MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 9 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 39 | 96.26 24 | 72.84 22 | 99.38 1 | 92.64 4 | 95.93 8 | 97.08 7 |
|
DPM-MVS | | | 90.70 2 | 90.52 5 | 91.24 1 | 89.68 150 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 14 | 91.58 8 | 97.22 4 | 79.93 3 | 99.10 7 | 83.12 72 | 97.64 2 | 97.94 1 |
|
MSP-MVS | | | 90.38 3 | 91.87 1 | 85.88 82 | 92.83 76 | 64.03 187 | 93.06 99 | 94.33 48 | 82.19 19 | 93.65 2 | 96.15 27 | 85.89 1 | 97.19 79 | 91.02 15 | 97.75 1 | 96.43 22 |
|
CNVR-MVS | | | 90.32 4 | 90.89 4 | 88.61 16 | 96.76 7 | 70.65 22 | 96.47 12 | 94.83 23 | 84.83 8 | 89.07 19 | 96.80 12 | 70.86 29 | 99.06 11 | 92.64 4 | 95.71 9 | 96.12 30 |
|
ETH3 D test6400 | | | 90.27 5 | 90.44 6 | 89.75 6 | 96.82 6 | 74.33 7 | 95.89 16 | 94.80 26 | 77.13 78 | 89.13 18 | 97.38 2 | 74.49 15 | 98.48 24 | 92.32 9 | 95.98 6 | 96.46 21 |
|
DELS-MVS | | | 90.05 6 | 90.09 8 | 89.94 4 | 93.14 70 | 73.88 8 | 97.01 3 | 94.40 45 | 88.32 2 | 85.71 41 | 94.91 63 | 74.11 16 | 98.91 13 | 87.26 44 | 95.94 7 | 97.03 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
SED-MVS | | | 89.94 7 | 90.36 7 | 88.70 13 | 96.45 11 | 69.38 42 | 96.89 4 | 94.44 40 | 71.65 183 | 92.11 3 | 97.21 5 | 76.79 7 | 99.11 4 | 92.34 6 | 95.36 12 | 97.62 2 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 8 | 91.38 3 | 84.72 122 | 93.00 73 | 58.16 277 | 96.72 7 | 94.41 43 | 86.50 5 | 90.25 14 | 97.83 1 | 75.46 12 | 98.67 19 | 92.78 3 | 95.49 11 | 97.32 4 |
|
CANet | | | 89.61 9 | 89.99 9 | 88.46 17 | 94.39 38 | 69.71 38 | 96.53 11 | 93.78 60 | 86.89 4 | 89.68 15 | 95.78 31 | 65.94 60 | 99.10 7 | 92.99 2 | 93.91 40 | 96.58 15 |
|
DVP-MVS | | | 89.41 10 | 89.73 11 | 88.45 18 | 96.40 14 | 69.99 30 | 96.64 8 | 94.52 36 | 71.92 169 | 90.55 12 | 96.93 10 | 73.77 17 | 99.08 9 | 91.91 10 | 94.90 19 | 96.29 26 |
|
HPM-MVS++ | | | 89.37 11 | 89.95 10 | 87.64 26 | 95.10 29 | 68.23 70 | 95.24 31 | 94.49 38 | 82.43 17 | 88.90 20 | 96.35 21 | 71.89 28 | 98.63 20 | 88.76 30 | 96.40 4 | 96.06 31 |
|
NCCC | | | 89.07 12 | 89.46 12 | 87.91 21 | 96.60 9 | 69.05 49 | 96.38 13 | 94.64 33 | 84.42 9 | 86.74 30 | 96.20 25 | 66.56 56 | 98.76 18 | 89.03 28 | 94.56 29 | 95.92 37 |
|
DPE-MVS | | | 88.77 13 | 89.21 13 | 87.45 33 | 96.26 18 | 67.56 85 | 94.17 52 | 94.15 53 | 68.77 229 | 90.74 11 | 97.27 3 | 76.09 10 | 98.49 23 | 90.58 17 | 94.91 18 | 96.30 25 |
|
SMA-MVS | | | 88.14 14 | 88.29 17 | 87.67 25 | 93.21 67 | 68.72 57 | 93.85 72 | 94.03 56 | 74.18 116 | 91.74 7 | 96.67 13 | 65.61 65 | 98.42 28 | 89.24 24 | 96.08 5 | 95.88 39 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PS-MVSNAJ | | | 88.14 14 | 87.61 24 | 89.71 7 | 92.06 94 | 76.72 1 | 95.75 19 | 93.26 86 | 83.86 10 | 89.55 16 | 96.06 28 | 53.55 190 | 97.89 44 | 91.10 13 | 93.31 50 | 94.54 88 |
|
TSAR-MVS + MP. | | | 88.11 16 | 88.64 14 | 86.54 61 | 91.73 108 | 68.04 73 | 90.36 205 | 93.55 73 | 82.89 13 | 91.29 9 | 92.89 113 | 72.27 25 | 96.03 128 | 87.99 35 | 94.77 23 | 95.54 46 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + GP. | | | 87.96 17 | 88.37 16 | 86.70 55 | 93.51 60 | 65.32 148 | 95.15 34 | 93.84 59 | 78.17 66 | 85.93 38 | 94.80 67 | 75.80 11 | 98.21 31 | 89.38 21 | 88.78 98 | 96.59 13 |
|
DeepC-MVS_fast | | 79.48 2 | 87.95 18 | 88.00 18 | 87.79 24 | 95.86 24 | 68.32 65 | 95.74 20 | 94.11 55 | 83.82 11 | 83.49 63 | 96.19 26 | 64.53 76 | 98.44 26 | 83.42 71 | 94.88 22 | 96.61 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
xiu_mvs_v2_base | | | 87.92 19 | 87.38 29 | 89.55 10 | 91.41 120 | 76.43 3 | 95.74 20 | 93.12 95 | 83.53 12 | 89.55 16 | 95.95 29 | 53.45 194 | 97.68 50 | 91.07 14 | 92.62 59 | 94.54 88 |
|
EPNet | | | 87.84 20 | 88.38 15 | 86.23 74 | 93.30 63 | 66.05 129 | 95.26 30 | 94.84 22 | 87.09 3 | 88.06 22 | 94.53 72 | 66.79 53 | 97.34 70 | 83.89 68 | 91.68 73 | 95.29 56 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
lupinMVS | | | 87.74 21 | 87.77 21 | 87.63 30 | 89.24 160 | 71.18 17 | 96.57 10 | 92.90 103 | 82.70 16 | 87.13 26 | 95.27 47 | 64.99 70 | 95.80 133 | 89.34 22 | 91.80 71 | 95.93 36 |
|
ETH3D-3000-0.1 | | | 87.61 22 | 87.89 19 | 86.75 52 | 93.58 57 | 67.21 96 | 94.31 50 | 94.14 54 | 72.92 144 | 87.13 26 | 96.62 14 | 67.81 44 | 97.94 39 | 90.13 18 | 94.42 32 | 95.09 68 |
|
APDe-MVS | | | 87.54 23 | 87.84 20 | 86.65 56 | 96.07 21 | 66.30 124 | 94.84 44 | 93.78 60 | 69.35 220 | 88.39 21 | 96.34 22 | 67.74 45 | 97.66 54 | 90.62 16 | 93.44 49 | 96.01 34 |
|
SD-MVS | | | 87.49 24 | 87.49 26 | 87.50 32 | 93.60 56 | 68.82 55 | 93.90 69 | 92.63 114 | 76.86 82 | 87.90 23 | 95.76 32 | 66.17 57 | 97.63 56 | 89.06 26 | 91.48 77 | 96.05 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test_prior3 | | | 87.38 25 | 87.70 22 | 86.42 66 | 94.71 33 | 67.35 92 | 95.10 36 | 93.10 96 | 75.40 99 | 85.25 48 | 95.61 37 | 67.94 40 | 96.84 101 | 87.47 39 | 94.77 23 | 95.05 70 |
|
alignmvs | | | 87.28 26 | 86.97 34 | 88.24 20 | 91.30 121 | 71.14 19 | 95.61 24 | 93.56 72 | 79.30 47 | 87.07 29 | 95.25 49 | 68.43 34 | 96.93 99 | 87.87 36 | 84.33 137 | 96.65 11 |
|
Regformer-1 | | | 87.24 27 | 87.60 25 | 86.15 76 | 95.14 27 | 65.83 137 | 93.95 65 | 95.12 15 | 82.11 21 | 84.25 54 | 95.73 33 | 67.88 43 | 98.35 29 | 85.60 54 | 88.64 100 | 94.26 96 |
|
train_agg | | | 87.21 28 | 87.42 28 | 86.60 57 | 94.18 40 | 67.28 94 | 94.16 53 | 93.51 74 | 71.87 174 | 85.52 43 | 95.33 42 | 68.19 36 | 97.27 77 | 89.09 25 | 94.90 19 | 95.25 63 |
|
xxxxxxxxxxxxxcwj | | | 87.14 29 | 87.19 31 | 86.99 45 | 93.84 49 | 67.89 77 | 95.05 38 | 84.72 298 | 78.19 64 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 58 |
|
MG-MVS | | | 87.11 30 | 86.27 40 | 89.62 8 | 97.79 1 | 76.27 4 | 94.96 42 | 94.49 38 | 78.74 60 | 83.87 62 | 92.94 110 | 64.34 78 | 96.94 97 | 75.19 130 | 94.09 36 | 95.66 42 |
|
ETH3D cwj APD-0.16 | | | 87.06 31 | 87.18 32 | 86.71 53 | 91.99 98 | 67.48 90 | 92.97 104 | 94.21 51 | 71.48 194 | 85.72 40 | 96.32 23 | 68.13 38 | 98.00 38 | 89.06 26 | 94.70 27 | 94.65 84 |
|
SF-MVS | | | 87.03 32 | 87.09 33 | 86.84 47 | 92.70 82 | 67.45 91 | 93.64 80 | 93.76 63 | 70.78 206 | 86.25 31 | 96.44 18 | 66.98 49 | 97.79 47 | 88.68 31 | 94.56 29 | 95.28 58 |
|
agg_prior1 | | | 87.02 33 | 87.26 30 | 86.28 73 | 94.16 44 | 66.97 105 | 94.08 58 | 93.31 84 | 71.85 176 | 84.49 52 | 95.39 40 | 68.91 33 | 96.75 105 | 88.84 29 | 94.32 34 | 95.13 66 |
|
Regformer-2 | | | 87.00 34 | 87.43 27 | 85.71 92 | 95.14 27 | 64.73 166 | 93.95 65 | 94.95 20 | 81.69 26 | 84.03 60 | 95.73 33 | 67.35 47 | 98.19 33 | 85.40 56 | 88.64 100 | 94.20 98 |
|
CSCG | | | 86.87 35 | 86.26 41 | 88.72 12 | 95.05 30 | 70.79 21 | 93.83 76 | 95.33 11 | 68.48 233 | 77.63 118 | 94.35 81 | 73.04 20 | 98.45 25 | 84.92 60 | 93.71 45 | 96.92 9 |
|
canonicalmvs | | | 86.85 36 | 86.25 42 | 88.66 15 | 91.80 107 | 71.92 13 | 93.54 85 | 91.71 148 | 80.26 38 | 87.55 24 | 95.25 49 | 63.59 90 | 96.93 99 | 88.18 34 | 84.34 136 | 97.11 6 |
|
PHI-MVS | | | 86.83 37 | 86.85 37 | 86.78 51 | 93.47 61 | 65.55 144 | 95.39 29 | 95.10 17 | 71.77 180 | 85.69 42 | 96.52 15 | 62.07 104 | 98.77 17 | 86.06 52 | 95.60 10 | 96.03 33 |
|
SteuartSystems-ACMMP | | | 86.82 38 | 86.90 35 | 86.58 59 | 90.42 136 | 66.38 121 | 96.09 15 | 93.87 58 | 77.73 71 | 84.01 61 | 95.66 35 | 63.39 92 | 97.94 39 | 87.40 41 | 93.55 48 | 95.42 47 |
Skip Steuart: Steuart Systems R&D Blog. |
PVSNet_Blended | | | 86.73 39 | 86.86 36 | 86.31 72 | 93.76 51 | 67.53 87 | 96.33 14 | 93.61 70 | 82.34 18 | 81.00 81 | 93.08 105 | 63.19 95 | 97.29 73 | 87.08 45 | 91.38 78 | 94.13 104 |
|
testtj | | | 86.62 40 | 86.66 39 | 86.50 63 | 96.95 5 | 65.70 139 | 94.41 48 | 93.45 78 | 67.74 235 | 86.19 34 | 96.39 20 | 64.38 77 | 97.91 42 | 87.33 42 | 93.14 53 | 95.90 38 |
|
CS-MVS | | | 86.61 41 | 86.85 37 | 85.88 82 | 91.52 116 | 66.25 126 | 95.42 27 | 92.25 124 | 80.36 37 | 84.10 59 | 94.82 66 | 62.88 99 | 96.08 124 | 88.25 33 | 92.07 69 | 95.30 55 |
|
jason | | | 86.40 42 | 86.17 43 | 87.11 41 | 86.16 217 | 70.54 24 | 95.71 23 | 92.19 131 | 82.00 23 | 84.58 51 | 94.34 82 | 61.86 106 | 95.53 153 | 87.76 37 | 90.89 84 | 95.27 60 |
jason: jason. |
WTY-MVS | | | 86.32 43 | 85.81 48 | 87.85 22 | 92.82 78 | 69.37 44 | 95.20 32 | 95.25 12 | 82.71 15 | 81.91 70 | 94.73 68 | 67.93 42 | 97.63 56 | 79.55 100 | 82.25 148 | 96.54 16 |
|
MSLP-MVS++ | | | 86.27 44 | 85.91 47 | 87.35 36 | 92.01 97 | 68.97 52 | 95.04 40 | 92.70 108 | 79.04 55 | 81.50 74 | 96.50 17 | 58.98 134 | 96.78 103 | 83.49 70 | 93.93 39 | 96.29 26 |
|
VNet | | | 86.20 45 | 85.65 52 | 87.84 23 | 93.92 47 | 69.99 30 | 95.73 22 | 95.94 6 | 78.43 62 | 86.00 37 | 93.07 107 | 58.22 137 | 97.00 89 | 85.22 57 | 84.33 137 | 96.52 17 |
|
MVS_111021_HR | | | 86.19 46 | 85.80 49 | 87.37 35 | 93.17 69 | 69.79 36 | 93.99 63 | 93.76 63 | 79.08 54 | 78.88 107 | 93.99 91 | 62.25 103 | 98.15 34 | 85.93 53 | 91.15 82 | 94.15 103 |
|
ACMMP_NAP | | | 86.05 47 | 85.80 49 | 86.80 50 | 91.58 112 | 67.53 87 | 91.79 149 | 93.49 77 | 74.93 107 | 84.61 50 | 95.30 44 | 59.42 127 | 97.92 41 | 86.13 51 | 94.92 17 | 94.94 75 |
|
ETV-MVS | | | 86.01 48 | 86.11 44 | 85.70 93 | 90.21 141 | 67.02 104 | 93.43 90 | 91.92 139 | 81.21 29 | 84.13 58 | 94.07 90 | 60.93 113 | 95.63 143 | 89.28 23 | 89.81 92 | 94.46 94 |
