SED-MVS | | | 97.92 1 | 98.27 2 | 97.52 1 | 98.88 11 | 99.60 1 | 98.80 5 | 95.08 8 | 98.57 2 | 95.63 2 | 96.98 10 | 99.73 1 | 97.67 1 | 97.26 10 | 95.86 22 | 99.04 14 | 99.89 5 |
|
MSP-MVS | | | 97.74 2 | 98.32 1 | 97.06 7 | 98.66 14 | 99.35 6 | 98.66 7 | 94.75 13 | 98.22 4 | 93.60 5 | 97.99 1 | 98.58 7 | 97.41 3 | 98.24 2 | 95.95 18 | 99.27 4 | 99.91 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 97.69 3 | 98.16 3 | 97.14 5 | 99.01 5 | 99.52 4 | 99.12 2 | 95.38 3 | 98.00 7 | 93.31 9 | 97.71 2 | 99.61 3 | 96.94 4 | 96.99 15 | 95.45 26 | 99.09 12 | 99.81 8 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS | | | 97.61 4 | 97.87 6 | 97.30 2 | 98.94 10 | 99.60 1 | 98.21 12 | 95.11 5 | 98.39 3 | 95.83 1 | 94.40 28 | 99.70 2 | 96.79 5 | 97.16 12 | 95.95 18 | 98.92 25 | 99.90 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 97.60 5 | 98.08 4 | 97.03 8 | 99.14 1 | 99.55 3 | 98.67 6 | 95.32 4 | 97.91 8 | 92.55 12 | 97.11 7 | 97.23 12 | 97.49 2 | 98.16 3 | 97.05 5 | 99.04 14 | 99.55 18 |
|
APDe-MVS | | | 97.31 6 | 97.51 11 | 97.08 6 | 98.95 9 | 99.29 11 | 98.58 9 | 95.11 5 | 97.69 14 | 94.16 3 | 96.91 11 | 96.81 16 | 96.57 9 | 96.71 19 | 95.39 28 | 99.08 13 | 99.79 9 |
|
SF-MVS | | | 97.17 7 | 97.18 14 | 97.17 3 | 99.11 2 | 99.20 13 | 99.05 3 | 95.55 1 | 97.39 17 | 93.56 6 | 97.48 4 | 96.71 18 | 96.75 6 | 95.73 31 | 94.40 44 | 98.98 19 | 99.33 25 |
|
NCCC | | | 97.01 8 | 97.74 7 | 96.16 11 | 99.02 4 | 99.35 6 | 98.63 8 | 95.04 9 | 97.84 11 | 88.95 25 | 96.83 13 | 97.02 15 | 96.39 14 | 97.44 7 | 96.51 9 | 98.90 27 | 99.16 40 |
|
SMA-MVS |  | | 96.96 9 | 97.65 10 | 96.15 12 | 98.98 6 | 99.31 10 | 97.91 17 | 94.68 15 | 97.52 15 | 90.59 19 | 94.54 27 | 99.20 4 | 96.54 11 | 97.29 9 | 96.48 10 | 98.22 57 | 99.19 36 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MCST-MVS | | | 96.93 10 | 98.07 5 | 95.61 19 | 98.98 6 | 99.44 5 | 98.04 13 | 95.04 9 | 98.10 5 | 86.55 32 | 97.65 3 | 97.56 10 | 95.60 23 | 97.67 6 | 96.45 11 | 99.43 1 | 99.61 17 |
|
HPM-MVS++ |  | | 96.91 11 | 97.70 8 | 96.00 14 | 98.97 8 | 99.16 16 | 97.82 20 | 94.81 12 | 98.04 6 | 89.61 22 | 96.56 15 | 98.60 6 | 96.39 14 | 97.09 13 | 95.22 30 | 98.39 51 | 99.22 34 |
|
SD-MVS | | | 96.87 12 | 97.69 9 | 95.92 15 | 96.38 48 | 99.25 12 | 97.76 21 | 94.75 13 | 97.72 12 | 92.46 14 | 95.94 16 | 99.09 5 | 96.48 13 | 96.01 28 | 96.08 16 | 97.68 89 | 99.73 12 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 96.79 13 | 96.99 17 | 96.56 9 | 98.76 13 | 98.87 25 | 98.42 10 | 94.93 11 | 97.70 13 | 91.83 15 | 95.52 19 | 95.94 23 | 96.63 8 | 95.94 29 | 95.47 25 | 98.80 33 | 99.47 21 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + MP. | | | 96.50 14 | 97.08 15 | 95.82 17 | 96.12 52 | 98.97 22 | 98.00 14 | 94.13 20 | 97.89 9 | 91.49 16 | 95.11 24 | 97.52 11 | 96.26 18 | 96.27 26 | 94.07 54 | 98.91 26 | 99.74 11 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 96.20 15 | 97.22 13 | 95.01 23 | 98.40 22 | 99.11 17 | 97.93 16 | 93.62 24 | 96.28 29 | 87.45 28 | 97.05 9 | 96.00 22 | 94.23 32 | 96.83 18 | 95.97 17 | 98.40 50 | 99.27 31 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 96.09 16 | 96.41 22 | 95.72 18 | 98.58 17 | 98.84 26 | 97.95 15 | 93.08 28 | 96.96 22 | 90.24 20 | 96.60 14 | 94.40 31 | 96.52 12 | 95.13 42 | 94.33 46 | 97.93 79 | 98.59 65 |
|
zzz-MVS | | | 95.87 17 | 95.63 29 | 96.15 12 | 98.60 16 | 98.83 27 | 97.89 18 | 93.65 23 | 96.24 30 | 93.08 10 | 91.13 35 | 95.46 28 | 95.72 22 | 95.64 33 | 93.67 61 | 97.97 76 | 98.46 72 |
|
ACMMP_NAP | | | 95.81 18 | 96.50 21 | 95.01 23 | 98.79 12 | 99.17 15 | 97.52 26 | 94.20 19 | 96.19 31 | 85.71 36 | 93.80 31 | 96.20 21 | 95.89 19 | 96.62 21 | 94.98 36 | 97.93 79 | 98.52 68 |
|
train_agg | | | 95.72 19 | 97.37 12 | 93.80 29 | 97.82 31 | 98.92 23 | 97.84 19 | 93.50 25 | 96.86 24 | 81.35 52 | 97.10 8 | 97.71 8 | 94.19 33 | 96.02 27 | 95.37 29 | 98.07 66 | 99.64 15 |
|
ACMMPR | | | 95.59 20 | 95.89 24 | 95.25 21 | 98.41 21 | 98.74 29 | 97.69 24 | 92.73 32 | 96.88 23 | 88.95 25 | 95.33 21 | 92.91 38 | 95.79 20 | 94.73 52 | 94.33 46 | 97.92 81 | 98.32 78 |
|
DeepC-MVS_fast | | 91.53 1 | 95.57 21 | 95.67 27 | 95.45 20 | 98.57 18 | 99.00 21 | 97.76 21 | 94.41 17 | 97.06 20 | 86.84 31 | 86.39 46 | 92.27 43 | 96.38 16 | 97.89 5 | 98.06 3 | 98.73 39 | 99.01 48 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSLP-MVS++ | | | 95.49 22 | 94.84 33 | 96.25 10 | 98.64 15 | 98.63 33 | 98.35 11 | 92.37 34 | 95.04 48 | 92.62 11 | 87.12 45 | 93.79 32 | 96.55 10 | 93.53 67 | 96.78 6 | 98.98 19 | 98.99 49 |
|
CP-MVS | | | 95.43 23 | 95.67 27 | 95.14 22 | 98.24 27 | 98.60 34 | 97.45 27 | 92.80 30 | 95.98 35 | 89.21 24 | 95.22 22 | 93.60 33 | 95.43 24 | 94.37 58 | 93.22 68 | 97.68 89 | 98.72 56 |
|
DPM-MVS | | | 95.36 24 | 95.84 25 | 94.82 25 | 96.70 44 | 98.49 44 | 99.27 1 | 95.09 7 | 96.71 25 | 83.87 44 | 86.34 48 | 96.44 20 | 95.06 26 | 98.35 1 | 98.82 1 | 98.89 28 | 95.69 132 |
|
MP-MVS |  | | 95.24 25 | 95.96 23 | 94.40 27 | 98.32 24 | 98.38 49 | 97.12 29 | 92.87 29 | 95.17 46 | 85.50 37 | 95.68 17 | 94.91 29 | 94.58 29 | 95.11 43 | 93.76 58 | 98.05 69 | 98.68 58 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
TSAR-MVS + ACMM | | | 94.99 26 | 97.02 16 | 92.61 40 | 97.19 37 | 98.71 31 | 97.74 23 | 93.21 27 | 96.97 21 | 79.27 66 | 94.09 29 | 97.14 13 | 90.84 65 | 96.64 20 | 95.94 20 | 97.42 105 | 99.67 14 |
|
X-MVS | | | 94.70 27 | 95.71 26 | 93.52 33 | 98.38 23 | 98.56 36 | 96.99 30 | 92.62 33 | 95.58 39 | 81.00 58 | 94.57 26 | 93.49 34 | 94.16 35 | 94.82 48 | 94.29 49 | 97.99 75 | 98.68 58 |
|
PGM-MVS | | | 94.64 28 | 95.49 30 | 93.66 31 | 98.55 19 | 98.51 42 | 97.63 25 | 87.77 48 | 94.45 52 | 84.92 40 | 97.23 6 | 91.90 45 | 95.22 25 | 94.56 55 | 93.80 57 | 97.87 85 | 97.97 88 |
|
TSAR-MVS + GP. | | | 94.59 29 | 96.60 20 | 92.25 41 | 90.25 88 | 98.17 55 | 96.22 36 | 86.53 54 | 97.49 16 | 87.26 29 | 95.21 23 | 97.06 14 | 94.07 37 | 94.34 60 | 94.20 51 | 99.18 5 | 99.71 13 |
