | 97.54 124 | 94.50 194 | 95.14 74 | 96.64 93 | 96.76 116 | 97.90 113 | 96.63 81 | 95.98 139 | 96.14 127 | 98.45 83 | 97.39 83 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 96.73 108 | 96.92 92 | 96.51 133 | 98.70 79 | 97.57 119 | 97.64 118 | 92.07 201 | 93.10 134 | 96.31 109 | 98.29 80 | 99.02 44 | 95.99 105 | 97.20 103 | 96.47 118 | 98.37 90 | 96.81 105 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
train_agg | | | 96.68 109 | 95.93 122 | 97.56 81 | 99.08 53 | 97.16 137 | 98.44 79 | 97.37 116 | 91.12 155 | 95.18 149 | 95.43 140 | 98.48 89 | 97.36 57 | 96.48 125 | 95.52 144 | 97.95 114 | 97.34 87 |
|
CDPH-MVS | | | 96.68 109 | 95.99 119 | 97.48 87 | 99.13 47 | 97.64 114 | 98.08 92 | 97.46 106 | 90.56 161 | 95.13 150 | 94.87 152 | 98.27 98 | 96.56 87 | 97.09 107 | 96.45 119 | 98.54 75 | 97.08 95 |
|
MSLP-MVS++ | | | 96.66 111 | 96.46 109 | 96.89 118 | 98.02 122 | 97.71 112 | 95.57 186 | 96.96 130 | 94.36 108 | 96.19 114 | 91.37 195 | 98.24 99 | 97.07 68 | 97.69 82 | 97.89 76 | 97.52 130 | 97.95 50 |
|
CS-MVS | | | 96.65 112 | 95.80 126 | 97.65 76 | 98.18 114 | 98.50 62 | 98.58 68 | 96.96 130 | 87.33 193 | 96.52 98 | 94.16 165 | 97.91 112 | 96.79 76 | 97.71 80 | 98.31 57 | 98.89 58 | 96.66 109 |
|
TinyColmap | | | 96.64 113 | 96.07 117 | 97.32 94 | 97.84 140 | 96.40 161 | 97.63 120 | 96.25 152 | 95.86 47 | 98.98 10 | 97.94 88 | 96.34 149 | 96.17 100 | 97.30 99 | 95.38 148 | 97.04 153 | 93.24 171 |
|
IS_MVSNet | | | 96.62 114 | 96.48 108 | 96.78 122 | 98.46 91 | 98.68 49 | 98.61 66 | 98.24 47 | 92.23 143 | 89.63 204 | 95.90 136 | 94.40 167 | 96.23 95 | 98.65 45 | 98.77 30 | 99.52 13 | 96.76 107 |
|
NCCC | | | 96.56 115 | 95.68 127 | 97.59 78 | 99.04 57 | 97.54 122 | 97.67 115 | 97.56 98 | 94.84 87 | 96.10 117 | 87.91 206 | 98.09 105 | 96.98 72 | 97.20 103 | 96.80 107 | 98.21 98 | 97.38 86 |
|
ETV-MVS | | | 96.54 116 | 95.27 134 | 98.02 56 | 99.07 55 | 97.48 125 | 98.16 89 | 98.19 54 | 87.33 193 | 97.58 48 | 92.67 182 | 95.93 155 | 96.22 96 | 98.49 56 | 98.46 42 | 98.91 52 | 96.50 118 |
|
Effi-MVS+ | | | 96.46 117 | 95.28 133 | 97.85 65 | 98.64 85 | 97.16 137 | 97.15 147 | 98.75 22 | 90.27 165 | 98.03 34 | 93.93 171 | 96.21 150 | 96.55 88 | 96.34 129 | 96.69 110 | 97.97 113 | 96.33 121 |
|
IterMVS-LS | | | 96.35 118 | 95.85 125 | 96.93 115 | 97.53 156 | 98.00 94 | 97.37 133 | 97.97 75 | 95.49 66 | 96.71 91 | 98.94 47 | 93.23 173 | 94.82 129 | 93.15 182 | 95.05 151 | 97.17 148 | 97.12 94 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
USDC | | | 96.30 119 | 95.64 129 | 97.07 105 | 97.62 153 | 96.35 166 | 97.17 145 | 95.71 170 | 95.52 64 | 99.17 7 | 98.11 86 | 97.46 126 | 95.67 113 | 95.44 151 | 93.60 171 | 97.09 151 | 92.99 175 |
|
Vis-MVSNet (Re-imp) | | | 96.29 120 | 96.50 106 | 96.05 143 | 97.96 129 | 97.83 104 | 97.30 137 | 97.86 83 | 93.14 130 | 88.90 207 | 96.80 115 | 95.28 159 | 95.15 122 | 98.37 62 | 98.25 60 | 99.12 34 | 95.84 133 |
|
MSDG | | | 96.27 121 | 96.17 115 | 96.38 139 | 97.85 135 | 96.27 167 | 96.55 166 | 94.41 195 | 94.55 98 | 95.62 139 | 97.56 98 | 97.80 115 | 96.22 96 | 97.17 105 | 96.27 124 | 97.67 126 | 93.60 168 |
|
