TDRefinement | | | 86.29 1 | 90.77 1 | 81.06 1 | 75.10 53 | 83.76 2 | 93.79 1 | 61.08 19 | 89.57 2 | 86.19 1 | 90.06 10 | 93.01 25 | 76.72 2 | 94.71 1 | 92.72 1 | 93.47 1 | 91.56 1 |
|
COLMAP_ROB | | 75.87 2 | 84.34 2 | 89.80 2 | 77.97 12 | 75.52 51 | 82.76 4 | 90.39 20 | 54.21 54 | 89.37 3 | 83.18 2 | 89.90 12 | 95.58 11 | 72.34 10 | 92.31 4 | 90.04 5 | 92.17 5 | 88.61 17 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CP-MVS | | | 84.06 3 | 86.79 9 | 80.86 2 | 81.81 8 | 79.66 29 | 92.67 6 | 64.48 1 | 83.13 32 | 82.32 3 | 80.89 72 | 92.97 26 | 72.51 9 | 91.74 6 | 90.02 6 | 91.40 17 | 89.14 7 |
|
ACMMPR | | | 83.94 4 | 87.20 3 | 80.14 4 | 81.04 13 | 81.92 8 | 92.57 8 | 63.14 5 | 84.35 20 | 79.45 12 | 83.37 45 | 92.04 36 | 72.82 8 | 90.66 12 | 88.96 12 | 91.80 6 | 89.13 8 |
|
MP-MVS | | | 83.50 5 | 86.11 18 | 80.45 3 | 82.58 5 | 80.60 24 | 92.68 5 | 63.48 3 | 81.43 46 | 80.21 9 | 81.95 61 | 90.76 54 | 72.86 6 | 90.14 19 | 89.30 11 | 90.92 19 | 88.59 18 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP | | | 83.17 6 | 86.75 10 | 79.01 8 | 80.11 25 | 82.01 7 | 92.29 11 | 60.35 26 | 82.20 40 | 78.32 16 | 80.59 73 | 93.14 23 | 70.67 15 | 91.30 8 | 89.36 10 | 92.30 4 | 88.62 16 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PGM-MVS | | | 83.03 7 | 85.67 25 | 79.95 5 | 80.69 17 | 81.09 15 | 92.40 10 | 63.06 6 | 79.38 60 | 80.21 9 | 80.31 75 | 91.44 41 | 71.75 12 | 90.46 15 | 88.53 15 | 91.57 9 | 88.50 19 |
|
LGP-MVS_train | | | 82.91 8 | 86.50 12 | 78.72 9 | 78.72 34 | 81.03 16 | 89.78 24 | 61.16 18 | 80.15 56 | 80.44 6 | 84.83 36 | 94.19 16 | 70.52 18 | 90.70 11 | 87.19 23 | 91.71 8 | 87.37 29 |
|
ACMM | | 71.24 7 | 82.85 9 | 86.59 11 | 78.50 10 | 80.10 26 | 78.59 31 | 91.77 12 | 60.76 23 | 84.43 18 | 76.49 25 | 81.58 66 | 93.50 18 | 70.45 19 | 91.38 7 | 89.42 9 | 91.42 16 | 87.22 31 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
zzz-MVS | | | 82.61 10 | 85.04 32 | 79.79 6 | 82.59 4 | 73.90 58 | 92.42 9 | 62.39 12 | 84.54 17 | 80.21 9 | 79.86 79 | 90.74 55 | 70.63 16 | 90.01 21 | 89.71 8 | 90.48 21 | 86.49 36 |
|
HFP-MVS | | | 82.37 11 | 86.28 14 | 77.81 15 | 79.94 27 | 80.96 18 | 91.13 15 | 63.30 4 | 84.04 22 | 71.81 39 | 82.39 56 | 89.59 71 | 69.16 24 | 89.08 26 | 88.83 14 | 91.49 13 | 89.10 9 |
|
DeepC-MVS | | 73.80 3 | 82.34 12 | 86.87 7 | 77.06 19 | 78.62 35 | 84.34 1 | 90.30 22 | 63.54 2 | 83.10 33 | 71.30 44 | 86.91 23 | 90.54 61 | 67.12 30 | 87.81 35 | 87.05 24 | 91.46 15 | 88.37 20 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CPTT-MVS | | | 82.32 13 | 85.00 34 | 79.19 7 | 80.73 16 | 80.86 21 | 91.68 13 | 62.59 10 | 82.55 37 | 75.53 29 | 73.88 112 | 92.28 32 | 73.74 5 | 90.07 20 | 87.65 19 | 90.87 20 | 87.74 24 |
|
ACMP | | 70.35 9 | 82.17 14 | 86.45 13 | 77.18 18 | 79.33 28 | 81.00 17 | 89.27 28 | 58.63 32 | 81.35 48 | 75.46 30 | 82.97 51 | 95.08 13 | 68.90 25 | 90.49 14 | 87.43 22 | 91.48 14 | 86.84 33 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SteuartSystems-ACMMP | | | 82.16 15 | 85.55 27 | 78.21 11 | 80.48 19 | 79.28 30 | 92.65 7 | 61.03 20 | 80.55 54 | 77.00 23 | 81.80 64 | 90.71 56 | 68.73 26 | 90.25 17 | 87.94 18 | 89.36 28 | 88.30 21 |
Skip Steuart: Steuart Systems R&D Blog. |
SMA-MVS | | | 82.15 16 | 85.93 20 | 77.74 16 | 80.13 24 | 80.25 26 | 91.01 16 | 60.61 24 | 85.54 11 | 78.61 15 | 83.21 48 | 86.96 99 | 65.95 34 | 88.10 32 | 87.59 20 | 90.11 22 | 89.83 4 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SD-MVS | | | 82.13 17 | 86.80 8 | 76.67 20 | 80.36 22 | 80.66 22 | 89.48 26 | 56.93 35 | 82.50 38 | 67.55 68 | 87.05 21 | 91.40 43 | 72.84 7 | 88.66 28 | 88.32 16 | 92.85 2 | 89.04 10 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
LTVRE_ROB | | 75.99 1 | 82.04 18 | 87.16 4 | 76.07 23 | 63.57 119 | 70.27 76 | 86.48 41 | 62.99 7 | 89.00 5 | 80.32 7 | 86.25 26 | 91.04 48 | 74.66 4 | 92.58 3 | 90.29 4 | 88.42 35 | 90.72 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PMVS | | 70.37 8 | 81.82 19 | 87.08 5 | 75.68 25 | 77.06 42 | 77.23 39 | 87.77 38 | 56.25 42 | 83.33 31 | 67.18 73 | 89.48 14 | 87.94 83 | 77.70 1 | 93.02 2 | 92.57 2 | 88.13 37 | 86.00 39 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ACMMP_NAP | | | 81.79 20 | 85.72 23 | 77.21 17 | 79.15 32 | 79.68 28 | 91.62 14 | 59.66 28 | 83.55 28 | 77.74 19 | 83.72 43 | 87.34 92 | 65.36 35 | 88.61 29 | 87.56 21 | 89.73 27 | 89.58 5 |
|
X-MVS | | | 81.61 21 | 84.73 36 | 77.97 12 | 80.31 23 | 81.29 12 | 93.53 2 | 62.50 11 | 81.41 47 | 77.45 20 | 72.04 122 | 90.19 64 | 62.50 54 | 90.57 13 | 88.87 13 | 91.54 10 | 88.73 14 |
|
OPM-MVS | | | 81.44 22 | 85.68 24 | 76.49 21 | 79.27 29 | 78.21 34 | 89.84 23 | 58.67 31 | 85.25 12 | 76.26 26 | 85.28 33 | 92.88 27 | 66.03 33 | 87.20 38 | 85.40 28 | 88.86 32 | 85.58 43 |
|
TSAR-MVS + MP. | | | 81.23 23 | 86.13 16 | 75.52 26 | 80.74 15 | 83.22 3 | 90.55 17 | 55.12 49 | 80.87 51 | 67.62 67 | 88.01 16 | 92.38 31 | 70.61 17 | 86.64 40 | 83.10 43 | 88.51 33 | 88.67 15 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + ACMM | | | 81.20 24 | 86.92 6 | 74.52 29 | 77.60 38 | 82.29 5 | 84.41 48 | 62.95 8 | 82.99 34 | 64.03 81 | 87.71 17 | 89.17 73 | 71.98 11 | 88.19 31 | 88.10 17 | 86.18 55 | 89.95 3 |
|
APDe-MVS | | | 81.08 25 | 86.12 17 | 75.20 27 | 79.25 30 | 80.91 19 | 90.38 21 | 57.05 34 | 85.83 10 | 66.07 77 | 87.34 20 | 91.27 44 | 69.45 20 | 85.99 44 | 82.55 45 | 88.98 31 | 88.95 12 |
|
DPE-MVS | | | 81.01 26 | 85.18 29 | 76.15 22 | 78.58 36 | 80.64 23 | 89.77 25 | 57.92 33 | 81.66 45 | 73.45 33 | 86.84 24 | 89.80 69 | 69.33 22 | 85.40 46 | 82.91 44 | 87.87 39 | 89.01 11 |
|
APD-MVS | | | 80.60 27 | 84.63 37 | 75.91 24 | 81.22 11 | 81.48 10 | 90.49 18 | 58.81 30 | 77.54 66 | 67.49 69 | 85.90 28 | 89.82 68 | 69.43 21 | 86.08 43 | 83.80 38 | 88.01 38 | 87.77 23 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HPM-MVS++ | | | 80.44 28 | 82.57 51 | 77.96 14 | 81.99 7 | 72.76 63 | 90.48 19 | 61.31 15 | 80.85 52 | 77.90 18 | 81.93 62 | 87.01 96 | 68.20 28 | 84.15 56 | 85.27 30 | 87.85 40 | 86.00 39 |
