ETH3 D test6400 | | | 83.28 1 | 83.47 1 | 82.72 3 | 91.48 4 | 59.33 6 | 92.10 9 | 90.95 7 | 65.68 57 | 80.67 15 | 94.42 3 | 59.41 7 | 95.89 9 | 86.74 2 | 89.75 5 | 92.94 16 |
|
MCST-MVS | | | 83.01 2 | 83.30 3 | 82.15 10 | 92.84 2 | 57.58 15 | 93.77 1 | 91.10 6 | 75.95 2 | 77.10 24 | 93.09 17 | 54.15 23 | 95.57 10 | 85.80 3 | 85.87 34 | 93.31 9 |
|
DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 177 | 59.50 5 | 92.24 8 | 90.72 8 | 69.37 22 | 83.22 6 | 94.47 2 | 63.81 3 | 93.18 30 | 74.02 61 | 93.25 2 | 94.80 1 |
|
DELS-MVS | | | 82.32 4 | 82.50 4 | 81.79 11 | 86.80 41 | 56.89 25 | 92.77 2 | 86.30 78 | 77.83 1 | 77.88 21 | 92.13 32 | 60.24 4 | 94.78 18 | 78.97 25 | 89.61 6 | 93.69 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 49 | 82.99 115 | 52.71 127 | 85.04 131 | 88.63 37 | 66.08 53 | 86.77 2 | 92.75 21 | 72.05 1 | 91.46 65 | 83.35 6 | 93.53 1 | 92.23 29 |
|
SED-MVS | | | 81.92 6 | 81.75 7 | 82.44 7 | 89.48 14 | 56.89 25 | 92.48 3 | 88.94 27 | 57.50 198 | 84.61 3 | 94.09 4 | 58.81 9 | 96.37 5 | 82.28 11 | 87.60 16 | 94.06 3 |
|
CNVR-MVS | | | 81.76 7 | 81.90 6 | 81.33 15 | 90.04 7 | 57.70 13 | 91.71 10 | 88.87 30 | 70.31 16 | 77.64 23 | 93.87 8 | 52.58 30 | 93.91 24 | 84.17 4 | 87.92 14 | 92.39 26 |
|
DVP-MVS | | | 81.30 8 | 81.00 10 | 82.20 8 | 89.40 17 | 57.45 17 | 92.34 5 | 89.99 14 | 57.71 192 | 81.91 9 | 93.64 10 | 55.17 17 | 96.44 2 | 81.68 13 | 87.13 19 | 92.72 21 |
|
CANet | | | 80.90 9 | 81.17 9 | 80.09 28 | 87.62 34 | 54.21 84 | 91.60 13 | 86.47 74 | 73.13 5 | 79.89 18 | 93.10 15 | 49.88 50 | 92.98 31 | 84.09 5 | 84.75 47 | 93.08 14 |
|
DeepPCF-MVS | | 69.37 1 | 80.65 10 | 81.56 8 | 77.94 79 | 85.46 61 | 49.56 198 | 90.99 20 | 86.66 72 | 70.58 14 | 80.07 17 | 95.30 1 | 56.18 15 | 90.97 76 | 82.57 10 | 86.22 32 | 93.28 10 |
|
HPM-MVS++ | | | 80.50 11 | 80.71 11 | 79.88 30 | 87.34 36 | 55.20 57 | 89.93 28 | 87.55 59 | 66.04 56 | 79.46 19 | 93.00 19 | 53.10 27 | 91.76 58 | 80.40 20 | 89.56 7 | 92.68 22 |
|
CSCG | | | 80.41 12 | 79.72 12 | 82.49 5 | 89.12 21 | 57.67 14 | 89.29 39 | 91.54 3 | 59.19 159 | 71.82 67 | 90.05 84 | 59.72 6 | 96.04 7 | 78.37 28 | 88.40 12 | 93.75 5 |
|
PS-MVSNAJ | | | 80.06 13 | 79.52 14 | 81.68 13 | 85.58 55 | 60.97 3 | 91.69 11 | 87.02 64 | 70.62 13 | 80.75 14 | 93.22 14 | 37.77 173 | 92.50 42 | 82.75 8 | 86.25 31 | 91.57 46 |
|
xiu_mvs_v2_base | | | 79.86 14 | 79.31 15 | 81.53 14 | 85.03 71 | 60.73 4 | 91.65 12 | 86.86 67 | 70.30 17 | 80.77 13 | 93.07 18 | 37.63 178 | 92.28 49 | 82.73 9 | 85.71 35 | 91.57 46 |
|
DPE-MVS | | | 79.82 15 | 79.66 13 | 80.29 21 | 89.27 20 | 55.08 62 | 88.70 48 | 87.92 50 | 55.55 226 | 81.21 12 | 93.69 9 | 56.51 14 | 94.27 21 | 78.36 29 | 85.70 36 | 91.51 49 |
|
NCCC | | | 79.57 16 | 79.23 16 | 80.59 18 | 89.50 12 | 56.99 23 | 91.38 15 | 88.17 46 | 67.71 36 | 73.81 44 | 92.75 21 | 46.88 72 | 93.28 28 | 78.79 26 | 84.07 53 | 91.50 50 |
|
SMA-MVS | | | 79.10 17 | 78.76 17 | 80.12 26 | 84.42 78 | 55.87 42 | 87.58 66 | 86.76 69 | 61.48 121 | 80.26 16 | 93.10 15 | 46.53 77 | 92.41 45 | 79.97 21 | 88.77 9 | 92.08 33 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ETH3D-3000-0.1 | | | 78.73 18 | 78.71 18 | 78.78 51 | 85.58 55 | 52.40 135 | 88.42 52 | 89.03 24 | 60.01 140 | 76.06 29 | 92.80 20 | 48.34 56 | 92.88 33 | 81.66 15 | 86.48 29 | 91.04 62 |
|
LFMVS | | | 78.52 19 | 77.14 35 | 82.67 4 | 89.58 10 | 58.90 8 | 91.27 18 | 88.05 47 | 63.22 91 | 74.63 36 | 90.83 63 | 41.38 143 | 94.40 19 | 75.42 51 | 79.90 89 | 94.72 2 |
|
APDe-MVS | | | 78.44 20 | 78.20 21 | 79.19 37 | 88.56 22 | 54.55 79 | 89.76 32 | 87.77 54 | 55.91 221 | 78.56 20 | 92.49 25 | 48.20 58 | 92.65 40 | 79.49 22 | 83.04 57 | 90.39 77 |
|
MG-MVS | | | 78.42 21 | 76.99 37 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 28 | 88.51 43 | 64.83 70 | 73.52 49 | 88.09 119 | 48.07 59 | 92.19 50 | 62.24 135 | 84.53 49 | 91.53 48 |
|
lupinMVS | | | 78.38 22 | 78.11 24 | 79.19 37 | 83.02 113 | 55.24 54 | 91.57 14 | 84.82 115 | 69.12 23 | 76.67 26 | 92.02 36 | 44.82 101 | 90.23 98 | 80.83 18 | 80.09 84 | 92.08 33 |
|
ETH3D cwj APD-0.16 | | | 78.36 23 | 78.19 22 | 78.86 46 | 84.21 84 | 52.68 128 | 86.70 87 | 89.02 25 | 59.13 164 | 75.37 31 | 92.49 25 | 49.06 55 | 93.20 29 | 80.67 19 | 87.08 21 | 90.71 70 |
|
EPNet | | | 78.36 23 | 78.49 19 | 77.97 77 | 85.49 58 | 52.04 143 | 89.36 36 | 84.07 135 | 73.22 4 | 77.03 25 | 91.72 43 | 49.32 54 | 90.17 100 | 73.46 67 | 82.77 58 | 91.69 41 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TSAR-MVS + MP. | | | 78.31 25 | 78.26 20 | 78.48 60 | 81.33 157 | 56.31 37 | 81.59 216 | 86.41 75 | 69.61 21 | 81.72 11 | 88.16 118 | 55.09 19 | 88.04 161 | 74.12 60 | 86.31 30 | 91.09 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CS-MVS | | | 78.19 26 | 77.97 26 | 78.82 47 | 83.52 97 | 53.08 119 | 89.10 41 | 86.30 78 | 68.01 32 | 73.57 46 | 91.26 52 | 47.28 68 | 92.35 47 | 78.21 30 | 84.51 50 | 91.05 61 |
|
canonicalmvs | | | 78.17 27 | 77.86 28 | 79.12 40 | 84.30 80 | 54.22 83 | 87.71 59 | 84.57 122 | 67.70 37 | 77.70 22 | 92.11 35 | 50.90 41 | 89.95 103 | 78.18 33 | 77.54 103 | 93.20 12 |
|
alignmvs | | | 78.08 28 | 77.98 25 | 78.39 65 | 83.53 96 | 53.22 114 | 89.77 31 | 85.45 91 | 66.11 51 | 76.59 28 | 91.99 38 | 54.07 24 | 89.05 121 | 77.34 39 | 77.00 108 | 92.89 18 |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 29 | 77.63 29 | 79.13 39 | 88.52 23 | 55.12 59 | 89.95 27 | 85.98 85 | 68.31 27 | 71.33 73 | 92.75 21 | 45.52 91 | 90.37 91 | 71.15 78 | 85.14 43 | 91.91 38 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
VNet | | | 77.99 30 | 77.92 27 | 78.19 70 | 87.43 35 | 50.12 188 | 90.93 21 | 91.41 4 | 67.48 39 | 75.12 32 | 90.15 82 | 46.77 74 | 91.00 74 | 73.52 66 | 78.46 98 | 93.44 7 |
|
TSAR-MVS + GP. | | | 77.82 31 | 77.59 30 | 78.49 59 | 85.25 67 | 50.27 186 | 90.02 25 | 90.57 9 | 56.58 215 | 74.26 41 | 91.60 46 | 54.26 21 | 92.16 51 | 75.87 45 | 79.91 88 | 93.05 15 |
|
Regformer-1 | | | 77.80 32 | 77.44 32 | 78.88 44 | 87.78 32 | 52.44 134 | 87.60 61 | 90.08 12 | 68.86 24 | 72.49 62 | 91.79 40 | 47.69 65 | 94.90 16 | 73.57 65 | 77.05 105 | 89.31 98 |
|
SF-MVS | | | 77.64 33 | 77.42 33 | 78.32 68 | 83.75 94 | 52.47 133 | 86.63 89 | 87.80 51 | 58.78 172 | 74.63 36 | 92.38 27 | 47.75 63 | 91.35 67 | 78.18 33 | 86.85 24 | 91.15 58 |
|
test_prior3 | | | 77.59 34 | 77.33 34 | 78.39 65 | 86.35 44 | 54.91 68 | 89.04 42 | 85.45 91 | 61.88 111 | 73.55 47 | 91.46 50 | 48.01 61 | 89.70 109 | 74.73 55 | 85.46 38 | 90.55 72 |
|
PHI-MVS | | | 77.49 35 | 77.00 36 | 78.95 41 | 85.33 65 | 50.69 170 | 88.57 50 | 88.59 41 | 58.14 181 | 73.60 45 | 93.31 12 | 43.14 124 | 93.79 25 | 73.81 62 | 88.53 11 | 92.37 27 |
|
WTY-MVS | | | 77.47 36 | 77.52 31 | 77.30 92 | 88.33 26 | 46.25 258 | 88.46 51 | 90.32 10 | 71.40 10 | 72.32 64 | 91.72 43 | 53.44 25 | 92.37 46 | 66.28 107 | 75.42 122 | 93.28 10 |
|
casdiffmvs | | | 77.36 37 | 76.85 38 | 78.88 44 | 80.40 175 | 54.66 77 | 87.06 78 | 85.88 86 | 72.11 8 | 71.57 70 | 88.63 112 | 50.89 43 | 90.35 92 | 76.00 44 | 79.11 93 | 91.63 43 |
|
xxxxxxxxxxxxxcwj | | | 77.31 38 | 76.54 41 | 79.61 31 | 85.35 63 | 56.34 35 | 89.31 37 | 72.84 294 | 61.55 116 | 74.63 36 | 92.38 27 | 47.75 63 | 91.35 67 | 78.18 33 | 86.85 24 | 91.15 58 |
|
ETV-MVS | | | 77.17 39 | 76.74 40 | 78.48 60 | 81.80 139 | 54.55 79 | 86.13 98 | 85.33 97 | 68.20 29 | 73.10 52 | 90.52 71 | 45.23 94 | 90.66 83 | 79.37 23 | 80.95 72 | 90.22 81 |
|
Regformer-2 | | | 77.15 40 | 76.82 39 | 78.14 71 | 87.78 32 | 51.84 149 | 87.60 61 | 89.12 21 | 67.23 40 | 71.93 66 | 91.79 40 | 46.03 83 | 93.53 27 | 72.85 71 | 77.05 105 | 89.05 107 |
|
SteuartSystems-ACMMP | | | 77.08 41 | 76.33 46 | 79.34 35 | 80.98 160 | 55.31 52 | 89.76 32 | 86.91 66 | 62.94 95 | 71.65 68 | 91.56 47 | 42.33 128 | 92.56 41 | 77.14 40 | 83.69 55 | 90.15 84 |
Skip Steuart: Steuart Systems R&D Blog. |
jason | | | 77.01 42 | 76.45 44 | 78.69 54 | 79.69 180 | 54.74 71 | 90.56 23 | 83.99 138 | 68.26 28 | 74.10 42 | 90.91 60 | 42.14 132 | 89.99 102 | 79.30 24 | 79.12 92 | 91.36 54 |
jason: jason. |
testtj | | | 76.96 43 | 76.48 43 | 78.40 64 | 89.89 9 | 53.67 94 | 88.72 47 | 86.15 82 | 54.56 237 | 74.86 34 | 92.31 30 | 44.38 106 | 91.97 56 | 75.19 53 | 82.24 63 | 89.54 95 |
|
train_agg | | | 76.91 44 | 76.40 45 | 78.45 62 | 85.68 50 | 55.42 48 | 87.59 64 | 84.00 136 | 57.84 189 | 72.99 53 | 90.98 56 | 44.99 96 | 88.58 138 | 78.19 31 | 85.32 41 | 91.34 56 |
|
MVS | | | 76.91 44 | 75.48 54 | 81.23 16 | 84.56 76 | 55.21 56 | 80.23 238 | 91.64 2 | 58.65 174 | 65.37 119 | 91.48 49 | 45.72 89 | 95.05 14 | 72.11 75 | 89.52 8 | 93.44 7 |
|
DeepC-MVS | | 67.15 4 | 76.90 46 | 76.27 47 | 78.80 49 | 80.70 168 | 55.02 63 | 86.39 92 | 86.71 70 | 66.96 43 | 67.91 93 | 89.97 86 | 48.03 60 | 91.41 66 | 75.60 48 | 84.14 52 | 89.96 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline | | | 76.86 47 | 76.24 48 | 78.71 53 | 80.47 174 | 54.20 86 | 83.90 157 | 84.88 114 | 71.38 11 | 71.51 71 | 89.15 102 | 50.51 44 | 90.55 87 | 75.71 46 | 78.65 96 | 91.39 52 |
|
PAPM | | | 76.76 48 | 76.07 50 | 78.81 48 | 80.20 176 | 59.11 7 | 86.86 85 | 86.23 80 | 68.60 25 | 70.18 81 | 88.84 107 | 51.57 35 | 87.16 182 | 65.48 114 | 86.68 26 | 90.15 84 |
|