CNLPA | | | 96.24 122 | 95.97 120 | 96.57 131 | 97.48 161 | 97.10 143 | 96.75 159 | 94.95 186 | 94.92 85 | 96.20 113 | 94.81 153 | 96.61 144 | 96.25 94 | 96.94 114 | 95.64 141 | 97.79 119 | 95.74 139 |
|
EIA-MVS | | | 96.23 123 | 94.85 146 | 97.84 66 | 99.08 53 | 98.21 73 | 97.69 114 | 98.03 70 | 85.68 204 | 98.09 31 | 91.75 192 | 97.07 137 | 95.66 115 | 97.58 89 | 97.72 82 | 98.47 81 | 95.91 132 |
|
PLC |  | 92.55 15 | 96.10 124 | 95.36 130 | 96.96 112 | 98.13 118 | 96.88 148 | 96.49 167 | 96.67 146 | 94.07 116 | 95.71 135 | 91.14 196 | 96.09 152 | 96.84 74 | 96.70 120 | 96.58 115 | 97.92 115 | 96.03 128 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test20.03 | | | 96.08 125 | 96.80 99 | 95.25 166 | 99.19 38 | 97.58 117 | 97.24 142 | 97.56 98 | 94.95 84 | 91.91 195 | 98.58 70 | 98.03 108 | 87.88 195 | 97.43 94 | 96.94 102 | 97.69 124 | 94.05 163 |
|
TSAR-MVS + COLMAP | | | 96.05 126 | 95.94 121 | 96.18 142 | 97.46 162 | 96.41 160 | 97.26 141 | 95.83 165 | 94.69 92 | 95.30 146 | 98.31 78 | 96.52 145 | 94.71 131 | 95.48 150 | 94.87 153 | 96.54 167 | 95.33 146 |
|
EU-MVSNet | | | 96.03 127 | 96.23 111 | 95.80 151 | 95.48 204 | 94.18 185 | 98.99 35 | 91.51 203 | 97.22 20 | 97.66 46 | 99.15 40 | 98.51 87 | 98.08 28 | 95.92 140 | 92.88 178 | 93.09 191 | 95.72 140 |
|
PCF-MVS | | 92.69 14 | 95.98 128 | 95.05 141 | 97.06 106 | 98.43 93 | 97.56 120 | 97.76 111 | 96.65 147 | 89.95 170 | 95.70 136 | 96.18 129 | 98.48 89 | 95.74 108 | 93.64 174 | 93.35 175 | 98.09 108 | 96.18 124 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
HQP-MVS | | | 95.97 129 | 95.01 143 | 97.08 104 | 98.72 78 | 97.19 135 | 97.07 148 | 96.69 145 | 91.49 149 | 95.77 129 | 92.19 188 | 97.93 111 | 96.15 101 | 94.66 160 | 94.16 162 | 98.10 106 | 97.45 80 |
|
Effi-MVS+-dtu | | | 95.94 130 | 95.08 140 | 96.94 114 | 98.54 88 | 97.38 128 | 96.66 163 | 97.89 80 | 88.68 179 | 95.92 121 | 92.90 181 | 97.28 131 | 94.18 141 | 96.68 122 | 96.13 129 | 98.45 83 | 96.51 117 |
|
diffmvs | | | 95.86 131 | 96.21 113 | 95.44 160 | 97.25 170 | 96.85 151 | 96.99 151 | 95.23 180 | 94.96 83 | 92.82 193 | 98.89 51 | 98.85 60 | 93.52 150 | 94.21 169 | 94.25 161 | 96.84 160 | 95.49 144 |
|
AdaColmap |  | | 95.85 132 | 94.65 149 | 97.26 96 | 98.70 79 | 97.20 134 | 97.33 136 | 97.30 121 | 91.28 153 | 95.90 122 | 88.16 205 | 96.17 151 | 96.60 83 | 97.34 97 | 96.82 105 | 97.71 121 | 95.60 142 |
|
FMVSNet2 | | | 95.77 133 | 96.20 114 | 95.27 164 | 96.77 180 | 98.18 76 | 97.28 138 | 97.90 79 | 93.12 131 | 91.37 197 | 98.25 82 | 96.05 153 | 90.04 180 | 94.96 158 | 95.94 134 | 98.28 91 | 96.90 99 |
|
OpenMVS |  | 94.63 9 | 95.75 134 | 95.04 142 | 96.58 130 | 97.85 135 | 97.55 121 | 96.71 161 | 96.07 155 | 90.15 168 | 96.47 99 | 90.77 201 | 95.95 154 | 94.41 136 | 97.01 112 | 96.95 101 | 98.00 111 | 96.90 99 |
|
pmmvs5 | | | 95.70 135 | 95.22 135 | 96.26 140 | 96.55 186 | 97.24 132 | 97.50 126 | 94.99 185 | 90.95 157 | 96.87 82 | 98.47 74 | 97.40 127 | 94.45 134 | 92.86 183 | 94.98 152 | 97.23 145 | 94.64 154 |
|
Anonymous20231206 | | | 95.69 136 | 95.68 127 | 95.70 153 | 98.32 99 | 96.95 146 | 97.37 133 | 96.65 147 | 93.33 126 | 93.61 180 | 98.70 67 | 98.03 108 | 91.04 169 | 95.07 156 | 94.59 160 | 97.20 146 | 93.09 174 |