|
DVP-MVS | | | 80.31 29 | 85.60 26 | 74.15 33 | 76.23 46 | 78.39 32 | 86.62 40 | 55.79 45 | 86.47 9 | 71.32 43 | 90.96 7 | 89.02 75 | 69.28 23 | 84.62 55 | 81.64 54 | 85.66 60 | 88.09 22 |
|
ACMH+ | | 67.97 10 | 80.15 30 | 86.16 15 | 73.14 40 | 73.82 60 | 76.41 42 | 83.59 53 | 54.82 52 | 87.35 6 | 70.86 48 | 86.98 22 | 96.27 4 | 66.50 31 | 89.17 25 | 83.39 40 | 89.26 29 | 83.56 49 |
|
OMC-MVS | | | 79.95 31 | 85.28 28 | 73.74 36 | 72.95 63 | 80.10 27 | 87.87 37 | 48.13 81 | 84.62 16 | 79.42 13 | 80.27 76 | 92.49 29 | 64.14 44 | 87.25 37 | 85.11 31 | 89.92 25 | 87.10 32 |
|
SED-MVS | | | 79.70 32 | 85.16 30 | 73.34 38 | 75.83 50 | 78.11 35 | 88.77 33 | 56.45 39 | 84.85 14 | 69.45 60 | 90.70 9 | 88.38 78 | 63.16 49 | 85.12 51 | 81.28 57 | 86.40 53 | 87.63 25 |
|
MSP-MVS | | | 79.65 33 | 84.28 41 | 74.25 31 | 78.92 33 | 81.86 9 | 89.07 29 | 60.49 25 | 83.85 26 | 70.05 55 | 85.12 34 | 90.92 52 | 62.99 51 | 81.15 77 | 81.64 54 | 83.99 68 | 85.42 45 |
|
DeepPCF-MVS | | 71.57 5 | 79.49 34 | 84.05 42 | 74.17 32 | 74.14 57 | 80.88 20 | 89.33 27 | 56.24 43 | 82.41 39 | 71.58 41 | 82.27 57 | 86.47 102 | 66.47 32 | 84.80 53 | 84.16 36 | 87.26 45 | 87.34 30 |
|
LS3D | | | 79.33 35 | 84.03 43 | 73.84 34 | 75.37 52 | 78.09 36 | 83.30 54 | 52.94 61 | 84.42 19 | 76.01 27 | 84.16 39 | 87.44 91 | 65.34 36 | 86.30 41 | 82.08 52 | 90.09 23 | 85.70 41 |
|
3Dnovator+ | | 72.94 4 | 78.78 36 | 83.05 48 | 73.80 35 | 70.70 75 | 81.34 11 | 88.33 34 | 56.01 44 | 81.33 49 | 72.87 37 | 78.06 92 | 81.15 127 | 63.83 46 | 87.39 36 | 85.82 26 | 91.06 18 | 86.28 38 |
|
UA-Net | | | 78.65 37 | 83.96 44 | 72.46 42 | 84.87 1 | 76.15 43 | 89.06 30 | 55.70 46 | 77.25 67 | 53.14 113 | 79.73 81 | 82.09 125 | 59.69 70 | 92.21 5 | 90.93 3 | 92.32 3 | 89.36 6 |
|
xxxxxxxxxxxxxcwj | | | 78.58 38 | 83.87 45 | 72.41 43 | 76.04 48 | 75.72 46 | 83.86 50 | 51.81 65 | 84.00 24 | 70.65 51 | 81.27 68 | 95.06 14 | 64.64 41 | 83.28 64 | 80.28 59 | 87.44 43 | 87.49 27 |
|
DeepC-MVS_fast | | 71.40 6 | 78.48 39 | 82.92 49 | 73.31 39 | 76.44 45 | 82.23 6 | 87.59 39 | 56.56 38 | 77.79 64 | 68.91 64 | 77.00 96 | 87.32 93 | 61.90 56 | 85.40 46 | 84.37 33 | 88.46 34 | 86.33 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SF-MVS | | | 78.36 40 | 83.47 47 | 72.41 43 | 76.04 48 | 75.72 46 | 83.86 50 | 51.81 65 | 84.00 24 | 70.65 51 | 81.27 68 | 92.22 33 | 64.64 41 | 83.28 64 | 80.28 59 | 87.44 43 | 87.49 27 |
|
WR-MVS | | | 78.32 41 | 86.09 19 | 69.25 61 | 76.22 47 | 72.33 70 | 85.71 44 | 59.02 29 | 86.66 7 | 51.41 119 | 92.91 2 | 96.76 1 | 53.09 105 | 90.21 18 | 85.30 29 | 90.05 24 | 78.46 75 |
|
ACMH | | 66.19 11 | 78.12 42 | 84.55 38 | 70.63 52 | 69.62 81 | 72.40 69 | 80.77 70 | 46.43 95 | 89.24 4 | 77.99 17 | 87.42 19 | 95.83 9 | 62.95 52 | 86.27 42 | 78.24 71 | 86.00 58 | 82.46 51 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
train_agg | | | 77.83 43 | 80.47 61 | 74.77 28 | 80.92 14 | 69.60 77 | 88.87 32 | 56.32 41 | 74.03 83 | 71.03 46 | 83.67 44 | 87.68 86 | 64.75 40 | 83.70 58 | 81.85 53 | 86.71 49 | 82.73 50 |
|
NCCC | | | 77.82 44 | 80.72 60 | 74.43 30 | 79.24 31 | 75.72 46 | 88.06 35 | 56.36 40 | 79.61 58 | 73.22 35 | 67.75 135 | 87.05 95 | 63.09 50 | 85.62 45 | 84.00 37 | 86.62 50 | 85.30 46 |
|
CNVR-MVS | | | 77.79 45 | 81.57 55 | 73.38 37 | 78.37 37 | 75.91 44 | 87.97 36 | 55.11 50 | 79.41 59 | 70.98 47 | 74.70 110 | 86.43 103 | 61.77 57 | 85.10 52 | 83.73 39 | 86.10 57 | 85.68 42 |
|
WR-MVS_H | | | 77.56 46 | 85.88 21 | 67.86 65 | 80.54 18 | 74.32 55 | 83.23 55 | 61.78 13 | 83.47 29 | 47.46 139 | 91.81 6 | 95.84 8 | 50.50 116 | 90.44 16 | 84.37 33 | 83.63 73 | 80.89 61 |
|
RPSCF | | | 77.56 46 | 84.51 39 | 69.46 60 | 65.17 108 | 74.36 54 | 79.74 75 | 47.45 84 | 84.01 23 | 72.89 36 | 77.89 93 | 90.67 57 | 65.14 38 | 88.25 30 | 89.74 7 | 86.38 54 | 86.64 35 |
|
PS-CasMVS | | | 77.46 48 | 85.80 22 | 67.73 67 | 81.24 10 | 72.88 62 | 80.63 71 | 61.28 16 | 84.14 21 | 50.53 125 | 92.13 4 | 96.76 1 | 50.12 119 | 91.02 9 | 84.46 32 | 82.60 85 | 79.19 68 |
|
DTE-MVSNet | | | 77.28 49 | 84.87 35 | 68.42 63 | 82.94 3 | 72.70 65 | 81.60 65 | 61.78 13 | 85.03 13 | 51.40 120 | 92.11 5 | 96.00 6 | 49.42 123 | 89.73 23 | 82.52 47 | 83.39 77 | 75.98 85 |
|
SixPastTwentyTwo | | | 77.24 50 | 83.65 46 | 69.78 56 | 65.14 109 | 64.85 98 | 77.44 85 | 47.74 83 | 82.76 36 | 68.52 65 | 87.65 18 | 93.31 20 | 71.68 13 | 89.49 24 | 82.41 48 | 88.14 36 | 85.05 47 |
|
CDPH-MVS | | | 77.22 51 | 81.05 59 | 72.75 41 | 77.29 40 | 77.46 38 | 86.36 42 | 54.02 56 | 73.00 88 | 69.75 58 | 77.78 94 | 88.90 76 | 61.31 61 | 84.09 57 | 82.54 46 | 87.79 41 | 83.57 48 |
|
PEN-MVS | | | 77.06 52 | 85.05 31 | 67.74 66 | 82.29 6 | 72.59 66 | 80.86 69 | 61.03 20 | 84.66 15 | 50.08 128 | 92.19 3 | 96.59 3 | 49.12 124 | 89.83 22 | 82.35 49 | 83.06 78 | 77.14 81 |
|
CP-MVSNet | | | 77.01 53 | 85.04 32 | 67.65 68 | 81.16 12 | 72.72 64 | 80.54 72 | 61.18 17 | 82.09 41 | 50.41 126 | 90.81 8 | 95.89 7 | 50.03 120 | 90.86 10 | 84.30 35 | 82.56 87 | 78.65 74 |
|
CSCG | | | 76.95 54 | 82.08 53 | 70.97 48 | 73.32 62 | 78.35 33 | 81.08 68 | 47.19 86 | 83.47 29 | 69.82 57 | 80.44 74 | 87.19 94 | 64.59 43 | 81.01 80 | 77.26 79 | 89.83 26 | 86.84 33 |
|
CNLPA | | | 76.67 55 | 81.72 54 | 70.77 51 | 70.75 73 | 76.68 41 | 86.14 43 | 46.11 97 | 81.82 43 | 74.68 31 | 76.37 98 | 86.23 105 | 62.92 53 | 85.28 49 | 83.29 41 | 84.02 67 | 82.40 52 |
|
MSLP-MVS++ | | | 76.66 56 | 82.32 52 | 70.06 54 | 70.51 76 | 80.27 25 | 79.77 74 | 55.58 47 | 77.79 64 | 63.09 82 | 67.25 139 | 89.50 72 | 71.01 14 | 88.10 32 | 85.74 27 | 80.39 98 | 87.56 26 |
|
