SED-MVS | | | 97.92 1 | 98.27 2 | 97.52 1 | 98.88 11 | 99.60 1 | 98.80 5 | 95.08 8 | 98.57 2 | 95.63 2 | 96.98 10 | 99.73 1 | 97.67 1 | 97.26 10 | 95.86 22 | 99.04 14 | 99.89 5 |
|
MSP-MVS | | | 97.74 2 | 98.32 1 | 97.06 7 | 98.66 14 | 99.35 6 | 98.66 7 | 94.75 13 | 98.22 4 | 93.60 5 | 97.99 1 | 98.58 7 | 97.41 3 | 98.24 2 | 95.95 18 | 99.27 4 | 99.91 1 |
|
DPE-MVS | | | 97.69 3 | 98.16 3 | 97.14 5 | 99.01 5 | 99.52 4 | 99.12 2 | 95.38 3 | 98.00 7 | 93.31 9 | 97.71 2 | 99.61 3 | 96.94 4 | 96.99 15 | 95.45 26 | 99.09 12 | 99.81 8 |
|
DVP-MVS | | | 97.61 4 | 97.87 6 | 97.30 2 | 98.94 10 | 99.60 1 | 98.21 12 | 95.11 5 | 98.39 3 | 95.83 1 | 94.40 28 | 99.70 2 | 96.79 5 | 97.16 12 | 95.95 18 | 98.92 26 | 99.90 2 |
|
CNVR-MVS | | | 97.60 5 | 98.08 4 | 97.03 8 | 99.14 1 | 99.55 3 | 98.67 6 | 95.32 4 | 97.91 8 | 92.55 12 | 97.11 7 | 97.23 12 | 97.49 2 | 98.16 3 | 97.05 5 | 99.04 14 | 99.55 18 |
|
APDe-MVS | | | 97.31 6 | 97.51 11 | 97.08 6 | 98.95 9 | 99.29 11 | 98.58 9 | 95.11 5 | 97.69 14 | 94.16 3 | 96.91 11 | 96.81 16 | 96.57 9 | 96.71 19 | 95.39 28 | 99.08 13 | 99.79 9 |
|
SF-MVS | | | 97.17 7 | 97.18 14 | 97.17 3 | 99.11 2 | 99.20 13 | 99.05 3 | 95.55 1 | 97.39 17 | 93.56 6 | 97.48 4 | 96.71 18 | 96.75 6 | 95.73 31 | 94.40 43 | 98.98 19 | 99.33 24 |
|
NCCC | | | 97.01 8 | 97.74 7 | 96.16 11 | 99.02 4 | 99.35 6 | 98.63 8 | 95.04 9 | 97.84 11 | 88.95 25 | 96.83 13 | 97.02 15 | 96.39 14 | 97.44 7 | 96.51 9 | 98.90 28 | 99.16 39 |
|
SMA-MVS | | | 96.96 9 | 97.65 10 | 96.15 12 | 98.98 6 | 99.31 10 | 97.91 17 | 94.68 15 | 97.52 15 | 90.59 19 | 94.54 27 | 99.20 4 | 96.54 11 | 97.29 9 | 96.48 10 | 98.22 57 | 99.19 35 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MCST-MVS | | | 96.93 10 | 98.07 5 | 95.61 19 | 98.98 6 | 99.44 5 | 98.04 13 | 95.04 9 | 98.10 5 | 86.55 32 | 97.65 3 | 97.56 10 | 95.60 23 | 97.67 6 | 96.45 11 | 99.43 1 | 99.61 17 |
|
HPM-MVS++ | | | 96.91 11 | 97.70 8 | 96.00 14 | 98.97 8 | 99.16 16 | 97.82 20 | 94.81 12 | 98.04 6 | 89.61 22 | 96.56 15 | 98.60 6 | 96.39 14 | 97.09 13 | 95.22 30 | 98.39 51 | 99.22 33 |
|
SD-MVS | | | 96.87 12 | 97.69 9 | 95.92 15 | 96.38 48 | 99.25 12 | 97.76 21 | 94.75 13 | 97.72 12 | 92.46 14 | 95.94 16 | 99.09 5 | 96.48 13 | 96.01 27 | 96.08 16 | 97.68 88 | 99.73 12 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS | | | 96.79 13 | 96.99 17 | 96.56 9 | 98.76 13 | 98.87 25 | 98.42 10 | 94.93 11 | 97.70 13 | 91.83 15 | 95.52 19 | 95.94 23 | 96.63 8 | 95.94 28 | 95.47 25 | 98.80 34 | 99.47 21 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + MP. | | | 96.50 14 | 97.08 15 | 95.82 17 | 96.12 52 | 98.97 22 | 98.00 14 | 94.13 20 | 97.89 9 | 91.49 16 | 95.11 24 | 97.52 11 | 96.26 18 | 96.27 25 | 94.07 53 | 98.91 27 | 99.74 11 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 96.20 15 | 97.22 13 | 95.01 23 | 98.40 22 | 99.11 17 | 97.93 16 | 93.62 24 | 96.28 29 | 87.45 28 | 97.05 9 | 96.00 22 | 94.23 31 | 96.83 18 | 95.97 17 | 98.40 50 | 99.27 30 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 96.09 16 | 96.41 22 | 95.72 18 | 98.58 17 | 98.84 26 | 97.95 15 | 93.08 28 | 96.96 22 | 90.24 20 | 96.60 14 | 94.40 31 | 96.52 12 | 95.13 41 | 94.33 45 | 97.93 78 | 98.59 64 |
|
zzz-MVS | | | 95.87 17 | 95.63 29 | 96.15 12 | 98.60 16 | 98.83 27 | 97.89 18 | 93.65 23 | 96.24 30 | 93.08 10 | 91.13 35 | 95.46 28 | 95.72 22 | 95.64 33 | 93.67 61 | 97.97 75 | 98.46 71 |
|
ACMMP_NAP | | | 95.81 18 | 96.50 21 | 95.01 23 | 98.79 12 | 99.17 15 | 97.52 26 | 94.20 19 | 96.19 31 | 85.71 36 | 93.80 31 | 96.20 21 | 95.89 19 | 96.62 21 | 94.98 36 | 97.93 78 | 98.52 67 |
|
train_agg | | | 95.72 19 | 97.37 12 | 93.80 29 | 97.82 31 | 98.92 23 | 97.84 19 | 93.50 25 | 96.86 24 | 81.35 51 | 97.10 8 | 97.71 8 | 94.19 32 | 96.02 26 | 95.37 29 | 98.07 65 | 99.64 15 |
|
ACMMPR | | | 95.59 20 | 95.89 24 | 95.25 21 | 98.41 21 | 98.74 29 | 97.69 24 | 92.73 32 | 96.88 23 | 88.95 25 | 95.33 21 | 92.91 38 | 95.79 20 | 94.73 51 | 94.33 45 | 97.92 80 | 98.32 76 |
|
DeepC-MVS_fast | | 91.53 1 | 95.57 21 | 95.67 27 | 95.45 20 | 98.57 18 | 99.00 21 | 97.76 21 | 94.41 17 | 97.06 20 | 86.84 31 | 86.39 47 | 92.27 43 | 96.38 16 | 97.89 5 | 98.06 3 | 98.73 40 | 99.01 47 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSLP-MVS++ | | | 95.49 22 | 94.84 33 | 96.25 10 | 98.64 15 | 98.63 33 | 98.35 11 | 92.37 34 | 95.04 48 | 92.62 11 | 87.12 46 | 93.79 32 | 96.55 10 | 93.53 66 | 96.78 6 | 98.98 19 | 98.99 48 |
|
CP-MVS | | | 95.43 23 | 95.67 27 | 95.14 22 | 98.24 27 | 98.60 34 | 97.45 27 | 92.80 30 | 95.98 34 | 89.21 24 | 95.22 22 | 93.60 33 | 95.43 24 | 94.37 57 | 93.22 68 | 97.68 88 | 98.72 55 |
|
DPM-MVS | | | 95.36 24 | 95.84 25 | 94.82 25 | 96.70 44 | 98.49 44 | 99.27 1 | 95.09 7 | 96.71 25 | 83.87 44 | 86.34 49 | 96.44 20 | 95.06 26 | 98.35 1 | 98.82 1 | 98.89 29 | 95.69 129 |
|
MP-MVS | | | 95.24 25 | 95.96 23 | 94.40 27 | 98.32 24 | 98.38 49 | 97.12 29 | 92.87 29 | 95.17 46 | 85.50 37 | 95.68 17 | 94.91 29 | 94.58 28 | 95.11 42 | 93.76 57 | 98.05 68 | 98.68 57 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
TSAR-MVS + ACMM | | | 94.99 26 | 97.02 16 | 92.61 40 | 97.19 37 | 98.71 31 | 97.74 23 | 93.21 27 | 96.97 21 | 79.27 65 | 94.09 29 | 97.14 13 | 90.84 64 | 96.64 20 | 95.94 20 | 97.42 102 | 99.67 14 |
|
X-MVS | | | 94.70 27 | 95.71 26 | 93.52 33 | 98.38 23 | 98.56 36 | 96.99 30 | 92.62 33 | 95.58 39 | 81.00 57 | 94.57 26 | 93.49 34 | 94.16 34 | 94.82 47 | 94.29 48 | 97.99 74 | 98.68 57 |
|
PGM-MVS | | | 94.64 28 | 95.49 30 | 93.66 31 | 98.55 19 | 98.51 42 | 97.63 25 | 87.77 48 | 94.45 52 | 84.92 40 | 97.23 6 | 91.90 45 | 95.22 25 | 94.56 54 | 93.80 56 | 97.87 84 | 97.97 86 |
|
TSAR-MVS + GP. | | | 94.59 29 | 96.60 20 | 92.25 41 | 90.25 88 | 98.17 55 | 96.22 36 | 86.53 54 | 97.49 16 | 87.26 29 | 95.21 23 | 97.06 14 | 94.07 36 | 94.34 59 | 94.20 50 | 99.18 5 | 99.71 13 |
