This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3295.54 397.36 196.97 199.04 199.05 196.61 195.92 1285.07 4999.27 199.54 1
XVG-OURS-SEG-HR89.59 5489.37 6090.28 4794.47 4485.95 2486.84 10793.91 4080.07 8686.75 15693.26 10393.64 290.93 19484.60 5690.75 24593.97 95
abl_693.02 493.16 492.60 494.73 4288.99 793.26 1094.19 2789.11 1194.43 1595.27 3691.86 395.09 6087.54 1898.02 3893.71 108
ACMH+77.89 1190.73 3091.50 2388.44 7593.00 7976.26 11489.65 6295.55 487.72 2293.89 2694.94 4491.62 493.44 12378.35 12098.76 495.61 47
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4081.69 5790.00 5194.27 2082.35 6093.67 3394.82 4891.18 595.52 3985.36 4798.73 795.23 58
LGP-MVS_train90.82 3894.75 4081.69 5794.27 2082.35 6093.67 3394.82 4891.18 595.52 3985.36 4798.73 795.23 58
PMVScopyleft80.48 690.08 4190.66 4688.34 7896.71 392.97 190.31 4889.57 17288.51 1890.11 9095.12 4190.98 788.92 23877.55 13197.07 8383.13 302
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMM79.39 990.65 3190.99 3989.63 5695.03 3483.53 4789.62 6393.35 6179.20 9693.83 2793.60 10090.81 892.96 13985.02 5198.45 1992.41 154
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5991.14 3483.96 15592.50 9270.36 16289.55 6493.84 4581.89 6694.70 1295.44 3390.69 988.31 24883.33 6898.30 2693.20 125
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast92.50 592.54 692.37 695.93 1585.81 3092.99 1194.23 2385.21 3192.51 5195.13 4090.65 1095.34 5088.06 998.15 3395.95 40
RE-MVS-def92.61 594.13 5388.95 892.87 1294.16 2888.75 1593.79 2894.43 6190.64 1187.16 2597.60 6492.73 142
ACMP79.16 1090.54 3490.60 4790.35 4694.36 4580.98 6389.16 7294.05 3579.03 9992.87 4393.74 9890.60 1295.21 5782.87 7398.76 494.87 63
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2584.67 4193.51 694.85 1482.88 5491.77 6593.94 9190.55 1395.73 2788.50 798.23 2995.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_ETH3D89.12 6390.72 4584.31 14797.00 264.33 20989.67 6188.38 18988.84 1494.29 1897.57 390.48 1491.26 18472.57 18297.65 6097.34 14
SED-MVS90.46 3791.64 1986.93 9294.18 4872.65 13290.47 4693.69 4983.77 4194.11 2294.27 6990.28 1595.84 1986.03 4197.92 4692.29 160
test_241102_ONE94.18 4872.65 13293.69 4983.62 4394.11 2293.78 9790.28 1595.50 45
SR-MVS92.23 892.34 991.91 1794.89 3887.85 1192.51 2293.87 4488.20 2093.24 3894.02 8290.15 1795.67 3086.82 2997.34 7692.19 166
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 7885.17 3492.47 2495.05 1287.65 2393.21 3994.39 6790.09 1895.08 6186.67 3097.60 6494.18 88
DVP-MVS90.06 4291.32 3086.29 10594.16 5172.56 13790.54 4391.01 13483.61 4493.75 3094.65 5389.76 1995.78 2486.42 3197.97 4390.55 207
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5172.56 13790.63 4293.90 4183.61 4493.75 3094.49 5889.76 19
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6486.15 2193.37 895.10 1190.28 892.11 5795.03 4289.75 2194.93 6579.95 10398.27 2795.04 62
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_241102_TWO93.71 4883.77 4193.49 3794.27 6989.27 2295.84 1986.03 4197.82 5192.04 169
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2685.91 2593.35 994.16 2882.52 5892.39 5494.14 7789.15 2395.62 3187.35 2098.24 2894.56 72
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117292.40 792.41 792.37 694.68 4389.04 691.98 2993.62 5290.14 1093.63 3594.16 7688.83 2495.51 4287.11 2797.54 6992.54 151
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5388.95 892.87 1294.16 2888.75 1593.79 2894.43 6188.83 2495.51 4287.16 2597.60 6492.73 142
APDe-MVS91.22 2491.92 1389.14 6492.97 8078.04 8892.84 1494.14 3283.33 4893.90 2495.73 2588.77 2696.41 187.60 1697.98 4292.98 133
ACMMP_NAP90.65 3191.07 3789.42 6095.93 1579.54 7589.95 5493.68 5177.65 11391.97 6294.89 4588.38 2795.45 4689.27 397.87 5093.27 122
MP-MVS-pluss90.81 2991.08 3589.99 5195.97 1379.88 7088.13 8994.51 1875.79 13692.94 4194.96 4388.36 2895.01 6390.70 298.40 2095.09 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS91.30 2191.39 2591.02 3395.43 2884.66 4292.58 2093.29 6881.99 6391.47 6893.96 8788.35 2995.56 3487.74 1197.74 5692.85 137
#test#90.49 3690.31 5091.02 3395.43 2884.66 4290.65 4193.29 6877.00 12091.47 6893.96 8788.35 2995.56 3484.88 5297.74 5692.85 137
CP-MVS91.67 1491.58 2191.96 1495.29 3187.62 1293.38 793.36 6083.16 5091.06 7694.00 8388.26 3195.71 2887.28 2398.39 2192.55 150
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 5980.97 6491.49 3593.48 5882.82 5592.60 5093.97 8488.19 3296.29 487.61 1598.20 3294.39 81
Skip Steuart: Steuart Systems R&D Blog.
PGM-MVS91.20 2590.95 4191.93 1595.67 2285.85 2890.00 5193.90 4180.32 8291.74 6694.41 6488.17 3395.98 986.37 3397.99 4093.96 96
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 296.46 290.58 792.86 4496.29 1688.16 3494.17 9186.07 4098.48 1897.22 17
DPE-MVS90.53 3591.08 3588.88 6693.38 7078.65 8489.15 7394.05 3584.68 3593.90 2494.11 7988.13 3596.30 384.51 5797.81 5291.70 181
OPM-MVS89.80 5089.97 5189.27 6294.76 3979.86 7186.76 11192.78 9078.78 10292.51 5193.64 9988.13 3593.84 10484.83 5497.55 6794.10 92
pmmvs686.52 9388.06 7681.90 19592.22 10262.28 23484.66 14089.15 17883.54 4689.85 9897.32 488.08 3786.80 26470.43 19997.30 7896.62 27
mvs_tets89.78 5189.27 6291.30 2893.51 6684.79 3989.89 5690.63 14270.00 20794.55 1496.67 1187.94 3893.59 11584.27 5995.97 12095.52 48
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2083.05 5292.18 2694.22 2480.14 8591.29 7393.97 8487.93 3995.87 1588.65 497.96 4594.12 91
region2R91.44 2091.30 3291.87 1995.75 1885.90 2692.63 1993.30 6781.91 6590.88 8194.21 7487.75 4095.87 1587.60 1697.71 5893.83 101
wuyk23d75.13 25179.30 20762.63 32775.56 33475.18 11980.89 22373.10 31575.06 14694.76 1195.32 3487.73 4152.85 35534.16 35497.11 8259.85 351
mPP-MVS91.69 1391.47 2492.37 696.04 1288.48 1092.72 1692.60 9483.09 5191.54 6794.25 7387.67 4295.51 4287.21 2498.11 3493.12 128
ACMMPR91.49 1791.35 2891.92 1695.74 1985.88 2792.58 2093.25 7081.99 6391.40 7094.17 7587.51 4395.87 1587.74 1197.76 5493.99 94
test_0728_THIRD85.33 3093.75 3094.65 5387.44 4495.78 2487.41 1998.21 3092.98 133
9.1489.29 6191.84 11588.80 8095.32 875.14 14591.07 7592.89 11487.27 4593.78 10683.69 6597.55 67
PS-CasMVS90.06 4291.92 1384.47 14396.56 758.83 27289.04 7492.74 9191.40 496.12 396.06 2287.23 4695.57 3379.42 11198.74 699.00 2
GST-MVS90.96 2891.01 3890.82 3895.45 2782.73 5591.75 3393.74 4780.98 7691.38 7193.80 9487.20 4795.80 2187.10 2897.69 5993.93 97
PEN-MVS90.03 4491.88 1684.48 14296.57 658.88 26988.95 7593.19 7291.62 396.01 596.16 2087.02 4895.60 3278.69 11698.72 998.97 3
DTE-MVSNet89.98 4691.91 1584.21 14996.51 857.84 27788.93 7792.84 8891.92 296.16 296.23 1886.95 4995.99 879.05 11398.57 1598.80 6
