This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
UA-Net89.02 3391.44 3786.20 2894.88 189.84 3394.76 2877.45 2985.41 7074.79 10088.83 7588.90 13178.67 4096.06 795.45 496.66 395.58 1
DTE-MVSNet88.99 3592.77 1184.59 4293.31 288.10 4790.96 5183.09 291.38 1376.21 9196.03 298.04 870.78 10395.65 1492.32 3393.18 5387.84 70
zzz-MVS90.38 1191.35 3989.25 593.08 386.59 6296.45 1179.00 1690.23 2689.30 1085.87 10394.97 6482.54 1895.05 2394.83 795.14 2791.94 36
mPP-MVS93.05 495.77 42
MP-MVScopyleft90.84 691.95 3289.55 392.92 590.90 1996.56 679.60 1186.83 5888.75 1389.00 7194.38 7684.01 994.94 2594.34 1195.45 2493.24 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PEN-MVS88.86 3892.92 884.11 5292.92 588.05 4990.83 5382.67 591.04 1774.83 9995.97 398.47 370.38 10495.70 1392.43 3193.05 5788.78 63
HPM-MVS++copyleft88.74 3989.54 5287.80 1692.58 785.69 7095.10 2578.01 2387.08 5587.66 2087.89 8292.07 10380.28 3090.97 6891.41 4493.17 5491.69 38
PS-CasMVS89.07 3293.23 684.21 5092.44 888.23 4690.54 6182.95 390.50 2375.31 9795.80 598.37 671.16 9796.30 593.32 2292.88 5890.11 51
CP-MVSNet88.71 4092.63 1484.13 5192.39 988.09 4890.47 6682.86 488.79 4175.16 9894.87 897.68 1371.05 9996.16 693.18 2492.85 5989.64 55
CP-MVS91.09 592.33 2389.65 292.16 1090.41 2796.46 1080.38 888.26 4489.17 1187.00 9296.34 2983.95 1095.77 1194.72 895.81 1793.78 9
ACMMPR91.30 492.88 1089.46 491.92 1191.61 596.60 579.46 1490.08 2988.53 1489.54 6395.57 4684.25 795.24 2094.27 1395.97 1193.85 7
WR-MVS_H88.99 3593.28 583.99 5391.92 1189.13 3891.95 4583.23 190.14 2871.92 11995.85 498.01 1071.83 9495.82 993.19 2393.07 5690.83 48
SR-MVS91.82 1380.80 795.53 48
PGM-MVS90.42 1091.58 3589.05 691.77 1491.06 1396.51 778.94 1785.41 7087.67 1987.02 9195.26 5583.62 1295.01 2493.94 1695.79 1993.40 20
APD-MVScopyleft89.14 2991.25 4186.67 2591.73 1591.02 1595.50 2177.74 2584.04 8179.47 8191.48 4294.85 6681.14 2692.94 4192.20 3694.47 3892.24 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVS90.13 1592.26 2587.64 1891.68 1690.44 2695.22 2477.34 3390.79 2187.80 1790.42 5392.05 10579.05 3593.89 3393.59 1994.77 3394.62 4
ambc88.38 6091.62 1787.97 5084.48 11988.64 4387.93 1687.38 8694.82 6874.53 7389.14 8283.86 11085.94 14386.84 75
TSAR-MVS + MP.89.67 2492.25 2686.65 2691.53 1890.98 1796.15 1473.30 5587.88 4881.83 6692.92 2795.15 5982.23 1993.58 3592.25 3494.87 3093.01 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg86.67 5387.73 6985.43 3591.51 1982.72 8794.47 3074.22 5281.71 9681.54 7089.20 6992.87 9278.33 4290.12 7588.47 6892.51 6789.04 60
X-MVS89.36 2890.73 4587.77 1791.50 2091.23 896.76 478.88 1887.29 5387.14 2678.98 13794.53 7176.47 5495.25 1994.28 1295.85 1493.55 15
HFP-MVS90.32 1392.37 2187.94 1491.46 2190.91 1895.69 1879.49 1289.94 3283.50 5089.06 7094.44 7481.68 2394.17 3194.19 1495.81 1793.87 6
ACMM80.67 790.67 792.46 1888.57 891.35 2289.93 3196.34 1277.36 3190.17 2786.88 2987.32 8796.63 2283.32 1395.79 1094.49 1096.19 992.91 25
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS89.79 2393.66 485.27 3791.32 2388.27 4493.49 3779.86 1092.75 875.37 9696.86 198.38 575.10 6895.93 894.07 1596.46 589.39 57
SD-MVS89.91 1892.23 2887.19 2291.31 2489.79 3494.31 3175.34 4689.26 3681.79 6792.68 2995.08 6183.88 1193.10 3992.69 2696.54 493.02 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS91.28 2591.23 896.89 287.14 2694.53 7195.84 15
X-MVStestdata91.28 2591.23 896.89 287.14 2694.53 7195.84 15
DeepC-MVS83.59 490.37 1292.56 1787.82 1591.26 2792.33 394.72 2980.04 990.01 3084.61 4293.33 2094.22 7780.59 2892.90 4292.52 2995.69 2192.57 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft90.63 892.40 1988.56 991.24 2891.60 696.49 977.53 2787.89 4786.87 3087.24 8996.46 2482.87 1695.59 1594.50 996.35 693.51 17
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP90.00 1791.73 3387.97 1391.21 2990.29 2896.51 778.00 2486.33 6185.32 4088.23 7994.67 6982.08 2195.13 2293.88 1794.72 3593.59 12
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP89.86 1991.96 3187.42 2091.00 3090.08 2996.00 1676.61 3789.28 3387.73 1890.04 5591.80 10878.71 3894.36 2993.82 1894.48 3794.32 5