|
xxxxxxxxxxxxxcwj | | | 94.57 30 | 92.34 48 | 97.17 3 | 99.11 2 | 99.20 13 | 99.05 3 | 95.55 1 | 97.39 17 | 93.56 6 | 97.48 4 | 62.85 148 | 96.75 6 | 95.73 31 | 94.40 44 | 98.98 19 | 99.33 25 |
|
PHI-MVS | | | 94.49 31 | 96.72 19 | 91.88 43 | 97.06 39 | 98.88 24 | 94.99 47 | 89.13 42 | 96.15 32 | 79.70 62 | 96.91 11 | 95.78 25 | 91.87 55 | 94.65 53 | 95.68 23 | 98.53 44 | 98.98 51 |
|
AdaColmap |  | | 94.28 32 | 92.94 44 | 95.84 16 | 98.32 24 | 98.33 51 | 96.06 38 | 94.62 16 | 96.29 28 | 91.22 17 | 89.89 39 | 85.50 74 | 96.38 16 | 91.85 96 | 90.89 84 | 98.44 46 | 97.81 91 |
|
DeepPCF-MVS | | 91.00 2 | 94.15 33 | 96.87 18 | 90.97 51 | 96.82 42 | 99.33 9 | 89.40 97 | 92.76 31 | 98.76 1 | 82.36 48 | 88.74 40 | 95.49 27 | 90.58 72 | 98.13 4 | 97.80 4 | 93.88 185 | 99.88 6 |
|
CPTT-MVS | | | 94.11 34 | 93.99 39 | 94.25 28 | 96.58 45 | 97.66 59 | 97.31 28 | 91.94 35 | 94.84 49 | 88.72 27 | 92.51 32 | 93.04 37 | 95.78 21 | 91.51 99 | 89.97 101 | 95.15 174 | 98.37 75 |
|
EPNet | | | 93.69 35 | 95.34 31 | 91.76 44 | 96.98 41 | 98.47 46 | 95.40 44 | 86.79 51 | 95.47 40 | 82.84 46 | 95.66 18 | 89.17 51 | 90.47 73 | 95.25 41 | 94.69 40 | 98.10 63 | 98.68 58 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMMP |  | | 93.32 36 | 93.59 42 | 93.00 38 | 97.03 40 | 98.24 52 | 95.27 45 | 91.66 38 | 95.20 44 | 83.25 45 | 95.39 20 | 85.52 72 | 92.80 46 | 92.60 86 | 90.21 97 | 98.01 72 | 97.99 86 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CANet | | | 93.23 37 | 93.72 41 | 92.65 39 | 95.48 55 | 99.09 19 | 96.55 34 | 86.74 52 | 95.28 43 | 85.22 38 | 77.30 73 | 91.25 47 | 92.60 48 | 97.06 14 | 96.63 7 | 99.31 2 | 99.45 22 |
|
CDPH-MVS | | | 93.22 38 | 95.08 32 | 91.04 50 | 97.57 34 | 98.49 44 | 96.74 32 | 89.35 41 | 95.19 45 | 73.57 95 | 90.26 37 | 91.59 46 | 90.68 69 | 95.09 45 | 96.15 14 | 98.31 56 | 98.81 54 |
|
CSCG | | | 93.16 39 | 92.65 46 | 93.76 30 | 98.32 24 | 99.09 19 | 96.12 37 | 89.91 40 | 93.15 61 | 89.64 21 | 83.62 55 | 88.91 54 | 92.40 50 | 91.09 105 | 93.70 59 | 96.14 157 | 98.99 49 |
|
MVS_111021_LR | | | 93.05 40 | 94.53 35 | 91.32 48 | 96.43 47 | 98.38 49 | 92.81 61 | 87.20 50 | 95.94 37 | 81.45 51 | 94.75 25 | 86.08 68 | 92.12 53 | 94.83 47 | 93.34 64 | 97.89 84 | 98.42 74 |
|
3Dnovator+ | | 86.26 7 | 92.90 41 | 92.45 47 | 93.42 34 | 97.25 36 | 98.45 48 | 95.82 39 | 85.71 60 | 93.83 56 | 89.55 23 | 72.31 102 | 92.28 42 | 94.01 38 | 95.10 44 | 95.92 21 | 98.17 59 | 99.23 33 |
|
MVS_111021_HR | | | 92.73 42 | 94.83 34 | 90.28 56 | 96.27 49 | 99.10 18 | 92.77 62 | 86.15 57 | 93.41 59 | 77.11 84 | 93.82 30 | 87.39 60 | 90.61 70 | 95.60 34 | 95.15 32 | 98.79 34 | 99.32 27 |
|
PLC |  | 89.12 3 | 92.67 43 | 90.84 59 | 94.81 26 | 97.69 32 | 96.10 86 | 95.42 43 | 91.70 36 | 95.82 38 | 92.52 13 | 81.24 58 | 86.01 69 | 94.36 30 | 92.44 90 | 90.27 94 | 97.19 114 | 93.99 155 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator | | 85.78 8 | 92.53 44 | 91.96 50 | 93.20 36 | 97.99 28 | 98.47 46 | 95.78 40 | 85.94 58 | 93.07 63 | 86.40 33 | 73.43 94 | 89.00 53 | 94.08 36 | 94.74 51 | 96.44 12 | 99.01 18 | 98.57 66 |
|
DeepC-MVS | | 88.77 4 | 92.39 45 | 91.74 52 | 93.14 37 | 96.21 50 | 98.55 39 | 96.30 35 | 93.84 21 | 93.06 64 | 81.09 56 | 74.69 88 | 85.20 77 | 93.48 41 | 95.41 37 | 96.13 15 | 97.92 81 | 99.18 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OMC-MVS | | | 92.05 46 | 91.88 51 | 92.25 41 | 96.51 46 | 97.94 57 | 93.18 58 | 88.97 44 | 96.53 26 | 84.47 42 | 80.79 60 | 87.85 56 | 93.25 43 | 92.48 89 | 91.81 77 | 97.12 115 | 95.73 131 |
|
MVSTER | | | 91.91 47 | 93.43 43 | 90.14 57 | 89.81 94 | 92.32 127 | 94.53 50 | 81.32 84 | 96.00 34 | 84.77 41 | 85.41 53 | 92.39 41 | 91.32 57 | 96.41 23 | 94.01 55 | 99.11 8 | 97.45 100 |
|
MVS_0304 | | | 91.90 48 | 92.93 45 | 90.69 55 | 93.66 63 | 98.78 28 | 96.73 33 | 85.43 64 | 93.13 62 | 78.11 78 | 77.02 76 | 89.09 52 | 91.10 61 | 96.98 16 | 96.54 8 | 99.11 8 | 98.96 52 |
|
CS-MVS | | | 91.80 49 | 94.06 37 | 89.16 64 | 88.79 105 | 96.30 84 | 91.85 69 | 79.33 102 | 96.03 33 | 81.56 50 | 86.11 49 | 89.31 50 | 94.68 27 | 96.42 22 | 94.85 37 | 98.73 39 | 99.37 23 |
|
QAPM | | | 91.68 50 | 91.97 49 | 91.34 47 | 97.86 30 | 98.72 30 | 95.60 42 | 85.72 59 | 90.86 77 | 77.14 83 | 76.06 77 | 90.35 48 | 92.69 47 | 94.10 61 | 94.60 41 | 99.04 14 | 99.09 41 |
|
CNLPA | | | 91.53 51 | 89.74 71 | 93.63 32 | 96.75 43 | 97.63 61 | 91.16 81 | 91.70 36 | 96.38 27 | 90.82 18 | 69.66 113 | 85.52 72 | 93.76 39 | 90.44 111 | 91.14 83 | 97.55 98 | 97.40 101 |
|
ETV-MVS | | | 91.51 52 | 94.06 37 | 88.54 67 | 89.39 99 | 97.52 62 | 89.48 93 | 80.88 87 | 97.09 19 | 79.41 64 | 87.87 41 | 86.18 67 | 92.95 45 | 95.94 29 | 94.33 46 | 99.13 7 | 99.52 20 |
|
DELS-MVS | | | 91.09 53 | 90.56 67 | 91.71 45 | 95.82 53 | 98.59 35 | 95.74 41 | 86.68 53 | 85.86 105 | 85.12 39 | 72.71 97 | 81.36 85 | 88.06 93 | 97.31 8 | 98.27 2 | 98.86 31 | 99.82 7 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TAPA-MVS | | 87.40 6 | 90.98 54 | 90.71 61 | 91.30 49 | 96.14 51 | 97.66 59 | 94.80 48 | 89.00 43 | 94.74 51 | 77.42 82 | 80.22 61 | 86.70 63 | 92.27 51 | 91.65 98 | 90.17 99 | 98.15 62 | 93.83 159 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PVSNet_BlendedMVS | | | 90.74 55 | 90.66 63 | 90.82 53 | 94.75 58 | 98.54 40 | 91.30 78 | 86.53 54 | 95.43 41 | 85.75 34 | 78.66 68 | 70.67 121 | 87.60 94 | 96.37 24 | 95.08 34 | 98.98 19 | 99.90 2 |
|
PVSNet_Blended | | | 90.74 55 | 90.66 63 | 90.82 53 | 94.75 58 | 98.54 40 | 91.30 78 | 86.53 54 | 95.43 41 | 85.75 34 | 78.66 68 | 70.67 121 | 87.60 94 | 96.37 24 | 95.08 34 | 98.98 19 | 99.90 2 |
|
CHOSEN 280x420 | | | 90.61 57 | 94.27 36 | 86.35 86 | 93.12 67 | 98.16 56 | 89.99 89 | 69.62 175 | 92.48 68 | 76.89 87 | 87.28 44 | 96.72 17 | 90.31 75 | 94.81 49 | 92.33 74 | 98.17 59 | 98.08 84 |
|