xxxxxxxxxxxxxcwj89.04 6589.13 6388.79 6893.75 6177.44 9686.31 11995.27 970.80 19692.28 5593.80 9486.89 5094.64 7485.52 4597.51 7194.30 84
SF-MVS90.27 3990.80 4488.68 7192.86 8477.09 10391.19 3895.74 381.38 7192.28 5593.80 9486.89 5094.64 7485.52 4597.51 7194.30 84
MP-MVScopyleft91.14 2790.91 4291.83 2196.18 1186.88 1492.20 2593.03 8082.59 5788.52 12794.37 6886.74 5295.41 4886.32 3498.21 3093.19 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1788.94 7691.81 11484.07 3792.00 6094.40 6586.63 5395.28 5388.59 598.31 2492.30 158
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1792.02 2891.81 11484.07 3792.00 6094.40 6586.63 5395.28 5388.59 598.31 2492.30 158
XVS91.54 1591.36 2692.08 1095.64 2386.25 1992.64 1793.33 6285.07 3289.99 9394.03 8186.57 5595.80 2187.35 2097.62 6294.20 86
X-MVStestdata85.04 11882.70 16192.08 1095.64 2386.25 1992.64 1793.33 6285.07 3289.99 9316.05 35886.57 5595.80 2187.35 2097.62 6294.20 86
canonicalmvs85.50 10986.14 10383.58 16487.97 19167.13 18687.55 9694.32 1973.44 16388.47 12887.54 22986.45 5791.06 19175.76 14993.76 18292.54 151
TranMVSNet+NR-MVSNet87.86 7788.76 7285.18 12994.02 5664.13 21084.38 14791.29 12684.88 3492.06 5993.84 9386.45 5793.73 10773.22 17298.66 1197.69 9
test_040288.65 6989.58 5885.88 11792.55 9072.22 14584.01 15289.44 17488.63 1794.38 1795.77 2486.38 5993.59 11579.84 10495.21 14591.82 178
APD-MVScopyleft89.54 5589.63 5689.26 6392.57 8981.34 6290.19 4993.08 7680.87 7791.13 7493.19 10486.22 6095.97 1082.23 7997.18 8190.45 209
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.96 6689.88 5286.22 10891.63 11877.07 10489.82 5793.77 4678.90 10092.88 4292.29 13486.11 6190.22 21686.24 3897.24 7991.36 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS92.22 10280.48 6691.85 11171.22 19390.38 8692.98 10986.06 6296.11 681.99 8196.75 94
jajsoiax89.41 5788.81 7191.19 3293.38 7084.72 4089.70 5890.29 15669.27 21194.39 1696.38 1586.02 6393.52 11983.96 6195.92 12295.34 52
nrg03087.85 7888.49 7385.91 11590.07 15969.73 16587.86 9394.20 2574.04 15592.70 4994.66 5285.88 6491.50 17579.72 10597.32 7796.50 30
SMA-MVScopyleft90.31 3890.48 4889.83 5295.31 3079.52 7690.98 3993.24 7175.37 14392.84 4595.28 3585.58 6596.09 787.92 1097.76 5493.88 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS82.31 489.15 6289.08 6489.37 6193.64 6579.07 7988.54 8594.20 2573.53 16189.71 10294.82 4885.09 6695.77 2684.17 6098.03 3793.26 123
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj89.51 5689.48 5989.59 5892.26 9980.80 6590.14 5093.54 5683.37 4790.57 8592.55 12684.99 6796.15 581.26 8796.61 9891.83 177
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6385.72 3196.79 195.51 588.86 1395.63 796.99 884.81 6893.16 13391.10 197.53 7096.58 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS88.60 7089.01 6587.36 9091.30 12977.50 9587.55 9692.97 8387.95 2189.62 10692.87 11584.56 6993.89 10177.65 12996.62 9790.70 201
LS3D90.60 3390.34 4991.38 2789.03 17284.23 4593.58 494.68 1690.65 690.33 8893.95 9084.50 7095.37 4980.87 9395.50 13694.53 75
ETH3D-3000-0.188.85 6888.96 6888.52 7291.94 11177.27 10288.71 8295.26 1076.08 12790.66 8492.69 12184.48 7193.83 10583.38 6797.48 7394.47 76
anonymousdsp89.73 5288.88 6992.27 989.82 16386.67 1590.51 4590.20 15969.87 20895.06 1096.14 2184.28 7293.07 13887.68 1396.34 10897.09 19
OMC-MVS88.19 7387.52 8290.19 4991.94 11181.68 5987.49 9893.17 7376.02 13088.64 12491.22 15884.24 7393.37 12677.97 12797.03 8495.52 48
ETH3D cwj APD-0.1687.83 7987.62 8188.47 7491.21 13278.20 8687.26 10094.54 1772.05 18688.89 11892.31 13383.86 7494.24 8581.59 8696.87 8892.97 136
XVG-OURS89.18 6188.83 7090.23 4894.28 4686.11 2385.91 12293.60 5580.16 8489.13 11793.44 10183.82 7590.98 19283.86 6395.30 14493.60 114
XVG-ACMP-BASELINE89.98 4689.84 5390.41 4494.91 3784.50 4489.49 6893.98 3779.68 8992.09 5893.89 9283.80 7693.10 13782.67 7598.04 3593.64 112
CDPH-MVS86.17 10185.54 11488.05 8392.25 10075.45 11783.85 15792.01 10665.91 24386.19 16691.75 14983.77 7794.98 6477.43 13496.71 9593.73 107
Effi-MVS+83.90 14684.01 14483.57 16587.22 20865.61 19986.55 11692.40 9778.64 10581.34 24584.18 28183.65 7892.93 14174.22 16087.87 27792.17 167
MVS_111021_HR84.63 12484.34 14085.49 12690.18 15775.86 11679.23 24887.13 20973.35 16485.56 18089.34 20083.60 7990.50 20976.64 14094.05 17890.09 217
UA-Net91.49 1791.53 2291.39 2694.98 3582.95 5493.52 592.79 8988.22 1988.53 12697.64 283.45 8094.55 8086.02 4398.60 1396.67 26
AdaColmapbinary83.66 14983.69 14983.57 16590.05 16072.26 14486.29 12190.00 16478.19 11081.65 24087.16 23683.40 8194.24 8561.69 26294.76 16484.21 284
LCM-MVSNet-Re83.48 15385.06 12078.75 24385.94 23655.75 29380.05 23294.27 2076.47 12396.09 494.54 5683.31 8289.75 22959.95 27494.89 15990.75 200
Regformer-286.74 9086.08 10488.73 6984.18 26079.20 7883.52 16689.33 17683.33 4889.92 9785.07 27083.23 8393.16 13383.39 6692.72 20893.83 101
TransMVSNet (Re)84.02 14285.74 11078.85 24191.00 13955.20 29882.29 20087.26 20579.65 9088.38 13195.52 3283.00 8486.88 26267.97 22296.60 9994.45 79
CNVR-MVS87.81 8087.68 8088.21 8092.87 8277.30 10185.25 13291.23 12877.31 11787.07 15091.47 15582.94 8594.71 7184.67 5596.27 11292.62 149
DeepPCF-MVS81.24 587.28 8386.21 10290.49 4391.48 12684.90 3783.41 17192.38 9970.25 20489.35 11490.68 17982.85 8694.57 7879.55 10795.95 12192.00 171
v7n90.13 4090.96 4087.65 8791.95 10971.06 15789.99 5393.05 7786.53 2694.29 1896.27 1782.69 8794.08 9586.25 3797.63 6197.82 8
AllTest87.97 7687.40 8589.68 5491.59 11983.40 4889.50 6795.44 679.47 9188.00 13693.03 10782.66 8891.47 17670.81 19196.14 11694.16 89
TestCases89.68 5491.59 11983.40 4895.44 679.47 9188.00 13693.03 10782.66 8891.47 17670.81 19196.14 11694.16 89
RPSCF88.00 7586.93 9291.22 3190.08 15889.30 589.68 6091.11 13179.26 9589.68 10394.81 5182.44 9087.74 25276.54 14188.74 26796.61 28
ITE_SJBPF90.11 5090.72 14684.97 3690.30 15381.56 6990.02 9291.20 16082.40 9190.81 20073.58 16994.66 16594.56 72
Fast-Effi-MVS+81.04 18680.57 18882.46 19087.50 20363.22 21978.37 25989.63 17068.01 22381.87 23482.08 30482.31 9292.65 14867.10 22588.30 27391.51 188
baseline85.20 11385.93 10683.02 17486.30 22862.37 23284.55 14293.96 3874.48 15287.12 14692.03 13982.30 9391.94 16578.39 11894.21 17494.74 68
casdiffmvs85.21 11285.85 10883.31 16986.17 23362.77 22583.03 18293.93 3974.69 14988.21 13492.68 12282.29 9491.89 16877.87 12893.75 18495.27 56
Anonymous2023121188.40 7189.62 5784.73 13790.46 15265.27 20088.86 7893.02 8187.15 2493.05 4097.10 682.28 9592.02 16476.70 13997.99 4096.88 23
Regformer-186.00 10285.50 11587.49 8884.18 26076.90 10683.52 16687.94 19982.18 6289.19 11585.07 27082.28 9591.89 16882.40 7792.72 20893.69 109
Anonymous2024052986.20 10087.13 8683.42 16790.19 15664.55 20784.55 14290.71 13985.85 2989.94 9695.24 3882.13 9790.40 21169.19 21096.40 10695.31 54