|
APD-MVS | | | 85.93 49 | 85.99 45 | 85.76 89 | 95.98 23 | 65.21 151 | 93.59 83 | 92.58 116 | 66.54 244 | 86.17 35 | 95.88 30 | 63.83 84 | 97.00 89 | 86.39 50 | 92.94 55 | 95.06 69 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PAPM | | | 85.89 50 | 85.46 53 | 87.18 39 | 88.20 184 | 72.42 12 | 92.41 125 | 92.77 106 | 82.11 21 | 80.34 87 | 93.07 107 | 68.27 35 | 95.02 162 | 78.39 112 | 93.59 47 | 94.09 106 |
|
Regformer-3 | | | 85.80 51 | 85.92 46 | 85.46 99 | 94.17 42 | 65.09 158 | 92.95 106 | 95.11 16 | 81.13 30 | 81.68 72 | 95.04 54 | 65.82 62 | 98.32 30 | 83.02 73 | 84.36 134 | 92.97 141 |
|
CDPH-MVS | | | 85.71 52 | 85.46 53 | 86.46 64 | 94.75 32 | 67.19 97 | 93.89 70 | 92.83 105 | 70.90 202 | 83.09 65 | 95.28 45 | 63.62 88 | 97.36 68 | 80.63 94 | 94.18 35 | 94.84 77 |
|
DeepC-MVS | | 77.85 3 | 85.52 53 | 85.24 55 | 86.37 69 | 88.80 169 | 66.64 114 | 92.15 130 | 93.68 67 | 81.07 31 | 76.91 128 | 93.64 96 | 62.59 101 | 98.44 26 | 85.50 55 | 92.84 57 | 94.03 110 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Regformer-4 | | | 85.45 54 | 85.69 51 | 84.73 120 | 94.17 42 | 63.23 204 | 92.95 106 | 94.83 23 | 80.66 34 | 81.29 75 | 95.04 54 | 65.12 68 | 98.08 36 | 82.74 75 | 84.36 134 | 92.88 145 |
|
casdiffmvs | | | 85.37 55 | 84.87 60 | 86.84 47 | 88.25 182 | 69.07 48 | 93.04 101 | 91.76 145 | 81.27 28 | 80.84 83 | 92.07 130 | 64.23 79 | 96.06 126 | 84.98 59 | 87.43 110 | 95.39 48 |
|
ZNCC-MVS | | | 85.33 56 | 85.08 57 | 86.06 77 | 93.09 72 | 65.65 141 | 93.89 70 | 93.41 82 | 73.75 126 | 79.94 91 | 94.68 70 | 60.61 116 | 98.03 37 | 82.63 78 | 93.72 44 | 94.52 90 |
|
MP-MVS-pluss | | | 85.24 57 | 85.13 56 | 85.56 96 | 91.42 118 | 65.59 143 | 91.54 161 | 92.51 118 | 74.56 110 | 80.62 84 | 95.64 36 | 59.15 131 | 97.00 89 | 86.94 47 | 93.80 41 | 94.07 108 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPR | | | 85.15 58 | 84.47 62 | 87.18 39 | 96.02 22 | 68.29 66 | 91.85 147 | 93.00 100 | 76.59 86 | 79.03 103 | 95.00 56 | 61.59 107 | 97.61 58 | 78.16 113 | 89.00 97 | 95.63 43 |
|
MP-MVS | | | 85.02 59 | 84.97 58 | 85.17 110 | 92.60 84 | 64.27 183 | 93.24 94 | 92.27 123 | 73.13 138 | 79.63 96 | 94.43 75 | 61.90 105 | 97.17 80 | 85.00 58 | 92.56 60 | 94.06 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
baseline | | | 85.01 60 | 84.44 64 | 86.71 53 | 88.33 179 | 68.73 56 | 90.24 209 | 91.82 144 | 81.05 32 | 81.18 77 | 92.50 120 | 63.69 87 | 96.08 124 | 84.45 63 | 86.71 118 | 95.32 53 |
|
#test# | | | 84.98 61 | 84.74 61 | 85.72 90 | 93.75 53 | 65.01 160 | 94.09 57 | 93.19 90 | 73.55 132 | 79.22 100 | 94.93 60 | 59.04 132 | 97.67 51 | 82.66 76 | 92.21 64 | 94.49 92 |
|
CHOSEN 1792x2688 | | | 84.98 61 | 83.45 74 | 89.57 9 | 89.94 145 | 75.14 5 | 92.07 136 | 92.32 121 | 81.87 24 | 75.68 135 | 88.27 175 | 60.18 119 | 98.60 21 | 80.46 96 | 90.27 91 | 94.96 74 |
|
EIA-MVS | | | 84.84 63 | 84.88 59 | 84.69 123 | 91.30 121 | 62.36 222 | 93.85 72 | 92.04 134 | 79.45 45 | 79.33 99 | 94.28 85 | 62.42 102 | 96.35 114 | 80.05 97 | 91.25 81 | 95.38 49 |
|
zzz-MVS | | | 84.73 64 | 84.47 62 | 85.50 97 | 91.89 103 | 65.16 153 | 91.55 160 | 92.23 125 | 75.32 101 | 80.53 85 | 95.21 51 | 56.06 166 | 97.16 81 | 84.86 61 | 92.55 61 | 94.18 99 |
|
HFP-MVS | | | 84.73 64 | 84.40 65 | 85.72 90 | 93.75 53 | 65.01 160 | 93.50 87 | 93.19 90 | 72.19 163 | 79.22 100 | 94.93 60 | 59.04 132 | 97.67 51 | 81.55 85 | 92.21 64 | 94.49 92 |
|
MVS | | | 84.66 66 | 82.86 88 | 90.06 2 | 90.93 127 | 74.56 6 | 87.91 250 | 95.54 9 | 68.55 231 | 72.35 171 | 94.71 69 | 59.78 123 | 98.90 14 | 81.29 91 | 94.69 28 | 96.74 10 |
|
GST-MVS | | | 84.63 67 | 84.29 66 | 85.66 94 | 92.82 78 | 65.27 149 | 93.04 101 | 93.13 94 | 73.20 136 | 78.89 104 | 94.18 87 | 59.41 128 | 97.85 46 | 81.45 87 | 92.48 63 | 93.86 117 |
|
ACMMPR | | | 84.37 68 | 84.06 67 | 85.28 106 | 93.56 58 | 64.37 178 | 93.50 87 | 93.15 93 | 72.19 163 | 78.85 109 | 94.86 64 | 56.69 158 | 97.45 62 | 81.55 85 | 92.20 66 | 94.02 111 |
|
region2R | | | 84.36 69 | 84.03 68 | 85.36 104 | 93.54 59 | 64.31 180 | 93.43 90 | 92.95 101 | 72.16 166 | 78.86 108 | 94.84 65 | 56.97 153 | 97.53 60 | 81.38 89 | 92.11 68 | 94.24 97 |
|
LFMVS | | | 84.34 70 | 82.73 91 | 89.18 11 | 94.76 31 | 73.25 10 | 94.99 41 | 91.89 140 | 71.90 171 | 82.16 69 | 93.49 100 | 47.98 239 | 97.05 84 | 82.55 79 | 84.82 130 | 97.25 5 |
|
test_yl | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 36 | 69.24 45 | 95.78 17 | 95.09 18 | 69.19 223 | 81.09 78 | 92.88 114 | 57.00 151 | 97.44 63 | 81.11 92 | 81.76 152 | 96.23 28 |
|
DCV-MVSNet | | | 84.28 71 | 83.16 82 | 87.64 26 | 94.52 36 | 69.24 45 | 95.78 17 | 95.09 18 | 69.19 223 | 81.09 78 | 92.88 114 | 57.00 151 | 97.44 63 | 81.11 92 | 81.76 152 | 96.23 28 |
|
diffmvs | | | 84.28 71 | 83.83 69 | 85.61 95 | 87.40 199 | 68.02 74 | 90.88 189 | 89.24 233 | 80.54 35 | 81.64 73 | 92.52 119 | 59.83 122 | 94.52 180 | 87.32 43 | 85.11 128 | 94.29 95 |
|
HY-MVS | | 76.49 5 | 84.28 71 | 83.36 80 | 87.02 44 | 92.22 91 | 67.74 81 | 84.65 273 | 94.50 37 | 79.15 51 | 82.23 68 | 87.93 182 | 66.88 51 | 96.94 97 | 80.53 95 | 82.20 149 | 96.39 24 |
|
MAR-MVS | | | 84.18 75 | 83.43 75 | 86.44 65 | 96.25 19 | 65.93 134 | 94.28 51 | 94.27 50 | 74.41 111 | 79.16 102 | 95.61 37 | 53.99 185 | 98.88 16 | 69.62 173 | 93.26 51 | 94.50 91 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVS_Test | | | 84.16 76 | 83.20 81 | 87.05 43 | 91.56 113 | 69.82 35 | 89.99 217 | 92.05 133 | 77.77 70 | 82.84 66 | 86.57 197 | 63.93 83 | 96.09 122 | 74.91 136 | 89.18 96 | 95.25 63 |
|
CANet_DTU | | | 84.09 77 | 83.52 71 | 85.81 86 | 90.30 139 | 66.82 109 | 91.87 145 | 89.01 246 | 85.27 6 | 86.09 36 | 93.74 95 | 47.71 242 | 96.98 93 | 77.90 116 | 89.78 94 | 93.65 121 |
|
ET-MVSNet_ETH3D | | | 84.01 78 | 83.15 84 | 86.58 59 | 90.78 133 | 70.89 20 | 94.74 45 | 94.62 34 | 81.44 27 | 58.19 291 | 93.64 96 | 73.64 19 | 92.35 254 | 82.66 76 | 78.66 174 | 96.50 19 |
|
PVSNet_Blended_VisFu | | | 83.97 79 | 83.50 72 | 85.39 103 | 90.02 143 | 66.59 117 | 93.77 77 | 91.73 146 | 77.43 77 | 77.08 127 | 89.81 161 | 63.77 86 | 96.97 94 | 79.67 99 | 88.21 103 | 92.60 149 |
|
DWT-MVSNet_test | | | 83.95 80 | 82.80 89 | 87.41 34 | 92.90 75 | 70.07 29 | 89.12 233 | 94.42 42 | 82.15 20 | 77.64 117 | 91.77 134 | 70.81 30 | 96.22 117 | 65.03 220 | 81.36 156 | 95.94 35 |
|
MTAPA | | | 83.91 81 | 83.38 79 | 85.50 97 | 91.89 103 | 65.16 153 | 81.75 293 | 92.23 125 | 75.32 101 | 80.53 85 | 95.21 51 | 56.06 166 | 97.16 81 | 84.86 61 | 92.55 61 | 94.18 99 |
|
XVS | | | 83.87 82 | 83.47 73 | 85.05 111 | 93.22 65 | 63.78 190 | 92.92 108 | 92.66 111 | 73.99 118 | 78.18 112 | 94.31 84 | 55.25 171 | 97.41 65 | 79.16 103 | 91.58 75 | 93.95 113 |
|
Effi-MVS+ | | | 83.82 83 | 82.76 90 | 86.99 45 | 89.56 153 | 69.40 41 | 91.35 171 | 86.12 288 | 72.59 149 | 83.22 64 | 92.81 117 | 59.60 125 | 96.01 130 | 81.76 83 | 87.80 107 | 95.56 45 |
|
EI-MVSNet-Vis-set | | | 83.77 84 | 83.67 70 | 84.06 138 | 92.79 81 | 63.56 200 | 91.76 152 | 94.81 25 | 79.65 44 | 77.87 114 | 94.09 88 | 63.35 93 | 97.90 43 | 79.35 101 | 79.36 166 | 90.74 181 |
|
MVSFormer | | | 83.75 85 | 82.88 87 | 86.37 69 | 89.24 160 | 71.18 17 | 89.07 234 | 90.69 183 | 65.80 249 | 87.13 26 | 94.34 82 | 64.99 70 | 92.67 241 | 72.83 144 | 91.80 71 | 95.27 60 |
|
CP-MVS | | | 83.71 86 | 83.40 78 | 84.65 124 | 93.14 70 | 63.84 188 | 94.59 46 | 92.28 122 | 71.03 200 | 77.41 121 | 94.92 62 | 55.21 174 | 96.19 118 | 81.32 90 | 90.70 86 | 93.91 115 |
|
baseline2 | | | 83.68 87 | 83.42 77 | 84.48 130 | 87.37 200 | 66.00 131 | 90.06 213 | 95.93 7 | 79.71 43 | 69.08 204 | 90.39 151 | 77.92 4 | 96.28 115 | 78.91 107 | 81.38 155 | 91.16 177 |
|
thisisatest0515 | | | 83.41 88 | 82.49 94 | 86.16 75 | 89.46 156 | 68.26 68 | 93.54 85 | 94.70 30 | 74.31 114 | 75.75 134 | 90.92 142 | 72.62 23 | 96.52 112 | 69.64 171 | 81.50 154 | 93.71 119 |
|
PVSNet_BlendedMVS | | | 83.38 89 | 83.43 75 | 83.22 156 | 93.76 51 | 67.53 87 | 94.06 59 | 93.61 70 | 79.13 52 | 81.00 81 | 85.14 211 | 63.19 95 | 97.29 73 | 87.08 45 | 73.91 205 | 84.83 271 |
|
PGM-MVS | | | 83.25 90 | 82.70 92 | 84.92 114 | 92.81 80 | 64.07 186 | 90.44 201 | 92.20 130 | 71.28 195 | 77.23 124 | 94.43 75 | 55.17 175 | 97.31 72 | 79.33 102 | 91.38 78 | 93.37 126 |
|
HPM-MVS | | | 83.25 90 | 82.95 86 | 84.17 136 | 92.25 90 | 62.88 215 | 90.91 186 | 91.86 141 | 70.30 211 | 77.12 125 | 93.96 92 | 56.75 156 | 96.28 115 | 82.04 81 | 91.34 80 | 93.34 127 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
EI-MVSNet-UG-set | | | 83.14 92 | 82.96 85 | 83.67 148 | 92.28 89 | 63.19 206 | 91.38 169 | 94.68 31 | 79.22 49 | 76.60 129 | 93.75 94 | 62.64 100 | 97.76 49 | 78.07 114 | 78.01 177 | 90.05 189 |
|
VDD-MVS | | | 83.06 93 | 81.81 103 | 86.81 49 | 90.86 131 | 67.70 82 | 95.40 28 | 91.50 157 | 75.46 96 | 81.78 71 | 92.34 127 | 40.09 275 | 97.13 83 | 86.85 48 | 82.04 150 | 95.60 44 |
|
PAPM_NR | | | 82.97 94 | 81.84 101 | 86.37 69 | 94.10 46 | 66.76 112 | 87.66 254 | 92.84 104 | 69.96 214 | 74.07 150 | 93.57 98 | 63.10 97 | 97.50 61 | 70.66 166 | 90.58 88 | 94.85 76 |
|
mPP-MVS | | | 82.96 95 | 82.44 95 | 84.52 128 | 92.83 76 | 62.92 213 | 92.76 111 | 91.85 142 | 71.52 191 | 75.61 138 | 94.24 86 | 53.48 193 | 96.99 92 | 78.97 106 | 90.73 85 | 93.64 122 |