MAR-MVS | | | 90.44 58 | 91.17 56 | 89.59 60 | 97.48 35 | 97.92 58 | 90.96 84 | 79.80 92 | 95.07 47 | 77.03 85 | 80.83 59 | 79.10 95 | 94.68 27 | 93.16 72 | 94.46 43 | 97.59 97 | 97.63 93 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 88.14 5 | 90.42 59 | 89.56 76 | 91.41 46 | 94.44 60 | 98.18 54 | 94.35 52 | 94.33 18 | 84.55 117 | 76.61 88 | 75.84 80 | 88.47 55 | 91.29 58 | 90.37 113 | 90.66 91 | 97.46 100 | 98.88 53 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
OpenMVS |  | 83.41 11 | 89.84 60 | 88.89 82 | 90.95 52 | 97.63 33 | 98.51 42 | 94.64 49 | 85.47 63 | 88.14 91 | 78.39 76 | 65.06 125 | 85.42 75 | 91.04 63 | 93.06 75 | 93.70 59 | 98.53 44 | 98.37 75 |
|
EIA-MVS | | | 89.82 61 | 91.48 54 | 87.89 75 | 89.16 101 | 97.31 64 | 88.99 98 | 80.92 86 | 94.29 53 | 77.65 80 | 82.16 57 | 79.77 93 | 91.90 54 | 94.61 54 | 93.03 70 | 98.70 41 | 99.21 35 |
|
canonicalmvs | | | 89.62 62 | 89.87 70 | 89.33 62 | 90.47 83 | 97.02 70 | 93.46 57 | 79.67 95 | 92.45 69 | 81.05 57 | 82.84 56 | 73.00 110 | 93.71 40 | 90.38 112 | 94.85 37 | 97.65 93 | 98.54 67 |
|
TSAR-MVS + COLMAP | | | 89.59 63 | 89.64 73 | 89.53 61 | 93.32 66 | 96.51 77 | 95.03 46 | 88.53 45 | 95.98 35 | 69.10 111 | 91.81 33 | 64.53 144 | 93.40 42 | 93.53 67 | 91.35 82 | 97.77 86 | 93.75 162 |
|
HQP-MVS | | | 89.57 64 | 90.57 66 | 88.41 69 | 92.77 68 | 94.71 102 | 94.24 53 | 87.97 46 | 93.44 58 | 68.18 114 | 91.75 34 | 71.54 120 | 89.90 79 | 92.31 93 | 91.43 80 | 97.39 106 | 98.80 55 |
|
CS-MVS-test | | | 89.04 65 | 91.14 57 | 86.59 85 | 87.75 120 | 95.51 96 | 89.44 95 | 76.32 124 | 90.52 79 | 74.56 94 | 80.06 62 | 84.40 80 | 93.23 44 | 95.41 37 | 92.98 72 | 98.22 57 | 99.09 41 |
|
MVS_Test | | | 89.02 66 | 90.20 68 | 87.64 77 | 89.83 93 | 97.05 69 | 92.30 64 | 77.59 115 | 92.89 65 | 75.01 92 | 77.36 72 | 76.10 104 | 92.27 51 | 95.30 40 | 95.42 27 | 98.83 32 | 97.30 104 |
|
CLD-MVS | | | 88.99 67 | 88.07 85 | 90.07 58 | 89.61 96 | 94.94 99 | 93.82 56 | 85.70 61 | 92.73 67 | 82.73 47 | 79.97 63 | 69.59 124 | 90.44 74 | 90.32 114 | 89.93 103 | 98.10 63 | 99.04 45 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
baseline | | | 88.91 68 | 89.94 69 | 87.70 76 | 89.44 98 | 96.74 75 | 91.62 72 | 77.92 112 | 93.79 57 | 78.76 71 | 77.55 71 | 78.46 98 | 89.38 85 | 92.26 94 | 92.52 73 | 99.10 10 | 98.23 79 |
|
PMMVS | | | 88.56 69 | 91.22 55 | 85.47 94 | 90.04 90 | 95.60 94 | 86.62 121 | 78.49 107 | 93.86 55 | 70.62 106 | 90.00 38 | 80.08 91 | 91.64 56 | 92.36 91 | 89.80 107 | 95.40 169 | 96.84 113 |
|
baseline1 | | | 88.16 70 | 88.15 84 | 88.17 73 | 90.02 91 | 94.79 101 | 91.85 69 | 83.89 67 | 87.37 97 | 75.67 91 | 73.75 92 | 79.89 92 | 88.44 92 | 94.41 56 | 93.33 66 | 99.18 5 | 93.55 164 |
|
thisisatest0530 | | | 87.99 71 | 90.76 60 | 84.75 97 | 88.36 110 | 96.82 72 | 87.65 110 | 79.67 95 | 91.77 71 | 70.93 102 | 79.94 64 | 87.65 58 | 84.21 111 | 92.98 78 | 89.07 118 | 97.66 92 | 97.13 107 |
|
tttt0517 | | | 87.93 72 | 90.71 61 | 84.68 98 | 88.33 111 | 96.76 74 | 87.42 113 | 79.67 95 | 91.74 72 | 70.83 103 | 79.91 65 | 87.61 59 | 84.21 111 | 92.88 83 | 89.07 118 | 97.62 95 | 97.03 109 |
|
CANet_DTU | | | 87.91 73 | 91.57 53 | 83.64 106 | 90.96 77 | 97.12 67 | 91.90 68 | 75.97 127 | 92.83 66 | 53.16 169 | 86.02 50 | 79.02 96 | 90.80 66 | 95.40 39 | 94.15 52 | 99.03 17 | 96.47 124 |
|
diffmvs | | | 87.86 74 | 87.40 91 | 88.39 70 | 88.57 108 | 96.10 86 | 91.24 80 | 83.15 71 | 90.62 78 | 79.13 68 | 72.45 100 | 67.71 130 | 90.07 78 | 92.58 87 | 93.31 67 | 98.17 59 | 99.03 46 |
|
IS_MVSNet | | | 87.83 75 | 90.66 63 | 84.53 99 | 90.08 89 | 96.79 73 | 88.16 104 | 79.89 91 | 85.44 107 | 72.20 97 | 75.50 84 | 87.14 61 | 80.21 139 | 95.53 35 | 95.22 30 | 96.65 131 | 99.02 47 |
|
EPP-MVSNet | | | 87.72 76 | 89.74 71 | 85.37 95 | 89.11 102 | 95.57 95 | 86.31 122 | 79.44 98 | 85.83 106 | 75.73 90 | 77.23 74 | 90.05 49 | 84.78 108 | 91.22 103 | 90.25 95 | 96.83 122 | 98.04 85 |
|
ET-MVSNet_ETH3D | | | 87.63 77 | 91.08 58 | 83.59 107 | 67.96 209 | 96.30 84 | 92.06 66 | 78.47 108 | 91.95 70 | 69.87 108 | 87.57 43 | 84.14 82 | 94.34 31 | 88.58 127 | 92.10 75 | 98.88 29 | 96.93 110 |
|
DI_MVS_plusplus_trai | | | 87.63 77 | 87.13 93 | 88.22 72 | 88.61 107 | 95.92 90 | 94.09 55 | 81.41 83 | 87.00 100 | 78.38 77 | 59.70 145 | 80.52 89 | 89.08 87 | 94.37 58 | 93.34 64 | 97.73 87 | 99.05 44 |
|
casdiffmvs | | | 87.59 79 | 86.69 97 | 88.64 66 | 89.06 103 | 96.32 83 | 90.18 87 | 83.21 70 | 87.74 95 | 80.20 61 | 67.99 117 | 68.34 128 | 90.79 67 | 93.83 63 | 94.08 53 | 98.41 49 | 98.50 70 |
|
PVSNet_Blended_VisFu | | | 87.44 80 | 88.72 83 | 85.95 90 | 92.02 72 | 97.26 65 | 86.88 119 | 82.66 78 | 83.86 123 | 79.16 67 | 66.96 120 | 84.91 78 | 77.26 156 | 94.97 46 | 93.48 62 | 97.73 87 | 99.64 15 |
|
FMVSNet3 | | | 87.19 81 | 87.32 92 | 87.04 83 | 82.82 148 | 90.21 142 | 92.88 60 | 76.53 121 | 91.69 73 | 81.31 53 | 64.81 128 | 80.64 86 | 89.79 83 | 94.80 50 | 94.76 39 | 98.88 29 | 94.32 151 |
|
LS3D | | | 87.19 81 | 85.48 104 | 89.18 63 | 94.96 57 | 95.47 97 | 92.02 67 | 93.36 26 | 88.69 89 | 67.01 115 | 70.56 109 | 72.10 115 | 92.47 49 | 89.96 117 | 89.93 103 | 95.25 171 | 91.68 173 |
|
ACMP | | 85.16 9 | 87.15 83 | 87.04 94 | 87.27 81 | 90.80 79 | 94.45 105 | 89.41 96 | 83.09 75 | 89.15 86 | 76.98 86 | 86.35 47 | 65.80 137 | 86.94 97 | 88.45 128 | 87.52 137 | 96.42 146 | 97.56 98 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UGNet | | | 87.04 84 | 89.59 75 | 84.07 101 | 90.94 78 | 95.95 89 | 86.02 124 | 81.65 82 | 85.94 104 | 78.54 75 | 78.00 70 | 85.40 76 | 69.62 176 | 91.83 97 | 91.53 79 | 97.63 94 | 98.51 69 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LGP-MVS_train | | | 86.95 85 | 87.65 88 | 86.12 89 | 91.77 75 | 93.84 111 | 93.04 59 | 82.77 77 | 88.04 92 | 65.33 120 | 87.69 42 | 67.09 134 | 86.79 98 | 90.20 115 | 88.99 121 | 97.05 117 | 97.71 92 |
|
PatchMatch-RL | | | 86.75 86 | 85.43 105 | 88.29 71 | 94.06 61 | 96.37 82 | 86.82 120 | 82.94 76 | 88.94 87 | 79.59 63 | 79.83 66 | 59.17 156 | 89.46 84 | 91.12 104 | 88.81 125 | 96.88 121 | 93.78 160 |