|
xxxxxxxxxxxxxcwj | | | 94.57 30 | 92.34 48 | 97.17 3 | 99.11 2 | 99.20 13 | 99.05 3 | 95.55 1 | 97.39 17 | 93.56 6 | 97.48 4 | 62.85 146 | 96.75 6 | 95.73 31 | 94.40 43 | 98.98 19 | 99.33 24 |
|
PHI-MVS | | | 94.49 31 | 96.72 19 | 91.88 43 | 97.06 39 | 98.88 24 | 94.99 47 | 89.13 42 | 96.15 32 | 79.70 61 | 96.91 11 | 95.78 25 | 91.87 54 | 94.65 52 | 95.68 23 | 98.53 44 | 98.98 50 |
|
AdaColmap | | | 94.28 32 | 92.94 44 | 95.84 16 | 98.32 24 | 98.33 51 | 96.06 38 | 94.62 16 | 96.29 28 | 91.22 17 | 89.89 39 | 85.50 74 | 96.38 16 | 91.85 95 | 90.89 83 | 98.44 46 | 97.81 89 |
|
DeepPCF-MVS | | 91.00 2 | 94.15 33 | 96.87 18 | 90.97 51 | 96.82 42 | 99.33 9 | 89.40 96 | 92.76 31 | 98.76 1 | 82.36 48 | 88.74 40 | 95.49 27 | 90.58 71 | 98.13 4 | 97.80 4 | 93.88 182 | 99.88 6 |
|
CPTT-MVS | | | 94.11 34 | 93.99 39 | 94.25 28 | 96.58 45 | 97.66 59 | 97.31 28 | 91.94 35 | 94.84 49 | 88.72 27 | 92.51 32 | 93.04 37 | 95.78 21 | 91.51 98 | 89.97 99 | 95.15 171 | 98.37 73 |
|
EPNet | | | 93.69 35 | 95.34 31 | 91.76 44 | 96.98 41 | 98.47 46 | 95.40 44 | 86.79 51 | 95.47 40 | 82.84 46 | 95.66 18 | 89.17 50 | 90.47 72 | 95.25 40 | 94.69 39 | 98.10 62 | 98.68 57 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMMP | | | 93.32 36 | 93.59 42 | 93.00 38 | 97.03 40 | 98.24 52 | 95.27 45 | 91.66 38 | 95.20 44 | 83.25 45 | 95.39 20 | 85.52 72 | 92.80 44 | 92.60 85 | 90.21 95 | 98.01 71 | 97.99 84 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CANet | | | 93.23 37 | 93.72 41 | 92.65 39 | 95.48 55 | 99.09 19 | 96.55 34 | 86.74 52 | 95.28 43 | 85.22 38 | 77.30 72 | 91.25 47 | 92.60 47 | 97.06 14 | 96.63 7 | 99.31 2 | 99.45 22 |
|
CDPH-MVS | | | 93.22 38 | 95.08 32 | 91.04 50 | 97.57 34 | 98.49 44 | 96.74 32 | 89.35 41 | 95.19 45 | 73.57 94 | 90.26 37 | 91.59 46 | 90.68 68 | 95.09 44 | 96.15 14 | 98.31 56 | 98.81 53 |
|
CSCG | | | 93.16 39 | 92.65 46 | 93.76 30 | 98.32 24 | 99.09 19 | 96.12 37 | 89.91 40 | 93.15 61 | 89.64 21 | 83.62 55 | 88.91 53 | 92.40 49 | 91.09 103 | 93.70 58 | 96.14 154 | 98.99 48 |
|
MVS_111021_LR | | | 93.05 40 | 94.53 35 | 91.32 48 | 96.43 47 | 98.38 49 | 92.81 61 | 87.20 50 | 95.94 36 | 81.45 50 | 94.75 25 | 86.08 68 | 92.12 52 | 94.83 46 | 93.34 64 | 97.89 83 | 98.42 72 |
|
3Dnovator+ | | 86.26 7 | 92.90 41 | 92.45 47 | 93.42 34 | 97.25 36 | 98.45 48 | 95.82 39 | 85.71 60 | 93.83 56 | 89.55 23 | 72.31 101 | 92.28 42 | 94.01 37 | 95.10 43 | 95.92 21 | 98.17 58 | 99.23 32 |
|
MVS_111021_HR | | | 92.73 42 | 94.83 34 | 90.28 56 | 96.27 49 | 99.10 18 | 92.77 62 | 86.15 57 | 93.41 59 | 77.11 84 | 93.82 30 | 87.39 60 | 90.61 69 | 95.60 34 | 95.15 32 | 98.79 35 | 99.32 26 |
|
PLC | | 89.12 3 | 92.67 43 | 90.84 58 | 94.81 26 | 97.69 32 | 96.10 86 | 95.42 43 | 91.70 36 | 95.82 38 | 92.52 13 | 81.24 58 | 86.01 69 | 94.36 29 | 92.44 89 | 90.27 92 | 97.19 111 | 93.99 151 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator | | 85.78 8 | 92.53 44 | 91.96 50 | 93.20 36 | 97.99 28 | 98.47 46 | 95.78 40 | 85.94 58 | 93.07 63 | 86.40 33 | 73.43 93 | 89.00 52 | 94.08 35 | 94.74 50 | 96.44 12 | 99.01 18 | 98.57 65 |
|
DeepC-MVS | | 88.77 4 | 92.39 45 | 91.74 52 | 93.14 37 | 96.21 50 | 98.55 39 | 96.30 35 | 93.84 21 | 93.06 64 | 81.09 55 | 74.69 87 | 85.20 77 | 93.48 40 | 95.41 37 | 96.13 15 | 97.92 80 | 99.18 36 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OMC-MVS | | | 92.05 46 | 91.88 51 | 92.25 41 | 96.51 46 | 97.94 57 | 93.18 58 | 88.97 44 | 96.53 26 | 84.47 42 | 80.79 60 | 87.85 56 | 93.25 42 | 92.48 88 | 91.81 76 | 97.12 112 | 95.73 128 |
|
MVSTER | | | 91.91 47 | 93.43 43 | 90.14 57 | 89.81 94 | 92.32 124 | 94.53 50 | 81.32 84 | 96.00 33 | 84.77 41 | 85.41 53 | 92.39 41 | 91.32 56 | 96.41 22 | 94.01 54 | 99.11 8 | 97.45 98 |
|
MVS_0304 | | | 91.90 48 | 92.93 45 | 90.69 55 | 93.66 63 | 98.78 28 | 96.73 33 | 85.43 64 | 93.13 62 | 78.11 78 | 77.02 75 | 89.09 51 | 91.10 60 | 96.98 16 | 96.54 8 | 99.11 8 | 98.96 51 |
|
QAPM | | | 91.68 49 | 91.97 49 | 91.34 47 | 97.86 30 | 98.72 30 | 95.60 42 | 85.72 59 | 90.86 77 | 77.14 83 | 76.06 76 | 90.35 48 | 92.69 46 | 94.10 60 | 94.60 40 | 99.04 14 | 99.09 40 |
|
CS-MVS | | | 91.55 50 | 94.12 37 | 88.55 66 | 89.68 96 | 97.47 63 | 90.90 85 | 79.76 95 | 95.94 36 | 79.26 66 | 88.32 41 | 88.42 55 | 92.80 44 | 95.93 30 | 93.70 58 | 98.93 25 | 99.07 42 |
|
CNLPA | | | 91.53 51 | 89.74 70 | 93.63 32 | 96.75 43 | 97.63 61 | 91.16 80 | 91.70 36 | 96.38 27 | 90.82 18 | 69.66 112 | 85.52 72 | 93.76 38 | 90.44 109 | 91.14 82 | 97.55 97 | 97.40 99 |
|
ETV-MVS | | | 91.51 52 | 94.06 38 | 88.54 67 | 89.39 100 | 97.52 62 | 89.48 93 | 80.88 87 | 97.09 19 | 79.41 63 | 87.87 42 | 86.18 67 | 92.95 43 | 95.94 28 | 94.33 45 | 99.13 7 | 99.52 20 |
|
DELS-MVS | | | 91.09 53 | 90.56 66 | 91.71 45 | 95.82 53 | 98.59 35 | 95.74 41 | 86.68 53 | 85.86 104 | 85.12 39 | 72.71 96 | 81.36 84 | 88.06 91 | 97.31 8 | 98.27 2 | 98.86 32 | 99.82 7 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TAPA-MVS | | 87.40 6 | 90.98 54 | 90.71 60 | 91.30 49 | 96.14 51 | 97.66 59 | 94.80 48 | 89.00 43 | 94.74 51 | 77.42 82 | 80.22 61 | 86.70 63 | 92.27 50 | 91.65 97 | 90.17 97 | 98.15 61 | 93.83 155 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PVSNet_BlendedMVS | | | 90.74 55 | 90.66 62 | 90.82 53 | 94.75 58 | 98.54 40 | 91.30 77 | 86.53 54 | 95.43 41 | 85.75 34 | 78.66 67 | 70.67 120 | 87.60 92 | 96.37 23 | 95.08 34 | 98.98 19 | 99.90 2 |
|
PVSNet_Blended | | | 90.74 55 | 90.66 62 | 90.82 53 | 94.75 58 | 98.54 40 | 91.30 77 | 86.53 54 | 95.43 41 | 85.75 34 | 78.66 67 | 70.67 120 | 87.60 92 | 96.37 23 | 95.08 34 | 98.98 19 | 99.90 2 |
|
CHOSEN 280x420 | | | 90.61 57 | 94.27 36 | 86.35 85 | 93.12 67 | 98.16 56 | 89.99 89 | 69.62 171 | 92.48 68 | 76.89 87 | 87.28 45 | 96.72 17 | 90.31 74 | 94.81 48 | 92.33 73 | 98.17 58 | 98.08 82 |