MAR-MVS | | | 76.76 48 | 75.60 53 | 80.21 23 | 90.87 5 | 54.68 75 | 89.14 40 | 89.11 22 | 62.95 94 | 70.54 79 | 92.33 29 | 41.05 144 | 94.95 15 | 57.90 178 | 86.55 28 | 91.00 64 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
agg_prior1 | | | 76.68 50 | 76.24 48 | 78.00 75 | 85.64 53 | 54.92 66 | 87.55 67 | 83.61 145 | 57.99 185 | 72.53 60 | 91.05 53 | 45.36 92 | 88.10 159 | 77.76 37 | 84.68 48 | 90.99 65 |
|
PVSNet_Blended | | | 76.53 51 | 76.54 41 | 76.50 110 | 85.91 47 | 51.83 150 | 88.89 45 | 84.24 132 | 67.82 34 | 69.09 84 | 89.33 99 | 46.70 75 | 88.13 157 | 75.43 49 | 81.48 71 | 89.55 94 |
|
ACMMP_NAP | | | 76.43 52 | 75.66 52 | 78.73 52 | 81.92 137 | 54.67 76 | 84.06 152 | 85.35 96 | 61.10 126 | 72.99 53 | 91.50 48 | 40.25 151 | 91.00 74 | 76.84 41 | 86.98 22 | 90.51 76 |
|
MVS_111021_HR | | | 76.39 53 | 75.38 57 | 79.42 34 | 85.33 65 | 56.47 32 | 88.15 54 | 84.97 111 | 65.15 68 | 66.06 111 | 89.88 87 | 43.79 112 | 92.16 51 | 75.03 54 | 80.03 87 | 89.64 93 |
|
CHOSEN 1792x2688 | | | 76.24 54 | 74.03 73 | 82.88 1 | 83.09 109 | 62.84 2 | 85.73 110 | 85.39 94 | 69.79 19 | 64.87 127 | 83.49 172 | 41.52 142 | 93.69 26 | 70.55 80 | 81.82 67 | 92.12 32 |
|
SD-MVS | | | 76.18 55 | 74.85 64 | 80.18 24 | 85.39 62 | 56.90 24 | 85.75 108 | 82.45 164 | 56.79 210 | 74.48 40 | 91.81 39 | 43.72 115 | 90.75 81 | 74.61 57 | 78.65 96 | 92.91 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS | | | 76.15 56 | 75.68 51 | 77.54 86 | 88.52 23 | 53.44 104 | 87.26 75 | 85.03 110 | 53.79 241 | 74.91 33 | 91.68 45 | 43.80 111 | 90.31 94 | 74.36 58 | 81.82 67 | 88.87 111 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
VDD-MVS | | | 76.08 57 | 74.97 62 | 79.44 33 | 84.27 83 | 53.33 111 | 91.13 19 | 85.88 86 | 65.33 64 | 72.37 63 | 89.34 97 | 32.52 235 | 92.76 37 | 77.90 36 | 75.96 116 | 92.22 31 |
|
CDPH-MVS | | | 76.05 58 | 75.19 58 | 78.62 57 | 86.51 43 | 54.98 65 | 87.32 70 | 84.59 121 | 58.62 175 | 70.75 77 | 90.85 62 | 43.10 126 | 90.63 85 | 70.50 81 | 84.51 50 | 90.24 80 |
|
Regformer-3 | | | 76.02 59 | 75.47 55 | 77.70 82 | 85.49 58 | 51.47 158 | 85.12 127 | 90.19 11 | 68.52 26 | 69.36 82 | 90.66 65 | 46.45 78 | 94.81 17 | 70.25 83 | 73.16 139 | 86.81 151 |
|
EIA-MVS | | | 75.92 60 | 75.18 59 | 78.13 72 | 85.14 68 | 51.60 154 | 87.17 76 | 85.32 98 | 64.69 71 | 68.56 87 | 90.53 70 | 45.79 88 | 91.58 61 | 67.21 99 | 82.18 65 | 91.20 57 |
|
test_yl | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 30 | 51.94 145 | 91.30 16 | 89.28 18 | 57.91 186 | 71.19 75 | 89.20 100 | 42.03 135 | 92.77 35 | 69.41 85 | 75.07 127 | 92.01 36 |
|
DCV-MVSNet | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 30 | 51.94 145 | 91.30 16 | 89.28 18 | 57.91 186 | 71.19 75 | 89.20 100 | 42.03 135 | 92.77 35 | 69.41 85 | 75.07 127 | 92.01 36 |
|
MVS_Test | | | 75.85 61 | 74.93 63 | 78.62 57 | 84.08 86 | 55.20 57 | 83.99 155 | 85.17 105 | 68.07 30 | 73.38 50 | 82.76 182 | 50.44 45 | 89.00 125 | 65.90 110 | 80.61 77 | 91.64 42 |
|
ZNCC-MVS | | | 75.82 64 | 75.02 61 | 78.23 69 | 83.88 92 | 53.80 90 | 86.91 84 | 86.05 84 | 59.71 144 | 67.85 94 | 90.55 69 | 42.23 130 | 91.02 73 | 72.66 73 | 85.29 42 | 89.87 89 |
|
CLD-MVS | | | 75.60 65 | 75.39 56 | 76.24 115 | 80.69 169 | 52.40 135 | 90.69 22 | 86.20 81 | 74.40 3 | 65.01 125 | 88.93 104 | 42.05 134 | 90.58 86 | 76.57 42 | 73.96 133 | 85.73 168 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MP-MVS-pluss | | | 75.54 66 | 75.03 60 | 77.04 98 | 81.37 156 | 52.65 130 | 84.34 144 | 84.46 123 | 61.16 124 | 69.14 83 | 91.76 42 | 39.98 157 | 88.99 127 | 78.19 31 | 84.89 46 | 89.48 96 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DWT-MVSNet_test | | | 75.47 67 | 73.87 75 | 80.29 21 | 87.33 37 | 57.05 22 | 82.86 186 | 87.96 49 | 72.59 6 | 67.29 97 | 87.79 124 | 51.61 34 | 91.52 63 | 54.75 200 | 72.63 147 | 92.29 28 |
|
Effi-MVS+ | | | 75.24 68 | 73.61 77 | 80.16 25 | 81.92 137 | 57.42 19 | 85.21 121 | 76.71 262 | 60.68 133 | 73.32 51 | 89.34 97 | 47.30 67 | 91.63 60 | 68.28 93 | 79.72 90 | 91.42 51 |
|
ET-MVSNet_ETH3D | | | 75.23 69 | 74.08 72 | 78.67 55 | 84.52 77 | 55.59 44 | 88.92 44 | 89.21 20 | 68.06 31 | 53.13 261 | 90.22 78 | 49.71 51 | 87.62 173 | 72.12 74 | 70.82 162 | 92.82 19 |
|
PAPR | | | 75.20 70 | 74.13 71 | 78.41 63 | 88.31 27 | 55.10 61 | 84.31 145 | 85.66 89 | 63.76 82 | 67.55 95 | 90.73 64 | 43.48 120 | 89.40 115 | 66.36 106 | 77.03 107 | 90.73 69 |
|
baseline2 | | | 75.15 71 | 74.54 69 | 76.98 102 | 81.67 142 | 51.74 152 | 83.84 158 | 91.94 1 | 69.97 18 | 58.98 192 | 86.02 146 | 59.73 5 | 91.73 59 | 68.37 92 | 70.40 165 | 87.48 137 |
|
diffmvs | | | 75.11 72 | 74.65 67 | 76.46 112 | 78.52 202 | 53.35 109 | 83.28 177 | 79.94 198 | 70.51 15 | 71.64 69 | 88.72 108 | 46.02 84 | 86.08 214 | 77.52 38 | 75.75 120 | 89.96 87 |
|
Regformer-4 | | | 75.06 73 | 74.59 68 | 76.47 111 | 85.49 58 | 50.33 182 | 85.12 127 | 88.61 39 | 66.42 45 | 68.48 88 | 90.66 65 | 44.15 107 | 92.68 38 | 69.24 87 | 73.16 139 | 86.39 158 |
|
MP-MVS | | | 74.99 74 | 74.33 70 | 76.95 103 | 82.89 119 | 53.05 121 | 85.63 112 | 83.50 147 | 57.86 188 | 67.25 98 | 90.24 77 | 43.38 121 | 88.85 133 | 76.03 43 | 82.23 64 | 88.96 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
GST-MVS | | | 74.87 75 | 73.90 74 | 77.77 80 | 83.30 103 | 53.45 103 | 85.75 108 | 85.29 100 | 59.22 158 | 66.50 106 | 89.85 88 | 40.94 145 | 90.76 80 | 70.94 79 | 83.35 56 | 89.10 106 |
|
#test# | | | 74.86 76 | 73.78 76 | 78.10 73 | 84.30 80 | 53.68 92 | 86.95 81 | 84.36 125 | 59.00 168 | 65.78 114 | 90.56 67 | 40.70 149 | 90.90 77 | 71.48 76 | 80.88 73 | 89.71 90 |
|
3Dnovator | | 64.70 6 | 74.46 77 | 72.48 86 | 80.41 20 | 82.84 121 | 55.40 51 | 83.08 180 | 88.61 39 | 67.61 38 | 59.85 177 | 88.66 109 | 34.57 215 | 93.97 22 | 58.42 169 | 88.70 10 | 91.85 40 |
|
HFP-MVS | | | 74.37 78 | 73.13 81 | 78.10 73 | 84.30 80 | 53.68 92 | 85.58 113 | 84.36 125 | 56.82 208 | 65.78 114 | 90.56 67 | 40.70 149 | 90.90 77 | 69.18 88 | 80.88 73 | 89.71 90 |
|
VDDNet | | | 74.37 78 | 72.13 94 | 81.09 17 | 79.58 181 | 56.52 31 | 90.02 25 | 86.70 71 | 52.61 250 | 71.23 74 | 87.20 131 | 31.75 245 | 93.96 23 | 74.30 59 | 75.77 119 | 92.79 20 |
|
MSLP-MVS++ | | | 74.21 80 | 72.25 91 | 80.11 27 | 81.45 154 | 56.47 32 | 86.32 94 | 79.65 206 | 58.19 180 | 66.36 107 | 92.29 31 | 36.11 201 | 90.66 83 | 67.39 97 | 82.49 60 | 93.18 13 |
|
API-MVS | | | 74.17 81 | 72.07 96 | 80.49 19 | 90.02 8 | 58.55 9 | 87.30 72 | 84.27 129 | 57.51 197 | 65.77 116 | 87.77 126 | 41.61 141 | 95.97 8 | 51.71 220 | 82.63 59 | 86.94 145 |
|
zzz-MVS | | | 74.15 82 | 73.11 82 | 77.27 94 | 81.54 149 | 53.57 96 | 84.02 154 | 81.31 180 | 59.41 151 | 68.39 89 | 90.96 58 | 36.07 202 | 89.01 123 | 73.80 63 | 82.45 61 | 89.23 100 |
|
IB-MVS | | 68.87 2 | 74.01 83 | 72.03 98 | 79.94 29 | 83.04 112 | 55.50 46 | 90.24 24 | 88.65 35 | 67.14 41 | 61.38 165 | 81.74 199 | 53.21 26 | 94.28 20 | 60.45 154 | 62.41 223 | 90.03 86 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HY-MVS | | 67.03 5 | 73.90 84 | 73.14 79 | 76.18 118 | 84.70 75 | 47.36 242 | 75.56 267 | 86.36 77 | 66.27 48 | 70.66 78 | 83.91 165 | 51.05 39 | 89.31 116 | 67.10 100 | 72.61 148 | 91.88 39 |
|
CostFormer | | | 73.89 85 | 72.30 90 | 78.66 56 | 82.36 133 | 56.58 28 | 75.56 267 | 85.30 99 | 66.06 54 | 70.50 80 | 76.88 246 | 57.02 12 | 89.06 119 | 68.27 94 | 68.74 175 | 90.33 79 |
|
ACMMPR | | | 73.76 86 | 72.61 83 | 77.24 97 | 83.92 90 | 52.96 124 | 85.58 113 | 84.29 128 | 56.82 208 | 65.12 121 | 90.45 72 | 37.24 188 | 90.18 99 | 69.18 88 | 80.84 75 | 88.58 118 |
|
region2R | | | 73.75 87 | 72.55 85 | 77.33 91 | 83.90 91 | 52.98 123 | 85.54 116 | 84.09 134 | 56.83 207 | 65.10 122 | 90.45 72 | 37.34 186 | 90.24 97 | 68.89 90 | 80.83 76 | 88.77 114 |
|
CANet_DTU | | | 73.71 88 | 73.14 79 | 75.40 133 | 82.61 129 | 50.05 189 | 84.67 140 | 79.36 212 | 69.72 20 | 75.39 30 | 90.03 85 | 29.41 259 | 85.93 220 | 67.99 95 | 79.11 93 | 90.22 81 |
|
thisisatest0515 | | | 73.64 89 | 72.20 92 | 77.97 77 | 81.63 143 | 53.01 122 | 86.69 88 | 88.81 32 | 62.53 100 | 64.06 138 | 85.65 149 | 52.15 33 | 92.50 42 | 58.43 167 | 69.84 168 | 88.39 122 |
|
MVSFormer | | | 73.53 90 | 72.19 93 | 77.57 85 | 83.02 113 | 55.24 54 | 81.63 213 | 81.44 178 | 50.28 264 | 76.67 26 | 90.91 60 | 44.82 101 | 86.11 208 | 60.83 146 | 80.09 84 | 91.36 54 |
|
PVSNet_BlendedMVS | | | 73.42 91 | 73.30 78 | 73.76 170 | 85.91 47 | 51.83 150 | 86.18 97 | 84.24 132 | 65.40 61 | 69.09 84 | 80.86 207 | 46.70 75 | 88.13 157 | 75.43 49 | 65.92 195 | 81.33 242 |
|
PVSNet_Blended_VisFu | | | 73.40 92 | 72.44 87 | 76.30 113 | 81.32 158 | 54.70 74 | 85.81 104 | 78.82 222 | 63.70 83 | 64.53 131 | 85.38 153 | 47.11 71 | 87.38 179 | 67.75 96 | 77.55 102 | 86.81 151 |
|
MVSTER | | | 73.25 93 | 72.33 88 | 76.01 123 | 85.54 57 | 53.76 91 | 83.52 163 | 87.16 62 | 67.06 42 | 63.88 143 | 81.66 200 | 52.77 28 | 90.44 89 | 64.66 123 | 64.69 200 | 83.84 201 |
|
EI-MVSNet-Vis-set | | | 73.19 94 | 72.60 84 | 74.99 142 | 82.56 130 | 49.80 194 | 82.55 193 | 89.00 26 | 66.17 50 | 65.89 113 | 88.98 103 | 43.83 110 | 92.29 48 | 65.38 121 | 69.01 173 | 82.87 220 |
|
PMMVS | | | 72.98 95 | 72.05 97 | 75.78 127 | 83.57 95 | 48.60 218 | 84.08 150 | 82.85 159 | 61.62 115 | 68.24 91 | 90.33 76 | 28.35 263 | 87.78 169 | 72.71 72 | 76.69 110 | 90.95 66 |
|