TSAR-MVS + COLMAP | | | 75.85 57 | 81.06 57 | 69.77 57 | 71.15 69 | 76.90 40 | 82.93 57 | 52.43 63 | 79.25 61 | 70.13 53 | 82.78 52 | 87.00 97 | 60.02 66 | 80.30 84 | 79.61 64 | 81.95 91 | 81.61 57 |
|
HQP-MVS | | | 75.81 58 | 78.91 67 | 72.18 45 | 77.41 39 | 75.38 50 | 84.75 45 | 53.35 58 | 76.12 71 | 73.32 34 | 69.48 127 | 88.07 81 | 57.76 78 | 79.42 89 | 78.44 68 | 86.48 51 | 85.50 44 |
|
PLC | | 64.88 15 | 75.76 59 | 80.22 62 | 70.57 53 | 70.46 77 | 77.75 37 | 82.01 63 | 48.84 76 | 80.74 53 | 70.85 49 | 71.32 124 | 84.82 115 | 63.69 47 | 84.73 54 | 82.35 49 | 87.54 42 | 79.80 65 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test_part1 | | | 75.44 60 | 84.35 40 | 65.04 88 | 71.41 68 | 70.75 74 | 78.24 79 | 47.16 87 | 90.52 1 | 56.65 98 | 93.19 1 | 95.21 12 | 49.99 121 | 82.20 72 | 77.98 73 | 86.80 48 | 80.63 62 |
|
TAPA-MVS | | 66.11 12 | 75.37 61 | 79.24 65 | 70.86 49 | 67.63 90 | 74.09 56 | 83.17 56 | 44.75 111 | 81.82 43 | 80.83 5 | 65.61 150 | 88.04 82 | 61.58 58 | 83.21 66 | 80.12 61 | 87.17 46 | 81.82 55 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PHI-MVS | | | 75.17 62 | 78.37 68 | 71.43 46 | 71.13 70 | 72.46 68 | 82.28 62 | 50.55 69 | 73.39 86 | 79.05 14 | 73.65 114 | 87.50 90 | 61.98 55 | 81.10 78 | 78.48 67 | 83.60 74 | 81.99 53 |
|
anonymousdsp | | | 74.76 63 | 82.59 50 | 65.63 82 | 45.61 198 | 61.13 120 | 89.06 30 | 32.58 186 | 74.11 82 | 59.55 89 | 84.06 40 | 94.12 17 | 75.24 3 | 88.94 27 | 86.95 25 | 91.74 7 | 88.81 13 |
|
AdaColmap | | | 74.73 64 | 77.57 73 | 71.40 47 | 76.90 43 | 75.76 45 | 84.54 47 | 53.08 60 | 76.20 70 | 66.64 76 | 66.06 148 | 78.16 142 | 61.32 60 | 85.37 48 | 82.20 51 | 85.95 59 | 79.27 67 |
|
v7n | | | 74.47 65 | 81.06 57 | 66.77 73 | 66.98 94 | 67.10 80 | 76.76 89 | 45.88 99 | 81.98 42 | 67.43 70 | 88.38 15 | 95.67 10 | 61.38 59 | 80.76 82 | 73.49 98 | 82.21 89 | 80.06 64 |
|
PCF-MVS | | 65.25 14 | 73.99 66 | 76.74 78 | 70.79 50 | 71.61 67 | 75.33 51 | 83.76 52 | 50.40 70 | 74.88 74 | 74.50 32 | 67.60 136 | 85.36 112 | 58.30 76 | 78.61 92 | 74.25 93 | 86.15 56 | 81.13 60 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MCST-MVS | | | 73.84 67 | 77.44 74 | 69.63 59 | 73.75 61 | 74.73 53 | 81.38 67 | 48.58 77 | 74.77 75 | 69.16 62 | 71.97 123 | 86.20 106 | 59.50 71 | 78.51 93 | 74.06 95 | 85.42 61 | 81.85 54 |
|
MVS_0304 | | | 73.74 68 | 77.16 76 | 69.74 58 | 74.24 56 | 73.47 59 | 84.70 46 | 49.62 71 | 62.26 139 | 67.27 71 | 75.87 101 | 87.57 88 | 57.49 81 | 81.20 76 | 79.50 65 | 85.10 62 | 80.27 63 |
|
TSAR-MVS + GP. | | | 73.42 69 | 76.31 79 | 70.05 55 | 77.15 41 | 71.13 73 | 81.59 66 | 54.11 55 | 69.84 112 | 58.65 92 | 66.20 147 | 78.77 139 | 65.29 37 | 83.65 59 | 83.14 42 | 83.54 75 | 81.47 58 |
|
Gipuma | | | 73.40 70 | 79.27 64 | 66.55 77 | 63.64 118 | 59.35 128 | 70.28 122 | 45.92 98 | 83.79 27 | 71.78 40 | 84.04 41 | 93.07 24 | 68.69 27 | 87.90 34 | 76.76 81 | 78.98 109 | 69.96 117 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVS_111021_HR | | | 72.37 71 | 76.12 82 | 68.00 64 | 68.55 86 | 64.30 106 | 82.93 57 | 48.98 75 | 74.25 80 | 65.39 78 | 73.59 115 | 84.11 119 | 59.48 72 | 82.61 69 | 78.38 69 | 82.66 84 | 75.59 87 |
|
TinyColmap | | | 71.85 72 | 76.11 83 | 66.87 72 | 66.07 99 | 65.34 93 | 74.35 102 | 49.30 74 | 79.93 57 | 75.93 28 | 75.66 103 | 87.74 85 | 54.72 96 | 80.66 83 | 70.42 117 | 80.85 96 | 73.02 101 |
|
UniMVSNet_ETH3D | | | 71.84 73 | 81.36 56 | 60.74 107 | 76.46 44 | 66.01 87 | 66.49 140 | 60.24 27 | 86.58 8 | 41.87 162 | 90.04 11 | 96.02 5 | 43.72 150 | 85.14 50 | 77.30 78 | 75.64 129 | 68.40 131 |
|
TranMVSNet+NR-MVSNet | | | 71.66 74 | 79.23 66 | 62.83 100 | 72.54 65 | 65.64 89 | 74.77 100 | 55.27 48 | 75.91 72 | 45.50 151 | 89.55 13 | 94.25 15 | 45.96 141 | 82.74 68 | 77.03 80 | 82.96 80 | 69.48 124 |
|
MVS_111021_LR | | | 71.60 75 | 75.21 86 | 67.38 69 | 67.42 91 | 62.44 113 | 81.73 64 | 46.24 96 | 70.89 99 | 66.80 75 | 73.19 117 | 84.98 113 | 60.09 65 | 81.94 73 | 77.77 76 | 82.00 90 | 75.29 88 |
|
EG-PatchMatch MVS | | | 71.50 76 | 76.82 77 | 65.30 85 | 70.74 74 | 66.50 84 | 74.23 104 | 43.25 120 | 72.02 91 | 59.11 90 | 79.85 80 | 86.88 100 | 63.95 45 | 80.29 85 | 75.25 89 | 80.51 97 | 76.98 82 |
|
DPM-MVS | | | 71.35 77 | 73.50 103 | 68.84 62 | 74.93 54 | 73.35 60 | 84.07 49 | 50.56 68 | 71.91 92 | 67.06 74 | 61.21 169 | 77.02 147 | 52.64 108 | 74.15 111 | 75.14 90 | 83.79 71 | 81.74 56 |
|
UniMVSNet (Re) | | | 71.29 78 | 78.14 69 | 63.30 95 | 70.29 78 | 66.57 83 | 75.98 91 | 54.74 53 | 70.20 105 | 46.20 149 | 85.08 35 | 93.21 21 | 48.19 129 | 82.50 70 | 78.33 70 | 84.40 65 | 71.08 112 |
|
CLD-MVS | | | 71.24 79 | 78.12 70 | 63.20 97 | 74.03 58 | 71.60 71 | 82.82 59 | 32.91 183 | 74.23 81 | 69.32 61 | 79.65 82 | 91.54 39 | 47.02 137 | 81.22 75 | 79.01 66 | 73.09 144 | 69.63 120 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CANet | | | 71.07 80 | 75.09 88 | 66.39 78 | 72.57 64 | 71.53 72 | 82.38 61 | 47.10 88 | 59.81 145 | 59.81 88 | 74.97 106 | 84.37 118 | 54.25 99 | 79.89 88 | 77.64 77 | 82.25 88 | 77.40 79 |
|
v1192 | | | 71.06 81 | 74.87 90 | 66.61 75 | 66.38 96 | 65.80 88 | 78.27 78 | 45.28 104 | 70.19 106 | 70.79 50 | 83.37 45 | 91.79 37 | 58.76 75 | 70.86 144 | 69.02 123 | 80.16 100 | 73.08 99 |
|
DU-MVS | | | 71.03 82 | 77.92 71 | 62.98 99 | 70.81 71 | 65.48 91 | 73.93 107 | 56.76 36 | 69.95 110 | 46.77 145 | 85.70 31 | 93.49 19 | 46.91 138 | 83.47 60 | 77.82 75 | 82.72 83 | 69.54 121 |
|
v1240 | | | 70.94 83 | 74.52 94 | 66.76 74 | 66.54 95 | 64.40 102 | 77.76 82 | 45.29 103 | 70.05 108 | 71.45 42 | 83.36 47 | 90.96 50 | 60.37 63 | 70.50 147 | 68.68 124 | 79.14 107 | 73.68 96 |
|
v1921920 | | | 70.82 84 | 74.46 96 | 66.58 76 | 66.33 97 | 64.35 105 | 77.72 83 | 45.07 106 | 70.39 102 | 71.18 45 | 83.15 49 | 90.62 59 | 59.97 67 | 70.90 142 | 68.43 131 | 79.19 106 | 73.39 97 |
|