|
MAR-MVS | | | 95.51 137 | 94.49 153 | 96.71 123 | 97.92 131 | 96.40 161 | 96.72 160 | 98.04 69 | 86.74 198 | 96.72 88 | 92.52 185 | 95.14 161 | 94.02 143 | 96.81 116 | 96.54 116 | 96.85 158 | 97.25 90 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DI_MVS_plusplus_trai | | | 95.48 138 | 94.51 151 | 96.61 127 | 97.13 172 | 97.30 130 | 98.05 96 | 96.79 140 | 93.75 122 | 95.08 153 | 96.38 124 | 89.76 188 | 94.95 125 | 93.97 173 | 94.82 157 | 97.64 128 | 95.63 141 |
|
MDA-MVSNet-bldmvs | | | 95.45 139 | 95.20 136 | 95.74 152 | 94.24 209 | 96.38 164 | 97.93 102 | 94.80 187 | 95.56 62 | 96.87 82 | 98.29 80 | 95.24 160 | 96.50 90 | 98.65 45 | 90.38 190 | 94.09 185 | 91.93 179 |
|
PVSNet_BlendedMVS | | | 95.44 140 | 95.09 138 | 95.86 149 | 97.31 167 | 97.13 139 | 96.31 172 | 95.01 183 | 88.55 182 | 96.23 110 | 94.55 161 | 97.75 116 | 92.56 162 | 96.42 126 | 95.44 146 | 97.71 121 | 95.81 134 |
|
PVSNet_Blended | | | 95.44 140 | 95.09 138 | 95.86 149 | 97.31 167 | 97.13 139 | 96.31 172 | 95.01 183 | 88.55 182 | 96.23 110 | 94.55 161 | 97.75 116 | 92.56 162 | 96.42 126 | 95.44 146 | 97.71 121 | 95.81 134 |
|
pmmvs4 | | | 95.37 142 | 94.25 154 | 96.67 126 | 97.01 175 | 95.28 179 | 97.60 121 | 96.07 155 | 93.11 132 | 97.29 64 | 98.09 87 | 94.23 169 | 95.21 121 | 91.56 194 | 93.91 168 | 96.82 163 | 93.59 169 |
|
MVS_Test | | | 95.34 143 | 94.88 145 | 95.89 148 | 96.93 176 | 96.84 152 | 96.66 163 | 97.08 126 | 90.06 169 | 94.02 173 | 97.61 95 | 96.64 143 | 93.59 149 | 92.73 186 | 94.02 166 | 97.03 154 | 96.24 122 |
|
GBi-Net | | | 95.21 144 | 95.35 131 | 95.04 169 | 96.77 180 | 98.18 76 | 97.28 138 | 97.58 95 | 88.43 184 | 90.28 201 | 96.01 132 | 92.43 176 | 90.04 180 | 97.67 84 | 97.86 78 | 98.28 91 | 96.90 99 |
|
test1 | | | 95.21 144 | 95.35 131 | 95.04 169 | 96.77 180 | 98.18 76 | 97.28 138 | 97.58 95 | 88.43 184 | 90.28 201 | 96.01 132 | 92.43 176 | 90.04 180 | 97.67 84 | 97.86 78 | 98.28 91 | 96.90 99 |
|
IterMVS-SCA-FT | | | 95.16 146 | 93.95 158 | 96.56 132 | 97.89 133 | 96.69 154 | 96.94 153 | 96.05 157 | 93.06 135 | 97.35 61 | 98.79 59 | 91.45 181 | 95.93 106 | 92.78 184 | 91.00 188 | 95.22 181 | 93.91 166 |
|
HyFIR lowres test | | | 95.05 147 | 93.54 163 | 96.81 121 | 97.81 143 | 96.88 148 | 98.18 86 | 97.46 106 | 94.28 109 | 94.98 156 | 96.57 120 | 92.89 175 | 96.15 101 | 90.90 199 | 91.87 184 | 96.28 173 | 91.35 180 |
|
CHOSEN 1792x2688 | | | 94.98 148 | 94.69 148 | 95.31 162 | 97.27 169 | 95.58 176 | 97.90 105 | 95.56 173 | 95.03 78 | 93.77 179 | 95.65 138 | 99.29 19 | 95.30 119 | 91.51 195 | 91.28 187 | 92.05 199 | 94.50 156 |
|
CANet_DTU | | | 94.96 149 | 94.62 150 | 95.35 161 | 98.03 121 | 96.11 169 | 96.92 155 | 95.60 172 | 88.59 181 | 97.27 65 | 95.27 143 | 96.50 146 | 88.77 191 | 95.53 147 | 95.59 142 | 95.54 179 | 94.78 150 |
|
CDS-MVSNet | | | 94.91 150 | 95.17 137 | 94.60 177 | 97.85 135 | 96.21 168 | 96.90 157 | 96.39 150 | 90.81 158 | 93.40 184 | 97.24 106 | 94.54 165 | 85.78 205 | 96.25 132 | 96.15 126 | 97.26 143 | 95.01 149 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