|
MAR-MVS | | | 90.44 58 | 91.17 56 | 89.59 60 | 97.48 35 | 97.92 58 | 90.96 83 | 79.80 92 | 95.07 47 | 77.03 85 | 80.83 59 | 79.10 94 | 94.68 27 | 93.16 71 | 94.46 42 | 97.59 96 | 97.63 91 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 88.14 5 | 90.42 59 | 89.56 75 | 91.41 46 | 94.44 60 | 98.18 54 | 94.35 52 | 94.33 18 | 84.55 116 | 76.61 88 | 75.84 79 | 88.47 54 | 91.29 57 | 90.37 111 | 90.66 89 | 97.46 98 | 98.88 52 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
OpenMVS | | 83.41 11 | 89.84 60 | 88.89 81 | 90.95 52 | 97.63 33 | 98.51 42 | 94.64 49 | 85.47 63 | 88.14 90 | 78.39 76 | 65.06 124 | 85.42 75 | 91.04 62 | 93.06 74 | 93.70 58 | 98.53 44 | 98.37 73 |
|
EIA-MVS | | | 89.82 61 | 91.48 54 | 87.89 75 | 89.16 102 | 97.31 65 | 88.99 97 | 80.92 86 | 94.29 53 | 77.65 80 | 82.16 57 | 79.77 92 | 91.90 53 | 94.61 53 | 93.03 70 | 98.70 41 | 99.21 34 |
|
canonicalmvs | | | 89.62 62 | 89.87 69 | 89.33 62 | 90.47 83 | 97.02 71 | 93.46 57 | 79.67 96 | 92.45 69 | 81.05 56 | 82.84 56 | 73.00 109 | 93.71 39 | 90.38 110 | 94.85 37 | 97.65 92 | 98.54 66 |
|
TSAR-MVS + COLMAP | | | 89.59 63 | 89.64 72 | 89.53 61 | 93.32 66 | 96.51 78 | 95.03 46 | 88.53 45 | 95.98 34 | 69.10 109 | 91.81 33 | 64.53 142 | 93.40 41 | 93.53 66 | 91.35 81 | 97.77 85 | 93.75 158 |
|
HQP-MVS | | | 89.57 64 | 90.57 65 | 88.41 69 | 92.77 68 | 94.71 101 | 94.24 53 | 87.97 46 | 93.44 58 | 68.18 112 | 91.75 34 | 71.54 119 | 89.90 77 | 92.31 92 | 91.43 79 | 97.39 103 | 98.80 54 |
|
MVS_Test | | | 89.02 65 | 90.20 67 | 87.64 77 | 89.83 93 | 97.05 70 | 92.30 64 | 77.59 115 | 92.89 65 | 75.01 92 | 77.36 71 | 76.10 103 | 92.27 50 | 95.30 39 | 95.42 27 | 98.83 33 | 97.30 102 |
|
CLD-MVS | | | 88.99 66 | 88.07 84 | 90.07 58 | 89.61 97 | 94.94 98 | 93.82 56 | 85.70 61 | 92.73 67 | 82.73 47 | 79.97 62 | 69.59 123 | 90.44 73 | 90.32 112 | 89.93 101 | 98.10 62 | 99.04 44 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
baseline | | | 88.91 67 | 89.94 68 | 87.70 76 | 89.44 99 | 96.74 76 | 91.62 71 | 77.92 112 | 93.79 57 | 78.76 71 | 77.55 70 | 78.46 97 | 89.38 83 | 92.26 93 | 92.52 72 | 99.10 10 | 98.23 77 |
|
PMMVS | | | 88.56 68 | 91.22 55 | 85.47 93 | 90.04 90 | 95.60 94 | 86.62 118 | 78.49 107 | 93.86 55 | 70.62 105 | 90.00 38 | 80.08 90 | 91.64 55 | 92.36 90 | 89.80 105 | 95.40 166 | 96.84 111 |
|
baseline1 | | | 88.16 69 | 88.15 83 | 88.17 73 | 90.02 91 | 94.79 100 | 91.85 69 | 83.89 67 | 87.37 96 | 75.67 91 | 73.75 91 | 79.89 91 | 88.44 90 | 94.41 55 | 93.33 66 | 99.18 5 | 93.55 160 |
|
thisisatest0530 | | | 87.99 70 | 90.76 59 | 84.75 96 | 88.36 110 | 96.82 73 | 87.65 108 | 79.67 96 | 91.77 71 | 70.93 101 | 79.94 63 | 87.65 58 | 84.21 108 | 92.98 77 | 89.07 115 | 97.66 91 | 97.13 105 |
|
tttt0517 | | | 87.93 71 | 90.71 60 | 84.68 97 | 88.33 111 | 96.76 75 | 87.42 111 | 79.67 96 | 91.74 72 | 70.83 102 | 79.91 64 | 87.61 59 | 84.21 108 | 92.88 82 | 89.07 115 | 97.62 94 | 97.03 107 |
|
CANet_DTU | | | 87.91 72 | 91.57 53 | 83.64 105 | 90.96 77 | 97.12 68 | 91.90 68 | 75.97 126 | 92.83 66 | 53.16 166 | 86.02 50 | 79.02 95 | 90.80 65 | 95.40 38 | 94.15 51 | 99.03 17 | 96.47 122 |
|
diffmvs | | | 87.86 73 | 87.40 90 | 88.39 70 | 88.57 108 | 96.10 86 | 91.24 79 | 83.15 71 | 90.62 78 | 79.13 68 | 72.45 99 | 67.71 129 | 90.07 76 | 92.58 86 | 93.31 67 | 98.17 58 | 99.03 45 |
|
IS_MVSNet | | | 87.83 74 | 90.66 62 | 84.53 98 | 90.08 89 | 96.79 74 | 88.16 103 | 79.89 91 | 85.44 106 | 72.20 96 | 75.50 83 | 87.14 61 | 80.21 136 | 95.53 35 | 95.22 30 | 96.65 128 | 99.02 46 |
|
EPP-MVSNet | | | 87.72 75 | 89.74 70 | 85.37 94 | 89.11 103 | 95.57 95 | 86.31 119 | 79.44 99 | 85.83 105 | 75.73 90 | 77.23 73 | 90.05 49 | 84.78 105 | 91.22 101 | 90.25 93 | 96.83 119 | 98.04 83 |
|
ET-MVSNet_ETH3D | | | 87.63 76 | 91.08 57 | 83.59 106 | 67.96 205 | 96.30 85 | 92.06 66 | 78.47 108 | 91.95 70 | 69.87 107 | 87.57 44 | 84.14 81 | 94.34 30 | 88.58 124 | 92.10 74 | 98.88 30 | 96.93 108 |
|
DI_MVS_plusplus_trai | | | 87.63 76 | 87.13 92 | 88.22 72 | 88.61 107 | 95.92 90 | 94.09 55 | 81.41 83 | 87.00 99 | 78.38 77 | 59.70 142 | 80.52 88 | 89.08 85 | 94.37 57 | 93.34 64 | 97.73 86 | 99.05 43 |
|
casdiffmvs | | | 87.59 78 | 86.69 96 | 88.64 65 | 89.06 104 | 96.32 84 | 90.18 87 | 83.21 70 | 87.74 94 | 80.20 60 | 67.99 116 | 68.34 127 | 90.79 66 | 93.83 62 | 94.08 52 | 98.41 49 | 98.50 69 |
|
PVSNet_Blended_VisFu | | | 87.44 79 | 88.72 82 | 85.95 89 | 92.02 72 | 97.26 66 | 86.88 116 | 82.66 78 | 83.86 121 | 79.16 67 | 66.96 119 | 84.91 78 | 77.26 153 | 94.97 45 | 93.48 62 | 97.73 86 | 99.64 15 |
|
FMVSNet3 | | | 87.19 80 | 87.32 91 | 87.04 83 | 82.82 145 | 90.21 139 | 92.88 60 | 76.53 121 | 91.69 73 | 81.31 52 | 64.81 127 | 80.64 85 | 89.79 81 | 94.80 49 | 94.76 38 | 98.88 30 | 94.32 147 |
|
LS3D | | | 87.19 80 | 85.48 103 | 89.18 63 | 94.96 57 | 95.47 96 | 92.02 67 | 93.36 26 | 88.69 88 | 67.01 113 | 70.56 108 | 72.10 114 | 92.47 48 | 89.96 115 | 89.93 101 | 95.25 168 | 91.68 169 |
|
ACMP | | 85.16 9 | 87.15 82 | 87.04 93 | 87.27 81 | 90.80 79 | 94.45 104 | 89.41 95 | 83.09 75 | 89.15 85 | 76.98 86 | 86.35 48 | 65.80 135 | 86.94 95 | 88.45 125 | 87.52 134 | 96.42 143 | 97.56 96 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UGNet | | | 87.04 83 | 89.59 74 | 84.07 100 | 90.94 78 | 95.95 89 | 86.02 121 | 81.65 82 | 85.94 103 | 78.54 75 | 78.00 69 | 85.40 76 | 69.62 173 | 91.83 96 | 91.53 78 | 97.63 93 | 98.51 68 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LGP-MVS_train | | | 86.95 84 | 87.65 87 | 86.12 88 | 91.77 75 | 93.84 110 | 93.04 59 | 82.77 77 | 88.04 91 | 65.33 118 | 87.69 43 | 67.09 133 | 86.79 96 | 90.20 113 | 88.99 118 | 97.05 114 | 97.71 90 |
|