CPTT-MVS89.63 2590.52 4788.59 790.95 3190.74 2195.71 1779.13 1587.70 4985.68 3880.05 13295.74 4484.77 694.28 3092.68 2795.28 2692.45 31
LGP-MVS_train90.56 992.38 2088.43 1090.88 3291.15 1195.35 2277.65 2686.26 6387.23 2490.45 5297.35 1683.20 1495.44 1693.41 2196.28 892.63 26
OPM-MVS89.82 2192.24 2786.99 2390.86 3389.35 3695.07 2675.91 4291.16 1586.87 3091.07 4897.29 1779.13 3493.32 3691.99 3894.12 4091.49 41
ACMP80.00 890.12 1692.30 2487.58 1990.83 3491.10 1294.96 2776.06 4187.47 5185.33 3988.91 7497.65 1482.13 2095.31 1793.44 2096.14 1092.22 33
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
NCCC86.74 5287.97 6885.31 3690.64 3587.25 5793.27 3874.59 4886.50 5983.72 4675.92 16292.39 9877.08 5291.72 5190.68 4792.57 6591.30 43
DVP-MVS88.51 4191.36 3885.19 3990.63 3692.01 495.29 2377.52 2890.48 2480.21 7790.21 5496.08 3376.38 5688.30 9191.42 4291.12 8591.01 45
UniMVSNet_ETH3D85.39 6291.12 4278.71 9790.48 3783.72 8081.76 13582.41 693.84 564.43 15395.41 698.76 163.72 13793.63 3489.74 5789.47 10282.74 109
APDe-MVS89.85 2092.91 986.29 2790.47 3891.34 796.04 1576.41 4091.11 1678.50 8693.44 1995.82 4181.55 2493.16 3891.90 3994.77 3393.58 14
PMVScopyleft79.51 990.23 1492.67 1387.39 2190.16 3988.75 4093.64 3575.78 4390.00 3183.70 4792.97 2692.22 10086.13 497.01 396.79 294.94 2990.96 46
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS86.93 5188.98 5684.54 4390.11 4087.41 5693.23 3973.47 5486.31 6282.25 6182.96 12092.15 10176.04 5991.69 5290.69 4692.17 7191.64 40
TSAR-MVS + GP.85.32 6487.41 7382.89 6290.07 4185.69 7089.07 8072.99 5682.45 8974.52 10385.09 11087.67 13779.24 3391.11 6390.41 4991.45 7789.45 56
DeepC-MVS_fast81.78 587.38 4989.64 5184.75 4089.89 4290.70 2292.74 4274.45 4986.02 6482.16 6486.05 10191.99 10775.84 6291.16 6290.44 4893.41 4891.09 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D89.02 3391.69 3485.91 3089.72 4390.81 2092.56 4371.69 6290.83 2087.24 2389.71 6192.07 10378.37 4194.43 2892.59 2895.86 1391.35 42
DPE-MVS89.81 2292.34 2286.86 2489.69 4491.00 1695.53 1976.91 3488.18 4583.43 5393.48 1895.19 5681.07 2792.75 4492.07 3794.55 3693.74 10
CDPH-MVS86.66 5488.52 5984.48 4489.61 4588.27 4492.86 4172.69 5780.55 11482.71 5586.92 9393.32 8875.55 6491.00 6789.85 5693.47 4789.71 54
EPNet79.36 11679.44 13379.27 9689.51 4677.20 13088.35 8777.35 3268.27 16574.29 10476.31 15579.22 16459.63 14985.02 12185.45 9386.49 13584.61 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + ACMM89.14 2992.11 3085.67 3189.27 4790.61 2490.98 5079.48 1388.86 3979.80 7893.01 2593.53 8683.17 1592.75 4492.45 3091.32 8093.59 12
HQP-MVS85.02 6686.41 7983.40 5489.19 4886.59 6291.28 4871.60 6382.79 8783.48 5178.65 14193.54 8572.55 8786.49 10585.89 9092.28 7090.95 47
AdaColmapbinary84.15 7385.14 9483.00 5989.08 4987.14 5990.56 6070.90 6582.40 9080.41 7373.82 17384.69 14975.19 6791.58 5689.90 5591.87 7486.48 77
MSP-MVS89.40 2792.69 1285.56 3489.01 5089.85 3293.72 3475.42 4492.28 1080.49 7294.36 1294.87 6581.46 2592.49 4891.42 4293.27 5093.54 16
COLMAP_ROBcopyleft85.66 291.85 295.01 288.16 1288.98 5192.86 295.51 2072.17 5894.95 491.27 394.11 1497.77 1184.22 896.49 495.27 596.79 293.60 11
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TDRefinement93.16 195.57 190.36 188.79 5293.57 197.27 178.23 2295.55 193.00 193.98 1596.01 3787.53 197.69 196.81 197.33 195.34 3
TranMVSNet+NR-MVSNet85.23 6589.38 5380.39 8888.78 5383.77 7987.40 9576.75 3585.47 6868.99 13595.18 797.55 1567.13 12291.61 5589.13 6593.26 5182.95 106
ACMH+79.05 1189.62 2693.08 785.58 3288.58 5489.26 3792.18 4474.23 5193.55 782.66 5892.32 3498.35 780.29 2995.28 1892.34 3295.52 2290.43 49
MVS_030484.73 7086.19 8183.02 5788.32 5586.71 6191.55 4670.87 6673.79 14182.88 5485.13 10993.35 8772.55 8788.62 8587.69 7491.93 7388.05 69
DU-MVS84.88 6888.27 6480.92 7788.30 5683.59 8287.06 10078.35 2080.64 11270.49 12792.67 3096.91 2068.13 11591.79 4989.29 6493.20 5283.02 103
Baseline_NR-MVSNet82.79 8886.51 7678.44 10188.30 5675.62 14487.81 9074.97 4781.53 10066.84 14894.71 1196.46 2466.90 12391.79 4983.37 11685.83 14582.09 114
UniMVSNet_NR-MVSNet84.62 7188.00 6780.68 8388.18 5883.83 7887.06 10076.47 3981.46 10370.49 12793.24 2195.56 4768.13 11590.43 7288.47 6893.78 4583.02 103