UniMVSNet_NR-MVSNet | | | 70.82 84 | 77.44 74 | 63.11 98 | 71.75 66 | 66.02 86 | 73.93 107 | 55.00 51 | 70.90 98 | 46.77 145 | 86.68 25 | 91.54 39 | 46.91 138 | 81.07 79 | 76.32 85 | 84.28 66 | 69.54 121 |
|
PVSNet_Blended_VisFu | | | 70.70 86 | 73.62 102 | 67.28 71 | 63.53 120 | 72.96 61 | 77.97 80 | 52.10 64 | 63.65 133 | 62.66 84 | 71.14 125 | 73.46 157 | 63.55 48 | 79.35 91 | 75.34 88 | 83.90 69 | 79.43 66 |
|
v144192 | | | 70.68 87 | 74.40 98 | 66.34 79 | 65.94 101 | 64.38 103 | 77.63 84 | 45.18 105 | 69.97 109 | 70.11 54 | 82.70 54 | 90.77 53 | 59.84 69 | 71.43 140 | 68.46 127 | 79.31 105 | 73.08 99 |
|
FPMVS | | | 70.46 88 | 74.89 89 | 65.28 86 | 69.09 84 | 61.42 118 | 77.07 87 | 46.92 91 | 76.73 69 | 53.53 109 | 67.33 137 | 75.07 153 | 67.23 29 | 83.41 62 | 81.54 56 | 77.86 116 | 78.73 72 |
|
v1144 | | | 70.45 89 | 74.50 95 | 65.73 81 | 65.74 103 | 64.88 97 | 77.33 86 | 44.16 113 | 70.59 101 | 69.63 59 | 83.15 49 | 91.42 42 | 57.79 77 | 71.29 141 | 68.53 126 | 79.72 103 | 71.63 111 |
|
v10 | | | 70.25 90 | 74.59 93 | 65.19 87 | 65.32 106 | 66.46 85 | 76.60 90 | 44.84 109 | 67.38 121 | 67.21 72 | 82.75 53 | 90.56 60 | 57.70 79 | 71.69 137 | 68.63 125 | 79.44 104 | 74.67 91 |
|
Effi-MVS+-dtu | | | 70.10 91 | 73.76 101 | 65.82 80 | 70.23 79 | 74.92 52 | 79.47 76 | 44.49 112 | 56.98 160 | 54.34 103 | 64.26 154 | 84.78 116 | 59.97 67 | 80.96 81 | 80.38 58 | 86.44 52 | 74.05 94 |
|
MAR-MVS | | | 70.00 92 | 72.28 114 | 67.34 70 | 69.89 80 | 72.57 67 | 80.09 73 | 49.49 73 | 60.28 144 | 69.03 63 | 59.29 179 | 80.79 129 | 54.68 97 | 78.39 95 | 76.00 86 | 80.87 95 | 78.67 73 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Vis-MVSNet | | | 69.95 93 | 77.69 72 | 60.91 106 | 60.67 134 | 66.71 81 | 77.94 81 | 48.58 77 | 69.10 115 | 45.78 150 | 80.21 77 | 83.58 122 | 53.41 104 | 82.92 67 | 80.11 62 | 79.08 108 | 81.21 59 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPP-MVSNet | | | 69.51 94 | 76.17 80 | 61.74 104 | 68.38 89 | 66.60 82 | 71.77 113 | 46.98 89 | 73.60 85 | 41.79 163 | 82.06 60 | 69.65 168 | 52.51 109 | 83.41 62 | 79.94 63 | 89.02 30 | 77.94 77 |
|
3Dnovator | | 65.69 13 | 69.43 95 | 75.74 85 | 62.06 103 | 60.78 133 | 70.50 75 | 75.85 94 | 39.57 153 | 74.44 77 | 57.41 95 | 75.91 99 | 77.73 144 | 55.34 92 | 76.86 99 | 75.61 87 | 83.44 76 | 79.14 69 |
|
Effi-MVS+ | | | 69.04 96 | 73.01 107 | 64.40 91 | 67.20 92 | 64.83 99 | 74.87 99 | 43.97 115 | 63.33 135 | 60.90 86 | 73.06 118 | 85.79 109 | 55.61 90 | 73.58 117 | 76.41 84 | 83.84 70 | 74.09 93 |
|
v2v482 | | | 69.01 97 | 73.39 105 | 63.89 93 | 63.86 113 | 62.99 110 | 75.26 97 | 42.05 128 | 70.22 104 | 68.46 66 | 82.64 55 | 91.61 38 | 55.38 91 | 70.89 143 | 66.93 145 | 78.30 112 | 68.48 130 |
|
MSDG | | | 68.98 98 | 73.31 106 | 63.92 92 | 67.08 93 | 68.27 78 | 75.41 96 | 40.77 144 | 67.61 119 | 64.89 79 | 75.75 102 | 78.96 136 | 53.70 101 | 76.72 101 | 73.95 96 | 81.71 93 | 71.93 109 |
|
v8 | | | 68.77 99 | 73.50 103 | 63.26 96 | 63.74 116 | 64.47 101 | 74.22 105 | 42.07 127 | 67.30 122 | 64.89 79 | 82.08 59 | 90.23 63 | 56.50 88 | 71.85 136 | 66.57 146 | 78.14 113 | 72.02 107 |
|
NR-MVSNet | | | 68.66 100 | 76.15 81 | 59.93 111 | 65.49 104 | 65.48 91 | 74.42 101 | 56.76 36 | 69.95 110 | 45.38 152 | 85.70 31 | 91.13 45 | 34.68 179 | 74.52 110 | 76.75 82 | 82.83 82 | 69.49 123 |
|
USDC | | | 68.53 101 | 71.82 119 | 64.68 89 | 63.53 120 | 61.87 116 | 70.12 123 | 46.98 89 | 77.89 63 | 76.58 24 | 68.55 132 | 86.88 100 | 50.50 116 | 73.73 114 | 65.62 148 | 80.39 98 | 68.21 133 |
|
IS_MVSNet | | | 68.20 102 | 74.41 97 | 60.96 105 | 68.55 86 | 64.36 104 | 71.47 115 | 48.33 79 | 70.11 107 | 43.30 158 | 80.90 71 | 74.54 155 | 47.19 136 | 81.25 74 | 77.97 74 | 86.94 47 | 71.76 110 |
|
Baseline_NR-MVSNet | | | 68.15 103 | 75.12 87 | 60.02 110 | 70.81 71 | 55.67 150 | 75.88 93 | 53.40 57 | 71.25 95 | 43.96 156 | 85.88 29 | 92.68 28 | 45.76 142 | 83.47 60 | 68.34 132 | 70.34 161 | 68.58 129 |
|
Fast-Effi-MVS+ | | | 67.71 104 | 72.54 111 | 62.07 102 | 63.83 114 | 63.68 107 | 75.74 95 | 39.94 150 | 60.89 143 | 54.29 104 | 73.00 119 | 86.19 107 | 56.85 84 | 78.46 94 | 73.23 99 | 81.74 92 | 72.36 105 |
|
thisisatest0515 | | | 66.95 105 | 72.29 113 | 60.72 108 | 56.37 157 | 56.05 148 | 71.08 116 | 38.81 157 | 67.59 120 | 53.26 112 | 78.21 90 | 79.79 134 | 60.11 64 | 75.69 106 | 73.02 101 | 84.69 63 | 75.66 86 |
|
EPNet | | | 66.87 106 | 68.89 130 | 64.53 90 | 73.97 59 | 61.13 120 | 78.46 77 | 61.03 20 | 56.78 162 | 53.41 110 | 66.91 142 | 70.91 163 | 43.49 151 | 76.08 105 | 76.68 83 | 76.81 120 | 73.73 95 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
canonicalmvs | | | 66.37 107 | 74.37 99 | 57.04 128 | 65.89 102 | 65.06 94 | 62.58 157 | 42.55 122 | 76.82 68 | 46.87 144 | 67.33 137 | 86.38 104 | 45.49 144 | 76.77 100 | 71.85 107 | 78.87 110 | 76.35 83 |
|
QAPM | | | 66.36 108 | 72.76 110 | 58.90 116 | 59.57 141 | 65.01 95 | 64.05 153 | 41.17 139 | 73.09 87 | 56.82 97 | 69.42 128 | 77.78 143 | 55.07 94 | 73.00 122 | 72.07 105 | 76.71 121 | 78.96 70 |
|
casdiffmvs | | | 66.19 109 | 72.34 112 | 59.02 115 | 62.75 124 | 60.61 126 | 69.06 128 | 41.38 136 | 69.49 113 | 54.11 105 | 84.00 42 | 89.74 70 | 49.12 124 | 70.74 146 | 62.70 163 | 77.70 118 | 69.14 127 |
|
V42 | | | 65.79 110 | 72.11 117 | 58.42 120 | 51.89 179 | 58.69 130 | 73.80 109 | 34.50 175 | 65.40 129 | 57.10 96 | 79.54 84 | 89.09 74 | 57.51 80 | 71.98 134 | 67.83 140 | 75.70 127 | 72.26 106 |
|
IterMVS-LS | | | 65.76 111 | 70.85 124 | 59.81 113 | 65.33 105 | 57.78 135 | 64.63 150 | 48.02 82 | 65.65 128 | 51.05 122 | 81.31 67 | 77.47 145 | 54.94 95 | 69.46 155 | 69.36 122 | 74.90 133 | 74.95 89 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PM-MVS | | | 65.66 112 | 71.25 123 | 59.14 114 | 58.92 147 | 54.88 159 | 73.66 111 | 38.55 160 | 66.12 126 | 49.91 130 | 69.87 126 | 86.97 98 | 60.61 62 | 76.30 103 | 74.75 91 | 73.19 142 | 69.83 118 |