PatchMatch-RL | | | 86.75 85 | 85.43 104 | 88.29 71 | 94.06 61 | 96.37 83 | 86.82 117 | 82.94 76 | 88.94 86 | 79.59 62 | 79.83 65 | 59.17 154 | 89.46 82 | 91.12 102 | 88.81 122 | 96.88 118 | 93.78 156 |
|
baseline2 | | | 86.51 86 | 89.35 78 | 83.19 107 | 85.70 131 | 94.88 99 | 85.75 126 | 77.13 117 | 89.87 82 | 70.65 104 | 79.03 66 | 79.14 93 | 81.51 129 | 93.70 63 | 90.22 94 | 98.38 52 | 98.60 63 |
|
thres100view900 | | | 86.48 87 | 85.08 106 | 88.12 74 | 90.54 80 | 96.90 72 | 92.39 63 | 84.82 65 | 84.16 119 | 71.65 97 | 70.86 105 | 60.49 149 | 91.23 59 | 93.65 64 | 90.19 96 | 98.10 62 | 99.32 26 |
|
ACMM | | 84.23 10 | 86.40 88 | 84.64 109 | 88.46 68 | 91.90 73 | 91.93 130 | 88.11 104 | 85.59 62 | 88.61 89 | 79.13 68 | 75.31 84 | 66.25 134 | 89.86 80 | 89.88 116 | 87.64 131 | 96.16 153 | 92.86 165 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 86.16 89 | 86.00 99 | 86.35 85 | 81.81 151 | 89.52 148 | 91.40 73 | 76.53 121 | 91.69 73 | 81.31 52 | 64.81 127 | 80.64 85 | 88.72 86 | 90.54 106 | 90.72 85 | 98.34 53 | 94.08 148 |
|
test1 | | | 86.16 89 | 86.00 99 | 86.35 85 | 81.81 151 | 89.52 148 | 91.40 73 | 76.53 121 | 91.69 73 | 81.31 52 | 64.81 127 | 80.64 85 | 88.72 86 | 90.54 106 | 90.72 85 | 98.34 53 | 94.08 148 |
|
tfpn200view9 | | | 86.07 91 | 84.76 108 | 87.61 78 | 90.54 80 | 96.39 80 | 91.35 76 | 83.15 71 | 84.16 119 | 71.65 97 | 70.86 105 | 60.49 149 | 90.91 63 | 92.89 79 | 89.34 107 | 98.05 68 | 99.17 37 |
|
DCV-MVSNet | | | 85.90 92 | 85.88 101 | 85.93 90 | 87.86 116 | 88.37 165 | 89.45 94 | 77.46 116 | 87.33 97 | 77.51 81 | 76.06 76 | 75.76 105 | 88.48 89 | 87.40 133 | 88.89 121 | 94.80 177 | 97.37 100 |
|
Vis-MVSNet (Re-imp) | | | 85.89 93 | 89.62 73 | 81.55 117 | 89.85 92 | 96.08 88 | 87.55 109 | 79.80 92 | 84.80 113 | 66.55 115 | 73.70 92 | 86.71 62 | 68.25 180 | 94.40 56 | 94.53 41 | 97.32 106 | 97.09 106 |
|
MSDG | | | 85.81 94 | 82.29 130 | 89.93 59 | 95.52 54 | 92.61 119 | 91.51 72 | 91.46 39 | 85.12 110 | 78.56 73 | 63.25 133 | 69.01 125 | 85.31 102 | 88.45 125 | 88.23 125 | 97.21 110 | 89.33 179 |
|
thres200 | | | 85.80 95 | 84.38 110 | 87.46 79 | 90.51 82 | 96.39 80 | 91.64 70 | 83.15 71 | 81.59 127 | 71.54 99 | 70.24 109 | 60.41 151 | 89.88 78 | 92.89 79 | 89.85 104 | 98.06 66 | 99.26 31 |
|
OPM-MVS | | | 85.69 96 | 82.79 123 | 89.06 64 | 93.42 64 | 94.21 108 | 94.21 54 | 87.61 49 | 72.68 152 | 70.79 103 | 71.09 103 | 67.27 132 | 90.74 67 | 91.29 100 | 89.05 117 | 97.61 95 | 93.94 153 |
|
thres400 | | | 85.59 97 | 84.08 113 | 87.36 80 | 90.45 84 | 96.60 77 | 90.95 84 | 83.67 69 | 80.99 130 | 71.17 100 | 69.08 114 | 60.25 152 | 89.88 78 | 93.14 72 | 89.34 107 | 98.02 70 | 99.17 37 |
|
CostFormer | | | 85.47 98 | 86.98 94 | 83.71 103 | 88.70 106 | 94.02 109 | 88.07 105 | 62.72 188 | 89.78 83 | 78.68 72 | 72.69 97 | 78.37 98 | 87.35 94 | 85.96 146 | 89.32 111 | 96.73 125 | 98.72 55 |
|
thres600view7 | | | 85.14 99 | 83.58 119 | 86.96 84 | 90.37 87 | 96.39 80 | 90.33 86 | 83.15 71 | 80.46 131 | 70.60 106 | 67.96 117 | 60.04 153 | 89.22 84 | 92.89 79 | 88.28 124 | 98.06 66 | 99.08 41 |
|
test-LLR | | | 85.11 100 | 89.49 76 | 80.00 126 | 85.32 135 | 94.49 102 | 82.27 156 | 74.18 136 | 87.83 92 | 56.70 144 | 75.55 81 | 86.26 64 | 82.75 121 | 93.06 74 | 90.60 90 | 98.77 37 | 98.65 61 |
|
FMVSNet2 | | | 84.89 101 | 84.02 115 | 85.91 91 | 81.81 151 | 89.52 148 | 91.40 73 | 75.79 127 | 84.45 117 | 79.39 64 | 58.75 145 | 74.35 107 | 88.72 86 | 93.51 68 | 93.46 63 | 98.34 53 | 94.08 148 |
|
FC-MVSNet-train | | | 84.88 102 | 84.08 113 | 85.82 92 | 89.21 101 | 91.74 131 | 85.87 122 | 81.20 85 | 81.71 126 | 74.66 93 | 73.38 94 | 64.99 139 | 86.60 97 | 90.75 104 | 88.08 126 | 97.36 104 | 97.90 87 |
|
EPNet_dtu | | | 84.87 103 | 89.01 79 | 80.05 125 | 95.25 56 | 92.88 117 | 88.84 99 | 84.11 66 | 91.69 73 | 49.28 182 | 85.69 51 | 78.95 96 | 65.39 185 | 92.22 94 | 91.66 77 | 97.43 101 | 89.95 176 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+ | | | 84.80 104 | 85.71 102 | 83.73 102 | 87.94 115 | 95.76 91 | 90.08 88 | 73.45 142 | 85.12 110 | 62.66 127 | 72.39 100 | 64.97 140 | 90.59 70 | 92.95 78 | 90.69 88 | 97.67 90 | 98.12 79 |
|
UA-Net | | | 84.69 105 | 87.64 88 | 81.25 119 | 90.38 86 | 95.67 92 | 87.33 112 | 79.41 100 | 72.07 155 | 66.48 116 | 75.09 85 | 92.48 40 | 66.88 181 | 94.03 61 | 94.25 49 | 97.01 117 | 89.88 177 |
|
TESTMET0.1,1 | | | 84.62 106 | 89.49 76 | 78.94 135 | 82.18 148 | 94.49 102 | 82.27 156 | 70.94 161 | 87.83 92 | 56.70 144 | 75.55 81 | 86.26 64 | 82.75 121 | 93.06 74 | 90.60 90 | 98.77 37 | 98.65 61 |
|
CHOSEN 1792x2688 | | | 84.59 107 | 84.30 112 | 84.93 95 | 93.71 62 | 98.23 53 | 89.91 90 | 77.96 111 | 84.81 112 | 65.93 117 | 45.19 189 | 71.76 118 | 83.13 119 | 95.46 36 | 95.13 33 | 98.94 24 | 99.53 19 |
|
Anonymous20231211 | | | 84.23 108 | 81.71 135 | 87.17 82 | 87.38 123 | 93.59 112 | 88.95 98 | 82.14 80 | 83.82 122 | 78.56 73 | 48.09 182 | 73.89 108 | 91.25 58 | 86.38 140 | 88.06 128 | 94.74 178 | 98.14 78 |
|
MDTV_nov1_ep13 | | | 84.17 109 | 88.03 85 | 79.66 128 | 86.00 129 | 94.41 105 | 85.05 128 | 66.01 183 | 90.36 79 | 64.34 123 | 77.13 74 | 84.56 79 | 82.71 123 | 87.12 137 | 88.92 119 | 93.84 184 | 93.69 159 |
|
test-mter | | | 84.06 110 | 89.00 80 | 78.29 140 | 81.92 149 | 94.23 107 | 81.07 166 | 70.38 165 | 87.12 98 | 56.10 153 | 74.75 86 | 85.80 70 | 81.81 128 | 92.52 87 | 90.10 98 | 98.43 47 | 98.49 70 |
|
IB-MVS | | 79.58 12 | 83.83 111 | 84.81 107 | 82.68 109 | 91.85 74 | 97.35 64 | 75.75 185 | 82.57 79 | 86.55 101 | 84.01 43 | 70.90 104 | 65.43 137 | 63.18 190 | 84.19 160 | 89.92 103 | 98.74 39 | 99.31 28 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPMVS | | | 83.71 112 | 86.76 95 | 80.16 124 | 89.72 95 | 95.64 93 | 84.68 129 | 59.73 193 | 89.61 84 | 62.67 126 | 72.65 98 | 81.80 83 | 86.22 99 | 86.23 142 | 88.03 129 | 97.96 76 | 93.35 161 |