DPM-MVS | | | 94.86 151 | 93.90 160 | 95.99 145 | 98.19 111 | 96.52 156 | 96.29 174 | 95.95 159 | 93.11 132 | 94.61 162 | 88.17 204 | 96.44 147 | 93.77 147 | 93.33 177 | 93.54 173 | 97.11 150 | 96.22 123 |
|
MS-PatchMatch | | | 94.84 152 | 94.76 147 | 94.94 172 | 96.38 187 | 94.69 184 | 95.90 181 | 94.03 197 | 92.49 139 | 93.81 177 | 95.79 137 | 96.38 148 | 94.54 132 | 94.70 159 | 94.85 154 | 94.97 183 | 94.43 158 |
|
thisisatest0530 | | | 94.81 153 | 93.06 169 | 96.85 120 | 98.01 123 | 97.18 136 | 96.93 154 | 97.36 117 | 89.73 172 | 95.80 127 | 94.98 149 | 77.88 209 | 94.89 126 | 96.73 119 | 97.35 88 | 98.13 103 | 97.54 74 |
|
tttt0517 | | | 94.81 153 | 93.04 170 | 96.88 119 | 98.15 115 | 97.37 129 | 96.99 151 | 97.36 117 | 89.51 175 | 95.74 130 | 94.89 151 | 77.53 211 | 94.89 126 | 96.94 114 | 97.35 88 | 98.17 101 | 97.70 64 |
|
testgi | | | 94.81 153 | 96.05 118 | 93.35 188 | 99.06 56 | 96.87 150 | 97.57 123 | 96.70 144 | 95.77 52 | 88.60 209 | 93.19 179 | 98.87 59 | 81.21 213 | 97.03 111 | 96.64 112 | 96.97 157 | 93.99 165 |
|
PatchMatch-RL | | | 94.79 156 | 93.75 162 | 96.00 144 | 96.80 179 | 95.00 181 | 95.47 191 | 95.25 179 | 90.68 160 | 95.80 127 | 92.97 180 | 93.64 171 | 95.67 113 | 96.13 136 | 95.81 138 | 96.99 156 | 92.01 178 |
|
FPMVS | | | 94.70 157 | 94.99 144 | 94.37 179 | 95.84 197 | 93.20 190 | 96.00 180 | 91.93 202 | 95.03 78 | 94.64 161 | 94.68 155 | 93.29 172 | 90.95 170 | 98.07 70 | 97.34 91 | 96.85 158 | 93.29 170 |
|
new-patchmatchnet | | | 94.48 158 | 94.02 156 | 95.02 171 | 97.51 160 | 95.00 181 | 95.68 185 | 94.26 196 | 97.32 19 | 95.73 133 | 99.60 13 | 98.22 103 | 91.30 165 | 94.13 170 | 84.41 200 | 95.65 178 | 89.45 191 |
|
IterMVS | | | 94.48 158 | 93.46 165 | 95.66 154 | 97.52 157 | 96.43 158 | 97.20 143 | 94.73 190 | 92.91 138 | 96.44 100 | 98.75 64 | 91.10 183 | 94.53 133 | 92.10 190 | 90.10 192 | 93.51 188 | 92.84 177 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MDTV_nov1_ep13_2view | | | 94.39 160 | 93.34 166 | 95.63 155 | 97.23 171 | 95.33 178 | 97.76 111 | 96.84 137 | 94.55 98 | 97.47 54 | 98.96 45 | 97.70 118 | 93.88 144 | 92.27 188 | 86.81 198 | 90.56 201 | 87.73 199 |
|
Fast-Effi-MVS+-dtu | | | 94.34 161 | 93.26 168 | 95.62 156 | 97.82 141 | 95.97 172 | 95.86 182 | 99.01 13 | 86.88 196 | 93.39 185 | 90.83 199 | 95.46 158 | 90.61 174 | 94.46 165 | 94.68 158 | 97.01 155 | 94.51 155 |
|
thres600view7 | | | 94.34 161 | 92.31 178 | 96.70 124 | 98.19 111 | 98.12 83 | 97.85 110 | 97.45 108 | 91.49 149 | 93.98 175 | 84.27 209 | 82.02 200 | 94.24 139 | 97.04 108 | 98.76 31 | 98.49 79 | 94.47 157 |
|
EPNet | | | 94.33 163 | 93.52 164 | 95.27 164 | 98.81 73 | 94.71 183 | 96.77 158 | 98.20 52 | 88.12 187 | 96.53 96 | 92.53 184 | 91.19 182 | 85.25 209 | 95.22 154 | 95.26 149 | 96.09 176 | 97.63 71 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
GA-MVS | | | 94.18 164 | 92.98 171 | 95.58 157 | 97.36 164 | 96.42 159 | 96.21 175 | 95.86 162 | 90.29 164 | 95.08 153 | 96.19 128 | 85.37 192 | 92.82 159 | 94.01 172 | 94.14 163 | 96.16 175 | 94.41 159 |
|