|
SR-MVS | | | 82.81 96 | 82.58 93 | 83.50 153 | 93.35 62 | 61.16 238 | 92.23 129 | 91.28 166 | 64.48 257 | 81.27 76 | 95.28 45 | 53.71 189 | 95.86 132 | 82.87 74 | 88.77 99 | 93.49 125 |
|
DP-MVS Recon | | | 82.73 97 | 81.65 104 | 85.98 79 | 97.31 4 | 67.06 101 | 95.15 34 | 91.99 136 | 69.08 226 | 76.50 131 | 93.89 93 | 54.48 181 | 98.20 32 | 70.76 164 | 85.66 125 | 92.69 146 |
|
CLD-MVS | | | 82.73 97 | 82.35 97 | 83.86 141 | 87.90 191 | 67.65 84 | 95.45 26 | 92.18 132 | 85.06 7 | 72.58 164 | 92.27 128 | 52.46 200 | 95.78 134 | 84.18 64 | 79.06 169 | 88.16 212 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
sss | | | 82.71 99 | 82.38 96 | 83.73 145 | 89.25 159 | 59.58 262 | 92.24 128 | 94.89 21 | 77.96 68 | 79.86 93 | 92.38 125 | 56.70 157 | 97.05 84 | 77.26 119 | 80.86 160 | 94.55 86 |
|
3Dnovator | | 73.91 6 | 82.69 100 | 80.82 113 | 88.31 19 | 89.57 152 | 71.26 16 | 92.60 119 | 94.39 46 | 78.84 57 | 67.89 223 | 92.48 123 | 48.42 234 | 98.52 22 | 68.80 183 | 94.40 33 | 95.15 65 |
|
MVSTER | | | 82.47 101 | 82.05 98 | 83.74 143 | 92.68 83 | 69.01 50 | 91.90 144 | 93.21 87 | 79.83 39 | 72.14 172 | 85.71 207 | 74.72 13 | 94.72 172 | 75.72 126 | 72.49 215 | 87.50 217 |
|
TESTMET0.1,1 | | | 82.41 102 | 81.98 100 | 83.72 146 | 88.08 185 | 63.74 192 | 92.70 114 | 93.77 62 | 79.30 47 | 77.61 119 | 87.57 187 | 58.19 138 | 94.08 194 | 73.91 139 | 86.68 119 | 93.33 129 |
|
CostFormer | | | 82.33 103 | 81.15 108 | 85.86 85 | 89.01 165 | 68.46 62 | 82.39 291 | 93.01 98 | 75.59 94 | 80.25 88 | 81.57 250 | 72.03 27 | 94.96 164 | 79.06 105 | 77.48 186 | 94.16 102 |
|
API-MVS | | | 82.28 104 | 80.53 119 | 87.54 31 | 96.13 20 | 70.59 23 | 93.63 81 | 91.04 175 | 65.72 251 | 75.45 140 | 92.83 116 | 56.11 165 | 98.89 15 | 64.10 225 | 89.75 95 | 93.15 135 |
|
IB-MVS | | 77.80 4 | 82.18 105 | 80.46 121 | 87.35 36 | 89.14 162 | 70.28 27 | 95.59 25 | 95.17 14 | 78.85 56 | 70.19 192 | 85.82 205 | 70.66 31 | 97.67 51 | 72.19 154 | 66.52 255 | 94.09 106 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
xiu_mvs_v1_base_debu | | | 82.16 106 | 81.12 109 | 85.26 107 | 86.42 211 | 68.72 57 | 92.59 121 | 90.44 191 | 73.12 139 | 84.20 55 | 94.36 77 | 38.04 286 | 95.73 137 | 84.12 65 | 86.81 113 | 91.33 171 |
|
xiu_mvs_v1_base | | | 82.16 106 | 81.12 109 | 85.26 107 | 86.42 211 | 68.72 57 | 92.59 121 | 90.44 191 | 73.12 139 | 84.20 55 | 94.36 77 | 38.04 286 | 95.73 137 | 84.12 65 | 86.81 113 | 91.33 171 |
|
xiu_mvs_v1_base_debi | | | 82.16 106 | 81.12 109 | 85.26 107 | 86.42 211 | 68.72 57 | 92.59 121 | 90.44 191 | 73.12 139 | 84.20 55 | 94.36 77 | 38.04 286 | 95.73 137 | 84.12 65 | 86.81 113 | 91.33 171 |
|
3Dnovator+ | | 73.60 7 | 82.10 109 | 80.60 118 | 86.60 57 | 90.89 130 | 66.80 111 | 95.20 32 | 93.44 80 | 74.05 117 | 67.42 229 | 92.49 122 | 49.46 224 | 97.65 55 | 70.80 163 | 91.68 73 | 95.33 51 |
|
MVS_111021_LR | | | 82.02 110 | 81.52 105 | 83.51 152 | 88.42 177 | 62.88 215 | 89.77 220 | 88.93 248 | 76.78 84 | 75.55 139 | 93.10 103 | 50.31 216 | 95.38 156 | 83.82 69 | 87.02 112 | 92.26 161 |
|
PMMVS | | | 81.98 111 | 82.04 99 | 81.78 192 | 89.76 149 | 56.17 293 | 91.13 182 | 90.69 183 | 77.96 68 | 80.09 90 | 93.57 98 | 46.33 250 | 94.99 163 | 81.41 88 | 87.46 109 | 94.17 101 |
|
test1172 | | | 81.90 112 | 81.83 102 | 82.13 184 | 93.23 64 | 57.52 285 | 91.61 159 | 90.98 177 | 64.32 259 | 80.20 89 | 95.00 56 | 51.26 210 | 95.61 145 | 81.73 84 | 88.13 104 | 93.26 131 |
|
baseline1 | | | 81.84 113 | 81.03 112 | 84.28 135 | 91.60 111 | 66.62 115 | 91.08 183 | 91.66 151 | 81.87 24 | 74.86 143 | 91.67 138 | 69.98 32 | 94.92 167 | 71.76 157 | 64.75 267 | 91.29 176 |
|
EPP-MVSNet | | | 81.79 114 | 81.52 105 | 82.61 167 | 88.77 170 | 60.21 254 | 93.02 103 | 93.66 69 | 68.52 232 | 72.90 159 | 90.39 151 | 72.19 26 | 94.96 164 | 74.93 135 | 79.29 168 | 92.67 147 |
|
APD-MVS_3200maxsize | | | 81.64 115 | 81.32 107 | 82.59 168 | 92.36 86 | 58.74 271 | 91.39 167 | 91.01 176 | 63.35 265 | 79.72 95 | 94.62 71 | 51.82 203 | 96.14 120 | 79.71 98 | 87.93 106 | 92.89 144 |
|
ACMMP | | | 81.49 116 | 80.67 116 | 83.93 140 | 91.71 109 | 62.90 214 | 92.13 131 | 92.22 129 | 71.79 179 | 71.68 180 | 93.49 100 | 50.32 215 | 96.96 95 | 78.47 111 | 84.22 141 | 91.93 164 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CDS-MVSNet | | | 81.43 117 | 80.74 114 | 83.52 151 | 86.26 215 | 64.45 172 | 92.09 134 | 90.65 186 | 75.83 93 | 73.95 152 | 89.81 161 | 63.97 82 | 92.91 231 | 71.27 160 | 82.82 145 | 93.20 134 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
mvs_anonymous | | | 81.36 118 | 79.99 125 | 85.46 99 | 90.39 138 | 68.40 63 | 86.88 264 | 90.61 187 | 74.41 111 | 70.31 191 | 84.67 216 | 63.79 85 | 92.32 255 | 73.13 141 | 85.70 124 | 95.67 41 |
|
1121 | | | 81.25 119 | 80.05 123 | 84.87 117 | 92.30 88 | 64.31 180 | 87.91 250 | 91.39 161 | 59.44 296 | 79.94 91 | 92.91 111 | 57.09 147 | 97.01 87 | 66.63 199 | 92.81 58 | 93.29 130 |
|
thisisatest0530 | | | 81.15 120 | 80.07 122 | 84.39 132 | 88.26 181 | 65.63 142 | 91.40 165 | 94.62 34 | 71.27 196 | 70.93 184 | 89.18 164 | 72.47 24 | 96.04 127 | 65.62 214 | 76.89 192 | 91.49 169 |
|
Fast-Effi-MVS+ | | | 81.14 121 | 80.01 124 | 84.51 129 | 90.24 140 | 65.86 135 | 94.12 56 | 89.15 239 | 73.81 125 | 75.37 141 | 88.26 176 | 57.26 145 | 94.53 179 | 66.97 198 | 84.92 129 | 93.15 135 |
|
HQP-MVS | | | 81.14 121 | 80.64 117 | 82.64 166 | 87.54 195 | 63.66 197 | 94.06 59 | 91.70 149 | 79.80 40 | 74.18 146 | 90.30 153 | 51.63 207 | 95.61 145 | 77.63 117 | 78.90 170 | 88.63 203 |
|
SR-MVS-dyc-post | | | 81.06 123 | 80.70 115 | 82.15 182 | 92.02 95 | 58.56 273 | 90.90 187 | 90.45 188 | 62.76 271 | 78.89 104 | 94.46 73 | 51.26 210 | 95.61 145 | 78.77 109 | 86.77 116 | 92.28 158 |
|
HyFIR lowres test | | | 81.03 124 | 79.56 133 | 85.43 101 | 87.81 192 | 68.11 72 | 90.18 210 | 90.01 210 | 70.65 208 | 72.95 158 | 86.06 203 | 63.61 89 | 94.50 181 | 75.01 134 | 79.75 164 | 93.67 120 |
|
nrg030 | | | 80.93 125 | 79.86 127 | 84.13 137 | 83.69 253 | 68.83 54 | 93.23 95 | 91.20 167 | 75.55 95 | 75.06 142 | 88.22 179 | 63.04 98 | 94.74 171 | 81.88 82 | 66.88 252 | 88.82 201 |
|
Vis-MVSNet | | | 80.92 126 | 79.98 126 | 83.74 143 | 88.48 174 | 61.80 228 | 93.44 89 | 88.26 268 | 73.96 121 | 77.73 115 | 91.76 135 | 49.94 220 | 94.76 169 | 65.84 211 | 90.37 90 | 94.65 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
1314 | | | 80.70 127 | 78.95 145 | 85.94 81 | 87.77 193 | 67.56 85 | 87.91 250 | 92.55 117 | 72.17 165 | 67.44 228 | 93.09 104 | 50.27 217 | 97.04 86 | 71.68 159 | 87.64 108 | 93.23 133 |
|
RRT_test8_iter05 | | | 80.61 128 | 79.62 131 | 83.60 150 | 91.87 106 | 66.90 107 | 93.42 92 | 93.68 67 | 77.09 80 | 68.83 210 | 85.63 208 | 66.82 52 | 95.42 154 | 76.46 124 | 62.74 279 | 88.48 206 |
|
tpmrst | | | 80.57 129 | 79.14 144 | 84.84 118 | 90.10 142 | 68.28 67 | 81.70 294 | 89.72 220 | 77.63 73 | 75.96 133 | 79.54 281 | 64.94 72 | 92.71 238 | 75.43 128 | 77.28 189 | 93.55 123 |
|
1112_ss | | | 80.56 130 | 79.83 128 | 82.77 162 | 88.65 171 | 60.78 242 | 92.29 126 | 88.36 263 | 72.58 150 | 72.46 168 | 94.95 58 | 65.09 69 | 93.42 219 | 66.38 205 | 77.71 179 | 94.10 105 |
|
VDDNet | | | 80.50 131 | 78.26 152 | 87.21 38 | 86.19 216 | 69.79 36 | 94.48 47 | 91.31 163 | 60.42 288 | 79.34 98 | 90.91 143 | 38.48 282 | 96.56 111 | 82.16 80 | 81.05 158 | 95.27 60 |
|
BH-w/o | | | 80.49 132 | 79.30 140 | 84.05 139 | 90.83 132 | 64.36 179 | 93.60 82 | 89.42 228 | 74.35 113 | 69.09 203 | 90.15 156 | 55.23 173 | 95.61 145 | 64.61 222 | 86.43 122 | 92.17 162 |
|
TAMVS | | | 80.37 133 | 79.45 136 | 83.13 158 | 85.14 230 | 63.37 201 | 91.23 176 | 90.76 182 | 74.81 109 | 72.65 162 | 88.49 170 | 60.63 115 | 92.95 226 | 69.41 175 | 81.95 151 | 93.08 138 |
|
HQP_MVS | | | 80.34 134 | 79.75 129 | 82.12 185 | 86.94 206 | 62.42 220 | 93.13 97 | 91.31 163 | 78.81 58 | 72.53 165 | 89.14 166 | 50.66 213 | 95.55 151 | 76.74 120 | 78.53 175 | 88.39 209 |
|
HPM-MVS_fast | | | 80.25 135 | 79.55 135 | 82.33 175 | 91.55 114 | 59.95 257 | 91.32 173 | 89.16 238 | 65.23 255 | 74.71 144 | 93.07 107 | 47.81 241 | 95.74 136 | 74.87 138 | 88.23 102 | 91.31 175 |
|
ab-mvs | | | 80.18 136 | 78.31 151 | 85.80 87 | 88.44 176 | 65.49 147 | 83.00 288 | 92.67 110 | 71.82 178 | 77.36 122 | 85.01 212 | 54.50 180 | 96.59 108 | 76.35 125 | 75.63 198 | 95.32 53 |
|
IS-MVSNet | | | 80.14 137 | 79.41 137 | 82.33 175 | 87.91 190 | 60.08 256 | 91.97 142 | 88.27 266 | 72.90 145 | 71.44 182 | 91.73 137 | 61.44 108 | 93.66 214 | 62.47 237 | 86.53 120 | 93.24 132 |
|
test-LLR | | | 80.10 138 | 79.56 133 | 81.72 194 | 86.93 208 | 61.17 236 | 92.70 114 | 91.54 154 | 71.51 192 | 75.62 136 | 86.94 194 | 53.83 186 | 92.38 251 | 72.21 152 | 84.76 132 | 91.60 167 |
|
PVSNet | | 73.49 8 | 80.05 139 | 78.63 147 | 84.31 133 | 90.92 128 | 64.97 162 | 92.47 124 | 91.05 174 | 79.18 50 | 72.43 169 | 90.51 150 | 37.05 298 | 94.06 196 | 68.06 186 | 86.00 123 | 93.90 116 |
|
UA-Net | | | 80.02 140 | 79.65 130 | 81.11 208 | 89.33 157 | 57.72 281 | 86.33 267 | 89.00 247 | 77.44 76 | 81.01 80 | 89.15 165 | 59.33 129 | 95.90 131 | 61.01 244 | 84.28 139 | 89.73 193 |
|