|
HyFIR lowres test | | | 83.43 113 | 82.94 122 | 84.01 101 | 93.41 65 | 97.10 69 | 87.21 113 | 74.04 138 | 80.15 133 | 64.98 119 | 41.09 197 | 76.61 102 | 86.51 98 | 93.31 69 | 93.01 71 | 97.91 82 | 99.30 29 |
|
PatchmatchNet | | | 83.28 114 | 87.57 89 | 78.29 140 | 87.46 121 | 94.95 97 | 83.36 138 | 59.43 196 | 90.20 81 | 58.10 139 | 74.29 89 | 86.20 66 | 84.13 110 | 85.27 152 | 87.39 135 | 97.25 109 | 94.67 145 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 83.26 115 | 87.76 86 | 78.00 145 | 87.45 122 | 92.20 125 | 82.63 152 | 58.42 198 | 90.30 80 | 58.23 137 | 75.74 80 | 87.75 57 | 83.97 113 | 86.10 145 | 87.64 131 | 97.30 107 | 94.62 146 |
|
CDS-MVSNet | | | 83.13 116 | 83.73 118 | 82.43 115 | 84.52 140 | 92.92 116 | 88.26 102 | 77.67 114 | 72.08 154 | 69.08 110 | 66.96 119 | 74.66 106 | 78.61 142 | 90.70 105 | 91.96 75 | 96.46 142 | 96.86 110 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RPSCF | | | 82.91 117 | 81.86 132 | 84.13 99 | 88.25 112 | 88.32 166 | 87.67 107 | 80.86 88 | 84.78 114 | 76.57 89 | 85.56 52 | 76.00 104 | 84.61 106 | 78.20 195 | 76.52 198 | 86.81 204 | 83.63 196 |
|
Vis-MVSNet | | | 82.88 118 | 86.04 98 | 79.20 133 | 87.77 119 | 96.42 79 | 86.10 120 | 76.70 119 | 74.82 146 | 61.38 129 | 70.70 107 | 77.91 99 | 64.83 186 | 93.22 70 | 93.19 69 | 98.43 47 | 96.01 125 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
dps | | | 82.63 119 | 82.64 126 | 82.62 111 | 87.81 118 | 92.81 118 | 84.39 130 | 61.96 189 | 86.43 102 | 81.63 49 | 69.72 111 | 67.60 131 | 84.42 107 | 82.51 174 | 83.90 173 | 95.52 162 | 95.50 136 |
|
IterMVS-LS | | | 82.62 120 | 82.75 125 | 82.48 112 | 87.09 124 | 87.48 180 | 87.19 114 | 72.85 145 | 79.09 134 | 66.63 114 | 65.22 122 | 72.14 113 | 84.06 112 | 88.33 128 | 91.39 80 | 97.03 116 | 95.60 135 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Fast-Effi-MVS+ | | | 82.61 121 | 82.51 128 | 82.72 108 | 85.49 134 | 93.06 115 | 87.17 115 | 71.39 158 | 84.18 118 | 64.59 121 | 63.03 134 | 58.89 155 | 90.22 75 | 91.39 99 | 90.83 84 | 97.44 99 | 96.21 124 |
|
tpm cat1 | | | 82.39 122 | 82.32 129 | 82.47 113 | 88.13 113 | 92.42 123 | 87.43 110 | 62.79 187 | 85.30 107 | 78.05 79 | 60.14 140 | 72.10 114 | 83.20 118 | 82.26 177 | 85.67 152 | 95.23 169 | 98.35 75 |
|
MS-PatchMatch | | | 82.16 123 | 82.18 131 | 82.12 116 | 91.65 76 | 93.50 113 | 89.51 92 | 71.95 152 | 81.48 128 | 64.45 122 | 59.58 144 | 77.54 100 | 77.23 154 | 89.88 116 | 85.62 153 | 97.94 77 | 87.68 183 |
|
tpmrst | | | 81.71 124 | 83.87 117 | 79.20 133 | 89.01 105 | 93.67 111 | 84.22 131 | 60.14 191 | 87.45 95 | 59.49 133 | 64.97 125 | 71.86 117 | 85.30 103 | 84.72 156 | 86.30 143 | 97.04 115 | 98.09 81 |
|
RPMNet | | | 81.47 125 | 86.24 97 | 75.90 163 | 86.72 125 | 92.12 127 | 82.82 150 | 55.76 204 | 85.21 108 | 53.73 164 | 63.45 131 | 83.16 82 | 80.13 137 | 92.34 91 | 89.52 106 | 96.23 151 | 97.90 87 |
|
CR-MVSNet | | | 81.44 126 | 85.29 105 | 76.94 154 | 86.53 126 | 92.12 127 | 83.86 132 | 58.37 199 | 85.21 108 | 56.28 148 | 59.60 143 | 80.39 89 | 80.50 134 | 92.77 83 | 89.32 111 | 96.12 155 | 97.59 94 |
|
Effi-MVS+-dtu | | | 81.18 127 | 82.77 124 | 79.33 131 | 84.70 139 | 92.54 121 | 85.81 123 | 71.55 156 | 78.84 135 | 57.06 143 | 71.98 102 | 63.77 144 | 85.09 104 | 88.94 121 | 87.62 133 | 91.79 196 | 95.68 130 |
|
test0.0.03 1 | | | 80.99 128 | 84.37 111 | 77.05 152 | 85.32 135 | 89.79 144 | 78.43 176 | 74.18 136 | 84.78 114 | 57.98 142 | 76.06 76 | 72.88 110 | 69.14 177 | 88.02 130 | 87.70 130 | 97.27 108 | 91.37 170 |
|
Fast-Effi-MVS+-dtu | | | 80.57 129 | 83.44 120 | 77.22 150 | 83.98 143 | 91.52 133 | 85.78 125 | 64.54 186 | 80.38 132 | 50.28 178 | 74.06 90 | 62.89 145 | 82.00 127 | 89.10 120 | 88.91 120 | 96.75 123 | 97.21 104 |
|
FMVSNet5 | | | 80.56 130 | 82.53 127 | 78.26 142 | 73.80 200 | 81.52 198 | 82.26 158 | 68.36 176 | 88.85 87 | 64.21 124 | 69.09 113 | 84.38 80 | 83.49 117 | 87.13 136 | 86.76 140 | 97.44 99 | 79.95 199 |
|
ADS-MVSNet | | | 80.25 131 | 82.96 121 | 77.08 151 | 87.86 116 | 92.60 120 | 81.82 163 | 56.19 203 | 86.95 100 | 56.16 151 | 68.19 115 | 72.42 112 | 83.70 116 | 82.05 178 | 85.45 158 | 96.75 123 | 93.08 164 |
|
FMVSNet1 | | | 80.18 132 | 78.07 146 | 82.65 110 | 78.55 175 | 87.57 179 | 88.41 101 | 73.93 139 | 70.16 159 | 73.57 94 | 49.80 172 | 64.45 143 | 85.35 101 | 90.54 106 | 90.72 85 | 96.10 156 | 93.21 162 |
|
USDC | | | 80.10 133 | 79.33 142 | 81.00 121 | 86.36 127 | 91.71 132 | 88.74 100 | 75.77 128 | 81.90 125 | 54.90 158 | 67.67 118 | 52.05 167 | 83.94 114 | 88.44 127 | 86.25 144 | 96.31 146 | 87.28 187 |
|
COLMAP_ROB | | 75.69 15 | 79.47 134 | 76.90 153 | 82.46 114 | 92.20 69 | 90.53 135 | 85.30 127 | 83.69 68 | 78.27 138 | 61.47 128 | 58.26 147 | 62.75 147 | 78.28 145 | 82.41 175 | 82.13 186 | 93.83 186 | 83.98 195 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test_part1 | | | 79.37 135 | 75.64 158 | 83.71 103 | 86.18 128 | 87.74 173 | 87.84 106 | 75.69 130 | 66.33 176 | 78.93 70 | 45.92 187 | 64.85 141 | 82.44 124 | 83.08 172 | 85.69 151 | 91.17 197 | 95.90 127 |
|
pmmvs4 | | | 79.32 136 | 77.78 148 | 81.11 120 | 80.18 160 | 88.96 160 | 83.39 136 | 76.07 124 | 81.27 129 | 69.35 108 | 58.66 146 | 51.19 170 | 82.01 126 | 87.16 135 | 84.39 170 | 95.66 160 | 92.82 166 |
|
PatchT | | | 79.28 137 | 83.88 116 | 73.93 172 | 85.54 133 | 90.95 134 | 66.14 201 | 56.53 202 | 83.21 123 | 56.28 148 | 56.50 150 | 76.80 101 | 80.50 134 | 92.77 83 | 89.32 111 | 98.57 43 | 97.59 94 |
|
ACMH | | 78.51 14 | 79.27 138 | 78.08 145 | 80.65 122 | 89.52 98 | 90.40 136 | 80.45 168 | 79.77 94 | 69.54 164 | 54.85 159 | 64.83 126 | 56.16 161 | 83.94 114 | 84.58 158 | 86.01 148 | 95.41 165 | 95.03 142 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 79.23 139 | 78.95 144 | 79.56 129 | 81.89 150 | 92.52 122 | 82.97 145 | 73.70 140 | 67.27 170 | 64.97 120 | 61.66 139 | 65.06 138 | 78.61 142 | 87.12 137 | 88.07 127 | 95.23 169 | 90.95 172 |