xxxxxxxxxxxxxcwj87.85 4790.95 4384.22 4888.17 5987.90 5190.80 5471.80 6089.28 3382.70 5689.90 5795.37 5277.91 4591.69 5290.04 5393.95 4392.47 28
SF-MVS87.85 4790.95 4384.22 4888.17 5987.90 5190.80 5471.80 6089.28 3382.70 5689.90 5795.37 5277.91 4591.69 5290.04 5393.95 4392.47 28
CSCG88.12 4491.45 3684.23 4788.12 6190.59 2590.57 5968.60 8591.37 1483.45 5289.94 5695.14 6078.71 3891.45 5788.21 7295.96 1293.44 19
CLD-MVS82.75 9087.22 7477.54 10788.01 6285.76 6990.23 6954.52 17982.28 9282.11 6588.48 7895.27 5463.95 13589.41 7988.29 7086.45 13681.01 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet (Re)84.95 6788.53 5880.78 7987.82 6384.21 7688.03 8876.50 3881.18 10769.29 13392.63 3296.83 2169.07 11191.23 6189.60 6093.97 4284.00 96
DPM-MVS81.42 9982.11 12480.62 8487.54 6485.30 7290.18 7168.96 8081.00 11079.15 8370.45 19083.29 15267.67 11982.81 13583.46 11190.19 9188.48 65
DeepPCF-MVS81.61 687.95 4690.29 4985.22 3887.48 6590.01 3093.79 3373.54 5388.93 3883.89 4589.40 6590.84 11780.26 3190.62 7190.19 5292.36 6892.03 35
CANet82.84 8784.60 10280.78 7987.30 6685.20 7390.23 6969.00 7972.16 14978.73 8584.49 11490.70 11969.54 10987.65 9486.17 8589.87 9685.84 82
MCST-MVS84.79 6986.48 7782.83 6387.30 6687.03 6090.46 6769.33 7783.14 8482.21 6381.69 12892.14 10275.09 6987.27 9884.78 10092.58 6389.30 58
EIA-MVS78.57 12277.90 14179.35 9487.24 6880.71 10386.16 10764.03 12762.63 19273.49 11073.60 17476.12 17873.83 7988.49 8784.93 9891.36 7978.78 140
OMC-MVS88.16 4291.34 4084.46 4586.85 6990.63 2393.01 4067.00 9890.35 2587.40 2286.86 9496.35 2877.66 4892.63 4690.84 4594.84 3191.68 39
3Dnovator+83.71 388.13 4390.00 5085.94 2986.82 7091.06 1394.26 3275.39 4588.85 4085.76 3785.74 10586.92 14078.02 4393.03 4092.21 3595.39 2592.21 34
ETV-MVS79.01 12177.98 14080.22 8986.69 7179.73 11088.80 8368.27 9063.22 18771.56 12170.25 19273.63 18573.66 8190.30 7486.77 8292.33 6981.95 116
PHI-MVS86.37 5688.14 6584.30 4686.65 7287.56 5490.76 5670.16 6982.55 8889.65 784.89 11292.40 9775.97 6090.88 6989.70 5892.58 6389.03 61
ACMH78.40 1288.94 3792.62 1584.65 4186.45 7387.16 5891.47 4768.79 8395.49 289.74 693.55 1798.50 277.96 4494.14 3289.57 6193.49 4689.94 53
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EG-PatchMatch MVS84.35 7287.55 7080.62 8486.38 7482.24 9286.75 10364.02 12884.24 7778.17 8889.38 6695.03 6378.78 3789.95 7786.33 8489.59 9985.65 84
IS_MVSNet81.72 9785.01 9577.90 10386.19 7582.64 8985.56 10970.02 7080.11 11763.52 15587.28 8881.18 15967.26 12091.08 6689.33 6394.82 3283.42 100
PCF-MVS76.59 1484.11 7485.27 9182.76 6486.12 7688.30 4391.24 4969.10 7882.36 9184.45 4377.56 14790.40 12172.91 8685.88 11083.88 10892.72 6188.53 64
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + COLMAP85.51 6088.36 6282.19 6686.05 7787.69 5390.50 6470.60 6886.40 6082.33 5989.69 6292.52 9674.01 7887.53 9586.84 8189.63 9887.80 71
EPP-MVSNet82.76 8986.47 7878.45 10086.00 7884.47 7585.39 11168.42 8784.17 7862.97 15789.26 6876.84 17472.13 9292.56 4790.40 5095.76 2087.56 73
PLCcopyleft76.06 1585.38 6387.46 7182.95 6185.79 7988.84 3988.86 8268.70 8487.06 5683.60 4879.02 13590.05 12277.37 5190.88 6989.66 5993.37 4986.74 76
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSLP-MVS++86.29 5789.10 5583.01 5885.71 8089.79 3487.04 10274.39 5085.17 7278.92 8477.59 14693.57 8482.60 1793.23 3791.88 4089.42 10392.46 30
CS-MVS79.35 11777.74 14281.22 7485.59 8179.85 10788.78 8466.61 10067.63 16680.41 7367.82 19675.07 18373.27 8588.31 9084.36 10492.63 6281.18 120
Effi-MVS+-dtu82.04 9583.39 11880.48 8785.48 8286.57 6488.40 8668.28 8969.04 16373.13 11376.26 15791.11 11674.74 7288.40 8887.76 7392.84 6084.57 90
v7n87.11 5090.46 4883.19 5685.22 8383.69 8190.03 7368.20 9191.01 1886.71 3394.80 998.46 477.69 4791.10 6485.98 8791.30 8188.19 66
MAR-MVS81.98 9682.92 12080.88 7885.18 8485.85 6789.13 7969.52 7271.21 15382.25 6171.28 18488.89 13269.69 10688.71 8386.96 7789.52 10087.57 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
abl_679.30 9584.98 8585.78 6890.50 6466.88 9977.08 13074.02 10573.29 17789.34 12668.94 11290.49 8885.98 80
TAPA-MVS78.00 1385.88 5888.37 6182.96 6084.69 8688.62 4190.62 5764.22 12389.15 3788.05 1578.83 13993.71 8176.20 5890.11 7688.22 7194.00 4189.97 52