agg_prior185.72 10785.20 11987.28 9191.58 12277.69 9283.69 16390.30 15366.29 24084.32 19991.07 16582.13 9793.18 13181.02 9096.36 10790.98 193
Regformer-486.41 9485.71 11188.52 7284.27 25677.57 9484.07 15088.00 19782.82 5589.84 9985.48 25882.06 9992.77 14583.83 6491.04 23495.22 60
CLD-MVS83.18 15982.64 16384.79 13589.05 17167.82 18477.93 26392.52 9568.33 22085.07 18481.54 30982.06 9992.96 13969.35 20697.91 4893.57 115
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TEST992.34 9679.70 7383.94 15390.32 15065.41 25484.49 19590.97 16882.03 10193.63 111
segment_acmp81.94 102
train_agg85.98 10485.28 11888.07 8292.34 9679.70 7383.94 15390.32 15065.79 24484.49 19590.97 16881.93 10393.63 11181.21 8896.54 10190.88 197
test_892.09 10578.87 8183.82 15890.31 15265.79 24484.36 19890.96 17081.93 10393.44 123
test_prior386.31 9686.31 9986.32 10390.59 14971.99 14783.37 17292.85 8675.43 14084.58 19391.57 15181.92 10594.17 9179.54 10896.97 8592.80 139
test_prior283.37 17275.43 14084.58 19391.57 15181.92 10579.54 10896.97 85
CP-MVSNet89.27 6090.91 4284.37 14496.34 958.61 27488.66 8492.06 10590.78 595.67 695.17 3981.80 10795.54 3879.00 11498.69 1098.95 4
MVS_111021_LR84.28 13583.76 14885.83 11989.23 16983.07 5180.99 22283.56 24972.71 17886.07 17089.07 20781.75 10886.19 27477.11 13793.36 18888.24 239
test_djsdf89.62 5389.01 6591.45 2592.36 9582.98 5391.98 2990.08 16271.54 19094.28 2096.54 1381.57 10994.27 8286.26 3596.49 10397.09 19
cdsmvs_eth3d_5k20.81 32827.75 3310.00 3450.00 3660.00 3670.00 35785.44 2300.00 3620.00 36382.82 29781.46 1100.00 3630.00 3610.00 3610.00 359
WR-MVS_H89.91 4991.31 3185.71 12196.32 1062.39 23189.54 6693.31 6590.21 995.57 895.66 2881.42 11195.90 1380.94 9298.80 398.84 5
CPTT-MVS89.39 5888.98 6790.63 4195.09 3386.95 1392.09 2792.30 10079.74 8887.50 14292.38 12981.42 11193.28 12883.07 7097.24 7991.67 182
pm-mvs183.69 14884.95 12379.91 22790.04 16159.66 25982.43 19687.44 20275.52 13987.85 13895.26 3781.25 11385.65 28168.74 21596.04 11994.42 80
OPU-MVS88.27 7991.89 11377.83 9090.47 4691.22 15881.12 11494.68 7274.48 15895.35 13992.29 160
ETH3 D test640085.09 11684.87 12485.75 12090.80 14469.34 16985.90 12393.31 6565.43 25086.11 16989.95 19380.92 11594.86 6775.90 14895.57 13493.05 130
NCCC87.36 8286.87 9388.83 6792.32 9878.84 8286.58 11591.09 13278.77 10384.85 18990.89 17280.85 11695.29 5181.14 8995.32 14192.34 156
TAPA-MVS77.73 1285.71 10884.83 12588.37 7788.78 17879.72 7287.15 10393.50 5769.17 21285.80 17689.56 19880.76 11792.13 15873.21 17795.51 13593.25 124
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+-dtu82.54 16681.41 18085.90 11685.60 23876.53 11183.07 18189.62 17173.02 17479.11 26983.51 28680.74 11890.24 21568.76 21489.29 25890.94 195
VPA-MVSNet83.47 15484.73 12679.69 23290.29 15457.52 28081.30 21888.69 18476.29 12487.58 14194.44 6080.60 11987.20 25766.60 23096.82 9294.34 83
Regformer-385.06 11784.67 13186.22 10884.27 25673.43 12784.07 15085.26 23480.77 7888.62 12585.48 25880.56 12090.39 21281.99 8191.04 23494.85 65
ETV-MVS84.31 13383.91 14785.52 12488.58 18070.40 16184.50 14693.37 5978.76 10484.07 20578.72 32880.39 12195.13 5973.82 16792.98 20191.04 192
HPM-MVS++copyleft88.93 6788.45 7490.38 4594.92 3685.85 2889.70 5891.27 12778.20 10986.69 15792.28 13580.36 12295.06 6286.17 3996.49 10390.22 212
ANet_high83.17 16085.68 11275.65 27981.24 28645.26 34679.94 23492.91 8483.83 4091.33 7296.88 1080.25 12385.92 27768.89 21395.89 12395.76 42
EI-MVSNet-Vis-set85.12 11584.53 13486.88 9384.01 26372.76 13183.91 15685.18 23680.44 7988.75 12285.49 25780.08 12491.92 16682.02 8090.85 24395.97 38
DeepC-MVS_fast80.27 886.23 9885.65 11387.96 8491.30 12976.92 10587.19 10191.99 10770.56 19984.96 18590.69 17880.01 12595.14 5878.37 11995.78 12991.82 178
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS83.43 15683.04 15884.59 14187.87 19466.61 19285.57 12894.90 1373.02 17481.12 24678.56 32980.00 12695.52 3973.04 17993.29 19291.62 184
EI-MVSNet-UG-set85.04 11884.44 13686.85 9483.87 26672.52 13983.82 15885.15 23780.27 8388.75 12285.45 26179.95 12791.90 16781.92 8390.80 24496.13 33
MCST-MVS84.36 13183.93 14685.63 12291.59 11971.58 15483.52 16692.13 10361.82 27183.96 20689.75 19779.93 12893.46 12278.33 12194.34 17291.87 176
TSAR-MVS + MP.88.14 7487.82 7889.09 6595.72 2176.74 10892.49 2391.19 13067.85 22886.63 15894.84 4779.58 12995.96 1187.62 1494.50 16894.56 72
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1286.57 9890.74 14572.63 13590.69 14082.76 22279.20 13094.80 6995.32 14192.27 162
CSCG86.26 9786.47 9785.60 12390.87 14274.26 12387.98 9091.85 11180.35 8189.54 11288.01 22079.09 13192.13 15875.51 15095.06 15290.41 210
Test By Simon79.09 131
PHI-MVS86.38 9585.81 10988.08 8188.44 18477.34 9989.35 7193.05 7773.15 17284.76 19087.70 22678.87 13394.18 8980.67 9796.29 10992.73 142
EG-PatchMatch MVS84.08 14084.11 14283.98 15492.22 10272.61 13682.20 20687.02 21472.63 17988.86 11991.02 16678.52 13491.11 18973.41 17191.09 23288.21 240
Effi-MVS+-dtu85.82 10683.38 15193.14 387.13 21091.15 287.70 9588.42 18774.57 15083.56 21285.65 25578.49 13594.21 8772.04 18592.88 20394.05 93
mvs-test184.55 12782.12 17091.84 2087.13 21089.54 485.05 13588.42 18774.57 15080.60 25282.98 29278.49 13593.98 9972.04 18589.77 25492.00 171
Vis-MVSNetpermissive86.86 8786.58 9687.72 8592.09 10577.43 9887.35 9992.09 10478.87 10184.27 20494.05 8078.35 13793.65 10980.54 9991.58 22892.08 168
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 8887.06 8886.17 11292.86 8467.02 18782.55 19391.56 11883.08 5290.92 7891.82 14678.25 13893.99 9774.16 16198.35 2297.49 13
MSLP-MVS++85.00 12086.03 10581.90 19591.84 11571.56 15586.75 11293.02 8175.95 13387.12 14689.39 19977.98 13989.40 23477.46 13294.78 16184.75 279
API-MVS82.28 16982.61 16481.30 20486.29 22969.79 16388.71 8287.67 20178.42 10882.15 23184.15 28277.98 13991.59 17465.39 23992.75 20582.51 309
DP-MVS Recon84.05 14183.22 15386.52 10091.73 11775.27 11883.23 17892.40 9772.04 18782.04 23288.33 21677.91 14193.95 10066.17 23295.12 15090.34 211
UniMVSNet (Re)86.87 8686.98 9186.55 9993.11 7768.48 17883.80 16092.87 8580.37 8089.61 10891.81 14777.72 14294.18 8975.00 15798.53 1696.99 22
PCF-MVS74.62 1582.15 17280.92 18785.84 11889.43 16572.30 14380.53 22791.82 11357.36 30087.81 13989.92 19577.67 14393.63 11158.69 27995.08 15191.58 186
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NR-MVSNet86.00 10286.22 10185.34 12793.24 7464.56 20682.21 20490.46 14580.99 7588.42 12991.97 14077.56 14493.85 10272.46 18398.65 1297.61 10
3Dnovator+83.92 289.97 4889.66 5590.92 3691.27 13181.66 6091.25 3694.13 3388.89 1288.83 12194.26 7277.55 14595.86 1884.88 5295.87 12495.24 57