gg-mvs-nofinetune | | | 94.13 165 | 93.93 159 | 94.37 179 | 97.99 126 | 95.86 173 | 95.45 194 | 99.22 9 | 97.61 16 | 95.10 152 | 99.50 20 | 84.50 193 | 81.73 212 | 95.31 152 | 94.12 164 | 96.71 166 | 90.59 184 |
|
baseline | | | 94.07 166 | 94.50 152 | 93.57 186 | 96.34 188 | 93.40 189 | 95.56 189 | 92.39 200 | 92.07 146 | 94.00 174 | 98.24 83 | 97.51 125 | 89.19 186 | 91.75 192 | 92.72 179 | 93.96 187 | 95.79 136 |
|
FMVSNet3 | | | 94.06 167 | 93.85 161 | 94.31 182 | 95.46 205 | 97.80 110 | 96.34 170 | 97.58 95 | 88.43 184 | 90.28 201 | 96.01 132 | 92.43 176 | 88.67 192 | 91.82 191 | 93.96 167 | 97.53 129 | 96.50 118 |
|
thres400 | | | 94.04 168 | 91.94 181 | 96.50 134 | 97.98 128 | 97.82 108 | 97.66 117 | 96.96 130 | 90.96 156 | 94.20 169 | 83.24 210 | 82.82 198 | 93.80 145 | 96.50 124 | 98.09 67 | 98.38 89 | 94.15 161 |
|
CVMVSNet | | | 94.01 169 | 94.25 154 | 93.73 185 | 94.36 208 | 92.44 193 | 97.45 129 | 88.56 206 | 95.59 57 | 93.06 191 | 98.88 52 | 90.03 187 | 94.84 128 | 94.08 171 | 93.45 174 | 94.09 185 | 95.31 147 |
|
thres200 | | | 93.98 170 | 91.90 182 | 96.40 138 | 97.66 148 | 98.12 83 | 97.20 143 | 97.45 108 | 90.16 167 | 93.82 176 | 83.08 211 | 83.74 196 | 93.80 145 | 97.04 108 | 97.48 86 | 98.49 79 | 93.70 167 |
|
baseline1 | | | 93.89 171 | 92.82 173 | 95.14 168 | 97.62 153 | 96.97 145 | 96.12 176 | 96.36 151 | 91.30 151 | 91.53 196 | 94.68 155 | 80.72 202 | 90.80 172 | 95.71 143 | 96.29 123 | 98.44 86 | 94.09 162 |
|
tfpn200view9 | | | 93.80 172 | 91.75 183 | 96.20 141 | 97.52 157 | 98.15 81 | 97.48 128 | 97.47 105 | 87.65 189 | 93.56 182 | 83.03 212 | 84.12 194 | 92.62 161 | 97.04 108 | 98.09 67 | 98.52 78 | 94.17 160 |
|
MIMVSNet | | | 93.68 173 | 93.96 157 | 93.35 188 | 97.82 141 | 96.08 170 | 96.34 170 | 98.46 32 | 91.28 153 | 86.67 214 | 94.95 150 | 94.87 163 | 84.39 210 | 94.53 161 | 94.65 159 | 96.45 170 | 91.34 181 |
|
pmnet_mix02 | | | 93.59 174 | 92.65 174 | 94.69 175 | 96.76 183 | 94.16 186 | 97.03 150 | 93.00 199 | 95.79 50 | 96.03 120 | 98.91 49 | 97.69 119 | 92.99 155 | 90.03 202 | 84.10 202 | 92.35 197 | 87.89 198 |
|
EPNet_dtu | | | 93.45 175 | 92.51 176 | 94.55 178 | 98.39 95 | 91.67 202 | 95.46 192 | 97.50 102 | 86.56 199 | 97.38 59 | 93.52 174 | 94.20 170 | 85.82 204 | 93.31 179 | 92.53 180 | 92.72 193 | 95.76 138 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IB-MVS | | 92.44 16 | 93.33 176 | 92.15 180 | 94.70 174 | 97.42 163 | 96.39 163 | 95.57 186 | 94.67 191 | 86.40 202 | 93.59 181 | 78.28 216 | 95.76 157 | 89.59 185 | 95.88 141 | 95.98 133 | 97.39 138 | 96.34 120 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ET-MVSNet_ETH3D | | | 93.18 177 | 90.80 188 | 95.95 146 | 96.05 192 | 96.07 171 | 96.92 155 | 96.51 149 | 89.34 176 | 95.63 138 | 94.08 167 | 72.31 220 | 93.13 153 | 94.33 167 | 94.83 155 | 97.44 134 | 94.65 153 |
|
thres100view900 | | | 92.93 178 | 90.89 187 | 95.31 162 | 97.52 157 | 96.82 153 | 96.41 168 | 95.08 181 | 87.65 189 | 93.56 182 | 83.03 212 | 84.12 194 | 91.12 168 | 94.53 161 | 96.91 103 | 98.17 101 | 93.21 172 |
|
N_pmnet | | | 92.46 179 | 92.38 177 | 92.55 194 | 97.91 132 | 93.47 188 | 97.42 131 | 94.01 198 | 96.40 33 | 88.48 210 | 98.50 72 | 98.07 107 | 88.14 194 | 91.04 198 | 84.30 201 | 89.35 206 | 84.85 205 |