|
baseline2 | | | 86.51 87 | 89.35 79 | 83.19 109 | 85.70 133 | 94.88 100 | 85.75 129 | 77.13 117 | 89.87 83 | 70.65 105 | 79.03 67 | 79.14 94 | 81.51 132 | 93.70 64 | 90.22 96 | 98.38 52 | 98.60 64 |
|
thres100view900 | | | 86.48 88 | 85.08 107 | 88.12 74 | 90.54 80 | 96.90 71 | 92.39 63 | 84.82 65 | 84.16 121 | 71.65 98 | 70.86 106 | 60.49 151 | 91.23 60 | 93.65 65 | 90.19 98 | 98.10 63 | 99.32 27 |
|
ACMM | | 84.23 10 | 86.40 89 | 84.64 110 | 88.46 68 | 91.90 73 | 91.93 133 | 88.11 105 | 85.59 62 | 88.61 90 | 79.13 68 | 75.31 85 | 66.25 135 | 89.86 82 | 89.88 118 | 87.64 134 | 96.16 156 | 92.86 169 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 86.16 90 | 86.00 100 | 86.35 86 | 81.81 154 | 89.52 151 | 91.40 74 | 76.53 121 | 91.69 73 | 81.31 53 | 64.81 128 | 80.64 86 | 88.72 88 | 90.54 108 | 90.72 87 | 98.34 53 | 94.08 152 |
|
test1 | | | 86.16 90 | 86.00 100 | 86.35 86 | 81.81 154 | 89.52 151 | 91.40 74 | 76.53 121 | 91.69 73 | 81.31 53 | 64.81 128 | 80.64 86 | 88.72 88 | 90.54 108 | 90.72 87 | 98.34 53 | 94.08 152 |
|
tfpn200view9 | | | 86.07 92 | 84.76 109 | 87.61 78 | 90.54 80 | 96.39 79 | 91.35 77 | 83.15 71 | 84.16 121 | 71.65 98 | 70.86 106 | 60.49 151 | 90.91 64 | 92.89 80 | 89.34 110 | 98.05 69 | 99.17 38 |
|
DCV-MVSNet | | | 85.90 93 | 85.88 102 | 85.93 91 | 87.86 116 | 88.37 168 | 89.45 94 | 77.46 116 | 87.33 98 | 77.51 81 | 76.06 77 | 75.76 106 | 88.48 91 | 87.40 136 | 88.89 124 | 94.80 180 | 97.37 102 |
|
Vis-MVSNet (Re-imp) | | | 85.89 94 | 89.62 74 | 81.55 120 | 89.85 92 | 96.08 88 | 87.55 111 | 79.80 92 | 84.80 114 | 66.55 117 | 73.70 93 | 86.71 62 | 68.25 183 | 94.40 57 | 94.53 42 | 97.32 109 | 97.09 108 |
|
MSDG | | | 85.81 95 | 82.29 133 | 89.93 59 | 95.52 54 | 92.61 122 | 91.51 73 | 91.46 39 | 85.12 111 | 78.56 73 | 63.25 134 | 69.01 126 | 85.31 105 | 88.45 128 | 88.23 128 | 97.21 113 | 89.33 184 |
|
thres200 | | | 85.80 96 | 84.38 111 | 87.46 79 | 90.51 82 | 96.39 79 | 91.64 71 | 83.15 71 | 81.59 130 | 71.54 100 | 70.24 110 | 60.41 153 | 89.88 80 | 92.89 80 | 89.85 106 | 98.06 67 | 99.26 32 |
|
OPM-MVS | | | 85.69 97 | 82.79 125 | 89.06 65 | 93.42 64 | 94.21 109 | 94.21 54 | 87.61 49 | 72.68 155 | 70.79 104 | 71.09 104 | 67.27 133 | 90.74 68 | 91.29 102 | 89.05 120 | 97.61 96 | 93.94 157 |
|
thres400 | | | 85.59 98 | 84.08 114 | 87.36 80 | 90.45 84 | 96.60 76 | 90.95 85 | 83.67 69 | 80.99 133 | 71.17 101 | 69.08 115 | 60.25 154 | 89.88 80 | 93.14 73 | 89.34 110 | 98.02 71 | 99.17 38 |
|
CostFormer | | | 85.47 99 | 86.98 95 | 83.71 104 | 88.70 106 | 94.02 110 | 88.07 106 | 62.72 192 | 89.78 84 | 78.68 72 | 72.69 98 | 78.37 99 | 87.35 96 | 85.96 149 | 89.32 114 | 96.73 128 | 98.72 56 |
|
thres600view7 | | | 85.14 100 | 83.58 120 | 86.96 84 | 90.37 87 | 96.39 79 | 90.33 86 | 83.15 71 | 80.46 134 | 70.60 107 | 67.96 118 | 60.04 155 | 89.22 86 | 92.89 80 | 88.28 127 | 98.06 67 | 99.08 43 |
|
test-LLR | | | 85.11 101 | 89.49 77 | 80.00 129 | 85.32 138 | 94.49 103 | 82.27 159 | 74.18 137 | 87.83 93 | 56.70 147 | 75.55 82 | 86.26 64 | 82.75 124 | 93.06 75 | 90.60 92 | 98.77 36 | 98.65 62 |
|
FMVSNet2 | | | 84.89 102 | 84.02 116 | 85.91 92 | 81.81 154 | 89.52 151 | 91.40 74 | 75.79 128 | 84.45 118 | 79.39 65 | 58.75 148 | 74.35 108 | 88.72 88 | 93.51 69 | 93.46 63 | 98.34 53 | 94.08 152 |
|
FC-MVSNet-train | | | 84.88 103 | 84.08 114 | 85.82 93 | 89.21 100 | 91.74 134 | 85.87 125 | 81.20 85 | 81.71 129 | 74.66 93 | 73.38 95 | 64.99 141 | 86.60 99 | 90.75 106 | 88.08 129 | 97.36 107 | 97.90 89 |
|
EPNet_dtu | | | 84.87 104 | 89.01 80 | 80.05 128 | 95.25 56 | 92.88 120 | 88.84 100 | 84.11 66 | 91.69 73 | 49.28 185 | 85.69 51 | 78.95 97 | 65.39 188 | 92.22 95 | 91.66 78 | 97.43 104 | 89.95 180 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+ | | | 84.80 105 | 85.71 103 | 83.73 103 | 87.94 115 | 95.76 91 | 90.08 88 | 73.45 144 | 85.12 111 | 62.66 130 | 72.39 101 | 64.97 142 | 90.59 71 | 92.95 79 | 90.69 90 | 97.67 91 | 98.12 81 |
|
UA-Net | | | 84.69 106 | 87.64 89 | 81.25 122 | 90.38 86 | 95.67 92 | 87.33 114 | 79.41 99 | 72.07 159 | 66.48 118 | 75.09 86 | 92.48 40 | 66.88 184 | 94.03 62 | 94.25 50 | 97.01 120 | 89.88 181 |
|
TESTMET0.1,1 | | | 84.62 107 | 89.49 77 | 78.94 138 | 82.18 151 | 94.49 103 | 82.27 159 | 70.94 165 | 87.83 93 | 56.70 147 | 75.55 82 | 86.26 64 | 82.75 124 | 93.06 75 | 90.60 92 | 98.77 36 | 98.65 62 |
|
CHOSEN 1792x2688 | | | 84.59 108 | 84.30 113 | 84.93 96 | 93.71 62 | 98.23 53 | 89.91 90 | 77.96 111 | 84.81 113 | 65.93 119 | 45.19 193 | 71.76 119 | 83.13 122 | 95.46 36 | 95.13 33 | 98.94 24 | 99.53 19 |
|
Anonymous20231211 | | | 84.23 109 | 81.71 138 | 87.17 82 | 87.38 124 | 93.59 114 | 88.95 99 | 82.14 80 | 83.82 124 | 78.56 73 | 48.09 186 | 73.89 109 | 91.25 59 | 86.38 143 | 88.06 131 | 94.74 181 | 98.14 80 |
|
MDTV_nov1_ep13 | | | 84.17 110 | 88.03 86 | 79.66 131 | 86.00 131 | 94.41 106 | 85.05 131 | 66.01 187 | 90.36 80 | 64.34 126 | 77.13 75 | 84.56 79 | 82.71 126 | 87.12 140 | 88.92 122 | 93.84 187 | 93.69 163 |
|
test-mter | | | 84.06 111 | 89.00 81 | 78.29 143 | 81.92 152 | 94.23 108 | 81.07 169 | 70.38 169 | 87.12 99 | 56.10 156 | 74.75 87 | 85.80 70 | 81.81 131 | 92.52 88 | 90.10 100 | 98.43 47 | 98.49 71 |
|
IB-MVS | | 79.58 12 | 83.83 112 | 84.81 108 | 82.68 112 | 91.85 74 | 97.35 63 | 75.75 188 | 82.57 79 | 86.55 102 | 84.01 43 | 70.90 105 | 65.43 139 | 63.18 194 | 84.19 163 | 89.92 105 | 98.74 38 | 99.31 29 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPMVS | | | 83.71 113 | 86.76 96 | 80.16 127 | 89.72 95 | 95.64 93 | 84.68 132 | 59.73 197 | 89.61 85 | 62.67 129 | 72.65 99 | 81.80 84 | 86.22 101 | 86.23 145 | 88.03 132 | 97.96 77 | 93.35 165 |
|
HyFIR lowres test | | | 83.43 114 | 82.94 123 | 84.01 102 | 93.41 65 | 97.10 68 | 87.21 115 | 74.04 139 | 80.15 136 | 64.98 121 | 41.09 201 | 76.61 103 | 86.51 100 | 93.31 70 | 93.01 71 | 97.91 83 | 99.30 30 |