MVS_Test82.47 16783.22 15380.22 22482.62 27657.75 27982.54 19491.96 10971.16 19482.89 22192.52 12877.41 14690.50 20980.04 10287.84 27892.40 155
EIA-MVS82.19 17181.23 18285.10 13187.95 19269.17 17583.22 17993.33 6270.42 20078.58 27279.77 32577.29 14794.20 8871.51 18888.96 26391.93 175
xiu_mvs_v2_base77.19 23176.75 23378.52 24787.01 21661.30 24175.55 29487.12 21261.24 27774.45 30378.79 32777.20 14890.93 19464.62 24584.80 30783.32 298
DU-MVS86.80 8986.99 9086.21 11093.24 7467.02 18783.16 18092.21 10181.73 6790.92 7891.97 14077.20 14893.99 9774.16 16198.35 2297.61 10
Baseline_NR-MVSNet84.00 14385.90 10778.29 25391.47 12753.44 30782.29 20087.00 21779.06 9889.55 11095.72 2777.20 14886.14 27572.30 18498.51 1795.28 55
TinyColmap81.25 18382.34 16977.99 25885.33 24260.68 25182.32 19988.33 19071.26 19286.97 15392.22 13877.10 15186.98 26162.37 25595.17 14786.31 263
F-COLMAP84.97 12183.42 15089.63 5692.39 9483.40 4888.83 7991.92 11073.19 17180.18 26189.15 20577.04 15293.28 12865.82 23792.28 21492.21 165
114514_t83.10 16182.54 16684.77 13692.90 8169.10 17686.65 11390.62 14354.66 31181.46 24290.81 17576.98 15394.38 8172.62 18196.18 11490.82 199
xiu_mvs_v1_base_debu80.84 18980.14 19982.93 17788.31 18571.73 15079.53 23987.17 20665.43 25079.59 26382.73 29976.94 15490.14 22173.22 17288.33 26986.90 258
xiu_mvs_v1_base80.84 18980.14 19982.93 17788.31 18571.73 15079.53 23987.17 20665.43 25079.59 26382.73 29976.94 15490.14 22173.22 17288.33 26986.90 258
xiu_mvs_v1_base_debi80.84 18980.14 19982.93 17788.31 18571.73 15079.53 23987.17 20665.43 25079.59 26382.73 29976.94 15490.14 22173.22 17288.33 26986.90 258
pcd_1.5k_mvsjas6.41 3318.55 3340.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36376.94 1540.00 3630.00 3610.00 3610.00 359
PS-MVSNAJss88.31 7287.90 7789.56 5993.31 7277.96 8987.94 9291.97 10870.73 19894.19 2196.67 1176.94 15494.57 7883.07 7096.28 11096.15 32
PS-MVSNAJ77.04 23376.53 23578.56 24687.09 21561.40 23975.26 29687.13 20961.25 27674.38 30577.22 33776.94 15490.94 19364.63 24484.83 30683.35 297
MIMVSNet183.63 15084.59 13280.74 21594.06 5562.77 22582.72 18984.53 24677.57 11590.34 8795.92 2376.88 16085.83 27961.88 26097.42 7493.62 113
原ACMM184.60 14092.81 8774.01 12491.50 12062.59 26582.73 22390.67 18076.53 16194.25 8469.24 20795.69 13285.55 270
MSDG80.06 20779.99 20380.25 22383.91 26568.04 18277.51 27189.19 17777.65 11381.94 23383.45 28876.37 16286.31 27263.31 25186.59 28786.41 261
Gipumacopyleft84.44 13086.33 9878.78 24284.20 25973.57 12689.55 6490.44 14684.24 3684.38 19794.89 4576.35 16380.40 31276.14 14596.80 9382.36 310
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
XXY-MVS74.44 26176.19 23869.21 30884.61 24852.43 31671.70 31677.18 28660.73 28280.60 25290.96 17075.44 16469.35 33656.13 29288.33 26985.86 268
FMVSNet184.55 12785.45 11681.85 19790.27 15561.05 24586.83 10888.27 19278.57 10689.66 10595.64 2975.43 16590.68 20469.09 21195.33 14093.82 103
CANet83.79 14782.85 16086.63 9786.17 23372.21 14683.76 16191.43 12277.24 11874.39 30487.45 23175.36 16695.42 4777.03 13892.83 20492.25 164
ab-mvs79.67 20880.56 18976.99 26688.48 18256.93 28484.70 13986.06 22468.95 21680.78 25193.08 10675.30 16784.62 29056.78 28890.90 24189.43 223
DELS-MVS81.44 18181.25 18182.03 19384.27 25662.87 22476.47 28592.49 9670.97 19581.64 24183.83 28375.03 16892.70 14674.29 15992.22 21790.51 208
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR78.84 21478.10 21981.07 20985.17 24360.22 25482.21 20490.57 14462.51 26675.32 29984.61 27774.99 16992.30 15559.48 27788.04 27590.68 202
CNLPA83.55 15283.10 15784.90 13389.34 16783.87 4684.54 14488.77 18279.09 9783.54 21388.66 21374.87 17081.73 30666.84 22892.29 21389.11 229
HQP_MVS87.75 8187.43 8488.70 7093.45 6776.42 11289.45 6993.61 5379.44 9386.55 15992.95 11274.84 17195.22 5580.78 9595.83 12594.46 77
plane_prior692.61 8876.54 10974.84 171
FC-MVSNet-test85.93 10587.05 8982.58 18692.25 10056.44 28885.75 12593.09 7577.33 11691.94 6394.65 5374.78 17393.41 12575.11 15698.58 1497.88 7
VDD-MVS84.23 13784.58 13383.20 17191.17 13665.16 20283.25 17684.97 24379.79 8787.18 14594.27 6974.77 17490.89 19769.24 20796.54 10193.55 118
BH-untuned80.96 18780.99 18580.84 21488.55 18168.23 17980.33 23088.46 18672.79 17786.55 15986.76 24174.72 17591.77 17261.79 26188.99 26282.52 308
VPNet80.25 20281.68 17575.94 27892.46 9347.98 33876.70 28081.67 26273.45 16284.87 18892.82 11674.66 17686.51 26961.66 26396.85 8993.33 119
tfpnnormal81.79 17882.95 15978.31 25188.93 17555.40 29480.83 22582.85 25376.81 12185.90 17594.14 7774.58 17786.51 26966.82 22995.68 13393.01 132
DIV-MVS_2432*160081.93 17783.14 15678.30 25284.75 24752.75 31180.37 22989.42 17570.24 20590.26 8993.39 10274.55 17886.77 26568.61 21796.64 9695.38 51
V4283.47 15483.37 15283.75 16083.16 27263.33 21781.31 21690.23 15869.51 21090.91 8090.81 17574.16 17992.29 15680.06 10190.22 25195.62 46
3Dnovator80.37 784.80 12284.71 12985.06 13286.36 22674.71 12088.77 8190.00 16475.65 13884.96 18593.17 10574.06 18091.19 18678.28 12291.09 23289.29 227
v1086.54 9287.10 8784.84 13488.16 19063.28 21886.64 11492.20 10275.42 14292.81 4794.50 5774.05 18194.06 9683.88 6296.28 11097.17 18
旧先验191.97 10871.77 14981.78 26191.84 14473.92 18293.65 18683.61 292
mvs_anonymous78.13 22178.76 21176.23 27779.24 31150.31 33278.69 25484.82 24461.60 27583.09 22092.82 11673.89 18387.01 25868.33 22086.41 28991.37 189
MAR-MVS80.24 20378.74 21284.73 13786.87 22078.18 8785.75 12587.81 20065.67 24977.84 27778.50 33073.79 18490.53 20861.59 26590.87 24285.49 272
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet84.35 13285.39 11781.25 20595.13 3259.32 26285.42 13181.11 26486.41 2787.41 14396.21 1973.61 18590.61 20766.33 23196.85 8993.81 106
FIs85.35 11186.27 10082.60 18591.86 11457.31 28185.10 13493.05 7775.83 13591.02 7793.97 8473.57 18692.91 14373.97 16498.02 3897.58 12
v114484.54 12984.72 12884.00 15387.67 19962.55 22982.97 18490.93 13570.32 20389.80 10090.99 16773.50 18793.48 12181.69 8594.65 16695.97 38
diffmvs80.40 19880.48 19280.17 22579.02 31460.04 25577.54 27090.28 15766.65 23882.40 22687.33 23473.50 18787.35 25677.98 12689.62 25693.13 127
PAPM_NR83.23 15883.19 15583.33 16890.90 14165.98 19688.19 8890.78 13878.13 11180.87 25087.92 22473.49 18992.42 15170.07 20188.40 26891.60 185
v886.22 9986.83 9484.36 14587.82 19562.35 23386.42 11791.33 12576.78 12292.73 4894.48 5973.41 19093.72 10883.10 6995.41 13797.01 21
EI-MVSNet82.61 16482.42 16883.20 17183.25 27063.66 21383.50 16985.07 23876.06 12886.55 15985.10 26773.41 19090.25 21378.15 12590.67 24795.68 44
IterMVS-LS84.73 12384.98 12283.96 15587.35 20563.66 21383.25 17689.88 16676.06 12889.62 10692.37 13273.40 19292.52 15078.16 12394.77 16395.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419284.24 13684.41 13783.71 16187.59 20261.57 23882.95 18591.03 13367.82 22989.80 10090.49 18373.28 19393.51 12081.88 8494.89 15996.04 37