|
UGNet | | | 65.61 113 | 74.79 91 | 54.91 137 | 54.54 173 | 68.20 79 | 70.97 119 | 48.21 80 | 67.14 124 | 41.67 164 | 74.15 111 | 80.65 130 | 36.10 174 | 79.39 90 | 77.99 72 | 77.95 115 | 76.01 84 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DELS-MVS | | | 65.54 114 | 71.79 120 | 58.24 123 | 59.68 140 | 65.55 90 | 70.99 117 | 38.69 159 | 62.29 138 | 49.27 133 | 75.03 105 | 81.42 126 | 50.93 112 | 73.71 116 | 71.35 108 | 79.90 102 | 73.20 98 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
pmmvs-eth3d | | | 65.36 115 | 70.09 127 | 59.85 112 | 63.05 123 | 53.61 162 | 74.29 103 | 46.45 94 | 68.14 118 | 51.45 118 | 78.83 88 | 85.78 110 | 49.87 122 | 70.44 148 | 70.45 116 | 74.00 137 | 63.38 153 |
|
v148 | | | 64.92 116 | 70.58 126 | 58.32 121 | 59.89 138 | 57.09 141 | 66.04 142 | 35.27 174 | 69.11 114 | 60.66 87 | 79.57 83 | 90.93 51 | 53.91 100 | 69.81 154 | 62.22 164 | 74.14 135 | 65.31 145 |
|
CS-MVS | | | 64.89 117 | 64.54 147 | 65.31 84 | 68.39 88 | 61.63 117 | 75.90 92 | 43.28 119 | 54.33 167 | 63.06 83 | 55.59 192 | 62.41 182 | 56.76 85 | 77.69 97 | 70.80 115 | 84.46 64 | 69.33 125 |
|
FC-MVSNet-train | | | 64.87 118 | 74.76 92 | 53.33 141 | 65.24 107 | 58.05 132 | 69.69 125 | 41.92 131 | 70.99 97 | 32.62 185 | 85.75 30 | 88.23 79 | 32.10 189 | 77.61 98 | 74.41 92 | 78.43 111 | 68.25 132 |
|
pmmvs6 | | | 64.78 119 | 75.82 84 | 51.89 147 | 62.41 125 | 57.13 140 | 60.24 164 | 45.59 101 | 82.90 35 | 34.69 178 | 84.83 36 | 93.18 22 | 36.22 173 | 76.43 102 | 71.13 111 | 72.21 148 | 65.12 146 |
|
OpenMVS | | 60.79 16 | 64.42 120 | 69.72 128 | 58.23 124 | 61.63 129 | 62.17 114 | 64.11 152 | 37.54 168 | 67.17 123 | 55.71 102 | 65.89 149 | 74.89 154 | 52.67 107 | 72.20 132 | 68.29 134 | 77.73 117 | 77.39 80 |
|
DCV-MVSNet | | | 64.34 121 | 72.84 109 | 54.42 139 | 63.79 115 | 62.09 115 | 62.50 158 | 42.72 121 | 74.32 79 | 41.34 165 | 66.96 140 | 88.57 77 | 39.18 162 | 75.20 108 | 70.35 118 | 77.01 119 | 72.37 104 |
|
ETV-MVS | | | 64.30 122 | 64.76 145 | 63.77 94 | 68.59 85 | 62.49 112 | 77.02 88 | 45.31 102 | 49.27 189 | 50.88 123 | 56.23 190 | 59.91 191 | 57.12 83 | 80.19 87 | 74.23 94 | 83.68 72 | 71.03 113 |
|
Anonymous20231211 | | | 63.69 123 | 72.86 108 | 53.00 144 | 63.72 117 | 60.25 127 | 60.33 163 | 40.96 140 | 72.49 89 | 38.91 168 | 81.77 65 | 88.17 80 | 37.60 168 | 73.30 119 | 68.01 137 | 76.47 125 | 66.06 142 |
|
TransMVSNet (Re) | | | 63.49 124 | 73.86 100 | 51.39 153 | 64.26 112 | 56.07 147 | 61.17 161 | 42.23 125 | 78.81 62 | 34.80 176 | 85.94 27 | 90.63 58 | 34.35 183 | 72.73 127 | 67.98 138 | 71.50 151 | 64.84 147 |
|
DI_MVS_plusplus_trai | | | 63.43 125 | 67.54 134 | 58.63 117 | 62.34 126 | 58.06 131 | 65.75 146 | 42.15 126 | 63.05 136 | 53.28 111 | 75.88 100 | 75.92 150 | 50.18 118 | 68.04 158 | 64.20 154 | 78.07 114 | 67.65 134 |
|
EIA-MVS | | | 63.24 126 | 64.16 150 | 62.16 101 | 69.30 83 | 63.20 109 | 72.40 112 | 40.82 143 | 48.31 195 | 51.50 117 | 59.63 177 | 62.23 183 | 57.33 82 | 78.00 96 | 71.94 106 | 81.59 94 | 65.82 143 |
|
Fast-Effi-MVS+-dtu | | | 63.22 127 | 65.55 139 | 60.49 109 | 61.24 131 | 64.70 100 | 74.15 106 | 53.24 59 | 51.46 174 | 49.67 131 | 58.03 185 | 78.42 140 | 48.05 131 | 72.03 133 | 71.14 110 | 76.60 124 | 63.09 154 |
|
IterMVS-SCA-FT | | | 62.67 128 | 68.00 132 | 56.45 134 | 56.92 155 | 64.92 96 | 57.51 176 | 38.12 161 | 59.44 146 | 53.62 108 | 74.74 109 | 71.60 160 | 64.84 39 | 70.24 150 | 65.27 150 | 67.70 169 | 69.83 118 |
|
diffmvs | | | 62.64 129 | 69.66 129 | 54.46 138 | 56.19 160 | 55.06 156 | 67.36 137 | 36.74 172 | 64.18 132 | 50.58 124 | 79.54 84 | 87.55 89 | 45.13 146 | 68.04 158 | 63.20 159 | 70.78 156 | 70.02 116 |
|
MVS_Test | | | 62.58 130 | 67.46 135 | 56.89 130 | 59.52 142 | 55.90 149 | 64.94 148 | 38.83 156 | 57.08 159 | 56.55 100 | 76.53 97 | 84.49 117 | 47.45 133 | 66.95 161 | 62.01 165 | 74.04 136 | 69.27 126 |
|
MDA-MVSNet-bldmvs | | | 62.46 131 | 72.13 116 | 51.19 155 | 34.32 208 | 56.10 146 | 68.65 130 | 38.85 155 | 69.05 116 | 49.50 132 | 78.17 91 | 85.43 111 | 51.32 110 | 86.67 39 | 67.40 143 | 64.46 174 | 62.08 156 |
|
pm-mvs1 | | | 61.97 132 | 72.01 118 | 50.25 161 | 60.64 135 | 55.23 154 | 58.67 171 | 42.44 123 | 74.40 78 | 33.63 182 | 81.03 70 | 89.86 67 | 34.87 178 | 72.93 125 | 67.95 139 | 71.28 152 | 62.65 155 |
|
FMVSNet1 | | | 61.92 133 | 71.36 121 | 50.90 157 | 57.67 154 | 59.29 129 | 59.48 169 | 44.14 114 | 70.24 103 | 34.72 177 | 75.45 104 | 84.94 114 | 36.75 170 | 72.33 129 | 68.45 128 | 72.66 145 | 68.83 128 |
|
PVSNet_BlendedMVS | | | 61.75 134 | 65.07 143 | 57.87 126 | 56.27 158 | 60.99 123 | 65.81 144 | 43.75 116 | 51.27 178 | 54.08 106 | 62.12 164 | 78.84 137 | 50.67 113 | 71.49 138 | 63.91 156 | 76.64 122 | 66.86 136 |
|
PVSNet_Blended | | | 61.75 134 | 65.07 143 | 57.87 126 | 56.27 158 | 60.99 123 | 65.81 144 | 43.75 116 | 51.27 178 | 54.08 106 | 62.12 164 | 78.84 137 | 50.67 113 | 71.49 138 | 63.91 156 | 76.64 122 | 66.86 136 |
|
tttt0517 | | | 61.44 136 | 63.85 151 | 58.62 118 | 55.20 169 | 55.61 151 | 68.80 129 | 38.02 164 | 55.70 164 | 50.01 129 | 66.93 141 | 48.90 202 | 56.69 86 | 73.84 113 | 71.10 112 | 82.99 79 | 74.89 90 |
|
tfpnnormal | | | 61.41 137 | 71.33 122 | 49.83 162 | 61.73 128 | 54.90 158 | 58.52 172 | 41.24 137 | 75.20 73 | 32.00 190 | 82.13 58 | 87.87 84 | 35.63 177 | 72.75 126 | 66.30 147 | 69.87 162 | 60.14 161 |
|
IB-MVS | | 57.02 17 | 61.37 138 | 65.39 140 | 56.69 131 | 56.65 156 | 60.85 125 | 70.70 120 | 37.90 166 | 49.37 188 | 45.37 153 | 48.75 203 | 79.14 135 | 53.55 103 | 76.26 104 | 70.85 114 | 75.97 126 | 72.50 103 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CANet_DTU | | | 61.22 139 | 67.07 136 | 54.40 140 | 59.89 138 | 63.62 108 | 70.98 118 | 36.77 171 | 50.49 181 | 47.15 140 | 62.45 162 | 80.81 128 | 37.90 167 | 71.87 135 | 70.09 120 | 73.69 138 | 70.19 115 |