test-mter | | | 79.96 141 | 79.38 139 | 81.72 194 | 86.93 208 | 61.17 236 | 92.70 114 | 91.54 154 | 73.85 123 | 75.62 136 | 86.94 194 | 49.84 222 | 92.38 251 | 72.21 152 | 84.76 132 | 91.60 167 |
|
QAPM | | | 79.95 142 | 77.39 168 | 87.64 26 | 89.63 151 | 71.41 15 | 93.30 93 | 93.70 66 | 65.34 254 | 67.39 231 | 91.75 136 | 47.83 240 | 98.96 12 | 57.71 259 | 89.81 92 | 92.54 151 |
|
UGNet | | | 79.87 143 | 78.68 146 | 83.45 155 | 89.96 144 | 61.51 233 | 92.13 131 | 90.79 180 | 76.83 83 | 78.85 109 | 86.33 200 | 38.16 284 | 96.17 119 | 67.93 188 | 87.17 111 | 92.67 147 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
abl_6 | | | 79.82 144 | 79.20 142 | 81.70 196 | 89.85 146 | 58.34 275 | 88.47 243 | 90.07 205 | 62.56 274 | 77.71 116 | 93.08 105 | 47.65 243 | 96.78 103 | 77.94 115 | 85.45 127 | 89.99 190 |
|
tpm2 | | | 79.80 145 | 77.95 158 | 85.34 105 | 88.28 180 | 68.26 68 | 81.56 296 | 91.42 160 | 70.11 212 | 77.59 120 | 80.50 268 | 67.40 46 | 94.26 189 | 67.34 193 | 77.35 187 | 93.51 124 |
|
thres200 | | | 79.66 146 | 78.33 150 | 83.66 149 | 92.54 85 | 65.82 138 | 93.06 99 | 96.31 3 | 74.90 108 | 73.30 155 | 88.66 168 | 59.67 124 | 95.61 145 | 47.84 291 | 78.67 173 | 89.56 196 |
|
CPTT-MVS | | | 79.59 147 | 79.16 143 | 80.89 217 | 91.54 115 | 59.80 259 | 92.10 133 | 88.54 261 | 60.42 288 | 72.96 157 | 93.28 102 | 48.27 235 | 92.80 235 | 78.89 108 | 86.50 121 | 90.06 188 |
|
Test_1112_low_res | | | 79.56 148 | 78.60 148 | 82.43 170 | 88.24 183 | 60.39 251 | 92.09 134 | 87.99 272 | 72.10 167 | 71.84 176 | 87.42 189 | 64.62 75 | 93.04 223 | 65.80 212 | 77.30 188 | 93.85 118 |
|
tttt0517 | | | 79.50 149 | 78.53 149 | 82.41 173 | 87.22 202 | 61.43 235 | 89.75 221 | 94.76 27 | 69.29 221 | 67.91 222 | 88.06 181 | 72.92 21 | 95.63 143 | 62.91 233 | 73.90 206 | 90.16 187 |
|
FIs | | | 79.47 150 | 79.41 137 | 79.67 240 | 85.95 220 | 59.40 264 | 91.68 156 | 93.94 57 | 78.06 67 | 68.96 207 | 88.28 174 | 66.61 55 | 91.77 266 | 66.20 208 | 74.99 199 | 87.82 214 |
|
BH-RMVSNet | | | 79.46 151 | 77.65 162 | 84.89 115 | 91.68 110 | 65.66 140 | 93.55 84 | 88.09 270 | 72.93 143 | 73.37 154 | 91.12 141 | 46.20 252 | 96.12 121 | 56.28 264 | 85.61 126 | 92.91 143 |
|
PCF-MVS | | 73.15 9 | 79.29 152 | 77.63 163 | 84.29 134 | 86.06 218 | 65.96 133 | 87.03 260 | 91.10 171 | 69.86 215 | 69.79 199 | 90.64 146 | 57.54 144 | 96.59 108 | 64.37 224 | 82.29 147 | 90.32 185 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Vis-MVSNet (Re-imp) | | | 79.24 153 | 79.57 132 | 78.24 260 | 88.46 175 | 52.29 311 | 90.41 203 | 89.12 241 | 74.24 115 | 69.13 202 | 91.91 132 | 65.77 63 | 90.09 290 | 59.00 256 | 88.09 105 | 92.33 155 |
|
114514_t | | | 79.17 154 | 77.67 161 | 83.68 147 | 95.32 26 | 65.53 145 | 92.85 110 | 91.60 153 | 63.49 264 | 67.92 221 | 90.63 148 | 46.65 247 | 95.72 141 | 67.01 197 | 83.54 142 | 89.79 191 |
|
VPA-MVSNet | | | 79.03 155 | 78.00 156 | 82.11 188 | 85.95 220 | 64.48 171 | 93.22 96 | 94.66 32 | 75.05 106 | 74.04 151 | 84.95 213 | 52.17 202 | 93.52 216 | 74.90 137 | 67.04 251 | 88.32 211 |
|
OPM-MVS | | | 79.00 156 | 78.09 154 | 81.73 193 | 83.52 256 | 63.83 189 | 91.64 158 | 90.30 198 | 76.36 89 | 71.97 175 | 89.93 160 | 46.30 251 | 95.17 161 | 75.10 131 | 77.70 180 | 86.19 244 |
|
EI-MVSNet | | | 78.97 157 | 78.22 153 | 81.25 204 | 85.33 226 | 62.73 218 | 89.53 225 | 93.21 87 | 72.39 156 | 72.14 172 | 90.13 157 | 60.99 111 | 94.72 172 | 67.73 190 | 72.49 215 | 86.29 241 |
|
AdaColmap | | | 78.94 158 | 77.00 173 | 84.76 119 | 96.34 16 | 65.86 135 | 92.66 118 | 87.97 273 | 62.18 277 | 70.56 185 | 92.37 126 | 43.53 264 | 97.35 69 | 64.50 223 | 82.86 144 | 91.05 179 |
|
miper_enhance_ethall | | | 78.86 159 | 77.97 157 | 81.54 199 | 88.00 189 | 65.17 152 | 91.41 163 | 89.15 239 | 75.19 104 | 68.79 211 | 83.98 223 | 67.17 48 | 92.82 233 | 72.73 146 | 65.30 258 | 86.62 238 |
|
VPNet | | | 78.82 160 | 77.53 165 | 82.70 164 | 84.52 240 | 66.44 120 | 93.93 67 | 92.23 125 | 80.46 36 | 72.60 163 | 88.38 173 | 49.18 228 | 93.13 222 | 72.47 150 | 63.97 275 | 88.55 205 |
|
EPNet_dtu | | | 78.80 161 | 79.26 141 | 77.43 268 | 88.06 186 | 49.71 324 | 91.96 143 | 91.95 138 | 77.67 72 | 76.56 130 | 91.28 140 | 58.51 136 | 90.20 288 | 56.37 263 | 80.95 159 | 92.39 153 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tfpn200view9 | | | 78.79 162 | 77.43 166 | 82.88 160 | 92.21 92 | 64.49 169 | 92.05 137 | 96.28 4 | 73.48 133 | 71.75 178 | 88.26 176 | 60.07 120 | 95.32 157 | 45.16 300 | 77.58 182 | 88.83 199 |
|
TR-MVS | | | 78.77 163 | 77.37 169 | 82.95 159 | 90.49 135 | 60.88 240 | 93.67 79 | 90.07 205 | 70.08 213 | 74.51 145 | 91.37 139 | 45.69 253 | 95.70 142 | 60.12 250 | 80.32 161 | 92.29 157 |
|
mvs-test1 | | | 78.74 164 | 77.95 158 | 81.14 206 | 83.22 258 | 57.13 288 | 93.96 64 | 87.78 274 | 75.42 97 | 72.68 161 | 90.80 145 | 45.08 257 | 94.54 178 | 75.08 132 | 77.49 185 | 91.74 166 |
|
thres400 | | | 78.68 165 | 77.43 166 | 82.43 170 | 92.21 92 | 64.49 169 | 92.05 137 | 96.28 4 | 73.48 133 | 71.75 178 | 88.26 176 | 60.07 120 | 95.32 157 | 45.16 300 | 77.58 182 | 87.48 218 |
|
BH-untuned | | | 78.68 165 | 77.08 170 | 83.48 154 | 89.84 147 | 63.74 192 | 92.70 114 | 88.59 259 | 71.57 189 | 66.83 237 | 88.65 169 | 51.75 205 | 95.39 155 | 59.03 255 | 84.77 131 | 91.32 174 |
|
OMC-MVS | | | 78.67 167 | 77.91 160 | 80.95 215 | 85.76 224 | 57.40 286 | 88.49 242 | 88.67 256 | 73.85 123 | 72.43 169 | 92.10 129 | 49.29 227 | 94.55 177 | 72.73 146 | 77.89 178 | 90.91 180 |
|
tpm | | | 78.58 168 | 77.03 171 | 83.22 156 | 85.94 222 | 64.56 167 | 83.21 286 | 91.14 170 | 78.31 63 | 73.67 153 | 79.68 279 | 64.01 81 | 92.09 260 | 66.07 209 | 71.26 225 | 93.03 139 |
|
OpenMVS | | 70.45 11 | 78.54 169 | 75.92 187 | 86.41 68 | 85.93 223 | 71.68 14 | 92.74 112 | 92.51 118 | 66.49 245 | 64.56 252 | 91.96 131 | 43.88 263 | 98.10 35 | 54.61 268 | 90.65 87 | 89.44 197 |
|
EPMVS | | | 78.49 170 | 75.98 186 | 86.02 78 | 91.21 123 | 69.68 39 | 80.23 304 | 91.20 167 | 75.25 103 | 72.48 167 | 78.11 290 | 54.65 179 | 93.69 213 | 57.66 260 | 83.04 143 | 94.69 80 |
|
thres100view900 | | | 78.37 171 | 77.01 172 | 82.46 169 | 91.89 103 | 63.21 205 | 91.19 180 | 96.33 1 | 72.28 159 | 70.45 188 | 87.89 183 | 60.31 117 | 95.32 157 | 45.16 300 | 77.58 182 | 88.83 199 |
|
GA-MVS | | | 78.33 172 | 76.23 183 | 84.65 124 | 83.65 254 | 66.30 124 | 91.44 162 | 90.14 203 | 76.01 91 | 70.32 190 | 84.02 222 | 42.50 267 | 94.72 172 | 70.98 161 | 77.00 191 | 92.94 142 |
|
cascas | | | 78.18 173 | 75.77 189 | 85.41 102 | 87.14 204 | 69.11 47 | 92.96 105 | 91.15 169 | 66.71 243 | 70.47 186 | 86.07 202 | 37.49 292 | 96.48 113 | 70.15 169 | 79.80 163 | 90.65 182 |
|
UniMVSNet_NR-MVSNet | | | 78.15 174 | 77.55 164 | 79.98 231 | 84.46 242 | 60.26 252 | 92.25 127 | 93.20 89 | 77.50 75 | 68.88 208 | 86.61 196 | 66.10 58 | 92.13 258 | 66.38 205 | 62.55 280 | 87.54 216 |
|
thres600view7 | | | 78.00 175 | 76.66 177 | 82.03 190 | 91.93 100 | 63.69 195 | 91.30 174 | 96.33 1 | 72.43 154 | 70.46 187 | 87.89 183 | 60.31 117 | 94.92 167 | 42.64 312 | 76.64 193 | 87.48 218 |
|
FC-MVSNet-test | | | 77.99 176 | 78.08 155 | 77.70 263 | 84.89 235 | 55.51 297 | 90.27 207 | 93.75 65 | 76.87 81 | 66.80 238 | 87.59 186 | 65.71 64 | 90.23 287 | 62.89 234 | 73.94 204 | 87.37 221 |
|
Anonymous202405211 | | | 77.96 177 | 75.33 193 | 85.87 84 | 93.73 55 | 64.52 168 | 94.85 43 | 85.36 294 | 62.52 275 | 76.11 132 | 90.18 155 | 29.43 322 | 97.29 73 | 68.51 184 | 77.24 190 | 95.81 40 |
|
cl-mvsnet2 | | | 77.94 178 | 76.78 175 | 81.42 201 | 87.57 194 | 64.93 164 | 90.67 196 | 88.86 251 | 72.45 153 | 67.63 227 | 82.68 235 | 64.07 80 | 92.91 231 | 71.79 155 | 65.30 258 | 86.44 239 |
|
XXY-MVS | | | 77.94 178 | 76.44 180 | 82.43 170 | 82.60 264 | 64.44 173 | 92.01 139 | 91.83 143 | 73.59 131 | 70.00 195 | 85.82 205 | 54.43 182 | 94.76 169 | 69.63 172 | 68.02 245 | 88.10 213 |
|
MS-PatchMatch | | | 77.90 180 | 76.50 179 | 82.12 185 | 85.99 219 | 69.95 33 | 91.75 154 | 92.70 108 | 73.97 120 | 62.58 272 | 84.44 219 | 41.11 271 | 95.78 134 | 63.76 228 | 92.17 67 | 80.62 312 |
|
FMVSNet3 | | | 77.73 181 | 76.04 185 | 82.80 161 | 91.20 124 | 68.99 51 | 91.87 145 | 91.99 136 | 73.35 135 | 67.04 234 | 83.19 231 | 56.62 159 | 92.14 257 | 59.80 252 | 69.34 234 | 87.28 224 |
|
miper_ehance_all_eth | | | 77.60 182 | 76.44 180 | 81.09 212 | 85.70 225 | 64.41 176 | 90.65 197 | 88.64 258 | 72.31 157 | 67.37 232 | 82.52 236 | 64.77 74 | 92.64 244 | 70.67 165 | 65.30 258 | 86.24 243 |
|
UniMVSNet (Re) | | | 77.58 183 | 76.78 175 | 79.98 231 | 84.11 248 | 60.80 241 | 91.76 152 | 93.17 92 | 76.56 87 | 69.93 198 | 84.78 215 | 63.32 94 | 92.36 253 | 64.89 221 | 62.51 282 | 86.78 232 |
|
PatchmatchNet | | | 77.46 184 | 74.63 199 | 85.96 80 | 89.55 154 | 70.35 26 | 79.97 308 | 89.55 223 | 72.23 161 | 70.94 183 | 76.91 301 | 57.03 149 | 92.79 236 | 54.27 270 | 81.17 157 | 94.74 79 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v2v482 | | | 77.42 185 | 75.65 191 | 82.73 163 | 80.38 281 | 67.13 100 | 91.85 147 | 90.23 200 | 75.09 105 | 69.37 200 | 83.39 229 | 53.79 188 | 94.44 182 | 71.77 156 | 65.00 264 | 86.63 237 |
|
RRT_MVS | | | 77.38 186 | 76.59 178 | 79.77 238 | 90.91 129 | 63.61 199 | 91.15 181 | 90.91 178 | 72.28 159 | 72.06 174 | 87.28 192 | 43.92 262 | 89.04 297 | 73.32 140 | 67.47 249 | 86.67 233 |