|
PatchmatchNet |  | | 83.28 115 | 87.57 90 | 78.29 143 | 87.46 122 | 94.95 98 | 83.36 141 | 59.43 200 | 90.20 82 | 58.10 142 | 74.29 90 | 86.20 66 | 84.13 113 | 85.27 155 | 87.39 138 | 97.25 112 | 94.67 149 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 83.26 116 | 87.76 87 | 78.00 148 | 87.45 123 | 92.20 128 | 82.63 155 | 58.42 202 | 90.30 81 | 58.23 140 | 75.74 81 | 87.75 57 | 83.97 116 | 86.10 148 | 87.64 134 | 97.30 110 | 94.62 150 |
|
GeoE | | | 83.17 117 | 82.86 124 | 83.53 108 | 87.24 125 | 93.78 112 | 87.94 107 | 72.75 149 | 82.19 127 | 69.76 109 | 60.54 142 | 65.95 136 | 86.01 102 | 89.41 122 | 89.72 108 | 97.47 99 | 98.43 73 |
|
CDS-MVSNet | | | 83.13 118 | 83.73 119 | 82.43 118 | 84.52 143 | 92.92 119 | 88.26 103 | 77.67 114 | 72.08 158 | 69.08 112 | 66.96 120 | 74.66 107 | 78.61 145 | 90.70 107 | 91.96 76 | 96.46 145 | 96.86 112 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RPSCF | | | 82.91 119 | 81.86 135 | 84.13 100 | 88.25 112 | 88.32 169 | 87.67 109 | 80.86 88 | 84.78 115 | 76.57 89 | 85.56 52 | 76.00 105 | 84.61 109 | 78.20 199 | 76.52 202 | 86.81 208 | 83.63 201 |
|
Vis-MVSNet |  | | 82.88 120 | 86.04 99 | 79.20 136 | 87.77 119 | 96.42 78 | 86.10 123 | 76.70 119 | 74.82 149 | 61.38 132 | 70.70 108 | 77.91 100 | 64.83 190 | 93.22 71 | 93.19 69 | 98.43 47 | 96.01 128 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
dps | | | 82.63 121 | 82.64 128 | 82.62 114 | 87.81 118 | 92.81 121 | 84.39 133 | 61.96 193 | 86.43 103 | 81.63 49 | 69.72 112 | 67.60 132 | 84.42 110 | 82.51 177 | 83.90 176 | 95.52 165 | 95.50 139 |
|
IterMVS-LS | | | 82.62 122 | 82.75 127 | 82.48 115 | 87.09 126 | 87.48 183 | 87.19 116 | 72.85 147 | 79.09 137 | 66.63 116 | 65.22 123 | 72.14 114 | 84.06 115 | 88.33 131 | 91.39 81 | 97.03 119 | 95.60 138 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Fast-Effi-MVS+ | | | 82.61 123 | 82.51 130 | 82.72 110 | 85.49 136 | 93.06 117 | 87.17 117 | 71.39 161 | 84.18 119 | 64.59 123 | 63.03 135 | 58.89 157 | 90.22 76 | 91.39 100 | 90.83 85 | 97.44 101 | 96.21 126 |
|
DROMVSNet | | | 82.61 123 | 82.51 130 | 82.72 110 | 85.49 136 | 93.06 117 | 87.17 117 | 71.39 161 | 84.18 119 | 64.59 123 | 63.03 135 | 58.89 157 | 90.22 76 | 91.39 100 | 90.83 85 | 97.44 101 | 96.21 126 |
|
tpm cat1 | | | 82.39 125 | 82.32 132 | 82.47 116 | 88.13 113 | 92.42 126 | 87.43 112 | 62.79 191 | 85.30 108 | 78.05 79 | 60.14 143 | 72.10 115 | 83.20 121 | 82.26 180 | 85.67 155 | 95.23 172 | 98.35 77 |
|
MS-PatchMatch | | | 82.16 126 | 82.18 134 | 82.12 119 | 91.65 76 | 93.50 115 | 89.51 92 | 71.95 155 | 81.48 131 | 64.45 125 | 59.58 147 | 77.54 101 | 77.23 157 | 89.88 118 | 85.62 156 | 97.94 78 | 87.68 188 |
|
tpmrst | | | 81.71 127 | 83.87 118 | 79.20 136 | 89.01 104 | 93.67 113 | 84.22 134 | 60.14 195 | 87.45 96 | 59.49 136 | 64.97 126 | 71.86 118 | 85.30 106 | 84.72 159 | 86.30 146 | 97.04 118 | 98.09 83 |
|
RPMNet | | | 81.47 128 | 86.24 98 | 75.90 166 | 86.72 127 | 92.12 130 | 82.82 153 | 55.76 208 | 85.21 109 | 53.73 167 | 63.45 132 | 83.16 83 | 80.13 140 | 92.34 92 | 89.52 109 | 96.23 154 | 97.90 89 |
|
CR-MVSNet | | | 81.44 129 | 85.29 106 | 76.94 157 | 86.53 128 | 92.12 130 | 83.86 135 | 58.37 203 | 85.21 109 | 56.28 151 | 59.60 146 | 80.39 90 | 80.50 137 | 92.77 84 | 89.32 114 | 96.12 158 | 97.59 96 |
|
Effi-MVS+-dtu | | | 81.18 130 | 82.77 126 | 79.33 134 | 84.70 142 | 92.54 124 | 85.81 126 | 71.55 159 | 78.84 138 | 57.06 146 | 71.98 103 | 63.77 146 | 85.09 107 | 88.94 124 | 87.62 136 | 91.79 200 | 95.68 133 |
|
test0.0.03 1 | | | 80.99 131 | 84.37 112 | 77.05 155 | 85.32 138 | 89.79 147 | 78.43 179 | 74.18 137 | 84.78 115 | 57.98 145 | 76.06 77 | 72.88 111 | 69.14 180 | 88.02 133 | 87.70 133 | 97.27 111 | 91.37 174 |
|
Fast-Effi-MVS+-dtu | | | 80.57 132 | 83.44 121 | 77.22 153 | 83.98 146 | 91.52 136 | 85.78 128 | 64.54 190 | 80.38 135 | 50.28 181 | 74.06 91 | 62.89 147 | 82.00 130 | 89.10 123 | 88.91 123 | 96.75 126 | 97.21 106 |
|
FMVSNet5 | | | 80.56 133 | 82.53 129 | 78.26 145 | 73.80 204 | 81.52 202 | 82.26 161 | 68.36 180 | 88.85 88 | 64.21 127 | 69.09 114 | 84.38 81 | 83.49 120 | 87.13 139 | 86.76 143 | 97.44 101 | 79.95 204 |
|
ADS-MVSNet | | | 80.25 134 | 82.96 122 | 77.08 154 | 87.86 116 | 92.60 123 | 81.82 166 | 56.19 207 | 86.95 101 | 56.16 154 | 68.19 116 | 72.42 113 | 83.70 119 | 82.05 181 | 85.45 161 | 96.75 126 | 93.08 168 |
|
FMVSNet1 | | | 80.18 135 | 78.07 149 | 82.65 113 | 78.55 178 | 87.57 182 | 88.41 102 | 73.93 140 | 70.16 164 | 73.57 95 | 49.80 176 | 64.45 145 | 85.35 104 | 90.54 108 | 90.72 87 | 96.10 159 | 93.21 166 |
|
USDC | | | 80.10 136 | 79.33 145 | 81.00 124 | 86.36 129 | 91.71 135 | 88.74 101 | 75.77 129 | 81.90 128 | 54.90 161 | 67.67 119 | 52.05 170 | 83.94 117 | 88.44 130 | 86.25 147 | 96.31 149 | 87.28 192 |
|
COLMAP_ROB |  | 75.69 15 | 79.47 137 | 76.90 156 | 82.46 117 | 92.20 69 | 90.53 138 | 85.30 130 | 83.69 68 | 78.27 141 | 61.47 131 | 58.26 150 | 62.75 149 | 78.28 148 | 82.41 178 | 82.13 189 | 93.83 189 | 83.98 200 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test_part1 | | | 79.37 138 | 75.64 161 | 83.71 104 | 86.18 130 | 87.74 176 | 87.84 108 | 75.69 131 | 66.33 181 | 78.93 70 | 45.92 191 | 64.85 143 | 82.44 127 | 83.08 175 | 85.69 154 | 91.17 201 | 95.90 130 |
|
pmmvs4 | | | 79.32 139 | 77.78 151 | 81.11 123 | 80.18 163 | 88.96 163 | 83.39 139 | 76.07 125 | 81.27 132 | 69.35 110 | 58.66 149 | 51.19 173 | 82.01 129 | 87.16 138 | 84.39 173 | 95.66 163 | 92.82 170 |
|
PatchT | | | 79.28 140 | 83.88 117 | 73.93 175 | 85.54 135 | 90.95 137 | 66.14 205 | 56.53 206 | 83.21 125 | 56.28 151 | 56.50 153 | 76.80 102 | 80.50 137 | 92.77 84 | 89.32 114 | 98.57 43 | 97.59 96 |
|