XVS | | | 72.92 96 | 71.62 100 | 76.81 105 | 83.41 98 | 52.48 131 | 84.88 136 | 83.20 153 | 58.03 182 | 63.91 141 | 89.63 92 | 35.50 208 | 89.78 106 | 65.50 112 | 80.50 79 | 88.16 123 |
|
TESTMET0.1,1 | | | 72.86 97 | 72.33 88 | 74.46 150 | 81.98 136 | 50.77 168 | 85.13 124 | 85.47 90 | 66.09 52 | 67.30 96 | 83.69 170 | 37.27 187 | 83.57 249 | 65.06 122 | 78.97 95 | 89.05 107 |
|
RRT_test8_iter05 | | | 72.74 98 | 71.20 108 | 77.36 90 | 87.25 38 | 53.51 98 | 88.68 49 | 89.53 16 | 65.20 67 | 61.32 166 | 81.27 203 | 45.89 85 | 92.48 44 | 65.99 108 | 55.65 279 | 86.10 161 |
|
Fast-Effi-MVS+ | | | 72.73 99 | 71.15 110 | 77.48 87 | 82.75 124 | 54.76 70 | 86.77 86 | 80.64 190 | 63.05 93 | 65.93 112 | 84.01 163 | 44.42 105 | 89.03 122 | 56.45 191 | 76.36 115 | 88.64 116 |
|
MTAPA | | | 72.73 99 | 71.22 107 | 77.27 94 | 81.54 149 | 53.57 96 | 67.06 310 | 81.31 180 | 59.41 151 | 68.39 89 | 90.96 58 | 36.07 202 | 89.01 123 | 73.80 63 | 82.45 61 | 89.23 100 |
|
PGM-MVS | | | 72.60 101 | 71.20 108 | 76.80 107 | 82.95 116 | 52.82 126 | 83.07 181 | 82.14 165 | 56.51 216 | 63.18 150 | 89.81 89 | 35.68 207 | 89.76 108 | 67.30 98 | 80.19 83 | 87.83 131 |
|
HPM-MVS | | | 72.60 101 | 71.50 102 | 75.89 125 | 82.02 135 | 51.42 160 | 80.70 232 | 83.05 155 | 56.12 220 | 64.03 139 | 89.53 93 | 37.55 180 | 88.37 146 | 70.48 82 | 80.04 86 | 87.88 130 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 72.59 103 | 71.46 103 | 76.00 124 | 82.93 118 | 52.32 140 | 86.93 83 | 82.48 163 | 55.15 230 | 63.65 146 | 90.44 75 | 35.03 212 | 88.53 142 | 68.69 91 | 77.83 101 | 87.15 143 |
|
baseline1 | | | 72.51 104 | 72.12 95 | 73.69 171 | 85.05 69 | 44.46 273 | 83.51 167 | 86.13 83 | 71.61 9 | 64.64 129 | 87.97 122 | 55.00 20 | 89.48 114 | 59.07 161 | 56.05 273 | 87.13 144 |
|
EI-MVSNet-UG-set | | | 72.37 105 | 71.73 99 | 74.29 156 | 81.60 145 | 49.29 204 | 81.85 208 | 88.64 36 | 65.29 66 | 65.05 123 | 88.29 115 | 43.18 122 | 91.83 57 | 63.74 127 | 67.97 180 | 81.75 230 |
|
MS-PatchMatch | | | 72.34 106 | 71.26 106 | 75.61 128 | 82.38 132 | 55.55 45 | 88.00 55 | 89.95 15 | 65.38 62 | 56.51 238 | 80.74 209 | 32.28 238 | 92.89 32 | 57.95 177 | 88.10 13 | 78.39 274 |
|
HQP-MVS | | | 72.34 106 | 71.44 104 | 75.03 140 | 79.02 188 | 51.56 155 | 88.00 55 | 83.68 142 | 65.45 58 | 64.48 132 | 85.13 154 | 37.35 184 | 88.62 136 | 66.70 102 | 73.12 141 | 84.91 182 |
|
mvs_anonymous | | | 72.29 108 | 70.74 111 | 76.94 104 | 82.85 120 | 54.72 73 | 78.43 254 | 81.54 176 | 63.77 81 | 61.69 164 | 79.32 217 | 51.11 38 | 85.31 227 | 62.15 137 | 75.79 118 | 90.79 68 |
|
3Dnovator+ | | 62.71 7 | 72.29 108 | 70.50 113 | 77.65 84 | 83.40 101 | 51.29 164 | 87.32 70 | 86.40 76 | 59.01 167 | 58.49 205 | 88.32 114 | 32.40 236 | 91.27 69 | 57.04 186 | 82.15 66 | 90.38 78 |
|
nrg030 | | | 72.27 110 | 71.56 101 | 74.42 152 | 75.93 238 | 50.60 172 | 86.97 80 | 83.21 152 | 62.75 97 | 67.15 99 | 84.38 160 | 50.07 47 | 86.66 195 | 71.19 77 | 62.37 224 | 85.99 162 |
|
VPNet | | | 72.07 111 | 71.42 105 | 74.04 161 | 78.64 199 | 47.17 246 | 89.91 30 | 87.97 48 | 72.56 7 | 64.66 128 | 85.04 156 | 41.83 139 | 88.33 150 | 61.17 143 | 60.97 230 | 86.62 153 |
|
DP-MVS Recon | | | 71.99 112 | 70.31 116 | 77.01 100 | 90.65 6 | 53.44 104 | 89.37 35 | 82.97 157 | 56.33 218 | 63.56 148 | 89.47 94 | 34.02 220 | 92.15 53 | 54.05 203 | 72.41 149 | 85.43 175 |
|
QAPM | | | 71.88 113 | 69.33 132 | 79.52 32 | 82.20 134 | 54.30 82 | 86.30 95 | 88.77 33 | 56.61 214 | 59.72 179 | 87.48 129 | 33.90 223 | 95.36 11 | 47.48 244 | 81.49 70 | 88.90 110 |
|
PAPM_NR | | | 71.80 114 | 69.98 123 | 77.26 96 | 81.54 149 | 53.34 110 | 78.60 253 | 85.25 103 | 53.46 243 | 60.53 174 | 88.66 109 | 45.69 90 | 89.24 117 | 56.49 188 | 79.62 91 | 89.19 103 |
|
mPP-MVS | | | 71.79 115 | 70.38 115 | 76.04 122 | 82.65 128 | 52.06 142 | 84.45 142 | 81.78 173 | 55.59 225 | 62.05 162 | 89.68 91 | 33.48 227 | 88.28 154 | 65.45 117 | 78.24 100 | 87.77 133 |
|
xiu_mvs_v1_base_debu | | | 71.60 116 | 70.29 117 | 75.55 129 | 77.26 221 | 53.15 115 | 85.34 117 | 79.37 209 | 55.83 222 | 72.54 57 | 90.19 79 | 22.38 302 | 86.66 195 | 73.28 68 | 76.39 112 | 86.85 148 |
|
xiu_mvs_v1_base | | | 71.60 116 | 70.29 117 | 75.55 129 | 77.26 221 | 53.15 115 | 85.34 117 | 79.37 209 | 55.83 222 | 72.54 57 | 90.19 79 | 22.38 302 | 86.66 195 | 73.28 68 | 76.39 112 | 86.85 148 |
|
xiu_mvs_v1_base_debi | | | 71.60 116 | 70.29 117 | 75.55 129 | 77.26 221 | 53.15 115 | 85.34 117 | 79.37 209 | 55.83 222 | 72.54 57 | 90.19 79 | 22.38 302 | 86.66 195 | 73.28 68 | 76.39 112 | 86.85 148 |
|
EPP-MVSNet | | | 71.14 119 | 70.07 122 | 74.33 155 | 79.18 187 | 46.52 252 | 83.81 159 | 86.49 73 | 56.32 219 | 57.95 211 | 84.90 158 | 54.23 22 | 89.14 118 | 58.14 173 | 69.65 170 | 87.33 140 |
|
VPA-MVSNet | | | 71.12 120 | 70.66 112 | 72.49 194 | 78.75 194 | 44.43 275 | 87.64 60 | 90.02 13 | 63.97 78 | 65.02 124 | 81.58 201 | 42.14 132 | 87.42 178 | 63.42 129 | 63.38 212 | 85.63 172 |
|
1314 | | | 71.11 121 | 69.41 129 | 76.22 116 | 79.32 184 | 50.49 175 | 80.23 238 | 85.14 108 | 59.44 150 | 58.93 194 | 88.89 106 | 33.83 225 | 89.60 113 | 61.49 141 | 77.42 104 | 88.57 119 |
|
tpmrst | | | 71.04 122 | 69.77 125 | 74.86 143 | 83.19 106 | 55.86 43 | 75.64 266 | 78.73 225 | 67.88 33 | 64.99 126 | 73.73 273 | 49.96 49 | 79.56 283 | 65.92 109 | 67.85 182 | 89.14 105 |
|
MVP-Stereo | | | 70.97 123 | 70.44 114 | 72.59 191 | 76.03 237 | 51.36 161 | 85.02 133 | 86.99 65 | 60.31 137 | 56.53 237 | 78.92 222 | 40.11 155 | 90.00 101 | 60.00 159 | 90.01 4 | 76.41 294 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
HQP_MVS | | | 70.96 124 | 69.91 124 | 74.12 159 | 77.95 210 | 49.57 196 | 85.76 106 | 82.59 161 | 63.60 86 | 62.15 159 | 83.28 176 | 36.04 204 | 88.30 152 | 65.46 115 | 72.34 150 | 84.49 185 |
|
SR-MVS | | | 70.92 125 | 69.73 126 | 74.50 149 | 83.38 102 | 50.48 176 | 84.27 146 | 79.35 213 | 48.96 273 | 66.57 105 | 90.45 72 | 33.65 226 | 87.11 183 | 66.42 104 | 74.56 130 | 85.91 165 |
|
tpm2 | | | 70.82 126 | 68.44 141 | 77.98 76 | 80.78 166 | 56.11 39 | 74.21 277 | 81.28 183 | 60.24 138 | 68.04 92 | 75.27 265 | 52.26 32 | 88.50 143 | 55.82 194 | 68.03 179 | 89.33 97 |
|
ACMMP | | | 70.81 127 | 69.29 133 | 75.39 134 | 81.52 153 | 51.92 147 | 83.43 170 | 83.03 156 | 56.67 213 | 58.80 199 | 88.91 105 | 31.92 243 | 88.58 138 | 65.89 111 | 73.39 138 | 85.67 169 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
OPM-MVS | | | 70.75 128 | 69.58 127 | 74.26 157 | 75.55 243 | 51.34 162 | 86.05 100 | 83.29 151 | 61.94 110 | 62.95 153 | 85.77 148 | 34.15 219 | 88.44 144 | 65.44 118 | 71.07 159 | 82.99 217 |
|
ab-mvs | | | 70.65 129 | 69.11 135 | 75.29 136 | 80.87 165 | 46.23 259 | 73.48 280 | 85.24 104 | 59.99 141 | 66.65 101 | 80.94 206 | 43.13 125 | 88.69 134 | 63.58 128 | 68.07 178 | 90.95 66 |
|
Vis-MVSNet | | | 70.61 130 | 69.34 131 | 74.42 152 | 80.95 164 | 48.49 223 | 86.03 101 | 77.51 247 | 58.74 173 | 65.55 118 | 87.78 125 | 34.37 216 | 85.95 219 | 52.53 218 | 80.61 77 | 88.80 112 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
sss | | | 70.49 131 | 70.13 121 | 71.58 217 | 81.59 146 | 39.02 308 | 80.78 231 | 84.71 119 | 59.34 154 | 66.61 103 | 88.09 119 | 37.17 189 | 85.52 223 | 61.82 140 | 71.02 160 | 90.20 83 |
|
CDS-MVSNet | | | 70.48 132 | 69.43 128 | 73.64 173 | 77.56 216 | 48.83 215 | 83.51 167 | 77.45 248 | 63.27 90 | 62.33 158 | 85.54 152 | 43.85 109 | 83.29 253 | 57.38 185 | 74.00 132 | 88.79 113 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
thisisatest0530 | | | 70.47 133 | 68.56 139 | 76.20 117 | 79.78 179 | 51.52 157 | 83.49 169 | 88.58 42 | 57.62 195 | 58.60 201 | 82.79 181 | 51.03 40 | 91.48 64 | 52.84 211 | 62.36 225 | 85.59 173 |
|
XXY-MVS | | | 70.18 134 | 69.28 134 | 72.89 187 | 77.64 214 | 42.88 287 | 85.06 130 | 87.50 60 | 62.58 99 | 62.66 157 | 82.34 192 | 43.64 117 | 89.83 105 | 58.42 169 | 63.70 208 | 85.96 164 |
|
Anonymous202405211 | | | 70.11 135 | 67.88 150 | 76.79 108 | 87.20 39 | 47.24 245 | 89.49 34 | 77.38 250 | 54.88 233 | 66.14 109 | 86.84 137 | 20.93 312 | 91.54 62 | 56.45 191 | 71.62 155 | 91.59 44 |
|
PCF-MVS | | 61.03 10 | 70.10 136 | 68.40 142 | 75.22 139 | 77.15 225 | 51.99 144 | 79.30 249 | 82.12 166 | 56.47 217 | 61.88 163 | 86.48 144 | 43.98 108 | 87.24 181 | 55.37 195 | 72.79 146 | 86.43 157 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
BH-RMVSNet | | | 70.08 137 | 68.01 147 | 76.27 114 | 84.21 84 | 51.22 166 | 87.29 73 | 79.33 215 | 58.96 170 | 63.63 147 | 86.77 138 | 33.29 229 | 90.30 96 | 44.63 259 | 73.96 133 | 87.30 142 |
|
1112_ss | | | 70.05 138 | 69.37 130 | 72.10 200 | 80.77 167 | 42.78 288 | 85.12 127 | 76.75 261 | 59.69 145 | 61.19 168 | 92.12 33 | 47.48 66 | 83.84 245 | 53.04 209 | 68.21 177 | 89.66 92 |
|
BH-w/o | | | 70.02 139 | 68.51 140 | 74.56 148 | 82.77 122 | 50.39 179 | 86.60 90 | 78.14 236 | 59.77 143 | 59.65 180 | 85.57 151 | 39.27 162 | 87.30 180 | 49.86 229 | 74.94 129 | 85.99 162 |
|
FIs | | | 70.00 140 | 70.24 120 | 69.30 248 | 77.93 212 | 38.55 310 | 83.99 155 | 87.72 56 | 66.86 44 | 57.66 218 | 84.17 162 | 52.28 31 | 85.31 227 | 52.72 217 | 68.80 174 | 84.02 192 |
|
OpenMVS | | 61.00 11 | 69.99 141 | 67.55 159 | 77.30 92 | 78.37 206 | 54.07 88 | 84.36 143 | 85.76 88 | 57.22 202 | 56.71 234 | 87.67 127 | 30.79 252 | 92.83 34 | 43.04 265 | 84.06 54 | 85.01 180 |
|