BH-RMVSNet80.53 19480.22 19781.49 20387.19 20966.21 19577.79 26686.23 22274.21 15483.69 20888.50 21473.25 19490.75 20163.18 25287.90 27687.52 250
PLCcopyleft73.85 1682.09 17380.31 19387.45 8990.86 14380.29 6885.88 12490.65 14168.17 22276.32 28786.33 24673.12 19592.61 14961.40 26690.02 25389.44 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OurMVSNet-221017-090.01 4589.74 5490.83 3793.16 7680.37 6791.91 3293.11 7481.10 7495.32 997.24 572.94 19694.85 6885.07 4997.78 5397.26 15
WR-MVS83.56 15184.40 13881.06 21093.43 6954.88 29978.67 25585.02 24181.24 7290.74 8291.56 15372.85 19791.08 19068.00 22198.04 3597.23 16
VNet79.31 20980.27 19476.44 27387.92 19353.95 30375.58 29384.35 24774.39 15382.23 22990.72 17772.84 19884.39 29260.38 27393.98 17990.97 194
QAPM82.59 16582.59 16582.58 18686.44 22166.69 19189.94 5590.36 14967.97 22584.94 18792.58 12572.71 19992.18 15770.63 19787.73 27988.85 236
v119284.57 12684.69 13084.21 14987.75 19762.88 22383.02 18391.43 12269.08 21489.98 9590.89 17272.70 20093.62 11482.41 7694.97 15696.13 33
OpenMVScopyleft76.72 1381.98 17682.00 17381.93 19484.42 25268.22 18088.50 8689.48 17366.92 23581.80 23891.86 14272.59 20190.16 21871.19 19091.25 23187.40 252
TSAR-MVS + GP.83.95 14482.69 16287.72 8589.27 16881.45 6183.72 16281.58 26374.73 14885.66 17786.06 25172.56 20292.69 14775.44 15295.21 14589.01 235
alignmvs83.94 14583.98 14583.80 15787.80 19667.88 18384.54 14491.42 12473.27 17088.41 13087.96 22172.33 20390.83 19976.02 14794.11 17692.69 146
HQP2-MVS72.10 204
HQP-MVS84.61 12584.06 14386.27 10691.19 13370.66 15984.77 13692.68 9273.30 16780.55 25590.17 19172.10 20494.61 7677.30 13594.47 16993.56 116
testgi72.36 27474.61 25065.59 32180.56 29842.82 35268.29 32773.35 31266.87 23681.84 23589.93 19472.08 20666.92 34446.05 33992.54 21087.01 257
v192192084.23 13784.37 13983.79 15887.64 20161.71 23782.91 18691.20 12967.94 22690.06 9190.34 18572.04 20793.59 11582.32 7894.91 15796.07 35
MSP-MVS89.08 6488.16 7591.83 2195.76 1786.14 2292.75 1593.90 4178.43 10789.16 11692.25 13672.03 20896.36 288.21 890.93 24092.98 133
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LF4IMVS82.75 16381.93 17485.19 12882.08 27780.15 6985.53 12988.76 18368.01 22385.58 17987.75 22571.80 20986.85 26374.02 16393.87 18188.58 238
v124084.30 13484.51 13583.65 16287.65 20061.26 24282.85 18791.54 11967.94 22690.68 8390.65 18171.71 21093.64 11082.84 7494.78 16196.07 35
ambc82.98 17590.55 15164.86 20388.20 8789.15 17889.40 11393.96 8771.67 21191.38 18378.83 11596.55 10092.71 145
112180.86 18879.81 20484.02 15293.93 5878.70 8381.64 21180.18 27155.43 30883.67 20991.15 16171.29 21291.41 18167.95 22393.06 19881.96 314
新几何182.95 17693.96 5778.56 8580.24 27055.45 30783.93 20791.08 16371.19 21388.33 24765.84 23693.07 19781.95 315
v14882.31 16882.48 16781.81 20085.59 23959.66 25981.47 21486.02 22572.85 17688.05 13590.65 18170.73 21490.91 19675.15 15591.79 22394.87 63
v2v48284.09 13984.24 14183.62 16387.13 21061.40 23982.71 19089.71 16872.19 18589.55 11091.41 15670.70 21593.20 13081.02 9093.76 18296.25 31
UGNet82.78 16281.64 17686.21 11086.20 23276.24 11586.86 10685.68 22877.07 11973.76 30792.82 11669.64 21691.82 17169.04 21293.69 18590.56 206
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
cl_fuxian81.64 17981.59 17881.79 20180.86 29259.15 26678.61 25690.18 16068.36 21987.20 14487.11 23869.39 21791.62 17378.16 12394.43 17194.60 71
MG-MVS80.32 20180.94 18678.47 24988.18 18852.62 31482.29 20085.01 24272.01 18879.24 26892.54 12769.36 21893.36 12770.65 19689.19 26189.45 221
IS-MVSNet86.66 9186.82 9586.17 11292.05 10766.87 18991.21 3788.64 18586.30 2889.60 10992.59 12369.22 21994.91 6673.89 16597.89 4996.72 24
PVSNet_BlendedMVS78.80 21577.84 22181.65 20284.43 25063.41 21579.49 24290.44 14661.70 27475.43 29787.07 23969.11 22091.44 17860.68 27192.24 21590.11 216
PVSNet_Blended76.49 24175.40 24579.76 22984.43 25063.41 21575.14 29790.44 14657.36 30075.43 29778.30 33169.11 22091.44 17860.68 27187.70 28084.42 282
BH-w/o76.57 23976.07 24078.10 25686.88 21965.92 19777.63 26886.33 22165.69 24880.89 24979.95 32268.97 22290.74 20253.01 31385.25 29977.62 334
MVS73.21 26872.59 27175.06 28380.97 28960.81 25081.64 21185.92 22646.03 34571.68 31677.54 33368.47 22389.77 22855.70 29585.39 29674.60 339
miper_ehance_all_eth80.34 20080.04 20281.24 20779.82 30458.95 26877.66 26789.66 16965.75 24785.99 17485.11 26668.29 22491.42 18076.03 14692.03 21993.33 119
Anonymous20240521180.51 19581.19 18378.49 24888.48 18257.26 28276.63 28182.49 25581.21 7384.30 20292.24 13767.99 22586.24 27362.22 25695.13 14891.98 174
testdata79.54 23592.87 8272.34 14280.14 27259.91 28785.47 18291.75 14967.96 22685.24 28368.57 21992.18 21881.06 328
test_part187.15 8587.82 7885.15 13088.88 17663.04 22187.98 9094.85 1482.52 5893.61 3695.73 2567.51 22795.71 2880.48 10098.83 296.69 25
DPM-MVS80.10 20679.18 20882.88 18090.71 14769.74 16478.87 25290.84 13660.29 28575.64 29685.92 25367.28 22893.11 13671.24 18991.79 22385.77 269
PVSNet_Blended_VisFu81.55 18080.49 19184.70 13991.58 12273.24 12984.21 14891.67 11762.86 26480.94 24887.16 23667.27 22992.87 14469.82 20388.94 26487.99 244
MDA-MVSNet-bldmvs77.47 22876.90 23279.16 23979.03 31364.59 20466.58 33475.67 29673.15 17288.86 11988.99 20866.94 23081.23 30864.71 24288.22 27491.64 183
CL-MVSNet_2432*160076.81 23677.38 22675.12 28286.90 21851.34 32373.20 31180.63 26968.30 22181.80 23888.40 21566.92 23180.90 30955.35 29994.90 15893.12 128
test22293.31 7276.54 10979.38 24377.79 28352.59 32182.36 22790.84 17466.83 23291.69 22581.25 323
TR-MVS76.77 23775.79 24179.72 23186.10 23565.79 19877.14 27483.02 25165.20 25581.40 24382.10 30366.30 23390.73 20355.57 29685.27 29882.65 304
OpenMVS_ROBcopyleft70.19 1777.77 22777.46 22478.71 24484.39 25361.15 24381.18 22082.52 25462.45 26883.34 21587.37 23266.20 23488.66 24464.69 24385.02 30186.32 262
EPP-MVSNet85.47 11085.04 12186.77 9691.52 12569.37 16891.63 3487.98 19881.51 7087.05 15191.83 14566.18 23595.29 5170.75 19496.89 8795.64 45
SixPastTwentyTwo87.20 8487.45 8386.45 10192.52 9169.19 17487.84 9488.05 19581.66 6894.64 1396.53 1465.94 23694.75 7083.02 7296.83 9195.41 50
PatchMatch-RL74.48 25973.22 26478.27 25487.70 19885.26 3375.92 29070.09 33064.34 25976.09 29081.25 31165.87 23778.07 31853.86 30783.82 31171.48 342
EPNet80.37 19978.41 21686.23 10776.75 32573.28 12887.18 10277.45 28576.24 12668.14 32788.93 20965.41 23893.85 10269.47 20596.12 11891.55 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PM-MVS80.20 20479.00 20983.78 15988.17 18986.66 1681.31 21666.81 34069.64 20988.33 13290.19 18964.58 23983.63 29871.99 18790.03 25281.06 328