|
TAMVS | | | 92.46 179 | 93.34 166 | 91.44 202 | 97.03 174 | 93.84 187 | 94.68 204 | 90.60 204 | 90.44 163 | 85.31 215 | 97.14 110 | 93.03 174 | 85.78 205 | 94.34 166 | 93.67 170 | 95.22 181 | 90.93 183 |
|
CMPMVS |  | 71.81 19 | 92.34 181 | 92.85 172 | 91.75 200 | 92.70 213 | 90.43 207 | 88.84 216 | 88.56 206 | 85.87 203 | 94.35 166 | 90.98 197 | 95.89 156 | 91.14 167 | 96.14 135 | 94.83 155 | 94.93 184 | 95.78 137 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
baseline2 | | | 92.06 182 | 89.82 191 | 94.68 176 | 97.32 165 | 95.72 174 | 94.97 201 | 95.08 181 | 84.75 207 | 94.34 168 | 90.68 202 | 77.75 210 | 90.13 179 | 93.38 175 | 93.58 172 | 96.25 174 | 92.90 176 |
|
MVSTER | | | 91.97 183 | 90.31 189 | 93.91 183 | 96.81 178 | 96.91 147 | 94.22 205 | 95.64 171 | 84.98 205 | 92.98 192 | 93.42 175 | 72.56 218 | 86.64 203 | 95.11 155 | 93.89 169 | 97.16 149 | 95.31 147 |
|
CR-MVSNet | | | 91.94 184 | 88.50 194 | 95.94 147 | 96.14 190 | 92.08 197 | 95.23 197 | 98.47 30 | 84.30 209 | 96.44 100 | 94.58 158 | 75.57 212 | 92.92 156 | 90.22 200 | 92.22 181 | 96.43 171 | 90.56 185 |
|
gm-plane-assit | | | 91.85 185 | 87.91 196 | 96.44 137 | 99.14 45 | 98.25 72 | 99.02 30 | 97.38 115 | 95.57 59 | 98.31 25 | 99.34 31 | 51.00 225 | 88.93 189 | 93.16 181 | 91.57 185 | 95.85 177 | 86.50 202 |
|
PMMVS | | | 91.67 186 | 91.47 185 | 91.91 199 | 89.43 218 | 88.61 213 | 94.99 200 | 85.67 211 | 87.50 191 | 93.80 178 | 94.42 164 | 94.88 162 | 90.71 173 | 92.26 189 | 92.96 177 | 96.83 161 | 89.65 189 |
|
CHOSEN 280x420 | | | 91.55 187 | 90.27 190 | 93.05 191 | 94.61 207 | 88.01 214 | 96.56 165 | 94.62 193 | 88.04 188 | 94.20 169 | 92.66 183 | 86.60 190 | 90.82 171 | 95.06 157 | 91.89 183 | 87.49 211 | 89.61 190 |
|
PatchT | | | 91.40 188 | 88.54 193 | 94.74 173 | 91.48 217 | 92.18 196 | 97.42 131 | 97.51 100 | 84.96 206 | 96.44 100 | 94.16 165 | 75.47 213 | 92.92 156 | 90.22 200 | 92.22 181 | 92.66 196 | 90.56 185 |
|
pmmvs3 | | | 91.20 189 | 91.40 186 | 90.96 204 | 91.71 216 | 91.08 203 | 95.41 195 | 81.34 215 | 87.36 192 | 94.57 163 | 95.02 147 | 94.30 168 | 90.42 175 | 94.28 168 | 89.26 194 | 92.30 198 | 88.49 196 |
|
test0.0.03 1 | | | 91.17 190 | 91.50 184 | 90.80 205 | 98.01 123 | 95.46 177 | 94.22 205 | 95.80 166 | 86.55 200 | 81.75 217 | 90.83 199 | 87.93 189 | 78.48 214 | 94.51 164 | 94.11 165 | 96.50 168 | 91.08 182 |
|
SCA | | | 91.15 191 | 87.65 198 | 95.23 167 | 96.15 189 | 95.68 175 | 96.68 162 | 98.18 56 | 90.46 162 | 97.21 68 | 92.44 186 | 80.17 204 | 93.51 151 | 86.04 209 | 83.58 205 | 89.68 205 | 85.21 204 |
|
new_pmnet | | | 90.85 192 | 92.26 179 | 89.21 208 | 93.68 212 | 89.05 212 | 93.20 213 | 84.16 214 | 92.99 136 | 84.25 216 | 97.72 93 | 94.60 164 | 86.80 202 | 93.20 180 | 91.30 186 | 93.21 189 | 86.94 201 |
|
RPMNet | | | 90.52 193 | 86.27 207 | 95.48 159 | 95.95 195 | 92.08 197 | 95.55 190 | 98.12 61 | 84.30 209 | 95.60 140 | 87.49 207 | 72.78 217 | 91.24 166 | 87.93 204 | 89.34 193 | 96.41 172 | 89.98 188 |
|
MDTV_nov1_ep13 | | | 90.30 194 | 87.32 202 | 93.78 184 | 96.00 194 | 92.97 191 | 95.46 192 | 95.39 176 | 88.61 180 | 95.41 144 | 94.45 163 | 80.39 203 | 89.87 183 | 86.58 207 | 83.54 206 | 90.56 201 | 84.71 206 |