|
ACMH+ | | 79.09 13 | 79.12 140 | 77.22 152 | 81.35 118 | 88.50 109 | 90.36 137 | 82.14 160 | 79.38 102 | 72.78 151 | 58.59 134 | 62.31 138 | 56.44 160 | 84.10 111 | 82.03 179 | 84.05 171 | 95.40 166 | 92.55 167 |
|
UniMVSNet_NR-MVSNet | | | 78.89 141 | 78.04 147 | 79.88 127 | 79.40 166 | 89.70 145 | 82.92 147 | 80.17 89 | 76.37 144 | 58.56 135 | 57.10 149 | 54.92 163 | 81.44 130 | 83.51 165 | 87.12 137 | 96.76 122 | 97.60 92 |
|
tpm | | | 78.87 142 | 81.33 138 | 76.00 161 | 85.57 132 | 90.19 140 | 82.81 151 | 59.66 194 | 78.35 137 | 51.40 173 | 66.30 121 | 67.92 128 | 80.94 132 | 83.28 168 | 85.73 149 | 95.65 161 | 97.56 96 |
|
GA-MVS | | | 78.86 143 | 80.42 139 | 77.05 152 | 83.27 144 | 92.17 126 | 83.24 140 | 75.73 129 | 73.75 148 | 46.27 192 | 62.43 136 | 57.12 157 | 76.94 156 | 93.14 72 | 89.34 107 | 96.83 119 | 95.00 143 |
|
IterMVS | | | 78.85 144 | 81.36 136 | 75.93 162 | 84.27 142 | 85.74 186 | 83.83 134 | 66.35 181 | 76.82 139 | 50.48 176 | 63.48 130 | 68.82 126 | 73.99 161 | 89.68 118 | 89.34 107 | 96.63 131 | 95.67 131 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 78.71 145 | 81.34 137 | 75.64 167 | 84.31 141 | 85.67 187 | 83.51 135 | 66.14 182 | 76.67 140 | 50.38 177 | 63.45 131 | 69.02 124 | 73.23 163 | 89.66 119 | 89.22 114 | 96.24 150 | 95.67 131 |
|
UniMVSNet (Re) | | | 78.00 146 | 77.52 149 | 78.57 138 | 79.66 165 | 90.36 137 | 82.09 161 | 77.86 113 | 76.38 143 | 60.26 130 | 54.63 155 | 52.07 166 | 75.31 159 | 84.97 155 | 86.10 146 | 96.22 152 | 98.11 80 |
|
DU-MVS | | | 77.98 147 | 76.71 154 | 79.46 130 | 78.68 172 | 89.26 154 | 82.92 147 | 79.06 104 | 76.52 141 | 58.56 135 | 54.89 153 | 48.35 183 | 81.44 130 | 83.16 170 | 87.21 136 | 96.08 157 | 97.60 92 |
|
FC-MVSNet-test | | | 77.95 148 | 81.85 133 | 73.39 177 | 82.31 146 | 88.99 159 | 79.33 172 | 74.24 135 | 78.75 136 | 47.40 190 | 70.22 110 | 72.09 116 | 60.78 195 | 86.66 139 | 85.62 153 | 96.30 147 | 90.61 173 |
|
NR-MVSNet | | | 77.21 149 | 76.41 155 | 78.14 144 | 80.18 160 | 89.26 154 | 83.38 137 | 79.06 104 | 76.52 141 | 56.59 146 | 54.89 153 | 45.32 192 | 72.89 165 | 85.39 151 | 86.12 145 | 96.71 126 | 97.36 101 |
|
thisisatest0515 | | | 77.13 150 | 79.36 141 | 74.52 169 | 79.79 164 | 89.65 146 | 73.54 190 | 73.69 141 | 74.10 147 | 58.14 138 | 62.79 135 | 60.57 148 | 66.49 183 | 88.08 129 | 85.16 163 | 95.49 164 | 95.15 140 |
|
gg-mvs-nofinetune | | | 77.08 151 | 79.79 140 | 73.92 173 | 85.95 130 | 97.23 67 | 92.18 65 | 52.65 207 | 46.19 209 | 27.79 213 | 38.27 201 | 85.63 71 | 85.67 100 | 96.95 17 | 95.62 24 | 99.30 3 | 98.67 60 |
|
TranMVSNet+NR-MVSNet | | | 77.02 152 | 75.76 157 | 78.49 139 | 78.46 178 | 88.24 167 | 83.03 144 | 79.97 90 | 73.49 150 | 54.73 160 | 54.00 158 | 48.74 178 | 78.15 147 | 82.36 176 | 86.90 139 | 96.59 133 | 96.55 116 |
|
CVMVSNet | | | 76.86 153 | 79.09 143 | 74.26 170 | 85.29 137 | 89.44 151 | 79.91 171 | 78.47 108 | 68.94 167 | 44.45 196 | 62.35 137 | 69.70 122 | 64.50 187 | 85.82 147 | 87.03 138 | 92.94 191 | 90.33 174 |
|
Baseline_NR-MVSNet | | | 76.71 154 | 74.56 165 | 79.23 132 | 78.68 172 | 84.15 194 | 82.45 154 | 78.87 106 | 75.83 145 | 60.05 131 | 47.92 183 | 50.18 175 | 79.06 141 | 83.16 170 | 83.86 174 | 96.26 148 | 96.80 112 |
|
v2v482 | | | 76.25 155 | 74.78 162 | 77.96 146 | 78.50 177 | 89.14 157 | 83.05 143 | 76.02 125 | 68.78 168 | 54.11 161 | 51.36 164 | 48.59 180 | 79.49 139 | 83.53 164 | 85.60 156 | 96.59 133 | 96.49 121 |
|
V42 | | | 76.21 156 | 75.04 161 | 77.58 147 | 78.68 172 | 89.33 153 | 82.93 146 | 74.64 133 | 69.84 161 | 56.13 152 | 50.42 169 | 50.93 171 | 76.30 158 | 83.32 166 | 84.89 167 | 96.83 119 | 96.54 117 |
|
v8 | | | 75.89 157 | 74.74 163 | 77.23 149 | 79.09 168 | 88.00 170 | 83.19 141 | 71.08 160 | 70.03 160 | 56.29 147 | 50.50 167 | 50.88 172 | 77.06 155 | 83.32 166 | 84.99 165 | 96.68 127 | 95.49 137 |
|
TinyColmap | | | 75.75 158 | 73.19 176 | 78.74 137 | 84.82 138 | 87.69 175 | 81.59 164 | 74.62 134 | 71.81 156 | 54.01 162 | 55.79 152 | 44.42 197 | 82.89 120 | 84.61 157 | 83.76 175 | 94.50 179 | 84.22 194 |
|
MIMVSNet | | | 75.71 159 | 77.26 150 | 73.90 174 | 70.93 201 | 88.71 163 | 79.98 170 | 57.67 201 | 73.58 149 | 58.08 141 | 53.93 159 | 58.56 156 | 79.41 140 | 90.04 114 | 89.97 99 | 97.34 105 | 86.04 188 |
|
UniMVSNet_ETH3D | | | 75.63 160 | 71.59 184 | 80.35 123 | 81.03 155 | 89.90 143 | 83.25 139 | 76.58 120 | 60.08 192 | 64.19 125 | 42.89 196 | 45.01 193 | 82.14 125 | 80.20 189 | 86.75 141 | 94.90 174 | 96.29 123 |
|
pm-mvs1 | | | 75.61 161 | 74.19 167 | 77.26 148 | 80.16 162 | 88.79 161 | 81.49 165 | 75.49 132 | 59.49 194 | 58.09 140 | 48.32 180 | 55.53 162 | 72.35 166 | 88.61 123 | 85.48 157 | 95.99 158 | 93.12 163 |
|
v10 | | | 75.57 162 | 74.67 164 | 76.62 157 | 78.73 171 | 87.46 181 | 83.14 142 | 69.41 172 | 69.27 165 | 53.44 165 | 49.73 173 | 49.21 177 | 78.44 144 | 86.17 144 | 85.18 162 | 96.53 138 | 95.65 134 |
|
v1144 | | | 75.54 163 | 74.55 166 | 76.69 155 | 78.33 180 | 88.77 162 | 82.89 149 | 72.76 146 | 67.18 172 | 51.73 170 | 49.34 175 | 48.37 181 | 78.10 148 | 86.22 143 | 85.24 160 | 96.35 145 | 96.74 113 |
|
TDRefinement | | | 75.54 163 | 73.22 174 | 78.25 143 | 87.65 120 | 89.65 146 | 85.81 123 | 79.28 103 | 71.14 157 | 56.06 154 | 52.17 162 | 51.96 168 | 68.74 179 | 81.60 180 | 80.58 188 | 91.94 194 | 85.45 189 |
|
pmmvs5 | | | 75.46 165 | 75.12 160 | 75.87 164 | 79.39 167 | 89.44 151 | 78.12 178 | 72.27 150 | 65.98 178 | 51.54 171 | 55.83 151 | 46.23 187 | 76.80 157 | 88.77 122 | 85.73 149 | 97.07 113 | 93.84 154 |
|