miper_enhance_ethall77.83 22476.93 23180.51 21976.15 33158.01 27675.47 29588.82 18158.05 29483.59 21180.69 31364.41 24091.20 18573.16 17892.03 21992.33 157
eth_miper_zixun_eth80.84 18980.22 19782.71 18381.41 28460.98 24877.81 26590.14 16167.31 23386.95 15487.24 23564.26 24192.31 15475.23 15491.61 22694.85 65
test20.0373.75 26474.59 25271.22 30181.11 28851.12 32770.15 32272.10 32170.42 20080.28 26091.50 15464.21 24274.72 32846.96 33794.58 16787.82 249
cascas76.29 24474.81 24980.72 21784.47 24962.94 22273.89 30687.34 20355.94 30575.16 30176.53 34063.97 24391.16 18765.00 24090.97 23988.06 242
TAMVS78.08 22276.36 23683.23 17090.62 14872.87 13079.08 24980.01 27361.72 27381.35 24486.92 24063.96 24488.78 24250.61 32193.01 20088.04 243
GBi-Net82.02 17482.07 17181.85 19786.38 22361.05 24586.83 10888.27 19272.43 18086.00 17195.64 2963.78 24590.68 20465.95 23393.34 18993.82 103
test182.02 17482.07 17181.85 19786.38 22361.05 24586.83 10888.27 19272.43 18086.00 17195.64 2963.78 24590.68 20465.95 23393.34 18993.82 103
FMVSNet281.31 18281.61 17780.41 22186.38 22358.75 27383.93 15586.58 22072.43 18087.65 14092.98 10963.78 24590.22 21666.86 22693.92 18092.27 162
USDC76.63 23876.73 23476.34 27583.46 26857.20 28380.02 23388.04 19652.14 32683.65 21091.25 15763.24 24886.65 26854.66 30494.11 17685.17 274
cl-mvsnet180.43 19680.23 19581.02 21179.99 30259.25 26377.07 27687.02 21467.38 23186.19 16689.22 20263.09 24990.16 21876.32 14295.80 12793.66 110
cl-mvsnet_80.42 19780.23 19581.02 21179.99 30259.25 26377.07 27687.02 21467.37 23286.18 16889.21 20363.08 25090.16 21876.31 14395.80 12793.65 111
MVS_030478.17 22077.23 22880.99 21384.13 26269.07 17781.39 21580.81 26776.28 12567.53 33289.11 20662.87 25186.77 26560.90 27092.01 22287.13 255
new-patchmatchnet70.10 28973.37 26360.29 33481.23 28716.95 36259.54 34574.62 30162.93 26380.97 24787.93 22362.83 25271.90 33155.24 30095.01 15492.00 171
K. test v385.14 11484.73 12686.37 10291.13 13769.63 16785.45 13076.68 29084.06 3992.44 5396.99 862.03 25394.65 7380.58 9893.24 19394.83 67
lessismore_v085.95 11491.10 13870.99 15870.91 32891.79 6494.42 6361.76 25492.93 14179.52 11093.03 19993.93 97
131473.22 26772.56 27375.20 28180.41 30157.84 27781.64 21185.36 23151.68 32973.10 31076.65 33961.45 25585.19 28463.54 24879.21 33382.59 305
CANet_DTU77.81 22677.05 22980.09 22681.37 28559.90 25783.26 17588.29 19169.16 21367.83 33083.72 28460.93 25689.47 23069.22 20989.70 25590.88 197
pmmvs-eth3d78.42 21977.04 23082.57 18887.44 20474.41 12280.86 22479.67 27455.68 30684.69 19190.31 18760.91 25785.42 28262.20 25791.59 22787.88 247
UnsupCasMVSNet_eth71.63 28172.30 27569.62 30676.47 32852.70 31370.03 32380.97 26659.18 28879.36 26688.21 21860.50 25869.12 33758.33 28277.62 33887.04 256
IterMVS-SCA-FT80.64 19379.41 20684.34 14683.93 26469.66 16676.28 28781.09 26572.43 18086.47 16590.19 18960.46 25993.15 13577.45 13386.39 29090.22 212
SCA73.32 26572.57 27275.58 28081.62 28155.86 29178.89 25171.37 32761.73 27274.93 30283.42 28960.46 25987.01 25858.11 28482.63 32183.88 286
jason77.42 22975.75 24282.43 19187.10 21469.27 17077.99 26281.94 26051.47 33077.84 27785.07 27060.32 26189.00 23670.74 19589.27 26089.03 233
jason: jason.
1112_ss74.82 25773.74 25878.04 25789.57 16460.04 25576.49 28487.09 21354.31 31273.66 30879.80 32360.25 26286.76 26758.37 28084.15 31087.32 253
HY-MVS64.64 1873.03 26972.47 27474.71 28483.36 26954.19 30182.14 20781.96 25956.76 30469.57 32486.21 25060.03 26384.83 28949.58 32682.65 31985.11 275
Anonymous2023120671.38 28271.88 27769.88 30486.31 22754.37 30070.39 32174.62 30152.57 32276.73 28388.76 21059.94 26472.06 33044.35 34293.23 19483.23 300
IterMVS76.91 23476.34 23778.64 24580.91 29064.03 21176.30 28679.03 27864.88 25783.11 21889.16 20459.90 26584.46 29168.61 21785.15 30087.42 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
YYNet170.06 29070.44 28668.90 30973.76 34453.42 30858.99 34867.20 33658.42 29187.10 14885.39 26359.82 26667.32 34159.79 27583.50 31385.96 265
MDA-MVSNet_test_wron70.05 29170.44 28668.88 31073.84 34353.47 30658.93 34967.28 33558.43 29087.09 14985.40 26259.80 26767.25 34259.66 27683.54 31285.92 267
PMMVS61.65 31660.38 32265.47 32365.40 35969.26 17163.97 33961.73 34836.80 35660.11 35068.43 34959.42 26866.35 34648.97 32878.57 33560.81 350
CDS-MVSNet77.32 23075.40 24583.06 17389.00 17372.48 14077.90 26482.17 25860.81 28078.94 27083.49 28759.30 26988.76 24354.64 30592.37 21287.93 246
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UnsupCasMVSNet_bld69.21 29669.68 29167.82 31579.42 30851.15 32667.82 33175.79 29454.15 31377.47 28285.36 26559.26 27070.64 33348.46 33079.35 33181.66 317
WTY-MVS67.91 30068.35 29866.58 31980.82 29448.12 33765.96 33572.60 31753.67 31671.20 31881.68 30858.97 27169.06 33848.57 32981.67 32282.55 306
cl-mvsnet278.97 21278.21 21881.24 20777.74 31859.01 26777.46 27387.13 20965.79 24484.32 19985.10 26758.96 27290.88 19875.36 15392.03 21993.84 100
MVSFormer82.23 17081.57 17984.19 15185.54 24069.26 17191.98 2990.08 16271.54 19076.23 28885.07 27058.69 27394.27 8286.26 3588.77 26589.03 233
lupinMVS76.37 24374.46 25382.09 19285.54 24069.26 17176.79 27880.77 26850.68 33676.23 28882.82 29758.69 27388.94 23769.85 20288.77 26588.07 241
Test_1112_low_res73.90 26373.08 26576.35 27490.35 15355.95 28973.40 31086.17 22350.70 33573.14 30985.94 25258.31 27585.90 27856.51 29083.22 31487.20 254
test_yl78.71 21778.51 21479.32 23784.32 25458.84 27078.38 25785.33 23275.99 13182.49 22486.57 24258.01 27690.02 22662.74 25392.73 20689.10 230
DCV-MVSNet78.71 21778.51 21479.32 23784.32 25458.84 27078.38 25785.33 23275.99 13182.49 22486.57 24258.01 27690.02 22662.74 25392.73 20689.10 230
sss66.92 30267.26 30265.90 32077.23 32151.10 32864.79 33671.72 32552.12 32770.13 32280.18 32057.96 27865.36 34950.21 32281.01 32781.25 323
ppachtmachnet_test74.73 25874.00 25776.90 26880.71 29656.89 28671.53 31778.42 28058.24 29279.32 26782.92 29657.91 27984.26 29365.60 23891.36 23089.56 220
MVP-Stereo75.81 24773.51 26282.71 18389.35 16673.62 12580.06 23185.20 23560.30 28473.96 30687.94 22257.89 28089.45 23252.02 31674.87 34385.06 276
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM71.77 27970.06 29076.92 26786.39 22253.97 30276.62 28286.62 21953.44 31763.97 34584.73 27657.79 28192.34 15339.65 34981.33 32584.45 281
LFMVS80.15 20580.56 18978.89 24089.19 17055.93 29085.22 13373.78 30982.96 5384.28 20392.72 12057.38 28290.07 22563.80 24795.75 13090.68 202
Vis-MVSNet (Re-imp)77.82 22577.79 22277.92 25988.82 17751.29 32583.28 17471.97 32274.04 15582.23 22989.78 19657.38 28289.41 23357.22 28795.41 13793.05 130