|
PatchmatchNet |  | | 89.98 195 | 86.23 208 | 94.36 181 | 96.56 185 | 91.90 201 | 96.07 177 | 96.72 142 | 90.18 166 | 96.87 82 | 93.36 178 | 78.06 208 | 91.46 164 | 84.71 213 | 81.40 210 | 88.45 208 | 83.97 210 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ADS-MVSNet | | | 89.89 196 | 87.70 197 | 92.43 196 | 95.52 202 | 90.91 205 | 95.57 186 | 95.33 177 | 93.19 129 | 91.21 198 | 93.41 176 | 82.12 199 | 89.05 187 | 86.21 208 | 83.77 204 | 87.92 209 | 84.31 207 |
|
tpm | | | 89.84 197 | 86.81 204 | 93.36 187 | 96.60 184 | 91.92 200 | 95.02 199 | 97.39 114 | 86.79 197 | 96.54 95 | 95.03 146 | 69.70 221 | 87.66 196 | 88.79 203 | 86.19 199 | 86.95 213 | 89.27 192 |
|
test-LLR | | | 89.77 198 | 87.47 200 | 92.45 195 | 98.01 123 | 89.77 209 | 93.25 211 | 95.80 166 | 81.56 214 | 89.19 205 | 92.08 189 | 79.59 205 | 85.77 207 | 91.47 196 | 89.04 196 | 92.69 194 | 88.75 193 |
|
FMVSNet5 | | | 89.65 199 | 87.60 199 | 92.04 198 | 95.63 201 | 96.61 155 | 94.82 203 | 94.75 188 | 80.11 218 | 87.72 212 | 77.73 217 | 73.81 216 | 83.81 211 | 95.64 144 | 96.08 131 | 95.49 180 | 93.21 172 |
|
EPMVS | | | 89.28 200 | 86.28 206 | 92.79 193 | 96.01 193 | 92.00 199 | 95.83 183 | 95.85 164 | 90.78 159 | 91.00 199 | 94.58 158 | 74.65 214 | 88.93 189 | 85.00 211 | 82.88 208 | 89.09 207 | 84.09 209 |
|
test-mter | | | 89.16 201 | 88.14 195 | 90.37 206 | 94.79 206 | 91.05 204 | 93.60 210 | 85.26 212 | 81.65 213 | 88.32 211 | 92.22 187 | 79.35 207 | 87.03 200 | 92.28 187 | 90.12 191 | 93.19 190 | 90.29 187 |
|
CostFormer | | | 89.06 202 | 85.65 209 | 93.03 192 | 95.88 196 | 92.40 194 | 95.30 196 | 95.86 162 | 86.49 201 | 93.12 190 | 93.40 177 | 74.18 215 | 88.25 193 | 82.99 214 | 81.46 209 | 89.77 204 | 88.66 195 |
|
MVS-HIRNet | | | 88.72 203 | 86.49 205 | 91.33 203 | 91.81 215 | 85.66 215 | 87.02 218 | 96.25 152 | 81.48 216 | 94.82 157 | 96.31 127 | 92.14 179 | 90.32 177 | 87.60 205 | 83.82 203 | 87.74 210 | 78.42 214 |
|
TESTMET0.1,1 | | | 88.60 204 | 87.47 200 | 89.93 207 | 94.23 210 | 89.77 209 | 93.25 211 | 84.47 213 | 81.56 214 | 89.19 205 | 92.08 189 | 79.59 205 | 85.77 207 | 91.47 196 | 89.04 196 | 92.69 194 | 88.75 193 |
|
dps | | | 88.36 205 | 84.32 212 | 93.07 190 | 93.86 211 | 92.29 195 | 94.89 202 | 95.93 160 | 83.50 211 | 93.13 188 | 91.87 191 | 67.79 223 | 90.32 177 | 85.99 210 | 83.22 207 | 90.28 203 | 85.56 203 |
|
tpmrst | | | 87.60 206 | 84.13 213 | 91.66 201 | 95.65 200 | 89.73 211 | 93.77 208 | 94.74 189 | 88.85 178 | 93.35 187 | 95.60 139 | 72.37 219 | 87.40 197 | 81.24 215 | 78.19 212 | 85.02 216 | 82.90 213 |
|
tpm cat1 | | | 87.19 207 | 82.78 214 | 92.33 197 | 95.66 199 | 90.61 206 | 94.19 207 | 95.27 178 | 86.97 195 | 94.38 165 | 90.91 198 | 69.40 222 | 87.21 198 | 79.57 217 | 77.82 213 | 87.25 212 | 84.18 208 |
|
E-PMN | | | 86.94 208 | 85.10 210 | 89.09 210 | 95.77 198 | 83.54 218 | 89.89 215 | 86.55 208 | 92.18 144 | 87.34 213 | 94.02 168 | 83.42 197 | 89.63 184 | 93.32 178 | 77.11 214 | 85.33 214 | 72.09 215 |
|