|
pmmvs4 | | | 61.12 140 | 64.61 146 | 57.04 128 | 60.88 132 | 52.15 167 | 70.59 121 | 44.82 110 | 61.35 142 | 46.91 143 | 72.08 121 | 73.27 158 | 46.79 140 | 65.06 164 | 67.76 141 | 72.28 146 | 60.58 160 |
|
thisisatest0530 | | | 61.02 141 | 63.44 156 | 58.19 125 | 54.75 171 | 55.09 155 | 68.03 134 | 38.02 164 | 55.45 165 | 49.06 134 | 66.58 145 | 48.69 203 | 56.69 86 | 73.07 120 | 71.10 112 | 82.60 85 | 74.14 92 |
|
Vis-MVSNet (Re-imp) | | | 60.99 142 | 67.78 133 | 53.06 143 | 64.66 111 | 53.49 163 | 67.40 135 | 49.52 72 | 68.55 117 | 28.00 198 | 79.53 86 | 71.41 162 | 33.08 187 | 75.30 107 | 71.28 109 | 75.69 128 | 54.91 174 |
|
PatchMatch-RL | | | 60.96 143 | 63.00 159 | 58.57 119 | 59.16 146 | 52.18 166 | 67.38 136 | 41.99 129 | 57.85 154 | 48.16 135 | 53.55 199 | 69.77 167 | 59.47 73 | 73.73 114 | 72.49 104 | 75.27 132 | 61.44 158 |
|
GA-MVS | | | 60.73 144 | 64.24 149 | 56.64 132 | 59.38 145 | 57.45 139 | 65.07 147 | 36.65 173 | 57.39 157 | 58.17 93 | 73.43 116 | 69.10 171 | 47.38 134 | 64.47 169 | 63.63 158 | 73.19 142 | 64.22 150 |
|
CVMVSNet | | | 60.45 145 | 63.72 153 | 56.63 133 | 54.82 170 | 53.75 160 | 68.41 131 | 41.95 130 | 55.07 166 | 48.03 136 | 58.08 184 | 68.67 172 | 55.09 93 | 69.14 156 | 68.34 132 | 71.51 150 | 72.97 102 |
|
ET-MVSNet_ETH3D | | | 60.33 146 | 62.10 162 | 58.27 122 | 58.61 150 | 58.05 132 | 68.06 132 | 41.20 138 | 51.40 175 | 51.10 121 | 64.06 155 | 49.42 201 | 50.61 115 | 74.72 109 | 70.29 119 | 80.05 101 | 66.74 138 |
|
FC-MVSNet-test | | | 60.28 147 | 70.83 125 | 47.96 173 | 54.69 172 | 47.12 181 | 68.06 132 | 41.68 135 | 71.42 93 | 23.73 205 | 84.70 38 | 77.41 146 | 28.92 193 | 82.33 71 | 73.08 100 | 70.68 157 | 59.77 163 |
|
EU-MVSNet | | | 59.77 148 | 66.07 137 | 52.42 145 | 47.81 188 | 51.86 169 | 62.98 156 | 32.28 188 | 62.08 140 | 47.10 141 | 59.94 175 | 83.42 123 | 53.08 106 | 70.06 153 | 63.19 160 | 71.26 154 | 71.96 108 |
|
IterMVS | | | 59.24 149 | 64.45 148 | 53.16 142 | 50.98 181 | 61.29 119 | 66.51 139 | 32.85 184 | 58.17 150 | 46.31 148 | 72.58 120 | 70.23 165 | 54.26 98 | 64.81 167 | 60.24 169 | 68.04 168 | 63.81 152 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 59.15 150 | 62.28 161 | 55.49 136 | 52.42 177 | 62.59 111 | 71.76 114 | 39.74 151 | 50.25 183 | 41.92 161 | 62.88 160 | 69.16 170 | 55.85 89 | 62.77 174 | 67.18 144 | 71.27 153 | 61.11 159 |
|
thres600view7 | | | 58.87 151 | 65.91 138 | 50.66 159 | 61.27 130 | 56.32 144 | 59.88 167 | 40.63 146 | 64.88 130 | 32.10 189 | 64.82 151 | 69.83 166 | 36.72 171 | 72.99 123 | 72.55 103 | 73.34 140 | 59.97 162 |
|
CMPMVS | | 45.32 18 | 58.10 152 | 65.24 142 | 49.76 163 | 47.88 187 | 46.86 184 | 48.16 201 | 32.82 185 | 58.06 151 | 61.35 85 | 59.64 176 | 80.00 131 | 47.27 135 | 70.15 151 | 64.10 155 | 61.08 177 | 77.85 78 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 58.09 153 | 63.54 155 | 51.74 149 | 50.13 183 | 46.56 185 | 66.95 138 | 33.41 181 | 63.52 134 | 58.77 91 | 74.84 107 | 84.10 120 | 43.12 152 | 65.95 163 | 54.69 183 | 58.04 183 | 55.13 173 |
|
CDS-MVSNet | | | 57.90 154 | 63.57 154 | 51.28 154 | 62.30 127 | 53.17 164 | 64.70 149 | 51.61 67 | 57.41 156 | 32.75 184 | 63.73 156 | 70.53 164 | 27.12 195 | 72.49 128 | 73.02 101 | 69.22 165 | 54.68 175 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
FMVSNet2 | | | 57.80 155 | 65.39 140 | 48.94 169 | 55.88 161 | 57.61 136 | 57.26 177 | 42.37 124 | 58.21 149 | 33.19 183 | 68.36 133 | 75.55 152 | 34.58 180 | 66.91 162 | 64.55 152 | 70.38 158 | 66.56 139 |
|
thres400 | | | 57.25 156 | 63.73 152 | 49.70 164 | 60.19 137 | 54.95 157 | 58.16 173 | 39.60 152 | 62.42 137 | 31.98 192 | 62.33 163 | 69.20 169 | 35.96 175 | 70.07 152 | 68.03 136 | 72.28 146 | 59.12 165 |
|
gm-plane-assit | | | 56.76 157 | 57.64 176 | 55.73 135 | 66.01 100 | 55.45 153 | 74.96 98 | 30.54 193 | 73.71 84 | 56.04 101 | 81.81 63 | 30.91 218 | 43.83 148 | 58.77 184 | 54.71 182 | 63.02 176 | 48.13 190 |
|
MIMVSNet1 | | | 56.72 158 | 68.69 131 | 42.76 186 | 46.70 194 | 42.81 191 | 69.13 126 | 30.52 194 | 81.01 50 | 32.00 190 | 74.82 108 | 91.10 47 | 26.83 197 | 73.98 112 | 64.72 151 | 51.40 195 | 52.38 179 |
|
EPNet_dtu | | | 56.63 159 | 60.77 168 | 51.80 148 | 55.47 166 | 44.63 186 | 69.83 124 | 38.74 158 | 50.27 182 | 47.64 137 | 58.01 186 | 72.27 159 | 33.71 185 | 68.60 157 | 67.72 142 | 65.39 172 | 63.86 151 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
GBi-Net | | | 56.54 160 | 63.26 157 | 48.70 170 | 55.88 161 | 57.61 136 | 57.26 177 | 41.75 132 | 49.06 190 | 32.37 186 | 61.81 166 | 67.02 174 | 34.58 180 | 72.33 129 | 68.45 128 | 70.38 158 | 66.56 139 |
|
test1 | | | 56.54 160 | 63.26 157 | 48.70 170 | 55.88 161 | 57.61 136 | 57.26 177 | 41.75 132 | 49.06 190 | 32.37 186 | 61.81 166 | 67.02 174 | 34.58 180 | 72.33 129 | 68.45 128 | 70.38 158 | 66.56 139 |
|
gg-mvs-nofinetune | | | 56.45 162 | 61.04 166 | 51.10 156 | 63.42 122 | 49.40 177 | 53.71 188 | 52.52 62 | 74.77 75 | 46.93 142 | 77.31 95 | 53.88 195 | 26.42 199 | 62.51 175 | 57.81 175 | 63.60 175 | 51.57 182 |
|
thres200 | | | 56.35 163 | 62.36 160 | 49.34 166 | 58.87 148 | 56.32 144 | 55.91 181 | 40.63 146 | 58.51 148 | 31.34 193 | 58.81 183 | 67.31 173 | 35.96 175 | 72.99 123 | 65.51 149 | 73.34 140 | 57.07 168 |
|
MS-PatchMatch | | | 56.31 164 | 60.22 171 | 51.73 150 | 60.53 136 | 55.53 152 | 63.41 154 | 37.18 169 | 51.34 177 | 37.44 170 | 60.53 173 | 62.19 184 | 45.52 143 | 64.25 170 | 63.17 161 | 66.33 170 | 64.56 148 |
|
tfpn200view9 | | | 56.07 165 | 61.85 163 | 49.34 166 | 58.57 151 | 56.48 143 | 58.01 175 | 40.72 145 | 53.23 168 | 31.01 194 | 56.41 188 | 66.40 178 | 34.18 184 | 73.02 121 | 68.06 135 | 73.53 139 | 59.35 164 |