HyFIR lowres test | | | 69.94 142 | 67.58 156 | 77.04 98 | 77.11 226 | 57.29 20 | 81.49 221 | 79.11 218 | 58.27 179 | 58.86 197 | 80.41 210 | 42.33 128 | 86.96 188 | 61.91 138 | 68.68 176 | 86.87 146 |
|
114514_t | | | 69.87 143 | 67.88 150 | 75.85 126 | 88.38 25 | 52.35 139 | 86.94 82 | 83.68 142 | 53.70 242 | 55.68 244 | 85.60 150 | 30.07 257 | 91.20 70 | 55.84 193 | 71.02 160 | 83.99 194 |
|
miper_enhance_ethall | | | 69.77 144 | 68.90 137 | 72.38 196 | 78.93 191 | 49.91 192 | 83.29 176 | 78.85 220 | 64.90 69 | 59.37 186 | 79.46 215 | 52.77 28 | 85.16 232 | 63.78 126 | 58.72 243 | 82.08 226 |
|
Anonymous20240529 | | | 69.71 145 | 67.28 164 | 77.00 101 | 83.78 93 | 50.36 180 | 88.87 46 | 85.10 109 | 47.22 280 | 64.03 139 | 83.37 174 | 27.93 268 | 92.10 54 | 57.78 180 | 67.44 183 | 88.53 120 |
|
TR-MVS | | | 69.71 145 | 67.85 152 | 75.27 137 | 82.94 117 | 48.48 224 | 87.40 69 | 80.86 187 | 57.15 203 | 64.61 130 | 87.08 134 | 32.67 234 | 89.64 112 | 46.38 251 | 71.55 157 | 87.68 135 |
|
EI-MVSNet | | | 69.70 147 | 68.70 138 | 72.68 189 | 75.00 249 | 48.90 212 | 79.54 246 | 87.16 62 | 61.05 127 | 63.88 143 | 83.74 168 | 45.87 86 | 90.44 89 | 57.42 184 | 64.68 201 | 78.70 267 |
|
test-LLR | | | 69.65 148 | 69.01 136 | 71.60 215 | 78.67 196 | 48.17 231 | 85.13 124 | 79.72 203 | 59.18 161 | 63.13 151 | 82.58 187 | 36.91 193 | 80.24 274 | 60.56 150 | 75.17 124 | 86.39 158 |
|
test1172 | | | 69.64 149 | 68.38 143 | 73.41 179 | 82.77 122 | 48.84 214 | 82.79 188 | 78.34 234 | 47.02 283 | 65.27 120 | 90.07 83 | 31.17 249 | 86.09 212 | 64.51 124 | 73.49 137 | 85.31 176 |
|
APD-MVS_3200maxsize | | | 69.62 150 | 68.23 145 | 73.80 169 | 81.58 147 | 48.22 230 | 81.91 206 | 79.50 208 | 48.21 275 | 64.24 137 | 89.75 90 | 31.91 244 | 87.55 175 | 63.08 130 | 73.85 135 | 85.64 171 |
|
v2v482 | | | 69.55 151 | 67.64 155 | 75.26 138 | 72.32 279 | 53.83 89 | 84.93 135 | 81.94 168 | 65.37 63 | 60.80 170 | 79.25 218 | 41.62 140 | 88.98 128 | 63.03 131 | 59.51 237 | 82.98 218 |
|
TAMVS | | | 69.51 152 | 68.16 146 | 73.56 176 | 76.30 232 | 48.71 217 | 82.57 191 | 77.17 253 | 62.10 106 | 61.32 166 | 84.23 161 | 41.90 137 | 83.46 251 | 54.80 199 | 73.09 143 | 88.50 121 |
|
PVSNet | | 62.49 8 | 69.27 153 | 67.81 153 | 73.64 173 | 84.41 79 | 51.85 148 | 84.63 141 | 77.80 241 | 66.42 45 | 59.80 178 | 84.95 157 | 22.14 306 | 80.44 272 | 55.03 196 | 75.11 126 | 88.62 117 |
|
MVS_111021_LR | | | 69.07 154 | 67.91 148 | 72.54 192 | 77.27 220 | 49.56 198 | 79.77 243 | 73.96 286 | 59.33 156 | 60.73 171 | 87.82 123 | 30.19 256 | 81.53 261 | 69.94 84 | 72.19 152 | 86.53 154 |
|
mvs-test1 | | | 69.04 155 | 67.57 158 | 73.44 178 | 75.17 244 | 51.68 153 | 86.57 91 | 74.48 280 | 62.15 104 | 62.07 161 | 85.79 147 | 30.59 253 | 87.48 176 | 65.40 119 | 65.94 194 | 81.18 246 |
|
GA-MVS | | | 69.04 155 | 66.70 174 | 76.06 121 | 75.11 246 | 52.36 138 | 83.12 179 | 80.23 194 | 63.32 89 | 60.65 172 | 79.22 219 | 30.98 251 | 88.37 146 | 61.25 142 | 66.41 189 | 87.46 138 |
|
cascas | | | 69.01 157 | 66.13 184 | 77.66 83 | 79.36 182 | 55.41 50 | 86.99 79 | 83.75 141 | 56.69 212 | 58.92 195 | 81.35 202 | 24.31 292 | 92.10 54 | 53.23 206 | 70.61 163 | 85.46 174 |
|
cl-mvsnet2 | | | 68.85 158 | 67.69 154 | 72.35 197 | 78.07 209 | 49.98 191 | 82.45 196 | 78.48 231 | 62.50 101 | 58.46 206 | 77.95 227 | 49.99 48 | 85.17 231 | 62.55 133 | 58.72 243 | 81.90 228 |
|
FMVSNet3 | | | 68.84 159 | 67.40 162 | 73.19 182 | 85.05 69 | 48.53 221 | 85.71 111 | 85.36 95 | 60.90 129 | 57.58 220 | 79.15 220 | 42.16 131 | 86.77 191 | 47.25 246 | 63.40 209 | 84.27 189 |
|
UniMVSNet_NR-MVSNet | | | 68.82 160 | 68.29 144 | 70.40 235 | 75.71 241 | 42.59 290 | 84.23 147 | 86.78 68 | 66.31 47 | 58.51 202 | 82.45 189 | 51.57 35 | 84.64 241 | 53.11 207 | 55.96 274 | 83.96 198 |
|
v1144 | | | 68.81 161 | 66.82 169 | 74.80 146 | 72.34 278 | 53.46 100 | 84.68 139 | 81.77 174 | 64.25 75 | 60.28 175 | 77.91 228 | 40.23 152 | 88.95 129 | 60.37 155 | 59.52 236 | 81.97 227 |
|
IS-MVSNet | | | 68.80 162 | 67.55 159 | 72.54 192 | 78.50 203 | 43.43 283 | 81.03 226 | 79.35 213 | 59.12 165 | 57.27 228 | 86.71 139 | 46.05 82 | 87.70 171 | 44.32 260 | 75.60 121 | 86.49 155 |
|
1121 | | | 68.79 163 | 66.77 171 | 74.82 144 | 83.08 110 | 53.46 100 | 80.23 238 | 71.53 303 | 45.47 296 | 66.31 108 | 87.19 132 | 34.02 220 | 85.13 233 | 52.78 213 | 80.36 81 | 85.87 167 |
|
PS-MVSNAJss | | | 68.78 164 | 67.17 166 | 73.62 175 | 73.01 268 | 48.33 229 | 84.95 134 | 84.81 116 | 59.30 157 | 58.91 196 | 79.84 213 | 37.77 173 | 88.86 132 | 62.83 132 | 63.12 218 | 83.67 204 |
|
thres200 | | | 68.71 165 | 67.27 165 | 73.02 183 | 84.73 74 | 46.76 249 | 85.03 132 | 87.73 55 | 62.34 103 | 59.87 176 | 83.45 173 | 43.15 123 | 88.32 151 | 31.25 307 | 67.91 181 | 83.98 196 |
|
UGNet | | | 68.71 165 | 67.11 167 | 73.50 177 | 80.55 173 | 47.61 240 | 84.08 150 | 78.51 230 | 59.45 149 | 65.68 117 | 82.73 185 | 23.78 294 | 85.08 235 | 52.80 212 | 76.40 111 | 87.80 132 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
miper_ehance_all_eth | | | 68.70 167 | 67.58 156 | 72.08 201 | 76.91 227 | 49.48 201 | 82.47 195 | 78.45 232 | 62.68 98 | 58.28 210 | 77.88 229 | 50.90 41 | 85.01 236 | 61.91 138 | 58.72 243 | 81.75 230 |
|
EPMVS | | | 68.45 168 | 65.44 201 | 77.47 88 | 84.91 72 | 56.17 38 | 71.89 295 | 81.91 171 | 61.72 114 | 60.85 169 | 72.49 286 | 36.21 200 | 87.06 185 | 47.32 245 | 71.62 155 | 89.17 104 |
|
test-mter | | | 68.36 169 | 67.29 163 | 71.60 215 | 78.67 196 | 48.17 231 | 85.13 124 | 79.72 203 | 53.38 244 | 63.13 151 | 82.58 187 | 27.23 274 | 80.24 274 | 60.56 150 | 75.17 124 | 86.39 158 |
|
tpm | | | 68.36 169 | 67.48 161 | 70.97 227 | 79.93 178 | 51.34 162 | 76.58 263 | 78.75 224 | 67.73 35 | 63.54 149 | 74.86 267 | 48.33 57 | 72.36 324 | 53.93 204 | 63.71 207 | 89.21 102 |
|
tttt0517 | | | 68.33 171 | 66.29 179 | 74.46 150 | 78.08 208 | 49.06 206 | 80.88 229 | 89.08 23 | 54.40 239 | 54.75 248 | 80.77 208 | 51.31 37 | 90.33 93 | 49.35 233 | 58.01 254 | 83.99 194 |
|
BH-untuned | | | 68.28 172 | 66.40 177 | 73.91 164 | 81.62 144 | 50.01 190 | 85.56 115 | 77.39 249 | 57.63 194 | 57.47 225 | 83.69 170 | 36.36 199 | 87.08 184 | 44.81 258 | 73.08 144 | 84.65 184 |
|
SR-MVS-dyc-post | | | 68.27 173 | 66.87 168 | 72.48 195 | 80.96 161 | 48.14 233 | 81.54 217 | 76.98 256 | 46.42 289 | 62.75 155 | 89.42 95 | 31.17 249 | 86.09 212 | 60.52 152 | 72.06 153 | 83.19 213 |
|
v148 | | | 68.24 174 | 66.35 178 | 73.88 165 | 71.76 282 | 51.47 158 | 84.23 147 | 81.90 172 | 63.69 84 | 58.94 193 | 76.44 251 | 43.72 115 | 87.78 169 | 60.63 148 | 55.86 276 | 82.39 224 |
|
abl_6 | | | 68.03 175 | 66.15 183 | 73.66 172 | 78.54 201 | 48.48 224 | 79.77 243 | 78.04 237 | 47.39 279 | 63.70 145 | 88.25 116 | 28.21 264 | 89.06 119 | 60.17 158 | 71.25 158 | 83.45 206 |
|
cl_fuxian | | | 67.97 176 | 66.66 175 | 71.91 212 | 76.20 234 | 49.31 203 | 82.13 202 | 78.00 239 | 61.99 108 | 57.64 219 | 76.94 243 | 49.41 52 | 84.93 237 | 60.62 149 | 57.01 263 | 81.49 234 |
|
v1192 | | | 67.96 177 | 65.74 193 | 74.63 147 | 71.79 281 | 53.43 106 | 84.06 152 | 80.99 186 | 63.19 92 | 59.56 183 | 77.46 235 | 37.50 183 | 88.65 135 | 58.20 172 | 58.93 242 | 81.79 229 |
|
v144192 | | | 67.86 178 | 65.76 192 | 74.16 158 | 71.68 283 | 53.09 118 | 84.14 149 | 80.83 188 | 62.85 96 | 59.21 190 | 77.28 238 | 39.30 161 | 88.00 162 | 58.67 166 | 57.88 258 | 81.40 239 |
|
HPM-MVS_fast | | | 67.86 178 | 66.28 180 | 72.61 190 | 80.67 170 | 48.34 228 | 81.18 224 | 75.95 270 | 50.81 263 | 59.55 184 | 88.05 121 | 27.86 269 | 85.98 216 | 58.83 163 | 73.58 136 | 83.51 205 |
|
AdaColmap | | | 67.86 178 | 65.48 198 | 75.00 141 | 88.15 29 | 54.99 64 | 86.10 99 | 76.63 264 | 49.30 270 | 57.80 214 | 86.65 141 | 29.39 260 | 88.94 131 | 45.10 257 | 70.21 166 | 81.06 247 |
|
UniMVSNet (Re) | | | 67.71 181 | 66.80 170 | 70.45 233 | 74.44 254 | 42.93 286 | 82.42 197 | 84.90 113 | 63.69 84 | 59.63 181 | 80.99 205 | 47.18 69 | 85.23 230 | 51.17 223 | 56.75 265 | 83.19 213 |
|
V42 | | | 67.66 182 | 65.60 197 | 73.86 166 | 70.69 294 | 53.63 95 | 81.50 219 | 78.61 228 | 63.85 80 | 59.49 185 | 77.49 234 | 37.98 170 | 87.65 172 | 62.33 134 | 58.43 247 | 80.29 257 |
|
WR-MVS | | | 67.58 183 | 66.76 172 | 70.04 242 | 75.92 239 | 45.06 271 | 86.23 96 | 85.28 101 | 64.31 74 | 58.50 204 | 81.00 204 | 44.80 103 | 82.00 260 | 49.21 234 | 55.57 280 | 83.06 216 |
|
tfpn200view9 | | | 67.57 184 | 66.13 184 | 71.89 213 | 84.05 87 | 45.07 268 | 83.40 172 | 87.71 57 | 60.79 130 | 57.79 215 | 82.76 182 | 43.53 118 | 87.80 166 | 28.80 313 | 66.36 190 | 82.78 222 |
|
FMVSNet2 | | | 67.57 184 | 65.79 191 | 72.90 185 | 82.71 125 | 47.97 238 | 85.15 123 | 84.93 112 | 58.55 176 | 56.71 234 | 78.26 226 | 36.72 196 | 86.67 194 | 46.15 253 | 62.94 220 | 84.07 191 |
|
FC-MVSNet-test | | | 67.49 186 | 67.91 148 | 66.21 275 | 76.06 235 | 33.06 327 | 80.82 230 | 87.18 61 | 64.44 73 | 54.81 246 | 82.87 179 | 50.40 46 | 82.60 255 | 48.05 241 | 66.55 188 | 82.98 218 |
|
v1921920 | | | 67.45 187 | 65.23 205 | 74.10 160 | 71.51 286 | 52.90 125 | 83.75 161 | 80.44 193 | 62.48 102 | 59.12 191 | 77.13 239 | 36.98 191 | 87.90 163 | 57.53 182 | 58.14 252 | 81.49 234 |
|
cl-mvsnet_ | | | 67.43 188 | 65.93 188 | 71.95 209 | 76.33 230 | 48.02 236 | 82.58 190 | 79.12 217 | 61.30 123 | 56.72 233 | 76.92 244 | 46.12 80 | 86.44 202 | 57.98 175 | 56.31 268 | 81.38 241 |