ACMH | | 78.51 14 | 79.27 141 | 78.08 148 | 80.65 125 | 89.52 97 | 90.40 139 | 80.45 171 | 79.77 94 | 69.54 169 | 54.85 162 | 64.83 127 | 56.16 164 | 83.94 117 | 84.58 161 | 86.01 151 | 95.41 168 | 95.03 146 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 79.23 142 | 78.95 147 | 79.56 132 | 81.89 153 | 92.52 125 | 82.97 148 | 73.70 141 | 67.27 175 | 64.97 122 | 61.66 141 | 65.06 140 | 78.61 145 | 87.12 140 | 88.07 130 | 95.23 172 | 90.95 176 |
|
ACMH+ | | 79.09 13 | 79.12 143 | 77.22 155 | 81.35 121 | 88.50 109 | 90.36 140 | 82.14 163 | 79.38 101 | 72.78 154 | 58.59 137 | 62.31 140 | 56.44 163 | 84.10 114 | 82.03 182 | 84.05 174 | 95.40 169 | 92.55 171 |
|
UniMVSNet_NR-MVSNet | | | 78.89 144 | 78.04 150 | 79.88 130 | 79.40 169 | 89.70 148 | 82.92 150 | 80.17 89 | 76.37 147 | 58.56 138 | 57.10 152 | 54.92 166 | 81.44 133 | 83.51 168 | 87.12 140 | 96.76 125 | 97.60 94 |
|
tpm | | | 78.87 145 | 81.33 141 | 76.00 164 | 85.57 134 | 90.19 143 | 82.81 154 | 59.66 198 | 78.35 140 | 51.40 176 | 66.30 122 | 67.92 129 | 80.94 135 | 83.28 171 | 85.73 152 | 95.65 164 | 97.56 98 |
|
GA-MVS | | | 78.86 146 | 80.42 142 | 77.05 155 | 83.27 147 | 92.17 129 | 83.24 143 | 75.73 130 | 73.75 151 | 46.27 195 | 62.43 138 | 57.12 160 | 76.94 159 | 93.14 73 | 89.34 110 | 96.83 122 | 95.00 147 |
|
IterMVS | | | 78.85 147 | 81.36 139 | 75.93 165 | 84.27 145 | 85.74 189 | 83.83 137 | 66.35 185 | 76.82 142 | 50.48 179 | 63.48 131 | 68.82 127 | 73.99 164 | 89.68 120 | 89.34 110 | 96.63 134 | 95.67 134 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 78.71 148 | 81.34 140 | 75.64 170 | 84.31 144 | 85.67 190 | 83.51 138 | 66.14 186 | 76.67 143 | 50.38 180 | 63.45 132 | 69.02 125 | 73.23 166 | 89.66 121 | 89.22 117 | 96.24 153 | 95.67 134 |
|
UniMVSNet (Re) | | | 78.00 149 | 77.52 152 | 78.57 141 | 79.66 168 | 90.36 140 | 82.09 164 | 77.86 113 | 76.38 146 | 60.26 133 | 54.63 159 | 52.07 169 | 75.31 162 | 84.97 158 | 86.10 149 | 96.22 155 | 98.11 82 |
|
DU-MVS | | | 77.98 150 | 76.71 157 | 79.46 133 | 78.68 175 | 89.26 157 | 82.92 150 | 79.06 104 | 76.52 144 | 58.56 138 | 54.89 157 | 48.35 187 | 81.44 133 | 83.16 173 | 87.21 139 | 96.08 160 | 97.60 94 |
|
FC-MVSNet-test | | | 77.95 151 | 81.85 136 | 73.39 180 | 82.31 149 | 88.99 162 | 79.33 175 | 74.24 136 | 78.75 139 | 47.40 193 | 70.22 111 | 72.09 117 | 60.78 200 | 86.66 142 | 85.62 156 | 96.30 150 | 90.61 177 |
|
NR-MVSNet | | | 77.21 152 | 76.41 158 | 78.14 147 | 80.18 163 | 89.26 157 | 83.38 140 | 79.06 104 | 76.52 144 | 56.59 149 | 54.89 157 | 45.32 197 | 72.89 168 | 85.39 154 | 86.12 148 | 96.71 129 | 97.36 103 |
|
thisisatest0515 | | | 77.13 153 | 79.36 144 | 74.52 172 | 79.79 167 | 89.65 149 | 73.54 193 | 73.69 142 | 74.10 150 | 58.14 141 | 62.79 137 | 60.57 150 | 66.49 186 | 88.08 132 | 85.16 166 | 95.49 167 | 95.15 144 |
|
gg-mvs-nofinetune | | | 77.08 154 | 79.79 143 | 73.92 176 | 85.95 132 | 97.23 66 | 92.18 65 | 52.65 211 | 46.19 214 | 27.79 218 | 38.27 205 | 85.63 71 | 85.67 103 | 96.95 17 | 95.62 24 | 99.30 3 | 98.67 61 |
|
TranMVSNet+NR-MVSNet | | | 77.02 155 | 75.76 160 | 78.49 142 | 78.46 181 | 88.24 170 | 83.03 147 | 79.97 90 | 73.49 153 | 54.73 163 | 54.00 162 | 48.74 182 | 78.15 150 | 82.36 179 | 86.90 142 | 96.59 136 | 96.55 118 |
|
CVMVSNet | | | 76.86 156 | 79.09 146 | 74.26 173 | 85.29 140 | 89.44 154 | 79.91 174 | 78.47 108 | 68.94 172 | 44.45 200 | 62.35 139 | 69.70 123 | 64.50 191 | 85.82 150 | 87.03 141 | 92.94 195 | 90.33 178 |
|
Baseline_NR-MVSNet | | | 76.71 157 | 74.56 168 | 79.23 135 | 78.68 175 | 84.15 198 | 82.45 157 | 78.87 106 | 75.83 148 | 60.05 134 | 47.92 187 | 50.18 179 | 79.06 144 | 83.16 173 | 83.86 177 | 96.26 151 | 96.80 114 |
|
v2v482 | | | 76.25 158 | 74.78 165 | 77.96 149 | 78.50 180 | 89.14 160 | 83.05 146 | 76.02 126 | 68.78 173 | 54.11 164 | 51.36 168 | 48.59 184 | 79.49 142 | 83.53 167 | 85.60 159 | 96.59 136 | 96.49 123 |
|
V42 | | | 76.21 159 | 75.04 164 | 77.58 150 | 78.68 175 | 89.33 156 | 82.93 149 | 74.64 134 | 69.84 166 | 56.13 155 | 50.42 173 | 50.93 174 | 76.30 161 | 83.32 169 | 84.89 170 | 96.83 122 | 96.54 119 |
|
v8 | | | 75.89 160 | 74.74 166 | 77.23 152 | 79.09 171 | 88.00 173 | 83.19 144 | 71.08 164 | 70.03 165 | 56.29 150 | 50.50 171 | 50.88 175 | 77.06 158 | 83.32 169 | 84.99 168 | 96.68 130 | 95.49 140 |
|
TinyColmap | | | 75.75 161 | 73.19 179 | 78.74 140 | 84.82 141 | 87.69 178 | 81.59 167 | 74.62 135 | 71.81 160 | 54.01 165 | 55.79 156 | 44.42 202 | 82.89 123 | 84.61 160 | 83.76 178 | 94.50 182 | 84.22 199 |
|
MIMVSNet | | | 75.71 162 | 77.26 153 | 73.90 177 | 70.93 205 | 88.71 166 | 79.98 173 | 57.67 205 | 73.58 152 | 58.08 144 | 53.93 163 | 58.56 159 | 79.41 143 | 90.04 116 | 89.97 101 | 97.34 108 | 86.04 193 |
|
UniMVSNet_ETH3D | | | 75.63 163 | 71.59 188 | 80.35 126 | 81.03 158 | 89.90 146 | 83.25 142 | 76.58 120 | 60.08 197 | 64.19 128 | 42.89 200 | 45.01 198 | 82.14 128 | 80.20 192 | 86.75 144 | 94.90 177 | 96.29 125 |
|
pm-mvs1 | | | 75.61 164 | 74.19 170 | 77.26 151 | 80.16 165 | 88.79 164 | 81.49 168 | 75.49 133 | 59.49 199 | 58.09 143 | 48.32 184 | 55.53 165 | 72.35 169 | 88.61 126 | 85.48 160 | 95.99 161 | 93.12 167 |
|
v10 | | | 75.57 165 | 74.67 167 | 76.62 160 | 78.73 174 | 87.46 184 | 83.14 145 | 69.41 176 | 69.27 170 | 53.44 168 | 49.73 177 | 49.21 181 | 78.44 147 | 86.17 147 | 85.18 165 | 96.53 141 | 95.65 137 |
|
v1144 | | | 75.54 166 | 74.55 169 | 76.69 158 | 78.33 184 | 88.77 165 | 82.89 152 | 72.76 148 | 67.18 177 | 51.73 173 | 49.34 179 | 48.37 185 | 78.10 151 | 86.22 146 | 85.24 163 | 96.35 148 | 96.74 115 |
|
TDRefinement | | | 75.54 166 | 73.22 177 | 78.25 146 | 87.65 121 | 89.65 149 | 85.81 126 | 79.28 103 | 71.14 162 | 56.06 157 | 52.17 166 | 51.96 171 | 68.74 182 | 81.60 183 | 80.58 191 | 91.94 198 | 85.45 194 |
|
pmmvs5 | | | 75.46 168 | 75.12 163 | 75.87 167 | 79.39 170 | 89.44 154 | 78.12 181 | 72.27 153 | 65.98 183 | 51.54 174 | 55.83 155 | 46.23 192 | 76.80 160 | 88.77 125 | 85.73 152 | 97.07 116 | 93.84 158 |
|