|
FMVSNet3 | | | 54.77 166 | 60.73 169 | 47.81 174 | 54.29 174 | 56.88 142 | 55.89 182 | 41.75 132 | 49.06 190 | 32.37 186 | 61.81 166 | 67.02 174 | 33.67 186 | 62.88 173 | 61.96 166 | 68.88 166 | 65.53 144 |
|
thres100view900 | | | 53.88 167 | 59.19 172 | 47.68 175 | 58.57 151 | 52.74 165 | 54.45 185 | 38.07 163 | 53.23 168 | 31.01 194 | 56.41 188 | 66.40 178 | 32.80 188 | 65.03 166 | 64.43 153 | 71.18 155 | 56.10 171 |
|
CR-MVSNet | | | 53.82 168 | 55.40 179 | 51.98 146 | 51.57 180 | 50.23 172 | 45.00 203 | 44.97 107 | 46.90 197 | 52.60 114 | 67.91 134 | 46.99 210 | 48.37 127 | 59.15 182 | 59.53 172 | 69.38 164 | 57.07 168 |
|
baseline2 | | | 53.55 169 | 55.19 180 | 51.62 151 | 55.27 168 | 51.95 168 | 60.89 162 | 34.23 176 | 46.69 199 | 42.47 159 | 53.56 198 | 50.01 198 | 45.33 145 | 64.63 168 | 61.22 167 | 71.56 149 | 58.28 167 |
|
test20.03 | | | 53.49 170 | 60.95 167 | 44.78 182 | 64.73 110 | 47.25 180 | 61.58 160 | 43.30 118 | 65.86 127 | 22.85 206 | 66.87 144 | 79.85 132 | 22.99 201 | 62.38 176 | 56.95 177 | 53.25 192 | 47.46 192 |
|
baseline | | | 53.46 171 | 61.55 164 | 44.01 183 | 45.83 197 | 48.77 178 | 57.26 177 | 28.75 197 | 49.99 184 | 38.85 169 | 68.78 130 | 75.65 151 | 38.30 164 | 60.80 177 | 59.78 171 | 55.10 190 | 67.07 135 |
|
MVSTER | | | 53.08 172 | 56.39 178 | 49.21 168 | 47.19 190 | 51.08 170 | 60.14 166 | 31.74 190 | 40.63 207 | 38.97 167 | 55.78 191 | 46.74 211 | 42.47 155 | 67.29 160 | 62.99 162 | 74.73 134 | 70.23 114 |
|
CHOSEN 1792x2688 | | | 52.99 173 | 56.91 177 | 48.42 172 | 47.32 189 | 50.10 174 | 64.18 151 | 33.85 178 | 45.46 202 | 36.95 172 | 55.20 195 | 66.49 177 | 51.20 111 | 59.28 180 | 59.81 170 | 57.01 185 | 61.99 157 |
|
baseline1 | | | 52.90 174 | 58.38 173 | 46.51 181 | 58.87 148 | 50.01 175 | 54.17 186 | 40.45 149 | 56.81 161 | 29.25 197 | 62.72 161 | 58.99 192 | 30.25 191 | 65.05 165 | 60.57 168 | 66.07 171 | 54.54 176 |
|
CostFormer | | | 52.59 175 | 55.14 181 | 49.61 165 | 52.72 175 | 50.40 171 | 66.28 141 | 33.78 179 | 52.85 170 | 43.43 157 | 66.30 146 | 51.37 197 | 41.78 158 | 54.92 194 | 51.18 190 | 59.68 179 | 58.98 166 |
|
SCA | | | 52.47 176 | 53.97 183 | 50.71 158 | 46.95 193 | 57.79 134 | 60.18 165 | 46.89 92 | 51.92 173 | 46.71 147 | 60.73 170 | 49.97 199 | 47.69 132 | 56.39 191 | 52.98 187 | 55.82 187 | 48.03 191 |
|
testgi | | | 51.94 177 | 61.37 165 | 40.94 189 | 58.38 153 | 47.03 182 | 65.88 143 | 30.49 195 | 70.87 100 | 22.64 207 | 57.53 187 | 87.59 87 | 18.30 207 | 63.01 172 | 54.32 184 | 49.93 198 | 49.27 185 |
|
tpm cat1 | | | 50.98 178 | 51.28 189 | 50.62 160 | 55.74 164 | 49.92 176 | 63.13 155 | 38.12 161 | 52.38 172 | 47.61 138 | 60.11 174 | 44.51 214 | 44.86 147 | 51.31 201 | 47.49 197 | 54.25 191 | 53.24 178 |
|
RPMNet | | | 50.92 179 | 50.32 191 | 51.62 151 | 50.25 182 | 50.23 172 | 59.16 170 | 46.70 93 | 46.90 197 | 42.39 160 | 48.97 202 | 37.23 217 | 41.78 158 | 57.30 189 | 56.18 179 | 69.44 163 | 55.43 172 |
|
pmmvs5 | | | 50.64 180 | 58.01 174 | 42.05 187 | 47.01 192 | 43.67 189 | 49.27 199 | 29.43 196 | 50.77 180 | 33.83 181 | 68.69 131 | 76.16 149 | 27.82 194 | 57.53 188 | 57.07 176 | 64.95 173 | 52.18 180 |
|
PatchT | | | 50.55 181 | 53.55 185 | 47.05 179 | 37.59 207 | 42.26 192 | 50.55 196 | 37.56 167 | 46.37 200 | 52.60 114 | 66.91 142 | 43.54 216 | 48.37 127 | 59.15 182 | 59.53 172 | 55.62 188 | 57.07 168 |
|
Anonymous20231206 | | | 50.28 182 | 57.94 175 | 41.35 188 | 55.45 167 | 43.65 190 | 58.06 174 | 34.12 177 | 62.02 141 | 24.25 204 | 59.33 178 | 79.80 133 | 24.49 200 | 59.55 178 | 54.28 185 | 51.74 194 | 46.94 194 |
|
dps | | | 49.71 183 | 51.97 187 | 47.07 178 | 52.37 178 | 47.00 183 | 53.02 191 | 40.52 148 | 44.91 203 | 41.23 166 | 64.55 152 | 44.27 215 | 40.12 161 | 57.71 187 | 51.97 189 | 55.14 189 | 53.41 177 |
|
MDTV_nov1_ep13 | | | 49.60 184 | 51.57 188 | 47.31 176 | 46.28 195 | 44.61 187 | 59.82 168 | 30.96 191 | 48.80 194 | 50.20 127 | 59.26 180 | 52.38 196 | 38.56 163 | 56.20 192 | 49.70 193 | 58.04 183 | 50.01 183 |
|
PatchmatchNet | | | 48.67 185 | 50.10 192 | 46.99 180 | 48.29 186 | 41.00 193 | 55.54 183 | 38.94 154 | 51.38 176 | 45.15 154 | 63.22 158 | 48.45 205 | 42.83 153 | 53.80 198 | 48.50 196 | 51.19 197 | 44.37 196 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
new-patchmatchnet | | | 47.33 186 | 60.49 170 | 31.99 204 | 55.69 165 | 33.86 205 | 36.84 212 | 33.31 182 | 72.36 90 | 14.33 212 | 80.09 78 | 92.14 34 | 13.27 209 | 63.54 171 | 40.09 204 | 38.51 206 | 41.32 203 |
|
tpm | | | 46.67 187 | 49.20 197 | 43.72 184 | 49.60 184 | 36.60 202 | 53.93 187 | 26.84 198 | 52.70 171 | 58.05 94 | 69.04 129 | 47.96 206 | 30.06 192 | 48.33 204 | 42.76 200 | 43.88 201 | 47.01 193 |
|
pmmvs3 | | | 46.64 188 | 54.13 182 | 37.90 196 | 31.23 212 | 40.68 194 | 49.83 198 | 15.34 209 | 46.31 201 | 36.34 174 | 53.15 200 | 74.40 156 | 36.36 172 | 58.43 185 | 56.64 178 | 58.32 182 | 49.29 184 |
|
TAMVS | | | 46.64 188 | 53.62 184 | 38.49 194 | 49.56 185 | 36.87 199 | 53.16 190 | 25.76 200 | 56.33 163 | 22.55 208 | 60.72 171 | 61.80 186 | 27.12 195 | 59.50 179 | 58.33 174 | 52.79 193 | 41.82 202 |
|
test-LLR | | | 46.01 190 | 45.06 206 | 47.11 177 | 59.39 143 | 36.72 200 | 51.28 193 | 40.95 141 | 36.41 211 | 34.45 179 | 46.14 205 | 47.02 208 | 38.00 165 | 51.78 199 | 48.53 194 | 58.60 180 | 48.84 187 |
|
MIMVSNet | | | 45.83 191 | 53.46 186 | 36.94 197 | 45.38 200 | 39.50 196 | 52.20 192 | 30.68 192 | 57.09 158 | 24.53 203 | 55.22 194 | 71.54 161 | 21.74 203 | 55.81 193 | 51.08 191 | 47.11 199 | 43.96 197 |
|
test0.0.03 1 | | | 45.40 192 | 49.55 195 | 40.57 191 | 59.39 143 | 44.36 188 | 53.37 189 | 40.95 141 | 47.14 196 | 19.23 209 | 45.49 207 | 60.24 189 | 19.24 205 | 54.82 195 | 51.98 188 | 51.21 196 | 42.82 199 |
|