tfpnnormal | | | 75.27 166 | 72.12 181 | 78.94 135 | 82.30 147 | 88.52 164 | 82.41 155 | 79.41 100 | 58.03 195 | 55.59 156 | 43.83 195 | 44.71 194 | 77.35 151 | 87.70 132 | 85.45 158 | 96.60 132 | 96.61 115 |
|
anonymousdsp | | | 75.14 167 | 77.25 151 | 72.69 180 | 76.68 190 | 89.26 154 | 75.26 187 | 68.44 175 | 65.53 181 | 46.65 191 | 58.16 148 | 56.67 159 | 73.96 162 | 87.84 131 | 86.05 147 | 95.13 172 | 97.22 103 |
|
v148 | | | 74.98 168 | 73.52 172 | 76.69 155 | 78.84 170 | 89.02 158 | 78.78 174 | 76.82 118 | 67.22 171 | 59.61 132 | 49.18 176 | 47.94 185 | 70.57 172 | 80.76 184 | 83.99 172 | 95.52 162 | 96.52 119 |
|
v1192 | | | 74.96 169 | 73.92 168 | 76.17 158 | 77.76 183 | 88.19 169 | 82.54 153 | 71.94 153 | 66.84 173 | 50.07 180 | 48.10 181 | 46.14 188 | 78.28 145 | 86.30 141 | 85.23 161 | 96.41 144 | 96.67 114 |
|
v144192 | | | 74.76 170 | 73.64 169 | 76.06 160 | 77.58 184 | 88.23 168 | 81.87 162 | 71.63 155 | 66.03 177 | 51.08 174 | 48.63 179 | 46.77 186 | 77.59 150 | 84.53 159 | 84.76 168 | 96.64 130 | 96.54 117 |
|
v1921920 | | | 74.60 171 | 73.56 171 | 75.81 165 | 77.43 186 | 87.94 171 | 82.18 159 | 71.33 159 | 66.48 175 | 49.23 184 | 47.84 184 | 45.56 190 | 78.03 149 | 85.70 149 | 84.92 166 | 96.65 128 | 96.50 120 |
|
v1240 | | | 74.04 172 | 73.04 178 | 75.20 168 | 77.19 188 | 87.69 175 | 80.93 167 | 70.72 164 | 65.08 182 | 48.47 185 | 47.31 185 | 44.71 194 | 77.33 152 | 85.50 150 | 85.07 164 | 96.59 133 | 95.94 126 |
|
testgi | | | 73.22 173 | 75.84 156 | 70.16 190 | 81.67 154 | 85.50 189 | 71.45 192 | 70.81 162 | 69.56 163 | 44.74 195 | 74.52 88 | 49.25 176 | 58.45 196 | 84.10 162 | 83.37 179 | 93.86 183 | 84.56 193 |
|
CP-MVSNet | | | 73.19 174 | 72.37 180 | 74.15 171 | 77.54 185 | 86.77 184 | 76.34 181 | 72.05 151 | 65.66 180 | 51.47 172 | 50.49 168 | 43.66 198 | 70.90 168 | 80.93 183 | 83.40 178 | 96.59 133 | 95.66 133 |
|
WR-MVS | | | 72.93 175 | 73.57 170 | 72.19 183 | 78.14 181 | 87.71 174 | 76.21 183 | 73.02 144 | 67.78 169 | 50.09 179 | 50.35 170 | 50.53 173 | 61.27 194 | 80.42 187 | 83.10 182 | 94.43 180 | 95.11 141 |
|
TransMVSNet (Re) | | | 72.90 176 | 70.51 188 | 75.69 166 | 80.88 156 | 85.26 191 | 79.25 173 | 78.43 110 | 56.13 201 | 52.81 167 | 46.81 186 | 48.20 184 | 66.77 182 | 85.18 154 | 83.70 176 | 95.98 159 | 88.28 182 |
|
WR-MVS_H | | | 72.69 177 | 72.80 179 | 72.56 182 | 77.94 182 | 87.83 172 | 75.26 187 | 71.53 157 | 64.75 183 | 52.19 169 | 49.83 171 | 48.62 179 | 61.96 193 | 81.12 182 | 82.44 184 | 96.50 139 | 95.00 143 |
|
SixPastTwentyTwo | | | 72.65 178 | 73.22 174 | 71.98 186 | 78.40 179 | 87.64 177 | 70.09 195 | 70.37 166 | 66.49 174 | 47.60 188 | 65.09 123 | 45.94 189 | 73.09 164 | 78.94 190 | 78.66 194 | 92.33 192 | 89.82 178 |
|
LTVRE_ROB | | 71.82 16 | 72.62 179 | 71.77 182 | 73.62 175 | 80.74 157 | 87.59 178 | 80.42 169 | 70.37 166 | 49.73 205 | 37.12 207 | 59.76 141 | 42.52 203 | 80.92 133 | 83.20 169 | 85.61 155 | 92.13 193 | 93.95 152 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PS-CasMVS | | | 72.37 180 | 71.47 186 | 73.43 176 | 77.32 187 | 86.43 185 | 75.99 184 | 71.94 153 | 63.37 186 | 49.24 183 | 49.07 177 | 42.42 204 | 69.60 174 | 80.59 186 | 83.18 181 | 96.48 141 | 95.23 139 |
|
MVS-HIRNet | | | 72.32 181 | 73.45 173 | 71.00 189 | 80.58 158 | 89.97 141 | 68.51 198 | 55.28 205 | 70.89 158 | 52.27 168 | 39.09 199 | 57.11 158 | 75.02 160 | 85.76 148 | 86.33 142 | 94.36 181 | 85.00 191 |
|
PEN-MVS | | | 72.24 182 | 71.30 187 | 73.33 178 | 77.08 189 | 85.57 188 | 76.75 179 | 72.52 148 | 63.89 185 | 48.12 186 | 50.79 165 | 43.09 201 | 69.03 178 | 78.54 192 | 83.46 177 | 96.50 139 | 93.76 157 |
|
v7n | | | 72.11 183 | 71.66 183 | 72.63 181 | 75.26 195 | 86.85 182 | 76.74 180 | 68.77 174 | 62.70 189 | 49.40 181 | 45.92 187 | 43.51 199 | 70.63 171 | 84.16 161 | 83.21 180 | 94.99 173 | 95.25 138 |
|
EG-PatchMatch MVS | | | 71.81 184 | 71.54 185 | 72.12 184 | 80.53 159 | 89.94 142 | 78.51 175 | 66.56 180 | 57.38 197 | 47.46 189 | 44.28 194 | 52.22 165 | 63.10 191 | 85.22 153 | 84.42 169 | 96.56 137 | 87.35 186 |
|
CMPMVS | | 54.54 17 | 71.74 185 | 67.94 193 | 76.16 159 | 90.41 85 | 93.25 114 | 78.32 177 | 75.60 131 | 59.81 193 | 53.95 163 | 44.64 192 | 51.22 169 | 70.70 169 | 74.59 200 | 75.88 199 | 88.01 201 | 76.23 202 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 71.65 186 | 73.08 177 | 69.97 191 | 75.22 196 | 86.81 183 | 73.98 189 | 59.61 195 | 69.75 162 | 48.01 187 | 54.21 157 | 53.06 164 | 69.19 176 | 78.50 193 | 80.43 189 | 93.84 184 | 88.79 180 |
|
gm-plane-assit | | | 71.33 187 | 75.18 159 | 66.83 194 | 79.06 169 | 75.57 205 | 48.05 211 | 60.33 190 | 48.28 206 | 34.67 211 | 44.34 193 | 67.70 130 | 79.78 138 | 97.25 11 | 96.21 13 | 99.10 10 | 96.92 109 |
|
DTE-MVSNet | | | 71.19 188 | 70.45 189 | 72.06 185 | 76.61 191 | 84.59 193 | 75.61 186 | 72.32 149 | 63.12 188 | 45.70 194 | 50.72 166 | 43.02 202 | 65.89 184 | 77.53 197 | 82.23 185 | 96.26 148 | 91.93 168 |
|
pmmvs6 | | | 70.29 189 | 67.90 194 | 73.07 179 | 76.17 192 | 85.31 190 | 76.29 182 | 70.75 163 | 47.39 208 | 55.33 157 | 37.15 205 | 50.49 174 | 69.55 175 | 82.96 173 | 80.85 187 | 90.34 200 | 91.18 171 |
|
PM-MVS | | | 70.17 190 | 69.42 191 | 71.04 188 | 70.82 202 | 81.26 200 | 71.25 193 | 67.80 177 | 69.16 166 | 51.04 175 | 53.15 161 | 34.93 208 | 72.19 167 | 80.30 188 | 76.95 197 | 93.16 190 | 90.21 175 |
|
pmmvs-eth3d | | | 69.59 191 | 67.57 196 | 71.95 187 | 70.04 203 | 80.05 201 | 71.48 191 | 70.00 170 | 62.57 190 | 55.99 155 | 44.92 190 | 35.73 207 | 70.64 170 | 81.56 181 | 79.69 190 | 93.55 187 | 88.43 181 |
|
N_pmnet | | | 68.54 192 | 67.83 195 | 69.38 192 | 75.77 193 | 81.90 197 | 66.21 200 | 72.53 147 | 65.91 179 | 46.09 193 | 44.67 191 | 45.48 191 | 63.82 189 | 74.66 199 | 77.39 196 | 91.87 195 | 84.77 192 |
|