|
CHOSEN 280x420 | | | 77.35 187 | 76.95 174 | 78.55 255 | 87.07 205 | 62.68 219 | 69.71 329 | 82.95 313 | 68.80 228 | 71.48 181 | 87.27 193 | 66.03 59 | 84.00 323 | 76.47 123 | 82.81 146 | 88.95 198 |
|
PS-MVSNAJss | | | 77.26 188 | 76.31 182 | 80.13 228 | 80.64 279 | 59.16 268 | 90.63 200 | 91.06 173 | 72.80 146 | 68.58 215 | 84.57 218 | 53.55 190 | 93.96 204 | 72.97 142 | 71.96 219 | 87.27 225 |
|
gg-mvs-nofinetune | | | 77.18 189 | 74.31 206 | 85.80 87 | 91.42 118 | 68.36 64 | 71.78 324 | 94.72 29 | 49.61 326 | 77.12 125 | 45.92 342 | 77.41 6 | 93.98 203 | 67.62 191 | 93.16 52 | 95.05 70 |
|
MVP-Stereo | | | 77.12 190 | 76.23 183 | 79.79 237 | 81.72 270 | 66.34 123 | 89.29 227 | 90.88 179 | 70.56 209 | 62.01 275 | 82.88 232 | 49.34 225 | 94.13 191 | 65.55 216 | 93.80 41 | 78.88 323 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
X-MVStestdata | | | 76.86 191 | 74.13 210 | 85.05 111 | 93.22 65 | 63.78 190 | 92.92 108 | 92.66 111 | 73.99 118 | 78.18 112 | 10.19 354 | 55.25 171 | 97.41 65 | 79.16 103 | 91.58 75 | 93.95 113 |
|
DU-MVS | | | 76.86 191 | 75.84 188 | 79.91 233 | 82.96 262 | 60.26 252 | 91.26 175 | 91.54 154 | 76.46 88 | 68.88 208 | 86.35 198 | 56.16 163 | 92.13 258 | 66.38 205 | 62.55 280 | 87.35 222 |
|
Anonymous20240529 | | | 76.84 193 | 74.15 209 | 84.88 116 | 91.02 125 | 64.95 163 | 93.84 75 | 91.09 172 | 53.57 316 | 73.00 156 | 87.42 189 | 35.91 302 | 97.32 71 | 69.14 179 | 72.41 217 | 92.36 154 |
|
cl_fuxian | | | 76.83 194 | 75.47 192 | 80.93 216 | 85.02 233 | 64.18 185 | 90.39 204 | 88.11 269 | 71.66 182 | 66.65 239 | 81.64 248 | 63.58 91 | 92.56 245 | 69.31 177 | 62.86 278 | 86.04 249 |
|
WR-MVS | | | 76.76 195 | 75.74 190 | 79.82 236 | 84.60 238 | 62.27 225 | 92.60 119 | 92.51 118 | 76.06 90 | 67.87 224 | 85.34 209 | 56.76 155 | 90.24 286 | 62.20 238 | 63.69 277 | 86.94 230 |
|
v1144 | | | 76.73 196 | 74.88 196 | 82.27 177 | 80.23 286 | 66.60 116 | 91.68 156 | 90.21 202 | 73.69 128 | 69.06 205 | 81.89 243 | 52.73 198 | 94.40 183 | 69.21 178 | 65.23 261 | 85.80 256 |
|
IterMVS-LS | | | 76.49 197 | 75.18 195 | 80.43 221 | 84.49 241 | 62.74 217 | 90.64 198 | 88.80 252 | 72.40 155 | 65.16 247 | 81.72 246 | 60.98 112 | 92.27 256 | 67.74 189 | 64.65 269 | 86.29 241 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
V42 | | | 76.46 198 | 74.55 202 | 82.19 181 | 79.14 299 | 67.82 79 | 90.26 208 | 89.42 228 | 73.75 126 | 68.63 214 | 81.89 243 | 51.31 209 | 94.09 193 | 71.69 158 | 64.84 265 | 84.66 272 |
|
v148 | | | 76.19 199 | 74.47 204 | 81.36 202 | 80.05 287 | 64.44 173 | 91.75 154 | 90.23 200 | 73.68 129 | 67.13 233 | 80.84 263 | 55.92 169 | 93.86 210 | 68.95 181 | 61.73 291 | 85.76 259 |
|
Effi-MVS+-dtu | | | 76.14 200 | 75.28 194 | 78.72 254 | 83.22 258 | 55.17 299 | 89.87 218 | 87.78 274 | 75.42 97 | 67.98 220 | 81.43 252 | 45.08 257 | 92.52 247 | 75.08 132 | 71.63 220 | 88.48 206 |
|
cl-mvsnet_ | | | 76.07 201 | 74.67 197 | 80.28 224 | 85.15 229 | 61.76 229 | 90.12 211 | 88.73 254 | 71.16 197 | 65.43 244 | 81.57 250 | 61.15 109 | 92.95 226 | 66.54 202 | 62.17 284 | 86.13 247 |
|
cl-mvsnet1 | | | 76.07 201 | 74.67 197 | 80.28 224 | 85.14 230 | 61.75 230 | 90.12 211 | 88.73 254 | 71.16 197 | 65.42 245 | 81.60 249 | 61.15 109 | 92.94 230 | 66.54 202 | 62.16 286 | 86.14 245 |
|
FMVSNet2 | | | 76.07 201 | 74.01 212 | 82.26 179 | 88.85 166 | 67.66 83 | 91.33 172 | 91.61 152 | 70.84 203 | 65.98 241 | 82.25 239 | 48.03 236 | 92.00 262 | 58.46 257 | 68.73 240 | 87.10 226 |
|
v144192 | | | 76.05 204 | 74.03 211 | 82.12 185 | 79.50 293 | 66.55 118 | 91.39 167 | 89.71 221 | 72.30 158 | 68.17 218 | 81.33 255 | 51.75 205 | 94.03 200 | 67.94 187 | 64.19 271 | 85.77 257 |
|
NR-MVSNet | | | 76.05 204 | 74.59 200 | 80.44 220 | 82.96 262 | 62.18 226 | 90.83 191 | 91.73 146 | 77.12 79 | 60.96 277 | 86.35 198 | 59.28 130 | 91.80 265 | 60.74 245 | 61.34 295 | 87.35 222 |
|
v1192 | | | 75.98 206 | 73.92 213 | 82.15 182 | 79.73 289 | 66.24 127 | 91.22 177 | 89.75 215 | 72.67 148 | 68.49 216 | 81.42 253 | 49.86 221 | 94.27 187 | 67.08 196 | 65.02 263 | 85.95 253 |
|
eth_miper_zixun_eth | | | 75.96 207 | 74.40 205 | 80.66 218 | 84.66 237 | 63.02 208 | 89.28 228 | 88.27 266 | 71.88 173 | 65.73 242 | 81.65 247 | 59.45 126 | 92.81 234 | 68.13 185 | 60.53 301 | 86.14 245 |
|
TranMVSNet+NR-MVSNet | | | 75.86 208 | 74.52 203 | 79.89 234 | 82.44 265 | 60.64 248 | 91.37 170 | 91.37 162 | 76.63 85 | 67.65 226 | 86.21 201 | 52.37 201 | 91.55 270 | 61.84 240 | 60.81 298 | 87.48 218 |
|
SCA | | | 75.82 209 | 72.76 224 | 85.01 113 | 86.63 210 | 70.08 28 | 81.06 298 | 89.19 236 | 71.60 188 | 70.01 194 | 77.09 299 | 45.53 254 | 90.25 283 | 60.43 247 | 73.27 208 | 94.68 81 |
|
LPG-MVS_test | | | 75.82 209 | 74.58 201 | 79.56 244 | 84.31 245 | 59.37 265 | 90.44 201 | 89.73 218 | 69.49 218 | 64.86 248 | 88.42 171 | 38.65 280 | 94.30 185 | 72.56 148 | 72.76 212 | 85.01 269 |
|
GBi-Net | | | 75.65 211 | 73.83 214 | 81.10 209 | 88.85 166 | 65.11 155 | 90.01 214 | 90.32 194 | 70.84 203 | 67.04 234 | 80.25 273 | 48.03 236 | 91.54 271 | 59.80 252 | 69.34 234 | 86.64 234 |
|
test1 | | | 75.65 211 | 73.83 214 | 81.10 209 | 88.85 166 | 65.11 155 | 90.01 214 | 90.32 194 | 70.84 203 | 67.04 234 | 80.25 273 | 48.03 236 | 91.54 271 | 59.80 252 | 69.34 234 | 86.64 234 |
|
v1921920 | | | 75.63 213 | 73.49 218 | 82.06 189 | 79.38 294 | 66.35 122 | 91.07 185 | 89.48 225 | 71.98 168 | 67.99 219 | 81.22 258 | 49.16 230 | 93.90 207 | 66.56 201 | 64.56 270 | 85.92 255 |
|
ACMP | | 71.68 10 | 75.58 214 | 74.23 208 | 79.62 242 | 84.97 234 | 59.64 260 | 90.80 192 | 89.07 244 | 70.39 210 | 62.95 268 | 87.30 191 | 38.28 283 | 93.87 208 | 72.89 143 | 71.45 223 | 85.36 265 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
v8 | | | 75.35 215 | 73.26 220 | 81.61 198 | 80.67 278 | 66.82 109 | 89.54 224 | 89.27 232 | 71.65 183 | 63.30 266 | 80.30 272 | 54.99 177 | 94.06 196 | 67.33 194 | 62.33 283 | 83.94 277 |
|
tpm cat1 | | | 75.30 216 | 72.21 232 | 84.58 127 | 88.52 172 | 67.77 80 | 78.16 317 | 88.02 271 | 61.88 281 | 68.45 217 | 76.37 302 | 60.65 114 | 94.03 200 | 53.77 273 | 74.11 202 | 91.93 164 |
|
PLC | | 68.80 14 | 75.23 217 | 73.68 216 | 79.86 235 | 92.93 74 | 58.68 272 | 90.64 198 | 88.30 264 | 60.90 285 | 64.43 256 | 90.53 149 | 42.38 268 | 94.57 175 | 56.52 262 | 76.54 194 | 86.33 240 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
v1240 | | | 75.21 218 | 72.98 222 | 81.88 191 | 79.20 296 | 66.00 131 | 90.75 194 | 89.11 242 | 71.63 187 | 67.41 230 | 81.22 258 | 47.36 244 | 93.87 208 | 65.46 217 | 64.72 268 | 85.77 257 |
|
Fast-Effi-MVS+-dtu | | | 75.04 219 | 73.37 219 | 80.07 229 | 80.86 275 | 59.52 263 | 91.20 179 | 85.38 293 | 71.90 171 | 65.20 246 | 84.84 214 | 41.46 270 | 92.97 225 | 66.50 204 | 72.96 211 | 87.73 215 |
|
dp | | | 75.01 220 | 72.09 233 | 83.76 142 | 89.28 158 | 66.22 128 | 79.96 309 | 89.75 215 | 71.16 197 | 67.80 225 | 77.19 298 | 51.81 204 | 92.54 246 | 50.39 281 | 71.44 224 | 92.51 152 |
|
TAPA-MVS | | 70.22 12 | 74.94 221 | 73.53 217 | 79.17 249 | 90.40 137 | 52.07 312 | 89.19 231 | 89.61 222 | 62.69 273 | 70.07 193 | 92.67 118 | 48.89 233 | 94.32 184 | 38.26 326 | 79.97 162 | 91.12 178 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
v10 | | | 74.77 222 | 72.54 229 | 81.46 200 | 80.33 284 | 66.71 113 | 89.15 232 | 89.08 243 | 70.94 201 | 63.08 267 | 79.86 277 | 52.52 199 | 94.04 199 | 65.70 213 | 62.17 284 | 83.64 279 |
|
XVG-OURS-SEG-HR | | | 74.70 223 | 73.08 221 | 79.57 243 | 78.25 309 | 57.33 287 | 80.49 300 | 87.32 278 | 63.22 267 | 68.76 212 | 90.12 159 | 44.89 259 | 91.59 269 | 70.55 167 | 74.09 203 | 89.79 191 |
|
ACMM | | 69.62 13 | 74.34 224 | 72.73 225 | 79.17 249 | 84.25 247 | 57.87 279 | 90.36 205 | 89.93 211 | 63.17 268 | 65.64 243 | 86.04 204 | 37.79 290 | 94.10 192 | 65.89 210 | 71.52 222 | 85.55 262 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CNLPA | | | 74.31 225 | 72.30 231 | 80.32 222 | 91.49 117 | 61.66 231 | 90.85 190 | 80.72 319 | 56.67 309 | 63.85 260 | 90.64 146 | 46.75 246 | 90.84 278 | 53.79 272 | 75.99 197 | 88.47 208 |
|
XVG-OURS | | | 74.25 226 | 72.46 230 | 79.63 241 | 78.45 308 | 57.59 284 | 80.33 302 | 87.39 277 | 63.86 262 | 68.76 212 | 89.62 163 | 40.50 273 | 91.72 267 | 69.00 180 | 74.25 201 | 89.58 194 |
|
CVMVSNet | | | 74.04 227 | 74.27 207 | 73.33 296 | 85.33 226 | 43.94 338 | 89.53 225 | 88.39 262 | 54.33 315 | 70.37 189 | 90.13 157 | 49.17 229 | 84.05 321 | 61.83 241 | 79.36 166 | 91.99 163 |
|
Baseline_NR-MVSNet | | | 73.99 228 | 72.83 223 | 77.48 267 | 80.78 276 | 59.29 267 | 91.79 149 | 84.55 300 | 68.85 227 | 68.99 206 | 80.70 264 | 56.16 163 | 92.04 261 | 62.67 235 | 60.98 297 | 81.11 306 |
|
pmmvs4 | | | 73.92 229 | 71.81 236 | 80.25 226 | 79.17 297 | 65.24 150 | 87.43 257 | 87.26 280 | 67.64 239 | 63.46 263 | 83.91 224 | 48.96 232 | 91.53 274 | 62.94 232 | 65.49 257 | 83.96 276 |
|
D2MVS | | | 73.80 230 | 72.02 234 | 79.15 251 | 79.15 298 | 62.97 209 | 88.58 241 | 90.07 205 | 72.94 142 | 59.22 285 | 78.30 287 | 42.31 269 | 92.70 240 | 65.59 215 | 72.00 218 | 81.79 303 |
|