|
cl-mvsnet1 | | | 67.43 188 | 65.93 188 | 71.94 210 | 76.33 230 | 48.01 237 | 82.57 191 | 79.11 218 | 61.31 122 | 56.73 232 | 76.92 244 | 46.09 81 | 86.43 203 | 57.98 175 | 56.31 268 | 81.39 240 |
|
gg-mvs-nofinetune | | | 67.43 188 | 64.53 212 | 76.13 119 | 85.95 46 | 47.79 239 | 64.38 314 | 88.28 45 | 39.34 318 | 66.62 102 | 41.27 339 | 58.69 11 | 89.00 125 | 49.64 231 | 86.62 27 | 91.59 44 |
|
thres400 | | | 67.40 191 | 66.13 184 | 71.19 223 | 84.05 87 | 45.07 268 | 83.40 172 | 87.71 57 | 60.79 130 | 57.79 215 | 82.76 182 | 43.53 118 | 87.80 166 | 28.80 313 | 66.36 190 | 80.71 252 |
|
UA-Net | | | 67.32 192 | 66.23 181 | 70.59 231 | 78.85 192 | 41.23 301 | 73.60 279 | 75.45 274 | 61.54 118 | 66.61 103 | 84.53 159 | 38.73 166 | 86.57 200 | 42.48 270 | 74.24 131 | 83.98 196 |
|
v8 | | | 67.25 193 | 64.99 208 | 74.04 161 | 72.89 271 | 53.31 112 | 82.37 198 | 80.11 196 | 61.54 118 | 54.29 253 | 76.02 260 | 42.89 127 | 88.41 145 | 58.43 167 | 56.36 266 | 80.39 256 |
|
NR-MVSNet | | | 67.25 193 | 65.99 187 | 71.04 226 | 73.27 266 | 43.91 279 | 85.32 120 | 84.75 118 | 66.05 55 | 53.65 259 | 82.11 195 | 45.05 95 | 85.97 218 | 47.55 243 | 56.18 271 | 83.24 211 |
|
Test_1112_low_res | | | 67.18 195 | 66.23 181 | 70.02 243 | 78.75 194 | 41.02 302 | 83.43 170 | 73.69 288 | 57.29 201 | 58.45 207 | 82.39 191 | 45.30 93 | 80.88 267 | 50.50 225 | 66.26 193 | 88.16 123 |
|
CPTT-MVS | | | 67.15 196 | 65.84 190 | 71.07 225 | 80.96 161 | 50.32 183 | 81.94 205 | 74.10 283 | 46.18 292 | 57.91 212 | 87.64 128 | 29.57 258 | 81.31 263 | 64.10 125 | 70.18 167 | 81.56 233 |
|
GBi-Net | | | 67.09 197 | 65.47 199 | 71.96 206 | 82.71 125 | 46.36 254 | 83.52 163 | 83.31 148 | 58.55 176 | 57.58 220 | 76.23 255 | 36.72 196 | 86.20 204 | 47.25 246 | 63.40 209 | 83.32 208 |
|
test1 | | | 67.09 197 | 65.47 199 | 71.96 206 | 82.71 125 | 46.36 254 | 83.52 163 | 83.31 148 | 58.55 176 | 57.58 220 | 76.23 255 | 36.72 196 | 86.20 204 | 47.25 246 | 63.40 209 | 83.32 208 |
|
PatchmatchNet | | | 67.07 199 | 63.63 219 | 77.40 89 | 83.10 107 | 58.03 10 | 72.11 293 | 77.77 242 | 58.85 171 | 59.37 186 | 70.83 297 | 37.84 172 | 84.93 237 | 42.96 267 | 69.83 169 | 89.26 99 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v1240 | | | 66.99 200 | 64.68 210 | 73.93 163 | 71.38 289 | 52.66 129 | 83.39 174 | 79.98 197 | 61.97 109 | 58.44 208 | 77.11 240 | 35.25 210 | 87.81 165 | 56.46 190 | 58.15 250 | 81.33 242 |
|
eth_miper_zixun_eth | | | 66.98 201 | 65.28 204 | 72.06 202 | 75.61 242 | 50.40 178 | 81.00 227 | 76.97 259 | 62.00 107 | 56.99 230 | 76.97 242 | 44.84 100 | 85.58 222 | 58.75 165 | 54.42 286 | 80.21 258 |
|
TranMVSNet+NR-MVSNet | | | 66.94 202 | 65.61 196 | 70.93 228 | 73.45 263 | 43.38 284 | 83.02 183 | 84.25 130 | 65.31 65 | 58.33 209 | 81.90 198 | 39.92 158 | 85.52 223 | 49.43 232 | 54.89 283 | 83.89 200 |
|
thres100view900 | | | 66.87 203 | 65.42 202 | 71.24 221 | 83.29 104 | 43.15 285 | 81.67 212 | 87.78 52 | 59.04 166 | 55.92 242 | 82.18 194 | 43.73 113 | 87.80 166 | 28.80 313 | 66.36 190 | 82.78 222 |
|
DU-MVS | | | 66.84 204 | 65.74 193 | 70.16 238 | 73.27 266 | 42.59 290 | 81.50 219 | 82.92 158 | 63.53 88 | 58.51 202 | 82.11 195 | 40.75 146 | 84.64 241 | 53.11 207 | 55.96 274 | 83.24 211 |
|
IterMVS-LS | | | 66.63 205 | 65.36 203 | 70.42 234 | 75.10 247 | 48.90 212 | 81.45 222 | 76.69 263 | 61.05 127 | 55.71 243 | 77.10 241 | 45.86 87 | 83.65 248 | 57.44 183 | 57.88 258 | 78.70 267 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v10 | | | 66.61 206 | 64.20 215 | 73.83 168 | 72.59 274 | 53.37 107 | 81.88 207 | 79.91 200 | 61.11 125 | 54.09 255 | 75.60 262 | 40.06 156 | 88.26 155 | 56.47 189 | 56.10 272 | 79.86 263 |
|
Fast-Effi-MVS+-dtu | | | 66.53 207 | 64.10 216 | 73.84 167 | 72.41 277 | 52.30 141 | 84.73 138 | 75.66 271 | 59.51 148 | 56.34 239 | 79.11 221 | 28.11 266 | 85.85 221 | 57.74 181 | 63.29 213 | 83.35 207 |
|
test_part1 | | | 66.52 208 | 63.52 220 | 75.55 129 | 72.58 275 | 53.36 108 | 85.90 103 | 84.33 127 | 46.56 285 | 56.80 231 | 75.55 263 | 34.32 218 | 90.46 88 | 58.80 164 | 56.80 264 | 82.83 221 |
|
thres600view7 | | | 66.46 209 | 65.12 206 | 70.47 232 | 83.41 98 | 43.80 281 | 82.15 201 | 87.78 52 | 59.37 153 | 56.02 241 | 82.21 193 | 43.73 113 | 86.90 189 | 26.51 324 | 64.94 197 | 80.71 252 |
|
LPG-MVS_test | | | 66.44 210 | 64.58 211 | 72.02 203 | 74.42 255 | 48.60 218 | 83.07 181 | 80.64 190 | 54.69 235 | 53.75 257 | 83.83 166 | 25.73 284 | 86.98 186 | 60.33 156 | 64.71 198 | 80.48 254 |
|
tpm cat1 | | | 66.28 211 | 62.78 221 | 76.77 109 | 81.40 155 | 57.14 21 | 70.03 302 | 77.19 252 | 53.00 247 | 58.76 200 | 70.73 300 | 46.17 79 | 86.73 193 | 43.27 264 | 64.46 202 | 86.44 156 |
|
EPNet_dtu | | | 66.25 212 | 66.71 173 | 64.87 285 | 78.66 198 | 34.12 322 | 82.80 187 | 75.51 272 | 61.75 113 | 64.47 135 | 86.90 136 | 37.06 190 | 72.46 323 | 43.65 263 | 69.63 171 | 88.02 129 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+-dtu | | | 66.24 213 | 64.96 209 | 70.08 240 | 75.17 244 | 49.64 195 | 82.01 203 | 74.48 280 | 62.15 104 | 57.83 213 | 76.08 259 | 30.59 253 | 83.79 246 | 65.40 119 | 60.93 231 | 76.81 289 |
|
ACMP | | 61.11 9 | 66.24 213 | 64.33 213 | 72.00 205 | 74.89 251 | 49.12 205 | 83.18 178 | 79.83 201 | 55.41 228 | 52.29 266 | 82.68 186 | 25.83 282 | 86.10 210 | 60.89 145 | 63.94 206 | 80.78 250 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
Anonymous20231211 | | | 66.08 215 | 63.67 218 | 73.31 180 | 83.07 111 | 48.75 216 | 86.01 102 | 84.67 120 | 45.27 297 | 56.54 236 | 76.67 249 | 28.06 267 | 88.95 129 | 52.78 213 | 59.95 233 | 82.23 225 |
|
OMC-MVS | | | 65.97 216 | 65.06 207 | 68.71 257 | 72.97 269 | 42.58 292 | 78.61 252 | 75.35 275 | 54.72 234 | 59.31 188 | 86.25 145 | 33.30 228 | 77.88 295 | 57.99 174 | 67.05 185 | 85.66 170 |
|
X-MVStestdata | | | 65.85 217 | 62.20 225 | 76.81 105 | 83.41 98 | 52.48 131 | 84.88 136 | 83.20 153 | 58.03 182 | 63.91 141 | 4.82 354 | 35.50 208 | 89.78 106 | 65.50 112 | 80.50 79 | 88.16 123 |
|
Vis-MVSNet (Re-imp) | | | 65.52 218 | 65.63 195 | 65.17 283 | 77.49 217 | 30.54 334 | 75.49 270 | 77.73 243 | 59.34 154 | 52.26 268 | 86.69 140 | 49.38 53 | 80.53 271 | 37.07 282 | 75.28 123 | 84.42 187 |
|
Baseline_NR-MVSNet | | | 65.49 219 | 64.27 214 | 69.13 249 | 74.37 257 | 41.65 297 | 83.39 174 | 78.85 220 | 59.56 147 | 59.62 182 | 76.88 246 | 40.75 146 | 87.44 177 | 49.99 227 | 55.05 281 | 78.28 276 |
|
RRT_MVS | | | 65.43 220 | 64.01 217 | 69.68 245 | 81.54 149 | 50.15 187 | 82.31 199 | 76.78 260 | 55.25 229 | 60.64 173 | 82.00 197 | 25.18 287 | 79.00 284 | 60.96 144 | 51.45 299 | 79.89 262 |
|
FMVSNet1 | | | 64.57 221 | 62.11 226 | 71.96 206 | 77.32 219 | 46.36 254 | 83.52 163 | 83.31 148 | 52.43 252 | 54.42 251 | 76.23 255 | 27.80 270 | 86.20 204 | 42.59 269 | 61.34 229 | 83.32 208 |
|
dp | | | 64.41 222 | 61.58 229 | 72.90 185 | 82.40 131 | 54.09 87 | 72.53 287 | 76.59 265 | 60.39 136 | 55.68 244 | 70.39 301 | 35.18 211 | 76.90 303 | 39.34 274 | 61.71 227 | 87.73 134 |
|
ACMM | | 58.35 12 | 64.35 223 | 62.01 227 | 71.38 219 | 74.21 258 | 48.51 222 | 82.25 200 | 79.66 205 | 47.61 277 | 54.54 250 | 80.11 211 | 25.26 286 | 86.00 215 | 51.26 221 | 63.16 216 | 79.64 264 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pm-mvs1 | | | 64.12 224 | 62.56 222 | 68.78 255 | 71.68 283 | 38.87 309 | 82.89 185 | 81.57 175 | 55.54 227 | 53.89 256 | 77.82 230 | 37.73 176 | 86.74 192 | 48.46 239 | 53.49 293 | 80.72 251 |
|
miper_lstm_enhance | | | 63.91 225 | 62.30 224 | 68.75 256 | 75.06 248 | 46.78 248 | 69.02 306 | 81.14 184 | 59.68 146 | 52.76 263 | 72.39 289 | 40.71 148 | 77.99 293 | 56.81 187 | 53.09 294 | 81.48 236 |
|
SCA | | | 63.84 226 | 60.01 242 | 75.32 135 | 78.58 200 | 57.92 11 | 61.61 322 | 77.53 246 | 56.71 211 | 57.75 217 | 70.77 298 | 31.97 241 | 79.91 280 | 48.80 235 | 56.36 266 | 88.13 126 |
|
test_djsdf | | | 63.84 226 | 61.56 230 | 70.70 230 | 68.78 303 | 44.69 272 | 81.63 213 | 81.44 178 | 50.28 264 | 52.27 267 | 76.26 254 | 26.72 277 | 86.11 208 | 60.83 146 | 55.84 277 | 81.29 245 |
|
IterMVS | | | 63.77 228 | 61.67 228 | 70.08 240 | 72.68 273 | 51.24 165 | 80.44 234 | 75.51 272 | 60.51 135 | 51.41 271 | 73.70 276 | 32.08 240 | 78.91 285 | 54.30 202 | 54.35 287 | 80.08 260 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
testing_2 | | | 63.60 229 | 59.86 243 | 74.82 144 | 61.87 333 | 52.39 137 | 73.06 284 | 82.76 160 | 61.49 120 | 39.96 318 | 67.39 312 | 21.06 311 | 88.34 148 | 67.07 101 | 64.10 203 | 83.72 203 |
|
D2MVS | | | 63.49 230 | 61.39 232 | 69.77 244 | 69.29 301 | 48.93 211 | 78.89 251 | 77.71 244 | 60.64 134 | 49.70 280 | 72.10 294 | 27.08 275 | 83.48 250 | 54.48 201 | 62.65 221 | 76.90 288 |
|
pmmvs4 | | | 63.34 231 | 61.07 234 | 70.16 238 | 70.14 296 | 50.53 174 | 79.97 242 | 71.41 305 | 55.08 231 | 54.12 254 | 78.58 224 | 32.79 233 | 82.09 259 | 50.33 226 | 57.22 262 | 77.86 280 |
|
jajsoiax | | | 63.21 232 | 60.84 235 | 70.32 236 | 68.33 308 | 44.45 274 | 81.23 223 | 81.05 185 | 53.37 245 | 50.96 276 | 77.81 231 | 17.49 324 | 85.49 225 | 59.31 160 | 58.05 253 | 81.02 248 |
|
MIMVSNet | | | 63.12 233 | 60.29 240 | 71.61 214 | 75.92 239 | 46.65 250 | 65.15 311 | 81.94 168 | 59.14 163 | 54.65 249 | 69.47 304 | 25.74 283 | 80.63 269 | 41.03 271 | 69.56 172 | 87.55 136 |