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SixPastTwentyTwo89.14 2992.19 2985.58 3284.62 8782.56 9090.53 6271.93 5991.95 1185.89 3594.22 1397.25 1885.42 595.73 1291.71 4195.08 2891.89 37
MVS_111021_HR83.95 7586.10 8381.44 7384.62 8780.29 10590.51 6368.05 9284.07 8080.38 7584.74 11391.37 11374.23 7490.37 7387.25 7690.86 8784.59 89
CNLPA85.50 6188.58 5781.91 6884.55 8987.52 5590.89 5263.56 13388.18 4584.06 4483.85 11791.34 11476.46 5591.27 5989.00 6691.96 7288.88 62
Effi-MVS+82.33 9183.87 11280.52 8684.51 9081.32 9887.53 9368.05 9274.94 13979.67 7982.37 12592.31 9972.21 8985.06 11786.91 7991.18 8384.20 93
gm-plane-assit71.56 16169.99 17573.39 13184.43 9173.21 15690.42 6851.36 19284.08 7976.00 9391.30 4537.09 21659.01 15173.65 18070.24 17979.09 17260.37 194
RPSCF88.05 4592.61 1682.73 6584.24 9288.40 4290.04 7266.29 10391.46 1282.29 6088.93 7396.01 3779.38 3295.15 2194.90 694.15 3993.40 20
FC-MVSNet-train79.20 11986.29 8070.94 14384.06 9377.67 12485.68 10864.11 12582.90 8652.22 18692.57 3393.69 8249.52 18788.30 9186.93 7890.03 9381.95 116
v119283.61 7785.23 9281.72 7084.05 9482.15 9389.54 7566.20 10481.38 10586.76 3291.79 3996.03 3574.88 7181.81 14380.92 13288.91 10982.50 111
v124083.57 7884.94 9881.97 6784.05 9481.27 9989.46 7766.06 10681.31 10687.50 2191.88 3895.46 5076.25 5781.16 14880.51 13688.52 11682.98 105
test20.0369.91 16576.20 15662.58 18184.01 9667.34 17675.67 17565.88 11079.98 11840.28 20382.65 12189.31 12739.63 19977.41 16473.28 16969.98 18963.40 185
Anonymous20240521184.68 10183.92 9779.45 11279.03 15467.79 9482.01 9488.77 7792.58 9555.93 16386.68 10384.26 10588.92 10878.98 138
NR-MVSNet82.89 8687.43 7277.59 10683.91 9883.59 8287.10 9978.35 2080.64 11268.85 13692.67 3096.50 2354.19 17287.19 10188.68 6793.16 5582.75 108
Gipumacopyleft86.47 5589.25 5483.23 5583.88 9978.78 11785.35 11268.42 8792.69 989.03 1291.94 3596.32 3181.80 2294.45 2786.86 8090.91 8683.69 97
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192083.49 7984.94 9881.80 6983.78 10081.20 10189.50 7665.91 10981.64 9887.18 2591.70 4095.39 5175.85 6181.56 14680.27 13888.60 11382.80 107
v114483.22 8285.01 9581.14 7583.76 10181.60 9688.95 8165.58 11381.89 9585.80 3691.68 4195.84 4074.04 7782.12 14080.56 13588.70 11281.41 119
Vis-MVSNet (Re-imp)76.15 13680.84 12970.68 14483.66 10274.80 15181.66 13769.59 7180.48 11546.94 19587.44 8580.63 16153.14 17786.87 10284.56 10389.12 10571.12 165
v14419283.43 8084.97 9781.63 7283.43 10381.23 10089.42 7866.04 10881.45 10486.40 3491.46 4395.70 4575.76 6382.14 13980.23 13988.74 11082.57 110
TinyColmap83.79 7686.12 8281.07 7683.42 10481.44 9785.42 11068.55 8688.71 4289.46 887.60 8492.72 9370.34 10589.29 8081.94 12589.20 10481.12 122
TransMVSNet (Re)79.05 12086.66 7570.18 14983.32 10575.99 13977.54 15963.98 12990.68 2255.84 17394.80 996.06 3453.73 17586.27 10783.22 11786.65 13179.61 136
v1083.17 8485.22 9380.78 7983.26 10682.99 8688.66 8566.49 10279.24 12383.60 4891.46 4395.47 4974.12 7582.60 13880.66 13388.53 11584.11 95
LTVRE_ROB86.82 191.55 394.43 388.19 1183.19 10786.35 6593.60 3678.79 1995.48 391.79 293.08 2497.21 1986.34 397.06 296.27 395.46 2395.56 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
canonicalmvs81.22 10386.04 8575.60 11583.17 10883.18 8580.29 14465.82 11185.97 6567.98 14377.74 14591.51 11165.17 13188.62 8586.15 8691.17 8489.09 59
FPMVS81.56 9884.04 11178.66 9882.92 10975.96 14086.48 10665.66 11284.67 7671.47 12277.78 14483.22 15377.57 4991.24 6090.21 5187.84 12185.21 86
DCV-MVSNet80.04 10885.67 8973.48 13082.91 11081.11 10280.44 14366.06 10685.01 7362.53 16078.84 13894.43 7558.51 15388.66 8485.91 8890.41 8985.73 83
MVS_111021_LR83.20 8385.33 9080.73 8282.88 11178.23 12189.61 7465.23 11582.08 9381.19 7185.31 10792.04 10675.22 6689.50 7885.90 8990.24 9084.23 92
Anonymous2023121179.37 11585.78 8771.89 13782.87 11279.66 11178.77 15663.93 13183.36 8259.39 16490.54 5094.66 7056.46 16087.38 9684.12 10689.92 9580.74 124
v2v48282.20 9384.26 10679.81 9182.67 11380.18 10687.67 9263.96 13081.69 9784.73 4191.27 4696.33 3072.05 9381.94 14279.56 14287.79 12278.84 139