CR-MVSNet | | | 73.79 231 | 70.82 243 | 82.70 164 | 83.15 260 | 67.96 75 | 70.25 326 | 84.00 305 | 73.67 130 | 69.97 196 | 72.41 317 | 57.82 141 | 89.48 294 | 52.99 276 | 73.13 209 | 90.64 183 |
|
test_djsdf | | | 73.76 232 | 72.56 228 | 77.39 269 | 77.00 317 | 53.93 304 | 89.07 234 | 90.69 183 | 65.80 249 | 63.92 258 | 82.03 242 | 43.14 266 | 92.67 241 | 72.83 144 | 68.53 241 | 85.57 261 |
|
pmmvs5 | | | 73.35 233 | 71.52 238 | 78.86 253 | 78.64 306 | 60.61 249 | 91.08 183 | 86.90 281 | 67.69 236 | 63.32 265 | 83.64 225 | 44.33 261 | 90.53 280 | 62.04 239 | 66.02 256 | 85.46 263 |
|
Anonymous20231211 | | | 73.08 234 | 70.39 245 | 81.13 207 | 90.62 134 | 63.33 202 | 91.40 165 | 90.06 208 | 51.84 321 | 64.46 255 | 80.67 266 | 36.49 300 | 94.07 195 | 63.83 227 | 64.17 272 | 85.98 251 |
|
miper_lstm_enhance | | | 73.05 235 | 71.73 237 | 77.03 273 | 83.80 251 | 58.32 276 | 81.76 292 | 88.88 249 | 69.80 216 | 61.01 276 | 78.23 289 | 57.19 146 | 87.51 309 | 65.34 218 | 59.53 304 | 85.27 268 |
|
jajsoiax | | | 73.05 235 | 71.51 239 | 77.67 264 | 77.46 314 | 54.83 300 | 88.81 237 | 90.04 209 | 69.13 225 | 62.85 270 | 83.51 227 | 31.16 318 | 92.75 237 | 70.83 162 | 69.80 230 | 85.43 264 |
|
LCM-MVSNet-Re | | | 72.93 237 | 71.84 235 | 76.18 280 | 88.49 173 | 48.02 328 | 80.07 307 | 70.17 339 | 73.96 121 | 52.25 311 | 80.09 276 | 49.98 219 | 88.24 303 | 67.35 192 | 84.23 140 | 92.28 158 |
|
pm-mvs1 | | | 72.89 238 | 71.09 241 | 78.26 259 | 79.10 300 | 57.62 283 | 90.80 192 | 89.30 231 | 67.66 237 | 62.91 269 | 81.78 245 | 49.11 231 | 92.95 226 | 60.29 249 | 58.89 307 | 84.22 275 |
|
tpmvs | | | 72.88 239 | 69.76 251 | 82.22 180 | 90.98 126 | 67.05 102 | 78.22 316 | 88.30 264 | 63.10 269 | 64.35 257 | 74.98 309 | 55.09 176 | 94.27 187 | 43.25 306 | 69.57 233 | 85.34 266 |
|
test0.0.03 1 | | | 72.76 240 | 72.71 226 | 72.88 300 | 80.25 285 | 47.99 329 | 91.22 177 | 89.45 226 | 71.51 192 | 62.51 273 | 87.66 185 | 53.83 186 | 85.06 318 | 50.16 282 | 67.84 248 | 85.58 260 |
|
UniMVSNet_ETH3D | | | 72.74 241 | 70.53 244 | 79.36 246 | 78.62 307 | 56.64 291 | 85.01 271 | 89.20 235 | 63.77 263 | 64.84 250 | 84.44 219 | 34.05 307 | 91.86 264 | 63.94 226 | 70.89 227 | 89.57 195 |
|
mvs_tets | | | 72.71 242 | 71.11 240 | 77.52 265 | 77.41 315 | 54.52 302 | 88.45 244 | 89.76 214 | 68.76 230 | 62.70 271 | 83.26 230 | 29.49 321 | 92.71 238 | 70.51 168 | 69.62 232 | 85.34 266 |
|
FMVSNet1 | | | 72.71 242 | 69.91 249 | 81.10 209 | 83.60 255 | 65.11 155 | 90.01 214 | 90.32 194 | 63.92 261 | 63.56 262 | 80.25 273 | 36.35 301 | 91.54 271 | 54.46 269 | 66.75 253 | 86.64 234 |
|
IterMVS | | | 72.65 244 | 70.83 242 | 78.09 261 | 82.17 266 | 62.96 210 | 87.64 255 | 86.28 285 | 71.56 190 | 60.44 279 | 78.85 285 | 45.42 256 | 86.66 313 | 63.30 230 | 61.83 288 | 84.65 273 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test_part1 | | | 72.36 245 | 69.25 253 | 81.68 197 | 79.94 288 | 65.07 159 | 90.68 195 | 89.53 224 | 52.32 318 | 63.42 264 | 79.21 283 | 40.43 274 | 94.01 202 | 67.14 195 | 60.59 300 | 85.96 252 |
|
PatchMatch-RL | | | 72.06 246 | 69.98 246 | 78.28 258 | 89.51 155 | 55.70 296 | 83.49 280 | 83.39 311 | 61.24 284 | 63.72 261 | 82.76 233 | 34.77 305 | 93.03 224 | 53.37 275 | 77.59 181 | 86.12 248 |
|
PVSNet_0 | | 68.08 15 | 71.81 247 | 68.32 259 | 82.27 177 | 84.68 236 | 62.31 224 | 88.68 239 | 90.31 197 | 75.84 92 | 57.93 294 | 80.65 267 | 37.85 289 | 94.19 190 | 69.94 170 | 29.05 345 | 90.31 186 |
|
MIMVSNet | | | 71.64 248 | 68.44 257 | 81.23 205 | 81.97 269 | 64.44 173 | 73.05 323 | 88.80 252 | 69.67 217 | 64.59 251 | 74.79 310 | 32.79 310 | 87.82 307 | 53.99 271 | 76.35 195 | 91.42 170 |
|
IterMVS-SCA-FT | | | 71.55 249 | 69.97 247 | 76.32 278 | 81.48 271 | 60.67 247 | 87.64 255 | 85.99 289 | 66.17 247 | 59.50 283 | 78.88 284 | 45.53 254 | 83.65 325 | 62.58 236 | 61.93 287 | 84.63 274 |
|
v7n | | | 71.31 250 | 68.65 255 | 79.28 247 | 76.40 319 | 60.77 243 | 86.71 265 | 89.45 226 | 64.17 260 | 58.77 290 | 78.24 288 | 44.59 260 | 93.54 215 | 57.76 258 | 61.75 290 | 83.52 282 |
|
anonymousdsp | | | 71.14 251 | 69.37 252 | 76.45 277 | 72.95 327 | 54.71 301 | 84.19 275 | 88.88 249 | 61.92 280 | 62.15 274 | 79.77 278 | 38.14 285 | 91.44 276 | 68.90 182 | 67.45 250 | 83.21 288 |
|
testing_2 | | | 71.09 252 | 67.32 263 | 82.40 174 | 69.82 336 | 66.52 119 | 83.64 278 | 90.77 181 | 72.21 162 | 45.12 332 | 71.07 325 | 27.60 327 | 93.74 211 | 75.71 127 | 69.96 229 | 86.95 229 |
|
F-COLMAP | | | 70.66 253 | 68.44 257 | 77.32 270 | 86.37 214 | 55.91 295 | 88.00 248 | 86.32 284 | 56.94 307 | 57.28 297 | 88.07 180 | 33.58 308 | 92.49 248 | 51.02 279 | 68.37 242 | 83.55 280 |
|
WR-MVS_H | | | 70.59 254 | 69.94 248 | 72.53 302 | 81.03 274 | 51.43 315 | 87.35 258 | 92.03 135 | 67.38 240 | 60.23 280 | 80.70 264 | 55.84 170 | 83.45 327 | 46.33 296 | 58.58 308 | 82.72 294 |
|
CP-MVSNet | | | 70.50 255 | 69.91 249 | 72.26 305 | 80.71 277 | 51.00 318 | 87.23 259 | 90.30 198 | 67.84 234 | 59.64 282 | 82.69 234 | 50.23 218 | 82.30 334 | 51.28 278 | 59.28 305 | 83.46 284 |
|
RPMNet | | | 70.42 256 | 65.68 269 | 84.63 126 | 83.15 260 | 67.96 75 | 70.25 326 | 90.45 188 | 46.83 334 | 69.97 196 | 65.10 333 | 56.48 162 | 95.30 160 | 35.79 331 | 73.13 209 | 90.64 183 |
|
tfpnnormal | | | 70.10 257 | 67.36 261 | 78.32 257 | 83.45 257 | 60.97 239 | 88.85 236 | 92.77 106 | 64.85 256 | 60.83 278 | 78.53 286 | 43.52 265 | 93.48 217 | 31.73 341 | 61.70 292 | 80.52 313 |
|
TransMVSNet (Re) | | | 70.07 258 | 67.66 260 | 77.31 271 | 80.62 280 | 59.13 269 | 91.78 151 | 84.94 297 | 65.97 248 | 60.08 281 | 80.44 269 | 50.78 212 | 91.87 263 | 48.84 287 | 45.46 332 | 80.94 308 |
|
DP-MVS | | | 69.90 259 | 66.48 265 | 80.14 227 | 95.36 25 | 62.93 211 | 89.56 222 | 76.11 326 | 50.27 325 | 57.69 295 | 85.23 210 | 39.68 276 | 95.73 137 | 33.35 335 | 71.05 226 | 81.78 304 |
|
PS-CasMVS | | | 69.86 260 | 69.13 254 | 72.07 308 | 80.35 283 | 50.57 320 | 87.02 261 | 89.75 215 | 67.27 241 | 59.19 286 | 82.28 238 | 46.58 248 | 82.24 335 | 50.69 280 | 59.02 306 | 83.39 286 |
|
MSDG | | | 69.54 261 | 65.73 268 | 80.96 214 | 85.11 232 | 63.71 194 | 84.19 275 | 83.28 312 | 56.95 306 | 54.50 302 | 84.03 221 | 31.50 316 | 96.03 128 | 42.87 310 | 69.13 237 | 83.14 290 |
|
PEN-MVS | | | 69.46 262 | 68.56 256 | 72.17 307 | 79.27 295 | 49.71 324 | 86.90 263 | 89.24 233 | 67.24 242 | 59.08 287 | 82.51 237 | 47.23 245 | 83.54 326 | 48.42 289 | 57.12 309 | 83.25 287 |
|
LS3D | | | 69.17 263 | 66.40 266 | 77.50 266 | 91.92 101 | 56.12 294 | 85.12 270 | 80.37 320 | 46.96 332 | 56.50 299 | 87.51 188 | 37.25 293 | 93.71 212 | 32.52 340 | 79.40 165 | 82.68 296 |
|
PatchT | | | 69.11 264 | 65.37 273 | 80.32 222 | 82.07 268 | 63.68 196 | 67.96 335 | 87.62 276 | 50.86 324 | 69.37 200 | 65.18 332 | 57.09 147 | 88.53 301 | 41.59 315 | 66.60 254 | 88.74 202 |
|
MVS_0304 | | | 68.99 265 | 67.23 264 | 74.28 291 | 80.36 282 | 52.54 309 | 87.01 262 | 86.36 283 | 59.89 294 | 66.22 240 | 73.56 313 | 24.25 332 | 88.03 305 | 57.34 261 | 70.11 228 | 82.27 299 |
|
ACMH | | 63.93 17 | 68.62 266 | 64.81 274 | 80.03 230 | 85.22 228 | 63.25 203 | 87.72 253 | 84.66 299 | 60.83 286 | 51.57 314 | 79.43 282 | 27.29 328 | 94.96 164 | 41.76 313 | 64.84 265 | 81.88 302 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EG-PatchMatch MVS | | | 68.55 267 | 65.41 272 | 77.96 262 | 78.69 305 | 62.93 211 | 89.86 219 | 89.17 237 | 60.55 287 | 50.27 319 | 77.73 293 | 22.60 337 | 94.06 196 | 47.18 294 | 72.65 214 | 76.88 330 |
|
ADS-MVSNet | | | 68.54 268 | 64.38 281 | 81.03 213 | 88.06 186 | 66.90 107 | 68.01 333 | 84.02 304 | 57.57 302 | 64.48 253 | 69.87 326 | 38.68 278 | 89.21 296 | 40.87 317 | 67.89 246 | 86.97 227 |
|
DTE-MVSNet | | | 68.46 269 | 67.33 262 | 71.87 310 | 77.94 312 | 49.00 327 | 86.16 268 | 88.58 260 | 66.36 246 | 58.19 291 | 82.21 240 | 46.36 249 | 83.87 324 | 44.97 303 | 55.17 316 | 82.73 293 |
|
our_test_3 | | | 68.29 270 | 64.69 276 | 79.11 252 | 78.92 301 | 64.85 165 | 88.40 245 | 85.06 295 | 60.32 290 | 52.68 309 | 76.12 304 | 40.81 272 | 89.80 293 | 44.25 305 | 55.65 314 | 82.67 297 |
|
Patchmatch-RL test | | | 68.17 271 | 64.49 279 | 79.19 248 | 71.22 331 | 53.93 304 | 70.07 328 | 71.54 338 | 69.22 222 | 56.79 298 | 62.89 335 | 56.58 160 | 88.61 298 | 69.53 174 | 52.61 322 | 95.03 73 |
|
XVG-ACMP-BASELINE | | | 68.04 272 | 65.53 271 | 75.56 282 | 74.06 326 | 52.37 310 | 78.43 313 | 85.88 290 | 62.03 278 | 58.91 289 | 81.21 260 | 20.38 340 | 91.15 277 | 60.69 246 | 68.18 243 | 83.16 289 |
|
FMVSNet5 | | | 68.04 272 | 65.66 270 | 75.18 284 | 84.43 243 | 57.89 278 | 83.54 279 | 86.26 286 | 61.83 282 | 53.64 307 | 73.30 314 | 37.15 296 | 85.08 317 | 48.99 286 | 61.77 289 | 82.56 298 |
|
ppachtmachnet_test | | | 67.72 274 | 63.70 283 | 79.77 238 | 78.92 301 | 66.04 130 | 88.68 239 | 82.90 314 | 60.11 292 | 55.45 300 | 75.96 305 | 39.19 277 | 90.55 279 | 39.53 321 | 52.55 323 | 82.71 295 |
|
ACMH+ | | 65.35 16 | 67.65 275 | 64.55 277 | 76.96 274 | 84.59 239 | 57.10 289 | 88.08 247 | 80.79 318 | 58.59 301 | 53.00 308 | 81.09 262 | 26.63 330 | 92.95 226 | 46.51 295 | 61.69 293 | 80.82 309 |
|
pmmvs6 | | | 67.57 276 | 64.76 275 | 76.00 281 | 72.82 329 | 53.37 306 | 88.71 238 | 86.78 282 | 53.19 317 | 57.58 296 | 78.03 291 | 35.33 304 | 92.41 250 | 55.56 266 | 54.88 318 | 82.21 300 |