|
mvs_tets | | | 62.96 234 | 60.55 237 | 70.19 237 | 68.22 311 | 44.24 278 | 80.90 228 | 80.74 189 | 52.99 248 | 50.82 278 | 77.56 232 | 16.74 327 | 85.44 226 | 59.04 162 | 57.94 255 | 80.89 249 |
|
TransMVSNet (Re) | | | 62.82 235 | 60.76 236 | 69.02 250 | 73.98 260 | 41.61 298 | 86.36 93 | 79.30 216 | 56.90 205 | 52.53 264 | 76.44 251 | 41.85 138 | 87.60 174 | 38.83 275 | 40.61 326 | 77.86 280 |
|
pmmvs5 | | | 62.80 236 | 61.18 233 | 67.66 264 | 69.53 300 | 42.37 295 | 82.65 189 | 75.19 276 | 54.30 240 | 52.03 269 | 78.51 225 | 31.64 246 | 80.67 268 | 48.60 237 | 58.15 250 | 79.95 261 |
|
test0.0.03 1 | | | 62.54 237 | 62.44 223 | 62.86 295 | 72.28 280 | 29.51 336 | 82.93 184 | 78.78 223 | 59.18 161 | 53.07 262 | 82.41 190 | 36.91 193 | 77.39 299 | 37.45 278 | 58.96 241 | 81.66 232 |
|
UniMVSNet_ETH3D | | | 62.51 238 | 60.49 238 | 68.57 260 | 68.30 309 | 40.88 304 | 73.89 278 | 79.93 199 | 51.81 258 | 54.77 247 | 79.61 214 | 24.80 290 | 81.10 264 | 49.93 228 | 61.35 228 | 83.73 202 |
|
v7n | | | 62.50 239 | 59.27 248 | 72.20 199 | 67.25 314 | 49.83 193 | 77.87 256 | 80.12 195 | 52.50 251 | 48.80 284 | 73.07 281 | 32.10 239 | 87.90 163 | 46.83 249 | 54.92 282 | 78.86 266 |
|
CR-MVSNet | | | 62.47 240 | 59.04 250 | 72.77 188 | 73.97 261 | 56.57 29 | 60.52 325 | 71.72 299 | 60.04 139 | 57.49 223 | 65.86 316 | 38.94 163 | 80.31 273 | 42.86 268 | 59.93 234 | 81.42 237 |
|
tpmvs | | | 62.45 241 | 59.42 246 | 71.53 218 | 83.93 89 | 54.32 81 | 70.03 302 | 77.61 245 | 51.91 255 | 53.48 260 | 68.29 308 | 37.91 171 | 86.66 195 | 33.36 297 | 58.27 248 | 73.62 311 |
|
EG-PatchMatch MVS | | | 62.40 242 | 59.59 244 | 70.81 229 | 73.29 265 | 49.05 207 | 85.81 104 | 84.78 117 | 51.85 257 | 44.19 300 | 73.48 279 | 15.52 332 | 89.85 104 | 40.16 272 | 67.24 184 | 73.54 312 |
|
XVG-OURS-SEG-HR | | | 62.02 243 | 59.54 245 | 69.46 247 | 65.30 319 | 45.88 261 | 65.06 312 | 73.57 290 | 46.45 288 | 57.42 226 | 83.35 175 | 26.95 276 | 78.09 291 | 53.77 205 | 64.03 204 | 84.42 187 |
|
XVG-OURS | | | 61.88 244 | 59.34 247 | 69.49 246 | 65.37 318 | 46.27 257 | 64.80 313 | 73.49 291 | 47.04 282 | 57.41 227 | 82.85 180 | 25.15 288 | 78.18 289 | 53.00 210 | 64.98 196 | 84.01 193 |
|
TAPA-MVS | | 56.12 14 | 61.82 245 | 60.18 241 | 66.71 271 | 78.48 204 | 37.97 313 | 75.19 272 | 76.41 267 | 46.82 284 | 57.04 229 | 86.52 143 | 27.67 272 | 77.03 301 | 26.50 325 | 67.02 186 | 85.14 178 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
tfpnnormal | | | 61.47 246 | 59.09 249 | 68.62 259 | 76.29 233 | 41.69 296 | 81.14 225 | 85.16 106 | 54.48 238 | 51.32 272 | 73.63 277 | 32.32 237 | 86.89 190 | 21.78 334 | 55.71 278 | 77.29 286 |
|
PVSNet_0 | | 57.04 13 | 61.19 247 | 57.24 258 | 73.02 183 | 77.45 218 | 50.31 184 | 79.43 248 | 77.36 251 | 63.96 79 | 47.51 291 | 72.45 288 | 25.03 289 | 83.78 247 | 52.76 216 | 19.22 345 | 84.96 181 |
|
PLC | | 52.38 18 | 60.89 248 | 58.97 251 | 66.68 273 | 81.77 140 | 45.70 263 | 78.96 250 | 74.04 285 | 43.66 308 | 47.63 288 | 83.19 178 | 23.52 297 | 77.78 298 | 37.47 277 | 60.46 232 | 76.55 293 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CVMVSNet | | | 60.85 249 | 60.44 239 | 62.07 296 | 75.00 249 | 32.73 329 | 79.54 246 | 73.49 291 | 36.98 326 | 56.28 240 | 83.74 168 | 29.28 261 | 69.53 330 | 46.48 250 | 63.23 214 | 83.94 199 |
|
CNLPA | | | 60.59 250 | 58.44 253 | 67.05 270 | 79.21 186 | 47.26 244 | 79.75 245 | 64.34 323 | 42.46 314 | 51.90 270 | 83.94 164 | 27.79 271 | 75.41 308 | 37.12 280 | 59.49 238 | 78.47 271 |
|
anonymousdsp | | | 60.46 251 | 57.65 255 | 68.88 251 | 63.63 327 | 45.09 267 | 72.93 285 | 78.63 227 | 46.52 287 | 51.12 273 | 72.80 285 | 21.46 309 | 83.07 254 | 57.79 179 | 53.97 288 | 78.47 271 |
|
ACMH | | 53.70 16 | 59.78 252 | 55.94 267 | 71.28 220 | 76.59 229 | 48.35 227 | 80.15 241 | 76.11 268 | 49.74 268 | 41.91 311 | 73.45 280 | 16.50 329 | 90.31 94 | 31.42 305 | 57.63 260 | 75.17 301 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs6 | | | 59.64 253 | 57.15 259 | 67.09 268 | 66.01 315 | 36.86 317 | 80.50 233 | 78.64 226 | 45.05 299 | 49.05 283 | 73.94 272 | 27.28 273 | 86.10 210 | 43.96 262 | 49.94 302 | 78.31 275 |
|
MSDG | | | 59.44 254 | 55.14 272 | 72.32 198 | 74.69 252 | 50.71 169 | 74.39 276 | 73.58 289 | 44.44 303 | 43.40 305 | 77.52 233 | 19.45 316 | 90.87 79 | 31.31 306 | 57.49 261 | 75.38 300 |
|
RPMNet | | | 59.29 255 | 54.25 276 | 74.42 152 | 73.97 261 | 56.57 29 | 60.52 325 | 76.98 256 | 35.72 329 | 57.49 223 | 58.87 332 | 37.73 176 | 85.26 229 | 27.01 323 | 59.93 234 | 81.42 237 |
|
DP-MVS | | | 59.24 256 | 56.12 265 | 68.63 258 | 88.24 28 | 50.35 181 | 82.51 194 | 64.43 322 | 41.10 316 | 46.70 294 | 78.77 223 | 24.75 291 | 88.57 141 | 22.26 332 | 56.29 270 | 66.96 330 |
|
OpenMVS_ROB | | 53.19 17 | 59.20 257 | 56.00 266 | 68.83 253 | 71.13 291 | 44.30 276 | 83.64 162 | 75.02 277 | 46.42 289 | 46.48 296 | 73.03 282 | 18.69 319 | 88.14 156 | 27.74 320 | 61.80 226 | 74.05 308 |
|
IterMVS-SCA-FT | | | 59.12 258 | 58.81 252 | 60.08 307 | 70.68 295 | 45.07 268 | 80.42 235 | 74.25 282 | 43.54 309 | 50.02 279 | 73.73 273 | 31.97 241 | 56.74 339 | 51.06 224 | 53.60 292 | 78.42 273 |
|
our_test_3 | | | 59.11 259 | 55.08 273 | 71.18 224 | 71.42 287 | 53.29 113 | 81.96 204 | 74.52 279 | 48.32 274 | 42.08 309 | 69.28 306 | 28.14 265 | 82.15 257 | 34.35 295 | 45.68 317 | 78.11 279 |
|
Anonymous20231206 | | | 59.08 260 | 57.59 256 | 63.55 290 | 68.77 304 | 32.14 332 | 80.26 237 | 79.78 202 | 50.00 267 | 49.39 281 | 72.39 289 | 26.64 278 | 78.36 288 | 33.12 300 | 57.94 255 | 80.14 259 |
|
WR-MVS_H | | | 58.91 261 | 58.04 254 | 61.54 301 | 69.07 302 | 33.83 324 | 76.91 260 | 81.99 167 | 51.40 260 | 48.17 285 | 74.67 268 | 40.23 152 | 74.15 312 | 31.78 304 | 48.10 304 | 76.64 291 |
|
LCM-MVSNet-Re | | | 58.82 262 | 56.54 262 | 65.68 277 | 79.31 185 | 29.09 339 | 61.39 324 | 45.79 341 | 60.73 132 | 37.65 324 | 72.47 287 | 31.42 247 | 81.08 265 | 49.66 230 | 70.41 164 | 86.87 146 |
|
Patchmatch-RL test | | | 58.72 263 | 54.32 275 | 71.92 211 | 63.91 326 | 44.25 277 | 61.73 321 | 55.19 333 | 57.38 200 | 49.31 282 | 54.24 336 | 37.60 179 | 80.89 266 | 62.19 136 | 47.28 309 | 90.63 71 |
|
FMVSNet5 | | | 58.61 264 | 56.45 263 | 65.10 284 | 77.20 224 | 39.74 306 | 74.77 273 | 77.12 254 | 50.27 266 | 43.28 306 | 67.71 310 | 26.15 281 | 76.90 303 | 36.78 285 | 54.78 284 | 78.65 269 |
|
ppachtmachnet_test | | | 58.56 265 | 54.34 274 | 71.24 221 | 71.42 287 | 54.74 71 | 81.84 209 | 72.27 296 | 49.02 272 | 45.86 299 | 68.99 307 | 26.27 279 | 83.30 252 | 30.12 309 | 43.23 322 | 75.69 297 |
|
ACMH+ | | 54.58 15 | 58.55 266 | 55.24 269 | 68.50 261 | 74.68 253 | 45.80 262 | 80.27 236 | 70.21 310 | 47.15 281 | 42.77 308 | 75.48 264 | 16.73 328 | 85.98 216 | 35.10 293 | 54.78 284 | 73.72 310 |
|
CP-MVSNet | | | 58.54 267 | 57.57 257 | 61.46 302 | 68.50 306 | 33.96 323 | 76.90 261 | 78.60 229 | 51.67 259 | 47.83 286 | 76.60 250 | 34.99 213 | 72.79 321 | 35.45 289 | 47.58 306 | 77.64 284 |
|
PEN-MVS | | | 58.35 268 | 57.15 259 | 61.94 298 | 67.55 313 | 34.39 321 | 77.01 259 | 78.35 233 | 51.87 256 | 47.72 287 | 76.73 248 | 33.91 222 | 73.75 316 | 34.03 296 | 47.17 310 | 77.68 282 |
|
PS-CasMVS | | | 58.12 269 | 57.03 261 | 61.37 303 | 68.24 310 | 33.80 325 | 76.73 262 | 78.01 238 | 51.20 261 | 47.54 290 | 76.20 258 | 32.85 231 | 72.76 322 | 35.17 291 | 47.37 308 | 77.55 285 |
|
UnsupCasMVSNet_eth | | | 57.56 270 | 55.15 271 | 64.79 286 | 64.57 324 | 33.12 326 | 73.17 283 | 83.87 140 | 58.98 169 | 41.75 312 | 70.03 302 | 22.54 301 | 79.92 278 | 46.12 254 | 35.31 332 | 81.32 244 |
|
CHOSEN 280x420 | | | 57.53 271 | 56.38 264 | 60.97 305 | 74.01 259 | 48.10 235 | 46.30 337 | 54.31 335 | 48.18 276 | 50.88 277 | 77.43 236 | 38.37 169 | 59.16 338 | 54.83 197 | 63.14 217 | 75.66 298 |
|
DTE-MVSNet | | | 57.03 272 | 55.73 268 | 60.95 306 | 65.94 316 | 32.57 330 | 75.71 265 | 77.09 255 | 51.16 262 | 46.65 295 | 76.34 253 | 32.84 232 | 73.22 320 | 30.94 308 | 44.87 318 | 77.06 287 |
|
MVS_0304 | | | 56.72 273 | 55.17 270 | 61.37 303 | 70.71 292 | 36.80 318 | 75.74 264 | 68.75 314 | 44.11 306 | 52.53 264 | 68.20 309 | 15.05 333 | 74.53 311 | 42.98 266 | 58.44 246 | 72.79 317 |
|
PatchMatch-RL | | | 56.66 274 | 53.75 279 | 65.37 282 | 77.91 213 | 45.28 266 | 69.78 304 | 60.38 328 | 41.35 315 | 47.57 289 | 73.73 273 | 16.83 326 | 76.91 302 | 36.99 283 | 59.21 240 | 73.92 309 |
|
PatchT | | | 56.60 275 | 52.97 282 | 67.48 265 | 72.94 270 | 46.16 260 | 57.30 329 | 73.78 287 | 38.77 320 | 54.37 252 | 57.26 335 | 37.52 181 | 78.06 292 | 32.02 302 | 52.79 295 | 78.23 278 |
|
Patchmtry | | | 56.56 276 | 52.95 283 | 67.42 266 | 72.53 276 | 50.59 173 | 59.05 327 | 71.72 299 | 37.86 324 | 46.92 292 | 65.86 316 | 38.94 163 | 80.06 277 | 36.94 284 | 46.72 314 | 71.60 321 |
|
test_0402 | | | 56.45 277 | 53.03 281 | 66.69 272 | 76.78 228 | 50.31 184 | 81.76 210 | 69.61 312 | 42.79 312 | 43.88 301 | 72.13 292 | 22.82 300 | 86.46 201 | 16.57 342 | 50.94 300 | 63.31 336 |
|
LS3D | | | 56.40 278 | 53.82 278 | 64.12 287 | 81.12 159 | 45.69 264 | 73.42 281 | 66.14 318 | 35.30 333 | 43.24 307 | 79.88 212 | 22.18 305 | 79.62 282 | 19.10 340 | 64.00 205 | 67.05 329 |
|