v882.20 9384.56 10379.45 9282.42 11481.65 9587.26 9664.27 12279.36 12281.70 6891.04 4995.75 4373.30 8482.82 13479.18 14587.74 12382.09 114
MSDG81.39 10184.23 10878.09 10282.40 11582.47 9185.31 11460.91 15479.73 12080.26 7686.30 9788.27 13569.67 10787.20 10084.98 9789.97 9480.67 125
Fast-Effi-MVS+81.42 9983.82 11378.62 9982.24 11680.62 10487.72 9163.51 13473.01 14374.75 10183.80 11892.70 9473.44 8388.15 9385.26 9490.05 9283.17 101
PVSNet_Blended_VisFu83.00 8584.16 10981.65 7182.17 11786.01 6688.03 8871.23 6476.05 13479.54 8083.88 11683.44 15077.49 5087.38 9684.93 9891.41 7887.40 74
pmmvs680.46 10588.34 6371.26 13981.96 11877.51 12577.54 15968.83 8293.72 655.92 17293.94 1698.03 955.94 16289.21 8185.61 9187.36 12780.38 127
IterMVS-LS79.79 11082.56 12276.56 11281.83 11977.85 12379.90 14869.42 7678.93 12471.21 12390.47 5185.20 14870.86 10280.54 15380.57 13486.15 13884.36 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet73.07 15577.02 14868.46 15981.62 12072.89 15779.56 15270.78 6769.56 15852.52 18377.37 14981.12 16042.60 19584.20 12783.93 10783.65 15870.07 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gg-mvs-nofinetune72.68 15775.21 16369.73 15181.48 12169.04 17170.48 18876.67 3686.92 5767.80 14588.06 8164.67 19342.12 19777.60 16373.65 16879.81 16966.57 177
USDC81.39 10183.07 11979.43 9381.48 12178.95 11682.62 13066.17 10587.45 5290.73 482.40 12493.65 8366.57 12583.63 13077.97 14889.00 10777.45 147
casdiffmvs79.93 10984.11 11075.05 12081.41 12378.99 11582.95 12762.90 14181.53 10068.60 14091.94 3596.03 3565.84 12982.89 13377.07 15688.59 11480.34 131
tfpnnormal77.16 12884.26 10668.88 15781.02 12475.02 14776.52 16663.30 13687.29 5352.40 18491.24 4793.97 7854.85 16985.46 11481.08 13085.18 15175.76 152
thres600view774.34 14878.43 13769.56 15380.47 12576.28 13778.65 15762.56 14377.39 12852.53 18274.03 17176.78 17555.90 16485.06 11785.19 9587.25 12874.29 156
OpenMVScopyleft75.38 1678.44 12381.39 12874.99 12380.46 12679.85 10779.99 14658.31 16877.34 12973.85 10777.19 15082.33 15768.60 11484.67 12481.95 12488.72 11186.40 79
pm-mvs178.21 12485.68 8869.50 15480.38 12775.73 14276.25 16765.04 11687.59 5054.47 17793.16 2395.99 3954.20 17186.37 10682.98 12086.64 13277.96 145
v14879.33 11882.32 12375.84 11480.14 12875.74 14181.98 13457.06 17181.51 10279.36 8289.42 6496.42 2671.32 9681.54 14775.29 16585.20 15076.32 148
pmmvs-eth3d79.64 11282.06 12576.83 10980.05 12972.64 15887.47 9466.59 10180.83 11173.50 10989.32 6793.20 8967.78 11780.78 15181.64 12885.58 14876.01 149
testgi68.20 17476.05 15759.04 18779.99 13067.32 17781.16 13951.78 19084.91 7439.36 20473.42 17595.19 5632.79 20576.54 17070.40 17869.14 19264.55 181
DI_MVS_plusplus_trai77.64 12679.64 13275.31 11879.87 13176.89 13381.55 13863.64 13276.21 13372.03 11885.59 10682.97 15466.63 12479.27 15977.78 15088.14 11978.76 141
Fast-Effi-MVS+-dtu76.92 12977.18 14776.62 11179.55 13279.17 11384.80 11677.40 3064.46 18268.75 13870.81 18886.57 14163.36 14281.74 14481.76 12685.86 14475.78 151
thres40073.13 15476.99 15068.62 15879.46 13374.93 14977.23 16161.23 15275.54 13552.31 18572.20 17977.10 17354.89 16782.92 13282.62 12286.57 13473.66 161
QAPM80.43 10684.34 10475.86 11379.40 13482.06 9479.86 14961.94 14783.28 8374.73 10281.74 12785.44 14670.97 10084.99 12284.71 10288.29 11788.14 67
DELS-MVS79.71 11183.74 11475.01 12279.31 13582.68 8884.79 11760.06 16075.43 13769.09 13486.13 9989.38 12567.16 12185.12 11683.87 10989.65 9783.57 98
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator79.41 1082.21 9286.07 8477.71 10479.31 13584.61 7487.18 9761.02 15385.65 6676.11 9285.07 11185.38 14770.96 10187.22 9986.47 8391.66 7588.12 68
ET-MVSNet_ETH3D74.71 14674.19 16675.31 11879.22 13775.29 14582.70 12964.05 12665.45 17770.96 12677.15 15157.70 20565.89 12884.40 12681.65 12789.03 10677.67 146
test-LLR62.15 18959.46 20565.29 17779.07 13852.66 20169.46 19462.93 13950.76 20953.81 17963.11 20358.91 20152.87 17866.54 19862.34 19173.59 17761.87 190
test0.0.03 161.79 19165.33 18757.65 19079.07 13864.09 18568.51 19762.93 13961.59 19533.71 20761.58 20571.58 18933.43 20470.95 18868.68 18368.26 19458.82 196
baseline169.62 16773.55 17065.02 17978.95 14070.39 16471.38 18762.03 14670.97 15447.95 19478.47 14268.19 19147.77 19179.65 15876.94 15882.05 16570.27 168