CHOSEN 1792x268872.45 27370.56 28478.13 25590.02 16263.08 22068.72 32683.16 25042.99 35175.92 29285.46 26057.22 28485.18 28549.87 32581.67 32286.14 264
miper_lstm_enhance76.45 24276.10 23977.51 26376.72 32660.97 24964.69 33785.04 24063.98 26083.20 21788.22 21756.67 28578.79 31773.22 17293.12 19692.78 141
our_test_371.85 27871.59 27972.62 29580.71 29653.78 30469.72 32471.71 32658.80 28978.03 27480.51 31856.61 28678.84 31662.20 25786.04 29385.23 273
baseline173.26 26673.54 26172.43 29784.92 24547.79 33979.89 23574.00 30665.93 24278.81 27186.28 24956.36 28781.63 30756.63 28979.04 33487.87 248
pmmvs474.92 25572.98 26780.73 21684.95 24471.71 15376.23 28877.59 28452.83 32077.73 28086.38 24456.35 28884.97 28657.72 28687.05 28485.51 271
MVEpermissive40.22 2351.82 32750.47 33055.87 33762.66 36151.91 31931.61 35639.28 36140.65 35250.76 35874.98 34456.24 28944.67 35833.94 35564.11 35471.04 344
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet70.20 28768.80 29674.38 28680.91 29084.81 3859.12 34776.45 29255.06 30975.31 30082.36 30255.74 29054.82 35447.02 33587.24 28383.52 293
MS-PatchMatch70.93 28470.22 28873.06 29281.85 28062.50 23073.82 30777.90 28252.44 32375.92 29281.27 31055.67 29181.75 30555.37 29877.70 33774.94 338
DSMNet-mixed60.98 32161.61 32059.09 33672.88 34945.05 34774.70 30146.61 36026.20 35765.34 33890.32 18655.46 29263.12 35241.72 34681.30 32669.09 346
pmmvs570.73 28570.07 28972.72 29377.03 32452.73 31274.14 30375.65 29750.36 33872.17 31485.37 26455.42 29380.67 31152.86 31487.59 28184.77 278
CMPMVSbinary59.41 2075.12 25273.57 26079.77 22875.84 33367.22 18581.21 21982.18 25750.78 33476.50 28487.66 22755.20 29482.99 30062.17 25990.64 25089.09 232
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet71.09 28371.59 27969.57 30787.23 20750.07 33378.91 25071.83 32360.20 28671.26 31791.76 14855.08 29576.09 32241.06 34787.02 28582.54 307
bset_n11_16_dypcd79.19 21077.97 22082.86 18185.81 23766.85 19075.02 29879.31 27566.07 24183.50 21483.37 29155.04 29692.10 16178.63 11794.99 15589.63 219
PVSNet_051.08 2256.10 32454.97 32959.48 33575.12 33953.28 30955.16 35061.89 34644.30 34859.16 35162.48 35454.22 29765.91 34835.40 35347.01 35659.25 352
EPNet_dtu72.87 27171.33 28377.49 26477.72 31960.55 25282.35 19875.79 29466.49 23958.39 35581.06 31253.68 29885.98 27653.55 30892.97 20285.95 266
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS255.64 32659.27 32644.74 34064.30 36012.32 36340.60 35449.79 35953.19 31865.06 34284.81 27453.60 29949.76 35632.68 35689.41 25772.15 341
HyFIR lowres test75.12 25272.66 27082.50 18991.44 12865.19 20172.47 31387.31 20446.79 34280.29 25884.30 28052.70 30092.10 16151.88 32086.73 28690.22 212
FMVSNet378.80 21578.55 21379.57 23482.89 27556.89 28681.76 20885.77 22769.04 21586.00 17190.44 18451.75 30190.09 22465.95 23393.34 18991.72 180
D2MVS76.84 23575.67 24480.34 22280.48 30062.16 23673.50 30884.80 24557.61 29882.24 22887.54 22951.31 30287.65 25370.40 20093.19 19591.23 191
AUN-MVS81.18 18478.78 21088.39 7690.93 14082.14 5682.51 19583.67 24864.69 25880.29 25885.91 25451.07 30392.38 15276.29 14493.63 18790.65 204
PVSNet58.17 2166.41 30765.63 31068.75 31181.96 27849.88 33462.19 34372.51 31951.03 33268.04 32875.34 34350.84 30474.77 32645.82 34082.96 31581.60 318
GA-MVS75.83 24674.61 25079.48 23681.87 27959.25 26373.42 30982.88 25268.68 21879.75 26281.80 30650.62 30589.46 23166.85 22785.64 29589.72 218
FPMVS72.29 27672.00 27673.14 29188.63 17985.00 3574.65 30267.39 33471.94 18977.80 27987.66 22750.48 30675.83 32449.95 32379.51 32958.58 353
MVS-HIRNet61.16 31962.92 31655.87 33779.09 31235.34 35771.83 31557.98 35446.56 34359.05 35291.14 16249.95 30776.43 32138.74 35071.92 34755.84 354
CVMVSNet72.62 27271.41 28276.28 27683.25 27060.34 25383.50 16979.02 27937.77 35576.33 28685.10 26749.60 30887.41 25570.54 19877.54 33981.08 326
RPMNet78.88 21378.28 21780.68 21879.58 30562.64 22782.58 19194.16 2874.80 14775.72 29492.59 12348.69 30995.56 3473.48 17082.91 31783.85 289
tpmrst66.28 30866.69 30665.05 32472.82 35039.33 35378.20 26070.69 32953.16 31967.88 32980.36 31948.18 31074.75 32758.13 28370.79 34881.08 326
CR-MVSNet74.00 26273.04 26676.85 27079.58 30562.64 22782.58 19176.90 28750.50 33775.72 29492.38 12948.07 31184.07 29468.72 21682.91 31783.85 289
Patchmtry76.56 24077.46 22473.83 28879.37 31046.60 34382.41 19776.90 28773.81 15885.56 18092.38 12948.07 31183.98 29563.36 25095.31 14390.92 196
ADS-MVSNet265.87 31063.64 31572.55 29673.16 34756.92 28567.10 33274.81 30049.74 33966.04 33582.97 29346.71 31377.26 31942.29 34469.96 35083.46 294
ADS-MVSNet61.90 31562.19 31861.03 33373.16 34736.42 35667.10 33261.75 34749.74 33966.04 33582.97 29346.71 31363.21 35142.29 34469.96 35083.46 294
PatchmatchNetpermissive69.71 29468.83 29572.33 29877.66 32053.60 30579.29 24469.99 33157.66 29772.53 31282.93 29546.45 31580.08 31460.91 26972.09 34683.31 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20072.34 27571.55 28174.70 28583.48 26751.60 32275.02 29873.71 31070.14 20678.56 27380.57 31646.20 31688.20 24946.99 33689.29 25884.32 283
sam_mvs146.11 31783.88 286
tfpn200view974.86 25674.23 25576.74 27186.24 23052.12 31779.24 24673.87 30773.34 16581.82 23684.60 27846.02 31888.80 23951.98 31790.99 23689.31 225
thres40075.14 25074.23 25577.86 26086.24 23052.12 31779.24 24673.87 30773.34 16581.82 23684.60 27846.02 31888.80 23951.98 31790.99 23692.66 147
baseline269.77 29366.89 30378.41 25079.51 30758.09 27576.23 28869.57 33257.50 29964.82 34377.45 33546.02 31888.44 24553.08 31077.83 33688.70 237
patchmatchnet-post81.71 30745.93 32187.01 258
sam_mvs45.92 322
Patchmatch-RL test74.48 25973.68 25976.89 26984.83 24666.54 19372.29 31469.16 33357.70 29686.76 15586.33 24645.79 32382.59 30169.63 20490.65 24981.54 319
thres100view90075.45 24875.05 24876.66 27287.27 20651.88 32081.07 22173.26 31375.68 13783.25 21686.37 24545.54 32488.80 23951.98 31790.99 23689.31 225
thres600view775.97 24575.35 24777.85 26187.01 21651.84 32180.45 22873.26 31375.20 14483.10 21986.31 24845.54 32489.05 23555.03 30292.24 21592.66 147
tpm cat166.76 30565.21 31171.42 30077.09 32350.62 33178.01 26173.68 31144.89 34768.64 32579.00 32645.51 32682.42 30449.91 32470.15 34981.23 325
test_post3.10 36045.43 32777.22 320
MDTV_nov1_ep1368.29 29978.03 31743.87 34974.12 30472.22 32052.17 32467.02 33385.54 25645.36 32880.85 31055.73 29384.42 309
tpmvs70.16 28869.56 29271.96 29974.71 34248.13 33679.63 23775.45 29965.02 25670.26 32181.88 30545.34 32985.68 28058.34 28175.39 34282.08 313
MDTV_nov1_ep13_2view27.60 36170.76 31946.47 34461.27 34745.20 33049.18 32783.75 291
test_post178.85 2533.13 35945.19 33180.13 31358.11 284
CostFormer69.98 29268.68 29773.87 28777.14 32250.72 33079.26 24574.51 30351.94 32870.97 32084.75 27545.16 33287.49 25455.16 30179.23 33283.40 296