|
Anonymous20231206 | | | 67.53 277 | 65.78 267 | 72.79 301 | 74.95 323 | 47.59 331 | 88.23 246 | 87.32 278 | 61.75 283 | 58.07 293 | 77.29 296 | 37.79 290 | 87.29 311 | 42.91 308 | 63.71 276 | 83.48 283 |
|
Patchmtry | | | 67.53 277 | 63.93 282 | 78.34 256 | 82.12 267 | 64.38 177 | 68.72 330 | 84.00 305 | 48.23 331 | 59.24 284 | 72.41 317 | 57.82 141 | 89.27 295 | 46.10 297 | 56.68 313 | 81.36 305 |
|
USDC | | | 67.43 279 | 64.51 278 | 76.19 279 | 77.94 312 | 55.29 298 | 78.38 314 | 85.00 296 | 73.17 137 | 48.36 324 | 80.37 270 | 21.23 339 | 92.48 249 | 52.15 277 | 64.02 274 | 80.81 310 |
|
ADS-MVSNet2 | | | 66.90 280 | 63.44 285 | 77.26 272 | 88.06 186 | 60.70 246 | 68.01 333 | 75.56 329 | 57.57 302 | 64.48 253 | 69.87 326 | 38.68 278 | 84.10 320 | 40.87 317 | 67.89 246 | 86.97 227 |
|
CMPMVS | | 48.56 21 | 66.77 281 | 64.41 280 | 73.84 293 | 70.65 334 | 50.31 321 | 77.79 318 | 85.73 292 | 45.54 335 | 44.76 333 | 82.14 241 | 35.40 303 | 90.14 289 | 63.18 231 | 74.54 200 | 81.07 307 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
OpenMVS_ROB | | 61.12 18 | 66.39 282 | 62.92 288 | 76.80 276 | 76.51 318 | 57.77 280 | 89.22 229 | 83.41 310 | 55.48 313 | 53.86 306 | 77.84 292 | 26.28 331 | 93.95 205 | 34.90 333 | 68.76 239 | 78.68 325 |
|
LTVRE_ROB | | 59.60 19 | 66.27 283 | 63.54 284 | 74.45 288 | 84.00 250 | 51.55 314 | 67.08 336 | 83.53 308 | 58.78 299 | 54.94 301 | 80.31 271 | 34.54 306 | 93.23 221 | 40.64 319 | 68.03 244 | 78.58 326 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
JIA-IIPM | | | 66.06 284 | 62.45 291 | 76.88 275 | 81.42 273 | 54.45 303 | 57.49 344 | 88.67 256 | 49.36 327 | 63.86 259 | 46.86 341 | 56.06 166 | 90.25 283 | 49.53 285 | 68.83 238 | 85.95 253 |
|
Patchmatch-test | | | 65.86 285 | 60.94 297 | 80.62 219 | 83.75 252 | 58.83 270 | 58.91 343 | 75.26 331 | 44.50 338 | 50.95 318 | 77.09 299 | 58.81 135 | 87.90 306 | 35.13 332 | 64.03 273 | 95.12 67 |
|
UnsupCasMVSNet_eth | | | 65.79 286 | 63.10 286 | 73.88 292 | 70.71 333 | 50.29 322 | 81.09 297 | 89.88 212 | 72.58 150 | 49.25 322 | 74.77 311 | 32.57 312 | 87.43 310 | 55.96 265 | 41.04 338 | 83.90 278 |
|
pmmvs-eth3d | | | 65.53 287 | 62.32 292 | 75.19 283 | 69.39 338 | 59.59 261 | 82.80 289 | 83.43 309 | 62.52 275 | 51.30 316 | 72.49 315 | 32.86 309 | 87.16 312 | 55.32 267 | 50.73 326 | 78.83 324 |
|
SixPastTwentyTwo | | | 64.92 288 | 61.78 295 | 74.34 290 | 78.74 304 | 49.76 323 | 83.42 283 | 79.51 323 | 62.86 270 | 50.27 319 | 77.35 294 | 30.92 320 | 90.49 281 | 45.89 298 | 47.06 330 | 82.78 291 |
|
OurMVSNet-221017-0 | | | 64.68 289 | 62.17 293 | 72.21 306 | 76.08 322 | 47.35 332 | 80.67 299 | 81.02 317 | 56.19 310 | 51.60 313 | 79.66 280 | 27.05 329 | 88.56 300 | 53.60 274 | 53.63 321 | 80.71 311 |
|
test_0402 | | | 64.54 290 | 61.09 296 | 74.92 285 | 84.10 249 | 60.75 244 | 87.95 249 | 79.71 322 | 52.03 320 | 52.41 310 | 77.20 297 | 32.21 314 | 91.64 268 | 23.14 344 | 61.03 296 | 72.36 336 |
|
testgi | | | 64.48 291 | 62.87 289 | 69.31 314 | 71.24 330 | 40.62 342 | 85.49 269 | 79.92 321 | 65.36 253 | 54.18 304 | 83.49 228 | 23.74 335 | 84.55 319 | 41.60 314 | 60.79 299 | 82.77 292 |
|
RPSCF | | | 64.24 292 | 61.98 294 | 71.01 311 | 76.10 321 | 45.00 335 | 75.83 321 | 75.94 327 | 46.94 333 | 58.96 288 | 84.59 217 | 31.40 317 | 82.00 336 | 47.76 292 | 60.33 303 | 86.04 249 |
|
EU-MVSNet | | | 64.01 293 | 63.01 287 | 67.02 320 | 74.40 325 | 38.86 346 | 83.27 284 | 86.19 287 | 45.11 336 | 54.27 303 | 81.15 261 | 36.91 299 | 80.01 339 | 48.79 288 | 57.02 310 | 82.19 301 |
|
test20.03 | | | 63.83 294 | 62.65 290 | 67.38 319 | 70.58 335 | 39.94 343 | 86.57 266 | 84.17 302 | 63.29 266 | 51.86 312 | 77.30 295 | 37.09 297 | 82.47 332 | 38.87 325 | 54.13 320 | 79.73 318 |
|
MDA-MVSNet_test_wron | | | 63.78 295 | 60.16 298 | 74.64 286 | 78.15 310 | 60.41 250 | 83.49 280 | 84.03 303 | 56.17 312 | 39.17 341 | 71.59 323 | 37.22 294 | 83.24 330 | 42.87 310 | 48.73 328 | 80.26 316 |
|
YYNet1 | | | 63.76 296 | 60.14 299 | 74.62 287 | 78.06 311 | 60.19 255 | 83.46 282 | 83.99 307 | 56.18 311 | 39.25 340 | 71.56 324 | 37.18 295 | 83.34 328 | 42.90 309 | 48.70 329 | 80.32 315 |
|
K. test v3 | | | 63.09 297 | 59.61 301 | 73.53 295 | 76.26 320 | 49.38 326 | 83.27 284 | 77.15 325 | 64.35 258 | 47.77 325 | 72.32 319 | 28.73 323 | 87.79 308 | 49.93 284 | 36.69 342 | 83.41 285 |
|
COLMAP_ROB | | 57.96 20 | 62.98 298 | 59.65 300 | 72.98 299 | 81.44 272 | 53.00 308 | 83.75 277 | 75.53 330 | 48.34 330 | 48.81 323 | 81.40 254 | 24.14 333 | 90.30 282 | 32.95 337 | 60.52 302 | 75.65 333 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AllTest | | | 61.66 299 | 58.06 302 | 72.46 303 | 79.57 290 | 51.42 316 | 80.17 305 | 68.61 341 | 51.25 322 | 45.88 327 | 81.23 256 | 19.86 341 | 86.58 314 | 38.98 323 | 57.01 311 | 79.39 320 |
|
UnsupCasMVSNet_bld | | | 61.60 300 | 57.71 303 | 73.29 297 | 68.73 339 | 51.64 313 | 78.61 312 | 89.05 245 | 57.20 305 | 46.11 326 | 61.96 336 | 28.70 324 | 88.60 299 | 50.08 283 | 38.90 340 | 79.63 319 |
|
MDA-MVSNet-bldmvs | | | 61.54 301 | 57.70 304 | 73.05 298 | 79.53 292 | 57.00 290 | 83.08 287 | 81.23 316 | 57.57 302 | 34.91 343 | 72.45 316 | 32.79 310 | 86.26 316 | 35.81 330 | 41.95 336 | 75.89 332 |
|
TinyColmap | | | 60.32 302 | 56.42 308 | 72.00 309 | 78.78 303 | 53.18 307 | 78.36 315 | 75.64 328 | 52.30 319 | 41.59 339 | 75.82 307 | 14.76 346 | 88.35 302 | 35.84 329 | 54.71 319 | 74.46 334 |
|
MVS-HIRNet | | | 60.25 303 | 55.55 309 | 74.35 289 | 84.37 244 | 56.57 292 | 71.64 325 | 74.11 332 | 34.44 343 | 45.54 331 | 42.24 345 | 31.11 319 | 89.81 291 | 40.36 320 | 76.10 196 | 76.67 331 |
|
MIMVSNet1 | | | 60.16 304 | 57.33 305 | 68.67 315 | 69.71 337 | 44.13 337 | 78.92 311 | 84.21 301 | 55.05 314 | 44.63 334 | 71.85 321 | 23.91 334 | 81.54 338 | 32.63 339 | 55.03 317 | 80.35 314 |
|
PM-MVS | | | 59.40 305 | 56.59 306 | 67.84 316 | 63.63 341 | 41.86 339 | 76.76 319 | 63.22 347 | 59.01 298 | 51.07 317 | 72.27 320 | 11.72 348 | 83.25 329 | 61.34 242 | 50.28 327 | 78.39 327 |
|
new-patchmatchnet | | | 59.30 306 | 56.48 307 | 67.79 317 | 65.86 340 | 44.19 336 | 82.47 290 | 81.77 315 | 59.94 293 | 43.65 337 | 66.20 331 | 27.67 326 | 81.68 337 | 39.34 322 | 41.40 337 | 77.50 329 |
|
DSMNet-mixed | | | 56.78 307 | 54.44 310 | 63.79 322 | 63.21 342 | 29.44 350 | 64.43 338 | 64.10 346 | 42.12 340 | 51.32 315 | 71.60 322 | 31.76 315 | 75.04 341 | 36.23 328 | 65.20 262 | 86.87 231 |
|
pmmvs3 | | | 55.51 308 | 51.50 313 | 67.53 318 | 57.90 347 | 50.93 319 | 80.37 301 | 73.66 333 | 40.63 341 | 44.15 336 | 64.75 334 | 16.30 343 | 78.97 340 | 44.77 304 | 40.98 339 | 72.69 335 |
|
TDRefinement | | | 55.28 309 | 51.58 312 | 66.39 321 | 59.53 346 | 46.15 334 | 76.23 320 | 72.80 334 | 44.60 337 | 42.49 338 | 76.28 303 | 15.29 344 | 82.39 333 | 33.20 336 | 43.75 334 | 70.62 338 |
|
LF4IMVS | | | 54.01 310 | 52.12 311 | 59.69 323 | 62.41 344 | 39.91 344 | 68.59 331 | 68.28 343 | 42.96 339 | 44.55 335 | 75.18 308 | 14.09 347 | 68.39 344 | 41.36 316 | 51.68 324 | 70.78 337 |
|
N_pmnet | | | 50.55 311 | 49.11 314 | 54.88 326 | 77.17 316 | 4.02 359 | 84.36 274 | 2.00 358 | 48.59 328 | 45.86 329 | 68.82 328 | 32.22 313 | 82.80 331 | 31.58 342 | 51.38 325 | 77.81 328 |
|
new_pmnet | | | 49.31 312 | 46.44 315 | 57.93 324 | 62.84 343 | 40.74 341 | 68.47 332 | 62.96 348 | 36.48 342 | 35.09 342 | 57.81 338 | 14.97 345 | 72.18 342 | 32.86 338 | 46.44 331 | 60.88 342 |
|
FPMVS | | | 45.64 313 | 43.10 316 | 53.23 328 | 51.42 349 | 36.46 347 | 64.97 337 | 71.91 336 | 29.13 345 | 27.53 344 | 61.55 337 | 9.83 350 | 65.01 348 | 16.00 347 | 55.58 315 | 58.22 343 |
|
LCM-MVSNet | | | 40.54 314 | 35.79 317 | 54.76 327 | 36.92 354 | 30.81 349 | 51.41 345 | 69.02 340 | 22.07 347 | 24.63 345 | 45.37 343 | 4.56 356 | 65.81 346 | 33.67 334 | 34.50 343 | 67.67 339 |
|
ANet_high | | | 40.27 315 | 35.20 318 | 55.47 325 | 34.74 355 | 34.47 348 | 63.84 339 | 71.56 337 | 48.42 329 | 18.80 348 | 41.08 346 | 9.52 351 | 64.45 349 | 20.18 345 | 8.66 352 | 67.49 340 |
|
PMMVS2 | | | 37.93 316 | 33.61 319 | 50.92 329 | 46.31 351 | 24.76 353 | 60.55 342 | 50.05 350 | 28.94 346 | 20.93 346 | 47.59 340 | 4.41 357 | 65.13 347 | 25.14 343 | 18.55 347 | 62.87 341 |
|
Gipuma | | | 34.91 317 | 31.44 320 | 45.30 330 | 70.99 332 | 39.64 345 | 19.85 351 | 72.56 335 | 20.10 349 | 16.16 350 | 21.47 351 | 5.08 355 | 71.16 343 | 13.07 348 | 43.70 335 | 25.08 347 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS | | 26.43 22 | 31.84 318 | 28.16 321 | 42.89 331 | 25.87 357 | 27.58 351 | 50.92 346 | 49.78 351 | 21.37 348 | 14.17 351 | 40.81 347 | 2.01 358 | 66.62 345 | 9.61 350 | 38.88 341 | 34.49 346 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 24.61 319 | 24.00 323 | 26.45 334 | 43.74 352 | 18.44 356 | 60.86 340 | 39.66 352 | 15.11 350 | 9.53 353 | 22.10 350 | 6.52 353 | 46.94 351 | 8.31 351 | 10.14 349 | 13.98 349 |
|
MVE | | 24.84 23 | 24.35 320 | 19.77 326 | 38.09 332 | 34.56 356 | 26.92 352 | 26.57 349 | 38.87 354 | 11.73 352 | 11.37 352 | 27.44 348 | 1.37 359 | 50.42 350 | 11.41 349 | 14.60 348 | 36.93 344 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 23.76 321 | 23.20 325 | 25.46 335 | 41.52 353 | 16.90 357 | 60.56 341 | 38.79 355 | 14.62 351 | 8.99 354 | 20.24 353 | 7.35 352 | 45.82 352 | 7.25 352 | 9.46 350 | 13.64 350 |