tfpnnormal | | | 75.27 169 | 72.12 185 | 78.94 138 | 82.30 150 | 88.52 167 | 82.41 158 | 79.41 99 | 58.03 200 | 55.59 159 | 43.83 199 | 44.71 199 | 77.35 154 | 87.70 135 | 85.45 161 | 96.60 135 | 96.61 117 |
|
anonymousdsp | | | 75.14 170 | 77.25 154 | 72.69 183 | 76.68 194 | 89.26 157 | 75.26 190 | 68.44 179 | 65.53 186 | 46.65 194 | 58.16 151 | 56.67 162 | 73.96 165 | 87.84 134 | 86.05 150 | 95.13 175 | 97.22 105 |
|
v148 | | | 74.98 171 | 73.52 175 | 76.69 158 | 78.84 173 | 89.02 161 | 78.78 177 | 76.82 118 | 67.22 176 | 59.61 135 | 49.18 180 | 47.94 189 | 70.57 175 | 80.76 187 | 83.99 175 | 95.52 165 | 96.52 121 |
|
v1192 | | | 74.96 172 | 73.92 171 | 76.17 161 | 77.76 187 | 88.19 172 | 82.54 156 | 71.94 156 | 66.84 178 | 50.07 183 | 48.10 185 | 46.14 193 | 78.28 148 | 86.30 144 | 85.23 164 | 96.41 147 | 96.67 116 |
|
v144192 | | | 74.76 173 | 73.64 172 | 76.06 163 | 77.58 188 | 88.23 171 | 81.87 165 | 71.63 158 | 66.03 182 | 51.08 177 | 48.63 183 | 46.77 191 | 77.59 153 | 84.53 162 | 84.76 171 | 96.64 133 | 96.54 119 |
|
v1921920 | | | 74.60 174 | 73.56 174 | 75.81 168 | 77.43 190 | 87.94 174 | 82.18 162 | 71.33 163 | 66.48 180 | 49.23 187 | 47.84 188 | 45.56 195 | 78.03 152 | 85.70 152 | 84.92 169 | 96.65 131 | 96.50 122 |
|
v1240 | | | 74.04 175 | 73.04 181 | 75.20 171 | 77.19 192 | 87.69 178 | 80.93 170 | 70.72 168 | 65.08 187 | 48.47 188 | 47.31 189 | 44.71 199 | 77.33 155 | 85.50 153 | 85.07 167 | 96.59 136 | 95.94 129 |
|
testgi | | | 73.22 176 | 75.84 159 | 70.16 194 | 81.67 157 | 85.50 193 | 71.45 195 | 70.81 166 | 69.56 168 | 44.74 199 | 74.52 89 | 49.25 180 | 58.45 201 | 84.10 165 | 83.37 182 | 93.86 186 | 84.56 198 |
|
CP-MVSNet | | | 73.19 177 | 72.37 183 | 74.15 174 | 77.54 189 | 86.77 187 | 76.34 184 | 72.05 154 | 65.66 185 | 51.47 175 | 50.49 172 | 43.66 203 | 70.90 171 | 80.93 186 | 83.40 181 | 96.59 136 | 95.66 136 |
|
WR-MVS | | | 72.93 178 | 73.57 173 | 72.19 186 | 78.14 185 | 87.71 177 | 76.21 186 | 73.02 146 | 67.78 174 | 50.09 182 | 50.35 174 | 50.53 177 | 61.27 199 | 80.42 190 | 83.10 185 | 94.43 183 | 95.11 145 |
|
TransMVSNet (Re) | | | 72.90 179 | 70.51 192 | 75.69 169 | 80.88 159 | 85.26 195 | 79.25 176 | 78.43 110 | 56.13 206 | 52.81 170 | 46.81 190 | 48.20 188 | 66.77 185 | 85.18 157 | 83.70 179 | 95.98 162 | 88.28 187 |
|
WR-MVS_H | | | 72.69 180 | 72.80 182 | 72.56 185 | 77.94 186 | 87.83 175 | 75.26 190 | 71.53 160 | 64.75 188 | 52.19 172 | 49.83 175 | 48.62 183 | 61.96 197 | 81.12 185 | 82.44 187 | 96.50 142 | 95.00 147 |
|
SixPastTwentyTwo | | | 72.65 181 | 73.22 177 | 71.98 189 | 78.40 182 | 87.64 180 | 70.09 198 | 70.37 170 | 66.49 179 | 47.60 191 | 65.09 124 | 45.94 194 | 73.09 167 | 78.94 194 | 78.66 197 | 92.33 196 | 89.82 182 |
|
LTVRE_ROB | | 71.82 16 | 72.62 182 | 71.77 186 | 73.62 178 | 80.74 160 | 87.59 181 | 80.42 172 | 70.37 170 | 49.73 210 | 37.12 212 | 59.76 144 | 42.52 208 | 80.92 136 | 83.20 172 | 85.61 158 | 92.13 197 | 93.95 156 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PS-CasMVS | | | 72.37 183 | 71.47 190 | 73.43 179 | 77.32 191 | 86.43 188 | 75.99 187 | 71.94 156 | 63.37 191 | 49.24 186 | 49.07 181 | 42.42 209 | 69.60 177 | 80.59 189 | 83.18 184 | 96.48 144 | 95.23 142 |
|
MVS-HIRNet | | | 72.32 184 | 73.45 176 | 71.00 192 | 80.58 161 | 89.97 144 | 68.51 202 | 55.28 209 | 70.89 163 | 52.27 171 | 39.09 203 | 57.11 161 | 75.02 163 | 85.76 151 | 86.33 145 | 94.36 184 | 85.00 196 |
|
PEN-MVS | | | 72.24 185 | 71.30 191 | 73.33 181 | 77.08 193 | 85.57 191 | 76.75 182 | 72.52 151 | 63.89 190 | 48.12 189 | 50.79 169 | 43.09 206 | 69.03 181 | 78.54 196 | 83.46 180 | 96.50 142 | 93.76 161 |
|
v7n | | | 72.11 186 | 71.66 187 | 72.63 184 | 75.26 199 | 86.85 185 | 76.74 183 | 68.77 178 | 62.70 194 | 49.40 184 | 45.92 191 | 43.51 204 | 70.63 174 | 84.16 164 | 83.21 183 | 94.99 176 | 95.25 141 |
|
EG-PatchMatch MVS | | | 71.81 187 | 71.54 189 | 72.12 187 | 80.53 162 | 89.94 145 | 78.51 178 | 66.56 184 | 57.38 202 | 47.46 192 | 44.28 198 | 52.22 168 | 63.10 195 | 85.22 156 | 84.42 172 | 96.56 140 | 87.35 191 |
|
CMPMVS |  | 54.54 17 | 71.74 188 | 67.94 197 | 76.16 162 | 90.41 85 | 93.25 116 | 78.32 180 | 75.60 132 | 59.81 198 | 53.95 166 | 44.64 196 | 51.22 172 | 70.70 172 | 74.59 205 | 75.88 203 | 88.01 205 | 76.23 207 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 71.65 189 | 73.08 180 | 69.97 195 | 75.22 200 | 86.81 186 | 73.98 192 | 59.61 199 | 69.75 167 | 48.01 190 | 54.21 161 | 53.06 167 | 69.19 179 | 78.50 197 | 80.43 192 | 93.84 187 | 88.79 185 |
|
pmnet_mix02 | | | 71.64 190 | 72.36 184 | 70.81 193 | 78.39 183 | 85.57 191 | 68.64 200 | 73.65 143 | 72.13 156 | 45.07 198 | 56.01 154 | 50.61 176 | 65.34 189 | 76.21 202 | 76.60 201 | 93.75 190 | 89.35 183 |
|
gm-plane-assit | | | 71.33 191 | 75.18 162 | 66.83 198 | 79.06 172 | 75.57 209 | 48.05 216 | 60.33 194 | 48.28 211 | 34.67 216 | 44.34 197 | 67.70 131 | 79.78 141 | 97.25 11 | 96.21 13 | 99.10 10 | 96.92 111 |
|
DTE-MVSNet | | | 71.19 192 | 70.45 193 | 72.06 188 | 76.61 195 | 84.59 197 | 75.61 189 | 72.32 152 | 63.12 193 | 45.70 197 | 50.72 170 | 43.02 207 | 65.89 187 | 77.53 201 | 82.23 188 | 96.26 151 | 91.93 172 |
|
pmmvs6 | | | 70.29 193 | 67.90 198 | 73.07 182 | 76.17 196 | 85.31 194 | 76.29 185 | 70.75 167 | 47.39 213 | 55.33 160 | 37.15 209 | 50.49 178 | 69.55 178 | 82.96 176 | 80.85 190 | 90.34 204 | 91.18 175 |
|
PM-MVS | | | 70.17 194 | 69.42 195 | 71.04 191 | 70.82 206 | 81.26 204 | 71.25 196 | 67.80 181 | 69.16 171 | 51.04 178 | 53.15 165 | 34.93 213 | 72.19 170 | 80.30 191 | 76.95 200 | 93.16 194 | 90.21 179 |
|
pmmvs-eth3d | | | 69.59 195 | 67.57 200 | 71.95 190 | 70.04 207 | 80.05 205 | 71.48 194 | 70.00 174 | 62.57 195 | 55.99 158 | 44.92 194 | 35.73 212 | 70.64 173 | 81.56 184 | 79.69 193 | 93.55 191 | 88.43 186 |
|
N_pmnet | | | 68.54 196 | 67.83 199 | 69.38 196 | 75.77 197 | 81.90 201 | 66.21 204 | 72.53 150 | 65.91 184 | 46.09 196 | 44.67 195 | 45.48 196 | 63.82 193 | 74.66 204 | 77.39 199 | 91.87 199 | 84.77 197 |