MVS_Test76.72 13179.40 13473.60 12978.85 14174.99 14879.91 14761.56 14969.67 15772.44 11485.98 10290.78 11863.50 14078.30 16175.74 16385.33 14980.31 132
FMVSNet178.20 12584.83 10070.46 14778.62 14279.03 11477.90 15867.53 9783.02 8555.10 17587.19 9093.18 9055.65 16585.57 11183.39 11387.98 12082.40 112
GA-MVS75.01 14576.39 15373.39 13178.37 14375.66 14380.03 14558.40 16770.51 15575.85 9483.24 11976.14 17763.75 13677.28 16576.62 15983.97 15775.30 154
thres20072.41 15876.00 15868.21 16178.28 14476.28 13774.94 17762.56 14372.14 15051.35 19069.59 19476.51 17654.89 16785.06 11780.51 13687.25 12871.92 164
EPNet_dtu71.90 16073.03 17270.59 14578.28 14461.64 18982.44 13164.12 12463.26 18669.74 13071.47 18282.41 15551.89 18478.83 16078.01 14777.07 17475.60 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs475.92 13877.48 14674.10 12878.21 14670.94 16284.06 12064.78 11875.13 13868.47 14184.12 11583.32 15164.74 13475.93 17379.14 14684.31 15573.77 159
PM-MVS80.42 10783.63 11576.67 11078.04 14772.37 16087.14 9860.18 15980.13 11671.75 12086.12 10093.92 8077.08 5286.56 10485.12 9685.83 14581.18 120
thres100view90069.86 16672.97 17366.24 17077.97 14872.49 15973.29 18159.12 16366.81 16950.82 19167.30 19775.67 18050.54 18678.24 16279.40 14385.71 14770.88 166
tfpn200view972.01 15975.40 16168.06 16277.97 14876.44 13577.04 16362.67 14266.81 16950.82 19167.30 19775.67 18052.46 18385.06 11782.64 12187.41 12673.86 158
Vis-MVSNetpermissive83.32 8188.12 6677.71 10477.91 15083.44 8490.58 5869.49 7481.11 10867.10 14789.85 5991.48 11271.71 9591.34 5889.37 6289.48 10190.26 50
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PatchMatch-RL76.05 13776.64 15175.36 11777.84 15169.87 16881.09 14063.43 13571.66 15168.34 14271.70 18081.76 15874.98 7084.83 12383.44 11286.45 13673.22 162
CANet_DTU75.04 14478.45 13671.07 14077.27 15277.96 12283.88 12258.00 16964.11 18368.67 13975.65 16488.37 13453.92 17482.05 14181.11 12984.67 15379.88 134
MS-PatchMatch71.18 16473.99 16867.89 16577.16 15371.76 16177.18 16256.38 17367.35 16755.04 17674.63 16975.70 17962.38 14376.62 16875.97 16279.22 17175.90 150
new-patchmatchnet62.59 18873.79 16949.53 20276.98 15453.57 19953.46 21054.64 17885.43 6928.81 20891.94 3596.41 2725.28 20776.80 16653.66 20557.99 20358.69 197
GBi-Net73.17 15277.64 14367.95 16376.76 15577.36 12775.77 17164.57 11962.99 18951.83 18776.05 15877.76 17052.73 18085.57 11183.39 11386.04 14080.37 128
PVSNet_BlendedMVS76.45 13478.12 13874.49 12676.76 15578.46 11879.65 15063.26 13765.42 17873.15 11175.05 16788.96 12966.51 12682.73 13677.66 15187.61 12478.60 142
PVSNet_Blended76.45 13478.12 13874.49 12676.76 15578.46 11879.65 15063.26 13765.42 17873.15 11175.05 16788.96 12966.51 12682.73 13677.66 15187.61 12478.60 142
test173.17 15277.64 14367.95 16376.76 15577.36 12775.77 17164.57 11962.99 18951.83 18776.05 15877.76 17052.73 18085.57 11183.39 11386.04 14080.37 128
FMVSNet274.43 14779.70 13168.27 16076.76 15577.36 12775.77 17165.36 11472.28 14752.97 18181.92 12685.61 14552.73 18080.66 15279.73 14186.04 14080.37 128
IB-MVS71.28 1775.21 14377.00 14973.12 13476.76 15577.45 12683.05 12558.92 16563.01 18864.31 15459.99 20687.57 13868.64 11386.26 10882.34 12387.05 13082.36 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thisisatest051581.18 10484.32 10577.52 10876.73 16174.84 15085.06 11561.37 15081.05 10973.95 10688.79 7689.25 12875.49 6585.98 10984.78 10092.53 6685.56 85
IterMVS-SCA-FT77.23 12779.18 13574.96 12476.67 16279.85 10775.58 17661.34 15173.10 14273.79 10886.23 9879.61 16379.00 3680.28 15575.50 16483.41 16279.70 135
FC-MVSNet-test75.91 13983.59 11666.95 16876.63 16369.07 17085.33 11364.97 11784.87 7541.95 19993.17 2287.04 13947.78 19091.09 6585.56 9285.06 15274.34 155
Anonymous2023120667.28 17673.41 17160.12 18676.45 16463.61 18774.21 17956.52 17276.35 13142.23 19875.81 16390.47 12041.51 19874.52 17469.97 18069.83 19063.17 186
baseline268.71 17268.34 18069.14 15575.69 16569.70 16976.60 16555.53 17660.13 19762.07 16266.76 19960.35 19860.77 14676.53 17174.03 16784.19 15670.88 166