EMVS | | | 86.63 209 | 84.48 211 | 89.15 209 | 95.51 203 | 83.66 217 | 90.19 214 | 86.14 210 | 91.78 148 | 88.68 208 | 93.83 172 | 81.97 201 | 89.05 187 | 92.76 185 | 76.09 215 | 85.31 215 | 71.28 216 |
|
PMMVS2 | | | 86.47 210 | 92.62 175 | 79.29 212 | 92.01 214 | 85.63 216 | 93.74 209 | 86.37 209 | 93.95 119 | 54.18 222 | 98.19 84 | 97.39 128 | 58.46 215 | 96.57 123 | 93.07 176 | 90.99 200 | 83.55 212 |
|
MVE |  | 72.99 18 | 85.37 211 | 89.43 192 | 80.63 211 | 74.43 219 | 71.94 220 | 88.25 217 | 89.81 205 | 93.27 127 | 67.32 220 | 96.32 126 | 91.83 180 | 90.40 176 | 93.36 176 | 90.79 189 | 73.55 219 | 88.49 196 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 61.30 212 | 70.45 215 | 50.62 213 | 22.69 221 | 30.92 222 | 68.31 221 | 25.76 217 | 80.56 217 | 68.71 218 | 82.80 214 | 91.08 184 | 44.64 216 | 80.50 216 | 56.70 216 | 73.64 218 | 70.58 217 |
|
GG-mvs-BLEND | | | 61.03 213 | 87.02 203 | 30.71 215 | 0.74 224 | 90.01 208 | 78.90 220 | 0.74 221 | 84.56 208 | 9.46 223 | 79.17 215 | 90.69 186 | 1.37 220 | 91.74 193 | 89.13 195 | 93.04 192 | 83.83 211 |
|
testmvs | | | 4.99 214 | 6.88 216 | 2.78 217 | 1.73 222 | 2.04 224 | 3.10 224 | 1.71 219 | 7.27 220 | 3.92 225 | 12.18 219 | 6.71 226 | 3.31 219 | 6.94 218 | 5.51 218 | 2.94 221 | 7.51 218 |
|
test123 | | | 4.41 215 | 5.71 217 | 2.88 216 | 1.28 223 | 2.21 223 | 3.09 225 | 1.65 220 | 6.35 221 | 4.98 224 | 8.53 220 | 3.88 227 | 3.46 218 | 5.79 219 | 5.71 217 | 2.85 222 | 7.50 219 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 99.38 2 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 96.98 140 | | | | | |
|
SR-MVS | | | | | | 99.33 31 | | | 98.40 35 | | | | 98.90 55 | | | | | |
|
Anonymous202405211 | | | | 97.39 68 | | 98.85 69 | 98.59 52 | 97.89 107 | 97.93 77 | 94.41 106 | | 97.37 103 | 96.99 139 | 93.09 154 | 98.61 47 | 98.46 42 | 99.11 35 | 97.27 88 |
|
our_test_3 | | | | | | 97.32 165 | 95.13 180 | 97.59 122 | | | | | | | | | | |
|
ambc | | | | 96.78 100 | | 99.01 58 | 97.11 142 | 95.73 184 | | 95.91 46 | 99.25 3 | 98.56 71 | 97.17 134 | 97.04 69 | 96.76 118 | 95.22 150 | 96.72 165 | 96.73 108 |
|
MTAPA | | | | | | | | | | | 97.43 57 | | 99.27 23 | | | | | |
|
MTMP | | | | | | | | | | | 97.63 47 | | 99.03 43 | | | | | |
|
Patchmatch-RL test | | | | | | | | 17.42 223 | | | | | | | | | | |
|
tmp_tt | | | | | 45.72 214 | 60.00 220 | 38.74 221 | 45.50 222 | 12.18 218 | 79.58 219 | 68.42 219 | 67.62 218 | 65.04 224 | 22.12 217 | 84.83 212 | 78.72 211 | 66.08 220 | |
|
XVS | | | | | | 99.48 19 | 98.76 39 | 99.22 21 | | | 96.40 104 | | 98.78 69 | | | | 98.94 50 | |
|
X-MVStestdata | | | | | | 99.48 19 | 98.76 39 | 99.22 21 | | | 96.40 104 | | 98.78 69 | | | | 98.94 50 | |
|
abl_6 | | | | | 96.45 136 | 97.79 146 | 97.28 131 | 97.16 146 | 96.16 154 | 89.92 171 | 95.72 134 | 91.59 193 | 97.16 135 | 94.37 137 | | | 97.51 131 | 95.49 144 |
|
mPP-MVS | | | | | | 99.58 6 | | | | | | | 98.98 47 | | | | | |
|
NP-MVS | | | | | | | | | | 89.27 177 | | | | | | | | |
|
Patchmtry | | | | | | | 92.70 192 | 95.23 197 | 98.47 30 | | 96.44 100 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 72.99 219 | 80.14 219 | 37.34 216 | 83.46 212 | 60.13 221 | 84.40 208 | 85.48 191 | 86.93 201 | 87.22 206 | | 79.61 217 | 87.32 200 |
|