RRT_MVS83.25 15781.08 18489.74 5380.55 29979.32 7786.41 11886.69 21872.33 18487.00 15291.08 16344.98 33395.55 3784.47 5896.24 11394.36 82
Patchmatch-test65.91 30967.38 30161.48 33275.51 33543.21 35168.84 32563.79 34462.48 26772.80 31183.42 28944.89 33459.52 35348.27 33286.45 28881.70 316
EU-MVSNet75.12 25274.43 25477.18 26583.11 27359.48 26185.71 12782.43 25639.76 35485.64 17888.76 21044.71 33587.88 25173.86 16685.88 29484.16 285
PatchT70.52 28672.76 26963.79 32679.38 30933.53 35877.63 26865.37 34273.61 16071.77 31592.79 11944.38 33675.65 32564.53 24685.37 29782.18 312
test-LLR67.21 30166.74 30568.63 31276.45 32955.21 29667.89 32867.14 33762.43 26965.08 34072.39 34543.41 33769.37 33461.00 26784.89 30481.31 321
test0.0.03 164.66 31264.36 31365.57 32275.03 34046.89 34264.69 33761.58 34962.43 26971.18 31977.54 33343.41 33768.47 33940.75 34882.65 31981.35 320
MVSTER77.09 23275.70 24381.25 20575.27 33861.08 24477.49 27285.07 23860.78 28186.55 15988.68 21243.14 33990.25 21373.69 16890.67 24792.42 153
tpm67.95 29968.08 30067.55 31678.74 31643.53 35075.60 29267.10 33954.92 31072.23 31388.10 21942.87 34075.97 32352.21 31580.95 32883.15 301
tpm268.45 29866.83 30473.30 29078.93 31548.50 33579.76 23671.76 32447.50 34169.92 32383.60 28542.07 34188.40 24648.44 33179.51 32983.01 303
EMVS61.10 32060.81 32161.99 32965.96 35855.86 29153.10 35258.97 35267.06 23456.89 35663.33 35340.98 34267.03 34354.79 30386.18 29263.08 348
new_pmnet55.69 32557.66 32749.76 33975.47 33630.59 35959.56 34451.45 35843.62 35062.49 34675.48 34240.96 34349.15 35737.39 35272.52 34569.55 345
E-PMN61.59 31761.62 31961.49 33166.81 35755.40 29453.77 35160.34 35066.80 23758.90 35365.50 35240.48 34466.12 34755.72 29486.25 29162.95 349
EPMVS62.47 31362.63 31762.01 32870.63 35438.74 35474.76 30052.86 35753.91 31567.71 33180.01 32139.40 34566.60 34555.54 29768.81 35380.68 330
tmp_tt20.25 32924.50 3327.49 3424.47 3638.70 36434.17 35525.16 3631.00 35932.43 36018.49 35739.37 3469.21 36021.64 35743.75 3574.57 356
thisisatest053079.07 21177.33 22784.26 14887.13 21064.58 20583.66 16475.95 29368.86 21785.22 18387.36 23338.10 34793.57 11875.47 15194.28 17394.62 69
ET-MVSNet_ETH3D75.28 24972.77 26882.81 18283.03 27468.11 18177.09 27576.51 29160.67 28377.60 28180.52 31738.04 34891.15 18870.78 19390.68 24689.17 228
tttt051781.07 18579.58 20585.52 12488.99 17466.45 19487.03 10575.51 29873.76 15988.32 13390.20 18837.96 34994.16 9479.36 11295.13 14895.93 41
thisisatest051573.00 27070.52 28580.46 22081.45 28359.90 25773.16 31274.31 30557.86 29576.08 29177.78 33237.60 35092.12 16065.00 24091.45 22989.35 224
FMVSNet572.10 27771.69 27873.32 28981.57 28253.02 31076.77 27978.37 28163.31 26176.37 28591.85 14336.68 35178.98 31547.87 33392.45 21187.95 245
dp60.70 32260.29 32461.92 33072.04 35238.67 35570.83 31864.08 34351.28 33160.75 34877.28 33636.59 35271.58 33247.41 33462.34 35575.52 337
CHOSEN 280x42059.08 32356.52 32866.76 31876.51 32764.39 20849.62 35359.00 35143.86 34955.66 35768.41 35035.55 35368.21 34043.25 34376.78 34167.69 347
RRT_test8_iter0578.08 22277.52 22379.75 23080.84 29352.54 31580.61 22688.96 18067.77 23084.62 19289.29 20133.89 35492.10 16177.59 13094.15 17594.62 69
IB-MVS62.13 1971.64 28068.97 29479.66 23380.80 29562.26 23573.94 30576.90 28763.27 26268.63 32676.79 33833.83 35591.84 17059.28 27887.26 28284.88 277
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
JIA-IIPM69.41 29566.64 30777.70 26273.19 34671.24 15675.67 29165.56 34170.42 20065.18 33992.97 11133.64 35683.06 29953.52 30969.61 35278.79 333
DWT-MVSNet_test66.43 30664.37 31272.63 29474.86 34150.86 32976.52 28372.74 31654.06 31465.50 33768.30 35132.13 35784.84 28861.63 26473.59 34482.19 311
DeepMVS_CXcopyleft24.13 34132.95 36229.49 36021.63 36412.07 35837.95 35945.07 35630.84 35819.21 35917.94 35833.06 35823.69 355
gg-mvs-nofinetune68.96 29769.11 29368.52 31476.12 33245.32 34583.59 16555.88 35586.68 2564.62 34497.01 730.36 35983.97 29644.78 34182.94 31676.26 336
GG-mvs-BLEND67.16 31773.36 34546.54 34484.15 14955.04 35658.64 35461.95 35529.93 36083.87 29738.71 35176.92 34071.07 343
test-mter65.00 31163.79 31468.63 31276.45 32955.21 29667.89 32867.14 33750.98 33365.08 34072.39 34528.27 36169.37 33461.00 26784.89 30481.31 321
TESTMET0.1,161.29 31860.32 32364.19 32572.06 35151.30 32467.89 32862.09 34545.27 34660.65 34969.01 34827.93 36264.74 35056.31 29181.65 32476.53 335
pmmvs362.47 31360.02 32569.80 30571.58 35364.00 21270.52 32058.44 35339.77 35366.05 33475.84 34127.10 36372.28 32946.15 33884.77 30873.11 340
KD-MVS_2432*160066.87 30365.81 30870.04 30267.50 35547.49 34062.56 34179.16 27661.21 27877.98 27580.61 31425.29 36482.48 30253.02 31184.92 30280.16 331
miper_refine_blended66.87 30365.81 30870.04 30267.50 35547.49 34062.56 34179.16 27661.21 27877.98 27580.61 31425.29 36482.48 30253.02 31184.92 30280.16 331
test1236.27 3328.08 3350.84 3431.11 3650.57 36562.90 3400.82 3650.54 3601.07 3622.75 3621.26 3660.30 3611.04 3591.26 3601.66 357
testmvs5.91 3337.65 3360.72 3441.20 3640.37 36659.14 3460.67 3660.49 3611.11 3612.76 3610.94 3670.24 3621.02 3601.47 3591.55 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re6.65 3308.87 3330.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36379.80 3230.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
IU-MVS94.18 4872.64 13490.82 13756.98 30289.67 10485.78 4497.92 4693.28 121
save fliter93.75 6177.44 9686.31 11989.72 16770.80 196
test_0728_SECOND86.79 9594.25 4772.45 14190.54 4394.10 3495.88 1486.42 3197.97 4392.02 170
GSMVS83.88 286
test_part293.86 6077.77 9192.84 45
MTGPAbinary91.81 114
MTMP90.66 4033.14 362
gm-plane-assit75.42 33744.97 34852.17 32472.36 34787.90 25054.10 306
test9_res80.83 9496.45 10590.57 205
agg_prior279.68 10696.16 11590.22 212
agg_prior91.58 12277.69 9290.30 15384.32 19993.18 131
test_prior478.97 8084.59 141
test_prior86.32 10390.59 14971.99 14792.85 8694.17 9192.80 139
旧先验281.73 20956.88 30386.54 16484.90 28772.81 180
新几何281.72 210
无先验82.81 18885.62 22958.09 29391.41 18167.95 22384.48 280
原ACMM282.26 203
testdata286.43 27163.52 249
testdata179.62 23873.95 157
plane_prior793.45 6777.31 100
plane_prior593.61 5395.22 5580.78 9595.83 12594.46 77
plane_prior492.95 112
plane_prior376.85 10777.79 11286.55 159
plane_prior289.45 6979.44 93
plane_prior192.83 86
plane_prior76.42 11287.15 10375.94 13495.03 153
n20.00 367
nn0.00 367
door-mid74.45 304
test1191.46 121
door72.57 318
HQP5-MVS70.66 159
HQP-NCC91.19 13384.77 13673.30 16780.55 255
ACMP_Plane91.19 13384.77 13673.30 16780.55 255
BP-MVS77.30 135
HQP4-MVS80.56 25494.61 7693.56 116
HQP3-MVS92.68 9294.47 169
NP-MVS91.95 10974.55 12190.17 191
ACMMP++_ref95.74 131
ACMMP++97.35 75