|
Anonymous20231206 | | | 68.09 197 | 68.68 196 | 67.39 197 | 75.16 201 | 82.55 199 | 69.33 199 | 70.06 173 | 63.34 192 | 42.28 203 | 37.91 207 | 43.12 205 | 52.67 204 | 83.56 166 | 82.71 186 | 94.84 179 | 87.59 189 |
|
EU-MVSNet | | | 68.07 198 | 70.25 194 | 65.52 199 | 74.68 203 | 81.30 203 | 68.53 201 | 70.31 172 | 62.40 196 | 37.43 211 | 54.62 160 | 48.36 186 | 51.34 205 | 78.32 198 | 79.27 194 | 90.84 202 | 87.47 190 |
|
GG-mvs-BLEND | | | 65.67 199 | 93.78 40 | 32.89 212 | 0.47 222 | 99.35 6 | 96.92 31 | 0.22 221 | 93.28 60 | 0.51 223 | 84.07 54 | 92.50 39 | 0.62 220 | 93.59 66 | 93.86 56 | 98.59 42 | 99.79 9 |
|
test20.03 | | | 65.17 200 | 67.41 201 | 62.55 201 | 75.35 198 | 79.31 206 | 62.22 206 | 68.83 177 | 56.50 205 | 35.35 215 | 51.97 167 | 44.70 201 | 40.01 210 | 80.69 188 | 79.25 195 | 93.55 191 | 79.47 206 |
|
MDA-MVSNet-bldmvs | | | 62.23 201 | 61.13 205 | 63.52 200 | 58.94 213 | 82.44 200 | 60.71 209 | 73.28 145 | 57.22 203 | 38.42 209 | 49.63 178 | 27.64 219 | 62.83 196 | 54.98 211 | 74.16 204 | 86.96 207 | 81.83 203 |
|
new_pmnet | | | 61.60 202 | 62.68 203 | 60.35 204 | 63.02 210 | 74.93 210 | 60.97 208 | 58.86 201 | 64.21 189 | 35.38 214 | 39.51 202 | 39.89 210 | 57.37 202 | 72.78 206 | 72.56 206 | 86.49 209 | 74.85 209 |
|
new-patchmatchnet | | | 60.74 203 | 59.78 207 | 61.87 202 | 69.52 208 | 76.67 208 | 57.99 212 | 65.78 188 | 52.63 208 | 38.47 208 | 38.08 206 | 32.92 216 | 48.88 207 | 68.50 207 | 69.87 207 | 90.56 203 | 79.75 205 |
|
pmmvs3 | | | 60.52 204 | 60.87 206 | 60.12 205 | 61.38 211 | 71.62 211 | 57.42 213 | 53.94 210 | 48.09 212 | 35.95 213 | 38.62 204 | 32.19 218 | 64.12 192 | 75.33 203 | 77.99 198 | 87.89 206 | 82.28 202 |
|
MIMVSNet1 | | | 60.51 205 | 61.43 204 | 59.44 206 | 48.75 216 | 77.21 207 | 60.98 207 | 66.84 183 | 52.09 209 | 38.74 207 | 29.29 212 | 39.40 211 | 48.08 208 | 77.60 200 | 78.87 196 | 93.22 193 | 75.56 208 |
|
test_method | | | 60.40 206 | 66.30 202 | 53.52 208 | 37.48 220 | 64.10 215 | 55.56 214 | 42.45 216 | 71.79 161 | 41.87 204 | 33.74 210 | 46.80 190 | 61.71 198 | 79.18 193 | 73.33 205 | 82.01 211 | 95.17 143 |
|
FPMVS | | | 56.54 207 | 52.82 209 | 60.87 203 | 74.90 202 | 67.58 214 | 67.69 203 | 65.38 189 | 57.86 201 | 41.51 205 | 37.83 208 | 34.19 214 | 41.21 209 | 55.88 210 | 53.09 212 | 74.55 214 | 63.31 212 |
|
PMVS |  | 42.57 18 | 45.71 208 | 42.61 211 | 49.32 209 | 61.35 212 | 37.82 219 | 36.96 218 | 60.10 196 | 37.20 215 | 41.50 206 | 28.53 213 | 33.11 215 | 28.82 215 | 53.45 212 | 48.70 214 | 67.22 216 | 59.42 213 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 43.95 209 | 42.62 210 | 45.50 210 | 50.79 215 | 41.20 218 | 35.55 219 | 52.51 212 | 52.95 207 | 29.09 217 | 12.92 215 | 11.48 222 | 38.15 211 | 62.01 209 | 66.62 209 | 66.89 217 | 51.17 214 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 41.25 210 | 42.55 212 | 39.74 211 | 43.25 217 | 55.05 217 | 38.15 217 | 47.11 215 | 31.78 216 | 11.83 220 | 21.16 214 | 19.12 220 | 20.98 217 | 49.95 214 | 56.09 211 | 77.09 212 | 64.68 211 |
|
E-PMN | | | 27.87 211 | 24.36 214 | 31.97 213 | 41.27 219 | 25.56 222 | 16.62 221 | 49.16 213 | 22.00 218 | 9.90 221 | 11.75 217 | 7.86 224 | 29.57 214 | 22.22 216 | 34.70 215 | 45.27 218 | 46.41 216 |
|
MVE |  | 32.98 19 | 27.61 212 | 29.89 213 | 24.94 215 | 21.97 221 | 37.22 220 | 15.56 223 | 38.83 217 | 17.49 219 | 14.72 219 | 11.64 219 | 5.62 225 | 21.26 216 | 35.20 215 | 50.95 213 | 37.29 220 | 51.13 215 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 26.96 213 | 22.96 215 | 31.63 214 | 41.91 218 | 25.73 221 | 16.30 222 | 49.10 214 | 22.38 217 | 9.03 222 | 11.22 220 | 8.12 223 | 29.93 213 | 20.16 217 | 31.04 216 | 43.49 219 | 42.04 217 |
|
testmvs | | | 5.16 214 | 8.14 216 | 1.69 216 | 0.36 223 | 1.65 223 | 3.02 224 | 0.66 219 | 7.17 220 | 0.50 224 | 12.58 216 | 0.69 226 | 4.67 218 | 5.42 218 | 5.65 217 | 0.92 221 | 23.86 219 |
|
test123 | | | 4.39 215 | 7.11 217 | 1.21 217 | 0.11 224 | 1.16 224 | 1.67 225 | 0.35 220 | 5.91 221 | 0.16 225 | 11.65 218 | 0.16 227 | 4.45 219 | 1.72 219 | 4.92 218 | 0.51 222 | 24.28 218 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
RE-MVS-def | | | | | | | | | | | 43.17 201 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 97.59 9 | | | | | |
|
SR-MVS | | | | | | 98.52 20 | | | 93.70 22 | | | | 96.63 19 | | | | | |
|
Anonymous202405211 | | | | 81.72 137 | | 88.09 114 | 94.27 107 | 89.62 91 | 82.14 80 | 82.27 126 | | 48.83 182 | 72.58 112 | 91.08 62 | 87.40 136 | 88.70 126 | 94.90 177 | 97.99 86 |
|
our_test_3 | | | | | | 78.55 178 | 84.98 196 | 70.12 197 | | | | | | | | | | |
|
ambc | | | | 57.08 208 | | 58.68 214 | 67.71 213 | 60.07 210 | | 57.13 204 | 42.79 202 | 30.00 211 | 11.64 221 | 50.18 206 | 78.89 195 | 69.14 208 | 82.64 210 | 85.02 195 |
|
MTAPA | | | | | | | | | | | 93.37 8 | | 95.71 26 | | | | | |
|
MTMP | | | | | | | | | | | 93.84 4 | | 94.86 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 19.65 220 | | | | | | | | | | |
|
tmp_tt | | | | | 57.89 207 | 79.94 166 | 59.29 216 | 52.84 215 | 36.65 218 | 94.77 50 | 68.22 113 | 72.96 96 | 65.62 138 | 33.65 212 | 66.20 208 | 58.02 210 | 76.06 213 | |
|
XVS | | | | | | 92.16 70 | 98.56 36 | 91.04 82 | | | 81.00 58 | | 93.49 34 | | | | 98.00 73 | |
|
X-MVStestdata | | | | | | 92.16 70 | 98.56 36 | 91.04 82 | | | 81.00 58 | | 93.49 34 | | | | 98.00 73 | |
|
abl_6 | | | | | 93.25 35 | 97.12 38 | 98.71 31 | 94.40 51 | 87.81 47 | 97.86 10 | 87.19 30 | 91.07 36 | 95.80 24 | 94.18 34 | | | 98.78 35 | 99.36 24 |
|
mPP-MVS | | | | | | 97.95 29 | | | | | | | 92.24 44 | | | | | |
|
NP-MVS | | | | | | | | | | 94.12 54 | | | | | | | | |
|
Patchmtry | | | | | | | 92.08 132 | 83.86 135 | 58.37 203 | | 56.28 151 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 70.68 212 | 59.61 211 | 67.36 182 | 72.12 157 | 38.41 210 | 53.88 164 | 32.44 217 | 55.15 203 | 50.88 213 | | 74.35 215 | 68.42 210 |
|