PMMVS | | | 45.37 193 | 49.29 196 | 40.79 190 | 27.75 213 | 35.07 204 | 50.88 195 | 19.88 206 | 39.27 209 | 35.78 175 | 50.11 201 | 61.29 187 | 42.04 156 | 54.13 197 | 55.95 180 | 68.43 167 | 49.19 186 |
|
MVS-HIRNet | | | 44.56 194 | 45.52 204 | 43.44 185 | 40.98 203 | 31.03 209 | 39.52 211 | 36.96 170 | 42.80 205 | 44.37 155 | 53.80 197 | 60.04 190 | 41.85 157 | 47.97 206 | 41.08 202 | 56.99 186 | 41.95 201 |
|
test-mter | | | 44.18 195 | 47.60 199 | 40.18 192 | 33.20 209 | 39.03 197 | 55.28 184 | 13.91 211 | 39.07 210 | 36.63 173 | 48.09 204 | 49.52 200 | 41.12 160 | 54.55 196 | 50.91 192 | 60.97 178 | 52.03 181 |
|
EMVS | | | 43.85 196 | 49.91 193 | 36.77 199 | 45.46 199 | 32.70 206 | 44.09 205 | 25.33 201 | 57.88 153 | 26.62 199 | 58.99 182 | 61.14 188 | 42.77 154 | 70.26 149 | 38.52 208 | 36.38 208 | 29.87 209 |
|
E-PMN | | | 43.83 197 | 49.81 194 | 36.84 198 | 46.09 196 | 31.86 208 | 42.77 207 | 25.85 199 | 57.76 155 | 25.53 200 | 55.50 193 | 62.47 181 | 43.77 149 | 70.78 145 | 39.51 205 | 37.04 207 | 30.79 208 |
|
tpmrst | | | 43.31 198 | 46.14 202 | 40.02 193 | 47.05 191 | 36.48 203 | 48.01 202 | 32.17 189 | 49.50 187 | 37.26 171 | 63.66 157 | 47.04 207 | 31.98 190 | 42.00 210 | 40.55 203 | 43.64 202 | 43.75 198 |
|
TESTMET0.1,1 | | | 41.79 199 | 45.06 206 | 37.97 195 | 31.32 211 | 36.72 200 | 51.28 193 | 14.17 210 | 36.41 211 | 34.45 179 | 46.14 205 | 47.02 208 | 38.00 165 | 51.78 199 | 48.53 194 | 58.60 180 | 48.84 187 |
|
ADS-MVSNet | | | 40.61 200 | 46.31 200 | 33.96 202 | 40.70 204 | 30.42 210 | 40.42 209 | 33.44 180 | 58.01 152 | 30.87 196 | 63.05 159 | 54.48 194 | 22.67 202 | 44.35 209 | 39.23 207 | 35.64 209 | 34.64 206 |
|
CHOSEN 280x420 | | | 40.24 201 | 44.14 209 | 35.69 200 | 32.36 210 | 23.58 213 | 50.30 197 | 21.21 205 | 40.94 206 | 18.84 210 | 32.75 211 | 48.65 204 | 48.13 130 | 59.16 181 | 55.31 181 | 43.28 203 | 48.62 189 |
|
EPMVS | | | 40.11 202 | 44.96 208 | 34.44 201 | 41.55 202 | 32.65 207 | 41.74 208 | 32.39 187 | 49.89 186 | 24.83 201 | 64.44 153 | 46.38 212 | 26.57 198 | 44.75 208 | 39.47 206 | 39.59 205 | 37.16 205 |
|
FMVSNet5 | | | 39.83 203 | 45.08 205 | 33.71 203 | 39.24 205 | 39.56 195 | 48.77 200 | 23.55 203 | 39.45 208 | 24.55 202 | 33.73 210 | 44.57 213 | 20.97 204 | 58.27 186 | 54.23 186 | 45.16 200 | 45.77 195 |
|
N_pmnet | | | 39.50 204 | 51.01 190 | 26.09 206 | 44.48 201 | 25.59 212 | 40.20 210 | 21.49 204 | 64.20 131 | 7.98 215 | 73.86 113 | 76.67 148 | 13.66 208 | 50.17 202 | 36.69 210 | 28.71 211 | 29.86 210 |
|
MVE | | 28.01 19 | 35.86 205 | 43.56 210 | 26.88 205 | 22.33 215 | 19.75 215 | 30.85 215 | 23.88 202 | 49.90 185 | 10.48 213 | 43.64 208 | 61.87 185 | 48.99 126 | 47.26 207 | 42.15 201 | 24.76 212 | 40.37 204 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
new_pmnet | | | 35.76 206 | 45.64 203 | 24.22 207 | 38.59 206 | 25.83 211 | 31.87 214 | 19.24 207 | 49.06 190 | 9.01 214 | 54.34 196 | 64.73 180 | 12.46 210 | 49.21 203 | 44.91 198 | 34.17 210 | 31.41 207 |
|
PMMVS2 | | | 34.11 207 | 48.55 198 | 17.26 208 | 25.45 214 | 20.72 214 | 35.08 213 | 16.26 208 | 58.71 147 | 4.16 217 | 59.22 181 | 78.40 141 | 3.65 211 | 57.24 190 | 38.31 209 | 18.94 213 | 27.28 211 |
|
GG-mvs-BLEND | | | 31.54 208 | 46.27 201 | 14.37 209 | 0.07 219 | 48.65 179 | 42.97 206 | 0.08 216 | 44.04 204 | 1.21 219 | 39.77 209 | 57.94 193 | 0.15 215 | 48.19 205 | 42.82 199 | 41.70 204 | 42.46 200 |
|
test123 | | | 0.53 209 | 0.60 212 | 0.46 211 | 0.22 217 | 0.25 218 | 0.33 220 | 0.13 215 | 0.66 215 | 1.37 218 | 1.10 214 | 0.00 222 | 0.43 213 | 0.68 213 | 0.61 212 | 0.26 216 | 0.88 213 |
|
testmvs | | | 0.47 210 | 0.69 211 | 0.21 212 | 0.17 218 | 0.17 219 | 0.35 219 | 0.16 214 | 0.66 215 | 0.18 220 | 1.05 215 | 0.99 221 | 0.27 214 | 0.62 214 | 0.54 213 | 0.15 217 | 0.77 214 |
|
uanet_test | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet-low-res | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
sosnet | | | 0.00 211 | 0.00 213 | 0.00 213 | 0.00 220 | 0.00 220 | 0.00 221 | 0.00 217 | 0.00 217 | 0.00 221 | 0.00 216 | 0.00 222 | 0.00 216 | 0.00 215 | 0.00 214 | 0.00 218 | 0.00 215 |
|
RE-MVS-def | | | | | | | | | | | 70.04 56 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 83.64 121 | | | | | |
|
SR-MVS | | | | | | 81.31 9 | | | 62.63 9 | | | | 91.11 46 | | | | | |
|
Anonymous202405211 | | | | 72.22 115 | | 66.19 98 | 61.09 122 | 62.23 159 | 45.87 100 | 71.25 95 | | 79.33 87 | 86.16 108 | 37.36 169 | 73.54 118 | 69.84 121 | 75.45 130 | 64.32 149 |
|
our_test_3 | | | | | | 52.72 175 | 53.66 161 | 69.11 127 | | | | | | | | | | |
|
ambc | | | | 79.96 63 | | 74.57 55 | 75.48 49 | 73.75 110 | | 80.32 55 | 72.34 38 | 78.46 89 | 92.41 30 | 59.05 74 | 80.24 86 | 73.95 96 | 75.41 131 | 78.85 71 |
|
MTAPA | | | | | | | | | | | 80.26 8 | | 90.53 62 | | | | | |
|
MTMP | | | | | | | | | | | 82.07 4 | | 91.00 49 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.05 218 | | | | | | | | | | |
|
tmp_tt | | | | | 7.47 210 | 8.89 216 | 3.32 217 | 4.35 217 | 1.14 213 | 15.58 214 | 15.76 211 | 8.50 213 | 5.90 220 | 2.00 212 | 20.02 211 | 21.51 211 | 12.70 214 | |
|
XVS | | | | | | 80.47 20 | 81.29 12 | 93.33 3 | | | 77.45 20 | | 90.19 64 | | | | 91.52 11 | |
|
X-MVStestdata | | | | | | 80.47 20 | 81.29 12 | 93.33 3 | | | 77.45 20 | | 90.19 64 | | | | 91.52 11 | |
|
abl_6 | | | | | 65.41 83 | 69.37 82 | 74.02 57 | 82.50 60 | 47.39 85 | 66.39 125 | 56.63 99 | 60.61 172 | 82.76 124 | 53.68 102 | | | 82.92 81 | 78.39 76 |
|
mPP-MVS | | | | | | 82.97 2 | | | | | | | 92.12 35 | | | | | |
|
NP-MVS | | | | | | | | | | 71.39 94 | | | | | | | | |
|
Patchmtry | | | | | | | 37.73 198 | 45.00 203 | 44.97 107 | | 52.60 114 | | | | | | | |
|
DeepMVS_CX | | | | | | | 8.52 216 | 9.75 216 | 3.19 212 | 16.70 213 | 5.02 216 | 23.06 212 | 19.33 219 | 18.69 206 | 13.75 212 | | 11.34 215 | 25.07 212 |
|