ADS-MVSNet | | | 56.17 279 | 51.95 288 | 68.84 252 | 80.60 171 | 53.07 120 | 55.03 331 | 70.02 311 | 44.72 300 | 51.00 274 | 61.19 326 | 22.83 298 | 78.88 286 | 28.54 316 | 53.63 290 | 74.57 305 |
|
XVG-ACMP-BASELINE | | | 56.03 280 | 52.85 284 | 65.58 278 | 61.91 332 | 40.95 303 | 63.36 315 | 72.43 295 | 45.20 298 | 46.02 297 | 74.09 270 | 9.20 342 | 78.12 290 | 45.13 256 | 58.27 248 | 77.66 283 |
|
pmmvs-eth3d | | | 55.97 281 | 52.78 285 | 65.54 279 | 61.02 335 | 46.44 253 | 75.36 271 | 67.72 316 | 49.61 269 | 43.65 303 | 67.58 311 | 21.63 308 | 77.04 300 | 44.11 261 | 44.33 319 | 73.15 316 |
|
F-COLMAP | | | 55.96 282 | 53.65 280 | 62.87 294 | 72.76 272 | 42.77 289 | 74.70 275 | 70.37 309 | 40.03 317 | 41.11 315 | 79.36 216 | 17.77 323 | 73.70 317 | 32.80 301 | 53.96 289 | 72.15 318 |
|
CMPMVS | | 40.41 21 | 55.34 283 | 52.64 286 | 63.46 291 | 60.88 336 | 43.84 280 | 61.58 323 | 71.06 306 | 30.43 336 | 36.33 325 | 74.63 269 | 24.14 293 | 75.44 307 | 48.05 241 | 66.62 187 | 71.12 324 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test20.03 | | | 55.22 284 | 54.07 277 | 58.68 311 | 63.14 329 | 25.00 343 | 77.69 257 | 74.78 278 | 52.64 249 | 43.43 304 | 72.39 289 | 26.21 280 | 74.76 310 | 29.31 311 | 47.05 312 | 76.28 295 |
|
ADS-MVSNet2 | | | 55.21 285 | 51.44 289 | 66.51 274 | 80.60 171 | 49.56 198 | 55.03 331 | 65.44 319 | 44.72 300 | 51.00 274 | 61.19 326 | 22.83 298 | 75.41 308 | 28.54 316 | 53.63 290 | 74.57 305 |
|
SixPastTwentyTwo | | | 54.37 286 | 50.10 293 | 67.21 267 | 70.70 293 | 41.46 299 | 74.73 274 | 64.69 321 | 47.56 278 | 39.12 321 | 69.49 303 | 18.49 321 | 84.69 240 | 31.87 303 | 34.20 337 | 75.48 299 |
|
USDC | | | 54.36 287 | 51.23 290 | 63.76 289 | 64.29 325 | 37.71 314 | 62.84 320 | 73.48 293 | 56.85 206 | 35.47 328 | 71.94 295 | 9.23 341 | 78.43 287 | 38.43 276 | 48.57 303 | 75.13 302 |
|
testgi | | | 54.25 288 | 52.57 287 | 59.29 309 | 62.76 330 | 21.65 347 | 72.21 292 | 70.47 308 | 53.25 246 | 41.94 310 | 77.33 237 | 14.28 334 | 77.95 294 | 29.18 312 | 51.72 298 | 78.28 276 |
|
K. test v3 | | | 54.04 289 | 49.42 297 | 67.92 263 | 68.55 305 | 42.57 293 | 75.51 269 | 63.07 325 | 52.07 253 | 39.21 320 | 64.59 320 | 19.34 317 | 82.21 256 | 37.11 281 | 25.31 342 | 78.97 265 |
|
UnsupCasMVSNet_bld | | | 53.86 290 | 50.53 292 | 63.84 288 | 63.52 328 | 34.75 320 | 71.38 296 | 81.92 170 | 46.53 286 | 38.95 322 | 57.93 333 | 20.55 313 | 80.20 276 | 39.91 273 | 34.09 338 | 76.57 292 |
|
YYNet1 | | | 53.82 291 | 49.96 294 | 65.41 281 | 70.09 298 | 48.95 209 | 72.30 290 | 71.66 301 | 44.25 304 | 31.89 337 | 63.07 323 | 23.73 295 | 73.95 314 | 33.26 298 | 39.40 328 | 73.34 313 |
|
MDA-MVSNet_test_wron | | | 53.82 291 | 49.95 295 | 65.43 280 | 70.13 297 | 49.05 207 | 72.30 290 | 71.65 302 | 44.23 305 | 31.85 338 | 63.13 322 | 23.68 296 | 74.01 313 | 33.25 299 | 39.35 329 | 73.23 315 |
|
Patchmatch-test | | | 53.33 293 | 48.17 299 | 68.81 254 | 73.31 264 | 42.38 294 | 42.98 340 | 58.23 330 | 32.53 334 | 38.79 323 | 70.77 298 | 39.66 159 | 73.51 318 | 25.18 327 | 52.06 297 | 90.55 72 |
|
LTVRE_ROB | | 45.45 19 | 52.73 294 | 49.74 296 | 61.69 300 | 69.78 299 | 34.99 319 | 44.52 338 | 67.60 317 | 43.11 311 | 43.79 302 | 74.03 271 | 18.54 320 | 81.45 262 | 28.39 318 | 57.94 255 | 68.62 327 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
EU-MVSNet | | | 52.63 295 | 50.72 291 | 58.37 312 | 62.69 331 | 28.13 341 | 72.60 286 | 75.97 269 | 30.94 335 | 40.76 317 | 72.11 293 | 20.16 314 | 70.80 326 | 35.11 292 | 46.11 315 | 76.19 296 |
|
OurMVSNet-221017-0 | | | 52.39 296 | 48.73 298 | 63.35 292 | 65.21 320 | 38.42 311 | 68.54 308 | 64.95 320 | 38.19 321 | 39.57 319 | 71.43 296 | 13.23 336 | 79.92 278 | 37.16 279 | 40.32 327 | 71.72 320 |
|
JIA-IIPM | | | 52.33 297 | 47.77 302 | 66.03 276 | 71.20 290 | 46.92 247 | 40.00 344 | 76.48 266 | 37.10 325 | 46.73 293 | 37.02 341 | 32.96 230 | 77.88 295 | 35.97 287 | 52.45 296 | 73.29 314 |
|
MDA-MVSNet-bldmvs | | | 51.56 298 | 47.75 303 | 63.00 293 | 71.60 285 | 47.32 243 | 69.70 305 | 72.12 297 | 43.81 307 | 27.65 342 | 63.38 321 | 21.97 307 | 75.96 305 | 27.30 322 | 32.19 339 | 65.70 333 |
|
COLMAP_ROB | | 43.60 20 | 50.90 299 | 48.05 300 | 59.47 308 | 67.81 312 | 40.57 305 | 71.25 297 | 62.72 327 | 36.49 328 | 36.19 326 | 73.51 278 | 13.48 335 | 73.92 315 | 20.71 336 | 50.26 301 | 63.92 335 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MIMVSNet1 | | | 50.35 300 | 47.81 301 | 57.96 313 | 61.53 334 | 27.80 342 | 67.40 309 | 74.06 284 | 43.25 310 | 33.31 336 | 65.38 319 | 16.03 330 | 71.34 325 | 21.80 333 | 47.55 307 | 74.75 303 |
|
MVS-HIRNet | | | 49.01 301 | 44.71 305 | 61.92 299 | 76.06 235 | 46.61 251 | 63.23 317 | 54.90 334 | 24.77 340 | 33.56 333 | 36.60 342 | 21.28 310 | 75.88 306 | 29.49 310 | 62.54 222 | 63.26 337 |
|
new-patchmatchnet | | | 48.21 302 | 46.55 304 | 53.18 318 | 57.73 339 | 18.19 351 | 70.24 300 | 71.02 307 | 45.70 293 | 33.70 332 | 60.23 328 | 18.00 322 | 69.86 329 | 27.97 319 | 34.35 335 | 71.49 323 |
|
TinyColmap | | | 48.15 303 | 44.49 307 | 59.13 310 | 65.73 317 | 38.04 312 | 63.34 316 | 62.86 326 | 38.78 319 | 29.48 340 | 67.23 314 | 6.46 347 | 73.30 319 | 24.59 328 | 41.90 324 | 66.04 331 |
|
AllTest | | | 47.32 304 | 44.66 306 | 55.32 316 | 65.08 321 | 37.50 315 | 62.96 319 | 54.25 336 | 35.45 331 | 33.42 334 | 72.82 283 | 9.98 339 | 59.33 336 | 24.13 329 | 43.84 320 | 69.13 325 |
|
PM-MVS | | | 46.92 305 | 43.76 309 | 56.41 315 | 52.18 342 | 32.26 331 | 63.21 318 | 38.18 346 | 37.99 323 | 40.78 316 | 66.20 315 | 5.09 350 | 65.42 333 | 48.19 240 | 41.99 323 | 71.54 322 |
|
RPSCF | | | 45.77 306 | 44.13 308 | 50.68 320 | 57.67 340 | 29.66 335 | 54.92 333 | 45.25 343 | 26.69 339 | 45.92 298 | 75.92 261 | 17.43 325 | 45.70 347 | 27.44 321 | 45.95 316 | 76.67 290 |
|
pmmvs3 | | | 45.53 307 | 41.55 310 | 57.44 314 | 48.97 345 | 39.68 307 | 70.06 301 | 57.66 331 | 28.32 338 | 34.06 331 | 57.29 334 | 8.50 343 | 66.85 332 | 34.86 294 | 34.26 336 | 65.80 332 |
|
N_pmnet | | | 41.25 308 | 39.77 311 | 45.66 324 | 68.50 306 | 0.82 359 | 72.51 288 | 0.38 359 | 35.61 330 | 35.26 329 | 61.51 325 | 20.07 315 | 67.74 331 | 23.51 331 | 40.63 325 | 68.42 328 |
|
TDRefinement | | | 40.91 309 | 38.37 312 | 48.55 322 | 50.45 343 | 33.03 328 | 58.98 328 | 50.97 339 | 28.50 337 | 29.89 339 | 67.39 312 | 6.21 349 | 54.51 340 | 17.67 341 | 35.25 333 | 58.11 338 |
|
DSMNet-mixed | | | 38.35 310 | 35.36 313 | 47.33 323 | 48.11 346 | 14.91 353 | 37.87 345 | 36.60 348 | 19.18 344 | 34.37 330 | 59.56 331 | 15.53 331 | 53.01 342 | 20.14 338 | 46.89 313 | 74.07 307 |
|
FPMVS | | | 35.40 311 | 33.67 314 | 40.57 326 | 46.34 347 | 28.74 340 | 41.05 342 | 57.05 332 | 20.37 343 | 22.27 344 | 53.38 337 | 6.87 345 | 44.94 348 | 8.62 346 | 47.11 311 | 48.01 342 |
|
ANet_high | | | 34.39 312 | 29.59 317 | 48.78 321 | 30.34 353 | 22.28 345 | 55.53 330 | 63.79 324 | 38.11 322 | 15.47 346 | 36.56 343 | 6.94 344 | 59.98 335 | 13.93 344 | 5.64 353 | 64.08 334 |
|
new_pmnet | | | 33.56 313 | 31.89 316 | 38.59 327 | 49.01 344 | 20.42 348 | 51.01 334 | 37.92 347 | 20.58 341 | 23.45 343 | 46.79 338 | 6.66 346 | 49.28 345 | 20.00 339 | 31.57 341 | 46.09 343 |
|
LF4IMVS | | | 33.04 314 | 32.55 315 | 34.52 330 | 40.96 348 | 22.03 346 | 44.45 339 | 35.62 349 | 20.42 342 | 28.12 341 | 62.35 324 | 5.03 351 | 31.88 352 | 21.61 335 | 34.42 334 | 49.63 341 |
|
LCM-MVSNet | | | 28.07 315 | 23.85 320 | 40.71 325 | 27.46 355 | 18.93 350 | 30.82 347 | 46.19 340 | 12.76 348 | 16.40 345 | 34.70 345 | 1.90 356 | 48.69 346 | 20.25 337 | 24.22 343 | 54.51 339 |
|
Gipuma | | | 27.47 316 | 24.26 319 | 37.12 329 | 60.55 337 | 29.17 338 | 11.68 350 | 60.00 329 | 14.18 347 | 10.52 350 | 15.12 351 | 2.20 355 | 63.01 334 | 8.39 347 | 35.65 331 | 19.18 346 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 26.71 317 | 22.98 321 | 37.87 328 | 36.89 350 | 8.51 357 | 42.51 341 | 29.32 353 | 19.09 345 | 13.01 347 | 37.54 340 | 2.23 354 | 53.11 341 | 14.54 343 | 11.71 346 | 51.99 340 |
|
PMVS | | 19.57 22 | 25.07 318 | 22.43 322 | 32.99 331 | 23.12 356 | 22.98 344 | 40.98 343 | 35.19 350 | 15.99 346 | 11.95 349 | 35.87 344 | 1.47 358 | 49.29 344 | 5.41 351 | 31.90 340 | 26.70 345 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 19.16 319 | 18.40 323 | 21.44 333 | 36.19 351 | 13.63 354 | 47.59 335 | 30.89 351 | 10.73 349 | 5.91 353 | 16.59 349 | 3.66 353 | 39.77 349 | 5.95 350 | 8.14 348 | 10.92 348 |
|
EMVS | | | 18.42 320 | 17.66 324 | 20.71 334 | 34.13 352 | 12.64 355 | 46.94 336 | 29.94 352 | 10.46 351 | 5.58 354 | 14.93 352 | 4.23 352 | 38.83 350 | 5.24 352 | 7.51 350 | 10.67 349 |
|
cdsmvs_eth3d_5k | | | 18.33 321 | 24.44 318 | 0.00 340 | 0.00 360 | 0.00 361 | 0.00 352 | 89.40 17 | 0.00 355 | 0.00 358 | 92.02 36 | 38.55 167 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
MVE | | 16.60 23 | 17.34 322 | 13.39 325 | 29.16 332 | 28.43 354 | 19.72 349 | 13.73 349 | 23.63 354 | 7.23 352 | 7.96 351 | 21.41 347 | 0.80 359 | 36.08 351 | 6.97 348 | 10.39 347 | 31.69 344 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 9.44 323 | 10.68 326 | 5.73 337 | 2.49 358 | 4.21 358 | 10.48 351 | 18.04 355 | 0.34 354 | 12.59 348 | 20.49 348 | 11.39 337 | 7.03 355 | 13.84 345 | 6.46 352 | 5.95 350 |
|