diffmvs76.74 13081.61 12771.06 14175.64 16674.45 15380.68 14257.57 17077.48 12767.62 14688.95 7293.94 7961.98 14479.74 15676.18 16082.85 16380.50 126
tttt051775.86 14076.23 15575.42 11675.55 16774.06 15482.73 12860.31 15669.24 15970.24 12979.18 13458.79 20372.17 9084.49 12583.08 11891.54 7684.80 87
thisisatest053075.54 14275.95 15975.05 12075.08 16873.56 15582.15 13360.31 15669.17 16069.32 13279.02 13558.78 20472.17 9083.88 12883.08 11891.30 8184.20 93
FMVSNet371.40 16375.20 16466.97 16775.00 16976.59 13474.29 17864.57 11962.99 18951.83 18776.05 15877.76 17051.49 18576.58 16977.03 15784.62 15479.43 137
tpm cat164.79 18362.74 19667.17 16674.61 17065.91 18176.18 16859.32 16264.88 18166.41 15071.21 18553.56 21359.17 15061.53 20458.16 19967.33 19563.95 182
UGNet79.62 11385.91 8672.28 13673.52 17183.91 7786.64 10469.51 7379.85 11962.57 15985.82 10489.63 12353.18 17688.39 8987.35 7588.28 11886.43 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
our_test_373.27 17270.91 16383.26 123
HyFIR lowres test73.29 15174.14 16772.30 13573.08 17378.33 12083.12 12462.41 14563.81 18462.13 16176.67 15478.50 16771.09 9874.13 17777.47 15481.98 16670.10 169
MIMVSNet173.40 15081.85 12663.55 18072.90 17464.37 18484.58 11853.60 18490.84 1953.92 17887.75 8396.10 3245.31 19385.37 11579.32 14470.98 18869.18 174
CostFormer66.81 17866.94 18366.67 16972.79 17568.25 17379.55 15355.57 17565.52 17662.77 15876.98 15260.09 19956.73 15965.69 20062.35 19072.59 18069.71 171
CR-MVSNet69.56 16868.34 18070.99 14272.78 17667.63 17464.47 20067.74 9559.93 19872.30 11580.10 13056.77 20765.04 13271.64 18572.91 17183.61 16069.40 172
CVMVSNet75.65 14177.62 14573.35 13371.95 17769.89 16783.04 12660.84 15569.12 16168.76 13779.92 13378.93 16673.64 8281.02 14981.01 13181.86 16783.43 99
IterMVS73.62 14976.53 15270.23 14871.83 17877.18 13180.69 14153.22 18672.23 14866.62 14985.21 10878.96 16569.54 10976.28 17271.63 17579.45 17074.25 157
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPMNet67.02 17763.99 19170.56 14671.55 17967.63 17475.81 16969.44 7559.93 19863.24 15664.32 20147.51 21559.68 14870.37 18969.64 18183.64 15968.49 175
dps65.14 18064.50 18965.89 17571.41 18065.81 18271.44 18661.59 14858.56 20161.43 16375.45 16552.70 21458.06 15569.57 19164.65 18871.39 18564.77 180
MDTV_nov1_ep13_2view72.96 15675.59 16069.88 15071.15 18164.86 18382.31 13254.45 18076.30 13278.32 8786.52 9591.58 10961.35 14576.80 16666.83 18671.70 18166.26 178
TAMVS63.02 18469.30 17755.70 19470.12 18256.89 19569.63 19245.13 19770.23 15638.00 20577.79 14375.15 18242.60 19574.48 17572.81 17368.70 19357.75 200
tpm62.79 18663.25 19362.26 18470.09 18353.78 19871.65 18547.31 19665.72 17576.70 9080.62 12956.40 21048.11 18964.20 20258.54 19759.70 20163.47 184
V4279.59 11483.59 11674.93 12569.61 18477.05 13286.59 10555.84 17478.42 12677.29 8989.84 6095.08 6174.12 7583.05 13180.11 14086.12 13981.59 118
PatchmatchNetpermissive64.81 18263.74 19266.06 17469.21 18558.62 19373.16 18260.01 16165.92 17366.19 15176.27 15659.09 20060.45 14766.58 19761.47 19667.33 19558.24 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 1792x268868.80 17171.09 17466.13 17269.11 18668.89 17278.98 15554.68 17761.63 19456.69 16971.56 18178.39 16867.69 11872.13 18472.01 17469.63 19173.02 163
MIMVSNet63.02 18469.02 17856.01 19268.20 18759.26 19270.01 19153.79 18371.56 15241.26 20271.38 18382.38 15636.38 20171.43 18767.32 18566.45 19759.83 195
CMPMVSbinary55.74 1871.56 16176.26 15466.08 17368.11 18863.91 18663.17 20250.52 19468.79 16475.49 9570.78 18985.67 14463.54 13981.58 14577.20 15575.63 17585.86 81
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SCA68.54 17367.52 18269.73 15167.79 18975.04 14676.96 16468.94 8166.41 17167.86 14474.03 17160.96 19665.55 13068.99 19265.67 18771.30 18661.54 193
EU-MVSNet76.48 13380.53 13071.75 13867.62 19070.30 16581.74 13654.06 18275.47 13671.01 12580.10 13093.17 9173.67 8083.73 12977.85 14982.40 16483.07 102
tpmrst59.42 19360.02 20358.71 18867.56 19153.10 20066.99 19851.88 18963.80 18557.68 16776.73 15356.49 20948.73 18856.47 20855.55 20159.43 20258.02 199
pmmvs568.91 17074.35 16562.56 18267.45 19266.78 17871.70 18451.47 19167.17 16856.25 17182.41 12388.59 13347.21 19273.21 18374.23 16681.30 16868.03 176