Anonymous20231206 | | | 68.09 193 | 68.68 192 | 67.39 193 | 75.16 197 | 82.55 195 | 69.33 196 | 70.06 169 | 63.34 187 | 42.28 199 | 37.91 203 | 43.12 200 | 52.67 199 | 83.56 163 | 82.71 183 | 94.84 176 | 87.59 184 |
|
EU-MVSNet | | | 68.07 194 | 70.25 190 | 65.52 195 | 74.68 199 | 81.30 199 | 68.53 197 | 70.31 168 | 62.40 191 | 37.43 206 | 54.62 156 | 48.36 182 | 51.34 200 | 78.32 194 | 79.27 191 | 90.84 198 | 87.47 185 |
|
GG-mvs-BLEND | | | 65.67 195 | 93.78 40 | 32.89 207 | 0.47 217 | 99.35 6 | 96.92 31 | 0.22 216 | 93.28 60 | 0.51 218 | 84.07 54 | 92.50 39 | 0.62 215 | 93.59 65 | 93.86 55 | 98.59 42 | 99.79 9 |
|
test20.03 | | | 65.17 196 | 67.41 197 | 62.55 197 | 75.35 194 | 79.31 202 | 62.22 202 | 68.83 173 | 56.50 200 | 35.35 210 | 51.97 163 | 44.70 196 | 40.01 205 | 80.69 185 | 79.25 192 | 93.55 187 | 79.47 201 |
|
MDA-MVSNet-bldmvs | | | 62.23 197 | 61.13 200 | 63.52 196 | 58.94 209 | 82.44 196 | 60.71 205 | 73.28 143 | 57.22 198 | 38.42 204 | 49.63 174 | 27.64 214 | 62.83 192 | 54.98 206 | 74.16 200 | 86.96 203 | 81.83 198 |
|
new_pmnet | | | 61.60 198 | 62.68 198 | 60.35 200 | 63.02 206 | 74.93 206 | 60.97 204 | 58.86 197 | 64.21 184 | 35.38 209 | 39.51 198 | 39.89 205 | 57.37 197 | 72.78 201 | 72.56 201 | 86.49 205 | 74.85 204 |
|
new-patchmatchnet | | | 60.74 199 | 59.78 202 | 61.87 198 | 69.52 204 | 76.67 204 | 57.99 208 | 65.78 184 | 52.63 203 | 38.47 203 | 38.08 202 | 32.92 211 | 48.88 202 | 68.50 202 | 69.87 202 | 90.56 199 | 79.75 200 |
|
pmmvs3 | | | 60.52 200 | 60.87 201 | 60.12 201 | 61.38 207 | 71.62 207 | 57.42 209 | 53.94 206 | 48.09 207 | 35.95 208 | 38.62 200 | 32.19 213 | 64.12 188 | 75.33 198 | 77.99 195 | 87.89 202 | 82.28 197 |
|
MIMVSNet1 | | | 60.51 201 | 61.43 199 | 59.44 202 | 48.75 212 | 77.21 203 | 60.98 203 | 66.84 179 | 52.09 204 | 38.74 202 | 29.29 207 | 39.40 206 | 48.08 203 | 77.60 196 | 78.87 193 | 93.22 189 | 75.56 203 |
|
FPMVS | | | 56.54 202 | 52.82 204 | 60.87 199 | 74.90 198 | 67.58 210 | 67.69 199 | 65.38 185 | 57.86 196 | 41.51 200 | 37.83 204 | 34.19 209 | 41.21 204 | 55.88 205 | 53.09 207 | 74.55 209 | 63.31 207 |
|
PMVS | | 42.57 18 | 45.71 203 | 42.61 206 | 49.32 204 | 61.35 208 | 37.82 214 | 36.96 213 | 60.10 192 | 37.20 210 | 41.50 201 | 28.53 208 | 33.11 210 | 28.82 210 | 53.45 207 | 48.70 209 | 67.22 211 | 59.42 208 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma | | | 43.95 204 | 42.62 205 | 45.50 205 | 50.79 211 | 41.20 213 | 35.55 214 | 52.51 208 | 52.95 202 | 29.09 212 | 12.92 210 | 11.48 217 | 38.15 206 | 62.01 204 | 66.62 204 | 66.89 212 | 51.17 209 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 41.25 205 | 42.55 207 | 39.74 206 | 43.25 213 | 55.05 212 | 38.15 212 | 47.11 211 | 31.78 211 | 11.83 215 | 21.16 209 | 19.12 215 | 20.98 212 | 49.95 209 | 56.09 206 | 77.09 207 | 64.68 206 |
|
E-PMN | | | 27.87 206 | 24.36 209 | 31.97 208 | 41.27 215 | 25.56 217 | 16.62 216 | 49.16 209 | 22.00 213 | 9.90 216 | 11.75 212 | 7.86 219 | 29.57 209 | 22.22 211 | 34.70 210 | 45.27 213 | 46.41 211 |
|
MVE | | 32.98 19 | 27.61 207 | 29.89 208 | 24.94 210 | 21.97 216 | 37.22 215 | 15.56 218 | 38.83 212 | 17.49 214 | 14.72 214 | 11.64 214 | 5.62 220 | 21.26 211 | 35.20 210 | 50.95 208 | 37.29 215 | 51.13 210 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 26.96 208 | 22.96 210 | 31.63 209 | 41.91 214 | 25.73 216 | 16.30 217 | 49.10 210 | 22.38 212 | 9.03 217 | 11.22 215 | 8.12 218 | 29.93 208 | 20.16 212 | 31.04 211 | 43.49 214 | 42.04 212 |
|
testmvs | | | 5.16 209 | 8.14 211 | 1.69 211 | 0.36 218 | 1.65 218 | 3.02 219 | 0.66 214 | 7.17 215 | 0.50 219 | 12.58 211 | 0.69 221 | 4.67 213 | 5.42 213 | 5.65 212 | 0.92 216 | 23.86 214 |
|
test123 | | | 4.39 210 | 7.11 212 | 1.21 212 | 0.11 219 | 1.16 219 | 1.67 220 | 0.35 215 | 5.91 216 | 0.16 220 | 11.65 213 | 0.16 222 | 4.45 214 | 1.72 214 | 4.92 213 | 0.51 217 | 24.28 213 |
|
uanet_test | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet-low-res | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 223 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
RE-MVS-def | | | | | | | | | | | 43.17 197 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 97.59 9 | | | | | |
|
SR-MVS | | | | | | 98.52 20 | | | 93.70 22 | | | | 96.63 19 | | | | | |
|
Anonymous202405211 | | | | 81.72 134 | | 88.09 114 | 94.27 106 | 89.62 91 | 82.14 80 | 82.27 124 | | 48.83 178 | 72.58 111 | 91.08 61 | 87.40 133 | 88.70 123 | 94.90 174 | 97.99 84 |
|
our_test_3 | | | | | | 78.55 175 | 84.98 192 | 70.12 194 | | | | | | | | | | |
|
ambc | | | | 57.08 203 | | 58.68 210 | 67.71 209 | 60.07 206 | | 57.13 199 | 42.79 198 | 30.00 206 | 11.64 216 | 50.18 201 | 78.89 191 | 69.14 203 | 82.64 206 | 85.02 190 |
|
MTAPA | | | | | | | | | | | 93.37 8 | | 95.71 26 | | | | | |
|
MTMP | | | | | | | | | | | 93.84 4 | | 94.86 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 19.65 215 | | | | | | | | | | |
|
tmp_tt | | | | | 57.89 203 | 79.94 163 | 59.29 211 | 52.84 210 | 36.65 213 | 94.77 50 | 68.22 111 | 72.96 95 | 65.62 136 | 33.65 207 | 66.20 203 | 58.02 205 | 76.06 208 | |
|
XVS | | | | | | 92.16 70 | 98.56 36 | 91.04 81 | | | 81.00 57 | | 93.49 34 | | | | 98.00 72 | |
|
X-MVStestdata | | | | | | 92.16 70 | 98.56 36 | 91.04 81 | | | 81.00 57 | | 93.49 34 | | | | 98.00 72 | |
|
abl_6 | | | | | 93.25 35 | 97.12 38 | 98.71 31 | 94.40 51 | 87.81 47 | 97.86 10 | 87.19 30 | 91.07 36 | 95.80 24 | 94.18 33 | | | 98.78 36 | 99.36 23 |
|
mPP-MVS | | | | | | 97.95 29 | | | | | | | 92.24 44 | | | | | |
|
NP-MVS | | | | | | | | | | 94.12 54 | | | | | | | | |
|
Patchmtry | | | | | | | 92.08 129 | 83.86 132 | 58.37 199 | | 56.28 148 | | | | | | | |
|
DeepMVS_CX | | | | | | | 70.68 208 | 59.61 207 | 67.36 178 | 72.12 153 | 38.41 205 | 53.88 160 | 32.44 212 | 55.15 198 | 50.88 208 | | 74.35 210 | 68.42 205 |
|