wuyk23d | | | 9.11 324 | 8.77 328 | 10.15 336 | 40.18 349 | 16.76 352 | 20.28 348 | 1.01 358 | 2.58 353 | 2.66 355 | 0.98 355 | 0.23 360 | 12.49 354 | 4.08 353 | 6.90 351 | 1.19 351 |
|
ab-mvs-re | | | 7.68 325 | 10.24 327 | 0.00 340 | 0.00 360 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 355 | 0.00 358 | 92.12 33 | 0.00 361 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
testmvs | | | 6.14 326 | 8.18 329 | 0.01 338 | 0.01 359 | 0.00 361 | 73.40 282 | 0.00 360 | 0.00 355 | 0.02 356 | 0.15 356 | 0.00 361 | 0.00 356 | 0.02 354 | 0.00 354 | 0.02 352 |
|
test123 | | | 6.01 327 | 8.01 330 | 0.01 338 | 0.00 360 | 0.01 360 | 71.93 294 | 0.00 360 | 0.00 355 | 0.02 356 | 0.11 357 | 0.00 361 | 0.00 356 | 0.02 354 | 0.00 354 | 0.02 352 |
|
pcd_1.5k_mvsjas | | | 3.15 328 | 4.20 331 | 0.00 340 | 0.00 360 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 355 | 0.00 358 | 0.00 358 | 37.77 173 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 360 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 355 | 0.00 358 | 0.00 358 | 0.00 361 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 360 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 355 | 0.00 358 | 0.00 358 | 0.00 361 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 360 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 355 | 0.00 358 | 0.00 358 | 0.00 361 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 360 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 355 | 0.00 358 | 0.00 358 | 0.00 361 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 360 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 355 | 0.00 358 | 0.00 358 | 0.00 361 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 360 | 0.00 361 | 0.00 352 | 0.00 360 | 0.00 355 | 0.00 358 | 0.00 358 | 0.00 361 | 0.00 356 | 0.00 356 | 0.00 354 | 0.00 354 |
|
ZD-MVS | | | | | | 89.55 11 | 53.46 100 | | 84.38 124 | 57.02 204 | 73.97 43 | 91.03 54 | 44.57 104 | 91.17 71 | 75.41 52 | 81.78 69 | |
|
RE-MVS-def | | | | 66.66 175 | | 80.96 161 | 48.14 233 | 81.54 217 | 76.98 256 | 46.42 289 | 62.75 155 | 89.42 95 | 29.28 261 | | 60.52 152 | 72.06 153 | 83.19 213 |
|
IU-MVS | | | | | | 89.48 14 | 57.49 16 | | 91.38 5 | 66.22 49 | 88.26 1 | | | | 82.83 7 | 87.60 16 | 92.44 25 |
|
OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 41 | 92.48 3 | | | | 94.01 6 | 67.21 2 | 95.10 13 | 89.82 1 | 92.55 3 | 94.06 3 |
|
test_241102_TWO | | | | | | | | | 88.76 34 | 57.50 198 | 83.60 5 | 94.09 4 | 56.14 16 | 96.37 5 | 82.28 11 | 87.43 18 | 92.55 23 |
|
test_241102_ONE | | | | | | 89.48 14 | 56.89 25 | | 88.94 27 | 57.53 196 | 84.61 3 | 93.29 13 | 58.81 9 | 96.45 1 | | | |
|
9.14 | | | | 78.19 22 | | 85.67 52 | | 88.32 53 | 88.84 31 | 59.89 142 | 74.58 39 | 92.62 24 | 46.80 73 | 92.66 39 | 81.40 17 | 85.62 37 | |
|
save fliter | | | | | | 85.35 63 | 56.34 35 | 89.31 37 | 81.46 177 | 61.55 116 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 58.00 184 | 81.91 9 | 93.64 10 | 56.54 13 | 96.44 2 | 81.64 16 | 86.86 23 | 92.23 29 |
|
test_0728_SECOND | | | | | 82.20 8 | 89.50 12 | 57.73 12 | 92.34 5 | 88.88 29 | | | | | 96.39 4 | 81.68 13 | 87.13 19 | 92.47 24 |
|
test0726 | | | | | | 89.40 17 | 57.45 17 | 92.32 7 | 88.63 37 | 57.71 192 | 83.14 7 | 93.96 7 | 55.17 17 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 126 |
|
test_part2 | | | | | | 89.33 19 | 55.48 47 | | | | 82.27 8 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 165 | | | | 88.13 126 |
|
sam_mvs | | | | | | | | | | | | | 35.99 206 | | | | |
|
ambc | | | | | 62.06 297 | 53.98 341 | 29.38 337 | 35.08 346 | 79.65 206 | | 41.37 313 | 59.96 329 | 6.27 348 | 82.15 257 | 35.34 290 | 38.22 330 | 74.65 304 |
|
MTGPA | | | | | | | | | 81.31 180 | | | | | | | | |
|
test_post1 | | | | | | | | 70.84 299 | | | | 14.72 353 | 34.33 217 | 83.86 244 | 48.80 235 | | |
|
test_post | | | | | | | | | | | | 16.22 350 | 37.52 181 | 84.72 239 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 330 | 38.41 168 | 79.91 280 | | | |
|
GG-mvs-BLEND | | | | | 77.77 80 | 86.68 42 | 50.61 171 | 68.67 307 | 88.45 44 | | 68.73 86 | 87.45 130 | 59.15 8 | 90.67 82 | 54.83 197 | 87.67 15 | 92.03 35 |
|
MTMP | | | | | | | | 87.27 74 | 15.34 356 | | | | | | | | |
|
gm-plane-assit | | | | | | 83.24 105 | 54.21 84 | | | 70.91 12 | | 88.23 117 | | 95.25 12 | 66.37 105 | | |
|
test9_res | | | | | | | | | | | | | | | 78.72 27 | 85.44 40 | 91.39 52 |
|
TEST9 | | | | | | 85.68 50 | 55.42 48 | 87.59 64 | 84.00 136 | 57.72 191 | 72.99 53 | 90.98 56 | 44.87 99 | 88.58 138 | | | |
|
test_8 | | | | | | 85.72 49 | 55.31 52 | 87.60 61 | 83.88 139 | 57.84 189 | 72.84 56 | 90.99 55 | 44.99 96 | 88.34 148 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 47 | 85.11 44 | 91.01 63 |
|
agg_prior | | | | | | 85.64 53 | 54.92 66 | | 83.61 145 | | 72.53 60 | | | 88.10 159 | | | |
|
TestCases | | | | | 55.32 316 | 65.08 321 | 37.50 315 | | 54.25 336 | 35.45 331 | 33.42 334 | 72.82 283 | 9.98 339 | 59.33 336 | 24.13 329 | 43.84 320 | 69.13 325 |
|
test_prior4 | | | | | | | 56.39 34 | 87.15 77 | | | | | | | | | |
|
test_prior2 | | | | | | | | 89.04 42 | | 61.88 111 | 73.55 47 | 91.46 50 | 48.01 61 | | 74.73 55 | 85.46 38 | |
|
test_prior | | | | | 78.39 65 | 86.35 44 | 54.91 68 | | 85.45 91 | | | | | 89.70 109 | | | 90.55 72 |
|
旧先验2 | | | | | | | | 81.73 211 | | 45.53 295 | 74.66 35 | | | 70.48 328 | 58.31 171 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 81.61 215 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 73.30 181 | 83.10 107 | 53.48 99 | | 71.43 304 | 45.55 294 | 66.14 109 | 87.17 133 | 33.88 224 | 80.54 270 | 48.50 238 | 80.33 82 | 85.88 166 |
|
旧先验1 | | | | | | 81.57 148 | 47.48 241 | | 71.83 298 | | | 88.66 109 | 36.94 192 | | | 78.34 99 | 88.67 115 |
|
æ— å…ˆéªŒ | | | | | | | | 85.19 122 | 78.00 239 | 49.08 271 | | | | 85.13 233 | 52.78 213 | | 87.45 139 |
|
原ACMM2 | | | | | | | | 83.77 160 | | | | | | | | | |
|
原ACMM1 | | | | | 76.13 119 | 84.89 73 | 54.59 78 | | 85.26 102 | 51.98 254 | 66.70 100 | 87.07 135 | 40.15 154 | 89.70 109 | 51.23 222 | 85.06 45 | 84.10 190 |
|
test222 | | | | | | 79.36 182 | 50.97 167 | 77.99 255 | 67.84 315 | 42.54 313 | 62.84 154 | 86.53 142 | 30.26 255 | | | 76.91 109 | 85.23 177 |
|
testdata2 | | | | | | | | | | | | | | 77.81 297 | 45.64 255 | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 98 | | | | |
|
testdata | | | | | 67.08 269 | 77.59 215 | 45.46 265 | | 69.20 313 | 44.47 302 | 71.50 72 | 88.34 113 | 31.21 248 | 70.76 327 | 52.20 219 | 75.88 117 | 85.03 179 |
|
testdata1 | | | | | | | | 77.55 258 | | 64.14 76 | | | | | | | |
|
test12 | | | | | 79.24 36 | 86.89 40 | 56.08 40 | | 85.16 106 | | 72.27 65 | | 47.15 70 | 91.10 72 | | 85.93 33 | 90.54 75 |
|
plane_prior7 | | | | | | 77.95 210 | 48.46 226 | | | | | | | | | | |
|
plane_prior6 | | | | | | 78.42 205 | 49.39 202 | | | | | | 36.04 204 | | | | |
|
plane_prior5 | | | | | | | | | 82.59 161 | | | | | 88.30 152 | 65.46 115 | 72.34 150 | 84.49 185 |
|
plane_prior4 | | | | | | | | | | | | 83.28 176 | | | | | |
|
plane_prior3 | | | | | | | 48.95 209 | | | 64.01 77 | 62.15 159 | | | | | | |
|
plane_prior2 | | | | | | | | 85.76 106 | | 63.60 86 | | | | | | | |
|
plane_prior1 | | | | | | 78.31 207 | | | | | | | | | | | |
|
plane_prior | | | | | | | 49.57 196 | 87.43 68 | | 64.57 72 | | | | | | 72.84 145 | |
|
n2 | | | | | | | | | 0.00 360 | | | | | | | | |
|
nn | | | | | | | | | 0.00 360 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 345 | | | | | | | | |
|
lessismore_v0 | | | | | 67.98 262 | 64.76 323 | 41.25 300 | | 45.75 342 | | 36.03 327 | 65.63 318 | 19.29 318 | 84.11 243 | 35.67 288 | 21.24 344 | 78.59 270 |
|
LGP-MVS_train | | | | | 72.02 203 | 74.42 255 | 48.60 218 | | 80.64 190 | 54.69 235 | 53.75 257 | 83.83 166 | 25.73 284 | 86.98 186 | 60.33 156 | 64.71 198 | 80.48 254 |
|
test11 | | | | | | | | | 84.25 130 | | | | | | | | |
|
door | | | | | | | | | 43.27 344 | | | | | | | | |
|
HQP5-MVS | | | | | | | 51.56 155 | | | | | | | | | | |
|
HQP-NCC | | | | | | 79.02 188 | | 88.00 55 | | 65.45 58 | 64.48 132 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 188 | | 88.00 55 | | 65.45 58 | 64.48 132 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 102 | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 135 | | | 88.61 137 | | | 84.91 182 |
|
HQP3-MVS | | | | | | | | | 83.68 142 | | | | | | | 73.12 141 | |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 184 | | | | |
|
NP-MVS | | | | | | 78.76 193 | 50.43 177 | | | | | 85.12 155 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 282 | 71.13 298 | | 54.95 232 | 59.29 189 | | 36.76 195 | | 46.33 252 | | 87.32 141 |
|
MDTV_nov1_ep13 | | | | 61.56 230 | | 81.68 141 | 55.12 59 | 72.41 289 | 78.18 235 | 59.19 159 | 58.85 198 | 69.29 305 | 34.69 214 | 86.16 207 | 36.76 286 | 62.96 219 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 215 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 239 | |
|
Test By Simon | | | | | | | | | | | | | 39.38 160 | | | | |
|
ITE_SJBPF | | | | | 51.84 319 | 58.03 338 | 31.94 333 | | 53.57 338 | 36.67 327 | 41.32 314 | 75.23 266 | 11.17 338 | 51.57 343 | 25.81 326 | 48.04 305 | 72.02 319 |
|
DeepMVS_CX | | | | | 13.10 335 | 21.34 357 | 8.99 356 | | 10.02 357 | 10.59 350 | 7.53 352 | 30.55 346 | 1.82 357 | 14.55 353 | 6.83 349 | 7.52 349 | 15.75 347 |
|