MDTV_nov1_ep1364.96 18164.77 18865.18 17867.08 19362.46 18875.80 17051.10 19362.27 19369.74 13074.12 17062.65 19455.64 16668.19 19462.16 19471.70 18161.57 192
E-PMN59.07 19562.79 19554.72 19567.01 19447.81 20760.44 20543.40 19872.95 14444.63 19770.42 19173.17 18658.73 15280.97 15051.98 20654.14 20642.26 209
baseline69.33 16975.37 16262.28 18366.54 19566.67 17973.95 18048.07 19566.10 17259.26 16582.45 12286.30 14254.44 17074.42 17673.25 17071.42 18478.43 144
N_pmnet54.95 20265.90 18542.18 20366.37 19643.86 21057.92 20739.79 20279.54 12117.24 21286.31 9687.91 13625.44 20664.68 20151.76 20746.33 20947.23 207
MVSTER68.08 17569.73 17666.16 17166.33 19770.06 16675.71 17452.36 18855.18 20658.64 16670.23 19356.72 20857.34 15779.68 15776.03 16186.61 13380.20 133
EMVS58.97 19662.63 19754.70 19666.26 19848.71 20561.74 20342.71 19972.80 14646.00 19673.01 17871.66 18757.91 15680.41 15450.68 20853.55 20741.11 210
anonymousdsp85.62 5990.53 4679.88 9064.64 19976.35 13696.28 1353.53 18585.63 6781.59 6992.81 2897.71 1286.88 294.56 2692.83 2596.35 693.84 8
EPMVS56.62 19959.77 20452.94 19962.41 20050.55 20460.66 20452.83 18765.15 18041.80 20077.46 14857.28 20642.68 19459.81 20654.82 20257.23 20453.35 203
FMVSNet556.37 20060.14 20251.98 20160.83 20159.58 19166.85 19942.37 20052.68 20841.33 20147.09 20954.68 21135.28 20273.88 17870.77 17765.24 19862.26 189
ADS-MVSNet56.89 19861.09 19952.00 20059.48 20248.10 20658.02 20654.37 18172.82 14549.19 19375.32 16665.97 19237.96 20059.34 20754.66 20352.99 20851.42 205
new_pmnet52.29 20363.16 19439.61 20558.89 20344.70 20948.78 21234.73 20565.88 17417.85 21173.42 17580.00 16223.06 20867.00 19662.28 19354.36 20548.81 206
MVS-HIRNet59.74 19258.74 20860.92 18557.74 20445.81 20856.02 20858.69 16655.69 20465.17 15270.86 18771.66 18756.75 15861.11 20553.74 20471.17 18752.28 204
PatchT66.25 17966.76 18465.67 17655.87 20560.75 19070.17 18959.00 16459.80 20072.30 11578.68 14054.12 21265.04 13271.64 18572.91 17171.63 18369.40 172
test-mter59.39 19461.59 19856.82 19153.21 20654.82 19773.12 18326.57 20953.19 20756.31 17064.71 20060.47 19756.36 16168.69 19364.27 18975.38 17665.00 179
CHOSEN 280x42056.32 20158.85 20753.36 19851.63 20739.91 21169.12 19638.61 20356.29 20336.79 20648.84 20862.59 19563.39 14173.61 18167.66 18460.61 19963.07 187
TESTMET0.1,157.21 19759.46 20554.60 19750.95 20852.66 20169.46 19426.91 20850.76 20953.81 17963.11 20358.91 20152.87 17866.54 19862.34 19173.59 17761.87 190
pmmvs362.72 18768.71 17955.74 19350.74 20957.10 19470.05 19028.82 20761.57 19657.39 16871.19 18685.73 14353.96 17373.36 18269.43 18273.47 17962.55 188
MDA-MVSNet-bldmvs76.51 13282.87 12169.09 15650.71 21074.72 15284.05 12160.27 15881.62 9971.16 12488.21 8091.58 10969.62 10892.78 4377.48 15378.75 17373.69 160
PMMVS61.98 19065.61 18657.74 18945.03 21151.76 20369.54 19335.05 20455.49 20555.32 17468.23 19578.39 16858.09 15470.21 19071.56 17683.42 16163.66 183
PMMVS248.13 20564.06 19029.55 20644.06 21236.69 21251.95 21129.97 20674.75 1408.90 21476.02 16191.24 1157.53 20973.78 17955.91 20034.87 21140.01 211
MVEpermissive41.12 1951.80 20460.92 20041.16 20435.21 21334.14 21348.45 21341.39 20169.11 16219.53 21063.33 20273.80 18463.56 13867.19 19561.51 19538.85 21057.38 201
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt13.54 20816.73 2146.42 2158.49 2152.36 21128.69 21227.44 20918.40 21113.51 2183.70 21033.23 20936.26 20922.54 213
test1231.06 2071.41 2090.64 2090.39 2150.48 2160.52 2180.25 2131.11 2141.37 2162.01 2131.98 2190.87 2111.43 2111.27 2100.46 2151.62 213
testmvs0.93 2081.37 2100.41 2100.36 2160.36 2170.62 2170.39 2121.48 2130.18 2172.41 2121.31 2200.41 2121.25 2121.08 2110.48 2141.68 212
GG-mvs-BLEND41.63 20660.36 20119.78 2070.14 21766.04 18055.66 2090.17 21457.64 2022.42 21551.82 20769.42 1900.28 21364.11 20358.29 19860.02 20055.18 202
uanet_test0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
9.1489.43 124
test_part193.49 18
MTAPA89.37 994.85 66
MTMP90.54 595.16 58
Patchmatch-RL test4.13 216
NP-MVS78.65 125
Patchmtry56.88 19664.47 20067.74 9572.30 115
DeepMVS_CXcopyleft17.78 21420.40 2146.69 21031.41 2119.80 21338.61 21034.88 21733.78 20328.41 21023.59 21245.77 208