|
tmp_tt | | | 22.26 322 | 23.75 324 | 17.80 336 | 5.23 358 | 12.06 358 | 35.26 348 | 39.48 353 | 2.82 354 | 18.94 347 | 44.20 344 | 22.23 338 | 24.64 354 | 36.30 327 | 9.31 351 | 16.69 348 |
|
cdsmvs_eth3d_5k | | | 19.86 323 | 26.47 322 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 93.45 78 | 0.00 357 | 0.00 358 | 95.27 47 | 49.56 223 | 0.00 358 | 0.00 356 | 0.00 355 | 0.00 354 |
|
wuyk23d | | | 11.30 324 | 10.95 327 | 12.33 337 | 48.05 350 | 19.89 355 | 25.89 350 | 1.92 359 | 3.58 353 | 3.12 355 | 1.37 355 | 0.64 360 | 15.77 355 | 6.23 353 | 7.77 353 | 1.35 351 |
|
ab-mvs-re | | | 7.91 325 | 10.55 328 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 94.95 58 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 355 | 0.00 354 |
|
testmvs | | | 7.23 326 | 9.62 329 | 0.06 339 | 0.04 359 | 0.02 361 | 84.98 272 | 0.02 360 | 0.03 355 | 0.18 356 | 1.21 356 | 0.01 362 | 0.02 356 | 0.14 354 | 0.01 354 | 0.13 353 |
|
test123 | | | 6.92 327 | 9.21 330 | 0.08 338 | 0.03 360 | 0.05 360 | 81.65 295 | 0.01 361 | 0.02 356 | 0.14 357 | 0.85 357 | 0.03 361 | 0.02 356 | 0.12 355 | 0.00 355 | 0.16 352 |
|
pcd_1.5k_mvsjas | | | 4.46 328 | 5.95 331 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 53.55 190 | 0.00 358 | 0.00 356 | 0.00 355 | 0.00 354 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 355 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 355 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 355 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 355 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 355 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 355 | 0.00 354 |
|
ZD-MVS | | | | | | 96.63 8 | 65.50 146 | | 93.50 76 | 70.74 207 | 85.26 47 | 95.19 53 | 64.92 73 | 97.29 73 | 87.51 38 | 93.01 54 | |
|
RE-MVS-def | | | | 80.48 120 | | 92.02 95 | 58.56 273 | 90.90 187 | 90.45 188 | 62.76 271 | 78.89 104 | 94.46 73 | 49.30 226 | | 78.77 109 | 86.77 116 | 92.28 158 |
|
IU-MVS | | | | | | 96.46 10 | 69.91 34 | | 95.18 13 | 80.75 33 | 95.28 1 | | | | 92.34 6 | 95.36 12 | 96.47 20 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 11 | 96.89 4 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
test_241102_TWO | | | | | | | | | 94.41 43 | 71.65 183 | 92.07 5 | 97.21 5 | 74.58 14 | 99.11 4 | 92.34 6 | 95.36 12 | 96.59 13 |
|
test_241102_ONE | | | | | | 96.45 11 | 69.38 42 | | 94.44 40 | 71.65 183 | 92.11 3 | 97.05 8 | 76.79 7 | 99.11 4 | | | |
|
9.14 | | | | 87.63 23 | | 93.86 48 | | 94.41 48 | 94.18 52 | 72.76 147 | 86.21 33 | 96.51 16 | 66.64 54 | 97.88 45 | 90.08 19 | 94.04 37 | |
|
save fliter | | | | | | 93.84 49 | 67.89 77 | 95.05 38 | 92.66 111 | 78.19 64 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 72.48 152 | 90.55 12 | 96.93 10 | 76.24 9 | 99.08 9 | 91.53 12 | 94.99 15 | 96.43 22 |
|
test_0728_SECOND | | | | | 88.70 13 | 96.45 11 | 70.43 25 | 96.64 8 | 94.37 47 | | | | | 99.15 2 | 91.91 10 | 94.90 19 | 96.51 18 |
|
test0726 | | | | | | 96.40 14 | 69.99 30 | 96.76 6 | 94.33 48 | 71.92 169 | 91.89 6 | 97.11 7 | 73.77 17 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 81 |
|
test_part2 | | | | | | 96.29 17 | 68.16 71 | | | | 90.78 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 140 | | | | 94.68 81 |
|
sam_mvs | | | | | | | | | | | | | 54.91 178 | | | | |
|
ambc | | | | | 69.61 313 | 61.38 345 | 41.35 340 | 49.07 347 | 85.86 291 | | 50.18 321 | 66.40 330 | 10.16 349 | 88.14 304 | 45.73 299 | 44.20 333 | 79.32 322 |
|
MTGPA | | | | | | | | | 92.23 125 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 310 | | | | 20.70 352 | 53.05 195 | 91.50 275 | 60.43 247 | | |
|
test_post | | | | | | | | | | | | 23.01 349 | 56.49 161 | 92.67 241 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 329 | 57.62 143 | 90.25 283 | | | |
|
GG-mvs-BLEND | | | | | 86.53 62 | 91.91 102 | 69.67 40 | 75.02 322 | 94.75 28 | | 78.67 111 | 90.85 144 | 77.91 5 | 94.56 176 | 72.25 151 | 93.74 43 | 95.36 50 |
|
MTMP | | | | | | | | 93.77 77 | 32.52 356 | | | | | | | | |
|
gm-plane-assit | | | | | | 88.42 177 | 67.04 103 | | | 78.62 61 | | 91.83 133 | | 97.37 67 | 76.57 122 | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 20 | 94.96 16 | 95.29 56 |
|
TEST9 | | | | | | 94.18 40 | 67.28 94 | 94.16 53 | 93.51 74 | 71.75 181 | 85.52 43 | 95.33 42 | 68.01 39 | 97.27 77 | | | |
|
test_8 | | | | | | 94.19 39 | 67.19 97 | 94.15 55 | 93.42 81 | 71.87 174 | 85.38 45 | 95.35 41 | 68.19 36 | 96.95 96 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 49 | 94.75 26 | 95.33 51 |
|
agg_prior | | | | | | 94.16 44 | 66.97 105 | | 93.31 84 | | 84.49 52 | | | 96.75 105 | | | |
|
TestCases | | | | | 72.46 303 | 79.57 290 | 51.42 316 | | 68.61 341 | 51.25 322 | 45.88 327 | 81.23 256 | 19.86 341 | 86.58 314 | 38.98 323 | 57.01 311 | 79.39 320 |
|
test_prior4 | | | | | | | 67.18 99 | 93.92 68 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 36 | | 75.40 99 | 85.25 48 | 95.61 37 | 67.94 40 | | 87.47 39 | 94.77 23 | |
|
test_prior | | | | | 86.42 66 | 94.71 33 | 67.35 92 | | 93.10 96 | | | | | 96.84 101 | | | 95.05 70 |
|
旧先验2 | | | | | | | | 92.00 141 | | 59.37 297 | 87.54 25 | | | 93.47 218 | 75.39 129 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 91.41 163 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 84.73 120 | 92.32 87 | 64.28 182 | | 91.46 159 | 59.56 295 | 79.77 94 | 92.90 112 | 56.95 154 | 96.57 110 | 63.40 229 | 92.91 56 | 93.34 127 |
|
旧先验1 | | | | | | 91.94 99 | 60.74 245 | | 91.50 157 | | | 94.36 77 | 65.23 67 | | | 91.84 70 | 94.55 86 |
|
æ— å…ˆéªŒ | | | | | | | | 92.71 113 | 92.61 115 | 62.03 278 | | | | 97.01 87 | 66.63 199 | | 93.97 112 |
|
原ACMM2 | | | | | | | | 92.01 139 | | | | | | | | | |
|
原ACMM1 | | | | | 84.42 131 | 93.21 67 | 64.27 183 | | 93.40 83 | 65.39 252 | 79.51 97 | 92.50 120 | 58.11 139 | 96.69 107 | 65.27 219 | 93.96 38 | 92.32 156 |
|
test222 | | | | | | 89.77 148 | 61.60 232 | 89.55 223 | 89.42 228 | 56.83 308 | 77.28 123 | 92.43 124 | 52.76 197 | | | 91.14 83 | 93.09 137 |
|
testdata2 | | | | | | | | | | | | | | 96.09 122 | 61.26 243 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 60 | | | | |
|
testdata | | | | | 81.34 203 | 89.02 164 | 57.72 281 | | 89.84 213 | 58.65 300 | 85.32 46 | 94.09 88 | 57.03 149 | 93.28 220 | 69.34 176 | 90.56 89 | 93.03 139 |
|
testdata1 | | | | | | | | 89.21 230 | | 77.55 74 | | | | | | | |
|
test12 | | | | | 87.09 42 | 94.60 35 | 68.86 53 | | 92.91 102 | | 82.67 67 | | 65.44 66 | 97.55 59 | | 93.69 46 | 94.84 77 |
|
plane_prior7 | | | | | | 86.94 206 | 61.51 233 | | | | | | | | | | |
|
plane_prior6 | | | | | | 87.23 201 | 62.32 223 | | | | | | 50.66 213 | | | | |
|
plane_prior5 | | | | | | | | | 91.31 163 | | | | | 95.55 151 | 76.74 120 | 78.53 175 | 88.39 209 |
|
plane_prior4 | | | | | | | | | | | | 89.14 166 | | | | | |
|
plane_prior3 | | | | | | | 61.95 227 | | | 79.09 53 | 72.53 165 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 97 | | 78.81 58 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 203 | | | | | | | | | | | |
|
plane_prior | | | | | | | 62.42 220 | 93.85 72 | | 79.38 46 | | | | | | 78.80 172 | |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 345 | | | | | | | | |
|
lessismore_v0 | | | | | 73.72 294 | 72.93 328 | 47.83 330 | | 61.72 349 | | 45.86 329 | 73.76 312 | 28.63 325 | 89.81 291 | 47.75 293 | 31.37 344 | 83.53 281 |
|
LGP-MVS_train | | | | | 79.56 244 | 84.31 245 | 59.37 265 | | 89.73 218 | 69.49 218 | 64.86 248 | 88.42 171 | 38.65 280 | 94.30 185 | 72.56 148 | 72.76 212 | 85.01 269 |
|
test11 | | | | | | | | | 93.01 98 | | | | | | | | |
|
door | | | | | | | | | 66.57 344 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 197 | | | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 195 | | 94.06 59 | | 79.80 40 | 74.18 146 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 195 | | 94.06 59 | | 79.80 40 | 74.18 146 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 117 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 146 | | | 95.61 145 | | | 88.63 203 |
|
HQP3-MVS | | | | | | | | | 91.70 149 | | | | | | | 78.90 170 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 207 | | | | |
|
NP-MVS | | | | | | 87.41 198 | 63.04 207 | | | | | 90.30 153 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 258 | 80.13 306 | | 67.65 238 | 72.79 160 | | 54.33 183 | | 59.83 251 | | 92.58 150 |
|
MDTV_nov1_ep13 | | | | 72.61 227 | | 89.06 163 | 68.48 61 | 80.33 302 | 90.11 204 | 71.84 177 | 71.81 177 | 75.92 306 | 53.01 196 | 93.92 206 | 48.04 290 | 73.38 207 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 220 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 231 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 184 | | | | |
|
ITE_SJBPF | | | | | 70.43 312 | 74.44 324 | 47.06 333 | | 77.32 324 | 60.16 291 | 54.04 305 | 83.53 226 | 23.30 336 | 84.01 322 | 43.07 307 | 61.58 294 | 80.21 317 |
|
DeepMVS_CX | | | | | 34.71 333 | 51.45 348 | 24.73 354 | | 28.48 357 | 31.46 344 | 17.49 349 | 52.75 339 | 5.80 354 | 42.60 353 | 18.18 346 | 19.42 346 | 36.81 345 |
|